[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014077114A1 - Method for producing alkali-free glass - Google Patents

Method for producing alkali-free glass Download PDF

Info

Publication number
WO2014077114A1
WO2014077114A1 PCT/JP2013/079170 JP2013079170W WO2014077114A1 WO 2014077114 A1 WO2014077114 A1 WO 2014077114A1 JP 2013079170 W JP2013079170 W JP 2013079170W WO 2014077114 A1 WO2014077114 A1 WO 2014077114A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
glass
liquid
recovered
powder
Prior art date
Application number
PCT/JP2013/079170
Other languages
French (fr)
Japanese (ja)
Inventor
良太 安藤
畑 雅之
裕丈 石原
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020157011246A priority Critical patent/KR102086435B1/en
Priority to JP2014546925A priority patent/JP6075383B2/en
Priority to CN201380059794.2A priority patent/CN104797537B/en
Publication of WO2014077114A1 publication Critical patent/WO2014077114A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0241Other waste gases from glass manufacture plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing alkali-free glass.
  • various components derived from glass raw materials are contained in exhaust gas discharged from a glass melting furnace.
  • a boron component containing boron (B) is contained in the exhaust gas.
  • the sulfur component containing sulfur (S) is often contained. If these components are released into the atmosphere as they are, there is a risk of adverse effects on the environment, and various methods for removing these components from exhaust gas have been studied.
  • non-alkali glass substantially free of alkali metal oxide is used for various display glass substrates and the like.
  • Patent Document 1 discloses a method for removing boron and sulfur components from exhaust gas by dissolving the boron component and sulfur component in the exhaust gas in water by bringing cooling water and contact water into contact with the exhaust gas. Are listed.
  • the effluent containing the boron component and sulfur component generated by this method can be reused as cooling water or contact water after neutralization.
  • NaOH is used as a neutralizing agent for drainage, and no precipitate is generated due to neutralization. Therefore, the neutralized drainage is used as it is as a part of cooling water or contact water. Can be reused. Moreover, since the boron component etc. which are contained in exhaust gas are useful as a glass raw material, collect
  • Patent Document 2 a fuel that does not substantially contain sulfur is used as a fuel for heating and melting a glass raw material, and an exhaust gas from a glass melting furnace is brought into contact with water to form a collection liquid.
  • a method of recovering arsenic, boron, and chlorine components useful as glass materials by neutralizing the liquid to obtain a neutralized collection liquid, followed by solid-liquid separation of the neutralized collection liquid and drying by heating. are listed.
  • Patent Document 1 when NaOH is used as a neutralizing agent for drainage, sodium salt that is an alkali metal salt is contained in the drained liquid after neutralization.
  • the neutralized effluent contains boron and sulfur components that can be reused as glass raw materials, but also contains alkali metal salts. Use this effluent for the production of alkali-free glass. Is not suitable.
  • a spray dryer is used as a solid-liquid separation means, and the useful components recovered are mainly a relatively large solid content of several hundred ⁇ m or more. If the solid content is relatively large, it may be difficult to mix homogeneously with other components when reused as a glass raw material.
  • One object of the present invention is to recover a reusable component in powder form from exhaust gas discharged from a glass melting furnace and to provide a method for producing alkali-free glass whose composition is suitable as a glass raw material
  • SiO 2 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0.1 to 12%, MgO: 0.5-10%, CaO: 0.5-14.5%, SrO: 0-24%, BaO: 0-13.5%, ZrO 2 : 0-5%, Cl: 0.01-0. 35%, F: 0.01-0.15%, and SO 3 : 0.0001-0.0025%, MgO + CaO + SrO + BaO: 8-29.5%, MgO / (MgO + CaO): 0.1-0.
  • a method for producing an alkali-free glass a step of melting a glass raw material to collect exhaust gas, a step of bringing a cooling liquid into contact with the exhaust gas to cool the exhaust gas, and CaCO 3 to the cooled exhaust gas.
  • a reusable component is recovered in powder form from exhaust gas discharged from a glass melting furnace, and a method for producing alkali-free glass whose composition is suitable as a glass raw material is provided. it can.
  • FIG. 1 shows a flow chart of an example of a method for producing glass according to an embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of a production line as an example of a glass production method according to an embodiment of the present invention.
  • FIG. 3 shows an example flow diagram for manufacturing a glass product according to one embodiment of the present invention.
  • FIG. 1 shows a flow chart of an example of a method for producing an alkali-free glass (hereinafter sometimes simply referred to as “glass”) of the present embodiment.
  • the glass raw material is melted at 1001 to collect the exhaust gas, and the exhaust gas is cooled by bringing the cooling liquid into contact with the exhaust gas at 1002, and the COCO 3 , Ca (OH) 2 and ( One or more selected from the group consisting of (Ca, Mg) CO 3 (hereinafter sometimes simply referred to as “Ca compound”) is added, and the recovered powder is recovered from the exhaust gas using a dust collecting member,
  • Ca (OH) 2 and water are brought into contact with the exhaust gas after the powder is recovered, and the components contained in the exhaust gas are recovered as a recovery liquid.
  • 1004 is also referred to as a Mg (OH) 2 treatment step.
  • exhaust gas can be exhausted after the recovered liquid is recovered at 1004.
  • the recovered liquid recovered in 1004 is used as a cooling liquid in the process of cooling the exhaust gas in 1002. Further, the recovered powder recovered in 1003 may be used as a glass raw material in 1001 and circulated in the system. Further, the recovered powder may be taken out for use in another system without being circulated in the system.
  • a reusable component is recovered in powder form from the exhaust gas discharged by melting the glass, and a glass manufacturing method whose composition is suitable as a glass raw material can be provided.
  • a glass manufacturing method whose composition is suitable as a glass raw material can be provided.
  • the Mg component added in the 1004 Mg (OH) 2 treatment step circulates in the system, and can be recovered as a powder together with the Ca component added in the powder recovery step.
  • the composition of the recovered powder includes not only the Ca component but also the Mg component, a composition that can be easily reused as a glass raw material can be provided.
  • the recovered powder recovered in 1003 is in the form of a powder having an average particle diameter (D50) of 30 to 100 ⁇ m, the range of usage when reusing as a glass raw material can be expanded. That is, it can be used as it is as a powder, a separate component can be added to the powder, and a granulated body can be produced and used. Moreover, when the particle diameter of the powder is small, it can be more uniformly mixed with other components when reused as a glass raw material.
  • D50 average particle diameter
  • the recovered liquid can be recovered in the form of a solution by recovering the recovered liquid with Mg (OH) 2 and water.
  • the slurry liquid may damage the pipes and nozzles when passing through the pipes in the system and the nozzles used when spraying the liquid in each process, so the recovered liquid may be in the form of a solution. desirable.
  • Magnesium hydroxide is used as a neutralizing agent for general acid drainage because it is cheap and easy to handle, but its solubility in water is low and it is usually in a slurry state. When doing so, there is a concern of clogging of piping.
  • the inventors of the present invention have obtained the knowledge that when magnesium hydroxide slurry is added to a liquid containing a boron component, an aqueous solution is obtained despite containing magnesium.
  • the component derived from the fining agent can be recovered as a powder, and can be reused as a glass raw material.
  • the fluorine (F) component derived from the fining agent can be removed in the powder recovery step.
  • the powder recovered by the powder recovery process 1003 is in a dry state and does not require heat treatment, and can be used as it is as a glass raw material.
  • the glass produced according to the present embodiment has a mass percentage based on oxides of SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0.1 to 12%, Preferably 0.3 to 12%, more preferably 0.5 to 12%, MgO: 0.5 to 10%, CaO: 0.5 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, Cl: 0.01 to 0.35%, F: 0.01 to 0.15%, and SO 3 : 0.0001 to 0.0025%, MgO + CaO + SrO + BaO: 8 to 29.5%, MgO / (MgO + CaO): 0.1 to 0.8.
  • This glass composition is a composition of solid glass obtained by melting and solidifying a glass raw material.
  • Glass having such a glass composition can be used as non-alkali glass (hereinafter also referred to as non-alkali borosilicate glass).
  • the total content of alkali metal oxides is preferably 1% or less, more preferably 0.1% or less, and the alkali metal oxide is substantially reduced. It is preferably not included.
  • the alkaline earth metal mainly means calcium (Ca), strontium (Sr), and barium (Ba).
  • Alkali metal mainly means lithium (Li), sodium (Na), and potassium (K).
  • the “boron component” is a general term for components containing a boron atom (B) (the same applies to other components).
  • SiO 2 is a glass network former and is an essential component. SiO 2 is highly effective in increasing the acid resistance of the glass and reducing the density of the glass. The content is generally 73% or less, preferably 66% or less, considering that the viscosity of the molten glass becomes too high and it becomes difficult to produce the molten glass by a normal melting method. More preferably, it is 61.5% or less. On the other hand, if the amount of SiO 2 is too small, it may cause deterioration of acid resistance, increase in linear expansion coefficient, etc., so in the case of display substrate glass, its content is preferably 50% or more, more preferably 54%. Or more, more preferably 58% or more.
  • Al 2 O 3 is a component used for the purpose of increasing the strain point of the glass and suppressing the phase separation of the glass.
  • the content of Al 2 O 3 is preferably 10.5% or more, more preferably 15% or more.
  • the content of Al 2 O 3 is preferably 24% or less, more preferably 22.5% or less from the viewpoint of avoiding high viscosity of molten glass, devitrification characteristics of glass, and deterioration of acid resistance. More preferably, it is 22% or less, and more preferably 15% or less.
  • B 2 O 3 is a glass network former, and is also a component that improves the dissolution reactivity in melt vitrification.
  • the content of B 2 O 3 is 0.1 to 12%, preferably 0.3 to 12%, more preferably 0.5% or more, still more preferably 5% or more, and particularly preferably 7%. % Or more.
  • B 2 O 3 may reduce the acid resistance of the glass and is usually 12% or less.
  • the content of B 2 O 3 is preferably 10% or less, more preferably. 8% or less.
  • MgO is a component that lowers the viscosity of molten glass, lowers the density of glass, does not increase the linear expansion coefficient, and improves melting reactivity. It is an essential component when manufacturing a substrate.
  • the content of MgO is 0.5% or more, preferably 1% or more, more preferably 2% or more, and still more preferably 4% or more.
  • the content is 10% or less, more preferably 8% or less, and further preferably 5% or less from the viewpoint of increasing acid resistance.
  • CaO is a component that lowers the viscosity of molten glass, and is a component that may be used for the purpose of adjusting glass properties such as density, linear expansion coefficient, and strain point.
  • the content of CaO is preferably 0.5% or more, more preferably 1% or more, further preferably 2% or more, and still more preferably 4% or more.
  • the content is preferably 14.5% or less, more preferably 10% or less, and still more preferably 9% or less, from the viewpoint of avoiding deterioration of the devitrification characteristics of the glass, increase of the linear expansion coefficient, and the like. It is.
  • [SrO] SrO is a component that lowers the viscosity of the molten glass, and is a component that may be included to improve the devitrification properties and acid resistance of the glass.
  • the content is preferably 1% or more, more preferably 2% or more, and still more preferably 3% or more.
  • the content is preferably 24% or less, more preferably 16% or less, still more preferably 12.5% or less, and even more preferably 6% or less.
  • BaO is a component that lowers the viscosity of the molten glass, and is a component that can be added for the purpose of, for example, phase separation of glass, improvement of devitrification characteristics, and improvement of acid resistance.
  • the glass is a glass substrate for liquid crystal in order to increase the density or the like, it is preferable to make the content inevitable.
  • the content when BaO is positively contained is preferably 13.5% or less, more preferably 10% or less, still more preferably 5% or less, and still more preferably 2% or less.
  • ZrO 2 ] ZrO 2 is not essential, but may be contained at 5% or less in order to lower the glass melting temperature or to promote crystal precipitation during firing. By being 5% or less, the glass can be stabilized and ⁇ can be reduced. Preferably it is 3% or less.
  • [Cl] Cl is a component added for defoaming as a fining agent, and is contained at 0.01% to 0.35%. From the viewpoint of defoaming and re-boiling suppression, it is more preferably 0.30% or less, and still more preferably 0.25% or less. In order to further promote defoaming, it is more preferably 0.05% or more, further preferably 0.1% or more.
  • F is a component added for defoaming as a fining agent, and is contained at 0.01 to 0.15%.
  • F has an effect of reducing the surface tension of the molten glass and easily breaking bubbles existing on the surface of the molten glass, or an effect of reducing minute bubbles in the molten glass. From the viewpoint of defoaming and re-boiling suppression, it is more preferably 0.10% or less, and still more preferably 0.05% or less. In order to further promote defoaming, the content is more preferably 0.02% or more, further preferably 0.03% or more.
  • [SO 3 ] SO 3 is added as a fining agent and is a component that promotes defoaming or melting of the glass raw material, and is contained at 0.0001 to 0.0025%. From the viewpoint of suppressing re-boiling, it is more preferably 0.0010% or less. When it is desired to further promote defoaming or melting of the glass raw material, it is more preferable to contain 0.0012% or more of SO 3 .
  • the SO 3 content is usually carried out by adding a sulfate such as bow glass to the glass raw material. In addition, for example, in heavy oil combustion kilns, it is also caused by S-containing impurities in heavy oil.
  • MgO + CaO + SrO + BaO If the total content of MgO, CaO, SrO and BaO (MgO + CaO + SrO + BaO) is small, the viscosity of the molten glass increases and the melting reactivity deteriorates.
  • the total content of these is preferably 8% or more, more preferably 9% or more, and further preferably 16% or more.
  • the total content thereof is preferably 29.5% or less, more preferably 26% or less, still more preferably 18% or less, even more. Preferably it is 15% or less.
  • MgO / (MgO + CaO)] MgO / (MgO + CaO) obtained by dividing the content of MgO by the total content of MgO and CaO is preferably 0.1 to 0.8 in terms of the mass ratio based on the oxide. By being 0.2 or more, an increase in specific gravity and an increase in expansion coefficient can be prevented. From the viewpoint of strain point and solubility, it is more preferably 0.25 to 0.55, still more preferably 0.3 to 0.5, and still more preferably 0.3 to 0.4.
  • glass component that can be contained are not particularly limited, and may include a solubilizer, a molding agent, and the like.
  • a clarifier components other than the above-described Cl, F, and SO 3 may be included.
  • Fe 2 O 3, TiO 2 , Y 2 O 3 or the like may be appropriately contained.
  • glass composition From the viewpoint of increasing the strain point and the solubility, more preferable examples of the glass composition include SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O in terms of mass percentage based on oxide. 3 : 5 to 12%, MgO: 0.5 to 8%, CaO: 0.5 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, Cl: 0.01 to 0.35 %, F: 0.01 to 0.15%, and SO 3 : 0.0001 to 0.0025%, MgO + CaO + SrO + BaO: 9 to 18%, MgO / (MgO + CaO): 0.35 to 0.55 .
  • the glass composition from the viewpoint of increasing the solubility include SiO 2 : 50 to 61.5%, Al 2 O 3 : 10.5 to 18%, and B 2 O 3 : 7 to 10%, MgO: 2 to 5%, CaO: 0.5 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, Cl: 0.01 to 0 .35%, F: 0.01 to 0.15%, and SO 3 : 0.0001 to 0.0025%, MgO + CaO + SrO + BaO: 16 to 29.5%, MgO / (MgO + CaO): 0.3 to 0 .5.
  • more preferable examples of the glass composition include SiO 2 : 54 to 73%, Al 2 O 3 : 10.5 to 22.5%, B 2 2 O 3 : 0.1 to 12%, preferably 0.3 to 12%, more preferably 0.5 to 5.5%, MgO: 0.5 to 10%, CaO: 0.5 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, Cl: 0.01 to 0.35%, F: 0.01 to 0.15%, and SO 3 : 0.0001 to 0.0025% MgO + CaO + SrO + BaO: 8 to 26%, MgO / (MgO + CaO): 0.3 to 0.8.
  • the glass raw material is a compound that can be an oxide as a glass component, and may be in the form of a powder or a granulated body.
  • the glass raw material may contain the following silicon source, aluminum source, boron source and the like. Known raw material powders can be appropriately selected and used.
  • the composition of the glass raw material can be designed so as to obtain the desired glass composition.
  • the composition of the glass raw material is substantially the same as the glass composition to be obtained on the oxide basis, except for boron oxide.
  • Boron oxide is preferably blended so that the amount of boron source in the glass raw material is increased on an oxide basis, usually by an amount considering the volatile content, compared to the boron oxide content in the glass composition to be obtained.
  • the glass raw material can contain a clarifying agent, a colorant, a melting aid, an opacifier, etc. as auxiliary raw materials as required.
  • auxiliary raw materials known components can be appropriately used.
  • the fining agent component is volatilized and collected as exhaust gas in the glass melting step, and can be recovered as a recovered powder. In that case, the recovered powder can be used as a fining agent raw material.
  • the raw material powder as a silicon source is a powder of a compound that can be a SiO 2 component during the glass production process. Silica sand is preferably used as the silicon source.
  • the raw material powder as the aluminum source is a powder of a compound that can be an Al 2 O 3 component during the glass production process.
  • Aluminum oxide, aluminum hydroxide and the like are preferably used. These may be used alone or in combination of two or more.
  • the raw material powder as a boron source is a powder of a compound that can be a B 2 O 3 component during the glass production process.
  • Specific examples include boric acid such as orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), tetraboric acid (H 2 B 4 O 7 ), boron oxide (B 2 O 3 ), and colemanite. It is done. These may be used alone or in combination of two or more.
  • Orthoboric acid is preferred because it is inexpensive and easily available.
  • Colemanite is also a calcium source described later.
  • the raw material powder as the magnesium source is a powder of a compound that can be an MgO component during the glass production process.
  • Specific examples include magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 3 ), and the like.
  • the raw material powder as the alkaline earth metal source is a powder of a compound that can be SrO, CaO, or BaO during the glass production process.
  • carbonates such as calcium carbonate (CaCO 3 ), barium carbonate (BaCO 3 ), strontium carbonate (SrCO 3 ), dolomite (ideal chemical composition: CaMg (CO 3 ) 2 ); calcium oxide (CaO), Oxides such as barium oxide (BaO) and strontium oxide (SrO); calcium hydroxide (Ca (OH) 2 ), barium hydroxide (Ba (OH) 2 ), strontium hydroxide (Sr (OH) 2 ) and the like Hydroxides. These may be used alone or in combination of two or more. Dolomite is also the aforementioned magnesium source.
  • the raw material powder as a zirconia source is a powder of a compound that can be a ZrO 2 component during the glass production process.
  • Examples of the zirconia source include zirconium dioxide and zircon.
  • the glass raw material can contain sulfate, chloride, or fluoride, for example, as a fining agent. These may use 1 type and may use 2 or more types.
  • sulfate, chloride, or fluoride a compound containing an oxide cation constituting glass can be used.
  • Mg or alkaline earth metal sulfate, chloride, or fluoride can be used.
  • Mg sulfate, chloride, or fluoride is the source of magnesium.
  • the alkaline earth metal sulfate, chloride, or fluoride is the source of the alkaline earth metal.
  • FIG. 2 is a diagram schematically showing a production line which is an example of the glass production method of the present embodiment.
  • the production line shown in FIG. 2 includes a glass melting furnace 1, a first cooling tower 2, a bag filter 3 as a dust collecting member, a second cooling tower 4, a scrubber (exhaust gas cleaning device) 6, a centrifugal dust collector 8, a chimney 10, A recovery liquid tank 14, a Mg (OH) 2 addition device 16, a circulation pump 17, a Ca compound supply device 18, and a recovery powder tank 19 are provided.
  • the present embodiment includes a step of melting a glass raw material and collecting exhaust gas.
  • the glass raw material may be in the form of a powder or a granulated body.
  • a glass raw material is charged into the glass melting furnace 1 and melted to obtain molten glass.
  • the glass melting method include a normal melting method using an Siemens type glass melting furnace, an air melting method, and the like. In this embodiment, the ordinary melting method is preferable.
  • Air melting method In the air melting method, at least a part of glass particles (including a granulated body) contained in a glass raw material is melted into a molten glass particle in a gas phase atmosphere, and the molten glass particles are accumulated to form a molten glass. Is the method. Specifically, first, a glass raw material is introduced into a high-temperature gas phase atmosphere of an air heating device. A well-known thing can be used for an air heating apparatus.
  • the exhaust gas generated in the melting process of the glass raw material in the present embodiment is the exhaust gas G0 generated from the glass melting furnace 1 in FIG.
  • the exhaust gas G0 includes gas components derived from the constituent components of the glass raw material charged into the glass melting furnace 1.
  • a boron component can be mainly cited.
  • the boron component in the exhaust gas G0 is, for example, boric acid or boron oxide.
  • the exhaust gas G0 includes components derived from fining agents, such as components containing sulfur atoms (S) (also referred to as sulfur components), components containing chlorine atoms (Cl) (also referred to as chlorine components), fluorine atoms (F). May contain a component (also referred to as a fluorine component) or the like. Further, when a fuel containing sulfur such as heavy oil is burned in the glass melting furnace 1, the exhaust gas G0 contains a sulfur component derived from this fuel.
  • S sulfur atoms
  • Cl chlorine atoms
  • F fluorine atoms
  • Sulfur components in the exhaust gas G0 are mainly oxides (SO x ).
  • the chlorine component in the exhaust gas G0 is mainly HCl.
  • the fluorine component in the exhaust gas G0 is mainly HF.
  • the method of the present embodiment is also suitable when the exhaust gas G0 contains a sulfur component and / or a chlorine component in addition to the boron component, and these components are recovered as a magnesium salt in the Mg (OH) 2 treatment step.
  • the exhaust gas G0 contains a sulfur component and / or a chlorine component in addition to the boron component, and these components are recovered as a magnesium salt in the Mg (OH) 2 treatment step.
  • the recovered MgSO 4 and / or MgCl 2 to be reused as a magnesium source and as sulfate and / or chloride as a fining agent.
  • the fluorine component when the fluorine component is contained in the exhaust gas G0, the fluorine component is adsorbed to the Ca compound in the bag filter 3 in front of the second cooling tower 4 and the scrubber 6 that performs the Mg (OH) 2 treatment, and is used as a recovered powder. It can be recovered. Therefore, a fluorine component is magnesium salt (MgF 2), it is possible to prevent contained as solids in the recovery liquid.
  • MgF 2 magnesium salt
  • the present embodiment includes a step of cooling the exhaust gas by bringing the cooling liquid into contact with the exhaust gas.
  • the exhaust gas G0 collected from the glass melting furnace 1 is supplied to the first cooling tower 2 through a pipe, and the cooling liquid is brought into contact with the exhaust gas G0 in the first cooling tower 2 to cool the exhaust gas G0.
  • the temperature of the exhaust gas G1 supplied to the subsequent bag filter 3 can be lowered, and the bag filter 3 can be prevented from being damaged by heat. For example, damage to the furnace cloth portion of the bag filter 3 can be prevented, and the life of the furnace cloth can be extended.
  • the temperature of the exhaust gas G0 immediately before being supplied to the first cooling tower 2 is not particularly limited.
  • the temperature of the exhaust gas G0 is usually 1000 to 1600 ° C. in a state where the exhaust gas is collected from the glass melting furnace 1, and may be supplied to the first cooling tower 2 at that temperature. Further, it may be 350 to 1000 ° C. by being cooled to some extent by piping or the like.
  • the cooling liquid is brought into contact with the exhaust gas G0.
  • a nozzle can be provided in the upper part in the 1st cooling tower 2, and the liquid for cooling can be sprayed to exhaust gas G0 from a nozzle.
  • the temperature decreases, and the exhaust gas G0 is discharged as the exhaust gas G1 after cooling.
  • a part of the components in the exhaust gas G0 may be dissolved in the cooling liquid.
  • the cooling liquid in contact with the exhaust gas G0 is dispersed in the exhaust gas G0 and supplied to the subsequent bag filter 3 as the exhaust gas G1.
  • a part of the cooling liquid is stored at the bottom of the first cooling tower 2, it may be sprayed again on the exhaust gas G0.
  • the recovered liquid recovered in the Mg (OH) 2 processing step described later is used as the cooling liquid.
  • This recovered liquid is preferably an aqueous liquid mainly containing water and Mg salt. Since the recovered liquid has a small solid content, it is possible to prevent damage to the piping and the apparatus due to the solid content. In particular, damage to the nozzles of the first cooling tower 2 can be prevented.
  • the cooling liquid is not particularly limited in the initial stage of the production line, and a liquid that can cool the exhaust gas G0 by contacting with the exhaust gas G0 can be used.
  • a liquid that can cool the exhaust gas G0 by contacting with the exhaust gas G0 can be used.
  • those that dissolve the components in the exhaust gas G0 are preferred, and water (industrial water, distilled water, etc.) or aqueous solutions (the solute is acceptable as a component in the glass raw material) are preferred.
  • these cooling liquids may be used in combination.
  • the temperature of the exhaust gas G1 after cooling is preferably 350 ° C. or lower, and more preferably 250 ° C. or lower. This can prevent the material of the subsequent device from being damaged by heating.
  • the lower limit of the temperature of the exhaust gas G1 after cooling is preferably in a temperature range in which components in the gas do not precipitate. For example, 150 degreeC or more is preferable and 180 degreeC or more is more preferable.
  • the cooled exhaust gas is selected from the group consisting of CaCO 3 , Ca (OH) 2 (also referred to as slaked lime) and (Ca, Mg) CO 3 (also referred to as dolomite).
  • the exhaust gas G1 from the first cooling tower 2 is supplied to the bag filter 3 through a pipe, and the Ca compound is added from the Ca compound supply unit 18 between them, and the recovered powder is recovered from the exhaust gas G1 by the bag filter 3. to recover.
  • Reference symbol G ⁇ b> 2 in the figure indicates exhaust gas before being exhausted from the bag filter 3 and supplied to the second cooling tower 4.
  • the recovered powder is supplied to the recovered powder tank 19. Thereafter, as described later, it is supplied to the glass melting furnace 1 and can be reused as a glass raw material. Note that the recovered powder tank 19 may be directly supplied to the glass melting furnace 1 by piping without providing the recovered powder tank 19.
  • CaCO 3 , Ca (OH) 2 and (Ca, Mg) CO 3 can be supplied alone or in combination. These are preferably supplied in an amount of 1.0 to 5.0 g, more preferably 2.0 to 3.0 g, with respect to 1 Nm 3 of the exhaust gas G1.
  • the Ca compound is Ca (OH ) 2 and / or CaCO 3 are preferred, and Ca (OH) 2 is more preferred.
  • ⁇ -OH is water contained in the molten glass, and if it is contained in the glass, the combustion efficiency may be lowered.
  • a well-known bag filter 3 can be used as appropriate. By providing the bag filter 3, the solid content in the exhaust gas G1 can be removed.
  • the above-described Ca compound is supplied into the exhaust gas G1 in the path from the first cooling tower 2 to the bag filter 3, thereby removing the fluorine component in the exhaust gas G1.
  • the Ca compound may be added in powder form.
  • the Ca compound is removed by the bag filter 3 together with the fluorine component after adsorbing the fluorine component in the exhaust gas G1.
  • the concentration of the fluorine component contained in the exhaust gas G2 after powder recovery is preferably 30 mg / Nm 3 or less, more preferably 10 mg / Nm 3 or less, and even more preferably 5 mg / Nm 3. It is as follows. As a result, it is possible to prevent the fluorine component from being mixed in the subsequent Mg (OH) 2 treatment process and to prevent the formation of a magnesium salt (MgF 2 ) that is hardly soluble in water. Further, the recovered powder recovered by the bag filter 3 contains a fluorine component, and when this is reused as a glass raw material, a composition containing the fluorine component as a refining agent can be provided.
  • the concentration of the fluorine component can be obtained from the amount of fluorine component per 1 Nm 3 of the exhaust gas by collecting the exhaust gas with a metering pump and absorbing it into the absorption liquid, measuring the concentration of the fluorine component in the solution with ICP.
  • this embodiment includes a step of bringing Mg (OH) 2 and water into contact with the exhaust gas from which the powder has been recovered to recover the components contained in the exhaust gas as a recovery liquid.
  • the exhaust gas G2 is supplied to the second cooling tower 4, and the first contact liquid L1 is brought into contact with the exhaust gas G2 in the second cooling tower 4. Then, the exhaust gas G3 is supplied to the scrubber 6, and the second contact liquid L2 is then brought into contact with the exhaust gas G3 in the scrubber 6.
  • the first contact liquid L1 and the second contact liquid L2 contain Mg (OH) 2 and water, and after being processed by the second cooling tower 4 and the scrubber 6, the first recovery liquid S1 and the second recovery liquid S1 The recovered liquid S2 is recovered in the recovered liquid tank 14.
  • the first contact liquid L1 and the second contact liquid L2 contain Mg (OH) 2 as a neutralizing agent.
  • the first recovered liquid S1 and the second recovered liquid S2 circulate in the system.
  • the neutralizing agent contains a Ca component
  • a precipitate such as gypsum and calcium borate is generated in the recovery liquid tank 14.
  • Such a deposit adheres to the bottom of the recovery liquid tank 14, the bottom of the first cooling tower 2, the bottom of the second cooling tower 4, the bottom of the scrubber 6, and the pipes connecting them, the nozzles of each device, and the like. And may be closed. Therefore, it is desirable that no Ca component is contained as a neutralizing agent.
  • the glass composition according to the present embodiment includes a predetermined amount of MgO.
  • MgO calcium hydroxide
  • the temperature of the exhaust gas G2 immediately before being supplied to the second cooling tower 4 is not particularly limited. For example, 130 to 180 ° C. is preferable.
  • the first contact liquid L1 is brought into contact with the exhaust gas G2.
  • the second cooling tower 4 includes an introduction pipe part 4a into which the exhaust gas G2 is introduced from the upper part, and a cooling tower in which the exhaust gas G2 supplied from the introduction pipe part 4a is introduced from the lower part and discharged to the upper part. Part 4b.
  • the first contact liquid L1 is sprayed in the flow direction of the exhaust gas G2 from the nozzle provided in the upper portion of the introduction portion 4a, and is in the direction opposite to the flow of the exhaust gas G2 from the nozzle provided in the lower portion of the cooling tower portion 4b. Sprayed on.
  • the temperature of the exhaust gas G2 is lowered by contacting with the first contact liquid L1, and is discharged as exhaust gas G3 after cooling. At this time, a part of the components in the exhaust gas G2 may be dissolved in the first contact liquid L1.
  • the first contact liquid L1 that has come into contact with the exhaust gas G2 is stored as a first recovered liquid S1 at the bottom of the second cooling tower 4.
  • the first contact liquid L1 is preferably a liquid containing water and Mg (OH) 2 .
  • the second contact liquid L2 described later is a liquid containing water and Mg (OH) 2
  • the first contact liquid L1 is not limited to a liquid containing water and Mg (OH) 2
  • the exhaust gas G2 What is necessary is just to be able to cool the exhaust gas G2 by contacting with.
  • what dissolves the components in the exhaust gas G2 is preferable, and water (industrial water, distilled water, etc.) or an aqueous solution (solute is acceptable as a component in the glass raw material) is preferable.
  • the first contact liquid L1 at the start of operation is water, and a part of the recovered liquid recovered in the recovery liquid tank 14 described later can be reused as the first contact liquid L1. it can.
  • the temperature of the exhaust gas G3 after cooling is preferably 80 ° C. or lower, and more preferably 70 ° C. or lower. This can prevent subsequent devices from being damaged by heat.
  • the lower limit of the temperature of the exhaust gas G3 after cooling is preferably within a temperature range in which components in the gas are not precipitated. For example, 40 degreeC or more is preferable and 60 degreeC or more is more preferable.
  • the exhaust gas G3 is supplied to the scrubber 6 through the pipe 5.
  • a known scrubber exhaust gas cleaning device
  • a venturi scrubber can be used.
  • the second contact liquid L2 is brought into contact with the exhaust gas G3 after cooling.
  • a nozzle can be provided in the upper part of the scrubber 6 to spray the second contact liquid L2.
  • the sulfur component and / or chlorine component in the exhaust gas G3 after cooling is dissolved in the second contact liquid L2.
  • the second contact liquid L2 is preferably a liquid containing water and Mg (OH) 2 .
  • the first contact liquid L1 described above is a liquid containing water and Mg (OH) 2
  • the second contact liquid L2 is not limited to a liquid containing water and Mg (OH) 2 , and the exhaust gas G3. Is used, which can dissolve at least the boron component in the exhaust gas G3 and remove it from the gas. In this case, water (industrial water, distilled water, etc.) or an aqueous solution (a solute is acceptable as a component in the glass raw material) is preferable.
  • the second contact liquid L2 at the start of operation is water, and the recovered liquid recovered in the recovery liquid tank 14 described later can be reused as the second contact liquid L2.
  • the second contact liquid L2 of the first contact liquid L1 and the second contact liquid L2 is more preferably a liquid containing water and Mg (OH) 2.
  • both are liquids containing water and Mg (OH) 2 .
  • the high differential pressure portion 7 may be provided in the scrubber 6. For example, immediately after the second contact liquid L2 is sprayed on the exhaust gas G3 after cooling, these mixed fluids pass through the high differential pressure portion 7 that causes a pressure loss. As a result, the mixed fluid becomes a turbulent state, and the exhaust gas G3 after cooling and the second contact liquid L2 are more sufficiently mixed, and the components in the exhaust gas G3 after cooling into the second contact liquid L2. Can be further promoted.
  • the second contact liquid L2 after coming into contact with the exhaust gas G3 after cooling is stored at the bottom of the scrubber 6 as the second recovered liquid S2.
  • a centrifugal dust collector 8 may be provided.
  • the clean gas G4 is discharged from the chimney 10 to the atmosphere after the mist-like water is removed by the centrifugal dust collector 8 to become the exhaust clean gas G5.
  • a fan 9 may be provided between the centrifugal dust collector 8 and the chimney 10, whereby the gas flow rate in the apparatus from the entrance of the second cooling tower 4 to the exit of the chimney 10 can be adjusted.
  • the mist-like water separated by the centrifugal dust collector 8 is stored as a third recovered liquid S3 at the bottom of the centrifugal dust collector 8.
  • the first recovered liquid S ⁇ b> 1 is extracted from the bottom of the second cooling tower 4 through the pipe 11 and collected in the recovered liquid tank 14.
  • the second recovered liquid S2 is extracted from the bottom of the scrubber 6 through the pipe 12 and collected in the recovered liquid tank 14.
  • the third recovered liquid S3 is extracted from the bottom of the centrifugal dust collector 8 through the pipe 13 and collected in the recovered liquid tank 14.
  • any one of the first recovered liquid S1, the second recovered liquid S2, and the third recovered liquid S3 may be recovered in the recovered liquid tank 14, but all the recovered liquids S1 to S3 are stored. By collecting, the recovery rate of the glass component from the exhaust gas can be increased. Further, it is preferable that the recovered liquid tank 14 recovers the recovered liquid after being treated with water and Mg (OH) 2 . That is, it is preferable that the first contact liquid L1 and the second contact liquid L2 are liquids that contain water and Mg (OH) 2 .
  • the second cooling tower 4 is provided together with the first cooling tower 2, but the second cooling tower can be omitted by sufficiently cooling the exhaust gas by the first cooling tower.
  • the exhaust gas may be brought into contact with water and Mg (OH) 2 in the scrubber 6.
  • the recovered liquid is used as a cooling liquid in the process of cooling the exhaust gas.
  • the recovered liquid tank 14 from which the recovered liquid is recovered includes a pH measurement device 15 and an Mg (OH) 2 addition device 16.
  • the first to third recovered liquids S1 to S3 are mixed in the recovered liquid tank 14 to become a recovered liquid mixture.
  • this recovered liquid mixture at least a boron component in the exhaust gas G0 is dissolved.
  • Mg (OH) 2 is added to the recovered liquid mixture. Thereby, the liquid containing a boron component and a magnesium component is obtained.
  • Mg (OH) 2 causes the boron component in the recovered liquid mixture to react with Mg (OH) 2 to produce magnesium borate.
  • the liquid obtained by adding Mg (OH) 2 contains the produced magnesium borate and, optionally, an unreacted boron component and Mg (OH) 2 . This liquid is called a liquid containing a boron component and a magnesium component.
  • the liquid containing the boron component and the magnesium component is preferably an aqueous solution in which these components are dissolved.
  • components in the liquid such as magnesium borate are not sufficiently dissolved due to changes in the concentration, liquid temperature, liquid pH, etc., and the addition of Mg (OH) 2 to the recovered liquid mixture may cause some cloudiness. is there.
  • the liquid in a state in which the cloudiness is generated can be used as various liquids for the first cooling tower 2, the second cooling tower 4, and the scrubber 6.
  • the liquid obtained by adding Mg (OH) 2 may contain a trace amount of chlorine, fluorine, calcium, and the like.
  • Mg (OH) 2 is hardly soluble in water
  • a slurry in which Mg (OH) 2 is dispersed in water hereinafter referred to as a water slurry of Mg (OH) 2 is referred to. It is preferred to prepare and add this to the recovered liquid mixture.
  • the Mg (OH) of Mg (OH) 2 in 2 water slurry concentration may be constant or may be changed according to the water level in the collection liquid tank 14.
  • a stirring means such as a bubbler is provided in the recovery liquid tank 14 in order to prevent generation of precipitates or white turbidity due to unreacted Mg (OH) 2. It is preferable to provide and stir this liquid.
  • the amount of Mg (OH) 2 added to the recovered liquid mixture is preferably sufficient to convert a boron component such as boric acid in the recovered liquid mixture into a magnesium salt.
  • the amount is preferably sufficient to convert these components and the boron component into a magnesium salt.
  • the pH of the liquid in the recovered liquid tank 14 is measured by the pH measuring device 15, and the supply amount of the aqueous slurry of Mg (OH) 2 is maintained so that this pH is maintained within the range of 6.5 to 7.7. Is preferably controlled.
  • the pH of this liquid is 6.5 or more, the boron component and the like in the recovered liquid mixture can be favorably converted into a magnesium salt, and the unreacted boron component and the like remaining in the liquid can be reduced.
  • the pH of the liquid is preferably maintained at 7.7 or less, more preferably 7.5 or less, 7.0 or less is particularly preferable.
  • the liquid thus obtained is supplied from the recovery liquid tank 14 to the first cooling tower 2 and reused as a cooling liquid.
  • a part of this liquid may be reused as the first contact liquid L1 and the second contact liquid L2. That is, a part of the liquid in the recovered liquid tank 14 passes through the circulation pump 17 and is temperature-adjusted as necessary, and then sprayed into the second cooling tower 4 and the scrubber 6. It can be used as the second contact liquid L2 sprayed on.
  • the recovered powder has an average particle size (D50) of 30 to 100 ⁇ m.
  • the recovered powder can be used as a glass raw material for producing an alkali-free borosilicate glass.
  • the recovered powder can be reused as a glass raw material after being recovered from the bag filter 3 and put into the glass melting furnace 1 on the same line.
  • the recovered powder may be taken out from the bag filter 3 for use in another glass production line after being recovered.
  • This recovered powder has a melting point of 100 ° C. or higher than soda lime glass containing an alkali component, and is added to the glass raw material when the alkali-free glass raw material that is hardly soluble is melted in the glass melting furnace 1. Suitable for By adding this recovered powder to the alkali-free glass raw material, the solubility can be improved and the clarity can be improved. Thereby, high productivity and high quality alkali-free glass can be obtained.
  • the recovered powder may contain boron components, sulfur components, chlorine components, fluorine components, etc. contained in the exhaust gas G0 as components recovered by the bag filter 3. Further, the recovered powder may contain a calcium component added from the Ca compound supply device 18. Further, the recovered powder may include a magnesium component, a boron component, a sulfur component, a chlorine component, and the like as components added to the first cooling tower 2 from the recovered liquid tank 14.
  • the recovered powder preferably has a MgO / (CaO + MgO) ratio of 0.1 to 1.0, more preferably 0.1 to 0.8, and still more preferably 0.1 by mass ratio based on oxide. ⁇ 0.4. This can provide a composition that can be easily reused as a glass raw material.
  • the fluorine component When the fluorine component is contained in the exhaust gas G0 as a clarifier component, the fluorine component is adsorbed on the calcium component by the bag filter 3 and can be recovered together as a recovered powder.
  • the fluorine component is preferably 0.1 to 2.0% by mass, more preferably 0.3 to 1.0% by mass, based on the oxide, with respect to the entire powder.
  • the composition containing a fluorine as a clarifier can be provided.
  • the fluorine component contained in the recovered powder include calcium fluoride and magnesium fluoride.
  • sulfur components may be mixed into the exhaust gas G0.
  • sulfur components may be circulated and concentrated in the exhaust gas treatment system.
  • the blending amount may be adjusted in consideration of the increase in the sulfur component.
  • the volume concentration of the sulfur oxide gas in the exhaust gas G0 collected from the glass melting furnace 1 is 500 vol. It is preferable to melt the glass raw material so as to be equal to or lower than ppm, and more preferably 50 vol. More preferably, it is not more than ppm, and further substantially does not contain sulfur oxide gas. Examples of such a melting method include gas combustion and electric heating.
  • examples of the sulfur oxide gas in the exhaust gas G0 include SO 3 and SO 2 .
  • the lower limit of the average particle diameter (D50) of the recovered powder may be 30 ⁇ m or more, more preferably 35 ⁇ m or more, and further preferably 40 ⁇ m or more.
  • the upper limit value may be 100 ⁇ m or less, more preferably 80 ⁇ m or less, and still more preferably 60 ⁇ m or less.
  • the average particle size (D50) is preferably 100 ⁇ m or less from the viewpoint of easily suppressing the generation of bubbles in the molten glass.
  • the volume-based 90% cumulative particle size (D90) of the recovered powder is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and even more preferably 80 ⁇ m or less.
  • the above average particle diameter (D50) and volume-based 90% cumulative particle diameter (D90) can be adjusted by the type, thickness, air permeability, etc. of the bag cloth of the bag filter 3.
  • the average particle diameter (D50) is a median diameter of 50% cumulative volume in a particle size distribution curve measured using a laser diffraction scattering method when the particles are less than 1 mm.
  • the volume-based 90% cumulative particle diameter (D90) is a particle diameter of 90% cumulative volume in a particle size distribution curve measured using a laser diffraction scattering method when the particles are less than 1 mm.
  • the recovered powder recovered by the present embodiment may be provided as a granulated body.
  • a manufacturing method of a granulated body it can granulate by mixing powder and arbitrary liquids and using a well-known granulation method suitably.
  • a dry granulation method such as rolling granulation or a wet granulation method such as spray drying is preferably used.
  • the glass raw material recovery rate from the exhaust gas can be increased.
  • an alkaline earth metal borate hydrate can be generated in the granulated body.
  • the strength of the granulated body can be improved.
  • the alkaline earth metal Ca and / or Sr are preferable.
  • Ca is a component added in the powder recovery process, and thus is included in the recovered powder. By adding this Ca component in the form of dolomite ((Ca, Mg) CO 3 ), calcium borate hydrate can be more easily generated.
  • the strength of the granulated body can be improved when the granulated body is formed. Since Mg is a component added in the second cooling tower 4 and the scrubber 6, it is contained in the recovered powder.
  • the final product of glass is a product in which glass that is solid at room temperature and has substantially no fluidity is used for part or all of the glass, and the glass surface is processed. .
  • FIG. 3 is a flowchart showing an example of the glass manufacturing method of the present embodiment.
  • Reference numeral 101 denotes a glass melting step, which corresponds to the glass melting step described above.
  • the molten glass obtained in the glass melting step 101 is formed into a target shape in the forming step 102 and then slowly cooled in a slow cooling step 103 by a known method. Thereafter, the glass is obtained by performing post-processing by a known method such as cutting or polishing in the post-processing step 104 as necessary.
  • the forming step 102 can be performed by a known method such as a float method, a down draw method, or a fusion method.
  • the float process is a method of forming molten glass into a plate shape on molten tin.
  • the molten glass is preferably formed into a plate shape by a float method or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Glass Compositions (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)

Abstract

The present invention is a method for producing an alkali-free glass, the method including the following: a step for melting a glass raw material and collecting exhaust gas; a step for cooling the exhaust gas by bringing the exhaust gas into contact with a cooling liquid; a step for adding at least one compound selected from among the group consisting of CaCO3, Ca(OH)2 and (Ca,Mg)CO3 to the cooled exhaust gas and recovering from the exhaust gas a powder having an average particle diameter (D50) of 30-100 µm by using a dust collection member; and a step of bringing the exhaust gas from which the powder has been recovered into contact with Mg(OH)2 and water so as to recover, as a recovered liquid, a component contained in the exhaust gas. The recovered liquid is used as the cooling liquid in the step for cooling the exhaust gas.

Description

無アルカリガラスの製造方法Method for producing alkali-free glass
 本発明は、無アルカリガラスの製造方法に関する。 The present invention relates to a method for producing alkali-free glass.
 一般に、ガラス溶融炉から排出される排ガス中には、ガラス原料に由来する種々の成分が含まれる。たとえばホウケイ酸ガラスを製造する場合には、排ガス中にホウ素(B)を含むホウ素成分が含まれる。また、硫黄(S)を含む硫黄成分が含まれることが多い。これらの成分はそのまま大気中に放出すると、環境に悪影響を及ぼすおそれがあるので、排ガスからこれらの成分を除去する方法が種々検討されている。 Generally, various components derived from glass raw materials are contained in exhaust gas discharged from a glass melting furnace. For example, when producing borosilicate glass, a boron component containing boron (B) is contained in the exhaust gas. Moreover, the sulfur component containing sulfur (S) is often contained. If these components are released into the atmosphere as they are, there is a risk of adverse effects on the environment, and various methods for removing these components from exhaust gas have been studied.
 また、各種ディスプレイ用ガラス基板等には、実質的にアルカリ金属酸化物を含まない無アルカリガラスが用いられている。 In addition, non-alkali glass substantially free of alkali metal oxide is used for various display glass substrates and the like.
 特許文献1には、排ガスからホウ素成分および硫黄成分を除去する方法として、排ガスに冷却水および接触水を接触させることによって、排ガス中のホウ素成分および硫黄成分を水に溶解させて除去する方法が記載されている。この方法で生じる、ホウ素成分および硫黄成分を含む排液は、中和した後に冷却水または接触水として再利用できるようになっている。 Patent Document 1 discloses a method for removing boron and sulfur components from exhaust gas by dissolving the boron component and sulfur component in the exhaust gas in water by bringing cooling water and contact water into contact with the exhaust gas. Are listed. The effluent containing the boron component and sulfur component generated by this method can be reused as cooling water or contact water after neutralization.
 特許文献1の実施例においては、排液の中和剤としてNaOHが用いられており、中和による沈殿物が生じないため、中和後の排液をそのまま冷却水または接触水の一部として再利用することができる。また、排ガスに含まれるホウ素成分等はガラス原料として有用なものであるから、これらを回収し、ガラス原料として再利用することも検討されている。 In the example of Patent Document 1, NaOH is used as a neutralizing agent for drainage, and no precipitate is generated due to neutralization. Therefore, the neutralized drainage is used as it is as a part of cooling water or contact water. Can be reused. Moreover, since the boron component etc. which are contained in exhaust gas are useful as a glass raw material, collect | recovering these and reusing as a glass raw material is also examined.
 特許文献2には、ガラス原料を加熱溶融する際の燃料として、実質的に硫黄分を含まない燃料を使用し、ガラス溶融炉からの排ガスを水に接触させて捕集液とし、この捕集液を中和して中和捕集液を得、この中和捕集液を固液分離した後に加熱乾燥させることによって、ガラス原料として有用な砒素成分、ホウ素成分、塩素成分を回収する方法が記載されている。 In Patent Document 2, a fuel that does not substantially contain sulfur is used as a fuel for heating and melting a glass raw material, and an exhaust gas from a glass melting furnace is brought into contact with water to form a collection liquid. A method of recovering arsenic, boron, and chlorine components useful as glass materials by neutralizing the liquid to obtain a neutralized collection liquid, followed by solid-liquid separation of the neutralized collection liquid and drying by heating. Are listed.
国際公開第2009/072612号International Publication No. 2009/072612 日本国特開2004-238236号公報Japanese Unexamined Patent Publication No. 2004-238236
 特許文献1に記載の方法では、排液の中和剤としてNaOHを用いると、中和後の排液中にアルカリ金属塩であるナトリウム塩が含まれる。中和後の排液中には、ガラス原料として再利用可能なホウ素成分および硫黄成分が含まれているものの、アルカリ金属塩も含まれるため、この排液を無アルカリガラスの製造に使用することは適さない。 In the method described in Patent Document 1, when NaOH is used as a neutralizing agent for drainage, sodium salt that is an alkali metal salt is contained in the drained liquid after neutralization. The neutralized effluent contains boron and sulfur components that can be reused as glass raw materials, but also contains alkali metal salts. Use this effluent for the production of alkali-free glass. Is not suitable.
 特許文献2に記載の方法では、固液分離手段としてスプレードライヤーを用いており、回収される有用成分は主として数百μm以上の比較的大きな固形分である。固形分が比較的大きいと、ガラス原料として再利用する際、他成分と均質にまぜるのが困難な場合がある。 In the method described in Patent Document 2, a spray dryer is used as a solid-liquid separation means, and the useful components recovered are mainly a relatively large solid content of several hundred μm or more. If the solid content is relatively large, it may be difficult to mix homogeneously with other components when reused as a glass raw material.
 また、特許文献2に記載の方法では、有用成分の回収サイクルにおいて、中和剤として添加されるカルシウム化合物の量が多いため、ガラス原料として再利用するためには、回収される有用成分のうち、カルシウム成分が過剰になるという問題がある。 Further, in the method described in Patent Document 2, the amount of calcium compound added as a neutralizing agent is large in the useful component recovery cycle, and therefore, in order to reuse as a glass raw material, There is a problem that the calcium component becomes excessive.
 本発明は、ガラス溶融炉から排出される排ガスから、再利用可能な成分を粉体状で回収するとともに、その組成がガラス原料として適している無アルカリガラスの製造方法を提供することを一目的とする。 One object of the present invention is to recover a reusable component in powder form from exhaust gas discharged from a glass melting furnace and to provide a method for producing alkali-free glass whose composition is suitable as a glass raw material And
 本発明の一側面としては、酸化物基準の質量百分率で、SiO:50~73%、Al:10.5~24%、B:0.1~12%、MgO:0.5~10%、CaO:0.5~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%、Cl:0.01~0.35%、F:0.01~0.15%、及びSO:0.0001~0.0025%を含み、MgO+CaO+SrO+BaO:8~29.5%、MgO/(MgO+CaO):0.1~0.8である無アルカリガラスを製造する方法であって、ガラス原料を溶融し排ガスを捕集する工程、前記排ガスに冷却用液体を接触させて排ガスを冷却する工程、前記冷却された排ガスにCaCO、Ca(OH)及び(Ca,Mg)COからなる群から選択される1種以上を添加し、集塵部材を用いて排ガスから平均粒子径(D50)が30~100μmの粉体を回収する工程、及び前記粉体が回収された排ガスにMg(OH)及び水を接触させて排ガスに含まれる成分を回収液体として回収する工程を含み、前記回収液体を、前記排ガスを冷却する工程で前記冷却用液体として用いる、無アルカリガラスの製造方法である。 As one aspect of the present invention, SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0.1 to 12%, MgO: 0.5-10%, CaO: 0.5-14.5%, SrO: 0-24%, BaO: 0-13.5%, ZrO 2 : 0-5%, Cl: 0.01-0. 35%, F: 0.01-0.15%, and SO 3 : 0.0001-0.0025%, MgO + CaO + SrO + BaO: 8-29.5%, MgO / (MgO + CaO): 0.1-0. 8 is a method for producing an alkali-free glass, a step of melting a glass raw material to collect exhaust gas, a step of bringing a cooling liquid into contact with the exhaust gas to cool the exhaust gas, and CaCO 3 to the cooled exhaust gas. , Ca (OH) 2 and (Ca, Mg) CO 3 or One or more selected from the group consisting of the above, a step of recovering powder having an average particle size (D50) of 30 to 100 μm from the exhaust gas using a dust collecting member, and Mg in the exhaust gas from which the powder is recovered (OH) 2 and water are brought into contact with each other and a component contained in the exhaust gas is recovered as a recovered liquid, and the recovered liquid is used as the cooling liquid in the step of cooling the exhaust gas. It is.
 本発明によれば、ガラス溶融炉から排出される排ガスから、再利用可能な成分を粉体状で回収するとともに、その組成がガラス原料として適している無アルカリガラスの製造方法を提供することができる。 According to the present invention, a reusable component is recovered in powder form from exhaust gas discharged from a glass melting furnace, and a method for producing alkali-free glass whose composition is suitable as a glass raw material is provided. it can.
図1は、本発明の一実施形態によるガラスの製造方法の一例のフロー図を示す。FIG. 1 shows a flow chart of an example of a method for producing glass according to an embodiment of the present invention. 図2は、本発明の一実施形態によるガラス製造方法の一例である製造ラインの概略図を示す。FIG. 2 shows a schematic diagram of a production line as an example of a glass production method according to an embodiment of the present invention. 図3は、本発明の一実施形態によるガラス製品を製造するための一例のフロー図を示す。FIG. 3 shows an example flow diagram for manufacturing a glass product according to one embodiment of the present invention.
 以下、本発明の一実施形態を詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail.
 図1に、本実施形態の無アルカリガラス(以下、単に「ガラス」と称することがある。)の製造方法の一例のフロー図を示す。 FIG. 1 shows a flow chart of an example of a method for producing an alkali-free glass (hereinafter sometimes simply referred to as “glass”) of the present embodiment.
 図1では、1001においてガラス原料を溶融し排ガスを捕集し、1002において排ガスに冷却用液体を接触させて排ガスを冷却し、1003において冷却された排ガスにCaCO、Ca(OH)及び(Ca,Mg)COからなる群から選択される1種以上(以下、単に「Ca化合物」と称することがある。)を添加し、集塵部材を用いて排ガスから回収粉体を回収し、1004において粉体が回収された後の排ガスにMg(OH)及び水を接触させて排ガスに含まれる成分を回収液体として回収する。以下、1004をMg(OH)処理工程ともいう。1005において、1004で回収液体を回収した後に、排ガスを排気することができる。 In FIG. 1, the glass raw material is melted at 1001 to collect the exhaust gas, and the exhaust gas is cooled by bringing the cooling liquid into contact with the exhaust gas at 1002, and the COCO 3 , Ca (OH) 2 and ( One or more selected from the group consisting of (Ca, Mg) CO 3 (hereinafter sometimes simply referred to as “Ca compound”) is added, and the recovered powder is recovered from the exhaust gas using a dust collecting member, In 1004, Mg (OH) 2 and water are brought into contact with the exhaust gas after the powder is recovered, and the components contained in the exhaust gas are recovered as a recovery liquid. Hereinafter, 1004 is also referred to as a Mg (OH) 2 treatment step. At 1005, exhaust gas can be exhausted after the recovered liquid is recovered at 1004.
 1004で回収された回収液体を、1002において排ガスを冷却する工程で冷却用液体として用いる。また、1003で回収された回収粉体は、1001においてガラス原料として用いて系内で循環させてもよい。また、回収粉体は、系内で循環させなくても、別の系で用いるために取り出してもよい。 The recovered liquid recovered in 1004 is used as a cooling liquid in the process of cooling the exhaust gas in 1002. Further, the recovered powder recovered in 1003 may be used as a glass raw material in 1001 and circulated in the system. Further, the recovered powder may be taken out for use in another system without being circulated in the system.
 本実施形態によれば、ガラス溶融で排出される排ガスから、再利用可能な成分を粉体状で回収するとともに、その組成がガラス原料として適しているガラスの製造方法を提供することができる。これによって、排ガスから環境に負荷を与えうる成分を除去して大気中に放出することが可能となり、また、排ガス中のホウ素成分等をガラス原料として再利用することができる。 According to the present embodiment, a reusable component is recovered in powder form from the exhaust gas discharged by melting the glass, and a glass manufacturing method whose composition is suitable as a glass raw material can be provided. As a result, it is possible to remove a component that may cause a load on the environment from the exhaust gas and release it into the atmosphere, and it is possible to reuse the boron component or the like in the exhaust gas as a glass raw material.
 本実施形態によれば、1004のMg(OH)処理工程で添加されたMg成分が系内を循環し、粉体回収工程で添加されたCa成分とともに粉体として回収することができる。これによって、回収される粉体の組成が、Ca成分のみでなく、Mg成分をともに含むため、ガラス原料として再利用しやすい組成を提供することができる。 According to this embodiment, the Mg component added in the 1004 Mg (OH) 2 treatment step circulates in the system, and can be recovered as a powder together with the Ca component added in the powder recovery step. Thereby, since the composition of the recovered powder includes not only the Ca component but also the Mg component, a composition that can be easily reused as a glass raw material can be provided.
 また、1003で回収される回収粉体は、平均粒子径(D50)が30~100μmの粉体状であるため、ガラス原料として再利用する際の利用方法の幅を広げることができる。すなわち、粉体としてそのまま使用することもでき、この粉体に別途の成分を加えることもでき、さらには、造粒体を作製して使用することもできる。また、粉体の粒子径が小さいことで、ガラス原料として再利用する際、他成分とより均質に混合することができる。 Further, since the recovered powder recovered in 1003 is in the form of a powder having an average particle diameter (D50) of 30 to 100 μm, the range of usage when reusing as a glass raw material can be expanded. That is, it can be used as it is as a powder, a separate component can be added to the powder, and a granulated body can be produced and used. Moreover, when the particle diameter of the powder is small, it can be more uniformly mixed with other components when reused as a glass raw material.
 さらに、1004において、Mg(OH)及び水によって回収液体を回収することで、回収液体を溶液状で回収することができる。スラリー化した液体は、系内の配管や、各工程において液体を噴霧する際のノズル等を通過する際に、配管及びノズル等を損傷することがあるため、回収液体は溶液状であることが望ましい。 Furthermore, at 1004, the recovered liquid can be recovered in the form of a solution by recovering the recovered liquid with Mg (OH) 2 and water. The slurry liquid may damage the pipes and nozzles when passing through the pipes in the system and the nozzles used when spraying the liquid in each process, so the recovered liquid may be in the form of a solution. desirable.
 水酸化マグネシウムは、安価で取り扱いやすいことから一般的な酸性排液の中和剤として利用されているが、水への溶解度が低く、通常はスラリー状態であるため、液を循環させて再利用する場合には配管のつまり等を起こすことが懸念される。これに対し、本発明の発明者は、水酸化マグネシウムスラリーを、ホウ素成分を含む液体に加えると、マグネシウムが含まれるにも関わらず水溶液となるという知見を得て本発明に至った。 Magnesium hydroxide is used as a neutralizing agent for general acid drainage because it is cheap and easy to handle, but its solubility in water is low and it is usually in a slurry state. When doing so, there is a concern of clogging of piping. On the other hand, the inventors of the present invention have obtained the knowledge that when magnesium hydroxide slurry is added to a liquid containing a boron component, an aqueous solution is obtained despite containing magnesium.
 また、1003の粉体回収工程において、Ca成分を添加することで、清澄剤を由来とする成分を粉体として回収することができ、ガラス原料として再利用も可能である。特に、清澄剤を由来とするフッ素(F)成分を粉体回収工程において除去することができる。これによって、後続のMg(OH)処理工程へのフッ素成分の混入を防止することができ、Mg(OH)処理工程においてフッ素成分がMg(OH)と反応してスラリー化することを防ぐことができる。 Further, in the powder recovery step 1003, by adding the Ca component, the component derived from the fining agent can be recovered as a powder, and can be reused as a glass raw material. In particular, the fluorine (F) component derived from the fining agent can be removed in the powder recovery step. As a result, it is possible to prevent the fluorine component from being mixed into the subsequent Mg (OH) 2 treatment step, and in the Mg (OH) 2 treatment step, the fluorine component reacts with Mg (OH) 2 to form a slurry. Can be prevented.
 また、1003の粉体回収工程によって回収された粉体は乾燥状態であり、加熱処理を必要とせず、そのままガラス原料として使用することができる。 Further, the powder recovered by the powder recovery process 1003 is in a dry state and does not require heat treatment, and can be used as it is as a glass raw material.
 <ガラス組成>
 本実施形態によって製造されるガラスは、酸化物基準の質量百分率で、SiO:50~73%、Al:10.5~24%、B:0.1~12%、好ましくは0.3~12%、より好ましくは0.5~12%、MgO:0.5~10%、CaO:0.5~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%、Cl:0.01~0.35%、F:0.01~0.15%、及びSO:0.0001~0.0025%を含み、MgO+CaO+SrO+BaO:8~29.5%、MgO/(MgO+CaO):0.1~0.8を含む。このガラス組成は、ガラス原料を溶融して固化した固体ガラスの組成である。
<Glass composition>
The glass produced according to the present embodiment has a mass percentage based on oxides of SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0.1 to 12%, Preferably 0.3 to 12%, more preferably 0.5 to 12%, MgO: 0.5 to 10%, CaO: 0.5 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, Cl: 0.01 to 0.35%, F: 0.01 to 0.15%, and SO 3 : 0.0001 to 0.0025%, MgO + CaO + SrO + BaO: 8 to 29.5%, MgO / (MgO + CaO): 0.1 to 0.8. This glass composition is a composition of solid glass obtained by melting and solidifying a glass raw material.
 このようなガラス組成を有するガラスは、無アルカリガラス(以下、無アルカリホウケイ酸ガラスと称することもある。)として用いることができる。
 本実施形態によって製造されるガラスには、アルカリ金属酸化物の含有量が合計で1%以下であることが好ましく、より好ましくは0.1%以下であり、さらにアルカリ金属酸化物を実質的に含まないことが好ましい。
Glass having such a glass composition can be used as non-alkali glass (hereinafter also referred to as non-alkali borosilicate glass).
In the glass produced according to this embodiment, the total content of alkali metal oxides is preferably 1% or less, more preferably 0.1% or less, and the alkali metal oxide is substantially reduced. It is preferably not included.
 ここで、アルカリ土類金属は、カルシウム(Ca)、ストロンチウム(Sr)およびバリウム(Ba)を主に意味する。
 また、アルカリ金属は、リチウム(Li)、ナトリウム(Na)、カリウム(K)を主に意味する。
 また、「ホウ素成分」はホウ素原子(B)を含む成分の総称である(他の成分についても同様である)。
Here, the alkaline earth metal mainly means calcium (Ca), strontium (Sr), and barium (Ba).
Alkali metal mainly means lithium (Li), sodium (Na), and potassium (K).
The “boron component” is a general term for components containing a boron atom (B) (the same applies to other components).
 [SiO
 SiOはガラスのネットワークフォーマーであり、必須成分である。SiOはガラスの耐酸性を高め、ガラスの密度を小さくする等の効果が大きい。その含有量は、溶融ガラスの粘性が高くなりすぎ、通常の溶融方法で溶融ガラスを製造することが困難になることを考慮して、一般的には73%以下、好ましくは66%以下であり、より好ましくは61.5%以下である。一方、SiOが少なすぎると、耐酸性の劣化、線膨張係数の増大等の原因となり得るので、ディスプレイ用基板ガラスの場合、その含有量は好ましくは50%以上であり、より好ましくは54%以上であり、さらに好ましくは58%以上である。
[SiO 2 ]
SiO 2 is a glass network former and is an essential component. SiO 2 is highly effective in increasing the acid resistance of the glass and reducing the density of the glass. The content is generally 73% or less, preferably 66% or less, considering that the viscosity of the molten glass becomes too high and it becomes difficult to produce the molten glass by a normal melting method. More preferably, it is 61.5% or less. On the other hand, if the amount of SiO 2 is too small, it may cause deterioration of acid resistance, increase in linear expansion coefficient, etc., so in the case of display substrate glass, its content is preferably 50% or more, more preferably 54%. Or more, more preferably 58% or more.
 [Al
 Alはガラスの歪点を上げ、ガラスの分相性を抑制する等の目的で用いられる成分である。Alの含有量は10.5%以上が好ましく、より好ましくは15%以上である。一方、溶融ガラスの高粘性化やガラスの失透特性、耐酸性の劣化を回避する点からは、Alの含有量は24%以下が好ましく、より好ましくは22.5%以下であり、さらに好ましくは22%以下であり、一層好ましくは15%以下である。
[Al 2 O 3 ]
Al 2 O 3 is a component used for the purpose of increasing the strain point of the glass and suppressing the phase separation of the glass. The content of Al 2 O 3 is preferably 10.5% or more, more preferably 15% or more. On the other hand, the content of Al 2 O 3 is preferably 24% or less, more preferably 22.5% or less from the viewpoint of avoiding high viscosity of molten glass, devitrification characteristics of glass, and deterioration of acid resistance. More preferably, it is 22% or less, and more preferably 15% or less.
 [B
 Bはガラスのネットワークフォーマーであり、溶融ガラス化における溶解反応性をよくする成分でもある。Bの含有量は0.1~12%、好ましくは0.3~12%、より好ましくは通常、0.5%以上であり、さらに好ましくは5%以上であり、特に好ましくは7%以上である。一方、Bはガラスの耐酸性を低下させる場合があり、通常12%以下であり、特にディスプレイ用基板ガラスの場合、Bの含有量は10%以下が好ましく、より好ましくは8%以下である。
[B 2 O 3 ]
B 2 O 3 is a glass network former, and is also a component that improves the dissolution reactivity in melt vitrification. The content of B 2 O 3 is 0.1 to 12%, preferably 0.3 to 12%, more preferably 0.5% or more, still more preferably 5% or more, and particularly preferably 7%. % Or more. On the other hand, B 2 O 3 may reduce the acid resistance of the glass and is usually 12% or less. In the case of a substrate glass for display, the content of B 2 O 3 is preferably 10% or less, more preferably. 8% or less.
 [MgO]
 MgOは溶融ガラスの粘性を下げる成分であり、ガラスの密度を低下させ、線膨張係数を大きくせず、溶解反応性をも向上させることから、特にガラス成形工程にフロート法を用いてディスプレイ用ガラス基板を製造する場合には必須の成分である。本実施形態において、MgOの含有量は0.5%以上であり、1%以上が好ましく、2%以上がより好ましく、一層好ましくは4%以上である。一方、ガラスの分相を回避するため、耐酸性を高める等の点からは、その含有量は10%以下、より好ましくは8%以下、さらに好ましくは5%以下である。
[MgO]
MgO is a component that lowers the viscosity of molten glass, lowers the density of glass, does not increase the linear expansion coefficient, and improves melting reactivity. It is an essential component when manufacturing a substrate. In the present embodiment, the content of MgO is 0.5% or more, preferably 1% or more, more preferably 2% or more, and still more preferably 4% or more. On the other hand, in order to avoid phase separation of the glass, the content is 10% or less, more preferably 8% or less, and further preferably 5% or less from the viewpoint of increasing acid resistance.
 [CaO]
 CaOは溶融ガラスの粘性を下げる成分であり、密度や線膨張係数、歪点等のガラス特性を調整する目的で用いられることのある成分である。CaOの含有量は0.5%以上が好ましく、1%以上がより好ましく、さらに好ましくは2%以上、一層好ましくは4%以上である。一方、ガラスの失透特性の劣化、線膨張係数の増大等を回避する点からは、その含有量は14.5%以下が好ましく、より好ましくは10%以下であり、一層好ましくは9%以下である。
[CaO]
CaO is a component that lowers the viscosity of molten glass, and is a component that may be used for the purpose of adjusting glass properties such as density, linear expansion coefficient, and strain point. The content of CaO is preferably 0.5% or more, more preferably 1% or more, further preferably 2% or more, and still more preferably 4% or more. On the other hand, the content is preferably 14.5% or less, more preferably 10% or less, and still more preferably 9% or less, from the viewpoint of avoiding deterioration of the devitrification characteristics of the glass, increase of the linear expansion coefficient, and the like. It is.
 [SrO]
 SrOは溶融ガラスの粘性を下げる成分であり、ガラスの失透特性および耐酸性の改善のために含有させることのある成分である。SrOを含有させる場合の含有量は1%以上が好ましく、より好ましくは2%以上であり、一層好ましくは3%以上である。その含有量は24%以下が好ましく、より好ましくは16%以下であり、さらに好ましくは12.5%以下であり、一層好ましくは6%以下である。
[SrO]
SrO is a component that lowers the viscosity of the molten glass, and is a component that may be included to improve the devitrification properties and acid resistance of the glass. In the case of containing SrO, the content is preferably 1% or more, more preferably 2% or more, and still more preferably 3% or more. The content is preferably 24% or less, more preferably 16% or less, still more preferably 12.5% or less, and even more preferably 6% or less.
 [BaO]
 BaOは溶融ガラスの粘性を下げる成分であり、ガラスの分相、失透特性の向上、および耐酸性の向上等の目的で加えることのできる成分である。しかし、密度を増大させる等のためガラスが液晶用ガラス基板である場合には、不可避的含有量以内にすることが好ましい。なお、BaOを積極的に含有させる場合の含有量は13.5%以下が好ましく、10%以下がより好ましく、さらに好ましくは5%以下、一層好ましくは2%以下である。
[BaO]
BaO is a component that lowers the viscosity of the molten glass, and is a component that can be added for the purpose of, for example, phase separation of glass, improvement of devitrification characteristics, and improvement of acid resistance. However, when the glass is a glass substrate for liquid crystal in order to increase the density or the like, it is preferable to make the content inevitable. In addition, the content when BaO is positively contained is preferably 13.5% or less, more preferably 10% or less, still more preferably 5% or less, and still more preferably 2% or less.
 [ZrO
 ZrOは必須ではないが、ガラス溶融温度を低下させるために、または焼成時の結晶析出を促進するために、5%以下で含有してもよい。5%以下であることで、ガラスを安定化させ、εが小さくすることができる。好ましくは3%以下である。
[ZrO 2 ]
ZrO 2 is not essential, but may be contained at 5% or less in order to lower the glass melting temperature or to promote crystal precipitation during firing. By being 5% or less, the glass can be stabilized and ε can be reduced. Preferably it is 3% or less.
 [Cl]
 Clは、清澄剤として脱泡のために添加される成分であり、0.01%~0.35%で含有される。脱泡及び再沸抑制の観点から、より好ましくは0.30%以下、さらに好ましくは0.25%以下である。脱泡をより促進するために、より好ましくは0.05%以上、さらに好ましくは0.1%以上である。
[Cl]
Cl is a component added for defoaming as a fining agent, and is contained at 0.01% to 0.35%. From the viewpoint of defoaming and re-boiling suppression, it is more preferably 0.30% or less, and still more preferably 0.25% or less. In order to further promote defoaming, it is more preferably 0.05% or more, further preferably 0.1% or more.
 [F]
 FはClと同様に清澄剤として脱泡のために添加される成分であり、0.01~0.15%で含有される。Fは、溶融ガラスの表面張力を低下させ、溶融ガラス表面に存在する泡を破れやすくする効果、または溶融ガラス中の微小な泡を削減する効果がある。脱泡及び再沸抑制の観点から、より好ましくは0.10%以下、さらに好ましくは0.05%以下である。脱泡をより促進するために、より好ましくは0.02%以上、さらに好ましくは0.03%以上である。
[F]
F, like Cl, is a component added for defoaming as a fining agent, and is contained at 0.01 to 0.15%. F has an effect of reducing the surface tension of the molten glass and easily breaking bubbles existing on the surface of the molten glass, or an effect of reducing minute bubbles in the molten glass. From the viewpoint of defoaming and re-boiling suppression, it is more preferably 0.10% or less, and still more preferably 0.05% or less. In order to further promote defoaming, the content is more preferably 0.02% or more, further preferably 0.03% or more.
 [SO
 SOは、清澄剤として添加され、脱泡またはガラス原料の溶解を促進する成分であり、0.0001~0.0025%で含有される。再沸抑制の観点から、より好ましくは0.0010%以下である。脱泡またはガラス原料の溶解をより促進したい場合はSOを0.0012%以上含有することがより好ましい。SO含有は、通常、ボウ硝等の硫酸塩をガラス原料に添加することによって行われるが、その他に、たとえば重油燃焼窯においては重油のS含有不純物にも起因する。
[SO 3 ]
SO 3 is added as a fining agent and is a component that promotes defoaming or melting of the glass raw material, and is contained at 0.0001 to 0.0025%. From the viewpoint of suppressing re-boiling, it is more preferably 0.0010% or less. When it is desired to further promote defoaming or melting of the glass raw material, it is more preferable to contain 0.0012% or more of SO 3 . The SO 3 content is usually carried out by adding a sulfate such as bow glass to the glass raw material. In addition, for example, in heavy oil combustion kilns, it is also caused by S-containing impurities in heavy oil.
 [MgO+CaO+SrO+BaO]
 MgO、CaO、SrO及びBaOの合計(MgO+CaO+SrO+BaO)の含有量が小さいと溶融ガラスの粘性が高くなり、溶解反応性が悪化する。これらの合計の含有量は8%以上が好ましく、より好ましくは9%以上であり、さらに好ましくは16%以上である。一方、ガラスの密度の増大、線膨張係数の増大を回避する点からは、これらの合計の含有量は29.5%以下が好ましく、26%以下がより好ましく、さらに好ましくは18%以下、一層好ましくは15%以下である。
[MgO + CaO + SrO + BaO]
If the total content of MgO, CaO, SrO and BaO (MgO + CaO + SrO + BaO) is small, the viscosity of the molten glass increases and the melting reactivity deteriorates. The total content of these is preferably 8% or more, more preferably 9% or more, and further preferably 16% or more. On the other hand, from the viewpoint of avoiding an increase in glass density and an increase in linear expansion coefficient, the total content thereof is preferably 29.5% or less, more preferably 26% or less, still more preferably 18% or less, even more. Preferably it is 15% or less.
 [MgO/(MgO+CaO)]
 MgOの含有量をMgOとCaOの含有量の合計によって除したMgO/(MgO+CaO)は酸化物基準の質量比で0.1~0.8であることが好ましい。0.2以上であることで、比重増加及び膨張係数増加を防ぐことができる。歪点及び溶解性の観点から、より好ましくは0.25~0.55であり、さらに好ましくは0.3~0.5であり、一層好ましくは0.3~0.4である。
[MgO / (MgO + CaO)]
MgO / (MgO + CaO) obtained by dividing the content of MgO by the total content of MgO and CaO is preferably 0.1 to 0.8 in terms of the mass ratio based on the oxide. By being 0.2 or more, an increase in specific gravity and an increase in expansion coefficient can be prevented. From the viewpoint of strain point and solubility, it is more preferably 0.25 to 0.55, still more preferably 0.3 to 0.5, and still more preferably 0.3 to 0.4.
 [その他のガラス成分]
 その他に含有させることができるガラス成分の例としては、特に制限されず、溶解剤、成形剤等を含んでもよい。清澄剤として、上記したCl、F及びSO以外の成分が含まれてもよい。また、Fe、TiO、Y等を適宜含有してもよい。
[Other glass components]
Other examples of the glass component that can be contained are not particularly limited, and may include a solubilizer, a molding agent, and the like. As a clarifier, components other than the above-described Cl, F, and SO 3 may be included. Further, Fe 2 O 3, TiO 2 , Y 2 O 3 or the like may be appropriately contained.
 [ガラス組成の例]
 歪点及び溶解性を高くする観点から、ガラス組成のより好ましい例としては、酸化物基準の質量百分率表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0.5~8%、CaO:0.5~9%、SrO:3~12.5%、BaO:0~2%、Cl:0.01~0.35%、F:0.01~0.15%、及びSO:0.0001~0.0025%を含み、MgO+CaO+SrO+BaO:9~18%、MgO/(MgO+CaO):0.35~0.55である。
[Example of glass composition]
From the viewpoint of increasing the strain point and the solubility, more preferable examples of the glass composition include SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O in terms of mass percentage based on oxide. 3 : 5 to 12%, MgO: 0.5 to 8%, CaO: 0.5 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, Cl: 0.01 to 0.35 %, F: 0.01 to 0.15%, and SO 3 : 0.0001 to 0.0025%, MgO + CaO + SrO + BaO: 9 to 18%, MgO / (MgO + CaO): 0.35 to 0.55 .
 特に溶解性を高くする観点から、ガラス組成のより好ましい例としては、酸化物基準の質量百分率表示で、SiO:50~61.5%、Al:10.5~18%、B:7~10%、MgO:2~5%、CaO:0.5~14.5%、SrO:0~24%、BaO:0~13.5%、Cl:0.01~0.35%、F:0.01~0.15%、及びSO:0.0001~0.0025%を含み、MgO+CaO+SrO+BaO:16~29.5%、MgO/(MgO+CaO):0.3~0.5である。 Particularly preferable examples of the glass composition from the viewpoint of increasing the solubility include SiO 2 : 50 to 61.5%, Al 2 O 3 : 10.5 to 18%, and B 2 O 3 : 7 to 10%, MgO: 2 to 5%, CaO: 0.5 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, Cl: 0.01 to 0 .35%, F: 0.01 to 0.15%, and SO 3 : 0.0001 to 0.0025%, MgO + CaO + SrO + BaO: 16 to 29.5%, MgO / (MgO + CaO): 0.3 to 0 .5.
 特に歪点を高くする観点から、ガラス組成のより好ましい例としては、酸化物基準の質量百分率表示で、SiO:54~73%、Al:10.5~22.5%、B:0.1~12%、好ましくは0.3~12%、より好ましくは0.5~5.5%、MgO:0.5~10%、CaO:0.5~9%、SrO:0~16%、BaO:0~2.5%、Cl:0.01~0.35%、F:0.01~0.15%、及びSO:0.0001~0.0025%を含み、MgO+CaO+SrO+BaO:8~26%、MgO/(MgO+CaO):0.3~0.8である。 In particular, from the viewpoint of increasing the strain point, more preferable examples of the glass composition include SiO 2 : 54 to 73%, Al 2 O 3 : 10.5 to 22.5%, B 2 2 O 3 : 0.1 to 12%, preferably 0.3 to 12%, more preferably 0.5 to 5.5%, MgO: 0.5 to 10%, CaO: 0.5 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, Cl: 0.01 to 0.35%, F: 0.01 to 0.15%, and SO 3 : 0.0001 to 0.0025% MgO + CaO + SrO + BaO: 8 to 26%, MgO / (MgO + CaO): 0.3 to 0.8.
 <ガラス原料>
 本実施形態において、ガラス原料としては、ガラス成分としての酸化物となり得る化合物であり、粉末状であっても造粒体状であってもよい。ガラス原料は、下記のケイ素源、アルミニウム源、ホウ素源等を含んでいてよい。公知の原料粉末を適宜選択して用いることができる。
<Glass raw material>
In the present embodiment, the glass raw material is a compound that can be an oxide as a glass component, and may be in the form of a powder or a granulated body. The glass raw material may contain the following silicon source, aluminum source, boron source and the like. Known raw material powders can be appropriately selected and used.
 ガラス原料の組成は、目的のガラス組成が得られるように設計することができる。
 ガラス原料の組成は、酸化ホウ素を除き、酸化物基準で、得ようとするガラス組成とほぼ同じ組成とされる。酸化ホウ素は、ガラス原料中のホウ素源量が、酸化物基準で、通常、得ようとするガラス組成における酸化ホウ素含有量よりも揮発分を考慮した量だけ多くなるように配合することが好ましい。
The composition of the glass raw material can be designed so as to obtain the desired glass composition.
The composition of the glass raw material is substantially the same as the glass composition to be obtained on the oxide basis, except for boron oxide. Boron oxide is preferably blended so that the amount of boron source in the glass raw material is increased on an oxide basis, usually by an amount considering the volatile content, compared to the boron oxide content in the glass composition to be obtained.
 また、ガラス原料には、必要に応じて、副原料として清澄剤、着色剤、溶融助剤、乳白剤等を含有させることができる。これらの副原料は公知の成分を適宜用いることができる。
 このうち清澄剤成分は、ガラス溶融工程で揮散して排ガスして捕集されるため、回収粉体として回収することができる。その場合には、清澄剤原料としても回収粉体を用いることができる。
Further, the glass raw material can contain a clarifying agent, a colorant, a melting aid, an opacifier, etc. as auxiliary raw materials as required. As these auxiliary materials, known components can be appropriately used.
Among these, the fining agent component is volatilized and collected as exhaust gas in the glass melting step, and can be recovered as a recovered powder. In that case, the recovered powder can be used as a fining agent raw material.
 [ケイ素源]
 ケイ素源としての原料粉末は、ガラスの製造工程中でSiO成分となり得る化合物の粉体である。ケイ素源としてはケイ砂が好適に用いられる。
[Silicon source]
The raw material powder as a silicon source is a powder of a compound that can be a SiO 2 component during the glass production process. Silica sand is preferably used as the silicon source.
 [アルミニウム源]
 アルミニウム源としての原料粉末は、ガラスの製造工程中でAl成分となり得る化合物の粉体である。酸化アルミニウム、水酸化アルミウム等が好適に用いられる。これらは1種でもよく2種以上を併用してもよい。
[Aluminum source]
The raw material powder as the aluminum source is a powder of a compound that can be an Al 2 O 3 component during the glass production process. Aluminum oxide, aluminum hydroxide and the like are preferably used. These may be used alone or in combination of two or more.
 [ホウ素源]
 ホウ素源としての原料粉末は、ガラスの製造工程中でB成分となり得る化合物の粉体である。具体例としては、オルトホウ酸(HBO)、メタホウ酸(HBO)、四ホウ酸(H)等のホウ酸;酸化ホウ素(B);コレマナイト等が挙げられる。これらは1種でもよく2種以上を併用してもよい。安価で、入手しやすい点から、オルトホウ酸が好ましい。なお、コレマナイトは後述のカルシウム源でもある。
[Boron source]
The raw material powder as a boron source is a powder of a compound that can be a B 2 O 3 component during the glass production process. Specific examples include boric acid such as orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), tetraboric acid (H 2 B 4 O 7 ), boron oxide (B 2 O 3 ), and colemanite. It is done. These may be used alone or in combination of two or more. Orthoboric acid is preferred because it is inexpensive and easily available. Colemanite is also a calcium source described later.
 [マグネシウム源]
 マグネシウム源としての原料粉末は、ガラスの製造工程中でMgO成分となり得る化合物の粉体である。具体例としては、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))および炭酸マグネシウム(MgCO)等が挙げられる。
[Magnesium source]
The raw material powder as the magnesium source is a powder of a compound that can be an MgO component during the glass production process. Specific examples include magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 3 ), and the like.
 [アルカリ土類金属源]
 アルカリ土類金属源としての原料粉末は、ガラスの製造工程中でSrO、CaOまたはBaOとなり得る化合物の粉体である。具体例としては、炭酸カルシウム(CaCO)、炭酸バリウム(BaCO)、炭酸ストロンチウム(SrCO)、ドロマイト(理想化学組成:CaMg(CO)等の炭酸塩;酸化カルシウム(CaO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)等の酸化物;水酸化カルシウム(Ca(OH))、水酸化バリウム(Ba(OH))、水酸化ストロンチウム(Sr(OH))等の水酸化物;が挙げられる。これらは1種でもよく2種以上を併用してもよい。なお、ドロマイトは前述のマグネシウム源でもある。
[Alkaline earth metal source]
The raw material powder as the alkaline earth metal source is a powder of a compound that can be SrO, CaO, or BaO during the glass production process. As specific examples, carbonates such as calcium carbonate (CaCO 3 ), barium carbonate (BaCO 3 ), strontium carbonate (SrCO 3 ), dolomite (ideal chemical composition: CaMg (CO 3 ) 2 ); calcium oxide (CaO), Oxides such as barium oxide (BaO) and strontium oxide (SrO); calcium hydroxide (Ca (OH) 2 ), barium hydroxide (Ba (OH) 2 ), strontium hydroxide (Sr (OH) 2 ) and the like Hydroxides. These may be used alone or in combination of two or more. Dolomite is also the aforementioned magnesium source.
 [ジルコニア源]
 ジルコニア源としての原料粉末は、ガラスの製造工程中でZrO成分となり得る化合物の粉体である。ジルコニア源としては二酸化ジルコニウム、ジルコン等を挙げることができる。
[Zirconia source]
The raw material powder as a zirconia source is a powder of a compound that can be a ZrO 2 component during the glass production process. Examples of the zirconia source include zirconium dioxide and zircon.
 [清澄剤]
 ガラス原料には、例えば清澄剤として、硫酸塩、塩化物、またはフッ化物を含有させることができる。これらは1種を用いてもよく、2種以上を用いてもよい。
[Clarifier]
The glass raw material can contain sulfate, chloride, or fluoride, for example, as a fining agent. These may use 1 type and may use 2 or more types.
 硫酸塩、塩化物、またはフッ化物として、ガラスを構成する酸化物のカチオンを含む化合物を用いることができる。具体的にはMgまたはアルカリ土類金属の硫酸塩、塩化物、またはフッ化物を用いることができる。これらを用いる場合、Mgの硫酸塩、塩化物、またはフッ化物は、マグネシウム源となる。アルカリ土類金属の硫酸塩、塩化物、またはフッ化物は、アルカリ土類金属源となる。 As the sulfate, chloride, or fluoride, a compound containing an oxide cation constituting glass can be used. Specifically, Mg or alkaline earth metal sulfate, chloride, or fluoride can be used. When these are used, Mg sulfate, chloride, or fluoride is the source of magnesium. The alkaline earth metal sulfate, chloride, or fluoride is the source of the alkaline earth metal.
 <ガラスの製造方法>
 以下、図2を参照して、本実施形態のガラスの製造方法の一例をさらに詳しく説明する。図2は、本実施形態のガラスの製造方法の一例である製造ラインを概略的に示す図である。
<Glass manufacturing method>
Hereinafter, with reference to FIG. 2, an example of the manufacturing method of the glass of this embodiment is demonstrated in more detail. FIG. 2 is a diagram schematically showing a production line which is an example of the glass production method of the present embodiment.
 図2に示す製造ラインは、ガラス溶融炉1、第1冷却塔2、集塵部材としてのバグフィルター3、第2冷却塔4、スクラバー(排ガス洗浄装置)6、遠心力集塵機8、煙突10、回収液体タンク14、Mg(OH)添加装置16、循環ポンプ17、Ca化合物供給装置18、及び回収粉体タンク19を備える。 The production line shown in FIG. 2 includes a glass melting furnace 1, a first cooling tower 2, a bag filter 3 as a dust collecting member, a second cooling tower 4, a scrubber (exhaust gas cleaning device) 6, a centrifugal dust collector 8, a chimney 10, A recovery liquid tank 14, a Mg (OH) 2 addition device 16, a circulation pump 17, a Ca compound supply device 18, and a recovery powder tank 19 are provided.
 「1.ガラス原料の溶融及び排ガスの捕集」
 本実施形態は、ガラス原料を溶融し排ガスを捕集する工程を有する。ガラス原料は粉末状でも造粒体状でもよい。
"1. Melting glass raw materials and collecting exhaust gas"
The present embodiment includes a step of melting a glass raw material and collecting exhaust gas. The glass raw material may be in the form of a powder or a granulated body.
 本実施形態のガラスの製造方法では、ガラス溶融炉1にガラス原料を投入し、これを溶融させて溶融ガラスとする。ガラス溶融方法としては、シーメンス型等のガラス溶融炉を用いる普通溶融法、気中溶融法等を挙げることができる。本実施形態では普通溶融法が好ましい。 In the glass manufacturing method of the present embodiment, a glass raw material is charged into the glass melting furnace 1 and melted to obtain molten glass. Examples of the glass melting method include a normal melting method using an Siemens type glass melting furnace, an air melting method, and the like. In this embodiment, the ordinary melting method is preferable.
 [普通溶融法]
 普通溶融法は、ガラス溶融炉内で、既に溶融している溶融ガラスの液面上に、ガラス原料を投入し、このガラス原料(バッチ山、batch pileともいう。)をバーナー等によって加熱して融解を進行させ、徐々に溶融ガラスとする方法である。
[Normal melting method]
In the ordinary melting method, a glass raw material is put on the surface of a molten glass already melted in a glass melting furnace, and this glass raw material (also called a batch pile or batch pile) is heated by a burner or the like. This is a method in which melting is advanced to gradually form molten glass.
 [気中溶融法]
 気中溶融法は、気相雰囲気中でガラス原料に含まれるガラス粒子(造粒体も含む)の少なくとも一部を溶融させて溶融ガラス粒子とし、この溶融ガラス粒子を集積して溶融ガラスとする方法である。具体的には、まずガラス原料を気中加熱装置の高温の気相雰囲気中に導入する。気中加熱装置は公知のものを使用できる。
[Air melting method]
In the air melting method, at least a part of glass particles (including a granulated body) contained in a glass raw material is melted into a molten glass particle in a gas phase atmosphere, and the molten glass particles are accumulated to form a molten glass. Is the method. Specifically, first, a glass raw material is introduced into a high-temperature gas phase atmosphere of an air heating device. A well-known thing can be used for an air heating apparatus.
 [排ガスの捕集]
 本実施形態におけるガラス原料の溶融過程で生じる排ガスは、図1において、ガラス溶融炉1から発生する排ガスG0である。排ガスG0には、ガラス溶融炉1に投入されたガラス原料の構成成分に由来するガス成分が含まれる。
[Collecting exhaust gas]
The exhaust gas generated in the melting process of the glass raw material in the present embodiment is the exhaust gas G0 generated from the glass melting furnace 1 in FIG. The exhaust gas G0 includes gas components derived from the constituent components of the glass raw material charged into the glass melting furnace 1.
 このガス成分としては、ホウ素成分を主に挙げることができる。排ガスG0中のホウ素成分は、例えば、ホウ酸ないし酸化ホウ素である。 As the gas component, a boron component can be mainly cited. The boron component in the exhaust gas G0 is, for example, boric acid or boron oxide.
 排ガスG0には、清澄剤に由来する成分、例えば硫黄原子(S)を含む成分(硫黄成分ともいう。)、塩素原子(Cl)を含む成分(塩素成分ともいう。)、フッ素原子(F)を含む成分(フッ素成分ともいう。)等が含まれていてもよい。またガラス溶融炉1において重油等の硫黄を含む燃料を燃焼させた場合は、排ガスG0にこの燃料に由来する硫黄成分が含まれる。 The exhaust gas G0 includes components derived from fining agents, such as components containing sulfur atoms (S) (also referred to as sulfur components), components containing chlorine atoms (Cl) (also referred to as chlorine components), fluorine atoms (F). May contain a component (also referred to as a fluorine component) or the like. Further, when a fuel containing sulfur such as heavy oil is burned in the glass melting furnace 1, the exhaust gas G0 contains a sulfur component derived from this fuel.
 排ガスG0中の硫黄成分は主に酸化物(SO)である。
 排ガスG0中の塩素成分は主にHClである。
 排ガスG0中のフッ素成分は主にHFである。
Sulfur components in the exhaust gas G0 are mainly oxides (SO x ).
The chlorine component in the exhaust gas G0 is mainly HCl.
The fluorine component in the exhaust gas G0 is mainly HF.
 ガラス溶融炉1から排出される排ガスG0中に、硫黄成分、塩素成分が含まれる場合、これらの成分を水に溶解させてMg(OH)と反応させると、マグネシウム塩(MgSO、MgCl)が生成する。 When the exhaust gas G0 discharged from the glass melting furnace 1 contains a sulfur component and a chlorine component, when these components are dissolved in water and reacted with Mg (OH) 2 , magnesium salts (MgSO 4 , MgCl 2) ) Is generated.
 したがって、本実施形態の方法は、排ガスG0にホウ素成分のほかに硫黄成分および/または塩素成分が含まれる場合にも好適であり、これらの成分をMg(OH)処理工程でマグネシウム塩として回収して、ガラスの製造に再利用することができる。これによって、回収されたMgSOおよび/またはMgClはマグネシウム源として再利用でき、かつ清澄剤としての硫酸塩および/または塩化物として再利用できる。 Therefore, the method of the present embodiment is also suitable when the exhaust gas G0 contains a sulfur component and / or a chlorine component in addition to the boron component, and these components are recovered as a magnesium salt in the Mg (OH) 2 treatment step. Thus, it can be reused for the production of glass. This allows the recovered MgSO 4 and / or MgCl 2 to be reused as a magnesium source and as sulfate and / or chloride as a fining agent.
 また、排ガスG0にフッ素成分が含まれる場合は、Mg(OH)処理をする第2冷却塔4及びスクラバー6の前で、バグフィルター3においてCa化合物にフッ素成分が吸着して回収粉体として回収することができる。そのため、フッ素成分がマグネシウム塩(MgF)となって、回収液体中で固形分として含まれることを防ぐことができる。 In addition, when the fluorine component is contained in the exhaust gas G0, the fluorine component is adsorbed to the Ca compound in the bag filter 3 in front of the second cooling tower 4 and the scrubber 6 that performs the Mg (OH) 2 treatment, and is used as a recovered powder. It can be recovered. Therefore, a fluorine component is magnesium salt (MgF 2), it is possible to prevent contained as solids in the recovery liquid.
 「2.排ガス冷却工程」
 次に、本実施形態は、排ガスに冷却用液体を接触させて排ガスを冷却する工程を含む。図2では、ガラス溶融炉1から捕集した排ガスG0を配管を通して第1冷却塔2に供給し、第1冷却塔2で排ガスG0に冷却用液体を接触させて排ガスG0を冷却する。
“2. Exhaust gas cooling process”
Next, the present embodiment includes a step of cooling the exhaust gas by bringing the cooling liquid into contact with the exhaust gas. In FIG. 2, the exhaust gas G0 collected from the glass melting furnace 1 is supplied to the first cooling tower 2 through a pipe, and the cooling liquid is brought into contact with the exhaust gas G0 in the first cooling tower 2 to cool the exhaust gas G0.
 第1冷却塔2で排ガスG0を冷却することで、後続のバグフィルター3に供給される排ガスG1の温度を下げて、バグフィルター3が熱によって損傷することを防止することができる。例えば、バグフィルター3の炉布の部分の損傷を防止して、炉布の寿命を長くすることができる。 By cooling the exhaust gas G0 in the first cooling tower 2, the temperature of the exhaust gas G1 supplied to the subsequent bag filter 3 can be lowered, and the bag filter 3 can be prevented from being damaged by heat. For example, damage to the furnace cloth portion of the bag filter 3 can be prevented, and the life of the furnace cloth can be extended.
 第1冷却塔2に供給される直前の排ガスG0の温度は特に限定されない。排ガスG0の温度は、ガラス溶融炉1から排ガスが捕集された状態で、通常1000~1600℃であり、その温度で第1冷却塔2に供給されてもよい。また、配管等である程度冷却されることで、350~1000℃であってもよい。 The temperature of the exhaust gas G0 immediately before being supplied to the first cooling tower 2 is not particularly limited. The temperature of the exhaust gas G0 is usually 1000 to 1600 ° C. in a state where the exhaust gas is collected from the glass melting furnace 1, and may be supplied to the first cooling tower 2 at that temperature. Further, it may be 350 to 1000 ° C. by being cooled to some extent by piping or the like.
 第1冷却塔2内では、排ガスG0に冷却用液体を接触させる。例えば、第1冷却塔2内の上部にノズルを設けて、ノズルから冷却用液体を排ガスG0に噴霧することができる。排ガスG0は冷却用液体と接触することにより温度が低下して、冷却後排ガスG1として排出される。このとき排ガスG0中の成分の一部が、冷却用液体に溶解してもよい。排ガスG0と接触した冷却用液体は、排ガスG0中に分散されて、排ガスG1として後続のバグフィルター3に供給される。冷却用液体の一部が第1冷却塔2底部に貯留する場合は、再度排ガスG0に噴霧するようにしてもよい。 In the first cooling tower 2, the cooling liquid is brought into contact with the exhaust gas G0. For example, a nozzle can be provided in the upper part in the 1st cooling tower 2, and the liquid for cooling can be sprayed to exhaust gas G0 from a nozzle. When the exhaust gas G0 comes into contact with the cooling liquid, the temperature decreases, and the exhaust gas G0 is discharged as the exhaust gas G1 after cooling. At this time, a part of the components in the exhaust gas G0 may be dissolved in the cooling liquid. The cooling liquid in contact with the exhaust gas G0 is dispersed in the exhaust gas G0 and supplied to the subsequent bag filter 3 as the exhaust gas G1. When a part of the cooling liquid is stored at the bottom of the first cooling tower 2, it may be sprayed again on the exhaust gas G0.
 本実施形態では、後述のMg(OH)処理工程で回収された回収液体を冷却用液体として用いる。この回収液体は、水及びMg塩が主に含まれる水溶液状の液体であることが好ましい。回収液体は固形分量が少ないため、固形分による配管や装置の損傷を防止することができる。特に、第1冷却塔2のノズルの損傷を防止することができる。 In the present embodiment, the recovered liquid recovered in the Mg (OH) 2 processing step described later is used as the cooling liquid. This recovered liquid is preferably an aqueous liquid mainly containing water and Mg salt. Since the recovered liquid has a small solid content, it is possible to prevent damage to the piping and the apparatus due to the solid content. In particular, damage to the nozzles of the first cooling tower 2 can be prevented.
 なお、冷却用液体は製造ラインの初期においては特に限定されず、排ガスG0と接触することで排ガスG0を冷却できるものを用いることができる。この場合、排ガスG0中の成分を溶解するものが好ましく、水(工業用水、蒸留水等)または水溶液(溶質はガラス原料中の成分として許容されるもの)が好ましい。また、回収液体に加えてこれらの冷却用液体を併せて用いてもよい。 The cooling liquid is not particularly limited in the initial stage of the production line, and a liquid that can cool the exhaust gas G0 by contacting with the exhaust gas G0 can be used. In this case, those that dissolve the components in the exhaust gas G0 are preferred, and water (industrial water, distilled water, etc.) or aqueous solutions (the solute is acceptable as a component in the glass raw material) are preferred. In addition to the recovered liquid, these cooling liquids may be used in combination.
 冷却後の排ガスG1の温度は、350℃以下が好ましく、250℃以下がより好ましい。これによって、後続の装置の材質が加熱によって損傷することを防止することができる。この冷却後の排ガスG1の温度の下限は、ガス中の成分が析出しない温度範囲であることが好ましい。例えば150℃以上が好ましく、180℃以上がより好ましい。 The temperature of the exhaust gas G1 after cooling is preferably 350 ° C. or lower, and more preferably 250 ° C. or lower. This can prevent the material of the subsequent device from being damaged by heating. The lower limit of the temperature of the exhaust gas G1 after cooling is preferably in a temperature range in which components in the gas do not precipitate. For example, 150 degreeC or more is preferable and 180 degreeC or more is more preferable.
 「3.粉体回収工程」
 次に、本実施形態は、冷却された排ガスにCaCO、Ca(OH)(消石灰とも称する。)及び(Ca,Mg)CO(ドロマイトとも称する。)からなる群から選択される1種以上のCa化合物を添加し、集塵部材としてバグフィルター3を用いて排ガスから平均粒子径(D50)が30~100μmの粉体を回収する工程を含む。
“3. Powder recovery process”
Next, in the present embodiment, the cooled exhaust gas is selected from the group consisting of CaCO 3 , Ca (OH) 2 (also referred to as slaked lime) and (Ca, Mg) CO 3 (also referred to as dolomite). A step of adding the above Ca compound and collecting powder having an average particle size (D50) of 30 to 100 μm from the exhaust gas using the bag filter 3 as a dust collecting member.
 図2では、第1冷却塔2からの排ガスG1を配管を通してバグフィルター3に供給し、その間で、Ca化合物供給装置18から上記Ca化合物を添加し、バグフィルター3で排ガスG1から回収粉体を回収する。図中符号G2はバグフィルター3から排気されて第2冷却塔4に供給される前の排ガスを示す。 In FIG. 2, the exhaust gas G1 from the first cooling tower 2 is supplied to the bag filter 3 through a pipe, and the Ca compound is added from the Ca compound supply unit 18 between them, and the recovered powder is recovered from the exhaust gas G1 by the bag filter 3. to recover. Reference symbol G <b> 2 in the figure indicates exhaust gas before being exhausted from the bag filter 3 and supplied to the second cooling tower 4.
 回収粉体は回収粉体タンク19に供給される。その後、後述するようにガラス溶融炉1に供給されてガラス原料として再利用することができる。なお、回収粉体タンク19を設けないで、バグフィルター3で回収された回収粉体を配管で直接ガラス溶融炉1に供給してもよい。 The recovered powder is supplied to the recovered powder tank 19. Thereafter, as described later, it is supplied to the glass melting furnace 1 and can be reused as a glass raw material. Note that the recovered powder tank 19 may be directly supplied to the glass melting furnace 1 by piping without providing the recovered powder tank 19.
 Ca化合物供給装置18では、CaCO、Ca(OH)及び(Ca,Mg)COを単独で、又は組み合わせて供給することができる。これらは、排ガスG1の1Nmに対し、1.0~5.0gで供給することが好ましく、さらに好ましくは2.0~3.0gである。 In the Ca compound supply device 18, CaCO 3 , Ca (OH) 2 and (Ca, Mg) CO 3 can be supplied alone or in combination. These are preferably supplied in an amount of 1.0 to 5.0 g, more preferably 2.0 to 3.0 g, with respect to 1 Nm 3 of the exhaust gas G1.
 ここで、バグフィルター3に供給される排ガスG1中のホウ素成分、硫黄成分、塩素成分、フッ素成分等の除去率(即ち、バグフィルターでの反応性)を考慮すると、Ca化合物は、Ca(OH)及び/またはCaCOが好ましく、Ca(OH)がより好ましい。 Here, considering the removal rate of boron components, sulfur components, chlorine components, fluorine components, etc. in the exhaust gas G1 supplied to the bag filter 3 (that is, reactivity at the bag filter), the Ca compound is Ca (OH ) 2 and / or CaCO 3 are preferred, and Ca (OH) 2 is more preferred.
 また、回収原料をガラス原料に再利用する際に、ガラス中のβ-OHの上昇を低減することを考慮すると、CaCO及び/または(Ca,Mg)COが好ましく、(Ca,Mg)COがより好ましい。β―OHは、溶融ガラス中に含まれる水分であり、ガラスに含まれると燃焼効率が低下することがあるため、その含有量は少ない方がよい。 In consideration of reducing the increase in β-OH in the glass when the recovered raw material is reused as a glass raw material, CaCO 3 and / or (Ca, Mg) CO 3 is preferable, and (Ca, Mg) CO 3 is more preferred. β-OH is water contained in the molten glass, and if it is contained in the glass, the combustion efficiency may be lowered.
 一方、ガラスの安定生産(即ち、バグフィルター3でのホウ素成分、硫黄成分、塩素成分、フッ素成分等の除去率向上や、ガラス中のβ-OHの低減)を考慮すると、Ca(OH)及び/または(Ca,Mg)COが好ましく、Ca(OH)がより好ましい。 On the other hand, considering stable production of glass (that is, improvement of removal rate of boron component, sulfur component, chlorine component, fluorine component, etc. in bag filter 3 and reduction of β-OH in glass), Ca (OH) 2 And / or (Ca, Mg) CO 3 is preferred, and Ca (OH) 2 is more preferred.
 バグフィルター3は公知のものを適宜用いることができる。バグフィルター3を設けることにより、排ガスG1中の固体分を除去することができる。 A well-known bag filter 3 can be used as appropriate. By providing the bag filter 3, the solid content in the exhaust gas G1 can be removed.
 排ガスG1中にフッ素成分が含まれる場合は、第1冷却塔2からバグフィルター3へ至る経路において、排ガスG1中に上記したCa化合物を供給することで、排ガスG1中のフッ素成分を除去することができる。Ca化合物は粉状で添加するとよい。Ca化合物は、排ガスG1中のフッ素成分を吸着した後、フッ素成分とともにバグフィルター3で除去される。このようにして予め、排ガスG1中のフッ素成分を除去しておくことにより、後述のMg(OH)処理工程で、フッ素成分とMg(OH)との反応により、水に難溶のマグネシウム塩(MgF)が生成することを防止することができる。 When the fluorine component is contained in the exhaust gas G1, the above-described Ca compound is supplied into the exhaust gas G1 in the path from the first cooling tower 2 to the bag filter 3, thereby removing the fluorine component in the exhaust gas G1. Can do. The Ca compound may be added in powder form. The Ca compound is removed by the bag filter 3 together with the fluorine component after adsorbing the fluorine component in the exhaust gas G1. By removing the fluorine component in the exhaust gas G1 in advance in this way, magnesium that is hardly soluble in water due to the reaction between the fluorine component and Mg (OH) 2 in the Mg (OH) 2 treatment step described later. Formation of a salt (MgF 2 ) can be prevented.
 バグフィルター3において、粉体回収後の排ガスG2に含まれるフッ素成分の濃度は、30mg/Nm以下であることが好ましく、より好ましくは10mg/Nm以下であり、さらに好ましくは5mg/Nm以下である。これによって、後続のMg(OH)処理工程にフッ素成分が混入を防止し、水に難溶のマグネシウム塩(MgF)が生成することを防止することができる。また、バグフィルター3で回収した回収粉体にフッ素成分が含まれ、これをガラス原料として再利用する際に、清澄剤としてフッ素成分を含む組成を提供することができる。 In the bag filter 3, the concentration of the fluorine component contained in the exhaust gas G2 after powder recovery is preferably 30 mg / Nm 3 or less, more preferably 10 mg / Nm 3 or less, and even more preferably 5 mg / Nm 3. It is as follows. As a result, it is possible to prevent the fluorine component from being mixed in the subsequent Mg (OH) 2 treatment process and to prevent the formation of a magnesium salt (MgF 2 ) that is hardly soluble in water. Further, the recovered powder recovered by the bag filter 3 contains a fluorine component, and when this is reused as a glass raw material, a composition containing the fluorine component as a refining agent can be provided.
 このフッ素成分の濃度は、排ガスを定量ポンプで採取し、吸収液に吸収させ、溶液中のフッ素成分の濃度をICPで測定し、排ガス1Nmあたりのフッ素成分量から求めることができる。 The concentration of the fluorine component can be obtained from the amount of fluorine component per 1 Nm 3 of the exhaust gas by collecting the exhaust gas with a metering pump and absorbing it into the absorption liquid, measuring the concentration of the fluorine component in the solution with ICP.
 「4.Mg(OH)処理工程」
 次に、本実施形態は、粉体が回収された排ガスにMg(OH)及び水を接触させて排ガスに含まれる成分を回収液体として回収する工程を含む。
“4. Mg (OH) 2 treatment process”
Next, this embodiment includes a step of bringing Mg (OH) 2 and water into contact with the exhaust gas from which the powder has been recovered to recover the components contained in the exhaust gas as a recovery liquid.
 図2では、バグフィルター3で排ガスG1から粉体を回収した後に、排ガスG2は第2冷却塔4へ供給され、第2冷却塔4内で排ガスG2に第1の接触用液L1を接触させて、排ガスG3としてスクラバー6に供給され、続いてスクラバー6内で排ガスG3に第2の接触用液L2を接触させる。この第1の接触用液L1及び第2の接触用液L2がMg(OH)及び水を含み、第2冷却塔4及びスクラバー6で処理された後に第1の回収液体S1及び第2の回収液体S2として回収液体タンク14に回収される。 In FIG. 2, after the powder is collected from the exhaust gas G1 by the bag filter 3, the exhaust gas G2 is supplied to the second cooling tower 4, and the first contact liquid L1 is brought into contact with the exhaust gas G2 in the second cooling tower 4. Then, the exhaust gas G3 is supplied to the scrubber 6, and the second contact liquid L2 is then brought into contact with the exhaust gas G3 in the scrubber 6. The first contact liquid L1 and the second contact liquid L2 contain Mg (OH) 2 and water, and after being processed by the second cooling tower 4 and the scrubber 6, the first recovery liquid S1 and the second recovery liquid S1 The recovered liquid S2 is recovered in the recovered liquid tank 14.
 第1の接触用液L1及び第2の接触用液L2は、中和剤としてMg(OH)を含有する。本実施形態では、第2冷却塔4及びスクラバー6で使用された後、第1の回収液体S1及び第2の回収液体S2は、系内を循環する。 The first contact liquid L1 and the second contact liquid L2 contain Mg (OH) 2 as a neutralizing agent. In the present embodiment, after being used in the second cooling tower 4 and the scrubber 6, the first recovered liquid S1 and the second recovered liquid S2 circulate in the system.
 ここで、中和剤にCa成分が含まれていると、回収液体タンク14内に石膏やホウ酸カルシウム等の沈殿物が生成される。このような沈殿物は、回収液体タンク14の底部、第1冷却塔2の底部、第2冷却塔4の底部、スクラバー6の底部、またそれらをつなぐ各配管内、各装置のノズル等に付着し閉鎖する可能性がある。そのため、中和剤としてCa成分は含まれないことが望ましい。 Here, if the neutralizing agent contains a Ca component, a precipitate such as gypsum and calcium borate is generated in the recovery liquid tank 14. Such a deposit adheres to the bottom of the recovery liquid tank 14, the bottom of the first cooling tower 2, the bottom of the second cooling tower 4, the bottom of the scrubber 6, and the pipes connecting them, the nozzles of each device, and the like. And may be closed. Therefore, it is desirable that no Ca component is contained as a neutralizing agent.
 また、本実施形態によるガラス組成には所定量のMgOが含まれる。中和剤として水酸化カルシウムを用いた場合には、Mg成分が含まれないため、回収粉体中のMg成分が不足して、好ましくない。 Further, the glass composition according to the present embodiment includes a predetermined amount of MgO. When calcium hydroxide is used as a neutralizing agent, since the Mg component is not included, the Mg component in the recovered powder is insufficient, which is not preferable.
 第2冷却塔4に供給される直前の排ガスG2の温度は特に限定されない。例えば、130~180℃が好ましい。 The temperature of the exhaust gas G2 immediately before being supplied to the second cooling tower 4 is not particularly limited. For example, 130 to 180 ° C. is preferable.
 第2冷却塔4内では、排ガスG2に第1の接触用液L1を接触させる。図2に示す例では、第2冷却塔4は、排ガスG2が上部から導入される導入管部分4aと、導入管部分4aから供給される排ガスG2が下部から導入されて上部に排出する冷却塔部分4bとを有する。第1の接触用液L1は、導入部分4aの上部に設けたノズルから排ガスG2の流れ方向に向けて噴霧され、また、冷却塔部分4bの下部に設けたノズルから排ガスG2の流れに反する方向に噴霧される。 In the second cooling tower 4, the first contact liquid L1 is brought into contact with the exhaust gas G2. In the example shown in FIG. 2, the second cooling tower 4 includes an introduction pipe part 4a into which the exhaust gas G2 is introduced from the upper part, and a cooling tower in which the exhaust gas G2 supplied from the introduction pipe part 4a is introduced from the lower part and discharged to the upper part. Part 4b. The first contact liquid L1 is sprayed in the flow direction of the exhaust gas G2 from the nozzle provided in the upper portion of the introduction portion 4a, and is in the direction opposite to the flow of the exhaust gas G2 from the nozzle provided in the lower portion of the cooling tower portion 4b. Sprayed on.
 排ガスG2は第1の接触用液L1と接触することにより温度が低下して、冷却後排ガスG3として排出される。このとき排ガスG2中の成分の一部が、第1の接触用液L1に溶解してもよい。排ガスG2と接触した第1の接触用液L1は、第2冷却塔4の底部に第1の回収液体S1として貯留する。 The temperature of the exhaust gas G2 is lowered by contacting with the first contact liquid L1, and is discharged as exhaust gas G3 after cooling. At this time, a part of the components in the exhaust gas G2 may be dissolved in the first contact liquid L1. The first contact liquid L1 that has come into contact with the exhaust gas G2 is stored as a first recovered liquid S1 at the bottom of the second cooling tower 4.
 第1の接触用液L1としては、水及びMg(OH)を含む液体であることが好ましい。後述する第2の接触用液L2が水及びMg(OH)を含む液体である場合は、第1の接触用液L1は水及びMg(OH)を含む液体に限定されず、排ガスG2と接触することで排ガスG2を冷却できるものであればよい。この場合、排ガスG2中の成分を溶解するものが好ましく、水(工業用水、蒸留水等)または水溶液(溶質はガラス原料中の成分として許容されるもの)が好ましい。本実施形態では、運転開始時の第1の接触用液L1は水であり、後述の回収液体タンク14に回収される回収液体の一部を第1の接触用液L1として再利用することができる。 The first contact liquid L1 is preferably a liquid containing water and Mg (OH) 2 . When the second contact liquid L2 described later is a liquid containing water and Mg (OH) 2 , the first contact liquid L1 is not limited to a liquid containing water and Mg (OH) 2 , and the exhaust gas G2 What is necessary is just to be able to cool the exhaust gas G2 by contacting with. In this case, what dissolves the components in the exhaust gas G2 is preferable, and water (industrial water, distilled water, etc.) or an aqueous solution (solute is acceptable as a component in the glass raw material) is preferable. In the present embodiment, the first contact liquid L1 at the start of operation is water, and a part of the recovered liquid recovered in the recovery liquid tank 14 described later can be reused as the first contact liquid L1. it can.
 冷却後排ガスG3の温度は、80℃以下が好ましく、70℃以下がより好ましい。これによって、後続の装置が熱によって損傷することを防止することができる。この冷却後排ガスG3の温度の下限は、ガス中の成分が析出しない温度範囲であることが好ましい。例えば40℃以上が好ましく、60℃以上がより好ましい。 The temperature of the exhaust gas G3 after cooling is preferably 80 ° C. or lower, and more preferably 70 ° C. or lower. This can prevent subsequent devices from being damaged by heat. The lower limit of the temperature of the exhaust gas G3 after cooling is preferably within a temperature range in which components in the gas are not precipitated. For example, 40 degreeC or more is preferable and 60 degreeC or more is more preferable.
 冷却後排ガスG3は、配管5を通り、スクラバー6へ供給される。スクラバー6は公知のスクラバー(排ガス洗浄装置)を用いることができる。例えば、ベンチュリースクラバーを用いることができる。 After cooling, the exhaust gas G3 is supplied to the scrubber 6 through the pipe 5. As the scrubber 6, a known scrubber (exhaust gas cleaning device) can be used. For example, a venturi scrubber can be used.
 スクラバー6内では、冷却後排ガスG3に第2の接触用液L2を接触させる。例えば、スクラバー6の上部にノズルを設けて、第2の接触用液L2を噴霧することができる。冷却後排ガスG3に第2の接触用液L2を接触させることにより、冷却後排ガスG3中のホウ素成分が第2の接触用液L2に溶解する。このとき、冷却後排ガスG3中の、ホウ素成分以外の成分が第2の接触用液L2に溶解してもよい。 In the scrubber 6, the second contact liquid L2 is brought into contact with the exhaust gas G3 after cooling. For example, a nozzle can be provided in the upper part of the scrubber 6 to spray the second contact liquid L2. By bringing the second contact liquid L2 into contact with the exhaust gas G3 after cooling, the boron component in the exhaust gas G3 after cooling is dissolved in the second contact liquid L2. At this time, components other than the boron component in the exhaust gas G3 after cooling may be dissolved in the second contact liquid L2.
 例えば、排ガスG0が硫黄成分および/または塩素成分を含む場合は、冷却後排ガスG3中の、硫黄成分および/または塩素成分が第2の接触用液L2に溶解する。 For example, when the exhaust gas G0 contains a sulfur component and / or a chlorine component, the sulfur component and / or chlorine component in the exhaust gas G3 after cooling is dissolved in the second contact liquid L2.
 第2の接触用液L2としては、水及びMg(OH)を含む液体であることが好ましい。前述した第1の接触用液L1が水及びMg(OH)を含む液体である場合は、第2の接触用液L2は水及びMg(OH)を含む液体に限定されず、排ガスG3と接触することで排ガスG3中の、少なくともホウ素成分を溶解してガス中から除去できるものを用いる。この場合、水(工業用水、蒸留水等)または水溶液(溶質はガラス原料中の成分として許容されるもの)が好ましい。本実施形態では、運転開始時の第2の接触用液L2は水であり、後述の回収液体タンク14に回収される回収液体を第2の接触用液L2として再利用することができる。 The second contact liquid L2 is preferably a liquid containing water and Mg (OH) 2 . When the first contact liquid L1 described above is a liquid containing water and Mg (OH) 2 , the second contact liquid L2 is not limited to a liquid containing water and Mg (OH) 2 , and the exhaust gas G3. Is used, which can dissolve at least the boron component in the exhaust gas G3 and remove it from the gas. In this case, water (industrial water, distilled water, etc.) or an aqueous solution (a solute is acceptable as a component in the glass raw material) is preferable. In the present embodiment, the second contact liquid L2 at the start of operation is water, and the recovered liquid recovered in the recovery liquid tank 14 described later can be reused as the second contact liquid L2.
 排ガスを効率よく洗浄するためには、第1の接触用液L1及び第2の接触用液L2のうち第2の接触用液L2が水及びMg(OH)を含む液体であることがより好ましく、さらに、両方が水及びMg(OH)を含む液体であることが好ましい。 In order to efficiently clean the exhaust gas, the second contact liquid L2 of the first contact liquid L1 and the second contact liquid L2 is more preferably a liquid containing water and Mg (OH) 2. Preferably, both are liquids containing water and Mg (OH) 2 .
 本実施形態では、スクラバー6内に高差圧部位7を設けてもよい。例えば、冷却後排ガスG3に第2の接触用液L2が噴霧された直後、これらの混合流体は、圧力損失を生じさせる高差圧部位7を通過する。これにより、この混合流体が乱流状態となり、冷却後排ガスG3と第2の接触用液L2の混合がより充分に行われ、冷却後排ガスG3中の成分の、第2の接触用液L2への溶解をより促進させることができる。 In the present embodiment, the high differential pressure portion 7 may be provided in the scrubber 6. For example, immediately after the second contact liquid L2 is sprayed on the exhaust gas G3 after cooling, these mixed fluids pass through the high differential pressure portion 7 that causes a pressure loss. As a result, the mixed fluid becomes a turbulent state, and the exhaust gas G3 after cooling and the second contact liquid L2 are more sufficiently mixed, and the components in the exhaust gas G3 after cooling into the second contact liquid L2. Can be further promoted.
 冷却後排ガスG3と接触した後の第2の接触用液L2は、第2の回収液体S2として、スクラバー6の底部に貯留する。 The second contact liquid L2 after coming into contact with the exhaust gas G3 after cooling is stored at the bottom of the scrubber 6 as the second recovered liquid S2.
 このようにして、冷却後排ガスG3中のホウ素成分等が回収液体中に溶解して除去された清浄ガスG4を得ることができる。 In this way, it is possible to obtain the clean gas G4 from which the boron component in the exhaust gas G3 after cooling is dissolved and removed in the recovered liquid.
 本実施形態では、遠心力集塵機8を設けてもよい。例えば、清浄ガスG4は、遠心力集塵機8でミスト状の水分が除去されて排出清浄ガスG5となり、煙突10から大気へ放散される。本実施形態では、遠心力集塵機8と煙突10との間にファン9を設けてもよく、これによって第2冷却塔4の入り口から煙突10の出口までの装置内におけるガス流量を調整できる。 In this embodiment, a centrifugal dust collector 8 may be provided. For example, the clean gas G4 is discharged from the chimney 10 to the atmosphere after the mist-like water is removed by the centrifugal dust collector 8 to become the exhaust clean gas G5. In the present embodiment, a fan 9 may be provided between the centrifugal dust collector 8 and the chimney 10, whereby the gas flow rate in the apparatus from the entrance of the second cooling tower 4 to the exit of the chimney 10 can be adjusted.
 遠心力集塵機8で分離されたミスト状の水分は、遠心力集塵機8の底部に第3の回収液体S3として貯留する。 The mist-like water separated by the centrifugal dust collector 8 is stored as a third recovered liquid S3 at the bottom of the centrifugal dust collector 8.
 第1の回収液体S1は、第2冷却塔4の底部から、配管11を通じて抜き取られ、回収液体タンク14に集められる。
 第2の回収液体S2は、スクラバー6の底部から、配管12を通じて抜き取られ、回収液体タンク14に集められる。
 第3の回収液体S3は、遠心力集塵機8の底部から配管13を通じて抜き取られ、回収液体タンク14に集められる。
The first recovered liquid S <b> 1 is extracted from the bottom of the second cooling tower 4 through the pipe 11 and collected in the recovered liquid tank 14.
The second recovered liquid S2 is extracted from the bottom of the scrubber 6 through the pipe 12 and collected in the recovered liquid tank 14.
The third recovered liquid S3 is extracted from the bottom of the centrifugal dust collector 8 through the pipe 13 and collected in the recovered liquid tank 14.
 なお、回収液体タンク14には、第1の回収液体S1、第2の回収液体S2及び第3の回収液体S3のいずれか1種が回収されればよいが、全ての回収液体S1~S3を回収することで排ガスからのガラス成分の回収率を上げることができる。また、回収液体タンク14には、水及びMg(OH)で処理された後の回収液体が回収されることが好ましい。すなわち、第1の接触用液L1及び第2の接触用液L2のうち水及びMg(OH)を含む液体であるものの回収液体であることが好ましい。 Note that any one of the first recovered liquid S1, the second recovered liquid S2, and the third recovered liquid S3 may be recovered in the recovered liquid tank 14, but all the recovered liquids S1 to S3 are stored. By collecting, the recovery rate of the glass component from the exhaust gas can be increased. Further, it is preferable that the recovered liquid tank 14 recovers the recovered liquid after being treated with water and Mg (OH) 2 . That is, it is preferable that the first contact liquid L1 and the second contact liquid L2 are liquids that contain water and Mg (OH) 2 .
 図2に示す例では、第1冷却塔2とともに第2冷却塔4を備えるが、第1冷却塔によって排ガスを十分に冷却することで第2冷却塔を省略することも可能である。この場合、スクラバー6において排ガスを水及びMg(OH)と接触すればよい。 In the example shown in FIG. 2, the second cooling tower 4 is provided together with the first cooling tower 2, but the second cooling tower can be omitted by sufficiently cooling the exhaust gas by the first cooling tower. In this case, the exhaust gas may be brought into contact with water and Mg (OH) 2 in the scrubber 6.
 「5.回収液体の再利用」
 本実施形態では、回収液体を、排ガスを冷却する工程で冷却用液体として用いる。
“5. Reuse of recovered liquid”
In the present embodiment, the recovered liquid is used as a cooling liquid in the process of cooling the exhaust gas.
 図2では、回収液体が回収された回収液体タンク14はpH測定装置15およびMg(OH)添加装置16を備える。第1~第3の回収液体S1~S3は回収液体タンク14内で混合されて回収液体混合物となる。この回収液体混合物には、少なくとも排ガスG0中のホウ素成分が溶解している。回収液体タンク14内では、この回収液体混合物に対してMg(OH)を添加する。これにより、ホウ素成分とマグネシウム成分を含む液が得られる。 In FIG. 2, the recovered liquid tank 14 from which the recovered liquid is recovered includes a pH measurement device 15 and an Mg (OH) 2 addition device 16. The first to third recovered liquids S1 to S3 are mixed in the recovered liquid tank 14 to become a recovered liquid mixture. In this recovered liquid mixture, at least a boron component in the exhaust gas G0 is dissolved. In the recovered liquid tank 14, Mg (OH) 2 is added to the recovered liquid mixture. Thereby, the liquid containing a boron component and a magnesium component is obtained.
 Mg(OH)の添加により、回収液体混合物中のホウ素成分がMg(OH)と反応してホウ酸マグネシウムが生成すると考えられる。Mg(OH)の添加により得られる液は、生成したホウ酸マグネシウムと場合により未反応のホウ素成分やMg(OH)を含む。この液をホウ素成分とマグネシウム成分を含む液という。 It is believed that the addition of Mg (OH) 2 causes the boron component in the recovered liquid mixture to react with Mg (OH) 2 to produce magnesium borate. The liquid obtained by adding Mg (OH) 2 contains the produced magnesium borate and, optionally, an unreacted boron component and Mg (OH) 2 . This liquid is called a liquid containing a boron component and a magnesium component.
 ホウ素成分とマグネシウム成分を含む液はそれら成分を溶解した水溶液であることが好ましい。なお、ホウ酸マグネシウム等の液中の成分はその濃度、液温、液のpHなどの変化により充分溶解せず、回収液体混合物へのMg(OH)の添加によって多少の白濁が生じる場合がある。しかし、この白濁を生じた状態の液であっても、第1冷却塔2、第2冷却塔4及びスクラバー6の各種液体として用いることができる。 The liquid containing the boron component and the magnesium component is preferably an aqueous solution in which these components are dissolved. In addition, components in the liquid such as magnesium borate are not sufficiently dissolved due to changes in the concentration, liquid temperature, liquid pH, etc., and the addition of Mg (OH) 2 to the recovered liquid mixture may cause some cloudiness. is there. However, even the liquid in a state in which the cloudiness is generated can be used as various liquids for the first cooling tower 2, the second cooling tower 4, and the scrubber 6.
 また、ガラス溶融炉1で溶融されるガラスが無アルカガラスの場合には、Mg(OH)添加により得られる液には、塩素、フッ素、カルシウムなどが微量であるが含まれる場合がある。 Further, when the glass melted in the glass melting furnace 1 is an alkali-free glass, the liquid obtained by adding Mg (OH) 2 may contain a trace amount of chlorine, fluorine, calcium, and the like.
 なお、Mg(OH)は水に難溶であるため、Mg(OH)添加装置16において、Mg(OH)を水に分散させたスラリー(以下、Mg(OH)の水スラリーということもある。)を調製し、これを回収液体混合物に添加することが好ましい。このMg(OH)の水スラリーにおけるMg(OH)の濃度は一定でもよく、回収液体タンク14内の水位に応じて適宜変更してもよい。 In addition, since Mg (OH) 2 is hardly soluble in water, in the Mg (OH) 2 addition device 16, a slurry in which Mg (OH) 2 is dispersed in water (hereinafter referred to as a water slurry of Mg (OH) 2 is referred to. It is preferred to prepare and add this to the recovered liquid mixture. The Mg (OH) of Mg (OH) 2 in 2 water slurry concentration may be constant or may be changed according to the water level in the collection liquid tank 14.
 またMg(OH)の水スラリーが添加された液中で、未反応のMg(OH)による沈殿物の生成または白濁を防止するために、回収液体タンク14内にバブラー等の撹拌手段を設けて、この液を撹拌することが好ましい。 In addition, in the liquid to which the aqueous slurry of Mg (OH) 2 is added, a stirring means such as a bubbler is provided in the recovery liquid tank 14 in order to prevent generation of precipitates or white turbidity due to unreacted Mg (OH) 2. It is preferable to provide and stir this liquid.
 回収液体タンク14において、回収液体混合物に添加されるMg(OH)の量は、回収液体混合物中のホウ酸等のホウ素成分をマグネシウム塩に転化させるのに充分な量であることが好ましい。また回収液体混合物中に硫黄成分および/または塩素成分等が含まれている場合には、これらの成分とホウ素成分をマグネシウム塩に転化させるのに充分な量であることが好ましい。 In the recovered liquid tank 14, the amount of Mg (OH) 2 added to the recovered liquid mixture is preferably sufficient to convert a boron component such as boric acid in the recovered liquid mixture into a magnesium salt. When the recovered liquid mixture contains a sulfur component and / or a chlorine component, the amount is preferably sufficient to convert these components and the boron component into a magnesium salt.
 一方、Mg(OH)の供給量が多すぎると、液中に未反応のMg(OH)の沈殿を生じる。かかる沈殿が多く生じると、この液を冷却用液体、第1の接触用液L1または第2の接触用液L2として再利用することが難しくなるため好ましくない。 On the other hand, when the supply amount of Mg (OH) 2 is too large, precipitation of unreacted Mg (OH) 2 occurs in the liquid. When such a large amount of precipitation occurs, it is difficult to reuse this liquid as the cooling liquid, the first contact liquid L1, or the second contact liquid L2, which is not preferable.
 したがって、pH測定装置15で回収液体タンク14の液のpHを測定し、このpHが6.5~7.7の範囲内に維持されるように、Mg(OH)の水スラリーの供給量を制御することが好ましい。この液のpHが6.5以上であると、回収液体混合物中のホウ素成分等を良好にマグネシウム塩に転化させることができ、液中に残る未反応のホウ素成分等を少なくすることができる。 Accordingly, the pH of the liquid in the recovered liquid tank 14 is measured by the pH measuring device 15, and the supply amount of the aqueous slurry of Mg (OH) 2 is maintained so that this pH is maintained within the range of 6.5 to 7.7. Is preferably controlled. When the pH of this liquid is 6.5 or more, the boron component and the like in the recovered liquid mixture can be favorably converted into a magnesium salt, and the unreacted boron component and the like remaining in the liquid can be reduced.
 一方、液中でMg(OH)による沈殿または白濁が生じるのを良好に防止するには、この液のpHが7.7以下に維持されることが好ましく、7.5以下がより好ましく、7.0以下が特に好ましい。 On the other hand, in order to satisfactorily prevent precipitation or white turbidity due to Mg (OH) 2 in the liquid, the pH of the liquid is preferably maintained at 7.7 or less, more preferably 7.5 or less, 7.0 or less is particularly preferable.
 こうして得られた液は、回収液体タンク14から第1冷却塔2に供給され、冷却用液体として再利用される。 The liquid thus obtained is supplied from the recovery liquid tank 14 to the first cooling tower 2 and reused as a cooling liquid.
 また、本実施形態では、この液の一部を、第1の接触用液L1および第2の接触用液L2として再利用してもよい。すなわち回収液体タンク14内の液の一部は、循環ポンプ17を経て、必要に応じて温度調整された後、第2冷却塔4内に噴霧される第1の接触用液L1、およびスクラバー6に噴霧される第2の接触用液L2として使用することができる。 In this embodiment, a part of this liquid may be reused as the first contact liquid L1 and the second contact liquid L2. That is, a part of the liquid in the recovered liquid tank 14 passes through the circulation pump 17 and is temperature-adjusted as necessary, and then sprayed into the second cooling tower 4 and the scrubber 6. It can be used as the second contact liquid L2 sprayed on.
 <回収粉体>
 次に、バグフィルター3で回収した回収粉体について説明する。この回収粉体は、平均粒子径(D50)が30~100μmである。
<Recovered powder>
Next, the collected powder collected by the bag filter 3 will be described. The recovered powder has an average particle size (D50) of 30 to 100 μm.
 本実施形態によれば、系内でアルカリ金属が添加されないため、回収粉体は、無アルカリホウケイ酸ガラス製造用のガラス原料として用いることができる。回収粉体は、バグフィルター3から回収後に、同じライン上でガラス溶融炉1に投入されて、ガラス原料として再利用することができる。また、回収粉体は、バグフィルター3から回収後に、別のガラスの製造ラインで用いるために、取り出されてもよい。 According to this embodiment, since the alkali metal is not added in the system, the recovered powder can be used as a glass raw material for producing an alkali-free borosilicate glass. The recovered powder can be reused as a glass raw material after being recovered from the bag filter 3 and put into the glass melting furnace 1 on the same line. The recovered powder may be taken out from the bag filter 3 for use in another glass production line after being recovered.
 この回収粉体は、アルカリ成分を含むソーダライムガラスよりも融点が100℃以上高く、難溶解性である無アルカリガラス原料をガラス溶融炉1にて溶解する際に、このガラス原料に添加することに適している。この回収粉体を無アルカリガラス原料に添加することで、溶解性を向上することができ、また清澄性を向上することができる。これによって、生産性が高く、高品質の無アルカリガラスを得ることができる。 This recovered powder has a melting point of 100 ° C. or higher than soda lime glass containing an alkali component, and is added to the glass raw material when the alkali-free glass raw material that is hardly soluble is melted in the glass melting furnace 1. Suitable for By adding this recovered powder to the alkali-free glass raw material, the solubility can be improved and the clarity can be improved. Thereby, high productivity and high quality alkali-free glass can be obtained.
 回収粉体には、バグフィルター3で回収された成分として、排ガスG0中に含まれるホウ素成分、硫黄成分、塩素成分、フッ素成分等が含まれうる。また、回収粉体には、Ca化合物供給装置18から添加されるカルシウム成分が含まれうる。また、回収粉体には、回収液体タンク14から第1冷却塔2に添加される成分として、マグネシウム成分、ホウ素成分、硫黄成分、塩素成分等が含まれうる。 The recovered powder may contain boron components, sulfur components, chlorine components, fluorine components, etc. contained in the exhaust gas G0 as components recovered by the bag filter 3. Further, the recovered powder may contain a calcium component added from the Ca compound supply device 18. Further, the recovered powder may include a magnesium component, a boron component, a sulfur component, a chlorine component, and the like as components added to the first cooling tower 2 from the recovered liquid tank 14.
 回収粉体は、酸化物基準の質量比でMgO/(CaO+MgO)が0.1~1.0であることが好ましく、より好ましくは0.1~0.8であり、さらに好ましくは0.1~0.4である。これによって、ガラス原料として再利用しやすい組成を提供することができる。 The recovered powder preferably has a MgO / (CaO + MgO) ratio of 0.1 to 1.0, more preferably 0.1 to 0.8, and still more preferably 0.1 by mass ratio based on oxide. ~ 0.4. This can provide a composition that can be easily reused as a glass raw material.
 排ガスG0に清澄剤成分としてフッ素成分が含まれる場合には、バグフィルター3でカルシウム成分にフッ素成分が吸着されてともに回収粉体として回収することができる。 When the fluorine component is contained in the exhaust gas G0 as a clarifier component, the fluorine component is adsorbed on the calcium component by the bag filter 3 and can be recovered together as a recovered powder.
 回収粉体は、粉体全体に対しフッ素成分が酸化物基準で0.1~2.0質量%であることが好ましく、より好ましくは0.3~1.0質量%である。これによって、ガラス原料として再利用する際に清澄剤としてフッ素を含む組成を提供することができる。回収粉体に含まれるフッ素成分は、フッ化カルシウム、フッ化マグネシウム等を挙げることができる。 In the recovered powder, the fluorine component is preferably 0.1 to 2.0% by mass, more preferably 0.3 to 1.0% by mass, based on the oxide, with respect to the entire powder. Thereby, when reusing as a glass raw material, the composition containing a fluorine as a clarifier can be provided. Examples of the fluorine component contained in the recovered powder include calcium fluoride and magnesium fluoride.
 ガラス溶融炉1で、重油などの燃料を用いる場合、硫黄成分が排ガスG0に混入することがある。この場合、排ガス処理の系内に硫黄成分が循環して濃縮されることがある。この場合は、回収粉体をガラス原料として再利用する際に、硫黄成分の増加分を考慮して、配合量を調整すればよい。 When using fuel such as heavy oil in the glass melting furnace 1, sulfur components may be mixed into the exhaust gas G0. In this case, sulfur components may be circulated and concentrated in the exhaust gas treatment system. In this case, when the recovered powder is reused as a glass raw material, the blending amount may be adjusted in consideration of the increase in the sulfur component.
 一方、ガラス溶融炉1で、硫黄成分の含有量が少ない燃料を用いる場合は、硫黄成分が濃縮されることを防止することができるため、回収粉体の全量をガラス原料として再利用することも可能である。 On the other hand, in the case of using a fuel with a low sulfur component content in the glass melting furnace 1, it is possible to prevent the sulfur component from being concentrated, so that the entire recovered powder can be reused as a glass raw material. Is possible.
 この場合、ガラス溶融炉1から捕集される排ガスG0中の硫黄酸化物ガスの体積濃度が500vol.ppm以下となるようにガラス原料を溶融することが好ましく、より好ましくは50vol.ppm以下であり、さらには硫黄酸化物ガスを実質的に含まないことが一層好ましい。このような溶解方法としては、例えばガス燃焼、電気加熱等がある。 In this case, the volume concentration of the sulfur oxide gas in the exhaust gas G0 collected from the glass melting furnace 1 is 500 vol. It is preferable to melt the glass raw material so as to be equal to or lower than ppm, and more preferably 50 vol. More preferably, it is not more than ppm, and further substantially does not contain sulfur oxide gas. Examples of such a melting method include gas combustion and electric heating.
 ここで、排ガスG0中の硫黄酸化物ガスとしては、主にSO及びSOを挙げることができる。 Here, examples of the sulfur oxide gas in the exhaust gas G0 include SO 3 and SO 2 .
 [回収粉体の粒子径]
 回収粉体の平均粒子径(D50)の下限値としては、30μm以上であればよいが、より好ましくは35μm以上であり、さらに好ましくは40μm以上である。一方、上限値としては、100μm以下であればよいが、より好ましくは80μm以下であり、さらに好ましくは60μm以下である。
[Particle size of recovered powder]
The lower limit of the average particle diameter (D50) of the recovered powder may be 30 μm or more, more preferably 35 μm or more, and further preferably 40 μm or more. On the other hand, the upper limit value may be 100 μm or less, more preferably 80 μm or less, and still more preferably 60 μm or less.
 回収粉体を、普通溶融法で溶融させる方法に用いる場合、溶融ガラス中における気泡の発生が抑えられやすい点からも、平均粒子径(D50)は100μm以下であることが好ましい。 When the recovered powder is used in a method of melting by a normal melting method, the average particle size (D50) is preferably 100 μm or less from the viewpoint of easily suppressing the generation of bubbles in the molten glass.
 また、回収粉体の体積基準の90%累計粒子径(D90)としては、200μm以下が好ましく、より好ましくは150μm以下であり、さらに好ましくは100μm以下であり、一層好ましくは80μm以下である。 The volume-based 90% cumulative particle size (D90) of the recovered powder is preferably 200 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, and even more preferably 80 μm or less.
 上記した平均粒子径(D50)及び体積基準の90%累計粒子径(D90)は、バグフィルター3の炉布の種類、厚さ及び通気性等によって調整することができる。 The above average particle diameter (D50) and volume-based 90% cumulative particle diameter (D90) can be adjusted by the type, thickness, air permeability, etc. of the bag cloth of the bag filter 3.
 ここで、平均粒子径(D50)は、粒子が1mm未満の場合にレーザー回析散乱法を用いて測定された粒径分布曲線における、体積累計50%のメディアン径である。 Here, the average particle diameter (D50) is a median diameter of 50% cumulative volume in a particle size distribution curve measured using a laser diffraction scattering method when the particles are less than 1 mm.
 また、体積基準の90%累計粒子径(D90)は、粒子が1mm未満の場合にレーザー回析散乱法を用いて測定された粒径分布曲線における、体積累計90%の粒子径である。 The volume-based 90% cumulative particle diameter (D90) is a particle diameter of 90% cumulative volume in a particle size distribution curve measured using a laser diffraction scattering method when the particles are less than 1 mm.
 [造粒体]
 本実施形態によって回収された回収粉体は、造粒体として提供してもよい。造粒体の製造方法としては、粉体と任意の液体を混合して、公知の造粒法を適宜用いて造粒することができる。例えば、転動造粒などの乾式造粒法またはスプレードライ法などの湿式造粒法が好適に用いられる。粉体と混合する液体としては、第1~第3の回収液体S1~S3を用いることで、排ガスからのガラス原料の回収率を上げることができる。
[Granulated body]
The recovered powder recovered by the present embodiment may be provided as a granulated body. As a manufacturing method of a granulated body, it can granulate by mixing powder and arbitrary liquids and using a well-known granulation method suitably. For example, a dry granulation method such as rolling granulation or a wet granulation method such as spray drying is preferably used. By using the first to third recovery liquids S1 to S3 as the liquid to be mixed with the powder, the glass raw material recovery rate from the exhaust gas can be increased.
 また、回収粉体にアルカリ土類金属成分及びホウ酸成分が含まれることで、造粒体においてアルカリ土類金属のホウ酸塩水和物を生成することができる。造粒体にアルカリ土類金属のホウ酸塩水和物が含まれることで、造粒体の強度を向上することができる。アルカリ土類金属としては、Ca及び/またはSrが好ましい。特にCaは粉体回収工程で添加される成分であるため、回収粉体に含まれている。このCa成分はドロマイト((Ca,Mg)CO)の形態で添加されることで、カルシウムのホウ酸塩水和物をより生成しやすくすることができる。 Moreover, since the alkaline powder metal component and the boric acid component are contained in the recovered powder, an alkaline earth metal borate hydrate can be generated in the granulated body. By containing the alkaline earth metal borate hydrate in the granulated body, the strength of the granulated body can be improved. As the alkaline earth metal, Ca and / or Sr are preferable. In particular, Ca is a component added in the powder recovery process, and thus is included in the recovered powder. By adding this Ca component in the form of dolomite ((Ca, Mg) CO 3 ), calcium borate hydrate can be more easily generated.
 また、回収粉体にマグネシウム成分が含まれることで、造粒体とするときに、造粒体の強度を向上することができる。Mgは第2冷却塔4及びスクラバー6で添加される成分であるため、回収粉体に含まれている。 Moreover, when the recovered powder contains a magnesium component, the strength of the granulated body can be improved when the granulated body is formed. Since Mg is a component added in the second cooling tower 4 and the scrubber 6, it is contained in the recovered powder.
 <ガラス製品の製造方法>
 本実施形態によれば、上記したガラスの製造方法において得られた溶融ガラスを成形して徐冷することで最終製品として得ることができる。なおガラスの最終製品は、室温で固体状であり実質的に流動性を有していないガラスが、一部または全部に用いられた製品であり、ガラス表面が加工されているもの等も含まれる。
<Glass product manufacturing method>
According to this embodiment, it can obtain as a final product by shape | molding the molten glass obtained in the above-mentioned glass manufacturing method, and cooling it slowly. In addition, the final product of glass is a product in which glass that is solid at room temperature and has substantially no fluidity is used for part or all of the glass, and the glass surface is processed. .
 図3は、本実施形態のガラスの製造方法の一例を示すフロー図である。符号101はガラス溶融工程であり、上記したガラス溶融工程に相当する。 FIG. 3 is a flowchart showing an example of the glass manufacturing method of the present embodiment. Reference numeral 101 denotes a glass melting step, which corresponds to the glass melting step described above.
 まず、ガラス溶融工程101で得た溶融ガラスを、成形工程102で目的の形状に成形した後、徐冷工程103にて公知の方法で徐冷する。その後、必要に応じて後加工工程104において切断や研磨など、公知の方法で後加工を施すことによりガラスが得られる。 First, the molten glass obtained in the glass melting step 101 is formed into a target shape in the forming step 102 and then slowly cooled in a slow cooling step 103 by a known method. Thereafter, the glass is obtained by performing post-processing by a known method such as cutting or polishing in the post-processing step 104 as necessary.
 成形工程102はフロート法、ダウンドロー法、フュージョン法な等の公知の方法で行うことができる。フロート法は、溶融スズ上で溶融ガラスを板状に成形する方法である。本実施形態では、フロート法等によって溶融ガラスを板状に成形することが好ましい。 The forming step 102 can be performed by a known method such as a float method, a down draw method, or a fusion method. The float process is a method of forming molten glass into a plate shape on molten tin. In the present embodiment, the molten glass is preferably formed into a plate shape by a float method or the like.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年11月15日出願の日本特許出願2012-250944に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2012-250944 filed on November 15, 2012, the contents of which are incorporated herein by reference.
1 ガラス溶融炉
2 第1冷却塔
3 バグフィルター
4 第2冷却塔
5、11、12、13 配管
6 スクラバー
7 高差圧部位
8 遠心力集塵機
9 ファン
10 煙突
14 回収液体タンク
15 pH測定装置
16 Mg(OH)添加装置
17 循環ポンプ
18 Ca化合物供給装置
19 回収粉体タンク
G0、G1、G2 排ガス
G3 冷却後排ガス
G4 清浄ガス
G5 排出清浄ガス
L1 第1の接触用液
L2 第2の接触用液
S1 第1の回収液体
S2 第2の回収液体
S3 第3の回収液体
101 ガラス溶融工程(造粒体溶融工程)
102 成形工程
103 徐冷工程
104 後加工工程
1001 ガラス溶融・排ガス捕集工程
1002 排ガス冷却工程
1003 集塵部材での粉体回収工程
1004 Mg(OH)及び水での液体回収工程
1005 排気工程
DESCRIPTION OF SYMBOLS 1 Glass melting furnace 2 1st cooling tower 3 Bag filter 4 2nd cooling tower 5, 11, 12, 13 Pipe 6 Scrubber 7 High differential pressure part 8 Centrifugal dust collector 9 Fan 10 Chimney 14 Recovery liquid tank 15 pH measuring device 16 Mg (OH) 2 addition device 17 circulating pump 18 Ca compound supply device 19 recovered powder tanks G0, G1, G2 exhaust gas G3 cooled exhaust gas G4 clean gas G5 exhaust clean gas L1 first contact liquid L2 second contact liquid S1 First recovered liquid S2 Second recovered liquid S3 Third recovered liquid 101 Glass melting step (granulated material melting step)
102 Molding process 103 Gradual cooling process 104 Post-processing process 1001 Glass melting / exhaust gas collection process 1002 Exhaust gas cooling process 1003 Powder recovery process 1004 at the dust collecting member Liquid recovery process 1005 with Mg (OH) 2 and water Exhaust process

Claims (10)

  1.  酸化物基準の質量百分率で、SiO:50~73%、Al:10.5~24%、B:0.1~12%、MgO:0.5~10%、CaO:0.5~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%、Cl:0.01~0.35%、F:0.01~0.15%、及びSO:0.0001~0.0025%を含み、MgO+CaO+SrO+BaO:8~29.5%、MgO/(MgO+CaO):0.1~0.8である無アルカリガラスを製造する方法であって、
     ガラス原料を溶融し排ガスを捕集する工程、
     前記排ガスに冷却用液体を接触させて排ガスを冷却する工程、
     前記冷却された排ガスにCaCO、Ca(OH)及び(Ca,Mg)COからなる群から選択される1種以上を添加し、集塵部材を用いて排ガスから平均粒子径(D50)が30~100μmの粉体を回収する工程、及び
     前記粉体が回収された排ガスにMg(OH)及び水を接触させて排ガスに含まれる成分を回収液体として回収する工程を含み、
     前記回収液体を、前記排ガスを冷却する工程で前記冷却用液体として用いる、
     無アルカリガラスの製造方法。
    By mass percentage based on oxide, SiO 2 : 50 to 73%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0.1 to 12%, MgO: 0.5 to 10%, CaO : 0.5 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5%, Cl: 0.01 to 0.35%, F: 0.01 Manufactures alkali-free glass containing ˜0.15% and SO 3 : 0.0001˜0.0025%, MgO + CaO + SrO + BaO: 8˜29.5%, MgO / (MgO + CaO): 0.1˜0.8 A way to
    A process of melting glass raw material and collecting exhaust gas,
    Cooling the exhaust gas by bringing a cooling liquid into contact with the exhaust gas,
    One or more selected from the group consisting of CaCO 3 , Ca (OH) 2 and (Ca, Mg) CO 3 is added to the cooled exhaust gas, and an average particle diameter (D50) from the exhaust gas using a dust collecting member Recovering a powder of 30 to 100 μm, and contacting the exhaust gas from which the powder is recovered with Mg (OH) 2 and water to recover the components contained in the exhaust gas as a recovery liquid,
    The recovered liquid is used as the cooling liquid in the step of cooling the exhaust gas.
    A method for producing alkali-free glass.
  2.  前記集塵部材を用いて回収した粉体を前記ガラス原料に添加して溶融する、請求項1に記載の無アルカリガラスの製造方法。 The method for producing alkali-free glass according to claim 1, wherein the powder collected using the dust collecting member is added to the glass raw material and melted.
  3.  前記集塵部材を用いて回収した粉体は、酸化物基準の質量比でMgO/(CaO+MgO)が0.1~1.0である、請求項1または2に記載の無アルカリガラスの製造方法。 The method for producing an alkali-free glass according to claim 1 or 2, wherein the powder recovered using the dust collecting member has an MgO / (CaO + MgO) ratio of 0.1 to 1.0 based on an oxide-based mass ratio. .
  4.  前記集塵部材を用いて粉体を回収する工程は、粉体回収後の排ガスに含まれるフッ素成分が30mg/Nm以下である、請求項1から3のいずれか1項に記載の無アルカリガラスの製造方法。 The step of recovering powder using the dust collecting member is alkali-free according to any one of claims 1 to 3, wherein a fluorine component contained in the exhaust gas after powder recovery is 30 mg / Nm 3 or less. Glass manufacturing method.
  5.  前記集塵部材を用いて回収した粉体は、フッ素成分が酸化物基準で0.1~2.0質量%である、請求項1から4のいずれか1項に記載の無アルカリガラスの製造方法。 The alkali-free glass production according to any one of claims 1 to 4, wherein the powder collected using the dust collecting member has a fluorine component of 0.1 to 2.0 mass% based on oxides. Method.
  6.  前記集塵部材を用いて回収した粉体は、体積基準の90%累計粒子径(D90)が200μm以下である、請求項1から5のいずれか1項に記載の無アルカリガラスの製造方法。 The method for producing alkali-free glass according to any one of claims 1 to 5, wherein the powder collected using the dust collecting member has a volume-based 90% cumulative particle diameter (D90) of 200 µm or less.
  7.  前記ガラス原料は、捕集される排ガス中の硫黄酸化物ガスの濃度が500vol.ppm以下となるように溶融される、請求項1から6のいずれか1項に記載の無アルカリガラスの製造方法。 The glass material has a sulfur oxide gas concentration of 500 vol. The manufacturing method of the alkali free glass of any one of Claim 1 to 6 fuse | melted so that it may become ppm or less.
  8.  前記排ガスからホウ素成分を回収する、請求項1から7のいずれか1項に記載の無アルカリガラスの製造方法。 The method for producing alkali-free glass according to any one of claims 1 to 7, wherein a boron component is recovered from the exhaust gas.
  9.  前記ガラスはアルカリ金属酸化物の含有量が酸化物基準の質量百分率で1%以下である、請求項1から8のいずれか1項に記載の無アルカリガラスの製造方法。 The method for producing an alkali-free glass according to any one of claims 1 to 8, wherein the glass has an alkali metal oxide content of 1% or less in terms of a mass percentage based on the oxide.
  10.  前記ガラス原料を溶融した後に、溶融ガラスを板状に成形する、請求項1から9のいずれか1項に記載の無アルカリガラスの製造方法。 The method for producing alkali-free glass according to any one of claims 1 to 9, wherein the molten glass is formed into a plate shape after melting the glass raw material.
PCT/JP2013/079170 2012-11-15 2013-10-28 Method for producing alkali-free glass WO2014077114A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157011246A KR102086435B1 (en) 2012-11-15 2013-10-28 Method for producing alkali-free glass
JP2014546925A JP6075383B2 (en) 2012-11-15 2013-10-28 Method for producing alkali-free glass
CN201380059794.2A CN104797537B (en) 2012-11-15 2013-10-28 The manufacture method of alkali-free glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-250944 2012-11-15
JP2012250944 2012-11-15

Publications (1)

Publication Number Publication Date
WO2014077114A1 true WO2014077114A1 (en) 2014-05-22

Family

ID=50731032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079170 WO2014077114A1 (en) 2012-11-15 2013-10-28 Method for producing alkali-free glass

Country Status (5)

Country Link
JP (1) JP6075383B2 (en)
KR (1) KR102086435B1 (en)
CN (1) CN104797537B (en)
TW (1) TW201429913A (en)
WO (1) WO2014077114A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117628A (en) * 2014-12-24 2016-06-30 日本電気硝子株式会社 Production method of glass fiber
WO2017179364A1 (en) * 2016-04-15 2017-10-19 日本電気硝子株式会社 Method for manufacturing glass product
US20180265399A1 (en) * 2016-05-03 2018-09-20 Lg Chem, Ltd. Borosilicate glass, light guide plate comprising the same and fabricating methods thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191913A1 (en) * 2016-05-03 2017-11-09 주식회사 엘지화학 Borosilicate glass, light guide plate comprising same, and method for manufacturing same light guide plate
JP6794917B2 (en) * 2017-04-24 2020-12-02 Agc株式会社 Exhaust gas treatment method, exhaust gas treatment equipment, glass article manufacturing equipment and glass article manufacturing method
CN111408262A (en) * 2020-04-29 2020-07-14 江苏琥珀环境技术有限公司 Device and method for dedusting and purifying tail gas of glass melting furnace
JP7391000B2 (en) * 2020-10-09 2023-12-04 双葉電子工業株式会社 Desiccant composition, sealing structure, organic EL device, and method for manufacturing an organic EL device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238236A (en) * 2003-02-05 2004-08-26 Nippon Electric Glass Co Ltd Glass melting method and glass melting equipment
WO2009072612A1 (en) * 2007-12-05 2009-06-11 Asahi Glass Co., Ltd. Process for producing boron-containing glass product and method for purifying waste gas generated in production of boron-containing glass product
JP2011255361A (en) * 2010-06-11 2011-12-22 Central Res Inst Of Electric Power Ind Gas treatment method, gas treatment facility, pulverized coal thermal power generation system, and gaseous boron compound removing agent
WO2012161274A1 (en) * 2011-05-25 2012-11-29 旭硝子株式会社 Method for manufacturing granulated body, method for manufacturing molten glass, and method for manufacturing glass article

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2444237B2 (en) * 1974-09-16 1976-12-09 METHOD OF REDUCING CORROSION OF DEVICES ASSOCIATED WITH GLASS MELTING FURNACES
EP0305584A3 (en) * 1987-08-29 1989-09-20 Himly, Holscher GmbH &amp; Co. Process for the treatment, especially for the neutralization of waste gases
US5636240A (en) * 1994-11-16 1997-06-03 Industrial Technology Research Institute Air pollution control process and apparatus for glass furnace
JP2003010633A (en) * 2001-07-04 2003-01-14 Asahi Glass Co Ltd Gas treatment method
CN1321721C (en) * 2002-09-09 2007-06-20 旭硝子株式会社 Method of dealing with gases containing boric acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238236A (en) * 2003-02-05 2004-08-26 Nippon Electric Glass Co Ltd Glass melting method and glass melting equipment
WO2009072612A1 (en) * 2007-12-05 2009-06-11 Asahi Glass Co., Ltd. Process for producing boron-containing glass product and method for purifying waste gas generated in production of boron-containing glass product
JP2011255361A (en) * 2010-06-11 2011-12-22 Central Res Inst Of Electric Power Ind Gas treatment method, gas treatment facility, pulverized coal thermal power generation system, and gaseous boron compound removing agent
WO2012161274A1 (en) * 2011-05-25 2012-11-29 旭硝子株式会社 Method for manufacturing granulated body, method for manufacturing molten glass, and method for manufacturing glass article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117628A (en) * 2014-12-24 2016-06-30 日本電気硝子株式会社 Production method of glass fiber
WO2017179364A1 (en) * 2016-04-15 2017-10-19 日本電気硝子株式会社 Method for manufacturing glass product
US20180265399A1 (en) * 2016-05-03 2018-09-20 Lg Chem, Ltd. Borosilicate glass, light guide plate comprising the same and fabricating methods thereof
US10662107B2 (en) * 2016-05-03 2020-05-26 Lg Chem, Ltd. Borosilicate glass, light guide plate comprising the same and fabricating methods thereof

Also Published As

Publication number Publication date
KR102086435B1 (en) 2020-03-09
TW201429913A (en) 2014-08-01
CN104797537A (en) 2015-07-22
JPWO2014077114A1 (en) 2017-01-05
JP6075383B2 (en) 2017-02-08
KR20150087203A (en) 2015-07-29
CN104797537B (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6075383B2 (en) Method for producing alkali-free glass
JP5954319B2 (en) Granule manufacturing method, molten glass manufacturing method, and glass article manufacturing method
US10173917B2 (en) Method for producing granules and method for producing glass product
TWI529142B (en) Granulation and manufacturing method thereof, manufacturing method of molten glass, and manufacturing method of glass article
CN103402917A (en) Method and device for recovering boric acid
RU2584474C1 (en) Method of producing multicomponent tellurite glass
RU2725352C2 (en) Gel precursor of glass
JP2015514655A (en) Methods for producing glass, glass-ceramics and their use
CN105555730A (en) Method for regenerating molten salt for chemical reinforcement of glass
JP2010132541A (en) Method for producing alkali-free glass
CN110227702A (en) A method of flux is prepared using chemical industry abraum salt
CN105060326B (en) The technique that AZS solid wastes prepare sodium metaaluminate
US20220242770A1 (en) Method for producing mixed raw material, method for producing molten glass, method for producing glass article, apparatus for producing molten glass, and apparatus for producing glass article
Goltsman et al. Modern fluxing materials and analysis of their impact on silicate structures: A review
JP3662966B2 (en) Amorphous sodium silicate / metal sulfate composite powder and method for producing the same
JP2015509476A (en) Method for producing glass, glass ceramics and use thereof
JP2008272531A (en) Treatment method of fluoride sludge and waste asbestos
JP2019182686A (en) Manufacturing method of chemically reinforced glass
EP2328841A1 (en) Manufacture of a material on the basis of calcium- and/or magnesium carbonate having a reduced decrepitation tendency
Davkova et al. Preparation of precipitated batch compositions for glass ceramics in the system SiO2–Al2O3–Li2O–TiO2–B2O3–ZnO–MgO
US20240279769A1 (en) Lithium reclamation from glass-based materials by water-driven extraction
CN117843025A (en) Method for preparing artificial fluorite by using fluorine-containing waste acid and artificial fluorite
KR20060101590A (en) Method treating combustion exhaust gas of glass melter
WO2016118013A1 (en) A method for producing glass
CN104829121A (en) Nd2O3-containing glass flux and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546925

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157011246

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854497

Country of ref document: EP

Kind code of ref document: A1