WO2014077084A1 - Laminated heat exchanger - Google Patents
Laminated heat exchanger Download PDFInfo
- Publication number
- WO2014077084A1 WO2014077084A1 PCT/JP2013/078350 JP2013078350W WO2014077084A1 WO 2014077084 A1 WO2014077084 A1 WO 2014077084A1 JP 2013078350 W JP2013078350 W JP 2013078350W WO 2014077084 A1 WO2014077084 A1 WO 2014077084A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheet
- heat exchanger
- tube
- laminated heat
- connecting portion
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
Definitions
- the present invention relates to a laminated heat exchanger used for a water-cooled charge air cooler or the like.
- JP7-112775U discloses a stacked heat exchanger in which a plurality of tube sheets formed by folding a single plate are stacked, and a tank is provided at the end opposite to the folded side of the tube sheet.
- the rigidity of the core may be increased by joining and connecting the folded portions of a plurality of tube sheets with one side plate so as to ensure durability against vibration.
- the present invention has been made in view of such technical problems, and an object of the present invention is to provide a laminated heat exchanger that can relieve stress concentration due to thermal expansion while ensuring the rigidity of the core.
- a laminated heat exchanger formed by laminating a plurality of tube sheets, wherein the tube sheet is composed of a first sheet and a second sheet, and is laminated at one end in the laminating direction.
- One tube sheet in which a directional medium flow path is formed and a circulation medium flow path communicating with the lamination direction medium flow path is formed between the first sheet and the second sheet, and is laminated adjacently
- the first sheet of the second tube sheet and the second sheet of the other tube sheet are connected by a connecting portion at an end opposite to the stacking direction medium flow path, and are connected by the connecting portion and the connecting portion.
- the first sheet and the second sheet are provided with a laminated heat exchanger formed from a single plate member.
- FIG. 1A is a schematic configuration diagram illustrating a laminated heat exchanger according to an embodiment of the present invention.
- FIG. 1B is an exploded configuration diagram of the laminated heat exchanger according to the embodiment of the present invention.
- FIG. 2 is a perspective view showing the sheet member.
- 3 is a cross-sectional view taken along the line III-III in FIG. 4 is a view IV in FIG.
- FIG. 5 is a perspective view showing a plate.
- FIG. 1A shows a schematic configuration of a laminated heat exchanger according to an embodiment of the present invention.
- FIG. 1B is an exploded configuration diagram of the laminated heat exchanger according to the embodiment of the present invention.
- the laminated heat exchanger 1 includes an upstream joint 2 connected to the upstream side of the flow path of engine cooling water, a downstream joint 3 connected to the downstream side of the flow path, a base member 4, and a core 5. And is installed in an air intake manifold (not shown).
- the base member 4 includes an inflow hole 41 through which cooling water flows into the core 5, an outflow hole 42 through which cooling water flows out of the core 5, bolts and nuts in the air intake manifold, and the laminated heat exchanger 1.
- a plurality of mounting holes 43 are provided for fixing with a.
- the upstream joint 2 is attached to the inflow hole 41 of the base member, and the downstream joint 3 is attached to the outflow hole 42 of the base member 4. And each is connected with piping of the flow path of a cooling water, and distribute
- FIG. Thereby, when the air in an air intake manifold passes the core 5, heat exchange is performed between the cooling water and the intake air is cooled.
- the core 5 is configured by laminating a plurality of tube sheets 6 and joined to the base member 4 on one surface in the laminating direction. Further, fins 7 are disposed between the tube sheets 6. By providing the fins 7, the surface area of the core 5 is increased, and the heat exchange efficiency is increased.
- the tube sheet 6 includes a first sheet 8 and a second sheet 9. Between the 1st sheet
- the channel 10 will be described in detail later.
- one end of the core 5 communicates with the upstream joint 2, communicates with the inflow side tank 11 for allowing cooling water to flow into the flow paths 10 in the plurality of tube sheets 6, and the downstream side joint 3, and includes a plurality of tubes.
- An outflow side tank 12 through which cooling water flows out from the flow path 10 in the sheet 6 is formed.
- the first sheet 8 of one tube sheet 6 and the second sheet 9 of the other tube sheet 6 that are adjacently joined to each other are connected by a connecting portion 13, and the first sheet 8 and the second sheet 9 are connected.
- the connecting portion 13 is formed from a single sheet member 14.
- FIG. 2 is a perspective view showing the sheet member.
- FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
- the sheet member 14 is obtained by press-molding the plate 14a and forming the first sheet 8, the second sheet 9, and the connecting portion 13 as described above.
- the plate 14a is provided with two burrings 15 at both ends. And the groove
- the plate 14a is bent at the connecting portion 13 and the flanges of the burrings 15 at both ends are butted and joined so that the first sheet 8 and the second sheet 9 face each other in parallel with a gap at the height of the butted flanges.
- the sheet member 14 thus formed is formed.
- ⁇ Joining of each part is performed by previously brazing a part where each part comes into contact with a brazing material and brazing and fixing in a high temperature furnace in an assembled state.
- the tube sheet 6 includes a rib 82 and a plate base surface 83 provided on the first sheet 8 of one sheet member stacked adjacent to each other, and a rib 92 and a plate provided on the second sheet 9 of the other sheet member.
- a flow path 10 is formed by joining the base surface 93 and circulating the cooling water in the tube sheet 6 by the grooves 81 and 91 facing each other.
- the burring 15 of the first sheet 8 and the burring 15 of the second sheet 9 that are abutted by the flange communicate with each other in the stacking direction of the sheet members 14, and a plurality of sheet members 14 are stacked and joined.
- the inflow side tank 11 and the outflow side tank 12 communicated by the flow path 10 are formed.
- the plate base surfaces 83 and 93 are joined by brazing as described above, the joint portion of the plate base surfaces 83 and 93, the bent portion between the first sheet 8 and the connecting portion 13, and the second sheet When the bent part between 9 and the connecting part 13 is separated, the bent part of the connecting part 13 can easily absorb the distortion when the tube sheet 6 is thermally expanded.
- the strain when the tube sheet 6 thermally expands due to the circulation of a high-temperature medium can be absorbed by the connecting portion 13, the stress concentration around the joint portion of the tube sheet 6 and the flow path 10 can be alleviated.
- connecting portion 13 at one end in the longitudinal direction of the tube sheet 6, it is possible to effectively absorb the distortion when the tube sheet 6 is thermally expanded, and the stress concentration around the joint portion of the tube sheet 6 and the flow path 10. Can be relaxed.
- seat 9 of the tube sheet 6 the junction part of the 1st sheet
- the present invention is applied to a water-cooled charge air cooler installed in an air intake manifold, but may be applied to, for example, an oil cooler or an EGR cooler.
- the connecting portion 13 may be provided with a recess 131 such as a groove. Thereby, it becomes easier to absorb the distortion when the tube sheet 6 is thermally expanded, and stress concentration around the joint portion of the tube sheet 6 and the flow path 10 can be alleviated.
- the convex part on the back side obtained by press-molding the groove or the like does not protrude to the outer side. It can be set as the structure which absorbs the distortion when 6 heat-expands.
- seat member 14 is formed from the one plate 14a, as shown in FIG. 5, the one plate 14b of the shape where the some plate 14a was connected in the staggered form. A sheet member may be formed. Thereby, the plurality of plates 14a can be combined into one plate 14b, so that the number of parts can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Disclosed is a laminated heat exchanger configured by laminating a plurality of tube sheets, wherein: each of the tube sheets is configured from a first sheet and a second sheet; a lamination direction-medium flow channel is formed at one end of each of the tube sheets, said lamination direction-medium flow channel communicating in the lamination direction; a circulating medium flow channel that communicates with the lamination direction-medium flow channel is formed between the first sheet and the second sheet; the first sheet of one tube sheet and the second sheet of the other tube sheet are connected to each other by means of a connecting section at an end portion on the reverse side of the laminating direction-medium flow channel, said one tube sheet and said the other tube sheet being laminated adjacent to each other; and the connecting section, and the first sheet and the second sheet connected to each other by means of the connecting section are formed using one plate member.
Description
本発明は、水冷式チャージエアクーラ等に用いられる積層熱交換器に関する。
The present invention relates to a laminated heat exchanger used for a water-cooled charge air cooler or the like.
JP7-12775Uは、一枚のプレートを折り返して形成したチューブシートを複数積層し、チューブシートの折り返し側と反対側の端部にタンクを設けた積層熱交換器を開示している。
JP7-112775U discloses a stacked heat exchanger in which a plurality of tube sheets formed by folding a single plate are stacked, and a tank is provided at the end opposite to the folded side of the tube sheet.
上記積層熱交換器においては、振動に対する耐久性を確保できるように、複数のチューブシートの折り返し部を一枚のサイドプレートと接合して連結することで、コアの剛性を高める場合がある。
In the laminated heat exchanger, the rigidity of the core may be increased by joining and connecting the folded portions of a plurality of tube sheets with one side plate so as to ensure durability against vibration.
しかしながら、上記のように一枚のサイドプレートに複数のチューブシートを接合して連結すると、チューブシートの両端がタンクとサイドプレートの接合部とで拘束された状態になるので、高温の媒体が流通してチューブシートが熱膨張した場合の歪の逃げ場が無く、積層したチューブシートの接合部や、媒体の流路周辺に応力が集中するという問題があった。
However, when a plurality of tube sheets are joined and connected to a single side plate as described above, both ends of the tube sheet are constrained by the joint between the tank and the side plate, so that a high-temperature medium flows. As a result, there is no strain escape when the tube sheet is thermally expanded, and there is a problem that stress is concentrated around the joined portion of the laminated tube sheets and around the flow path of the medium.
本発明は、このような技術的課題に鑑みてなされたもので、コアの剛性を確保しつつ熱膨張による応力集中を緩和できる積層熱交換器を提供することを目的とする。
The present invention has been made in view of such technical problems, and an object of the present invention is to provide a laminated heat exchanger that can relieve stress concentration due to thermal expansion while ensuring the rigidity of the core.
本発明のある態様によれば、複数のチューブシートを積層してなる積層熱交換器であって、前記チューブシートは、第1シートと第2シートとからなり、一端に積層方向に連通する積層方向媒体流路が形成されるとともに、前記第1シートと前記第2シートとの間に前記積層方向媒体流路と連通する循環媒体流路が形成され、隣接して積層される一方のチューブシートの前記第1シートと、他方のチューブシートの前記第2シートとは、前記積層方向媒体流路と反対側の端部で連結部によって連結され、前記連結部と、前記連結部によって連結される前記第1シートと前記第2シートとは、一枚のプレート部材から形成される積層熱交換器が提供される。
According to an aspect of the present invention, there is provided a laminated heat exchanger formed by laminating a plurality of tube sheets, wherein the tube sheet is composed of a first sheet and a second sheet, and is laminated at one end in the laminating direction. One tube sheet in which a directional medium flow path is formed and a circulation medium flow path communicating with the lamination direction medium flow path is formed between the first sheet and the second sheet, and is laminated adjacently The first sheet of the second tube sheet and the second sheet of the other tube sheet are connected by a connecting portion at an end opposite to the stacking direction medium flow path, and are connected by the connecting portion and the connecting portion. The first sheet and the second sheet are provided with a laminated heat exchanger formed from a single plate member.
以下、添付図面を参照しながら本発明の実施形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図1Aは、本発明の実施形態に係る積層熱交換器の概略構成を示している。また、図1Bは、本発明の実施形態に係る積層熱交換器の分解構成図である。
FIG. 1A shows a schematic configuration of a laminated heat exchanger according to an embodiment of the present invention. FIG. 1B is an exploded configuration diagram of the laminated heat exchanger according to the embodiment of the present invention.
積層熱交換器1は、エンジン冷却水の流通経路の上流側と接続される上流側ジョイント2と、流路の下流側と接続される下流側ジョイント3と、ベース部材4と、コア5とを備え、図示しないエアインテークマニホールド内に設置される。
The laminated heat exchanger 1 includes an upstream joint 2 connected to the upstream side of the flow path of engine cooling water, a downstream joint 3 connected to the downstream side of the flow path, a base member 4, and a core 5. And is installed in an air intake manifold (not shown).
ベース部材4は、冷却水がコア5に流入するための流入孔41と、冷却水がコア5から流出するための流出孔42と、積層熱交換器1をエアインテークマニホールド内にボルトとナットとで固定するための複数の取付孔43を備える。
The base member 4 includes an inflow hole 41 through which cooling water flows into the core 5, an outflow hole 42 through which cooling water flows out of the core 5, bolts and nuts in the air intake manifold, and the laminated heat exchanger 1. A plurality of mounting holes 43 are provided for fixing with a.
上流側ジョイント2は、ベース部材の流入孔41に取り付けられ、下流側ジョイント3は、ベース部材4の流出孔42に取り付けられる。そして、それぞれが冷却水の流路の配管と接続され、冷却水をコア5内に流通させる。これにより、エアインテークマニホールド内の空気がコア5を通過するときに、冷却水との間で熱交換が行われ、吸入空気が冷却される。
The upstream joint 2 is attached to the inflow hole 41 of the base member, and the downstream joint 3 is attached to the outflow hole 42 of the base member 4. And each is connected with piping of the flow path of a cooling water, and distribute | circulates a cooling water in the core 5. FIG. Thereby, when the air in an air intake manifold passes the core 5, heat exchange is performed between the cooling water and the intake air is cooled.
コア5は、複数のチューブシート6を積層して構成され、積層方向の一方の面でベース部材4と接合される。また、各チューブシート6の間にはフィン7が配設される。フィン7を備えることでコア5の表面積が増大し、熱交換効率が高くなる。
The core 5 is configured by laminating a plurality of tube sheets 6 and joined to the base member 4 on one surface in the laminating direction. Further, fins 7 are disposed between the tube sheets 6. By providing the fins 7, the surface area of the core 5 is increased, and the heat exchange efficiency is increased.
チューブシート6は、第1シート8と第2シート9とからなる。第1シート8と第2シート9との間には、チューブシート6内に冷却水を循環させる流路10が形成される。流路10については後で詳しく述べる。
The tube sheet 6 includes a first sheet 8 and a second sheet 9. Between the 1st sheet | seat 8 and the 2nd sheet | seat 9, the flow path 10 which circulates a cooling water in the tube sheet 6 is formed. The channel 10 will be described in detail later.
また、コア5の一端には、上流側ジョイント2と連通し、複数のチューブシート6内の流路10に冷却水を流入させる流入側タンク11と、下流側ジョイント3と連通し、複数のチューブシート6内の流路10から冷却水を流出させる流出側タンク12が形成される。
Further, one end of the core 5 communicates with the upstream joint 2, communicates with the inflow side tank 11 for allowing cooling water to flow into the flow paths 10 in the plurality of tube sheets 6, and the downstream side joint 3, and includes a plurality of tubes. An outflow side tank 12 through which cooling water flows out from the flow path 10 in the sheet 6 is formed.
隣接して接合される一方のチューブシート6の第1シート8と、他方のチューブシート6の第2シート9とは、連結部13によって連結されており、これら第1シート8と第2シート9と連結部13とは、一枚のシート部材14から形成される。
The first sheet 8 of one tube sheet 6 and the second sheet 9 of the other tube sheet 6 that are adjacently joined to each other are connected by a connecting portion 13, and the first sheet 8 and the second sheet 9 are connected. The connecting portion 13 is formed from a single sheet member 14.
図2は、シート部材を示す斜視図である。また、図3は、図2のIII-III断面である。
FIG. 2 is a perspective view showing the sheet member. FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
シート部材14は、プレート14aをプレス成形し、上述したように第1シート8と第2シート9と連結部13とを形成したものである。
The sheet member 14 is obtained by press-molding the plate 14a and forming the first sheet 8, the second sheet 9, and the connecting portion 13 as described above.
プレート14aには、両端にそれぞれ2つのバーリング15が設けられる。そして、第1シート8部に設けられた2つのバーリング15を繋ぐように、プレート14aを正面から見てU型の、チューブシート6内に冷却水を循環させる流路を形成するための溝81が凹設される。第2シート9部についても同様に、2つのバーリング15を繋ぐようにU型の溝91が凹設される。
The plate 14a is provided with two burrings 15 at both ends. And the groove | channel 81 for forming the flow path which circulates a cooling water in the U-shaped tube sheet 6 seeing the plate 14a from the front so that the two burring 15 provided in the 1st sheet | seat 8 part may be connected. Is recessed. Similarly, a U-shaped groove 91 is also provided in the second sheet 9 so as to connect the two burrings 15.
プレート14aを連結部13で曲折し、両端のバーリング15のフランジを突き合わせて接合することで、第1シート8と第2シート9とが、突き合わせたフランジの高さの隙間を持って平行に対向したシート部材14が形成される。
The plate 14a is bent at the connecting portion 13 and the flanges of the burrings 15 at both ends are butted and joined so that the first sheet 8 and the second sheet 9 face each other in parallel with a gap at the height of the butted flanges. The sheet member 14 thus formed is formed.
各部品の接合は、各部品が接触する部分にあらかじめロウ材を被覆し、組み立てた状態で高温の炉内で一体にロウ付け固定して行われる。
接合 Joining of each part is performed by previously brazing a part where each part comes into contact with a brazing material and brazing and fixing in a high temperature furnace in an assembled state.
チューブシート6は、隣接して積層される一方のシート部材の第1シート8に設けられたリブ82およびプレート基面83と、他方のシート部材の第2シート9に設けられたリブ92およびプレート基面93とを接合して形成され、対向する溝81と溝91とによりチューブシート6内に冷却水を循環させる流路10が形成される。
The tube sheet 6 includes a rib 82 and a plate base surface 83 provided on the first sheet 8 of one sheet member stacked adjacent to each other, and a rib 92 and a plate provided on the second sheet 9 of the other sheet member. A flow path 10 is formed by joining the base surface 93 and circulating the cooling water in the tube sheet 6 by the grooves 81 and 91 facing each other.
また、フランジで突き合わされた第1シート8のバーリング15と第2シート9のバーリング15とは、シート部材14の積層方向に連通しており、複数のシート部材14を積層して接合することで、流路10により連通する流入側タンク11と流出側タンク12とが形成される。
Further, the burring 15 of the first sheet 8 and the burring 15 of the second sheet 9 that are abutted by the flange communicate with each other in the stacking direction of the sheet members 14, and a plurality of sheet members 14 are stacked and joined. The inflow side tank 11 and the outflow side tank 12 communicated by the flow path 10 are formed.
なお、上述したようにプレート基面83、93がロウ付けにより接合されるので、プレート基面83、93の接合部と、第1シート8と連結部13との間の曲折部および第2シート9と連結部13との間の曲折部とを離間しておくと、チューブシート6が熱膨張した場合の歪を連結部13の曲折部で吸収しやすくなる。
Since the plate base surfaces 83 and 93 are joined by brazing as described above, the joint portion of the plate base surfaces 83 and 93, the bent portion between the first sheet 8 and the connecting portion 13, and the second sheet When the bent part between 9 and the connecting part 13 is separated, the bent part of the connecting part 13 can easily absorb the distortion when the tube sheet 6 is thermally expanded.
また、チューブシート6の長手方向では熱膨張による変形が大きくなる。したがって、チューブシート6の長手方向の一端に連結部13を備える構成とすることで、チューブシート6が熱膨張した場合の歪を効果的に吸収できる。
Also, deformation due to thermal expansion increases in the longitudinal direction of the tube sheet 6. Therefore, by providing the connecting portion 13 at one end in the longitudinal direction of the tube sheet 6, it is possible to effectively absorb strain when the tube sheet 6 is thermally expanded.
以上述べたように、本実施形態によれば、隣接して積層されるチューブシート6の端部が連結部13によって連結されるので、サイドプレートにチューブシートを接合して連結した場合と同等の剛性を確保することができ、また、サイドプレートが不要となるので部品点数が削減できる。
As described above, according to the present embodiment, since the end portions of the adjacent tube sheets 6 are connected by the connecting portion 13, it is equivalent to the case where the tube sheet is joined and connected to the side plate. Rigidity can be ensured, and the number of parts can be reduced because side plates are not required.
また、高温の媒体が流通してチューブシート6が熱膨張した場合の歪を連結部13で吸収できるので、チューブシート6の接合部や流路10周辺の応力集中を緩和できる。
Further, since the strain when the tube sheet 6 thermally expands due to the circulation of a high-temperature medium can be absorbed by the connecting portion 13, the stress concentration around the joint portion of the tube sheet 6 and the flow path 10 can be alleviated.
また、チューブシート6の長手方向の一端に連結部13を設けることで、チューブシート6が熱膨張した場合の歪を効果的に吸収でき、チューブシート6の接合部や流路10周辺の応力集中を緩和できる。
Further, by providing the connecting portion 13 at one end in the longitudinal direction of the tube sheet 6, it is possible to effectively absorb the distortion when the tube sheet 6 is thermally expanded, and the stress concentration around the joint portion of the tube sheet 6 and the flow path 10. Can be relaxed.
また、チューブシート6の第1シート8と第2シート9との接合部と、第1シート8と連結部13との間の曲折部および第2シート9と連結部13との間の曲折部とを離間しておくことで、チューブシート6が熱膨張した場合の歪を連結部13の曲折部で吸収しやすくなり、チューブシート6の接合部や流路10周辺の応力集中を緩和できる。
Moreover, the junction part of the 1st sheet | seat 8 and the 2nd sheet | seat 9 of the tube sheet 6, the bending part between the 1st sheet | seat 8 and the connection part 13, and the bending part between the 2nd sheet | seat 9 and the connection part 13 are shown. Are separated from each other by the bent portion of the connecting portion 13 and the stress concentration around the joint portion of the tube sheet 6 and the flow path 10 can be alleviated.
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体例に限定する趣旨ではない。
As mentioned above, although embodiment of this invention was described, the said embodiment showed only a part of application example of this invention, and is not the meaning which limits the technical scope of this invention to the specific example of said embodiment. .
上記実施形態では、本発明をエアインテークマニホールド内に設置する水冷式チャージエアクーラに適用しているが、例えば、オイルクーラやEGRクーラに適用してもよい。
In the above embodiment, the present invention is applied to a water-cooled charge air cooler installed in an air intake manifold, but may be applied to, for example, an oil cooler or an EGR cooler.
また、図4に示すように、連結部13に溝等の凹部131を設けてもよい。これにより、チューブシート6が熱膨張した場合の歪をより吸収しやすくなり、チューブシート6の接合部や流路10周辺の応力集中を緩和できる。
Further, as shown in FIG. 4, the connecting portion 13 may be provided with a recess 131 such as a groove. Thereby, it becomes easier to absorb the distortion when the tube sheet 6 is thermally expanded, and stress concentration around the joint portion of the tube sheet 6 and the flow path 10 can be alleviated.
このとき、シート部材14の外側から内側へ向けて溝等を設けるようにすれば、溝等をプレス成形した裏側の凸部が外側に出っ張ることがないので、外形を大きくすることなく、チューブシート6が熱膨張した場合の歪を吸収する構造とすることができる。
At this time, if a groove or the like is provided from the outer side to the inner side of the sheet member 14, the convex part on the back side obtained by press-molding the groove or the like does not protrude to the outer side. It can be set as the structure which absorbs the distortion when 6 heat-expands.
また、上記実施形態では、積層された各チューブシート6の間にフィン7を備えた構成としているが、フィン7を備えない構成としてもよい。これにより、エアインテークマニホールド内の空気がコア5を流れるときの抵抗が減るので、吸気量を増やすことができる。つまり、フィン7を備える構成とすれば冷却効率を高くすることができ、フィン7を備えない構成とすれば流量を増やすことができる。
Moreover, in the said embodiment, although it is set as the structure provided with the fin 7 between each laminated | stacked tube sheet 6, it is good also as a structure which is not provided with the fin 7. FIG. As a result, the resistance when the air in the air intake manifold flows through the core 5 is reduced, so that the intake amount can be increased. That is, if it is set as the structure provided with the fin 7, a cooling efficiency can be made high, and if it is set as the structure where the fin 7 is not provided, the flow rate can be increased.
また、上記実施形態では、一枚のプレート14aから一つのシート部材14を形成しているが、図5に示すように、複数のプレート14aが千鳥状に接続された形の一枚のプレート14bからシート部材を形成してもよい。これにより、複数のプレート14aを一枚のプレート14bにまとめることができるので、部品点数を削減できる。
Moreover, in the said embodiment, although the one sheet | seat member 14 is formed from the one plate 14a, as shown in FIG. 5, the one plate 14b of the shape where the some plate 14a was connected in the staggered form. A sheet member may be formed. Thereby, the plurality of plates 14a can be combined into one plate 14b, so that the number of parts can be reduced.
本願は2012年11月13日に日本国特許庁に出願された特願2012-249227に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
This application claims priority based on Japanese Patent Application No. 2012-249227 filed with the Japan Patent Office on November 13, 2012, the entire contents of which are hereby incorporated by reference.
This application claims priority based on Japanese Patent Application No. 2012-249227 filed with the Japan Patent Office on November 13, 2012, the entire contents of which are hereby incorporated by reference.
Claims (6)
- 複数のチューブシートを積層してなる積層熱交換器であって、
前記チューブシートは、第1シートと第2シートとからなり、一端に積層方向に連通する積層方向媒体流路が形成されるとともに、前記第1シートと前記第2シートとの間に前記積層方向媒体流路と連通する循環媒体流路が形成され、
隣接して積層される一方のチューブシートの前記第1シートと、他方のチューブシートの前記第2シートとは、前記積層方向媒体流路と反対側の端部で連結部によって連結され、
前記連結部と、前記連結部によって連結される前記第1シートと前記第2シートとは、一枚のプレート部材から形成される積層熱交換器。 A laminated heat exchanger formed by laminating a plurality of tube sheets,
The tube sheet includes a first sheet and a second sheet, and a lamination direction medium flow path communicating in the lamination direction is formed at one end, and the lamination direction is provided between the first sheet and the second sheet. A circulating medium flow path communicating with the medium flow path is formed;
The first sheet of one tube sheet laminated adjacently and the second sheet of the other tube sheet are connected by a connecting portion at an end opposite to the stacking direction medium flow path,
The connection part, and the first sheet and the second sheet connected by the connection part are laminated heat exchangers formed from a single plate member. - 請求項1に記載の積層熱交換器であって、
前記連結部は、前記チューブシートの長手方向の一端に設けられた積層熱交換器。 The stacked heat exchanger according to claim 1,
The connecting portion is a stacked heat exchanger provided at one end of the tube sheet in the longitudinal direction. - 請求項1または2に記載の積層熱交換器であって、
前記チューブシートを形成する前記第1シートと前記第2シートとは、前記第1シートと連結部との間の曲折部および前記第2シートと連結部との間の曲折部から離間した位置で接合される積層熱交換器。 The laminated heat exchanger according to claim 1 or 2,
The first sheet and the second sheet forming the tube sheet are separated from a bent portion between the first sheet and the connecting portion and a bent portion between the second sheet and the connecting portion. Laminated heat exchanger to be joined. - 請求項1から3のいずれかに記載の積層熱交換器であって、
前記連結部に凹部を形成した積層熱交換器。 A laminated heat exchanger according to any one of claims 1 to 3,
A laminated heat exchanger in which a concave portion is formed in the connecting portion. - 請求項4に記載の積層熱交換器であって、
前記凹部は、前記連結部の外面側に設けられた積層熱交換器。 It is a laminated heat exchanger of Claim 4, Comprising:
The concave portion is a laminated heat exchanger provided on the outer surface side of the connecting portion. - 請求項1から5のいずれかに記載の積層熱交換器であって、
隣接して積層される一方のチューブシートの前記第1シートと、他方のチューブシートの前記第2シートとの間にフィンを備える積層熱交換器。
The laminated heat exchanger according to any one of claims 1 to 5,
A laminated heat exchanger comprising fins between the first sheet of one tube sheet and the second sheet of the other tube sheet laminated adjacent to each other.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-249227 | 2012-11-13 | ||
JP2012249227A JP2014098496A (en) | 2012-11-13 | 2012-11-13 | Laminate type heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014077084A1 true WO2014077084A1 (en) | 2014-05-22 |
Family
ID=50731003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078350 WO2014077084A1 (en) | 2012-11-13 | 2013-10-18 | Laminated heat exchanger |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014098496A (en) |
WO (1) | WO2014077084A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105004174A (en) * | 2015-07-30 | 2015-10-28 | 常州南夏墅建设有限公司 | Flat plate type heater |
CN105157409A (en) * | 2015-07-30 | 2015-12-16 | 常州南夏墅建设有限公司 | Convenient flat heat conduction type heater |
CN108691697A (en) * | 2017-04-10 | 2018-10-23 | 现代自动车株式会社 | Vehicle cooler for recycled exhaust gas |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04155191A (en) * | 1990-10-17 | 1992-05-28 | Hitachi Ltd | Lamination type heat exchanger |
JPH0712775U (en) * | 1993-06-30 | 1995-03-03 | 昭和アルミニウム株式会社 | Stacked heat exchanger |
JPH07229687A (en) * | 1994-02-16 | 1995-08-29 | Hitachi Ltd | Plate type heat exchanger |
JPH10132476A (en) * | 1996-10-28 | 1998-05-22 | Daikin Ind Ltd | Plate type heat exchanger |
JPH11101583A (en) * | 1997-09-29 | 1999-04-13 | Matsumoto Giken Kk | Leaf-like plate type heat exchanger and its manufacture |
JP2003021486A (en) * | 2001-07-10 | 2003-01-24 | Denso Corp | Heat exchanger |
-
2012
- 2012-11-13 JP JP2012249227A patent/JP2014098496A/en active Pending
-
2013
- 2013-10-18 WO PCT/JP2013/078350 patent/WO2014077084A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04155191A (en) * | 1990-10-17 | 1992-05-28 | Hitachi Ltd | Lamination type heat exchanger |
JPH0712775U (en) * | 1993-06-30 | 1995-03-03 | 昭和アルミニウム株式会社 | Stacked heat exchanger |
JPH07229687A (en) * | 1994-02-16 | 1995-08-29 | Hitachi Ltd | Plate type heat exchanger |
JPH10132476A (en) * | 1996-10-28 | 1998-05-22 | Daikin Ind Ltd | Plate type heat exchanger |
JPH11101583A (en) * | 1997-09-29 | 1999-04-13 | Matsumoto Giken Kk | Leaf-like plate type heat exchanger and its manufacture |
JP2003021486A (en) * | 2001-07-10 | 2003-01-24 | Denso Corp | Heat exchanger |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105004174A (en) * | 2015-07-30 | 2015-10-28 | 常州南夏墅建设有限公司 | Flat plate type heater |
CN105157409A (en) * | 2015-07-30 | 2015-12-16 | 常州南夏墅建设有限公司 | Convenient flat heat conduction type heater |
CN105004174B (en) * | 2015-07-30 | 2017-05-31 | 常州南夏墅建设有限公司 | Flat heater |
CN105157409B (en) * | 2015-07-30 | 2018-02-27 | 常州市金海珑机械制造有限公司 | Portable type plate heat conduction formula heater |
CN108691697A (en) * | 2017-04-10 | 2018-10-23 | 现代自动车株式会社 | Vehicle cooler for recycled exhaust gas |
Also Published As
Publication number | Publication date |
---|---|
JP2014098496A (en) | 2014-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6350336B2 (en) | Cooler | |
WO2014077084A1 (en) | Laminated heat exchanger | |
JP2016128730A (en) | Heat exchanger | |
JP6708172B2 (en) | Intercooler | |
JP2010121925A (en) | Heat exchanger | |
JP6341530B2 (en) | Multi-tube heat exchanger | |
JP4857074B2 (en) | Plate type heat exchanger | |
JP2004340442A (en) | Complex heat exchanger | |
JP5884484B2 (en) | Heat exchanger | |
JP2010164244A (en) | Primary heat transfer surface heat exchanger | |
JP6414504B2 (en) | Heat exchanger | |
JP5071181B2 (en) | Heat exchanger | |
JP2013127341A (en) | Heat exchanger | |
JP6874545B2 (en) | Heat exchanger | |
JP5772608B2 (en) | Heat exchanger | |
JP4759367B2 (en) | Laminate heat exchanger | |
JP2021156485A (en) | Heat exchanger | |
JP6756314B2 (en) | Heat exchanger | |
JP2019044756A (en) | EGR cooler | |
JP6623339B2 (en) | Heat exchanger | |
JP2017223397A (en) | Heat exchanger | |
JP2015218936A (en) | Heat exchanger | |
WO2011108731A1 (en) | Heat exchanger | |
US20200132382A1 (en) | Heat exchanger comprising fluid tubes having a first and a second inner wall | |
JP2005037031A (en) | Joining structure of heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13855218 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13855218 Country of ref document: EP Kind code of ref document: A1 |