[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014077136A1 - 感光性導電ペースト、積層基板、導電パターンの製造方法及び静電容量型タッチパネル - Google Patents

感光性導電ペースト、積層基板、導電パターンの製造方法及び静電容量型タッチパネル Download PDF

Info

Publication number
WO2014077136A1
WO2014077136A1 PCT/JP2013/079622 JP2013079622W WO2014077136A1 WO 2014077136 A1 WO2014077136 A1 WO 2014077136A1 JP 2013079622 W JP2013079622 W JP 2013079622W WO 2014077136 A1 WO2014077136 A1 WO 2014077136A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
photosensitive
pattern
substrate
oxide
Prior art date
Application number
PCT/JP2013/079622
Other languages
English (en)
French (fr)
Inventor
田辺美晴
草野一孝
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020157012816A priority Critical patent/KR101971899B1/ko
Priority to JP2013550699A priority patent/JP6225708B2/ja
Priority to US14/439,705 priority patent/US9846361B2/en
Publication of WO2014077136A1 publication Critical patent/WO2014077136A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders

Definitions

  • the present invention relates to a photosensitive conductive paste, a laminated substrate, a method for manufacturing a conductive pattern, and a capacitive touch panel.
  • Patent Document 3 an electrically conductive paste that can be etched
  • Patent Document 4 A photosensitive paste for forming a conductive pattern capable of forming a low-rate organic-inorganic composite conductive pattern has also been developed (Patent Document 4).
  • the present invention forms a conductive pattern with a low specific resistivity that is capable of fine patterning and low-temperature conductivity without adversely affecting the material such as the substrate, and has excellent adhesion to the substrate.
  • An object is to provide a photosensitive conductive paste and a method for producing a conductive pattern using the same.
  • the present invention provides a photosensitive conductive paste, a laminated substrate, and a method for producing a conductive pattern described in the following (1) to (5).
  • a photosensitive conductive paste comprising an ion adsorbent D selected from the group consisting of silicon, zeolite, and carbon-based powder.
  • a laminated substrate comprising a conductive layer formed from the photosensitive conductive paste according to (1) or (2).
  • a capacitive touch panel comprising a conductive pattern formed from the photosensitive conductive paste according to (1) or (2) as a peripheral wiring, and the peripheral wiring having a pitch of 100 ⁇ m or less.
  • the photosensitive conductive paste of the present invention fine patterning and low-temperature conductivity can be achieved without adversely affecting the material such as the substrate.
  • a conductive pattern having excellent adhesion to the substrate and a low specific resistivity can be formed.
  • the photosensitive conductive paste of the present invention comprises conductive particles A, photosensitive organic compound B, epoxy resin C, magnesium oxide, aluminum oxide, aluminum hydroxide, magnesium hydroxide, magnesium carbonate, zirconium oxide, magnesium silicate. And an ion adsorbent D selected from the group consisting of silicon dioxide, zeolite, and carbon-based powder.
  • the paste is applied on a substrate, dried to remove the solvent, and then a desired function can be obtained by heating.
  • the method for producing a conductive pattern of the present invention comprises a coating step of applying the photosensitive conductive paste of the present invention on a substrate to obtain a coating film, a drying step of drying the coating film, and the drying step described above.
  • the conductive pattern obtained by the method for producing a conductive pattern of the present invention exhibits conductivity when the conductive particles A contained in the photosensitive conductive paste of the present invention are brought into contact with each other by curing shrinkage during heating. It is.
  • Examples of the conductive particles A include Ag, Au, Cu, Pt, Pb, Sn, Ni, Al, W, Mo, Sb, ruthenium oxide, Cr, Ti or indium particles, alloy particles of these metals, or these.
  • a mixture of particles may be mentioned.
  • Ag, Au or Pt particles which are noble metals from the viewpoint of conductivity, Cu are preferable, noble metal particles are more preferable from the viewpoint of stability, and Ag particles are more preferable from the viewpoint of cost.
  • Cu is excellent in terms of cost, not only conductivity is lowered because part of the Cu is easily ionized, but addition of an ion adsorbent consumes Cu ions and adversely affects materials such as a substrate. May reduce the adsorption efficiency of other ions that affect
  • the volume average particle diameter of the conductive particles A is preferably 0.5 to 10 ⁇ m, more preferably 1 to 6 ⁇ m.
  • the volume average particle diameter is 1 ⁇ m or more, the contact probability between the conductive fillers in the heating step is improved, and the specific resistance and disconnection probability of the manufactured conductive pattern are lowered. Furthermore, in the exposure process, the exposure light can smoothly pass through the coating film obtained by applying the photosensitive conductive paste, facilitating fine patterning.
  • the volume average particle diameter is 6 ⁇ m or less, the surface smoothness, pattern accuracy, and dimensional accuracy of the manufactured conductive pattern are improved.
  • the volume average particle diameter can be measured by a Coulter counter method.
  • the amount of conductive particles A added is preferably 70 to 95% by weight, more preferably 80 to 90% by weight, based on the total solid content in the photosensitive conductive paste.
  • the addition amount with respect to the total solid content is 80% by weight or more, the contact probability between the conductive particles A in the curing shrinkage in the heating step is improved, and the specific resistance and the disconnection probability of the manufactured conductive pattern are lowered.
  • the addition amount with respect to the total solid content is 90% by weight or less, the exposure light can smoothly pass through the coating film obtained by applying the photosensitive conductive paste in the exposure process, and fine patterning is performed. Becomes easy.
  • the total solid content means all components of the photosensitive conductive paste excluding the solvent.
  • Photosensitive organic compound B refers to a monomer, oligomer or polymer having an unsaturated double bond in the molecule. More specifically, an acrylic copolymer is mentioned, for example.
  • the acrylic copolymer refers to a copolymer containing an acrylic monomer having a carbon-carbon double bond as a copolymer component.
  • Acrylic monomers include methyl acrylate, acrylic acid, 2-ethylhexyl acrylate, ethyl methacrylate, n-butyl acrylate, i-butyl acrylate, i-propane acrylate, glycidyl acrylate, N-methoxymethyl acrylamide, N-ethoxymethyl Acrylamide, Nn-butoxymethylacrylamide, N-isobutoxymethylacrylamide, butoxytriethylene glycol acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-hydroxyethyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, Isodexyl acrylate, isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxy Ethylene glycol acrylate, methoxydiethylene glycol acrylate, octafluoropentyl acrylate,
  • the photosensitive conductive paste of the present invention preferably contains a photopolymerization initiator.
  • the photopolymerization initiator refers to a compound that is decomposed by ultraviolet rays or infrared rays to generate radicals or acids.
  • photopolymerization initiator examples include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, Bis (2,4,6-trimethylbenzoyl) -phenyl-phosphine oxide, ethanone, 1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O -Acetyloxime), benzophenone, methyl o-benzoylbenzoate, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4,4'-dichlorobenzophenone, 4-benzoyl-4 '-Methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2'-diethoxyacetoph Non, 2,
  • the addition amount of the photopolymerization initiator is preferably 0.05 to 30 parts by weight, more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the photosensitive organic compound B and the epoxy resin C.
  • the addition amount with respect to 100 parts by weight of the photosensitive organic compound B and the epoxy resin C is 5 parts by weight or more, the cured density of the exposed part of the photosensitive conductive paste increases, and the remaining film ratio after development increases.
  • the addition amount with respect to 100 parts by weight of the photosensitive organic compound B and the epoxy resin C is 20 parts by weight or less, an excess of the photopolymerization initiator in the upper part of the coating film obtained by applying the photosensitive conductive paste. Light absorption is suppressed. As a result, a decrease in adhesion with the substrate due to the manufactured conductive pattern having an inversely tapered shape is suppressed.
  • the photosensitive conductive paste of the present invention may contain a sensitizer together with a photopolymerization initiator.
  • sensitizer examples include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2 , 6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) chalcone P-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethylaminophenylvinylene) isonaphthothiazole,
  • the addition amount of the sensitizer is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the photosensitive organic compound B.
  • the photosensitivity is sufficiently improved.
  • the added amount with respect to 100 parts by weight of the photosensitive organic compound B is 10 parts by weight or less, excessive photoabsorption of the photopolymerization initiator particularly in the upper part of the coating film obtained by applying the photosensitive conductive paste. It is suppressed. As a result, a decrease in adhesion with the substrate due to the manufactured conductive pattern having an inversely tapered shape is suppressed.
  • the epoxy resin C examples include a glycidyl group-containing compound which is a compound derived from epichlorohydrin or an unsaturated double bond adduct thereof. More specifically, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, hydrogenated bisphenol type epoxy resin, Bisphenol fluorene type epoxy resin, biscresol fluorene type epoxy resin, bisphenoxyethanol fluorene type epoxy resin, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether, trimethylol Propane polyglycidyl ether, resorcinol diglycidyl ether, neopen Diglycidyl ether,
  • the addition amount of the epoxy resin C is preferably 0.05 to 30 parts by weight, more preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the photosensitive organic compound B.
  • the added amount of the resin C containing an epoxy group with respect to 100 parts by weight of the photosensitive organic compound B is 0.05 parts by weight or more, the conductivity of the manufactured conductive pattern is increased.
  • the pattern workability can be controlled when the amount added to 100 parts by weight of the photosensitive organic compound B is 30 parts by weight or less.
  • the photosensitive conductive paste of the present invention contains an ion adsorbent D. Since the photosensitive electrically conductive paste of this invention uses the ion adsorbent D as an essential component, it can capture an excess ionic component and suppress the above-described adverse effects.
  • the present inventors consider a specific ion adsorbent in consideration of adhesion to the substrate. Found to be selected.
  • carbon-based powder examples include activated carbon, charcoal, acetylene black, ketjen black, carbon black, titanium black, carbon whisker or carbon nanotube, and graphite.
  • an oxide zinc oxide, tin oxide, indium oxide, calcium oxide, magnesium oxide, zirconium oxide, magnetic iron oxide, ferrite, for example, alumina (aluminum oxide) represented by Al 2 O 3 xH 2 O
  • alumina aluminum oxide represented by Al 2 O 3 xH 2 O
  • examples thereof include silica (silicon dioxide), titanium oxide, barium titanate, lead zirconate titanate, potassium titanate, cerium oxide, and antimony oxide.
  • These composite oxides and oxides may contain water.
  • magnesium oxide, aluminum oxide, or silicon dioxide as a main component, a magnesium oxide-aluminum oxide composite oxide of 2.5 MgO ⁇ Al 2 O 3 ⁇ xH 2 O, Mg 0.7 ⁇ Al 0.3 O 1.15 , magnesium oxide-sodium oxide composite oxide Al 2 O 3 ⁇ Na 2 O ⁇ 2CO 3 ⁇ xH 2 O, magnesium oxide-silicon dioxide composite oxide 2MgO ⁇ 6SiO 2 ⁇ xH 2 O 2 or Al 2 O 3 ⁇ 9SiO 2 xH 2 O, which is a composite oxide of aluminum oxide and silicon dioxide, and aluminosilicate.
  • natural zeolite commonly known as natural zeolite, synthetic zeolite, sodalite, natural mordenite, synthetic Examples thereof include zeolites such as mordenite.
  • zeolites such as mordenite.
  • Other examples include complex oxide-based minerals such as mica, synthetic mica, montmorillonite, vermiculite, talc, zonotolite, dosonite, sericite, glass flakes, and clay.
  • borate salts boric acid, zinc borate, aluminum borate and the like can be mentioned.
  • sulfates include barium sulfate, molybdenum disulfide, basic magnesium sulfate, and magnesium sulfate.
  • zirconium phosphate etc. are mention
  • examples of silicates include sepiolite, silica gel, wollastonite, silica balloon, glass balloon, shirasu balloon, magnesium silicate, calcium silicate, and hydroxides such as aluminum hydroxide and magnesium hydroxide.
  • examples of carbonates include calcium carbonate, magnesium carbonate, aluminum carbonate, zinc carbonate, boehmite, lithium carbonate, Al (OH) 3 .NaHCO 3 and the like.
  • magnesium and aluminum carbonate mineral Mg 4.5 Al 2 (OH) 13 CO 3 .3.5H 2 O, Mg 4.5 Al 2 (OH) 13 CO 3 , Mg 4 Al 2 (OH) 12 CO 3 .3.5H 2 O, Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, Mg 5 Al 2 (OH) 14 CO 3 .4H 2 O, Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, Mg 3 Al 2 (OH) 10 CO 3 .1.7H 2 O, Mg 3 ZnAl 2 (OH) 12 CO 3 .xH 2 O, or Mg 3 ZnAl 2 ( OH) 12 CO 3 and the like.
  • the ion adsorbent D is hydrotalcite magnesium oxide, aluminum oxide, aluminum hydroxide, magnesium hydroxide, magnesium carbonate, zirconium oxide, magnesium silicate, silicon dioxide, zeolite.
  • the inventors have found that it is preferable to select from the group consisting of carbonaceous powders and carbonaceous powders. They can also be used as a mixture.
  • the ion adsorbent D is more preferably selected from the group consisting of hydrotalcite, magnesium oxide, aluminum oxide, aluminum hydroxide, magnesium hydroxide, magnesium carbonate, and carbon-based powder, and is preferably hydrotalcite. Is more preferable.
  • the shape of the ion adsorbent D may be any of granular (particulate), polyhedral, spherical, irregular, flat, or needle-shaped, but the particle size distribution is sharp, there are few aggregates, and it is spherical. Preferred for smooth transmission of exposure light.
  • the volume average particle diameter of the ion adsorbent D is preferably 0.03 to 10 ⁇ m, and more preferably 0.1 to 6 ⁇ m.
  • the volume average particle diameter is 0.03 ⁇ m or more, the dispersibility and dispersion stability in the photosensitive conductive paste are increased, and the surface area is increased, so that the ion adsorption effect with respect to the addition amount is enhanced.
  • the volume average particle diameter is 10 ⁇ m or less, the surface smoothness, pattern accuracy, and dimensional accuracy of the manufactured conductive pattern are improved.
  • the volume average particle diameter can be measured by a Coulter counter method.
  • the addition amount of the ion adsorbent D is 50% by weight or more with respect to the total solid content in the photosensitive conductive paste, it is difficult to obtain the desired effect of the photosensitive conductive paste of the present invention.
  • the addition amount of the ion adsorbent D is preferably 0.1 to 20% by weight with respect to the total solid content.
  • the addition amount with respect to the total solid content is 0.1% by weight or more, the ion adsorption ability is improved.
  • the addition amount with respect to the total solid content is 20% by weight or less, the influence on the conductivity of the manufactured conductive pattern is small.
  • the photosensitive conductive paste of the present invention may contain a solvent.
  • the solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide, ⁇ -butyrolactone, ethyl lactate, 1-methoxy-2-propanol. 1-ethoxy-2-propanol, ethylene glycol mono-n-propyl ether, diacetone alcohol, tetrahydrofurfuryl alcohol or propylene glycol monomethyl ether acetate or a mixture of these solvents.
  • the photosensitive conductive paste of the present invention may contain ionic components such as chlorine ions.
  • ionic components such as chlorine ions.
  • the conductivity of the obtained conductive film is improved.
  • an excess ionic component when an excess ionic component is present, it may cause adverse effects such as reduced adhesion of the produced conductive pattern and deterioration of the substrate, but the photosensitive conductive paste of the present invention is an ion adsorbent. Since D is an essential constituent component, excess ionic components can be captured and the above-described adverse effects can be suppressed.
  • the photosensitive conductive paste of the present invention may contain additives such as a resin, a plasticizer, a leveling agent, a surfactant, a silane coupling agent, an antifoaming agent, or a pigment.
  • the resin examples include novolak resin, phenol resin, polyimide precursor, closed ring polyimide, melamine resin, polyvinyl chloride, and polyvinylidene chloride.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, polyethylene glycol, and glycerin.
  • leveling agent examples include a special vinyl polymer or a special acrylic polymer.
  • silane coupling agent examples include methyltrimethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and vinyltrimethoxysilane. Methoxysilane is mentioned.
  • the photosensitive conductive paste is produced, for example, using a dispersing machine or a kneader such as a three-roller, a ball mill or a planetary ball mill.
  • the photosensitive conductive paste of the present invention is applied onto a substrate to obtain a coating film, and the obtained coating film is dried to volatilize the solvent. Thereafter, the dried coating film is exposed through a pattern forming mask, and the exposed coating film is developed to form a desired pattern on the substrate. And if an obtained pattern is heated, a conductive pattern will be obtained.
  • Examples of the substrate include a silicon wafer, a ceramic substrate, and a resin substrate.
  • Examples of the ceramic substrate include a glass substrate, an alumina substrate, an aluminum nitride substrate, and a silicon carbide substrate.
  • Examples of the resin substrate include an epoxy resin substrate, a polyetherimide resin substrate, a polyetherketone resin substrate, and a polysulfone series. Examples include a resin substrate, a polyimide film, a polyester film, or an aramid film.
  • Examples of the method for applying the photosensitive conductive paste on the substrate include spin coating using a spinner, spray coating, roll coating, screen printing, or coating using a blade coater, die coater, calendar coater, meniscus coater, or bar coater. Is mentioned.
  • the film thickness of the obtained coating film may be appropriately determined according to the coating method or the total solid content concentration or viscosity of the photosensitive conductive paste, but the film thickness after drying is within the range of 0.1 to 50 ⁇ m. It is preferable to become.
  • the film thickness can be measured using a stylus type step gauge such as “Surfcom” (registered trademark) 1400 (manufactured by Tokyo Seimitsu Co., Ltd.). More specifically, the film thickness at three random positions may be measured with a stylus-type step gauge (length measurement: 1 mm, scanning speed: 0.3 mm / sec), and the average value may be defined as the film thickness. it can.
  • Examples of the method for drying the obtained coating film to volatilize and remove the solvent include heat drying or vacuum drying using an oven, a hot plate, infrared rays, or the like.
  • the heat drying is preferably 50 to 180 ° C., and the heating time is preferably 1 minute to several hours.
  • the dried coating film is exposed by a photolithography method.
  • a light source for exposure i-line (365 nm), h-line (405 nm) or g-line (436 nm) of a mercury lamp is preferable.
  • the desired pattern is obtained by developing the exposed coating film using a developer and dissolving and removing unexposed portions.
  • the developer used for alkali development include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, and dimethyl acetate.
  • An aqueous solution of aminoethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine may be mentioned.
  • aqueous solutions include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N— Polar solvents such as dimethylacetamide, dimethylsulfoxide or ⁇ -butyrolactone, alcohols such as methanol or ethanol or isopropanol, milk Ethyl, esters such as propylene glycol monomethyl ether acetate, cyclopentanone, cyclohexanone, may be added to ketones or surfactant, such as isobutyl ketone or methyl isobutyl ketone.
  • Examples of the developer for organic development include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, hexamethylphosphoryl tri
  • Examples thereof include polar solvents such as amides or mixed solvents of these polar solvents with methanol, ethanol, isopropyl alcohol, xylene, water, methyl carbitol or ethyl carbitol.
  • a development method for example, a method of spraying a developer onto the coating film surface while the substrate is left standing or rotating, a method of immersing the substrate in the developer, or an ultrasonic wave while immersing the substrate in the developer The method of applying is mentioned.
  • the pattern obtained by development may be rinsed with a rinse solution.
  • a rinse solution examples include water or an aqueous solution in which an alcohol such as ethanol or isopropyl alcohol or an ester such as ethyl lactate or propylene glycol monomethyl ether acetate is added to water.
  • the heating temperature is preferably 100 to 300 ° C, more preferably 100 to 200 ° C.
  • the volume shrinkage of the resin increases, the contact probability between the conductive powders A increases, and the specific resistivity decreases.
  • the photosensitive conductive paste of the present invention can obtain high conductivity by heating at a relatively low temperature of 200 ° C. or lower, a conductive pattern can be formed on a material such as a substrate having low heat resistance. .
  • the conductive pattern manufactured using the photosensitive conductive paste of the present invention is suitably used as a peripheral wiring for a touch panel.
  • the touch panel system include a resistive film type, an optical type, an electromagnetic induction type, and a capacitance type.
  • the capacitance type touch panel particularly requires fine wiring, the photosensitive conductive paste of the present invention. Is more preferably used.
  • the touch panel provided with the conductive pattern of the present invention as its peripheral wiring and the peripheral wiring is 100 ⁇ m pitch (wiring width + inter-wiring width) or less, the frame width can be narrowed and the view area can be widened.
  • Photosensitive organic compound B (Synthesis Example 1; photosensitive organic compound B-1) Copolymer of ethyl acrylate (EA) / 2-ethylhexyl methacrylate (2-EHMA) / styrene (St) / acrylic acid (AA) (copolymerization ratio: 20 parts by weight / 40 parts by weight / 20 parts by weight / 15 parts by weight) Part) was added with 5 parts by weight of glycidyl methacrylate (GMA). In a nitrogen atmosphere reaction vessel, 150 g of diethylene glycol monoethyl ether acetate was charged, and the temperature was raised to 80 ° C. using an oil bath.
  • This consists of 20 g ethyl acrylate, 40 g 2-ethylhexyl methacrylate, 20 g styrene, 15 g acrylic acid, 0.8 g 2,2′-azobisisobutyronitrile and 10 g diethylene glycol monoethyl ether acetate.
  • the mixture was added dropwise over 1 hour. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction.
  • ethylene oxide modified bisphenol A diacrylate FA-324A was obtained from 20 g of ethyl acrylate, 15 g of acrylic acid, 0.8 g of 2,2′-azobisisobutyronitrile and 10 g of diethylene glycol monoethyl ether acetate. The resulting mixture was added dropwise over 1 hour. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction.
  • the mixture was mixed with an orbital mixer (hybrid mixer) “Awatori Nertaro” (registered trademark) (ARE-310; manufactured by Sinky Corporation) to obtain a photosensitive resin solution.
  • Ag particles and the ion adsorbent D-1 were mixed with the obtained photosensitive resin solution so as to have the weight% shown in Table 1, and kneaded using three rollers (EXAKT M-50; manufactured by EXAKT).
  • EXAKT M-50 manufactured by EXAKT
  • a photosensitive conductive paste was applied by screen printing on a PET film having a thickness of 50 ⁇ m, and the obtained coating film was dried in a drying oven at 100 ° C. for 10 minutes.
  • a group of straight lines arranged in a constant line and space (hereinafter referred to as L / S), that is, a translucent pattern, is defined as one unit, and after drying through a photomask having nine types of units having different L / S values.
  • the coating film was exposed and developed to obtain patterns having different L / S values. Thereafter, all of the obtained nine patterns were cured in a drying oven at 140 ° C. for 30 minutes to obtain conductive patterns having different L / S values.
  • the L / S value of each unit included in the photomask is 500/500, 250/250, 100/100, 50/50, 40/40, 30/30, 25/25, 20/20, 17 / 17, 15/15, and 10/10 (representing line width ( ⁇ m) / interval ( ⁇ m), respectively).
  • the obtained conductive pattern is observed with an optical microscope, a conductive pattern having no residue between the patterns and having no pattern peeling is confirmed, and the L / S value can be developed.
  • the value was / S.
  • the developable L / S value is 30/30, 25/25, 20/20, 17/17, 15/15 or 10/10, and the developable L / S value is 100.
  • the exposure is performed using an exposure apparatus (PEM-6M; manufactured by Union Optics Co., Ltd.) for full line exposure with an exposure amount of 200 mJ / cm 2 (wavelength 365 nm conversion), and development is performed with a 0.25 wt% Na 2 CO 3 aqueous solution.
  • the substrate was immersed for 30 seconds, and then rinsed with ultrapure water.
  • the developable L / S value was 20/20 ⁇ m, which was judged as ⁇ , and it was confirmed that a good pattern was processed.
  • a photosensitive conductive paste is applied on a PET film “ELECRYSTA” (registered trademark) V270L-TFS (manufactured by Nitto Denko Corporation) with ITO by a screen printing method so that the film thickness of the coating film after drying is 7 ⁇ m.
  • the obtained coating film was dried in a drying oven at 90 ° C. for 10 minutes, and then the entire surface was exposed. The exposure conditions were the same as those for the above processability evaluation. Then, after heating in a drying oven at 140 ° C. for 1 hour, a cut was made with a cutter into a 1 mm width and 10 ⁇ 10 grid pattern.
  • Cellophane tape (manufactured by Nichiban Co., Ltd.) was attached to and peeled off from the entire cross-cut portion of this sample, and the initial evaluation was performed by counting the number of remaining masses. Subsequently, the sample was put into a constant temperature and humidity chamber SH-661 (manufactured by ESPEC Corporation) at 85 ° C. and 85% RH for 240 hours, and a cellophane tape was attached to the entire cut-out part of the cutout of the sample. The remaining mass was counted and evaluated after the constant temperature and humidity chamber was added.
  • SH-661 manufactured by ESPEC Corporation
  • Example 2 A photosensitive conductive paste having the composition shown in Table 1 was produced in the same manner as in Example 1, and the evaluation results are also shown in Table 1.
  • the photosensitive conductive paste of the present invention can be suitably used for manufacturing conductive patterns such as peripheral wiring for touch panels.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Materials For Photolithography (AREA)
  • Human Computer Interaction (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)
  • Position Input By Displaying (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本発明は、基板等の材料へ悪影響を及ぼすことなく、微細パターニング及び低温での導電性発現が可能であり、かつ、基板への密着性に優れた、比抵抗率の低い導電パターンを形成可能な、感光性導電ペースト及びそれを用いた導電パターンの製造方法を提供することを目的とする。本発明は、導電性粒子Aと、感光性有機化合物Bと、エポキシ樹脂Cと、ハイドロタルサイト、酸化マグネシウム、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、炭酸マグネシウム、酸化ジルコニウム、ケイ酸マグネシウム、二酸化ケイ素、ゼオライト及び炭素系粉末からなる群から選ばれるイオン吸着剤Dと、を含む、感光性導電ペーストを提供する。

Description

感光性導電ペースト、積層基板、導電パターンの製造方法及び静電容量型タッチパネル
 本発明は、感光性導電ペースト、積層基板、導電パターンの製造方法及び静電容量型タッチパネルに関する。
 これまでに、樹脂や接着剤の中に微粒子状の銀フレーク、銅粉又はカーボン粒子を多量に混合した、いわゆる導電ペーストが実用化されている。実用化されているポリマー型の導電ペーストの多くは、スクリーン印刷法によりパターンを形成し、それを加熱硬化して導電パターンとするものである(特許文献1及び2参照)が、微細なパターンを精度よく描画することは困難であった。
 そこで、パターンの高精細化のために、エッチング可能な導電ペースト(特許文献3)が開発されており、さらには、比較的低温で導電性が発現でき、フィルムなどのフレキシブルな基板上に比抵抗率の低い有機-無機複合導電性パターンを形成することのできる、導電性パターン形成用感光性ペーストも開発されている(特許文献4)。
特許第2654066号公報 特開2005-267859号公報 特開平10-064333号公報 特開2011-180580号公報
 しかしながら、従来のエッチング可能な導電ペーストを用いてフォトグラフィー法によりパターン形成をするためには、導電ペーストの塗布膜上にさらにレジスト層を形成せねばならず、導電パターンの製造工程が煩雑化する問題を伴うものであった。また、従来の導電性パターン形成用感光性ペーストは、その原料由来若しくは導電パターンの製造で発生又は混入した余剰のイオン成分を含むことが多々あり、基板等の材料の劣化や、製造された導電膜の基板への密着性の低下が問題視されていた。
 そこで本発明は、基板等の材料へ悪影響を及ぼすことなく、微細パターニング及び低温での導電性発現が可能であり、かつ、基板への密着性に優れた、比抵抗率の低い導電パターンを形成可能な、感光性導電ペースト及びそれを用いた導電パターンの製造方法を提供することを目的とする。
 上記の課題を解決するため、本発明は、以下の(1)~(5)に記載した感光性導電ペースト、積層基板及び導電パターンの製造方法を提供する。
(1) 導電性粒子Aと、感光性有機化合物Bと、エポキシ樹脂Cと、ハイドロタルサイト、酸化マグネシウム、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、炭酸マグネシウム、酸化ジルコニウム、ケイ酸マグネシウム、二酸化ケイ素、ゼオライト及び炭素系粉末からなる群から選ばれるイオン吸着剤Dと、を含む、感光性導電ペースト。
(2) 上記導電性粒子Aは、貴金属粒子である、上記(1)に記載の感光性導電ペースト。
(3) 上記(1)又は(2)に記載の感光性導電ペーストから形成された導電層を具備する、積層基板。
(4) 上記(1)又は(2)に記載の感光性導電ペーストを基板上に塗布して塗布膜を得る、塗布工程と、上記塗布膜を乾燥する、乾燥工程と、乾燥後の上記塗布膜を露光する、露光工程と、露光後の上記塗布膜を現像して、パターンを得る、現像工程と、上記パターンを加熱して、導電パターンを得る、加熱工程と、を備える、導電パターンの製造方法。
(5) 上記(1)又は(2)に記載の感光性導電ペーストから形成された導電パターンを周囲配線として備え、該周囲配線が100μmピッチ以下である、静電容量型タッチパネル。
 本発明の感光性導電ペーストによれば、基板等の材料へ悪影響を及ぼすことなく、微細パターニング及び低温での導電性発現を達成することができる。また、基板への密着性に優れた、比抵抗率の低い導電パターンを形成することができる。
 本発明の感光性導電ペーストは、導電性粒子Aと、感光性有機化合物Bと、エポキシ樹脂Cと、酸化マグネシウム、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、炭酸マグネシウム、酸化ジルコニウム、ケイ酸マグネシウム、二酸化ケイ素、ゼオライト及び炭素系粉末からなる群から選ばれるイオン吸着剤Dと、を含む粒子ことを特徴とする。該ペーストは基板上に塗布し、乾燥させて溶媒を除去した後、加熱によって所望の機能を得ることができる。
 また、本発明の導電パターンの製造方法は、本発明の感光性導電ペーストを基板上に塗布して塗布膜を得る、塗布工程と、上記塗布膜を乾燥する、乾燥工程と、乾燥後の上記塗布膜を露光する、露光工程と、露光後の上記塗布膜を現像して、パターンを得る、現像工程と、上記パターンを加熱して、導電パターンを得る、加熱工程と、を備えることを特徴とする。本発明の導電パターンの製造方法により得られた導電パターンは、本発明の感光性導電ペーストに含まれる導電性粒子A同士が、加熱時の硬化収縮によって互いに接触することで導電性が発現するものである。
 導電性粒子Aとしては、例えば、Ag、Au、Cu、Pt、Pb、Sn、Ni、Al、W、Mo、Sb、酸化ルテニウム、Cr、Ti若しくはインジウムの粒子又はこれら金属の合金の粒子あるいはこれら粒子の混合物が挙げられるが、導電性の観点から貴金属であるAg、Au又はPtの粒子、Cuが好ましく、安定性の観点から貴金属の粒子がより好ましく、コストの観点からAgの粒子がさらに好ましい。Cuはコストの面で優れているが、一部がCuイオン化し易いため導電性が低下するばかりでなく、イオン吸着剤を添加すると、Cuイオンの吸着に消費され、基板等の材料への悪影響を及ぼす他のイオンの吸着効率を下げてしまう場合がある。
 導電性粒子Aの体積平均粒子径は、0.5~10μmが好ましく、1~6μmがより好ましい。体積平均粒子径が1μm以上であると、加熱工程での導電性フィラー同士の接触確率が向上し、製造された導電パターンの比抵抗及び断線確率が低くなる。さらには、露光工程において露光光が感光性導電ペーストを塗布して得られた塗布膜中をスムーズに透過することができ、微細パターニングが容易となる。一方で、体積平均粒子径が6μm以下であると、製造された導電パターンの表面平滑度、パターン精度及び寸法精度が向上する。なお、体積平均粒子径は、コールターカウンター法により測定することができる。
 導電性粒子Aの添加量は、感光性導電ペースト中の全固形分に対して70~95重量%が好ましく、80~90重量%がより好ましい。全固形分に対する添加量が80重量%以上であると、加熱工程での硬化収縮における導電性粒子A同士の接触確率が向上し、製造された導電パターンの比抵抗及び断線確率が低くなる。一方で、全固形分に対する添加量が90重量%以下であると、露光工程において露光光が感光性導電ペーストを塗布して得られた塗布膜中をスムーズに透過することができ、微細なパターニングが容易となる。ここで全固形分とは、溶剤を除く、感光性導電ペーストの全構成成分をいう。
 感光性有機化合物Bとは、分子内に不飽和二重結合を有するモノマー、オリゴマー又はポリマーをいう。より具体的には、例えば、アクリル系共重合体が挙げられる。ここでアクリル系共重合体とは、共重合成分に炭素-炭素二重結合を有するアクリル系モノマーを含む、共重合体をいう。アクリル系モノマーとしては、メチルアクリレート、アクリル酸、アクリル酸2-エチルヘキシル、メタクリル酸エチル、n-ブチルアクリレート、i-ブチルアクリレート、i-プロパンアクリレート、グリシジルアクリレート、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシエチルアクリレート、イソボニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アクリルアミド、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート若しくはベンジルメルカプタンアクリレート等のアクリル系モノマー又はこれらのアクリル系モノマーのアクリル基をメタクリル基に置換した化合物あるいはスチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレン、クロロメチルスチレン若しくはヒドロキシメチルスチレン等のスチレン類、γ-メタクリロキシプロピルトリメトキシシラン又は1-ビニル-2-ピロリドンが好ましい。
 本発明の感光性導電ペーストは、光重合開始剤を含むことが好ましい。ここで光重合開始剤とは、紫外線又は赤外線光によって分解して、ラジカル又は酸が生じる化合物をいう。光重合開始剤としては、例えば、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニル-フォスフィンオキサイド、エタノン、1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2’-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-ベンゾイル)オキシム、1,3-ジフェニル-プロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(o-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4’-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン又はメチレンブルー等の光還元性色素と、アスコルビン酸若しくはトリエタノールアミン等の還元剤の組み合わせが挙げられる。
 光重合開始剤の添加量は、100重量部の感光性有機化合物B及びエポキシ樹脂Cに対して0.05~30重量部が好ましく、5~20重量部がより好ましい。100重量部の感光性有機化合物B及びエポキシ樹脂Cに対する添加量が5重量部以上であると、感光性導電ペーストを露光した部分の硬化密度が高くなり、現像後の残膜率が高くなる。一方で、100重量部の感光性有機化合物B及びエポキシ樹脂Cに対する添加量が20重量部以下であると、感光性導電ペーストを塗布して得られた塗布膜上部における、光重合開始剤の過剰な光吸収が抑制される。その結果、製造された導電パターンが逆テーパー形状になることによる、基板との密着性低下が抑制される。
 本発明の感光性導電ペーストは、光重合開始剤と共に、増感剤を含んでいても構わない。
 増感剤としては、例えば、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,3-ビス(4-ジエチルアミノベンザル)シクロペンタノン、2,6-ビス(4-ジメチルアミノベンザル)シクロヘキサノン、2,6-ビス(4-ジメチルアミノベンザル)-4-メチルシクロヘキサノン、ミヒラーケトン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ビス(ジメチルアミノ)カルコン、4,4-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノベンザル)アセトン、1,3-カルボニルビス(4-ジエチルアミノベンザル)アセトン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、N-フェニル-N-エチルエタノールアミン、N-フェニルエタノールアミン、N-トリルジエタノールアミン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、3-フェニル-5-ベンゾイルチオテトラゾール若しくは1-フェニル-5-エトキシカルボニルチオテトラゾール又はこれら増感剤の混合物が挙げられる。
 増感剤の添加量は、100重量部の感光性有機化合物Bに対して0.05~10重量部が好ましく、0.1~10重量部がより好ましい。100重量部の感光性有機化合物Bに対する添加量が0.1重量部以上であると、光感度が十分に向上する。一方で、100重量部の感光性有機化合物Bに対する添加量が10重量部以下であると、特に感光性導電ペーストを塗布して得られた塗布膜上部における光重合開始剤の過剰な光吸収が抑制される。その結果、製造された導電パターンが逆テーパー形状となることによる、基板との密着性低下が抑制される。
 エポキシ樹脂Cとしては、例えば、エピクロルヒドリン由来の化合物であるグリシジル基含有化合物又はその不飽和二重結合付加物が挙げられる。より具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ビスクレゾールフルオレン型エポキシ樹脂、ビスフェノキシエタノールフルオレン型エポキシ樹脂、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レソルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、水添ビスフェノールA型ジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ポリブタジエンジグリシジルエーテル、ジグリシジルo-フタレート、ヒドロキノンジグリシジルエーテル、ジグリシジルテレフタレート、N-グリシジルフタルイミド若しくはトリメチロールプロパントリグリシジルエーテル等のグリシジル基含有化合物又はこれらグリシジル基含有化合物のアクリル酸付加物若しくはメタクリル酸付加物等の不飽和二重結合付加物が挙げられる。これらのエポキシ樹脂Cは、その製造過程で塩素が除去し切れず、高温高湿下で塩素イオンが溶出し易い。
 エポキシ樹脂Cの添加量は、100重量部の感光性有機化合物Bに対して0.05~30重量部が好ましく、0.5~20重量部がより好ましい。100重量部の感光性有機化合物Bに対するエポキシ基を含む樹脂Cの添加量が0.05重量部以上であると、製造された導電パターンの導電性が高まる。一方で、100重量部の感光性有機化合物Bに対する添加量が30重量部以下であると、パターン加工性が制御できる。
 本発明の感光性導電ペーストはイオン吸着剤Dを含む。本発明の感光性導電ペーストはイオン吸着剤Dを必須の構成成分とすることから、余剰なイオン成分を捕捉し、上記の悪影響を抑止することができる。
 感光性導電ペーストに含まれる余剰のイオン、特に塩素イオンを吸着するために添加されるイオン吸着剤Dとしては、本発明者らは、基板との密着性を考慮すると、特定のイオン吸着剤が選択されることを見出した。
 イオン吸着剤としては以下のとおり、多様なものがあげられる。例えば、炭素系粉末として、活性炭、木炭、アセチレンブラック、ケッチェンブラック、カーボンブラック、チタンブラック、カーボンウイスカー若しくはカーボンナノチューブ、黒鉛、等が挙げられる。
 次に酸化物として、酸化亜鉛、酸化錫、酸化インジウム、酸化カルシウム、酸化マグネシウム、酸化ジルコニウム、磁性酸化鉄、フェライト、例えばAl・xHOで表されるアルミナ(酸化アルミニウム)や、シリカ(二酸化ケイ素)、酸化チタン、チタン酸バリウム、チタン酸ジルコン酸鉛、チタン酸カリウム、酸化セリウム、酸化アンチモン等が挙げられる。これらの複合酸化物系、酸化物は含水している場合もある。
 次に複合酸化物系として、酸化マグネシウム、酸化アルミニウム又は二酸化ケイ素を主構成成分とする、酸化マグネシウム-酸化アルミニウム複合酸化物の2.5MgO・Al・xHO、Mg0.7・Al0.31.15、酸化マグネシウム-酸化ナトリウム複合酸化物のAl・NaO・2CO・xHO、酸化マグネシウム-二酸化ケイ素複合酸化物の2MgO・6SiO・xHO、又は酸化アルミニウム-二酸化ケイ素複合酸化物のAl・9SiOxHO等が挙げられ、さらにアルミノケイ酸塩であり、通称で天然ゼオライト、合成ゼオライト、ソーダライト類、天然モルデナイト、合成モルデナイト等のゼオライト類等が挙げられる。その他、複合酸化物系で鉱物類のマイカ、合成マイカ、モンモリナイト、バーミキュライト、タルク、ゾノトライト、ドーソナイト、セリサイト、ガラスフレーク、クレー、等が挙げられる。
 次にホウ酸塩類として、ホウ酸、ホウ酸亜鉛、ホウ酸アルミニウム等が挙げられる。また、硫酸塩類として、硫酸バリウム、二硫化モリブデン、塩基性硫酸マグネシウム、硫酸マグネシウム等が挙げられる。
 また、リン酸塩として、リン酸ジルコニウム等があげられる。
 次にケイ酸塩類として、セピオライト、シリカゲル、ウォラストナイト、シリカバルーン、ガラスバルーン、シラスバルーン、ケイ酸マグネシウム、ケイ酸カルシウムまた、水酸化物として水酸化アルミニウム、水酸化マグネシウム等が挙げられる。
 次に炭酸塩類として、炭酸カルシウム、炭酸マグネシウム、炭酸アルミニウム、炭酸亜鉛、ベーマイト、炭酸リチウム、Al(OH)・NaHCO等が挙げられる。
 また、マグネシウムとアルミニウムの炭酸塩鉱物で称されるハイドロタルサイトとして、Mg4.5Al(OH)13CO・3.5HO、Mg4.5Al(OH)13CO、MgAl(OH)12CO・3.5HO、MgAl(OH)16CO・4HO、MgAl(OH)14CO・4HO、MgAl(OH)16CO・4HO、MgAl(OH)10CO・1.7HO、MgZnAl(OH)12CO・xHO、又はMgZnAl(OH)12CO等が挙げられる。
 その他、窒化アルミニウム、テフロン(登録商標)粉、樹脂バルーン、金属フタロシアニン、PMF(Processed Mineral Filler)等が挙げられる。
 上記の中でも、基板との密着性を考慮すると、イオン吸着剤Dを、ハイドロタルサイト酸化マグネシウム、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、炭酸マグネシウム、酸化ジルコニウム、ケイ酸マグネシウム、二酸化ケイ素、ゼオライト類及び炭素系粉末からなる群から選ぶと好ましいことを発明者らは見出した。それらは混合して用いることも出来る。
 その中でも、イオン吸着剤Dを、ハイドロタルサイト、酸化マグネシウム、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、炭酸マグネシウム、及び炭素系粉末からなる群から選ぶことがより好ましく、ハイドロタルサイトとすることがさらに好ましい。
 イオン吸着剤Dの形状は、粒状(粒子状)、多面体状、球状、異形、扁平状又は針状の何れでも構わないが、粒度分布がシャープで、凝集体が少なく、かつ球状であることが露光光のスムーズな透過のために好ましい。
 イオン吸着剤Dの体積平均粒子径は、0.03~10μmが好ましく、0.1~6μmがより好ましい。体積平均粒子径が0.03μm以上であると、感光性導電ペースト中での分散性及び分散安定性が高くなり、かつ表面積が大きくなるため、添加量に対するイオン吸着効果が高くなる。一方で、体積平均粒子径が10μm以下であると、製造された導電パターンの表面平滑度、パターン精度及び寸法精度が向上する。なお、体積平均粒子径は、コールターカウンター法により測定することができる。
 イオン吸着剤Dの添加量が感光性導電ペースト中の全固形分に対して50重量%以上であると、本発明の感光性導電ペーストの所期の効果が得づらくなる。また、イオン吸着剤Dの添加量は、全固形分に対して0.1~20重量%が好ましい。全固形分に対する添加量が0.1重量%以上であると、イオン吸着能が向上する。一方で、全固形分に対する添加量が20重量%以下であると、製造された導電パターンの導電性への影響が小さい。
 本発明の感光性導電ペーストは、溶剤を含んでいても構わない。溶剤としては、例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、ジメチルスルホキシド、γ-ブチロラクトン、乳酸エチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、エチレングリコールモノ-n-プロピルエーテル、ジアセトンアルコール、テトラヒドロフルフリルアルコール若しくはプロピレングリコールモノメチルエーテルアセテート又はこれら溶剤の混合物が挙げられる。
 本発明の感光性導電ペーストには、塩素イオン等のイオン成分が含まれていても構わない。例えば感光性導電ペーストが適量の塩素イオンを含む場合、得られる導電膜の導電性が向上する。一方で、余剰のイオン成分が存在する場合には、製造された導電パターンの密着性の低化や、基板等の劣化といった悪影響を及ぼしかねないが、本発明の感光性導電ペーストはイオン吸着剤Dを必須の構成成分とすることから、余剰なイオン成分を捕捉し、上記の悪影響を抑止することができる。
 本発明の感光性導電ペーストは、樹脂、可塑剤、レベリング剤、界面活性剤、シランカップリング剤、消泡剤若しくは顔料等の添加剤を含んでいても構わない。
 樹脂の具体例としては、例えば、ノボラック樹脂、フェノール樹脂、ポリイミド前駆体、既閉環ポリイミド、メラミン樹脂、ポリ塩化ビニル又はポリ塩化ビニリデンが挙げられる。
 可塑剤としては、例えば、ジブチルフタレート、ジオクチルフタレート、ポリエチレングリコール又はグリセリンが挙げられる。
 レベリング剤としては、例えば、特殊ビニル系重合物又は特殊アクリル系重合物が挙げられる。
 シランカップリング剤としては、例えば、メチルトリメトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン又はビニルトリメトキシシランが挙げられる。
 感光性導電ペーストは、例えば、三本ローラー、ボールミル若しくは遊星式ボールミル等の分散機又は混練機を用いて製造される。
 次に本発明の感光性導電ペーストを用いた、導電パターンの製造方法について説明する。感光性導電ペーストを製造するためには、まず、本発明の感光性導電ペーストを基板上に塗布して塗布膜を得て、得られた塗布膜を乾燥して溶剤を揮発させる。その後、乾燥した塗布膜をパターン形成用マスクを介して露光し、露光後の塗布膜を現像して、基板上に所望のパターンを形成する。そして、得られたパターンを加熱すれば、導電パターンが得られる。
 基板としては、例えば、シリコンウエハー、セラミックス基板又は樹脂基板が挙げられる。セラミックス基板としては、例えば、ガラス基板、アルミナ基板、窒化アルミニウム基板又は炭化ケイ素基板等が挙げられ、樹脂基板としては、例えば、エポキシ樹脂基板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板、ポリイミドフィルム、ポリエステルフィルム又はアラミドフィルム等が挙げられる。
 感光性導電ペーストを基板上に塗布する方法としては、例えば、スピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷又はブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター若しくはバーコーターを用いた塗布が挙げられる。得られる塗布膜の膜厚は、塗布の方法又は感光性導電ペーストの全固形分濃度若しくは粘度等に応じて適宜決定すればよいが、乾燥後の膜厚が0.1~50μmの範囲内になることが好ましい。なお、膜厚は、例えば“サーフコム”(登録商標)1400((株)東京精密製)のような触針式段差計を用いて測定することができる。より具体的には、ランダムな3つの位置の膜厚を触針式段差計(測長:1mm、走査速度:0.3mm/sec)でそれぞれ測定し、その平均値を膜厚とすることができる。
 得られた塗布膜を乾燥して溶剤を揮発除去する方法としては、例えば、オーブン、ホットプレート若しくは赤外線等による加熱乾燥又は真空乾燥が挙げられる。加熱乾燥は50~180℃が好ましく、加熱時間は1分~数時間が好ましい。
 乾燥後の塗布膜は、フォトリソグラフィー法により露光する。露光の光源としては、水銀灯のi線(365nm)、h線(405nm)又はg線(436nm)が好ましい。
 露光後の塗布膜を、現像液を用いて現像し、未露光部を溶解除去することで、所望のパターンが得られる。アルカリ現像を行う場合の現像液としては、例えば、水酸化テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン又はヘキサメチレンジアミンの水溶液が挙げられるが、これらの水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド若しくはγ-ブチロラクトン等の極性溶媒、メタノール若しくはエタノール若しくはイソプロパノール等のアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン若しくはメチルイソブチルケトン等のケトン類又は界面活性剤を添加しても構わない。
 有機現像を行う場合の現像液としては、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド等の極性溶媒又はこれら極性溶媒とメタノール、エタノール、イソプロピルアルコール、キシレン、水、メチルカルビトール若しくはエチルカルビトールとの混合溶媒が挙げられる。上記の現像によっても、導電パターンにイオン成分が残存する場合があるが、本発明の感光性導電ペーストはイオン吸着剤Dを必須の構成成分とすることから、余剰なイオン成分を捕捉し、製造された導電パターンの密着性の低下や、基板等の劣化といった悪影響を抑止することができる。
 現像の方法としては、例えば、基板を静置又は回転させながら現像液を塗布膜面にスプレーする方法、基板を現像液中に浸漬する方法、又は、基板を現像液中に浸漬しながら超音波をかける方法が挙げられる。
 現像により得られたパターンは、リンス液によるリンス処理を施しても構わない。ここでリンス液としては、例えば、水あるいは水にエタノール若しくはイソプロピルアルコール等のアルコール類又は乳酸エチル若しくはプロピレングリコールモノメチルエーテルアセテート等のエステル類を加えた水溶液が挙げられる。
 得られたパターンを加熱する方法としては、例えば、オーブン、イナートオーブン、ホットプレート若しくは赤外線等による加熱乾燥又は真空乾燥が挙げられる。加熱温度は100~300℃が好ましく、100~200℃がより好ましい。加熱温度を100℃以上とすることにより、樹脂の体積収縮量が大きくなり、導電性粉末A同士の接触確率が上がって比抵抗率が小さくなる。また、本発明の感光性導電ペーストは、200℃以下という比較的低温の加熱によって高い導電性を得ることができるため、耐熱性が低い基板等の材料の上に導電パターンを形成することができる。
 本発明の感光性導電ペーストを用いて製造される導電パターンは、タッチパネル用周囲配線として好適に用いられる。タッチパネルの方式としては、例えば、抵抗膜式、光学式、電磁誘導式又は静電容量式が挙げられるが、静電容量式タッチパネルは特に微細配線が求められることから、本発明の感光性導電ペーストがより好適に用いられる。本発明の導電パターンをその周囲配線として備え、かつ該周囲配線が100μmピッチ(配線幅+配線間幅)以下であるタッチパネルにおいては、額縁幅を細くでき、ビューエリアを広くすることができる。
 以下、実施例及び比較例を挙げて、本発明をさらに詳しく説明する。なお、各実施例及び比較例で用いた材料は以下のとおりである。
 (感光性有機化合物B)
 (合成例1;感光性有機化合物B-1)
エチルアクリレート(EA)/メタクリル酸2-エチルヘキシル(2-EHMA)/スチレン(St)/アクリル酸(AA)の共重合体(共重合比率:20重量部/40重量部/20重量部/15重量部)にグリシジルメタクリレート(GMA)を5重量部付加反応させたもの
 窒素雰囲気の反応容器中に、150gのジエチレングリコールモノエチルエーテルアセテートを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのエチルアクリレート、40gのメタクリル酸2-エチルヘキシル、20gのスチレン、15gのアクリル酸、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのジエチレングリコールモノエチルエーテルアセテートからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのグリシジルメタクリレート、1gのトリエチルベンジルアンモニウムクロライド及びジ10gエチレングリコールモノエチルエーテルアセテートからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、感光性有機化合物B-1を得た。
 (合成例2;感光性有機化合物B-2)
エチレンオキサイド変性ビスフェノールAジアクリレートFA-324A(日立化成工業株式会社製)/EA/AAの共重合体(共重合比率:50重量部/10重量部/15重量部)にグリシジルメタクリレート(GMA)を5重量部付加反応させたもの
 窒素雰囲気の反応容器中に、150gのジエチレングリコールモノエチルエーテルアセテートを仕込み、オイルバスを用いて80℃まで昇温した。これに、50gのエチレンオキサイド変性ビスフェノールAジアクリレートFA-324Aを、20gのエチルアクリレート、15gのアクリル酸、0.8gの2,2’-アゾビスイソブチロニトリル及び10gジエチレングリコールモノエチルエーテルアセテートからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのグリシジルメタクリレート、1gのトリエチルベンジルアンモニウムクロライド及び10gのジエチレングリコールモノエチルエーテルアセテートからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで感光性有機化合物B-2を得た。
 (光重合開始剤)
“IRGACURE”(登録商標) 369(チバジャパン株式会社製)
 (溶剤)
ジエチレングリコールモノブチルエーテル(東京化成工業株式会社製)
 (導電性粒子A)
湿式還元法により製造されたAg粒子(体積平均粒子径:1.19μm、比表面積:1.12m/g、タップ密度:4.8g/cm
 (イオン吸着剤D)
・D-1 : ハイドロタルサイト DHT-4A(Mg4.5Al(OH)13CO・3.5HO 協和化学工業社製)
・D-2 : 酸化マグネシウム-酸化アルミニウム複合酸化物“キョーワード”(登録商標)2000(Mg0.7Al0.31.15 協和化学工業社製)
・D-3 : 酸化マグネシウム(協和化学工業社製)
・D-4 : 活性炭粉末(Cas番号.7440-44-0 東京化成工業製)
・D-5 : リン酸ジルコニウム(共立マテリアル社製)
 (エポキシ樹脂C-1)
・エポキシエステル80MFA(共栄社化学株式会社製、全塩素含有量300ppm以上)
 (実施例1)
 100mLボトルに、20gの感光性有機化合物B-1、4gのエポキシエステル80MFA、12gのN-n-ブトキシメチルアクリルアミド、4gの“IRGACURE”(登録商標) 369及び10gのジエチレングリコールモノブチルエーテルを入れ、自転公転ミキサー(ハイブリッドミキサー)“あわとり練太郎”(登録商標)(ARE-310;株式会社シンキー社製)で混合し、感光性樹脂溶液とした。得られた感光性樹脂溶液に、Ag粒子及びイオン吸着剤D-1を表1の重量%になるようにそれぞれ混ぜ合わせ、3本ローラー(EXAKT M-50;EXAKT社製)を用いて混練して、感光性導電ペーストを得た。得られた感光性導電ペーストについて、以下の評価をそれぞれ実施した。評価結果は、表1に示す。
 <加工性評価>
 膜厚50μmのPETフィルム上に感光性導電ペーストをスクリーン印刷法で塗布し、得られた塗布膜を100℃の乾燥オーブン内で10分間乾燥した。一定のラインアンドスペース(以下、L/S)で配列された直線群すなわち透光パターンを1つのユニットとし、L/Sの値が異なる9種類のユニットをそれぞれ有するフォトマスクを介して乾燥後の塗布膜を露光、現像して、L/Sの値が異なるパターンをそれぞれ得た。その後、得られた9つのパターンを140℃で30分間乾燥オーブン内でいずれもキュアして、L/Sの値が異なる導電パターンをそれぞれ得た。なお、フォトマスクが有する各ユニットのL/Sの値は、500/500、250/250、100/100、50/50、40/40、30/30、25/25、20/20、17/17、15/15、10/10とした(それぞれ、ライン幅(μm)/間隔(μm)を表す)。得られた導電パターンを光学顕微鏡で観察し、パターン間に残渣がなく、かつパターン剥がれのないL/Sの値が最小の導電パターンを確認し、そのL/Sの値を、現像可能なL/Sの値とした。このとき、現像可能なL/Sの値が30/30、25/25、20/20、17/17、15/15又は10/10の場合を◎、現像可能なL/Sの値が100/100、50/50又は40/40の場合を○、現像可能なL/Sの値が500/500又は250/250の場合を×、とそれぞれ判定した。なお、露光は露光装置(PEM-6M;ユニオン光学株式会社製)を用いて露光量200mJ/cm(波長365nm換算)の全線露光を行い、現像は0.25重量%のNaCO水溶液に基板を30秒浸漬させた後、超純水によるリンス処理を施して行った。
 その結果、現像可能なL/Sの値は20/20μmで◎判定であり、良好なパターン加工されていることを確認した。
 <基板との密着性評価>
 ITO付きPETフィルム“ELECRYSTA”(登録商標)V270L-TFS(日東電工(株)製)上に感光性導電ペーストを乾燥後の塗布膜の膜厚が7μmになるようにスクリーン印刷法で塗布し、得られた塗布膜を90℃の乾燥オーブン内で10分間乾燥してからその全面を露光した。なお、露光の条件は、上記加工性評価と同様とした。その後、140℃で1時間乾燥オーブン内で加熱してから、1mm幅で10×10の碁盤目状にカッターで切れ目を入れた。このサンプルの碁盤目状の切れ目部位全体にセロハンテープ(ニチバン(株)製)を貼着して剥がし、残存マス数をカウントして初期評価をした。続いて、85℃、85%RHの恒温恒湿槽SH-661(エスペック(株)製)にサンプルを240時間投入し、取り出したサンプルの碁盤目状の切れ目部位全体にセロハンテープを貼着して剥がし、残存マス数をカウントして恒温恒湿槽投入後の評価をした。初期評価及び恒温恒湿槽投入後の評価ともに、残存マス数が95以上の場合を◎、残存マス数が70以上95未満の場合を○、残存マス数が70未満の場合を×、とそれぞれ判定した。
 <全塩素含有量の測定方法>
 50gの感光性導電ペーストをテーブルトップ遠心機(2420;久保田商事株式会社製)に入れ、3000rpmで30分間遠心分離した。遠心分離後の上澄み溶液を150℃で10時間乾燥させてから、溶剤で100倍に希釈し、固層抽出用カートリッジ(GL-PaKPLS-3;GLサイエンス社製)でろ過したろ液について、塩素・硫黄分析装置(TOX-2100H;三菱アナリテック社製)を用いて全塩素含有量を測定した。
 (実施例2~8)
 表1に示す組成の感光性導電ペーストを実施例1と同様の方法で製造し、評価結果を同じく表1に示した。
 (比較例1~3)
 表1に示す組成の感光性導電ペーストを実施例1と同様の方法で製造し、評価結果を同じく表1に示した。
Figure JPOXMLDOC01-appb-T000001
 本発明の感光性導電ペーストは、タッチパネル用周囲配線等の導電パターンの製造のために、好適に利用できる。

Claims (5)

  1.  導電性粒子Aと、
     感光性有機化合物Bと、
     エポキシ樹脂Cと、
     ハイドロタルサイト、酸化マグネシウム、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、炭酸マグネシウム、酸化ジルコニウム、ケイ酸マグネシウム、二酸化ケイ素、ゼオライト及び炭素系粉末からなる群から選ばれるイオン吸着剤Dと、を含む、感光性導電ペースト。
  2.  前記導電性粒子Aは、貴金属粒子である、請求項1記載の感光性導電ペースト。
  3.  請求項1又は2記載の感光性導電ペーストから形成された導電層を具備する、積層基板。
  4.  請求項1又は2記載の感光性導電ペーストを基板上に塗布して塗布膜を得る、塗布工程と、
     前記塗布膜を乾燥する、乾燥工程と、
     乾燥後の前記塗布膜を露光する、露光工程と、
     露光後の前記塗布膜を現像して、パターンを得る、現像工程と、
     前記パターンを加熱して、導電パターンを得る、加熱工程と、を備える、導電パターンの製造方法。
  5.  請求項1又は2記載の感光性導電ペーストから形成された導電パターンを周囲配線として備え、該周囲配線が、100μmピッチ以下である、静電容量型タッチパネル。
PCT/JP2013/079622 2012-11-13 2013-10-31 感光性導電ペースト、積層基板、導電パターンの製造方法及び静電容量型タッチパネル WO2014077136A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157012816A KR101971899B1 (ko) 2012-11-13 2013-10-31 감광성 도전 페이스트, 적층 기판, 도전 패턴의 제조 방법 및 정전 용량형 터치 패널
JP2013550699A JP6225708B2 (ja) 2012-11-13 2013-10-31 静電容量型タッチパネル
US14/439,705 US9846361B2 (en) 2012-11-13 2013-10-31 Photosensitive conductive paste, multilayer substrate, method of producing conductive pattern, and electrostatic capacitance type touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012249141 2012-11-13
JP2012-249141 2012-11-13

Publications (1)

Publication Number Publication Date
WO2014077136A1 true WO2014077136A1 (ja) 2014-05-22

Family

ID=50731054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079622 WO2014077136A1 (ja) 2012-11-13 2013-10-31 感光性導電ペースト、積層基板、導電パターンの製造方法及び静電容量型タッチパネル

Country Status (5)

Country Link
US (1) US9846361B2 (ja)
JP (1) JP6225708B2 (ja)
KR (1) KR101971899B1 (ja)
TW (1) TWI592949B (ja)
WO (1) WO2014077136A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174348A1 (ja) * 2014-05-13 2015-11-19 東レ株式会社 導電ペースト、タッチパネル及び導電パターンの製造方法
JP2018097249A (ja) * 2016-12-15 2018-06-21 Dic株式会社 レジスト用感光性樹脂組成物の製造方法
WO2018155053A1 (ja) * 2017-02-23 2018-08-30 京セラ株式会社 配線基板、電子装置用パッケージおよび電子装置
JP2020111651A (ja) * 2019-01-09 2020-07-27 凸版印刷株式会社 塗布剤、印刷物及び印刷物の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046018A1 (ja) * 2013-09-25 2015-04-02 東レ株式会社 感光性遮光ペースト及びタッチセンサー用積層パターンの製造方法
KR101898955B1 (ko) * 2015-04-21 2018-09-14 도레이 카부시키가이샤 도전 패턴 형성 부재의 제조 방법
KR101810855B1 (ko) * 2015-04-21 2017-12-20 도레이 카부시키가이샤 적층 부재 및 터치 패널
CN114883103B (zh) * 2022-04-28 2023-06-23 广州三则电子材料有限公司 一种低温烧结铜电极合金铁粉芯功率电感制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104755A (ja) * 2001-09-28 2003-04-09 Toray Ind Inc ペースト
JP2009245704A (ja) * 2008-03-31 2009-10-22 Toray Ind Inc 感光性導電性ペースト組成物、電極回路、およびプラズマディスプレイパネル

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654066B2 (ja) * 1988-03-31 1997-09-17 三井東圧化学株式会社 導電性銀ペースト
JPH1064333A (ja) 1996-08-21 1998-03-06 Taiyo Ink Mfg Ltd 導電性銅ペースト組成物及びそれを用いたプリント回路基板の製造方法
JP2005267859A (ja) 2004-03-16 2005-09-29 Toyobo Co Ltd 導電性ペースト
JP5764931B2 (ja) * 2010-02-02 2015-08-19 東レ株式会社 有機−無機複合導電性パターン形成用感光性ペーストおよび有機−無機複合導電性パターンの製造方法
JP2012014015A (ja) * 2010-07-01 2012-01-19 Daiso Co Ltd 光硬化性導電ペースト組成物とその応用
JP2012169072A (ja) 2011-02-10 2012-09-06 Fujifilm Corp 導電膜形成用積層体、導電膜形成方法、導電膜、導電要素、タッチパネル及び集積型太陽電池
JP2012203355A (ja) 2011-03-28 2012-10-22 Fujifilm Corp 感光性組成物、感光性積層体、永久パターン形成方法、及びプリント基板
WO2013141009A1 (ja) * 2012-03-22 2013-09-26 東レ株式会社 感光性導電ペーストおよび導電パターンの製造方法
CN104204949A (zh) * 2012-03-28 2014-12-10 东丽株式会社 感光性导电糊剂以及导电图案的制造方法
US8647815B1 (en) * 2012-07-26 2014-02-11 E I Du Pont De Nemours And Company Method of manufacturing copper electrode
KR101919331B1 (ko) * 2012-08-03 2018-11-19 도레이 카부시키가이샤 현상액의 처리 장치 및 처리 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104755A (ja) * 2001-09-28 2003-04-09 Toray Ind Inc ペースト
JP2009245704A (ja) * 2008-03-31 2009-10-22 Toray Ind Inc 感光性導電性ペースト組成物、電極回路、およびプラズマディスプレイパネル

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174348A1 (ja) * 2014-05-13 2015-11-19 東レ株式会社 導電ペースト、タッチパネル及び導電パターンの製造方法
JP2018097249A (ja) * 2016-12-15 2018-06-21 Dic株式会社 レジスト用感光性樹脂組成物の製造方法
WO2018155053A1 (ja) * 2017-02-23 2018-08-30 京セラ株式会社 配線基板、電子装置用パッケージおよび電子装置
CN110313063A (zh) * 2017-02-23 2019-10-08 京瓷株式会社 布线基板、电子装置用封装体以及电子装置
JPWO2018155053A1 (ja) * 2017-02-23 2020-01-09 京セラ株式会社 配線基板、電子装置用パッケージおよび電子装置
CN110313063B (zh) * 2017-02-23 2023-01-10 京瓷株式会社 布线基板、电子装置用封装体以及电子装置
JP2020111651A (ja) * 2019-01-09 2020-07-27 凸版印刷株式会社 塗布剤、印刷物及び印刷物の製造方法

Also Published As

Publication number Publication date
US20150248053A1 (en) 2015-09-03
KR101971899B1 (ko) 2019-04-24
JPWO2014077136A1 (ja) 2017-01-05
TW201419313A (zh) 2014-05-16
JP6225708B2 (ja) 2017-11-08
KR20150086268A (ko) 2015-07-27
TWI592949B (zh) 2017-07-21
US9846361B2 (en) 2017-12-19

Similar Documents

Publication Publication Date Title
JP6225708B2 (ja) 静電容量型タッチパネル
JP5967079B2 (ja) 導電ペーストおよび導電パターンの製造方法
WO2011114846A1 (ja) 感光性導電ペーストおよび導電パターンの製造方法
WO2012124438A1 (ja) 感光性導電ペーストおよび導電パターンの製造方法
JP5360285B2 (ja) 感光性導電ペースト
CN105531626B (zh) 感光性遮光糊剂和接触式传感器用层叠图案的制造方法
JP5884556B2 (ja) 感光性導電ペースト
JP5764931B2 (ja) 有機−無機複合導電性パターン形成用感光性ペーストおよび有機−無機複合導電性パターンの製造方法
JP5673890B1 (ja) 導電ペースト及び導電パターンの製造方法
JP6645186B2 (ja) 導電ペースト、タッチパネル及び導電パターンの製造方法
JP2011186019A (ja) 感光性導電ペーストおよび導電パターンの製造方法
JP5978683B2 (ja) 導電パターン付基板の製造方法
WO2014069436A1 (ja) 感光性導電ペースト及び導電パターンの製造方法
JP5403187B1 (ja) 感光性導電ペーストおよび導電パターンの製造方法
WO2015122345A1 (ja) 導電ペースト、パターンの製造方法、導電パターンの製造方法及びセンサー
TWI704417B (zh) 感光性導電糊及附有導電圖案之基板的製造方法
JP6962179B2 (ja) 導電ペーストおよび導電パターン形成基板の製造方法
CN107735840B (zh) 导电糊剂、触摸传感器构件及导电图案的制造方法
JP2013196998A (ja) 感光性導電ペースト
JP2013157251A (ja) 感光性導電ペースト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013550699

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14439705

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157012816

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13854261

Country of ref document: EP

Kind code of ref document: A1