WO2014077259A1 - High-watt ceramic metal halide lamp - Google Patents
High-watt ceramic metal halide lamp Download PDFInfo
- Publication number
- WO2014077259A1 WO2014077259A1 PCT/JP2013/080612 JP2013080612W WO2014077259A1 WO 2014077259 A1 WO2014077259 A1 WO 2014077259A1 JP 2013080612 W JP2013080612 W JP 2013080612W WO 2014077259 A1 WO2014077259 A1 WO 2014077259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal halide
- tube
- arc tube
- halide lamp
- lamp
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/302—Vessels; Containers characterised by the material of the vessel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/36—Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
- H01J61/366—Seals for leading-in conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/82—Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
- H01J61/827—Metal halide arc lamps
Definitions
- the present invention relates to a high watt type ceramic metal halide lamp.
- a high-intensity discharge lamp emits light using discharge between electrodes, and therefore has various features such as a large luminous flux suitable for lighting in a large space and high energy efficiency compared to an incandescent bulb. ing.
- a metal halide lamp that employs a metal halide in addition to mercury as a luminescent material has a color rendering property close to natural light and high luminous efficiency as compared with a mercury lamp.
- quartz arc tubes have been used as arc tubes for metal halide lamps. Recently, a translucent ceramic arc tube has been used instead.
- the translucent ceramic arc tube has better heat resistance compared to the quartz arc tube, so it can have a long life, and the reaction with the metal halide encapsulated in the arc tube is less likely.
- the metal halide can be used.
- WO 2006-088128 “Ceramic metal halide lamp with rated lamp power of 450W or more” (International publication date: 2006/08/24) Applicant: GS Yuasa Corporation Japanese Patent Application Laid-Open No. 2002-110100 “High Pressure Discharge Lamp, High Pressure Discharge Lamp Lighting Device and Lighting Device” (Publication Date: April 12, 2002) Applicant: Toshiba Lighting & Technology Corporation JP 2008-027745 "Metal Halide Lamp and Lighting Device” (Release Date: February 07, 2008) Applicant: OSRAM Melco Toshiba Lighting Co., Ltd. Japanese Unexamined Patent Application Publication No.
- Patent Document 1 targets a ceramic halide lamp of 450 W or more.
- the problem is flickering due to arc instability (paragraph 0010).
- the wall load G (Watt / cm 3 ) expressed by the above formula is in the range of 15 ⁇ G ⁇ 40 and 0.32 ⁇ L / D ⁇ 0.003 ⁇ W + 0.465 (claim 1) ).
- the present invention is different from Patent Document 1 in that a decrease in luminous efficiency is a problem and a gap inside the narrow tube portion is defined in two dimensions and three dimensions.
- Patent Document 2 defines the width dimension of the pole gap as an absolute value (paragraph 0041).
- the present invention is different from Patent Document 2 in that a decrease in luminous efficiency is a problem and a gap inside the narrow tube portion is defined in two dimensions and three dimensions.
- Patent Document 3 targets a rated lamp power of 400 W (paragraph 0091) and is different from the present invention.
- Patent Document 4 targets a rated lamp power of 100 W or less (paragraphs 0022, 0024), and is different from the present invention.
- Patent Document 5 targets a rated lamp power of 100 W (paragraph 0033) and is different from the present invention.
- ceramic metal halide lamps are mainly 100 to 300 W class low and medium watt lamps. Under such circumstances, the present inventors aim to develop a lamp with a high wattage of 500 W or more suitable for illumination of a large space with a larger luminous flux.
- a high watt ceramic metal halide lamp has a phenomenon in which the luminous efficiency decreases due to some cause.
- the frequency of occurrence was not high, a phenomenon that the arc tube blackened was also observed. This decrease in luminous efficiency and blackening of the arc tube are phenomena that have not been seen with conventional low and medium watt lamps. Therefore, it has been desired to find the cause of the decrease in luminous efficiency and the blackening of the arc tube, and to solve this, and to realize a high watt type ceramic metal halide lamp that maintains high luminous efficiency.
- an object of the present invention is to provide a high watt type ceramic metal halide lamp that maintains high luminous efficiency.
- Another object of the present invention is to provide a high watt type ceramic metal halide lamp that does not cause blackening in the arc tube.
- a high watt type ceramic metal halide lamp according to the present invention includes an arc tube filled with at least mercury and a metal halide, and the arc tube is provided at a thick tube portion and both ends of the large tube portion.
- Each of the thin tube portions has a pair of formed thin tube portions, and a current introducing member is passed through each of the thin tube portions.
- the outer diameter L14 of the current introducing member with respect to the inner diameter L6 of the thin tube portion is 0.96 ⁇ L14.
- the space between the narrow tube portion and the current introduction body is divided into a sealing region and a non-sealing region, and a gap GA in the non-sealing region is 5.0 mm 3 ⁇ GA
- the total light transmittance of the lamp is in the range of 96 to 99%
- the linear transmittance of the arc tube is 10% or more.
- the metal halide lamp may have a rated lamp power in a range of 500 to 1000 W.
- the current introduction body may be a coil rod in which a metal coil is wound around a metal rod-shaped body.
- the inner diameter of the narrow tube portion may be in the range of 2 to 3 mm.
- the maximum amount of mercury enclosed in the arc tube may be 100 mg, and the rare earth metal halide may be maximum 12 mg.
- the arc tube may have a linear transmittance of 10 to 30%.
- the high watt type ceramic metal halide lamp which maintains high luminous efficiency can be provided. Furthermore, according to the present invention, it is possible to provide a high watt type ceramic metal halide lamp in which no blackening phenomenon occurs in the arc tube.
- FIG. 1 is a view showing a high watt type ceramic metal halide lamp according to the present embodiment.
- FIG. 2A is a diagram illustrating the entire arc tube.
- FIG. 2B is an enlarged view of a narrow tube portion surrounded by a broken-line rectangle in FIG. 2A.
- 3 is a cross-sectional view in the III-III direction of FIG. 2B.
- FIG. 4 is an enlarged view of the narrow tube portion shown in FIG. 2B.
- FIG. 5 is a graph illustrating Table 1.
- FIG. 6A is a diagram illustrating a representative example of the shape of the arc tube according to the present embodiment, and corresponds to FIG. 2A.
- FIG. 6A is a diagram illustrating a representative example of the shape of the arc tube according to the present embodiment, and corresponds to FIG. 2A.
- FIG. 6B is a diagram illustrating a representative example of the shape of the arc tube according to the present embodiment, and corresponds to FIG. 2B.
- FIG. 7 is a diagram for briefly explaining a method of measuring the linear transmittance of the arc tube.
- FIG. 8A shows a case where a rated power is applied to a lamp using a light emitting tube having a relatively high linear transmittance SR and a lamp using a light emitting tube having a relatively low linear transmittance, respectively, using a thermal image camera (thermography). This is the result of measuring the outer surface temperature of the arc tube by taking a thermal image of the arc tube.
- FIG. 8B is a detailed rewrite of the graph of FIG. 8A.
- the horizontal axis indicates the position of the arc tube in the axial direction, specifically, the center of the arc tube in the axial direction is zero, and the distance mm from the center is set to the left and right.
- the vertical axis represents the arc tube outer surface temperature ° C.
- FIG. 10 is a graph in which the horizontal axis represents the linear transmittance SR of the arc tube, and the vertical axis represents the lamp efficiency ⁇ after 100 hours.
- FIG. 1 is a diagram for explaining the structure of a high watt type ceramic metal halide lamp according to the present embodiment.
- the high wattage type is a lamp of 500 to 1000 W class, typically a 700 W class lamp.
- an arc tube 6 serving as a light emitting portion is enclosed inside an outer bulb 2, and an inner tube (also referred to as “sleeve”) 8 surrounds the arc tube 6.
- An E-shaped base 12 is joined to the end of the outer sphere 2.
- the arc tube 6 is supported at a predetermined position by a mount 14 in which an inner tube 8 is attached to a structure in which metal wires and plates are combined, and is supplied with power.
- the mount 14 is mainly composed of a stem tube 16 in which a pair of lead-in wires are hermetically sealed and a support column 18 shaped in a generally inverted U shape.
- the inner tube 8 is made of a transparent quartz glass tube, and is disposed so as to surround the periphery of the arc tube in order to prevent the outer bulb 2 from being damaged when the arc tube 6 is ruptured.
- a wire 20 is spirally wound around the inner tube 8 in order to reinforce its mechanical strength.
- the outer sphere 2 is made of translucent hard glass such as borosilicate glass, for example.
- the outer sphere 2 has a BT shape having a central portion 2a having a maximum diameter, a closed top portion 2b on the upper side as viewed in the drawing, and a neck portion 2c on the lower side.
- the neck portion 2c has a sealing portion (not shown) in which the flare portion of the stem tube 16 is sealed.
- an exhaust pipe not shown
- an inert gas such as argon (Ar), nitrogen (N 2 ), or evacuated.
- the atmosphere is airtight.
- the lamp shown in FIG. 1 has a base 12 mounted in a socket (not shown), energized from a power source via a predetermined lighting circuit device (not shown), and a main electrode inside the arc tube 6. Stable lighting is maintained by the discharge in between.
- FIG. 2A and 2B are diagrams for explaining the details of the arc tube 6.
- FIG. 2A is a diagram for explaining the entire arc tube
- FIG. 2B is a narrow tube surrounded by a broken-line rectangle in FIG. 2A. It is an enlarged view of the part 6b.
- the arc tube 6 has a thick tube portion (also referred to as “light-emitting portion”) 6a and a narrow tube portion (also referred to as “capillary”) 6b and 6c at both ends as a single body.
- This is a container made of translucent ceramics (PCA).
- the shape of the arc tube 6 is not limited to this, and thin tube portions 6b and 6c made of a member different from the thick tube portion may be formed at both ends of the thick tube portion 6a having a cylindrical shape or the like.
- the left and right thin tube portions 6b and 6c have the same structure, and the thin tube portions extend through the pair of lead wires 22-1 and 22-2 to the region of the thick tube portion 6a to form a pair of tungsten (W ) Main electrodes 24-1 and 24-2 are formed.
- a metal halide containing a maximum of 100 mg (preferably about 85 mg) mercury and a maximum of 12 mg (preferably about 7 mg) rare earth metal halide.
- argon (Ar) or the like having a predetermined pressure is enclosed as a rare gas, and characteristics such as luminous efficiency, color rendering properties, and color temperature are improved.
- a lead wire 22-1 is inserted from the tip of the thin tube portion 6b connected to the thick tube portion 6a along the axis of the arc tube, and this leads to the cermet (alloy of molybdenum and alumina) 26, Further, it is connected to a metal coil rod (also referred to as “current introducing member”) 30, and a tungsten electrode rod 24-1 is formed at the tip thereof, and a niobium stopper member 32 is welded to the cermet.
- the main electrode 24-1, the current introduction body 30, the cermet 26, the lead wire 22-1 and the niobium stopper member 32 which are integrally connected are called an electrode mound.
- the metal coil rod 30 is typically formed by winding a molybdenum coil 30-2 around a molybdenum rod 30-1 serving as a core rod.
- the metal coil rod 30 may be made of tungsten (W) or other metal, or molybdenum, tungsten, a combination or alloy of other metals.
- W tungsten
- the distal end portion inside the narrow tube portion 6b is sealed by a glass frit (seal material) 28, and further reinforced by a ceramic ring member 34 passed through the lead wire 22-1.
- this electrode mount is inserted into the thin tube portion 6b so that the niobium stopper member 32 is hooked on the tip of the thin tube portion 6b, and the glass frit 28 and the ceramic ring member 34 are placed on the end of the thin tube portion.
- the periphery of the end portion of the thin tube portion is heated with a heater (not shown) to melt the glass frit.
- the molten glass frit penetrates into the inside of the thin tube portion by a capillary phenomenon and solidifies, and seals the inside of the arc tube 6 from the outside.
- the thin tube portion 6c has the same structure as the thin tube portion 6b.
- FIG. 3 is a cross-sectional view in the III-III direction of FIG. 2B.
- a molybdenum coil rod 30 is inserted into the narrow tube portion 6b.
- a molybdenum coil 30-2 is provided around a molybdenum rod-shaped body 30-1 forming the molybdenum coil rod 30.
- the metal halide is enclosed in the thick tube portion 6a in a solid state (powder, pellets, etc.) when the arc tube is manufactured. Since the inside of the arc tube is in a high temperature / high pressure state while the lamp is on, the metal halide is in a mixed state of liquid and gas. In the metal halide lamp, the vaporized metal halide tends to permeate into the gap in the narrow tube portion toward the tip of the narrow tube portion, but is liquefied and accumulated near the relatively low temperature molybdenum coil rod 30. This liquefied metal halide erodes the polycrystalline alumina forming the thin tube portions 6b and 6c.
- the gap between the thin tube portion 6b of the arc tube and the molybdenum coil rod 30 is viewed in a cross section, that is, is very small two-dimensionally, and the gap inside the narrow tube portion is very narrow.
- the molybdenum coil rod 30 employs a structure in which the coil 30-2 is wound around the rod-shaped body 30-1 in order to reduce heat transfer in the thick tube portion and prevent the metal halide from entering. Yes.
- the ratio of L14 / L6 is reduced to increase the gap inside the narrow tube portion, there is an advantage that the molybdenum coil rod 30 can be easily inserted into the thin tube portion at the time of manufacture, but metal halides are liable to enter.
- the ratio of L14 / L6 is increased to reduce the gap inside the narrow tube portion, the molybdenum coil rod 30 heated and thermally expanded by the heat from the large tube portion when the lamp is lit contacts the inner wall of the thin tube portion 6b. Damage this.
- L14 / L6 0.938.
- the thickness of the molybdenum coil rod 30 was determined from the required current capacity, and the inner diameter L6 of the narrow tube portion was determined from the same L14 / L6 ratio as the low and medium watt lamps.
- the high watt ceramic metal halide lamp a phenomenon in which the light emission efficiency decreases due to some cause occurred. This reduction in luminous efficiency is a phenomenon not seen with conventional low and medium watt lamps.
- the high watt type metal halide lamp it was suspected that the same L14 / L6 ratio as that of the low and medium watt lamps, the metal halide penetrated into the gap inside the narrow tube portion, and the luminous efficiency was greatly reduced.
- the present inventors have taken the following two measures in order to prevent the metal halide from penetrating into the voids inside the narrow tube portion.
- FIG. 4 is an enlarged view of the narrow tube portion 6b shown in FIG. 2B.
- the thin tube portion 6b is a portion from the boundary CB to the end portion 6be with the thick tube portion 6a.
- a boundary CB between the thin tube portion 6b and the thick tube portion 6a is a portion where the inner diameter of the thin tube portion starts to expand toward the thick tube portion.
- the inner diameters of the thin tube portions 6b and 6c are in the range of 2 to 3 mm.
- the internal space of the thin tube portion 6b is a thin tube portion internal space CA
- the space occupied by the solidified glass frit 28 in the thin tube portion internal space CA is a sealing area SA
- the remaining space is a non-sealing area NSA.
- CA SA + NSA
- a space occupied by the molybdenum coil rod 30 in the non-sealing region NSA is a molybdenum coil rod region MA
- the remaining space is a gap GA inside the narrow tube portion.
- NSA MA + GA.
- the luminous efficiency is maintained at 100 (lm / W) or more until the gap GA in the non-sealing region is near 17.5 mm 3, but the luminous efficiency ⁇ rapidly decreases beyond this.
- the gap GA was in the vicinity of 25.0 mm 3 , it decreased to about 50 to 60 (lm / W), about half.
- the high watt type lamp has a large gap GA inside the narrow tube portion, and it is easy for metal halides to enter the gap GA, thereby improving the luminous efficiency. It turned out to have a big influence. That is, the present inventors initially anticipated that metal halides could be prevented from penetrating into the narrow tube portion by adopting a molybdenum coil rod having the same L14 / L6 ratio as low and medium watt lamps. . However, it has been found that in a high watt type lamp, the metal halide penetrates and the luminous efficiency is lowered beyond this expectation.
- the amount of metal halide that contributes to light emission in the thick tube portion decreases and the luminous flux decreases. Furthermore, the ratio of the luminescent material in the thick tube portion becomes a mercury-rich state, the arc temperature rises, and the temperature of alumina forming the arc tube 6 is further raised. As a result, the inner tube 8 surrounding the arc tube 6 is blackened by reduction of alumina forming the arc tube 6, and the lamp illuminance decreases.
- the upper limit value of the gap GA in the non-sealing region needs to be 17.5 mm 3 or less.
- the lower limit value of the gap GA is set to 5.0 mm 3 or more in order to avoid contact with the thin tube portions 6b and 6c due to thermal expansion of the molybdenum coil rod 30 at the time of lighting. Accordingly, the gap GA is set to a range of 5.0 mm 3 ⁇ GA ⁇ 17.5 mm 3 .
- Example of arc tube shape 6A and 6B are diagrams showing typical examples of the shape of the arc tube according to the present embodiment, and correspond to FIGS. 2A and 2B, respectively.
- the boundary CB between the thin tube portions 6b and 6c and the thick tube portion 6a is defined as a location where the inner diameter of the thin tube portion toward the thick tube portion begins to expand.
- L13 ⁇ 0.62 mm
- L14 / L6 0.974, which is in the range of 0.96 ⁇ L14 / L6 ⁇ 0.98.
- Blackening phenomenon of arc tube (Blackening phenomenon)
- a high watt type ceramic metal halide lamp capable of maintaining high luminous efficiency could be provided.
- a phenomenon that the arc tube blackened in some lamps occurred.
- Such blackening phenomenon of the arc tube is a phenomenon that has not been seen in the conventional low and medium watt lamps.
- the blackening phenomenon of the arc tube occurs when the arc tube becomes hot and the PCA forming the arc tube is reduced.
- PCA forming the arc tube
- the present inventors have studied to suppress the temperature rise of the arc tube. Specifically, the following proposals were examined. (1) The diameter of the inner tube 8 is increased to increase the gas flow around the arc tube 6 located inside. However, in this proposal, it is necessary to increase the interval between the support columns 18 that support the inner tube 8, and there is a limitation on the inner diameter of the neck portion 2c of the outer sphere 2, and this proposal alone solves the problem of the blackening phenomenon. A conclusion was reached that it was difficult. (2) Enclose the arc tube 6 with cerium iodide (CeI 3 ).
- CeI 3 cerium iodide
- Cerium iodide has the effect of narrowing the arc, thereby reducing the contact between the arc and the inner wall of the arc tube and suppressing the temperature rise of the arc tube.
- the lamp illuminance decreases, and it has been concluded that it is difficult to solve the problem of the blackening phenomenon only with this proposal.
- (3) We also considered reducing the wall load of the arc tube. However, if the wall load is reduced, the coldest part temperature will inevitably fall, and the lamp efficiency will depend on the coldest part temperature. It was concluded that it was difficult to solve.
- the total light transmittance AP of the lamp was defined as 96 to 99% of the actual upper limit value.
- the present inventors paid attention to the linear transmittance SR of the arc tube.
- the total light transmittance AP the light beam incident on the inner wall of the arc tube for the first time from the arc and returned to the inside of the arc tube due to the scattering phenomenon is incident on the inner wall of the arc tube after the second time and is transmitted through the arc tube and emitted to the outside.
- this light beam is counted in the total light transmittance AP, but at the same time, it causes a rise in the temperature of the arc tube. Therefore, the total light transmittance AP alone is not a factor for suppressing the temperature rise of the arc tube.
- the light beam emitted from the arc inside the arc tube is incident on the inner wall of the arc tube for the first time and is not scattered as it is, but the ratio of the light beam radiated in the direction of the incident light beam, that is, the linear transmittance SR.
- the linear transmittance SR By controlling, it tried to suppress the temperature rise of the arc tube.
- a box 35 shielded from outside light is prepared.
- the box 35 is divided into three spaces by partition walls 35-1.
- the halogen bulb 36 is disposed in the left space
- the arc tube 6d as the object to be measured is disposed in the central space
- the illuminometer 38 is disposed in the right space.
- a predetermined small hole d1 is formed in the partition wall between the left space and the central space
- a predetermined small hole d1 is formed in the partition wall between the central space and the right space.
- a predetermined distance L is set between the arc tube 6d and the illuminometer 38.
- the vertical axis of the graph corresponds to the axial position of the left arc tube, and the horizontal axis of the graph is the arc tube outer surface temperature ° C determined from the thermal image.
- the phenomenon of blackening of the arc tube has a problem that the maximum temperature tmax is high or low.
- FIG. 8A is a detailed rewrite of the graph of FIG. 8A.
- the horizontal axis indicates the position of the arc tube in the axial direction, specifically, the center of the arc tube in the axial direction is zero, and the distance mm from the center is set to the left and right.
- the vertical axis represents the arc tube outer surface temperature ° C. Table 2 shows data that is the basis of the graph.
- the maximum maximum temperature tmax of the arc tube outer surface temperature is 898 ° C., which is not shown in the graph, but the maximum temperature tmax after 10,000 hours has hardly changed.
- the arc tube does not blacken.
- the use limit temperature of PCA forming the arc tube is said to be about 1,230 ° C., which is a temperature exceeding this.
- FIG. 10 is a graph in which the horizontal axis represents the linear transmittance SR% of the arc tube, and the vertical axis represents the lamp efficiency ⁇ [lm / W] after 100 hours.
- FIG. 10 shows that the lamp efficiency ⁇ decreases as the linear transmittance SR decreases.
- the target value in the graph is a numerical value determined by the present inventors, and is specifically 100 [lm / W]. From the result of FIG. 10, it was found that the target value can be realized if the linear transmittance is 10% ⁇ SR.
- the arc tube of a metal halide lamp has a high temperature and high pressure inside when it is lit, so an arc tube with weak mechanical strength is not suitable for a metal halide lamp.
- a metal halide lamp requires a light emitting tube having a high polycrystalline mechanical strength. From the viewpoint of securing this mechanical strength, the upper limit of the linear transmittance SR needs to be 30% or less. Furthermore, from the viewpoint of the mechanical strength and cost of the arc tube, 20% or less is preferable.
- an arc tube suitable for a metal halide lamp needs to have a light transmittance AP in the range of 96 to 99% and a linear transmittance SR in the range of 10 to 30%. Further, the linear transmittance SR is preferably in the range of 10 to 20%.
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
- Discharge Lamp (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Abstract
The purpose of the present invention is to provide a high-watt ceramic metal halide lamp that maintains a high luminous efficiency and with which blackening does not occur in the luminous tube. This high-watt ceramic metal halide lamp is provided with a luminous tube in which are included at least mercury and a metal halide. The luminous tube comprises a thick tube part (6a) and a pair of thin tube parts (6b) that are formed at either end of the thick tube part (6a), a current introducing element (30) passes through the inner part of each of the thin tube parts (6b), the external diameter (L14) of the current introducing element (30) relative to the internal diameter (L6) of the thin tube parts (6b) is in the range 0.96≤L14/L6≤0.98, the area between the thin tube parts (6b) and the current introducing element (30) is divided into a sealed area (SA) and a non-sealed area (NSA), the gap (GA) in the non-sealed area (NSA) is in the range 5.0mm3≤GA≤17.5mm3, the total light transmittance of the lamp is in the range 96-99%, and the linear transmittance of the luminous tube is at least 10%.
Description
本発明は、高ワットタイプのセラミックメタルハライドランプに関する。
The present invention relates to a high watt type ceramic metal halide lamp.
高輝度放電ランプ(HIDランプ)は、電極間の放電を利用して発光するため、白熱電球と比べて、光束が大きく大規模な空間の照明に適し、エネルギー効率が良いといった種々の特徴を備えている。HIDランプにおいて、発光物質として水銀に加えて金属ハロゲン化物を採用したメタルハライドランプは、水銀ランプと比較して自然光に近く優れた演色性と、高い発光効率とを有している。
A high-intensity discharge lamp (HID lamp) emits light using discharge between electrodes, and therefore has various features such as a large luminous flux suitable for lighting in a large space and high energy efficiency compared to an incandescent bulb. ing. In a HID lamp, a metal halide lamp that employs a metal halide in addition to mercury as a luminescent material has a color rendering property close to natural light and high luminous efficiency as compared with a mercury lamp.
従来、メタルハライドランプの発光管として石英製発光管が使用されていた。最近では、これに代わって透光性セラミックス製発光管が使用されている。透光性セラミックス製発光管は、石英製発光管と比較して、耐熱性が良好であるため長寿命化が図れ、更に、発光管内に封入された金属ハロゲン化物との反応がすくないため、種々の金属ハロゲン化物を使用できる長所を有している。
Conventionally, quartz arc tubes have been used as arc tubes for metal halide lamps. Recently, a translucent ceramic arc tube has been used instead. The translucent ceramic arc tube has better heat resistance compared to the quartz arc tube, so it can have a long life, and the reaction with the metal halide encapsulated in the arc tube is less likely. The metal halide can be used.
(特許文献と本発明の対比)
特許文献1は、450W以上のセラミックハライドランプを対象にする。問題点として、アークの不安定によるちらつきを挙げている(段落0010)。これを解決するため、本管の内径D(mm)、電極突出長L(mm)、電極間距離E(mm)の関係を、G=W/(3.14×D×E×0.01)で表される管壁負荷G(ワット/cm3)が15≦G≦40の範囲であるとともに、0.32≦L/D≦0.003×W+0.465と規定している(クレーム1)。本発明は、発光効率の低下を問題点とし、細管部内部における空隙を二次元及び三次元で規定している点で、特許文献1とは異なる。 (Contrast between patent document and the present invention)
Patent Document 1 targets a ceramic halide lamp of 450 W or more. The problem is flickering due to arc instability (paragraph 0010). In order to solve this, the relationship among the inner diameter D (mm) of the main pipe, the electrode protrusion length L (mm), and the distance E (mm) between the electrodes is expressed as G = W / (3.14 × D × E × 0.01 The wall load G (Watt / cm 3 ) expressed by the above formula is in the range of 15 ≦ G ≦ 40 and 0.32 ≦ L / D ≦ 0.003 × W + 0.465 (claim 1) ). The present invention is different from Patent Document 1 in that a decrease in luminous efficiency is a problem and a gap inside the narrow tube portion is defined in two dimensions and three dimensions.
特許文献1は、450W以上のセラミックハライドランプを対象にする。問題点として、アークの不安定によるちらつきを挙げている(段落0010)。これを解決するため、本管の内径D(mm)、電極突出長L(mm)、電極間距離E(mm)の関係を、G=W/(3.14×D×E×0.01)で表される管壁負荷G(ワット/cm3)が15≦G≦40の範囲であるとともに、0.32≦L/D≦0.003×W+0.465と規定している(クレーム1)。本発明は、発光効率の低下を問題点とし、細管部内部における空隙を二次元及び三次元で規定している点で、特許文献1とは異なる。 (Contrast between patent document and the present invention)
Patent Document 1 targets a ceramic halide lamp of 450 W or more. The problem is flickering due to arc instability (paragraph 0010). In order to solve this, the relationship among the inner diameter D (mm) of the main pipe, the electrode protrusion length L (mm), and the distance E (mm) between the electrodes is expressed as G = W / (3.14 × D × E × 0.01 The wall load G (Watt / cm 3 ) expressed by the above formula is in the range of 15 ≦ G ≦ 40 and 0.32 ≦ L / D ≦ 0.003 × W + 0.465 (claim 1) ). The present invention is different from Patent Document 1 in that a decrease in luminous efficiency is a problem and a gap inside the narrow tube portion is defined in two dimensions and three dimensions.
特許文献2は、極隙間の幅寸法を絶対値で規定している(段落0041)。本発明は、発光効率の低下を問題点とし、細管部内部における空隙を二次元及び三次元で規定している点で、特許文献2とは異なる。
Patent Document 2 defines the width dimension of the pole gap as an absolute value (paragraph 0041). The present invention is different from Patent Document 2 in that a decrease in luminous efficiency is a problem and a gap inside the narrow tube portion is defined in two dimensions and three dimensions.
特許文献3は、定格ランプ電力400Wを対象とし(段落0091)、本発明とは対象が異なる。特許文献4は、定格ランプ電力100W以下を対象とし(段落0022,0024)、本発明とは対象が異なる。特許文献5は、定格ランプ電力100Wを対象とし(段落0033)、本発明とは対象が異なる。
Patent Document 3 targets a rated lamp power of 400 W (paragraph 0091) and is different from the present invention. Patent Document 4 targets a rated lamp power of 100 W or less (paragraphs 0022, 0024), and is different from the present invention. Patent Document 5 targets a rated lamp power of 100 W (paragraph 0033) and is different from the present invention.
従来、セラミックメタルハライドランプは、100~300Wクラスの低及び中ワットのランプが主流であった。このような状況の中で、本発明者等は、更に光束が大きく大規模な空間の照明に適した500W以上の高ワットのランプの開発を目指している。
しかし、高ワットのセラミックメタルハライドランプでは、何らかの原因により発光効率が低下する現象が発生した。また、発生の頻度は高くは無いが、発光管が黒化する現象も見られた。この発光効率の低下及び発光管の黒化は、従来の低及び中ワットのランプでは見られなかった現象である。
そこで、発光効率低下及び発光管の黒化の原因を突きとめこれを解決して、高い発光効率を維持する高ワットタイプのセラミックメタルハライドランプの実現が望まれていた。 Conventionally, ceramic metal halide lamps are mainly 100 to 300 W class low and medium watt lamps. Under such circumstances, the present inventors aim to develop a lamp with a high wattage of 500 W or more suitable for illumination of a large space with a larger luminous flux.
However, a high watt ceramic metal halide lamp has a phenomenon in which the luminous efficiency decreases due to some cause. In addition, although the frequency of occurrence was not high, a phenomenon that the arc tube blackened was also observed. This decrease in luminous efficiency and blackening of the arc tube are phenomena that have not been seen with conventional low and medium watt lamps.
Therefore, it has been desired to find the cause of the decrease in luminous efficiency and the blackening of the arc tube, and to solve this, and to realize a high watt type ceramic metal halide lamp that maintains high luminous efficiency.
しかし、高ワットのセラミックメタルハライドランプでは、何らかの原因により発光効率が低下する現象が発生した。また、発生の頻度は高くは無いが、発光管が黒化する現象も見られた。この発光効率の低下及び発光管の黒化は、従来の低及び中ワットのランプでは見られなかった現象である。
そこで、発光効率低下及び発光管の黒化の原因を突きとめこれを解決して、高い発光効率を維持する高ワットタイプのセラミックメタルハライドランプの実現が望まれていた。 Conventionally, ceramic metal halide lamps are mainly 100 to 300 W class low and medium watt lamps. Under such circumstances, the present inventors aim to develop a lamp with a high wattage of 500 W or more suitable for illumination of a large space with a larger luminous flux.
However, a high watt ceramic metal halide lamp has a phenomenon in which the luminous efficiency decreases due to some cause. In addition, although the frequency of occurrence was not high, a phenomenon that the arc tube blackened was also observed. This decrease in luminous efficiency and blackening of the arc tube are phenomena that have not been seen with conventional low and medium watt lamps.
Therefore, it has been desired to find the cause of the decrease in luminous efficiency and the blackening of the arc tube, and to solve this, and to realize a high watt type ceramic metal halide lamp that maintains high luminous efficiency.
従って、本発明は、高い発光効率を維持する高ワットタイプのセラミックメタルハライドランプを提供することを目的とする。
更に、本発明は、発光管に黒化現象が生じない高ワットタイプのセラミックメタルハライドランプを提供することを目的とする。 Accordingly, an object of the present invention is to provide a high watt type ceramic metal halide lamp that maintains high luminous efficiency.
Another object of the present invention is to provide a high watt type ceramic metal halide lamp that does not cause blackening in the arc tube.
更に、本発明は、発光管に黒化現象が生じない高ワットタイプのセラミックメタルハライドランプを提供することを目的とする。 Accordingly, an object of the present invention is to provide a high watt type ceramic metal halide lamp that maintains high luminous efficiency.
Another object of the present invention is to provide a high watt type ceramic metal halide lamp that does not cause blackening in the arc tube.
上記目的に鑑みて、本発明に係る高ワットタイプのセラミックメタルハライドランプは、少なくとも水銀及び金属ハロゲン化物が封入された発光管を備え、前記発光管は、太管部及び該太管部の両端に形成された一対の細管部を有し、各々の該細管部の内部には電流導入体が通されており、前記細管部の内径L6に対する電流導入体の外径L14は、0.96≦L14/L6≦0.98の範囲にあり、前記細管部と前記電流導入体の間は、封止領域と非封止領域に分けられ、非封止領域の空隙GAは、5.0mm3≦GA≦17.5mm3の範囲にあり、ランプの全光線透過率は、96~99%の範囲内にあり、前記発光管の直線透過率は、10%以上である。
In view of the above object, a high watt type ceramic metal halide lamp according to the present invention includes an arc tube filled with at least mercury and a metal halide, and the arc tube is provided at a thick tube portion and both ends of the large tube portion. Each of the thin tube portions has a pair of formed thin tube portions, and a current introducing member is passed through each of the thin tube portions. The outer diameter L14 of the current introducing member with respect to the inner diameter L6 of the thin tube portion is 0.96 ≦ L14. /L6≦0.98, the space between the narrow tube portion and the current introduction body is divided into a sealing region and a non-sealing region, and a gap GA in the non-sealing region is 5.0 mm 3 ≦ GA In the range of ≦ 17.5 mm 3 , the total light transmittance of the lamp is in the range of 96 to 99%, and the linear transmittance of the arc tube is 10% or more.
更に、上記高ワットタイプのメタルハライドランプでは、前記メタルハライドランプは、定格ランプ電力が500~1000Wの範囲にあってよい。
Further, in the high watt type metal halide lamp, the metal halide lamp may have a rated lamp power in a range of 500 to 1000 W.
更に、上記高ワットタイプのメタルハライドランプでは、前記電流導入体は、金属製の棒状体の周囲に金属製コイルが巻き付けられたコイル棒であってよい。
Furthermore, in the high watt type metal halide lamp, the current introduction body may be a coil rod in which a metal coil is wound around a metal rod-shaped body.
更に、上記高ワットタイプのメタルハライドランプでは、前記細管部の内径は、2~3mmの範囲であってよい。
Furthermore, in the high watt type metal halide lamp, the inner diameter of the narrow tube portion may be in the range of 2 to 3 mm.
更に、上記高ワットタイプのメタルハライドランプでは、前記発光管に封入された水銀は最大100mgであり、希土類金属ハロゲン化物は最大12mgであってよい。
Furthermore, in the high watt type metal halide lamp, the maximum amount of mercury enclosed in the arc tube may be 100 mg, and the rare earth metal halide may be maximum 12 mg.
更に、上記高ワットタイプのメタルハライドランプでは、前記発光管の直線透過率は、10~30%の範囲内であってよい。
Furthermore, in the high watt type metal halide lamp, the arc tube may have a linear transmittance of 10 to 30%.
本発明によれば、高い発光効率を維持する高ワットタイプのセラミックメタルハライドランプを提供することが出来る。
更に、本発明によれば、発光管に黒化現象が生じない高ワットタイプのセラミックメタルハライドランプを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the high watt type ceramic metal halide lamp which maintains high luminous efficiency can be provided.
Furthermore, according to the present invention, it is possible to provide a high watt type ceramic metal halide lamp in which no blackening phenomenon occurs in the arc tube.
更に、本発明によれば、発光管に黒化現象が生じない高ワットタイプのセラミックメタルハライドランプを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the high watt type ceramic metal halide lamp which maintains high luminous efficiency can be provided.
Furthermore, according to the present invention, it is possible to provide a high watt type ceramic metal halide lamp in which no blackening phenomenon occurs in the arc tube.
以下、本発明に係る高ワットタイプのセラミックメタルハライドランプの実施形態について、添附の図面を参照しながら詳細に説明する。なお、図中、同じ要素に対しては同じ符号を付与して、重複した説明を省略する。なお、本実施形態は、本発明を説明するための例示であって、本発明の範囲を何等限定するものではないことを承知されたい。
Hereinafter, embodiments of a high watt type ceramic metal halide lamp according to the present invention will be described in detail with reference to the accompanying drawings. In addition, in the figure, the same code | symbol is provided with respect to the same element, and the duplicate description is abbreviate | omitted. It should be noted that the present embodiment is an example for explaining the present invention and does not limit the scope of the present invention.
[高ワットタイプのセラミックメタルハライドランプ]
図1は、本実施形態に係る高ワットタイプのセラミックメタルハライドランプの構造を説明する図である。高ワットタイプとは、500~1000Wクラスのランプであり、代表的には700Wクラスのランプである。ランプ10は、外球2の内部に、発光部となる発光管6を内封し、発光管6の周囲を内管(「スリーブ」ともいう。)8が取り囲んでいる。外球2の端部には、E形口金12が接合されている。発光管6は、金属の線材や板を組み合わせた構造物に内管8を取り付けたマウント14により、所定の位置に支持され、給電される。 [High-watt ceramic metal halide lamp]
FIG. 1 is a diagram for explaining the structure of a high watt type ceramic metal halide lamp according to the present embodiment. The high wattage type is a lamp of 500 to 1000 W class, typically a 700 W class lamp. In thelamp 10, an arc tube 6 serving as a light emitting portion is enclosed inside an outer bulb 2, and an inner tube (also referred to as “sleeve”) 8 surrounds the arc tube 6. An E-shaped base 12 is joined to the end of the outer sphere 2. The arc tube 6 is supported at a predetermined position by a mount 14 in which an inner tube 8 is attached to a structure in which metal wires and plates are combined, and is supplied with power.
図1は、本実施形態に係る高ワットタイプのセラミックメタルハライドランプの構造を説明する図である。高ワットタイプとは、500~1000Wクラスのランプであり、代表的には700Wクラスのランプである。ランプ10は、外球2の内部に、発光部となる発光管6を内封し、発光管6の周囲を内管(「スリーブ」ともいう。)8が取り囲んでいる。外球2の端部には、E形口金12が接合されている。発光管6は、金属の線材や板を組み合わせた構造物に内管8を取り付けたマウント14により、所定の位置に支持され、給電される。 [High-watt ceramic metal halide lamp]
FIG. 1 is a diagram for explaining the structure of a high watt type ceramic metal halide lamp according to the present embodiment. The high wattage type is a lamp of 500 to 1000 W class, typically a 700 W class lamp. In the
これらの各要素について簡単に説明する。
発光管6に関しては、後で、図2及び図3に関連して詳しく説明する。 Each of these elements will be briefly described.
Thearc tube 6 will be described in detail later with reference to FIGS.
発光管6に関しては、後で、図2及び図3に関連して詳しく説明する。 Each of these elements will be briefly described.
The
マウント14は、一対の導入線が気密封着されたステム管16と、概して逆U字形に整形された支柱18とを主要部品として構成されている。
The mount 14 is mainly composed of a stem tube 16 in which a pair of lead-in wires are hermetically sealed and a support column 18 shaped in a generally inverted U shape.
内管8は、透明石英ガラス管から成り、発光管6が破裂したときに外球2の損傷を防止するために発光管の周囲を囲むように配設されている。内管8には、その機械的強度を補強するため、周囲にワイヤ20が螺旋状に巻かれている。
The inner tube 8 is made of a transparent quartz glass tube, and is disposed so as to surround the periphery of the arc tube in order to prevent the outer bulb 2 from being damaged when the arc tube 6 is ruptured. A wire 20 is spirally wound around the inner tube 8 in order to reinforce its mechanical strength.
外球2は、例えば、ホウケイ酸ガラス等の透光性の硬質ガラスからなる。外球2は、最大口径の中央部2a、図で見て上部側の閉塞されたトップ部2b及び下部側のネック部2cを有するBT形をなしている。ネック部2cには、ステム管16のフレア部が封止された封止部(図示せず。)がある。封止後、ステム管16に設けられた排気管(図示せず。)を通じて外球内は排気され、アルゴン(Ar),窒素(N2)等の不活性ガスが封入され、或いは真空にした気密雰囲気となっている。
The outer sphere 2 is made of translucent hard glass such as borosilicate glass, for example. The outer sphere 2 has a BT shape having a central portion 2a having a maximum diameter, a closed top portion 2b on the upper side as viewed in the drawing, and a neck portion 2c on the lower side. The neck portion 2c has a sealing portion (not shown) in which the flare portion of the stem tube 16 is sealed. After sealing, the inside of the outer sphere is evacuated through an exhaust pipe (not shown) provided in the stem pipe 16 and filled with an inert gas such as argon (Ar), nitrogen (N 2 ), or evacuated. The atmosphere is airtight.
この封止部を覆って、ねじ込み形口金12が、耐熱性の接着剤を用いて接合され、或いはモールドにより形成された螺旋状のねじ溝に螺合されている。
図1に示すランプは、口金12をソケット(図示せず。)に装着して、電源から所定の点灯回路装置(図示せず。)を介して通電され、発光管6の内部にある主電極間の放電により安定した点灯が持続される。 Covering the sealing portion, the screw-type base 12 is joined with a heat-resistant adhesive or screwed into a spiral thread groove formed by a mold.
The lamp shown in FIG. 1 has a base 12 mounted in a socket (not shown), energized from a power source via a predetermined lighting circuit device (not shown), and a main electrode inside thearc tube 6. Stable lighting is maintained by the discharge in between.
図1に示すランプは、口金12をソケット(図示せず。)に装着して、電源から所定の点灯回路装置(図示せず。)を介して通電され、発光管6の内部にある主電極間の放電により安定した点灯が持続される。 Covering the sealing portion, the screw-
The lamp shown in FIG. 1 has a base 12 mounted in a socket (not shown), energized from a power source via a predetermined lighting circuit device (not shown), and a main electrode inside the
[発光管]
(発光管の構造)
図2A及び図2Bは、発光管6の詳細を説明する図であり、ここで、図2Aは、発光管全体を説明する図であり、図2Bは、図2Aにおいて破線の矩形で囲んだ細管部6bの拡大図である。図2Aに示すように、発光管6は、中央の略回転楕円形状の太管部(「発光部」ともいう。)6a及び両端の細管部(「キャピラリー」ともいう。)6b,6cが一体に形成された透光性セラミックス(PCA)製の容器である。尚、発光管6の形状は、これに限られず、円筒形状等の太管部6aの両端に、太管部とは別の部材から成る細管部6b,6cを夫々形成したものでもよい。 [Luminescent tube]
(Structure of arc tube)
2A and 2B are diagrams for explaining the details of thearc tube 6. Here, FIG. 2A is a diagram for explaining the entire arc tube, and FIG. 2B is a narrow tube surrounded by a broken-line rectangle in FIG. 2A. It is an enlarged view of the part 6b. As shown in FIG. 2A, the arc tube 6 has a thick tube portion (also referred to as “light-emitting portion”) 6a and a narrow tube portion (also referred to as “capillary”) 6b and 6c at both ends as a single body. This is a container made of translucent ceramics (PCA). The shape of the arc tube 6 is not limited to this, and thin tube portions 6b and 6c made of a member different from the thick tube portion may be formed at both ends of the thick tube portion 6a having a cylindrical shape or the like.
(発光管の構造)
図2A及び図2Bは、発光管6の詳細を説明する図であり、ここで、図2Aは、発光管全体を説明する図であり、図2Bは、図2Aにおいて破線の矩形で囲んだ細管部6bの拡大図である。図2Aに示すように、発光管6は、中央の略回転楕円形状の太管部(「発光部」ともいう。)6a及び両端の細管部(「キャピラリー」ともいう。)6b,6cが一体に形成された透光性セラミックス(PCA)製の容器である。尚、発光管6の形状は、これに限られず、円筒形状等の太管部6aの両端に、太管部とは別の部材から成る細管部6b,6cを夫々形成したものでもよい。 [Luminescent tube]
(Structure of arc tube)
2A and 2B are diagrams for explaining the details of the
左右の細管部6b、6cは同じ構造であり、これら細管部を、1対のリード線22-1,22-2が夫々通って太管部6aの領域まで延びて、1対のタングステン(W)製の主電極24-1,24-2を形成している。太管部6aの容器内には、発光及び放電媒体として、例えば、最大100mg(好ましくは、約85mg)の水銀と、最大12mg(好ましくは、約7mg)の希土類金属ハロゲン化物を含む金属ハロゲン化物と、希ガスとして所定圧力のアルゴン(Ar)等とが封入され、発光効率、演色性,色温度等の特性の向上が図られている。
The left and right thin tube portions 6b and 6c have the same structure, and the thin tube portions extend through the pair of lead wires 22-1 and 22-2 to the region of the thick tube portion 6a to form a pair of tungsten (W ) Main electrodes 24-1 and 24-2 are formed. In the container of the thick tube portion 6a, as a light emission and discharge medium, for example, a metal halide containing a maximum of 100 mg (preferably about 85 mg) mercury and a maximum of 12 mg (preferably about 7 mg) rare earth metal halide. In addition, argon (Ar) or the like having a predetermined pressure is enclosed as a rare gas, and characteristics such as luminous efficiency, color rendering properties, and color temperature are improved.
図2Bに示すように、太管部6aに繋がる細管部6bの先端から、発光管の軸線に沿って、リード線22-1が挿入され、これがサーメット(モリブデンとアルミナの合金)26に繋がり、更に金属製コイル棒(「電流導入体」ともいう。)30に繋がり、その先にタングステン電極棒24-1が形成されており、サーメットにはニオブ製ストッパ部材32が溶接されている。このように主電極24-1、電流導入体30,サーメット26、リード線22-1、ニオブ製ストッパ部材32を一体的に接続したものを電極マウンドと呼ぶ。
As shown in FIG. 2B, a lead wire 22-1 is inserted from the tip of the thin tube portion 6b connected to the thick tube portion 6a along the axis of the arc tube, and this leads to the cermet (alloy of molybdenum and alumina) 26, Further, it is connected to a metal coil rod (also referred to as “current introducing member”) 30, and a tungsten electrode rod 24-1 is formed at the tip thereof, and a niobium stopper member 32 is welded to the cermet. The main electrode 24-1, the current introduction body 30, the cermet 26, the lead wire 22-1 and the niobium stopper member 32 which are integrally connected are called an electrode mound.
金属製コイル棒30は、代表的には、芯棒となるモリブデン製の棒状体30-1の周囲にモリブデン製コイル30-2が巻き付けられて形成されている。しかし、これに限定されない。例えば、金属製コイル棒30は、タングステン(W)若しくはその他の金属又はモリブデン、タングステン、その他の金属の組み合わせ又は合金から形成してもよい。細管部6bの内部の先端部分は、ガラスフリット(シール材)28によって封止され、更にリード線22-1に通されたセラミックス製リング部材34により補強されている。
The metal coil rod 30 is typically formed by winding a molybdenum coil 30-2 around a molybdenum rod 30-1 serving as a core rod. However, it is not limited to this. For example, the metal coil rod 30 may be made of tungsten (W) or other metal, or molybdenum, tungsten, a combination or alloy of other metals. The distal end portion inside the narrow tube portion 6b is sealed by a glass frit (seal material) 28, and further reinforced by a ceramic ring member 34 passed through the lead wire 22-1.
ランプ製造時には、この電極マウントをニオブ製ストッパ部材32が細管部6bの先端部に引っ掛かるように細管部6bに挿入し、細管部端部にガラスフリット28及びセラミックス製リング部材34を載せる。この状態で、細管部端部の周囲をヒータ(図示せず。)で加熱してガラスフリットを溶融する。溶融したガラスフリットは、細管部の内部に毛細管現象により浸透して固化し、発光管6の内部を外部から封止する。細管部6cも細管部6bと同様の構造である。
At the time of lamp manufacture, this electrode mount is inserted into the thin tube portion 6b so that the niobium stopper member 32 is hooked on the tip of the thin tube portion 6b, and the glass frit 28 and the ceramic ring member 34 are placed on the end of the thin tube portion. In this state, the periphery of the end portion of the thin tube portion is heated with a heater (not shown) to melt the glass frit. The molten glass frit penetrates into the inside of the thin tube portion by a capillary phenomenon and solidifies, and seals the inside of the arc tube 6 from the outside. The thin tube portion 6c has the same structure as the thin tube portion 6b.
(発光効率低下の原因と対策)
図3は、図2BのIII-III方向断面図である。なお、図面の参照符号に関しては、適時、図4及び図6を参照されたい。細管部6bの内部にモリブデンコイル棒30が挿入されている。モリブデンコイル棒30を形成するモリブデン棒状体30-1の周囲にモリブデンコイル30-2がある。 (Causes and measures to reduce luminous efficiency)
3 is a cross-sectional view in the III-III direction of FIG. 2B. For reference numerals in the drawings, please refer to FIGS. 4 and 6 as appropriate. Amolybdenum coil rod 30 is inserted into the narrow tube portion 6b. A molybdenum coil 30-2 is provided around a molybdenum rod-shaped body 30-1 forming the molybdenum coil rod 30.
図3は、図2BのIII-III方向断面図である。なお、図面の参照符号に関しては、適時、図4及び図6を参照されたい。細管部6bの内部にモリブデンコイル棒30が挿入されている。モリブデンコイル棒30を形成するモリブデン棒状体30-1の周囲にモリブデンコイル30-2がある。 (Causes and measures to reduce luminous efficiency)
3 is a cross-sectional view in the III-III direction of FIG. 2B. For reference numerals in the drawings, please refer to FIGS. 4 and 6 as appropriate. A
金属ハロゲン化物は、発光管製作時には固体状態(粉末,ペレット等)で太管部6aの内部に封入される。ランプ点灯中、発光管の内部は高温・高圧状態になるため、金属ハロゲン化物は液体と気体の混合状態となる。メタルハライドランプでは、気化された金属ハロゲン化物が、僅かではあるが細管部先端に向かって細管部内部の空隙に浸透し、比較的低温のモリブデンコイル棒30付近に液化されて集積する傾向がある。この液化された金属ハロゲン化物が、細管部6b,6cを形成する多結晶アルミナを浸食する。
The metal halide is enclosed in the thick tube portion 6a in a solid state (powder, pellets, etc.) when the arc tube is manufactured. Since the inside of the arc tube is in a high temperature / high pressure state while the lamp is on, the metal halide is in a mixed state of liquid and gas. In the metal halide lamp, the vaporized metal halide tends to permeate into the gap in the narrow tube portion toward the tip of the narrow tube portion, but is liquefied and accumulated near the relatively low temperature molybdenum coil rod 30. This liquefied metal halide erodes the polycrystalline alumina forming the thin tube portions 6b and 6c.
この対策として、発光管の細管部6bとモリブデンコイル棒30との隙間は、断面で見て、即ち二次元的に非常に小さくし、細管部内部の隙間は非常に狭い状態にしてある。更に、モリブデンコイル棒30は、太管部の熱の伝達を減少し、且つ金属ハロゲン化物の侵入を阻止するため、棒状体30-1の周囲にコイル30-2を巻き付けた構造を採用している。
As a countermeasure, the gap between the thin tube portion 6b of the arc tube and the molybdenum coil rod 30 is viewed in a cross section, that is, is very small two-dimensionally, and the gap inside the narrow tube portion is very narrow. Furthermore, the molybdenum coil rod 30 employs a structure in which the coil 30-2 is wound around the rod-shaped body 30-1 in order to reduce heat transfer in the thick tube portion and prevent the metal halide from entering. Yes.
従来の低及び中ワットのランプでは、一般に、細管部の内径L6に対してモリブデンコイル棒30の外径L14は、L14/L6=0.90~0.95としていた。L14/L6の比を小さくして細管部内部の隙間を大きくすると、製造時に細管部にモリブデンコイル棒30を挿入しやすい等の利点がある反面、金属ハロゲン化物の侵入を招きやすい。反対に、L14/L6の比を大きくして細管部内部の隙間を小さくすると、ランプ点灯時に太管部からの熱で加熱され熱膨張したモリブデンコイル棒30が細管部6bの内壁に接触し、これを損傷する。例えば、低及び中ワットのランプでは、内径L6=1.28mmの細管部の中に、外径1.2mmのモリブデンコイル棒を挿入している。L14/L6=0.938である。
In conventional low and medium watt lamps, the outer diameter L14 of the molybdenum coil rod 30 is generally L14 / L6 = 0.90 to 0.95 with respect to the inner diameter L6 of the narrow tube portion. When the ratio of L14 / L6 is reduced to increase the gap inside the narrow tube portion, there is an advantage that the molybdenum coil rod 30 can be easily inserted into the thin tube portion at the time of manufacture, but metal halides are liable to enter. On the contrary, when the ratio of L14 / L6 is increased to reduce the gap inside the narrow tube portion, the molybdenum coil rod 30 heated and thermally expanded by the heat from the large tube portion when the lamp is lit contacts the inner wall of the thin tube portion 6b. Damage this. For example, in a low and medium watt lamp, a molybdenum coil rod having an outer diameter of 1.2 mm is inserted into a thin tube portion having an inner diameter L6 = 1.28 mm. L14 / L6 = 0.938.
高ワットタイプのランプの設計では、発光管6に流す電流が大きくなるためモリブデンコイル棒30を太くする必要があり、これを収納する細管部6b,6cの内部空間も太くしなければならない。当初、必要とする電流容量からモリブデンコイル棒30の太さを決定し、低及び中ワットのランプと同じL14/L6の比から細管部の内径L6を定めていた。
しかし、前述した通り、高ワットのセラミックメタルハライドランプでは、何らかの原因により発光効率が低下する現象が発生した。この発光効率の低下は、従来の低及び中ワットのランプでは見られなかった現象である。高ワットタイプのメタルハライドランプに関しては、低及び中ワットのランプと同じL14/L6の比では、細管部内部の空隙に金属ハロゲン化物が侵入し、発光効率を大きく低下させることが疑われた。 In the design of the high watt type lamp, since the current flowing through thearc tube 6 becomes large, it is necessary to make the molybdenum coil rod 30 thick, and the internal spaces of the thin tube portions 6b and 6c for housing it must also be made thick. Initially, the thickness of the molybdenum coil rod 30 was determined from the required current capacity, and the inner diameter L6 of the narrow tube portion was determined from the same L14 / L6 ratio as the low and medium watt lamps.
However, as described above, in the high watt ceramic metal halide lamp, a phenomenon in which the light emission efficiency decreases due to some cause occurred. This reduction in luminous efficiency is a phenomenon not seen with conventional low and medium watt lamps. Regarding the high watt type metal halide lamp, it was suspected that the same L14 / L6 ratio as that of the low and medium watt lamps, the metal halide penetrated into the gap inside the narrow tube portion, and the luminous efficiency was greatly reduced.
しかし、前述した通り、高ワットのセラミックメタルハライドランプでは、何らかの原因により発光効率が低下する現象が発生した。この発光効率の低下は、従来の低及び中ワットのランプでは見られなかった現象である。高ワットタイプのメタルハライドランプに関しては、低及び中ワットのランプと同じL14/L6の比では、細管部内部の空隙に金属ハロゲン化物が侵入し、発光効率を大きく低下させることが疑われた。 In the design of the high watt type lamp, since the current flowing through the
However, as described above, in the high watt ceramic metal halide lamp, a phenomenon in which the light emission efficiency decreases due to some cause occurred. This reduction in luminous efficiency is a phenomenon not seen with conventional low and medium watt lamps. Regarding the high watt type metal halide lamp, it was suspected that the same L14 / L6 ratio as that of the low and medium watt lamps, the metal halide penetrated into the gap inside the narrow tube portion, and the luminous efficiency was greatly reduced.
そこで、本発明者等は、金属ハロゲン化物が細管部内部の空隙に浸透するのを防止するため、次の2つの方策を講じた。
第1の方策として、二次元的に図3に示す細管部断面で見て、細管部内径に対してモリブデンコイル棒30の外径を出来るだけ大きくして、隙間を狭くして、金属ハロゲン化物の侵入を阻止する。
そのため、細管部の内径L6に対するモリブデンコイル棒30の外径L14を、少なくとも低及び中ワットのランプにおけるL14/L6=0.90~0.95を超える0.96以上とした。ランプ点灯時のモリブデンコイル棒30の熱膨張を考慮すると、0.98以下であることが必要である。従って、0.96≦L14/L6≦0.98の範囲とした。 Therefore, the present inventors have taken the following two measures in order to prevent the metal halide from penetrating into the voids inside the narrow tube portion.
As a first measure, when viewed in a two-dimensional cross section of the thin tube section shown in FIG. 3, the outer diameter of themolybdenum coil rod 30 is made as large as possible relative to the inner diameter of the thin tube section, the gap is narrowed, and the metal halide To prevent intrusion.
Therefore, the outer diameter L14 of themolybdenum coil rod 30 with respect to the inner diameter L6 of the narrow tube portion is set to 0.96 or more exceeding L14 / L6 = 0.90-0.95 in at least low and medium watt lamps. Considering the thermal expansion of the molybdenum coil rod 30 when the lamp is lit, it needs to be 0.98 or less. Therefore, the range of 0.96 ≦ L14 / L6 ≦ 0.98 was set.
第1の方策として、二次元的に図3に示す細管部断面で見て、細管部内径に対してモリブデンコイル棒30の外径を出来るだけ大きくして、隙間を狭くして、金属ハロゲン化物の侵入を阻止する。
そのため、細管部の内径L6に対するモリブデンコイル棒30の外径L14を、少なくとも低及び中ワットのランプにおけるL14/L6=0.90~0.95を超える0.96以上とした。ランプ点灯時のモリブデンコイル棒30の熱膨張を考慮すると、0.98以下であることが必要である。従って、0.96≦L14/L6≦0.98の範囲とした。 Therefore, the present inventors have taken the following two measures in order to prevent the metal halide from penetrating into the voids inside the narrow tube portion.
As a first measure, when viewed in a two-dimensional cross section of the thin tube section shown in FIG. 3, the outer diameter of the
Therefore, the outer diameter L14 of the
第2の方策として、三次元的に細管部内部の空隙(細管部内部の空間からモリブデンコイル棒が占める空間を除いた残余の空間)を小さくし、添加物の侵入に供される空間を減少する。
図4は、図2Bに示す細管部6bの拡大図である。細管部6bは、太管部6aとの境界CBから端部6beまでの部分である。細管部6bと太管部6aとの境界CBは、太管部に向かって細管部の内部口径が拡がり始める箇所である。細管部6b、6cの内径は、2~3mmの範囲内にある。ここで、細管部6bの内部空間を細管部内部空間CAとし、細管部内部空間CAの内、固化したガラスフリット28が占める空間を封止領域SAとし、残余の空間を非封止領域NSAとする。CA=SA+NSAの関係にある。更に、非封止領域NSAの内、モリブデンコイル棒30が占める空間をモリブデンコイル棒領域MAとし、残余の空間を細管部内部の空隙GAとする。NSA=MA+GAの関係にある。 As a second measure, the space inside the narrow tube section (the remaining space excluding the space occupied by the molybdenum coil rod from the space inside the narrow tube section) is reduced in a three-dimensional manner, and the space used for the intrusion of additives is reduced. To do.
FIG. 4 is an enlarged view of thenarrow tube portion 6b shown in FIG. 2B. The thin tube portion 6b is a portion from the boundary CB to the end portion 6be with the thick tube portion 6a. A boundary CB between the thin tube portion 6b and the thick tube portion 6a is a portion where the inner diameter of the thin tube portion starts to expand toward the thick tube portion. The inner diameters of the thin tube portions 6b and 6c are in the range of 2 to 3 mm. Here, the internal space of the thin tube portion 6b is a thin tube portion internal space CA, the space occupied by the solidified glass frit 28 in the thin tube portion internal space CA is a sealing area SA, and the remaining space is a non-sealing area NSA. To do. There is a relationship of CA = SA + NSA. Further, a space occupied by the molybdenum coil rod 30 in the non-sealing region NSA is a molybdenum coil rod region MA, and the remaining space is a gap GA inside the narrow tube portion. NSA = MA + GA.
図4は、図2Bに示す細管部6bの拡大図である。細管部6bは、太管部6aとの境界CBから端部6beまでの部分である。細管部6bと太管部6aとの境界CBは、太管部に向かって細管部の内部口径が拡がり始める箇所である。細管部6b、6cの内径は、2~3mmの範囲内にある。ここで、細管部6bの内部空間を細管部内部空間CAとし、細管部内部空間CAの内、固化したガラスフリット28が占める空間を封止領域SAとし、残余の空間を非封止領域NSAとする。CA=SA+NSAの関係にある。更に、非封止領域NSAの内、モリブデンコイル棒30が占める空間をモリブデンコイル棒領域MAとし、残余の空間を細管部内部の空隙GAとする。NSA=MA+GAの関係にある。 As a second measure, the space inside the narrow tube section (the remaining space excluding the space occupied by the molybdenum coil rod from the space inside the narrow tube section) is reduced in a three-dimensional manner, and the space used for the intrusion of additives is reduced. To do.
FIG. 4 is an enlarged view of the
高ワットタイプのランプに関し、第1の方策である0.96≦L14/L6≦0.98の範囲内で、細管部内部の空隙GAを変えた発光管を試作して、細管部内部の空隙GAと発光効率ηの関係を調査した。発光効率ηは、光源の効率を表し、単位電力当たりの全光束(ルーメン毎ワット lm/W)である。表1はその実験データであり、図5はこれを図示したグラフである。
With respect to the high watt type lamp, an arc tube in which the gap GA inside the narrow tube portion is changed within the range of 0.96 ≦ L14 / L6 ≦ 0.98, which is the first measure, is produced, and the gap inside the narrow tube portion is prototyped. The relationship between GA and luminous efficiency η was investigated. The luminous efficiency η represents the efficiency of the light source and is the total luminous flux per unit power (lumen per watt, lm / W). Table 1 shows the experimental data, and FIG. 5 is a graph illustrating this.
図5に示すように、非封止領域の空隙GAが17.5mm3付近までは発光効率は100(lm/W)以上を維持するが、これを超えると発光効率ηは急激に低下して、空隙GAが25.0mm3付近になると50~60(lm/W)と約半分に低下した。
As shown in FIG. 5, the luminous efficiency is maintained at 100 (lm / W) or more until the gap GA in the non-sealing region is near 17.5 mm 3, but the luminous efficiency η rapidly decreases beyond this. When the gap GA was in the vicinity of 25.0 mm 3 , it decreased to about 50 to 60 (lm / W), about half.
この結果より、発光効率が急激に低下した原因の1つは、高ワットタイプのランプでは、細管部内部の間隙GAが大きく、この間隙GAに金属ハロゲン化物が侵入し易くなって、発光効率に大きく影響することが判明した。即ち、本発明者等は、当初、低及び中ワットのランプと同じL14/L6の比のモリブデンコイル棒を採用すれば、金属ハロゲン化物の細管部内部への浸透は防止できると予想していた。しかし、高ワットタイプのランプでは、この予想を超えて、金属ハロゲン化物が侵入して発光効率を低下させることが判明した。
間隙GAに金属ハロゲン化物が入り込むと、太管部内の発光に寄与する金属ハロゲン化物の量が減少して光束が低下する。更に、太管部内の発光物質の割合が水銀リッチの状態となりアーク温度が上昇して、発光管6を形成するアルミナの温度を一層上昇させる。その結果、発光管6を形成するアルミナの還元により発光管6の周囲を取り囲む内管8を黒化して、ランプ照度が低下する。 From this result, one of the causes of the sudden decrease in luminous efficiency is that the high watt type lamp has a large gap GA inside the narrow tube portion, and it is easy for metal halides to enter the gap GA, thereby improving the luminous efficiency. It turned out to have a big influence. That is, the present inventors initially anticipated that metal halides could be prevented from penetrating into the narrow tube portion by adopting a molybdenum coil rod having the same L14 / L6 ratio as low and medium watt lamps. . However, it has been found that in a high watt type lamp, the metal halide penetrates and the luminous efficiency is lowered beyond this expectation.
When the metal halide enters the gap GA, the amount of metal halide that contributes to light emission in the thick tube portion decreases and the luminous flux decreases. Furthermore, the ratio of the luminescent material in the thick tube portion becomes a mercury-rich state, the arc temperature rises, and the temperature of alumina forming thearc tube 6 is further raised. As a result, the inner tube 8 surrounding the arc tube 6 is blackened by reduction of alumina forming the arc tube 6, and the lamp illuminance decreases.
間隙GAに金属ハロゲン化物が入り込むと、太管部内の発光に寄与する金属ハロゲン化物の量が減少して光束が低下する。更に、太管部内の発光物質の割合が水銀リッチの状態となりアーク温度が上昇して、発光管6を形成するアルミナの温度を一層上昇させる。その結果、発光管6を形成するアルミナの還元により発光管6の周囲を取り囲む内管8を黒化して、ランプ照度が低下する。 From this result, one of the causes of the sudden decrease in luminous efficiency is that the high watt type lamp has a large gap GA inside the narrow tube portion, and it is easy for metal halides to enter the gap GA, thereby improving the luminous efficiency. It turned out to have a big influence. That is, the present inventors initially anticipated that metal halides could be prevented from penetrating into the narrow tube portion by adopting a molybdenum coil rod having the same L14 / L6 ratio as low and medium watt lamps. . However, it has been found that in a high watt type lamp, the metal halide penetrates and the luminous efficiency is lowered beyond this expectation.
When the metal halide enters the gap GA, the amount of metal halide that contributes to light emission in the thick tube portion decreases and the luminous flux decreases. Furthermore, the ratio of the luminescent material in the thick tube portion becomes a mercury-rich state, the arc temperature rises, and the temperature of alumina forming the
これに対して、金属ハロゲン化物が間隙GAに侵入しても太管部内に発光に十分な金属ハロゲン化物が残るように、予め発光管の金属ハロゲン化物を増量することも試みた。しかし、金属ハロゲン化物の増量は、放電時のアーク不安定を招き、ちらつきが発生する結果となった。
In contrast, an attempt was made to increase the amount of metal halide in the arc tube in advance so that metal halide sufficient for light emission remains in the thick tube portion even if the metal halide enters the gap GA. However, an increase in the amount of metal halide caused arc instability during discharge, resulting in flickering.
図5に示す結果より、100(lm/W)以上の高い発光効率ηを維持するためには、非封止領域の空隙GAの上限値は17.5mm3以下にする必要がある。空隙GAの下限値は、点灯時にモリブデンコイル棒30の熱膨張による細管部6b,6cへの接触を回避し、且つランプ製造上の要請から5.0mm3以上とした。従って、空隙GAを、5.0mm3≦GA≦17.5mm3の範囲とすることとした。
From the results shown in FIG. 5, in order to maintain a high luminous efficiency η of 100 (lm / W) or more, the upper limit value of the gap GA in the non-sealing region needs to be 17.5 mm 3 or less. The lower limit value of the gap GA is set to 5.0 mm 3 or more in order to avoid contact with the thin tube portions 6b and 6c due to thermal expansion of the molybdenum coil rod 30 at the time of lighting. Accordingly, the gap GA is set to a range of 5.0 mm 3 ≦ GA ≦ 17.5 mm 3 .
この結果、第1の方策及び第2の方策により、高ワットタイプのメタルハライドランプにおいて、発光効率を高く維持することが出来た。
As a result, according to the first policy and the second policy, it was possible to maintain high luminous efficiency in the high watt type metal halide lamp.
(発光管の形状例)
図6A及び図6Bは、本実施形態に係る発光管の形状の代表例を示す図であり、図2A及び図2Bに夫々対応している。図6Aに示すように、発光管6の太管部6aの外径寸法はL1=φ24mm、内径寸法はL2=φ21.8mm、電極間距離(「アーク長」に相当する。)はL3=34mm、両側の細管部6b,6cの端部間距離はL4=107mmである。 (Example of arc tube shape)
6A and 6B are diagrams showing typical examples of the shape of the arc tube according to the present embodiment, and correspond to FIGS. 2A and 2B, respectively. As shown in FIG. 6A, the outer diameter of thethick tube portion 6a of the arc tube 6 is L1 = φ24 mm, the inner diameter is L2 = φ21.8 mm, and the distance between electrodes (corresponding to “arc length”) is L3 = 34 mm. The distance between the ends of the thin tube portions 6b, 6c on both sides is L4 = 107 mm.
図6A及び図6Bは、本実施形態に係る発光管の形状の代表例を示す図であり、図2A及び図2Bに夫々対応している。図6Aに示すように、発光管6の太管部6aの外径寸法はL1=φ24mm、内径寸法はL2=φ21.8mm、電極間距離(「アーク長」に相当する。)はL3=34mm、両側の細管部6b,6cの端部間距離はL4=107mmである。 (Example of arc tube shape)
6A and 6B are diagrams showing typical examples of the shape of the arc tube according to the present embodiment, and correspond to FIGS. 2A and 2B, respectively. As shown in FIG. 6A, the outer diameter of the
図6Bに示すように、細管部の外形寸法はL5=φ4.5mm、内径寸法はL6=φ2.3mmである。細管部6b,6cと太管部6aとの境界CBは、太管部に向かう細管部の内径が拡がり始める箇所と規定した。各細管部6b又は6cの軸線方向寸法はL7=21.5mm、細管部の端部内側に溶着して封止領域を形成する各ガラスフリット28の軸線方向寸法はL8=4.5mmである。モリブデンコイル棒30に関しては、芯棒であるモリブデン棒状体30-1の外径はL12=φ1.0mm、モリブデンコイル棒30の軸線方向寸法はL11=16mm、モリブデン製コイル30-2の外径寸法はL13=φ0.62mm、モリブデン棒状体30-1の周囲に巻回されたコイルの外径寸法は、最大L14max=φ2.24mmである。この例では、L14/L6=0.974となり、0.96≦L14/L6≦0.98の範囲にある。
As shown in FIG. 6B, the outer dimensions of the narrow tube portion are L5 = φ4.5 mm, and the inner diameter is L6 = φ2.3 mm. The boundary CB between the thin tube portions 6b and 6c and the thick tube portion 6a is defined as a location where the inner diameter of the thin tube portion toward the thick tube portion begins to expand. The axial dimension of each narrow tube portion 6b or 6c is L7 = 21.5 mm, and the axial dimension of each glass frit 28 that is welded to the inside of the end of the narrow tube portion to form a sealing region is L8 = 4.5 mm. Regarding the molybdenum coil rod 30, the outer diameter of the molybdenum rod-shaped body 30-1 as the core rod is L12 = φ1.0 mm, the axial dimension of the molybdenum coil rod 30 is L11 = 16 mm, and the outer diameter of the molybdenum coil 30-2. L13 = φ0.62 mm, and the outer diameter of the coil wound around the molybdenum rod 30-1 is a maximum L14max = φ2.24 mm. In this example, L14 / L6 = 0.974, which is in the range of 0.96 ≦ L14 / L6 ≦ 0.98.
[発光管の黒化現象]
(黒化現象)
以上の実施形態により、高い発光効率を維持する高ワットタイプのセラミックメタルハライドランプを提供することができた。しかし、このようなランプを量産した際に、何本かのランプに発光管が黒化する現象が生じた。このような発光管の黒化現象は、従来の低及び中ワットのランプでは見られなかった現象である。
発光管の黒化現象は、発光管が高温になるため発光管を形成するPCAが還元されて発生する。黒化が発生する状況で発光管の温度を測定すると、PCAの実用最高温度1230℃を超えるものがあった。 [Blackening phenomenon of arc tube]
(Blackening phenomenon)
According to the above embodiment, a high watt type ceramic metal halide lamp capable of maintaining high luminous efficiency could be provided. However, when such a lamp was mass-produced, a phenomenon that the arc tube blackened in some lamps occurred. Such blackening phenomenon of the arc tube is a phenomenon that has not been seen in the conventional low and medium watt lamps.
The blackening phenomenon of the arc tube occurs when the arc tube becomes hot and the PCA forming the arc tube is reduced. When the temperature of the arc tube was measured in a situation where blackening occurred, there was one that exceeded the practical maximum temperature of PCA of 1230 ° C.
(黒化現象)
以上の実施形態により、高い発光効率を維持する高ワットタイプのセラミックメタルハライドランプを提供することができた。しかし、このようなランプを量産した際に、何本かのランプに発光管が黒化する現象が生じた。このような発光管の黒化現象は、従来の低及び中ワットのランプでは見られなかった現象である。
発光管の黒化現象は、発光管が高温になるため発光管を形成するPCAが還元されて発生する。黒化が発生する状況で発光管の温度を測定すると、PCAの実用最高温度1230℃を超えるものがあった。 [Blackening phenomenon of arc tube]
(Blackening phenomenon)
According to the above embodiment, a high watt type ceramic metal halide lamp capable of maintaining high luminous efficiency could be provided. However, when such a lamp was mass-produced, a phenomenon that the arc tube blackened in some lamps occurred. Such blackening phenomenon of the arc tube is a phenomenon that has not been seen in the conventional low and medium watt lamps.
The blackening phenomenon of the arc tube occurs when the arc tube becomes hot and the PCA forming the arc tube is reduced. When the temperature of the arc tube was measured in a situation where blackening occurred, there was one that exceeded the practical maximum temperature of PCA of 1230 ° C.
この発光管の黒化現象に対する対策として、本発明者等は、発光管の温度上昇を抑制することを検討した。具体的には、次の提案に関して検討を加えた。
(1) 内管8の管径を太くして、内部に位置する発光管6の周囲のガス流の流れを多くする。しかし、この提案は、内管8を支持する支柱18の間隔を拡大する必要があり、外球2のネック部2cの内径の制限もあり、この提案のみでは黒化現象の問題を解決することは困難であるとの結論に達した。
(2) 発光管6に、ヨウ化セリウム(CeI3)を封入する。ヨウ化セリウムは、アークを細くする作用があり、これによりアークと発光管の内壁との接触を減少せしめ、発光管の温度上昇を抑制する。しかし、アークが細くなると、ランプ照度が低下する欠点もあり、この提案のみでは黒化現象の問題を解決することは困難であるとの結論に達した。
(3) 発光管の壁面負荷を下げることも検討した。しかし、壁面負荷を下げると必然的に最冷部温度が下がり、最冷部温度に左右されるランプ効率が低下する欠点もあり、この提案のみでは高い発光効率を維持しつつ黒化現象の問題を解決することは困難であるとの結論に達した。
(4) 発光管が発する光線が、発光管を通過する際に、散乱現象により発光管内部に戻ることなく、可能な限り発光管外部へ放射するようにして、発光管の温度上昇を抑制する。この提案に沿って、以下のような対策を行った。 As a countermeasure against the blackening phenomenon of the arc tube, the present inventors have studied to suppress the temperature rise of the arc tube. Specifically, the following proposals were examined.
(1) The diameter of theinner tube 8 is increased to increase the gas flow around the arc tube 6 located inside. However, in this proposal, it is necessary to increase the interval between the support columns 18 that support the inner tube 8, and there is a limitation on the inner diameter of the neck portion 2c of the outer sphere 2, and this proposal alone solves the problem of the blackening phenomenon. A conclusion was reached that it was difficult.
(2) Enclose thearc tube 6 with cerium iodide (CeI 3 ). Cerium iodide has the effect of narrowing the arc, thereby reducing the contact between the arc and the inner wall of the arc tube and suppressing the temperature rise of the arc tube. However, when the arc becomes thinner, the lamp illuminance decreases, and it has been concluded that it is difficult to solve the problem of the blackening phenomenon only with this proposal.
(3) We also considered reducing the wall load of the arc tube. However, if the wall load is reduced, the coldest part temperature will inevitably fall, and the lamp efficiency will depend on the coldest part temperature. It was concluded that it was difficult to solve.
(4) When the light emitted from the arc tube passes through the arc tube, it is radiated as much as possible outside the arc tube without returning to the inside due to the scattering phenomenon, thereby suppressing the temperature rise of the arc tube. . In line with this proposal, the following measures were taken.
(1) 内管8の管径を太くして、内部に位置する発光管6の周囲のガス流の流れを多くする。しかし、この提案は、内管8を支持する支柱18の間隔を拡大する必要があり、外球2のネック部2cの内径の制限もあり、この提案のみでは黒化現象の問題を解決することは困難であるとの結論に達した。
(2) 発光管6に、ヨウ化セリウム(CeI3)を封入する。ヨウ化セリウムは、アークを細くする作用があり、これによりアークと発光管の内壁との接触を減少せしめ、発光管の温度上昇を抑制する。しかし、アークが細くなると、ランプ照度が低下する欠点もあり、この提案のみでは黒化現象の問題を解決することは困難であるとの結論に達した。
(3) 発光管の壁面負荷を下げることも検討した。しかし、壁面負荷を下げると必然的に最冷部温度が下がり、最冷部温度に左右されるランプ効率が低下する欠点もあり、この提案のみでは高い発光効率を維持しつつ黒化現象の問題を解決することは困難であるとの結論に達した。
(4) 発光管が発する光線が、発光管を通過する際に、散乱現象により発光管内部に戻ることなく、可能な限り発光管外部へ放射するようにして、発光管の温度上昇を抑制する。この提案に沿って、以下のような対策を行った。 As a countermeasure against the blackening phenomenon of the arc tube, the present inventors have studied to suppress the temperature rise of the arc tube. Specifically, the following proposals were examined.
(1) The diameter of the
(2) Enclose the
(3) We also considered reducing the wall load of the arc tube. However, if the wall load is reduced, the coldest part temperature will inevitably fall, and the lamp efficiency will depend on the coldest part temperature. It was concluded that it was difficult to solve.
(4) When the light emitted from the arc tube passes through the arc tube, it is radiated as much as possible outside the arc tube without returning to the inside due to the scattering phenomenon, thereby suppressing the temperature rise of the arc tube. . In line with this proposal, the following measures were taken.
(発光管の温度上昇の抑制策)
発光管が発する光線が、可能な限り発光管外部へ放射するようにするため、最初に、ランプの全光線透過率APを実際の製品のほぼ上限値の96~99%と規定した。 (Measures to control temperature rise of arc tube)
In order to make the light emitted from the arc tube radiate as much as possible to the outside of the arc tube, first, the total light transmittance AP of the lamp was defined as 96 to 99% of the actual upper limit value.
発光管が発する光線が、可能な限り発光管外部へ放射するようにするため、最初に、ランプの全光線透過率APを実際の製品のほぼ上限値の96~99%と規定した。 (Measures to control temperature rise of arc tube)
In order to make the light emitted from the arc tube radiate as much as possible to the outside of the arc tube, first, the total light transmittance AP of the lamp was defined as 96 to 99% of the actual upper limit value.
更に、本発明者等は、発光管の直線透過率SRに着目した。全光線透過率APに関しては、アークから一回目に発光管内壁に入射し散乱現象により発光管内部に戻った光線が、二回目以降に発光管内壁に入射し発光管を透過して外部に放射した場合、この光線は、全光線透過率APにはカウントされるが、同時に発光管の温度上昇の原因ともなっている。従って、全光線透過率APだけでは、発光管の温度上昇を抑制するファクターとならない。そこで、発光管内部のアークから発せられた光線が、一回目に発光管内壁に入射し、そのまま散乱せずに、入射光線の方向に向かって放射する光線の割合、即ち、直線透過率SRを制御することにより、発光管の温度上昇を抑制することを試みた。
Furthermore, the present inventors paid attention to the linear transmittance SR of the arc tube. With respect to the total light transmittance AP, the light beam incident on the inner wall of the arc tube for the first time from the arc and returned to the inside of the arc tube due to the scattering phenomenon is incident on the inner wall of the arc tube after the second time and is transmitted through the arc tube and emitted to the outside. In this case, this light beam is counted in the total light transmittance AP, but at the same time, it causes a rise in the temperature of the arc tube. Therefore, the total light transmittance AP alone is not a factor for suppressing the temperature rise of the arc tube. Therefore, the light beam emitted from the arc inside the arc tube is incident on the inner wall of the arc tube for the first time and is not scattered as it is, but the ratio of the light beam radiated in the direction of the incident light beam, that is, the linear transmittance SR. By controlling, it tried to suppress the temperature rise of the arc tube.
ここで、図7を参照しながら、発光管の直線透過率の測定方法を簡単に説明する。外光から遮蔽された箱35を用意する。この箱35は、3つの空間に隔壁35-1で分割されている。左側の空間にハロゲン電球36を、中央部の空間に被測定物である発光管管体6dを、右側の空間に照度計38を夫々配置する。左側空間と中央部空間の間の隔壁には所定の小孔d1、中央部空間と右側部空間の間の隔壁には所定の小孔d1が形成されている。発光管管体6dと照度計38の間は、所定の距離Lとする。この状態により、ハロゲン電球36から発せられ、発光管管体6dを透過して照度計38に達する光線の照度を測定している。なお、本出願書類では、「発光管管体の直線透過率」を、簡単に「発光管の直線透過率」と称する。
Here, a method of measuring the linear transmittance of the arc tube will be briefly described with reference to FIG. A box 35 shielded from outside light is prepared. The box 35 is divided into three spaces by partition walls 35-1. The halogen bulb 36 is disposed in the left space, the arc tube 6d as the object to be measured is disposed in the central space, and the illuminometer 38 is disposed in the right space. A predetermined small hole d1 is formed in the partition wall between the left space and the central space, and a predetermined small hole d1 is formed in the partition wall between the central space and the right space. A predetermined distance L is set between the arc tube 6d and the illuminometer 38. In this state, the illuminance of light emitted from the halogen bulb 36 and transmitted through the arc tube 6d to the illuminometer 38 is measured. In the present application document, the “linear transmittance of the arc tube” is simply referred to as “linear transmittance of the arc tube”.
(発光管の直線透過率と温度上昇の関係)
最初に、発光管の直線透過率SRと発光管の温度との間に相関関係があるか否かの確認実験を行った。図8Aは、直線透過率SRが比較的高い(15.5%)発光管を使ったランプと比較的低い(5.4%)発光管を使ったランプとに対して、定格電力を印加して、熱画像カメラ(サーモグラフィー)を用いて夫々の発光管の熱画像を撮影して、発光管外表面温度を測定した結果である。グラフ縦軸は、左側の発光管の軸方向位置に対応し、グラフ横軸は、熱画像から求めた発光管外表面温度℃である。発光管の黒化現象は、最高温度tmaxの高低が問題となる。 (Relationship between linear transmittance of arc tube and temperature rise)
First, an experiment for confirming whether or not there is a correlation between the linear transmittance SR of the arc tube and the temperature of the arc tube was performed. In FIG. 8A, the rated power is applied to a lamp using an arc tube having a relatively high linear transmittance SR (15.5%) and a lamp using a arc tube having a relatively low (5.4%). This is a result of taking a thermal image of each arc tube using a thermal image camera (thermography) and measuring the outer surface temperature of the arc tube. The vertical axis of the graph corresponds to the axial position of the left arc tube, and the horizontal axis of the graph is the arc tube outer surface temperature ° C determined from the thermal image. The phenomenon of blackening of the arc tube has a problem that the maximum temperature tmax is high or low.
最初に、発光管の直線透過率SRと発光管の温度との間に相関関係があるか否かの確認実験を行った。図8Aは、直線透過率SRが比較的高い(15.5%)発光管を使ったランプと比較的低い(5.4%)発光管を使ったランプとに対して、定格電力を印加して、熱画像カメラ(サーモグラフィー)を用いて夫々の発光管の熱画像を撮影して、発光管外表面温度を測定した結果である。グラフ縦軸は、左側の発光管の軸方向位置に対応し、グラフ横軸は、熱画像から求めた発光管外表面温度℃である。発光管の黒化現象は、最高温度tmaxの高低が問題となる。 (Relationship between linear transmittance of arc tube and temperature rise)
First, an experiment for confirming whether or not there is a correlation between the linear transmittance SR of the arc tube and the temperature of the arc tube was performed. In FIG. 8A, the rated power is applied to a lamp using an arc tube having a relatively high linear transmittance SR (15.5%) and a lamp using a arc tube having a relatively low (5.4%). This is a result of taking a thermal image of each arc tube using a thermal image camera (thermography) and measuring the outer surface temperature of the arc tube. The vertical axis of the graph corresponds to the axial position of the left arc tube, and the horizontal axis of the graph is the arc tube outer surface temperature ° C determined from the thermal image. The phenomenon of blackening of the arc tube has a problem that the maximum temperature tmax is high or low.
図8Aの結果から、直線透過率SRが高い発光管の表面温度は、低い発光管の表面温度に比較して、最高温度tmaxが抑制されることが判明した。この結果より、発光管の直線透過率SRと発光管の温度との間に相関関係があることが判明した。
図8Bは、図8Aのグラフを詳細に書き直したものであり、横軸に発光管の軸線方向の位置、具体的には発光管の軸線方向中心をゼロとし、その中心から距離mmを左右にとり、縦軸に発光管外表面温度℃をとったグラフである。表2は、グラフの元となったデータである。 From the result of FIG. 8A, it has been found that the maximum temperature tmax is suppressed in the surface temperature of the arc tube having a high linear transmittance SR compared to the surface temperature of the arc tube having a low linear transmittance SR. From this result, it was found that there is a correlation between the linear transmittance SR of the arc tube and the temperature of the arc tube.
FIG. 8B is a detailed rewrite of the graph of FIG. 8A. The horizontal axis indicates the position of the arc tube in the axial direction, specifically, the center of the arc tube in the axial direction is zero, and the distance mm from the center is set to the left and right. The vertical axis represents the arc tube outer surface temperature ° C. Table 2 shows data that is the basis of the graph.
図8Bは、図8Aのグラフを詳細に書き直したものであり、横軸に発光管の軸線方向の位置、具体的には発光管の軸線方向中心をゼロとし、その中心から距離mmを左右にとり、縦軸に発光管外表面温度℃をとったグラフである。表2は、グラフの元となったデータである。 From the result of FIG. 8A, it has been found that the maximum temperature tmax is suppressed in the surface temperature of the arc tube having a high linear transmittance SR compared to the surface temperature of the arc tube having a low linear transmittance SR. From this result, it was found that there is a correlation between the linear transmittance SR of the arc tube and the temperature of the arc tube.
FIG. 8B is a detailed rewrite of the graph of FIG. 8A. The horizontal axis indicates the position of the arc tube in the axial direction, specifically, the center of the arc tube in the axial direction is zero, and the distance mm from the center is set to the left and right. The vertical axis represents the arc tube outer surface temperature ° C. Table 2 shows data that is the basis of the graph.
図8B及び表2の結果から、ランプを点灯し発光管の温度が安定した時点(以下、初期値という。)の最高温度tmaxは、直線透過率SR=5.4%では1,085℃に対し、SR=15.5%では1,033℃であり、52℃の差があった。
From the results of FIG. 8B and Table 2, the maximum temperature tmax when the lamp is turned on and the temperature of the arc tube is stabilized (hereinafter referred to as the initial value) is 1,085 ° C. when the linear transmittance SR = 5.4%. On the other hand, at SR = 15.5%, it was 1,033 ° C., and there was a difference of 52 ° C.
図9は、図8Bのグラフと同様の高ワットランプの初期値データと、比較例として中ワット(360W)のランプの初期値データを実線示し、更に、直線透過率SR=5.4%の発光管のランプの500時間点灯後のデータを破線で示したグラフである。表3は、グラフの元となったデータである。
FIG. 9 shows the initial value data of a high watt lamp similar to the graph of FIG. 8B and the initial value data of a medium watt (360 W) lamp as a comparative example, and further shows a linear transmittance SR = 5.4%. It is the graph which showed the data after 500 hours lighting of the lamp | ramp of an arc_tube | light_emitting_tube with the broken line. Table 3 shows data that is the basis of the graph.
中ワット(360W)のランプでは、発光管外表面温度の初期値の最高温度tmaxは、898℃であり、グラフに示していないが、10,000時間経過後の最高温度tmaxも殆ど変化は見られず、発光管の黒化現象も発生していない。
In the lamp of medium wattage (360 W), the maximum maximum temperature tmax of the arc tube outer surface temperature is 898 ° C., which is not shown in the graph, but the maximum temperature tmax after 10,000 hours has hardly changed. The arc tube does not blacken.
SR=15.5%の発光管のランプの発光管外表面温度の初期値の最高温度tmaxは、1,005℃であり、グラフに示していないが、10,000時間経過後の最高温度tmaxも殆ど変化は見られず、発光管の黒化現象も発生しなかった。
The maximum temperature tmax of the initial value of the arc tube outer surface temperature of the SR = 15.5% arc tube lamp is 1,005 ° C., which is not shown in the graph, but the maximum temperature tmax after 10,000 hours has elapsed. However, there was almost no change, and no blackening phenomenon of the arc tube occurred.
これに対して、直線透過率SR=5.4%の発光管のランプの発光管外表面温度の初期値の最高温度tmaxは、1,064℃と高温であり、500時間経過後には黒化現象が現れ、破線で示すように最高温度tmaxは、1,309℃に達していた。発光管を形成するPCAの使用限界温度は、1,230℃程度と言われており、これを超す温度であった。
On the other hand, the maximum temperature tmax of the initial value of the outer surface of the arc tube of the lamp of the arc tube having the linear transmittance SR = 5.4% is as high as 1,064 ° C. and becomes black after 500 hours. A phenomenon appeared, and the maximum temperature tmax reached 1,309 ° C. as indicated by a broken line. The use limit temperature of PCA forming the arc tube is said to be about 1,230 ° C., which is a temperature exceeding this.
(直線透過率SRとランプ効率ηの関係)
図9のグラフの結果より、直線透過率SR=5.4~15.5%の間で、黒化現象が発生しない臨界点を特定する必要がある。そこで、発明者等が着目したのは、直線透過率SRとランプ効率η[lm/W]との関係である。直線透過率SRが高い発光管のランプに比較して、SRが低い発光管のランプは、相対的に早く黒化現象が現れ、その結果、ランプ効率ηが早く低下することが予想された。 (Relationship between linear transmittance SR and lamp efficiency η)
From the result of the graph of FIG. 9, it is necessary to specify a critical point where the blackening phenomenon does not occur between the linear transmittance SR = 5.4 to 15.5%. Therefore, the inventors have focused on the relationship between the linear transmittance SR and the lamp efficiency η [lm / W]. Compared with the lamp of the arc tube having a high linear transmittance SR, the lamp of the arc tube having a low SR was expected to exhibit a blackening phenomenon relatively early, and as a result, the lamp efficiency η was expected to decrease quickly.
図9のグラフの結果より、直線透過率SR=5.4~15.5%の間で、黒化現象が発生しない臨界点を特定する必要がある。そこで、発明者等が着目したのは、直線透過率SRとランプ効率η[lm/W]との関係である。直線透過率SRが高い発光管のランプに比較して、SRが低い発光管のランプは、相対的に早く黒化現象が現れ、その結果、ランプ効率ηが早く低下することが予想された。 (Relationship between linear transmittance SR and lamp efficiency η)
From the result of the graph of FIG. 9, it is necessary to specify a critical point where the blackening phenomenon does not occur between the linear transmittance SR = 5.4 to 15.5%. Therefore, the inventors have focused on the relationship between the linear transmittance SR and the lamp efficiency η [lm / W]. Compared with the lamp of the arc tube having a high linear transmittance SR, the lamp of the arc tube having a low SR was expected to exhibit a blackening phenomenon relatively early, and as a result, the lamp efficiency η was expected to decrease quickly.
図10は、横軸に発光管の直線透過率SR%をとり、縦軸に100時間経過後のランプ効率η[lm/W]をとったグラフである。図10より、直線透過率SRが低くなるにつれ、ランプ効率ηも低下することが判明した。グラフ中の目標値は、本発明者等が定めた数値であり、具体的には100[lm/W]である。図10の結果より、直線透過率が10%≦SRであれば、目標値を実現できることが判明した。
FIG. 10 is a graph in which the horizontal axis represents the linear transmittance SR% of the arc tube, and the vertical axis represents the lamp efficiency η [lm / W] after 100 hours. FIG. 10 shows that the lamp efficiency η decreases as the linear transmittance SR decreases. The target value in the graph is a numerical value determined by the present inventors, and is specifically 100 [lm / W]. From the result of FIG. 10, it was found that the target value can be realized if the linear transmittance is 10% ≦ SR.
最後に、直線透過率SRが10%に近いSR=8.4%の発光管のランプ及びSR=11.2%の発光管の2種類のランプに関して、点灯500時間経過後の発光管外表面温度の変化を調べたが、殆ど変化は無かった。また、発光管に黒化現象は見られなかった。ここで、SR=8.4~11.2%の発光管のランプでは、黒化現象が発生しないことが分かった。従って、直線透過率SRが10%以上であれば、目標値を実現でき、且つ黒化現象が発生しないことが判明した。SR=11.2%以上に関しては、図10に示すように直線透過率SRが高くなるとランプ効率ηも高くなる傾向にあり、図9に示すように直線透過率SRが高くなると発光管温度が低下する傾向にあるので、目標値を実現でき、且つ黒化現象が発生しないランプが実現できる。
Finally, regarding the two types of lamps of the arc tube with SR = 8.4% and SR = 11.2% with a linear transmittance SR close to 10%, the outer surface of the arc tube after lighting 500 hours The change in temperature was examined, but there was almost no change. Further, no blackening phenomenon was observed in the arc tube. Here, it was found that the blackening phenomenon does not occur in the lamp of the arc tube with SR = 8.4 to 11.2%. Therefore, it was found that when the linear transmittance SR is 10% or more, the target value can be realized and the blackening phenomenon does not occur. For SR = 11.2% or more, the lamp efficiency η tends to increase as the linear transmittance SR increases as shown in FIG. 10, and the arc tube temperature increases as the linear transmittance SR increases as shown in FIG. Since it tends to decrease, it is possible to realize a lamp that can achieve the target value and does not cause blackening.
発光管を製作する際、直線透過率SRを所望の値にすることは、既に確立された技術である。一般に、発光管を形成するPCA(透光性セラミックス)のアルミナの粒径が大きいと、直線透過率SRは高くなる傾向にある。更に、単結晶に近くなると、更に直線透過率SRは高くなる。実際、直線透過率SR=70~90%の発光管も製作可能である。粒径の大小の制御は、主原料セラミックスに混入する添加剤、焼成温度、焼成時間等により行われる。
It is an already established technique to set the linear transmittance SR to a desired value when manufacturing the arc tube. Generally, when the particle diameter of alumina of PCA (translucent ceramic) forming the arc tube is large, the linear transmittance SR tends to increase. Furthermore, the linear transmittance SR becomes higher as the crystal becomes closer to a single crystal. Actually, an arc tube having a linear transmittance SR = 70 to 90% can be manufactured. The particle size is controlled by the additive mixed in the main material ceramic, the firing temperature, the firing time, and the like.
しかし、発光管の粒径が大きくなり、或いは単結晶になると、発光管は機械的強度が脆弱となり、またコストも高価になる。メタルハライドランプの発光管は、点灯時に内部が高温・高圧になるため、機械的強度が脆弱な発光管は、メタルハライドランプには適さない。メタルハライドランプには、多結晶の機械的強度が強い発光管が必要となる。この機械的強度を確保する観点から、直線透過率SRの上限は、30%以下であること必要である。更に、発光管の機械的強度及びコストの観点からは、20%以下が好ましい。
However, when the diameter of the arc tube becomes large or becomes a single crystal, the arc tube becomes weak in mechanical strength and also becomes expensive. The arc tube of a metal halide lamp has a high temperature and high pressure inside when it is lit, so an arc tube with weak mechanical strength is not suitable for a metal halide lamp. A metal halide lamp requires a light emitting tube having a high polycrystalline mechanical strength. From the viewpoint of securing this mechanical strength, the upper limit of the linear transmittance SR needs to be 30% or less. Furthermore, from the viewpoint of the mechanical strength and cost of the arc tube, 20% or less is preferable.
従って、メタルハライドランプに適した発光管は、光線透過率APが96~99%の範囲内にあり、且つ直線透過率SRが10~30%の範囲内にあること必要である。更に、直線透過率SRが10~20%の範囲内にあることが好ましい。
Therefore, an arc tube suitable for a metal halide lamp needs to have a light transmittance AP in the range of 96 to 99% and a linear transmittance SR in the range of 10 to 30%. Further, the linear transmittance SR is preferably in the range of 10 to 20%.
[まとめ]
以上、本発明に係る高ワットタイプのセラミックメタルハライドランプの実施形態を説明したが、本発明はこれに限定されない。当業者がように成し得る本実施形態に対する追加・変更・改良等は、本発明の範囲内である。本発明の技術的範囲は、添付の請求の範囲の記載に基づいて定められる。 [Summary]
As mentioned above, although embodiment of the high watt type ceramic metal halide lamp which concerns on this invention was described, this invention is not limited to this. Additions, changes, improvements, and the like to this embodiment that can be made by those skilled in the art are within the scope of the present invention. The technical scope of the present invention is defined based on the description of the appended claims.
以上、本発明に係る高ワットタイプのセラミックメタルハライドランプの実施形態を説明したが、本発明はこれに限定されない。当業者がように成し得る本実施形態に対する追加・変更・改良等は、本発明の範囲内である。本発明の技術的範囲は、添付の請求の範囲の記載に基づいて定められる。 [Summary]
As mentioned above, although embodiment of the high watt type ceramic metal halide lamp which concerns on this invention was described, this invention is not limited to this. Additions, changes, improvements, and the like to this embodiment that can be made by those skilled in the art are within the scope of the present invention. The technical scope of the present invention is defined based on the description of the appended claims.
2:外球、 2a:中央部、 2b:トップ部、 2c:ネック部、 6:発光管,放電管、 6a:太管部,発光部、 6b,6c:細管部、 6d:発光管管体 8:内管,スリーブ、 10:メタルハライドランプ,ランプ、 12:E形口金、 14:マウント、 16:ステム管、 18:支柱、 20:ワイヤ、 22:リード線、 24:タングステン電極棒,主電極、 26:サーメット、 28:ガラスフリット、 30:金属コイル棒,モリブデンコイル棒、 30-1:金属製棒状体,モリブデン棒状体、 30-2:金属製コイル,モリブデン製コイル、 32:ニオブ製ストッパ部材、 34:セラミックス製リング部材、 35:箱、 35-1,35-2:隔壁、 36:ハロゲン電球、 38:照度計、
AP:全光線透過率、 SR:直線透過率、 CA:細管部内部空間、 CB:境界、 CB:境界、 SA:封止領域、 NSA:非封止領域、 2: outer sphere, 2a: center portion, 2b: top portion, 2c: neck portion, 6: arc tube, discharge tube, 6a: thick tube portion, light emission portion, 6b, 6c: narrow tube portion, 6d: arc tube body 8: Inner tube, sleeve, 10: Metal halide lamp, lamp, 12: E-shaped base, 14: Mount, 16: Stem tube, 18: Support column, 20: Wire, 22: Lead wire, 24: Tungsten electrode rod, Main electrode , 26: cermet, 28: glass frit, 30: metal coil rod, molybdenum coil rod, 30-1: metal rod, molybdenum rod, 30-2: metal coil, molybdenum coil, 32: niobium stopper Member, 34: ring member made of ceramics, 35: box, 35-1, 35-2: partition wall, 36: halogen bulb, 38: illuminance meter,
AP: total light transmittance, SR: linear transmittance, CA: inner space of narrow tube part, CB: boundary, CB: boundary, SA: sealed region, NSA: non-sealed region,
AP:全光線透過率、 SR:直線透過率、 CA:細管部内部空間、 CB:境界、 CB:境界、 SA:封止領域、 NSA:非封止領域、 2: outer sphere, 2a: center portion, 2b: top portion, 2c: neck portion, 6: arc tube, discharge tube, 6a: thick tube portion, light emission portion, 6b, 6c: narrow tube portion, 6d: arc tube body 8: Inner tube, sleeve, 10: Metal halide lamp, lamp, 12: E-shaped base, 14: Mount, 16: Stem tube, 18: Support column, 20: Wire, 22: Lead wire, 24: Tungsten electrode rod, Main electrode , 26: cermet, 28: glass frit, 30: metal coil rod, molybdenum coil rod, 30-1: metal rod, molybdenum rod, 30-2: metal coil, molybdenum coil, 32: niobium stopper Member, 34: ring member made of ceramics, 35: box, 35-1, 35-2: partition wall, 36: halogen bulb, 38: illuminance meter,
AP: total light transmittance, SR: linear transmittance, CA: inner space of narrow tube part, CB: boundary, CB: boundary, SA: sealed region, NSA: non-sealed region,
Claims (6)
- 高ワットタイプのセラミックメタルハライドランプにおいて、
少なくとも水銀及び金属ハロゲン化物が封入された発光管を備え、
前記発光管は、太管部及び該太管部の両端に形成された一対の細管部を有し、各々の該細管部の内部には電流導入体が通されており、
前記細管部の内径L6に対する電流導入体の外径L14は、0.96≦L14/L6≦0.98の範囲にあり、
前記細管部と前記電流導入体の間は、封止領域と非封止領域に分けられ、非封止領域の空隙GAは、5.0mm3≦GA≦17.5mm3の範囲にあり、
ランプの全光線透過率は、96~99%の範囲内にあり、
前記発光管の直線透過率は、10%以上である、セラミックメタルハライドランプ。 In high watt type ceramic metal halide lamp,
An arc tube containing at least mercury and a metal halide;
The arc tube has a thick tube portion and a pair of thin tube portions formed at both ends of the thick tube portion, and a current introduction body is passed through each of the thin tube portions,
The outer diameter L14 of the current introduction body with respect to the inner diameter L6 of the narrow tube portion is in the range of 0.96 ≦ L14 / L6 ≦ 0.98,
Between the narrow tube portion and the current introduction body, it is divided into a sealing region and a non-sealing region, and the gap GA in the non-sealing region is in a range of 5.0 mm 3 ≦ GA ≦ 17.5 mm 3 ,
The total light transmittance of the lamp is in the range of 96-99%,
A ceramic metal halide lamp, wherein the linear tube has a linear transmittance of 10% or more. - 請求項1に記載の高ワットタイプのセラミックメタルハライドランプにおいて、
前記メタルハライドランプは、定格ランプ電力が500~1000Wの範囲にある、セラミックメタルハライドランプ。 The high watt type ceramic metal halide lamp according to claim 1,
The metal halide lamp is a ceramic metal halide lamp having a rated lamp power in the range of 500 to 1000 W. - 請求項1又は2に記載の高ワットタイプのセラミックメタルハライドランプにおいて、
前記電流導入体は、金属製の棒状体の周囲に金属製コイルが巻き付けられた金属コイル棒である、セラミックメタルハライドランプ。 In the high watt type ceramic metal halide lamp according to claim 1 or 2,
The current introduction body is a ceramic metal halide lamp, which is a metal coil rod in which a metal coil is wound around a metal rod-shaped body. - 請求項1~3のいずれか一項に記載の高ワットタイプのセラミックメタルハライドランプにおいて、
前記細管部の内径は、2~3mmの範囲にある、セラミックメタルハライドランプ。 The high watt type ceramic metal halide lamp according to any one of claims 1 to 3,
A ceramic metal halide lamp having an inside diameter in the range of 2 to 3 mm. - 請求項1~4のいずれか一項に記載の高ワットタイプのセラミックメタルハライドランプにおいて、
前記発光管に封入された水銀は最大100mgであり、希土類金属ハロゲン化物は最大12mgである、セラミックメタルハライドランプ。 The high watt type ceramic metal halide lamp according to any one of claims 1 to 4,
A ceramic metal halide lamp in which the maximum amount of mercury enclosed in the arc tube is 100 mg and the rare earth metal halide is 12 mg. - 請求項1~5のいずれか一項に記載の高ワットタイプのセラミックメタルハライドランプにおいて、
前記発光管の直線透過率は、10~30%の範囲内にある、セラミックメタルハライドランプ。
The high watt type ceramic metal halide lamp according to any one of claims 1 to 5,
A ceramic metal halide lamp having a linear transmittance of 10 to 30% in the arc tube.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-249767 | 2012-11-13 | ||
JP2012249767A JP2014099300A (en) | 2012-11-13 | 2012-11-13 | High-watt type ceramic metal halide lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014077259A1 true WO2014077259A1 (en) | 2014-05-22 |
Family
ID=50731171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080612 WO2014077259A1 (en) | 2012-11-13 | 2013-11-12 | High-watt ceramic metal halide lamp |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014099300A (en) |
WO (1) | WO2014077259A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107111144A (en) | 2014-11-11 | 2017-08-29 | 夏普株式会社 | Light guide plate and virtual image display apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179270A (en) * | 2004-12-22 | 2006-07-06 | Matsushita Electric Ind Co Ltd | Metal halide lamp and lighting system using it |
WO2006088128A1 (en) * | 2005-02-17 | 2006-08-24 | Gs Yuasa Corporation | Ceramic metal halide lamp having rated lamp power of 450w or above |
JP2011100717A (en) * | 2009-09-09 | 2011-05-19 | Ngk Insulators Ltd | Translucent polycrystalline sintered body, method for manufacturing translucent polycrystalline sintered body, and arc tube for high-intensity discharge lamp |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4316699B2 (en) * | 1997-07-25 | 2009-08-19 | ハリソン東芝ライティング株式会社 | High pressure discharge lamp and lighting device |
-
2012
- 2012-11-13 JP JP2012249767A patent/JP2014099300A/en active Pending
-
2013
- 2013-11-12 WO PCT/JP2013/080612 patent/WO2014077259A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179270A (en) * | 2004-12-22 | 2006-07-06 | Matsushita Electric Ind Co Ltd | Metal halide lamp and lighting system using it |
WO2006088128A1 (en) * | 2005-02-17 | 2006-08-24 | Gs Yuasa Corporation | Ceramic metal halide lamp having rated lamp power of 450w or above |
JP2011100717A (en) * | 2009-09-09 | 2011-05-19 | Ngk Insulators Ltd | Translucent polycrystalline sintered body, method for manufacturing translucent polycrystalline sintered body, and arc tube for high-intensity discharge lamp |
Also Published As
Publication number | Publication date |
---|---|
JP2014099300A (en) | 2014-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5174148B2 (en) | Low pressure mercury discharge lamp with amalgam capsule with amalgam chamber | |
JP2008053237A (en) | Metal halide lamp | |
JP4279122B2 (en) | High pressure discharge lamp and lighting device | |
WO2010122970A1 (en) | Ceramic metal halide lamp | |
JPWO2006046704A1 (en) | Metal halide lamp and lighting device | |
JP4613257B2 (en) | Metal halide lamp and lighting device using the same | |
JP4279120B2 (en) | High pressure discharge lamp and lighting device | |
WO2014077259A1 (en) | High-watt ceramic metal halide lamp | |
JP4181949B2 (en) | High pressure discharge lamp and lighting device | |
JP2004349242A (en) | High-pressure discharge lamp and lighting system | |
JP5190582B2 (en) | Metal halide lamps and lighting fixtures | |
JP5380714B1 (en) | High watt type ceramic metal halide lamp | |
JP5825130B2 (en) | Ceramic metal halide lamp | |
EP2375439B1 (en) | Short arc dimmable hid lamp with constant colour during dimming | |
JP4431174B2 (en) | High pressure gas discharge lamp | |
JP2008218192A (en) | High-pressure discharge lamp, and luminaire | |
JP4379552B2 (en) | High pressure discharge lamp and lighting device | |
JP2004111373A (en) | Metallic vapor discharge lamp and illumination device | |
JP2007273377A (en) | Metal halide lamp and lighting system | |
JP4587118B2 (en) | Short arc discharge lamp | |
JP2005183247A (en) | Metal halide lamp and lighting system | |
JP5909994B2 (en) | Ceramic metal halide lamp | |
JP2015069912A (en) | High-watt type ceramic metal halide lamp | |
JP2001338610A (en) | Metal halide lamp | |
JP2578611B2 (en) | Metal vapor discharge lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13854631 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13854631 Country of ref document: EP Kind code of ref document: A1 |