WO2014076953A1 - Core to be used in coil of non-contact power transmission apparatus - Google Patents
Core to be used in coil of non-contact power transmission apparatus Download PDFInfo
- Publication number
- WO2014076953A1 WO2014076953A1 PCT/JP2013/006694 JP2013006694W WO2014076953A1 WO 2014076953 A1 WO2014076953 A1 WO 2014076953A1 JP 2013006694 W JP2013006694 W JP 2013006694W WO 2014076953 A1 WO2014076953 A1 WO 2014076953A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- coil
- winding
- discontinuous
- magnetic flux
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
Definitions
- the present invention relates to a power feeding device and a power receiving device of a non-contact power transmission system used for charging an electric propulsion vehicle such as an electric vehicle or a plug-in hybrid vehicle.
- FIG. 9 is a schematic diagram (cross-sectional view) showing a configuration of a coil of a conventional non-contact power transmission system described in Patent Document 1.
- This non-contact power transmission system includes a power transmission coil 112 and a power reception coil 118, and includes an electric wire 131 and a core 132 using a magnetic material such as ferrite. And the uppermost part of the surface of the core 132 on the side facing the mating coil has a height equal to or higher than the outer circumference of the electric wire 131 with respect to the mating coil.
- the core 132 is transmitted through the air in the magnetic path without reducing the distance between the power transmission coil 112 and the power reception coil 118 of the non-contact power feeding device.
- the distance can be shortened.
- the coupling coefficient between coils becomes high, and it becomes possible to raise feed efficiency and maximum feed power. Therefore, it is possible to provide a non-contact power supply core that has high power supply efficiency, high mechanical strength, easy manufacturing, and low cost.
- FIG. 10 is an explanatory diagram of the magnetic flux vector of the coil when the core 132 is extended upward.
- a magnetic flux 140 in the core 132 generated by the electric wire 131 goes upward through the core 132.
- the same magnetic flux density as that in the magnetic body cannot be maintained, so that the magnetic flux is diffused in the direction in which the magnetic flux density decreases (for example, the direction perpendicular to the core surface) in the vicinity of the end of the core 132.
- the core When the core is integrally formed from the portion where the electric wire 131 is wound to the end, most of the magnetic flux 140 in the core 132 generated by the electric wire 131 is transmitted to the vicinity of the end of the core 132. Therefore, the leakage magnetic flux 141 in the winding axis direction of the coil increases due to diffusion from the vicinity of the end of the core 132. Further, the magnetic flux that diffuses near the end of the core 132 also becomes stronger. For this reason, when the coil winding axis direction is set to be horizontal, the magnetic field leakage to the periphery increases.
- the present invention relates to a core used for a coil of a power feeding device or a power receiving device capable of reducing leakage magnetic flux to the periphery even in an installation configuration in which the winding axis direction of the coil is horizontal in a non-contact power transmission system.
- the purpose is to provide.
- a core used for a coil of a device that transmits power in a non-contact manner the core being wound with an electric wire and extending in a first direction, and a discontinuity And a core protruding portion extending in a second direction perpendicular to the first direction, the core winding core portion, the discontinuous portion, and the core protruding portion in the first direction.
- FIG. 1 is a block diagram of a contactless power transmission system according to Embodiment 1 of the present invention.
- FIG. 2 is an external view of the non-contact power transmission system in a state where the vehicle is stopped in the parking space.
- the non-contact power transmission system includes, for example, a power feeding device 2 installed in a parking space and a power receiving device 4 mounted on, for example, an electric propulsion vehicle.
- the power supply device 2 includes a power supply box 8 connected to the commercial power supply 6, an inverter unit 10, a ground side coil unit 12, and a control unit (for example, a microcomputer) 16 on the power supply device side that constitutes the power control device 17.
- the power receiving device 4 includes a vehicle side coil unit 18, a rectifying unit 20, a battery 22 as a load, and a control unit (for example, a microcomputer) 24 on the power receiving device side.
- the commercial power source 6 is a 200 V commercial power source that is a low-frequency AC power source, and is connected to the input end of the power source box 8.
- the output end of the power supply box 8 is connected to the input end of the inverter unit 10, and the output end of the inverter unit 10 is connected to the ground side coil unit 12.
- the output end of the vehicle side coil unit 18 is connected to the input end of the rectifying unit 20, and the output end of the rectifying unit 20 is connected to the battery 22.
- the control unit 16 on the power feeding device side communicates with the control unit 24 on the power receiving device side, and the control unit 24 on the power receiving device side determines a power command value according to the detected remaining voltage of the battery 22 and determines the determined power.
- the command value is transmitted to the control unit 16 on the power feeding apparatus side.
- the control unit 16 on the power supply device side compares the power supply power detected by the ground side coil unit 12 with the received power command value, and drives the inverter unit 10 to obtain the power command value.
- FIG. 3 is a vertical cross-sectional view of the coil of the non-contact power transmission system according to Embodiment 1 of the present invention.
- FIG. 3 shows the coil 30 of the ground side coil unit 12.
- the coil 30 includes an electric wire 31 and a core using a magnetic material such as ferrite. Thereafter, the portion of the core covered with the electric wire 31 extends in the horizontal direction continuously to the core winding core portion 32 and the core winding core portion 32, and the portion not covered with the electric wire 31 is unwound. A portion extending from the portion 33 and the non-winding portion 33 across the discontinuous portion 34 and extending in the vertical direction is referred to as a core protruding portion 35.
- the discontinuous portion 34 refers to the core winding core portion 32 extending in the horizontal direction (first direction) and the vertical direction (second direction perpendicular to the first direction). It indicates a discontinuous portion between the core protrusions 35 extending in the direction of, for example, a portion where the core winding core portion 32 does not continuously extend, such as a space, a shape change, and a material change.
- the core winding core part 32 may have the non-winding part 33 in which the electric wire is not wound in the vicinity of the discontinuous part 34 side. In the following embodiment, a case where the non-winding portion 33 is provided will be described as an example.
- the core in the present invention is wound around the electric wire and extends in the second direction perpendicular to the first direction, the core winding core part 32 extending in the first direction, the discontinuous part 34, and the core.
- the core winding part 32, the discontinuous part 34, and the core protrusion part 35 are arranged in this order in the first direction.
- the output from the inverter unit 10 is transmitted to the electric wire 31, and magnetic flux is generated.
- the generated magnetic flux is transmitted from the core winding core portion 32 to the non-winding portion 33, and further transmitted to the core protruding portion 35 through the discontinuous portion 34. Since the core protrusion 35 extends upward (vehicle-side coil unit 18 side), it forms a magnetic path mainly toward the upper side. By this magnetic path, a high-frequency electromagnetic field for power transmission is formed between the ground side coil unit 12 and the vehicle side coil unit 18 disposed above the ground side coil unit 12.
- FIG. 4 is an explanatory diagram of the magnetic flux vector of the coil according to the first embodiment of the present invention.
- the magnetic flux 40 in the core generated by the electric wire 31 goes upward through the non-winding portion 33, the discontinuous portion 34, and the core protruding portion 35.
- magnetic flux is diffused, and the magnetic flux is directed in the coil winding axis direction (horizontal direction) and the vertical direction (vertical direction).
- the downward magnetic flux was canceled by a magnetic-shielding member (not shown) such as an aluminum plate and weakened, and the upward magnetic flux contributed to the formation of a high-frequency electromagnetic field and directed to the remaining coil winding axis direction.
- the magnetic flux enters the core protrusion 35.
- the magnetic flux 40 in the core protruding portion 35 is directed upward and diffusion of the magnetic flux occurs in the vicinity of the terminal end.
- the coil winding axis direction (horizontal direction) ) Is smaller than the leakage flux 141 of FIG.
- the non-winding portion 33 and the core winding core portion 32 are integrally formed, and the upper surface 37 of the non-winding portion 33 is substantially the same height as the upper surface 36 of the core winding core portion 32, and thus is generated in the electric wire 31.
- the magnetic flux 40 is transmitted to the vicinity of the end of the non-winding portion 33 without any extreme magnetic flux diffusion. Further, since the upper surface 38 of the core protruding portion 35 is higher than the upper surface 37 of the non-winding portion 33, a large amount of magnetic flux is collected to form an upward magnetic path.
- a physical space (discontinuous portion 34) is provided between the non-winding portion 33 and the core protruding portion 35 in order to diffuse a part of the magnetic flux in the vertical direction in the middle.
- a gap is physically available.
- the core winding core part 32, the non-winding part 33, and the core protrusion part 35 are parts related to the core. Parts are not applicable.
- FIG. 5 shows a vertical cross-sectional view of the coil according to the second embodiment of the present invention.
- the discontinuous portion 34 is a space.
- a core having a smaller core cross-sectional area in the coil winding axis direction (first direction) than the non-winding portion 33 is used.
- a discontinuous portion 34 is provided.
- the upper side of the discontinuous portion 34 is recessed as compared with the non-winding portion 33.
- the core cross-sectional area in the first direction (horizontal direction) in which a large amount of magnetic flux is transmitted becomes narrower from the non-winding portion 33 to the discontinuous portion 34, thereby causing the diffusion of magnetic flux and providing a space.
- the same effect as the case can be obtained.
- FIG. 6 shows a horizontal sectional view of the coil according to the second embodiment of the present invention.
- the left and right sides of the discontinuous portion 34 are recessed compared to the non-winding portion 33.
- the leakage magnetic flux 41 can be reduced.
- the left and right sides are recessed to make them discontinuous, it is possible to reduce the left and right magnetic flux diffusion.
- the leakage magnetic flux 41 is similarly reduced when only the lower side, both the upper and lower sides, only the left and right sides, or a combination thereof. It becomes possible to do.
- FIG. 7 shows a horizontal sectional view of the coil according to the third embodiment of the present invention.
- the outer periphery of the discontinuous portion 34 is recessed.
- a core having a space inside the discontinuous portion 34 is used as the discontinuous portion 34.
- FIG. 8 shows a vertical cross-sectional view of the coil according to the fourth embodiment of the present invention.
- the discontinuous portion 34 is a space, but in this embodiment, a core made of a magnetic material different from the non-winding portion 33 and the core protruding portion 35 is used as the discontinuous portion 34.
- the magnetic flux is diffused by sandwiching a material having a higher magnetic resistance than the non-winding portion 33 as the discontinuous portion 34, the same effect as when a space is provided can be obtained.
- the amount of magnetic flux transmitted to the core protrusion 35 can be adjusted by adjusting the specifications such as the magnetic permeability of the magnetic material of the discontinuous portion 34.
- the discontinuous portion 34 may be provided in the vehicle side coil unit 18 of the power receiving device 4.
- discontinuous part 34 is provided in the left-right both directions of the coil 30, it is good also as a structure which provides the discontinuous part 34 only in either one.
- the description is made by using only the left side of the coil 30, but either a configuration in which the discontinuous portion 34 is provided only on one of them or a configuration in which the discontinuous portion 34 is provided on both the left and right sides. Good.
- the present embodiment has been described using a square core, the effect of the present invention does not depend on the core shape. Therefore, it may be a core having another shape such as a cylindrical shape.
- the ground side is described as the power feeding device and the vehicle side is the power receiving device.
- the configuration in which the ground side is the power receiving device and the vehicle side is the power feeding device, and both the ground side and the vehicle side are It may be configured to receive power and to supply power.
- the core used for the coil of the non-contact power transmission device according to the present invention has a configuration in which a discontinuous portion is provided in the middle of the protruding portion of the core, thereby reducing leakage magnetic flux to the periphery.
- a power receiving device and a power feeding device for an electric propulsion vehicle in which a person or an object may approach carelessly or accidentally.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
This core to be used in a coil of a non-contact power transmission apparatus is provided with: a core winding center portion (32), which has an electric wire (31) wound thereon, and which extends in the first direction; a discontinuous portion (34); and a core protruding portion (35) that extends in the second direction perpendicular to the first direction. The core winding center portion (32), the discontinuous portion (34), and the core protruding portion (35) are disposed in this order in the first direction.
Description
本発明は、例えば電気自動車やプラグインハイブリッド車のような電気推進車両等の充電に用いられる非接触電力伝送システムの給電装置および受電装置に関する。
The present invention relates to a power feeding device and a power receiving device of a non-contact power transmission system used for charging an electric propulsion vehicle such as an electric vehicle or a plug-in hybrid vehicle.
図9は、特許文献1に記載された従来の非接触電力伝送システムのコイルの構成を示す模式図(断面図)である。この非接触電力伝送システムは、送電コイル112と受電コイル118からなり、それぞれ電線131と、フェライトなどの磁性材料を用いたコア132から構成される。そして、コア132の相手コイルと対向する側の面の最上部は、相手側コイルに対して、電線131の外周と同等またはそれ以上の高さになっている。
FIG. 9 is a schematic diagram (cross-sectional view) showing a configuration of a coil of a conventional non-contact power transmission system described in Patent Document 1. This non-contact power transmission system includes a power transmission coil 112 and a power reception coil 118, and includes an electric wire 131 and a core 132 using a magnetic material such as ferrite. And the uppermost part of the surface of the core 132 on the side facing the mating coil has a height equal to or higher than the outer circumference of the electric wire 131 with respect to the mating coil.
このように、コア132を電線131よりも上方(相手コイル側)に延在させることにより、非接触給電装置の送電コイル112と受電コイル118の距離を近づけることなく、磁路の空気中を伝わる距離を短くすることができる。これにより、コイル間の結合係数が高くなり、給電効率と最大給電電力を上昇させることが可能になる。そのため、給電効率が高く、機械的強度が強く、製造が容易で低コスト化が可能な非接触給電用コアを提供することが可能になる。
In this manner, by extending the core 132 above the wire 131 (on the other coil side), the core 132 is transmitted through the air in the magnetic path without reducing the distance between the power transmission coil 112 and the power reception coil 118 of the non-contact power feeding device. The distance can be shortened. Thereby, the coupling coefficient between coils becomes high, and it becomes possible to raise feed efficiency and maximum feed power. Therefore, it is possible to provide a non-contact power supply core that has high power supply efficiency, high mechanical strength, easy manufacturing, and low cost.
しかし、上記のように、コア132を上方に延在させた構成を用いた場合、コイルの巻き軸方向には多くの磁束が集中する。図10は、コア132を上方へ延在させた場合のコイルの磁束ベクトルの説明図である。電線131で生じたコア132内の磁束140は、コア132を経由して上側へ向かう。空気中では、磁性体内と同じ磁束密度を維持できないため、コア132の終端近辺では、磁束密度が下がる方向(例えばコア面に垂直方向)への磁束の拡散が生じる。
However, as described above, when the configuration in which the core 132 is extended upward is used, a large amount of magnetic flux is concentrated in the winding axis direction of the coil. FIG. 10 is an explanatory diagram of the magnetic flux vector of the coil when the core 132 is extended upward. A magnetic flux 140 in the core 132 generated by the electric wire 131 goes upward through the core 132. In the air, the same magnetic flux density as that in the magnetic body cannot be maintained, so that the magnetic flux is diffused in the direction in which the magnetic flux density decreases (for example, the direction perpendicular to the core surface) in the vicinity of the end of the core 132.
電線131を巻き付けた部分から終端までコアを一体に構成すると、電線131で生じたコア132内の磁束140の多くは、コア132の終端近辺まで伝わる。そのため、コア132の終端近辺からの拡散により、コイルの巻き軸方向への漏洩磁束141が大きくなる。さらに、コア132の終端近辺では拡散する磁束も強くなる。そのため、コイルの巻き軸方向を水平にして設置した場合、周辺への磁界漏洩が大きくなってしまう。
When the core is integrally formed from the portion where the electric wire 131 is wound to the end, most of the magnetic flux 140 in the core 132 generated by the electric wire 131 is transmitted to the vicinity of the end of the core 132. Therefore, the leakage magnetic flux 141 in the winding axis direction of the coil increases due to diffusion from the vicinity of the end of the core 132. Further, the magnetic flux that diffuses near the end of the core 132 also becomes stronger. For this reason, when the coil winding axis direction is set to be horizontal, the magnetic field leakage to the periphery increases.
本発明は、非接触電力伝送システムにおいて、コイルの巻き軸方向が水平になる設置構成であっても、周辺への漏洩磁束を低減することが可能な給電装置または受電装置のコイルに使用するコアを提供することを目的とする。
The present invention relates to a core used for a coil of a power feeding device or a power receiving device capable of reducing leakage magnetic flux to the periphery even in an installation configuration in which the winding axis direction of the coil is horizontal in a non-contact power transmission system. The purpose is to provide.
本発明の一態様では、非接触で電力を伝送する装置のコイルに使用するコアであって、前記コアは、電線を巻かれ、第1の方向に延在するコア巻き芯部分と、不連続部と、前記第1の方向に対して垂直な第2の方向に延在するコア突出部とを備え、前記第1の方向に、前記コア巻き芯部、前記不連続部、前記コア突出部が順に配置されることを特徴とするものである。
In one aspect of the present invention, a core used for a coil of a device that transmits power in a non-contact manner, the core being wound with an electric wire and extending in a first direction, and a discontinuity And a core protruding portion extending in a second direction perpendicular to the first direction, the core winding core portion, the discontinuous portion, and the core protruding portion in the first direction. Are arranged in order.
本発明によれば、コア突出部分に不連続部を設けることで、コア巻き芯部分から伝わる磁束を一旦拡散させ、その一部の磁束を次のコア突出部分で受けて電力伝送側へ導くため、コイルの巻き軸方向(第1の方向)のへの漏洩磁界を低減させることが可能になる。
According to the present invention, by providing a discontinuous portion in the core protruding portion, the magnetic flux transmitted from the core winding core portion is once diffused, and a part of the magnetic flux is received by the next core protruding portion and guided to the power transmission side. The leakage magnetic field in the coil winding axis direction (first direction) can be reduced.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.
(実施の形態1)
図1は、本発明の実施の形態1に係る非接触電力電送システムのブロック図である。また、図2は、車両を駐車スペースに停車した状態の非接触電力電送システムの外観図である。 (Embodiment 1)
FIG. 1 is a block diagram of a contactless power transmission system according toEmbodiment 1 of the present invention. FIG. 2 is an external view of the non-contact power transmission system in a state where the vehicle is stopped in the parking space.
図1は、本発明の実施の形態1に係る非接触電力電送システムのブロック図である。また、図2は、車両を駐車スペースに停車した状態の非接触電力電送システムの外観図である。 (Embodiment 1)
FIG. 1 is a block diagram of a contactless power transmission system according to
図1および図2に示されるように、非接触電力電送システムは、例えば、駐車スペースに設置される給電装置2と、例えば電気推進車両に搭載される受電装置4とで構成される。
1 and 2, the non-contact power transmission system includes, for example, a power feeding device 2 installed in a parking space and a power receiving device 4 mounted on, for example, an electric propulsion vehicle.
給電装置2は、商用電源6に接続される電源箱8と、インバータ部10と、地上側コイルユニット12と、電力制御装置17を構成する給電装置側の制御部(例えば、マイコン)16とを備えている。一方、受電装置4は、車両側コイルユニット18と、整流部20と、負荷であるバッテリー22と、受電装置側の制御部(例えば、マイコン)24とを備えている。
The power supply device 2 includes a power supply box 8 connected to the commercial power supply 6, an inverter unit 10, a ground side coil unit 12, and a control unit (for example, a microcomputer) 16 on the power supply device side that constitutes the power control device 17. I have. On the other hand, the power receiving device 4 includes a vehicle side coil unit 18, a rectifying unit 20, a battery 22 as a load, and a control unit (for example, a microcomputer) 24 on the power receiving device side.
給電装置2において、商用電源6は、低周波交流電源である200V商用電源であり、電源箱8の入力端に接続されている。電源箱8の出力端は、インバータ部10の入力端に接続され、インバータ部10の出力端は地上側コイルユニット12に接続されている。一方、受電装置4においては、車両側コイルユニット18の出力端は、整流部20の入力端に接続され、整流部20の出力端は、バッテリー22に接続されている。
In the power supply device 2, the commercial power source 6 is a 200 V commercial power source that is a low-frequency AC power source, and is connected to the input end of the power source box 8. The output end of the power supply box 8 is connected to the input end of the inverter unit 10, and the output end of the inverter unit 10 is connected to the ground side coil unit 12. On the other hand, in the power receiving device 4, the output end of the vehicle side coil unit 18 is connected to the input end of the rectifying unit 20, and the output end of the rectifying unit 20 is connected to the battery 22.
また、地上側コイルユニット12は地上に敷設され、電源箱8は、例えば地上側コイルユニット12から所定距離だけ離隔した位置に立設される。一方、車両側コイルユニット18は、例えば車体底部(例えば、シャーシ)に取り付けられる。
Further, the ground side coil unit 12 is laid on the ground, and the power supply box 8 is erected at a position separated from the ground side coil unit 12 by a predetermined distance, for example. On the other hand, the vehicle side coil unit 18 is attached to, for example, a vehicle body bottom (for example, a chassis).
給電装置側の制御部16は、受電装置側の制御部24と通信を行い、受電装置側の制御部24は、検出したバッテリー22の残電圧に応じて電力指令値を決定し、決定した電力指令値を給電装置側の制御部16に送信する。給電装置側の制御部16は、地上側コイルユニット12で検出した給電電力と、受信した電力指令値とを比較し、電力指令値が得られるようにインバータ部10を駆動する。
The control unit 16 on the power feeding device side communicates with the control unit 24 on the power receiving device side, and the control unit 24 on the power receiving device side determines a power command value according to the detected remaining voltage of the battery 22 and determines the determined power. The command value is transmitted to the control unit 16 on the power feeding apparatus side. The control unit 16 on the power supply device side compares the power supply power detected by the ground side coil unit 12 with the received power command value, and drives the inverter unit 10 to obtain the power command value.
給電装置2から受電装置4に給電する場合、図2に示されるように、車両側コイルユニット18は、車両を適宜移動させることで地上側コイルユニット12に対向して配置される。そして、給電装置側の制御部16がインバータ部10を駆動制御することで、地上側コイルユニット12と車両側コイルユニット18との間に高周波の電磁場を形成する。受電装置4は、高周波の電磁場より電力を取り出し、取り出した電力でバッテリー22を充電する。
When power is supplied from the power feeding device 2 to the power receiving device 4, as shown in FIG. 2, the vehicle side coil unit 18 is disposed to face the ground side coil unit 12 by appropriately moving the vehicle. And the control part 16 by the side of an electric power feeder controls drive of the inverter part 10, and forms a high frequency electromagnetic field between the ground side coil unit 12 and the vehicle side coil unit 18. FIG. The power receiving device 4 takes out electric power from a high frequency electromagnetic field and charges the battery 22 with the taken out electric power.
図3は、本発明の実施の形態1における非接触電力電送システムのコイルの垂直断面図である。図3は、地上側コイルユニット12のコイル30を示している。
FIG. 3 is a vertical cross-sectional view of the coil of the non-contact power transmission system according to Embodiment 1 of the present invention. FIG. 3 shows the coil 30 of the ground side coil unit 12.
コイル30は、電線31と、フェライトなどの磁性材料を用いたコアから構成される。これ以降、コアのうち電線31で覆われている部分をコア巻き芯部32、コア巻き芯部32と連続して水平方向に延在し、かつ電線31で覆われていない部分を非巻線部33、非巻線部33から不連続部34を挟んで設置され、かつ垂直方向に延在した部分をコア突出部35と表記する。
The coil 30 includes an electric wire 31 and a core using a magnetic material such as ferrite. Thereafter, the portion of the core covered with the electric wire 31 extends in the horizontal direction continuously to the core winding core portion 32 and the core winding core portion 32, and the portion not covered with the electric wire 31 is unwound. A portion extending from the portion 33 and the non-winding portion 33 across the discontinuous portion 34 and extending in the vertical direction is referred to as a core protruding portion 35.
なお、本願明細書において、不連続部34とは、水平方向(第1の方向)に延在するコア巻き芯部32と、垂直方向(第1の方向に対して垂直な第2の方向)に延在するコア突出部35の間にある不連続の部分を指し、例えば、空間や形状変化、材質変化など、コア巻き芯部32が連続して延在しなくなった部分を指す。なお、コア巻き芯部分32は、不連続部34側の近傍において、電線が巻かれていない非巻線部33を有していてもよい。なお、以下の実施形態では、非巻線部33を有している場合を例に説明する。
In the present specification, the discontinuous portion 34 refers to the core winding core portion 32 extending in the horizontal direction (first direction) and the vertical direction (second direction perpendicular to the first direction). It indicates a discontinuous portion between the core protrusions 35 extending in the direction of, for example, a portion where the core winding core portion 32 does not continuously extend, such as a space, a shape change, and a material change. In addition, the core winding core part 32 may have the non-winding part 33 in which the electric wire is not wound in the vicinity of the discontinuous part 34 side. In the following embodiment, a case where the non-winding portion 33 is provided will be described as an example.
すなわち、本発明におけるコアは、電線を巻かれ、第1の方向に延在するコア巻き芯部32と、不連続部34と、第1の方向に対して垂直な第2の方向に延在するコア突出部35とを備え、第1の方向に、コア巻き芯部32、不連続部34、コア突出部35が順に配置されている。
That is, the core in the present invention is wound around the electric wire and extends in the second direction perpendicular to the first direction, the core winding core part 32 extending in the first direction, the discontinuous part 34, and the core. The core winding part 32, the discontinuous part 34, and the core protrusion part 35 are arranged in this order in the first direction.
インバータ部10からの出力は電線31に伝わり、磁束が発生する。発生した磁束は、コア巻き芯部32から非巻線部33へ伝わり、さらに不連続部34を経て、コア突出部35へ伝わる。コア突出部35は上方(車両側コイルユニット18側)へ延在しているため、主に上側に向かう磁路を形成する。この磁路により、地上側コイルユニット12と、地上側コイルユニット12の上側に配置される車両側コイルユニット18との間に電力伝送のための高周波の電磁場が形成される。
The output from the inverter unit 10 is transmitted to the electric wire 31, and magnetic flux is generated. The generated magnetic flux is transmitted from the core winding core portion 32 to the non-winding portion 33, and further transmitted to the core protruding portion 35 through the discontinuous portion 34. Since the core protrusion 35 extends upward (vehicle-side coil unit 18 side), it forms a magnetic path mainly toward the upper side. By this magnetic path, a high-frequency electromagnetic field for power transmission is formed between the ground side coil unit 12 and the vehicle side coil unit 18 disposed above the ground side coil unit 12.
図4は、本発明の実施の形態1におけるコイルの磁束ベクトルの説明図である。電線31で生じたコア内の磁束40は、非巻線部33、不連続部34、コア突出部35を経由して上側へ向かう。不連続部34手前の非巻線部33の終端近辺では、磁束の拡散が生じ、コイルの巻き軸方向(水平方向)および、上下方向(垂直方向)に磁束が向かう。下方向に向かった磁束は、アルミ板などの防磁部材(図示せず)に打ち消されて弱まり、上方向に向かった磁束は高周波の電磁場形成に寄与し、残ったコイルの巻き軸方向に向かった磁束はコア突出部35に侵入する。コア突出部35内の磁束40は、上方向に向かい、終端近辺で磁束の拡散が生じるが、不連続部34手前で一旦拡散した磁束の一部であるため、コイルの巻き軸方向(水平方向)への漏洩磁束41は、図10の漏洩磁束141に比べて小さくなる。
FIG. 4 is an explanatory diagram of the magnetic flux vector of the coil according to the first embodiment of the present invention. The magnetic flux 40 in the core generated by the electric wire 31 goes upward through the non-winding portion 33, the discontinuous portion 34, and the core protruding portion 35. In the vicinity of the terminal end of the non-winding portion 33 before the discontinuous portion 34, magnetic flux is diffused, and the magnetic flux is directed in the coil winding axis direction (horizontal direction) and the vertical direction (vertical direction). The downward magnetic flux was canceled by a magnetic-shielding member (not shown) such as an aluminum plate and weakened, and the upward magnetic flux contributed to the formation of a high-frequency electromagnetic field and directed to the remaining coil winding axis direction. The magnetic flux enters the core protrusion 35. The magnetic flux 40 in the core protruding portion 35 is directed upward and diffusion of the magnetic flux occurs in the vicinity of the terminal end. However, since it is a part of the magnetic flux once diffused before the discontinuous portion 34, the coil winding axis direction (horizontal direction) ) Is smaller than the leakage flux 141 of FIG.
非巻線部33とコア巻き芯部32は一体に構成され、非巻線部33の上面37は、コア巻き芯部32の上面36とほぼ同じ高さとなっているため、電線31で生じた磁束40は、非巻線部33の終端近くまで、極端な磁束の拡散も無く伝わる。また、コア突出部35の上面38は、非巻線部33の上面37より高くなっているため、磁束の多くを集めて上方向への磁路を構成する。
The non-winding portion 33 and the core winding core portion 32 are integrally formed, and the upper surface 37 of the non-winding portion 33 is substantially the same height as the upper surface 36 of the core winding core portion 32, and thus is generated in the electric wire 31. The magnetic flux 40 is transmitted to the vicinity of the end of the non-winding portion 33 without any extreme magnetic flux diffusion. Further, since the upper surface 38 of the core protruding portion 35 is higher than the upper surface 37 of the non-winding portion 33, a large amount of magnetic flux is collected to form an upward magnetic path.
なお、本発明の実施の形態1では、磁束の一部を途中で垂直方向に拡散させるために、非巻線部33とコア突出部35との間に物理的な空間(不連続部34)を設けているが、漏洩磁束41を小さくするためには物理的に隙間が空いていればよい。
In the first embodiment of the present invention, a physical space (discontinuous portion 34) is provided between the non-winding portion 33 and the core protruding portion 35 in order to diffuse a part of the magnetic flux in the vertical direction in the middle. However, in order to reduce the leakage magnetic flux 41, it is sufficient that a gap is physically available.
また、コア巻き芯部32、非巻線部33、コア突出部35は、コアに関する部分のことであり、例えば地上側コイルユニット12の樹脂材料やアルミなどで構成されるカバー、支持部品、防磁部品類は該当しない。
Moreover, the core winding core part 32, the non-winding part 33, and the core protrusion part 35 are parts related to the core. Parts are not applicable.
(実施の形態2)
図5は、本発明の実施の形態2におけるコイルの垂直断面図を示す。実施の形態1では、不連続部34は空間としていたが、本実施の形態では、非巻線部33よりも、コイルの巻き軸方向(第1の方向)のコア断面積を狭くしたコアを不連続部34としている。図5においては、不連続部34の上側を非巻線部33と比べて凹ませる構成としている。この構成の場合、多くの磁束が伝送する第1の方向(水平方向)のコア断面積が、非巻線部33から不連続部34にかけて狭くなることにより磁束の拡散が生じ、空間を設けた場合と同様の効果を得ることが出来る。 (Embodiment 2)
FIG. 5 shows a vertical cross-sectional view of the coil according to the second embodiment of the present invention. In the first embodiment, thediscontinuous portion 34 is a space. However, in the present embodiment, a core having a smaller core cross-sectional area in the coil winding axis direction (first direction) than the non-winding portion 33 is used. A discontinuous portion 34 is provided. In FIG. 5, the upper side of the discontinuous portion 34 is recessed as compared with the non-winding portion 33. In the case of this configuration, the core cross-sectional area in the first direction (horizontal direction) in which a large amount of magnetic flux is transmitted becomes narrower from the non-winding portion 33 to the discontinuous portion 34, thereby causing the diffusion of magnetic flux and providing a space. The same effect as the case can be obtained.
図5は、本発明の実施の形態2におけるコイルの垂直断面図を示す。実施の形態1では、不連続部34は空間としていたが、本実施の形態では、非巻線部33よりも、コイルの巻き軸方向(第1の方向)のコア断面積を狭くしたコアを不連続部34としている。図5においては、不連続部34の上側を非巻線部33と比べて凹ませる構成としている。この構成の場合、多くの磁束が伝送する第1の方向(水平方向)のコア断面積が、非巻線部33から不連続部34にかけて狭くなることにより磁束の拡散が生じ、空間を設けた場合と同様の効果を得ることが出来る。 (Embodiment 2)
FIG. 5 shows a vertical cross-sectional view of the coil according to the second embodiment of the present invention. In the first embodiment, the
なお、図5では、上側を凹ませることで不連続にしているため、上側の拡散を多く発生させることが出来る。そのため、高周波の電磁場形成に寄与しない下側への磁束拡散を少なくすることが可能になる。
In FIG. 5, since the upper side is made discontinuous by making it concave, a large amount of diffusion on the upper side can be generated. Therefore, it is possible to reduce the downward magnetic flux diffusion that does not contribute to the formation of a high-frequency electromagnetic field.
図6は、本発明の実施の形態2におけるコイルの水平断面図を示す。図6に示すように、不連続部34の左右を非巻線部33と比べて凹ませる構成としている。この構成の場合も同様に、漏洩磁束41を小さくすることが可能になる。なお、図6では、左右を凹ませることで不連続にしているため、左右の磁束拡散を少なくすることが可能になる。
FIG. 6 shows a horizontal sectional view of the coil according to the second embodiment of the present invention. As shown in FIG. 6, the left and right sides of the discontinuous portion 34 are recessed compared to the non-winding portion 33. Similarly in the case of this configuration, the leakage magnetic flux 41 can be reduced. In FIG. 6, since the left and right sides are recessed to make them discontinuous, it is possible to reduce the left and right magnetic flux diffusion.
なお、本実施の形態においては上側または左右を凹ませる形状を用いて説明を行ったが、下側のみ、上下両方、左右どちらかのみ、またはそれぞれを組合せた場合も同様に漏洩磁束41を小さくすることが可能になる。
In the present embodiment, the description has been made using the shape in which the upper side or the left and right sides are recessed. However, the leakage magnetic flux 41 is similarly reduced when only the lower side, both the upper and lower sides, only the left and right sides, or a combination thereof. It becomes possible to do.
(実施の形態3)
図7は、本発明の実施の形態3におけるコイルの水平断面図を示す。実施の形態2では、不連続部34の外周を凹ませる構成としていたが、本実施の形態では、不連続部34の内側に空間を作ったコアを不連続部34としている。 (Embodiment 3)
FIG. 7 shows a horizontal sectional view of the coil according to the third embodiment of the present invention. In the second embodiment, the outer periphery of thediscontinuous portion 34 is recessed. However, in the present embodiment, a core having a space inside the discontinuous portion 34 is used as the discontinuous portion 34.
図7は、本発明の実施の形態3におけるコイルの水平断面図を示す。実施の形態2では、不連続部34の外周を凹ませる構成としていたが、本実施の形態では、不連続部34の内側に空間を作ったコアを不連続部34としている。 (Embodiment 3)
FIG. 7 shows a horizontal sectional view of the coil according to the third embodiment of the present invention. In the second embodiment, the outer periphery of the
この構成の場合も、多くの磁束が伝送する方向(水平方向)のコア断面積が非巻線部33から不連続部34にかけて狭くなることにより磁束の拡散が生じるため、同様の効果を得ることが出来る。
Also in this configuration, since the diffusion of the magnetic flux occurs when the core cross-sectional area in the direction (horizontal direction) in which a large amount of magnetic flux is transmitted becomes narrower from the non-winding portion 33 to the discontinuous portion 34, the same effect can be obtained. I can do it.
なお、図7では、不連続部34の中心部分に垂直方向に貫通する空間を備えた形状を用いて説明を行ったが、貫通しない(中空の)場合や、空間が上下左右に偏っている場合も同様の効果を得ることが出来る。
In addition, in FIG. 7, although it demonstrated using the shape provided with the space penetrated in the perpendicular direction in the center part of the discontinuous part 34, when not penetrating (hollow), the space is biased up and down, right and left In this case, the same effect can be obtained.
(実施の形態4)
図8は、本発明の実施の形態4におけるコイルの垂直断面図を示す。実施の形態1では、不連続部34は空間としていたが、本実施の形態では、非巻線部33およびコア突出部35とは異なる磁性材料のコアを不連続部34としている。 (Embodiment 4)
FIG. 8 shows a vertical cross-sectional view of the coil according to the fourth embodiment of the present invention. In the first embodiment, thediscontinuous portion 34 is a space, but in this embodiment, a core made of a magnetic material different from the non-winding portion 33 and the core protruding portion 35 is used as the discontinuous portion 34.
図8は、本発明の実施の形態4におけるコイルの垂直断面図を示す。実施の形態1では、不連続部34は空間としていたが、本実施の形態では、非巻線部33およびコア突出部35とは異なる磁性材料のコアを不連続部34としている。 (Embodiment 4)
FIG. 8 shows a vertical cross-sectional view of the coil according to the fourth embodiment of the present invention. In the first embodiment, the
非巻線部33よりも磁気抵抗の高い材料などを不連続部34として挟むことで磁束の拡散が生じるため、空間を設けた場合と同様の効果を得ることが出来る。
Since the magnetic flux is diffused by sandwiching a material having a higher magnetic resistance than the non-winding portion 33 as the discontinuous portion 34, the same effect as when a space is provided can be obtained.
なお、図8の場合、不連続部34の磁性材料の透磁率などの仕様を調整することでコア突出部35に伝える磁束量を調整することが可能になる。
In the case of FIG. 8, the amount of magnetic flux transmitted to the core protrusion 35 can be adjusted by adjusting the specifications such as the magnetic permeability of the magnetic material of the discontinuous portion 34.
以上、本実施の形態においては、給電装置2の地上側コイルユニット12に不連続部34を設けた構成を一例として説明したが、本発明はこのような場合についてのみ限定されるものではなく、例えば、受電装置4の車両側コイルユニット18に不連続部34を設けても良い。また、給電装置2の地上側コイルユニット12および受電装置4の車両側コイルユニット18の両方に不連続部34を設ける構成としても良い。
As mentioned above, in this Embodiment, although the structure which provided the discontinuous part 34 in the ground side coil unit 12 of the electric power feeder 2 was demonstrated as an example, this invention is not limited only about such a case, For example, the discontinuous portion 34 may be provided in the vehicle side coil unit 18 of the power receiving device 4. Moreover, it is good also as a structure which provides the discontinuous part 34 in both the ground side coil unit 12 of the electric power feeder 2 and the vehicle side coil unit 18 of the power receiving apparatus 4. FIG.
なお、図3では、コイル30の左右両方向に不連続部34を設けているが、どちらか一方にのみに不連続部34を設ける構成としてもよい。
In addition, in FIG. 3, although the discontinuous part 34 is provided in the left-right both directions of the coil 30, it is good also as a structure which provides the discontinuous part 34 only in either one.
同様に、図4から図8では、コイル30の左側のみを用いて説明を行っているが、どちら一方のみに不連続部34を設けた構成でも、左右両方に不連続部34を設ける構成でもよい。
Similarly, in FIGS. 4 to 8, the description is made by using only the left side of the coil 30, but either a configuration in which the discontinuous portion 34 is provided only on one of them or a configuration in which the discontinuous portion 34 is provided on both the left and right sides. Good.
さらに、本実施の形態においては、角型のコアを用いて説明を行ったが、本発明の効果はコア形状に左右されるものではない。したがって、例えば円筒形状など他の形状のコアであっても良い。
Furthermore, although the present embodiment has been described using a square core, the effect of the present invention does not depend on the core shape. Therefore, it may be a core having another shape such as a cylindrical shape.
また、本実施の形態においては、地上側を給電装置、車両側を受電装置として説明を行ったが、地上側を受電装置、車両側を給電装置とする構成や、地上側と車両側両方が受電と給電を行う構成であってもよい。
Further, in the present embodiment, the ground side is described as the power feeding device and the vehicle side is the power receiving device. However, the configuration in which the ground side is the power receiving device and the vehicle side is the power feeding device, and both the ground side and the vehicle side are It may be configured to receive power and to supply power.
なお、上記様々な実施の形態のうちの任意の実施の形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることもできる。
It should be noted that any of the various embodiments described above may be combined as appropriate to achieve the respective effects.
以上のように、本発明に係る非接触で電力を伝送する装置のコイルに使用するコアは、コアの突出部分の途中に不連続部を設ける構成としているため、周辺への漏洩磁束を低減することが可能になり、例えば人や物が不注意にあるいは誤って近づく可能性がある電気推進車両の受電装置および給電装置に有用である。
As described above, the core used for the coil of the non-contact power transmission device according to the present invention has a configuration in which a discontinuous portion is provided in the middle of the protruding portion of the core, thereby reducing leakage magnetic flux to the periphery. For example, it is useful for a power receiving device and a power feeding device for an electric propulsion vehicle in which a person or an object may approach carelessly or accidentally.
2 給電装置
4 受電装置
6 商用電源
8 電源箱
10 インバータ部
12 地上側コイルユニット
16 制御部
17 電力制御装置
18 車両側コイルユニット
20 整流部
22 バッテリー
24 制御部
30 コイル
31、131 電線
32 コア巻き芯部
33 非巻線部
34 不連続部
35 コア突出部
36 コア巻き芯部の上面
37 非巻線部の上面
38 コア突出部の上面
40、140 磁束
41、141 漏洩磁束
112 送電コイル
118 受電コイル
132 コア DESCRIPTION OF SYMBOLS 2Electric power feeder 4 Power receiving device 6 Commercial power supply 8 Power supply box 10 Inverter part 12 Ground side coil unit 16 Control part 17 Power control device 18 Vehicle side coil unit 20 Rectification part 22 Battery 24 Control part 30 Coil 31, 131 Electric wire 32 Core winding core Part 33 Non-winding part 34 Discontinuous part 35 Core protrusion part 36 Upper surface of core winding core part 37 Upper surface of non-winding part 38 Upper surface of core protrusion part 40, 140 Magnetic flux 41, 141 Leakage magnetic flux 112 Power transmission coil 118 Power receiving coil 132 core
4 受電装置
6 商用電源
8 電源箱
10 インバータ部
12 地上側コイルユニット
16 制御部
17 電力制御装置
18 車両側コイルユニット
20 整流部
22 バッテリー
24 制御部
30 コイル
31、131 電線
32 コア巻き芯部
33 非巻線部
34 不連続部
35 コア突出部
36 コア巻き芯部の上面
37 非巻線部の上面
38 コア突出部の上面
40、140 磁束
41、141 漏洩磁束
112 送電コイル
118 受電コイル
132 コア DESCRIPTION OF SYMBOLS 2
Claims (5)
- 非接触で電力を伝送する装置のコイルに使用するコアであって、
前記コアは、
電線を巻かれ、第1の方向に延在するコア巻き芯部分と、
不連続部と、
前記第1の方向に対して垂直な第2の方向に延在するコア突出部と
を備え、
前記第1の方向に、前記コア巻き芯部、前記不連続部、前記コア突出部が順に配置されることを特徴とするコア。 A core used for a coil of a device that transmits power without contact,
The core is
A core winding core portion wound with an electric wire and extending in a first direction;
Discontinuities,
A core protrusion extending in a second direction perpendicular to the first direction,
The core, wherein the core winding core part, the discontinuous part, and the core protruding part are sequentially arranged in the first direction. - 前記不連続部は、前記コア巻き芯部と前記コア突出部の間の空間であることを特徴とする請求項1に記載のコア。 The core according to claim 1, wherein the discontinuous portion is a space between the core winding core portion and the core protruding portion.
- 前記不連続部の前記第1の方向の断面積は、前記コア巻き芯部の前記第1の方向の断面積よりも小さいことを特徴とする請求項1に記載のコア。 The core according to claim 1, wherein a cross-sectional area of the discontinuous portion in the first direction is smaller than a cross-sectional area of the core winding core portion in the first direction.
- 前記不連続部は、前記コア巻き芯部および前記コア突出部とは異なる磁性材料であることを特徴とする請求項1に記載のコア。 The core according to claim 1, wherein the discontinuous portion is a magnetic material different from the core winding core portion and the core protruding portion.
- 前記コア巻き芯部は、前記不連続部側において、前記電線が巻かれていない非巻線部を有することを特徴とする請求項1に記載のコア。 The core according to claim 1, wherein the core winding core portion has a non-winding portion around which the electric wire is not wound on the discontinuous portion side.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-250918 | 2012-11-15 | ||
JP2012250918A JP2014099524A (en) | 2012-11-15 | 2012-11-15 | Core used for coil in power supply unit or power reception unit of non-contact power transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014076953A1 true WO2014076953A1 (en) | 2014-05-22 |
Family
ID=50730884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/006694 WO2014076953A1 (en) | 2012-11-15 | 2013-11-14 | Core to be used in coil of non-contact power transmission apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014099524A (en) |
WO (1) | WO2014076953A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10673276B2 (en) | 2014-11-07 | 2020-06-02 | Ihi Corporation | Coil device, wireless power transfer system, and auxiliary magnetic member |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63116413A (en) * | 1986-11-05 | 1988-05-20 | Tokyo Keidenki Kk | Power transmission apparatus |
JPH0536547A (en) * | 1991-08-02 | 1993-02-12 | Tdk Corp | Coil device and manufacture thereof |
JPH0837121A (en) * | 1994-07-26 | 1996-02-06 | Matsushita Electric Works Ltd | Power supply device |
JP3033824B1 (en) * | 1998-11-11 | 2000-04-17 | 株式会社豊田自動織機製作所 | Power receiving core for wireless power transfer |
JP2005094861A (en) * | 2003-09-12 | 2005-04-07 | Tsubakimoto Chain Co | Contactless power feeding apparatus |
JP2011108981A (en) * | 2009-11-20 | 2011-06-02 | Denso Corp | Reactor |
WO2012099170A1 (en) * | 2011-01-19 | 2012-07-26 | 株式会社 テクノバ | Contactless power transfer system |
-
2012
- 2012-11-15 JP JP2012250918A patent/JP2014099524A/en active Pending
-
2013
- 2013-11-14 WO PCT/JP2013/006694 patent/WO2014076953A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63116413A (en) * | 1986-11-05 | 1988-05-20 | Tokyo Keidenki Kk | Power transmission apparatus |
JPH0536547A (en) * | 1991-08-02 | 1993-02-12 | Tdk Corp | Coil device and manufacture thereof |
JPH0837121A (en) * | 1994-07-26 | 1996-02-06 | Matsushita Electric Works Ltd | Power supply device |
JP3033824B1 (en) * | 1998-11-11 | 2000-04-17 | 株式会社豊田自動織機製作所 | Power receiving core for wireless power transfer |
JP2005094861A (en) * | 2003-09-12 | 2005-04-07 | Tsubakimoto Chain Co | Contactless power feeding apparatus |
JP2011108981A (en) * | 2009-11-20 | 2011-06-02 | Denso Corp | Reactor |
WO2012099170A1 (en) * | 2011-01-19 | 2012-07-26 | 株式会社 テクノバ | Contactless power transfer system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10673276B2 (en) | 2014-11-07 | 2020-06-02 | Ihi Corporation | Coil device, wireless power transfer system, and auxiliary magnetic member |
Also Published As
Publication number | Publication date |
---|---|
JP2014099524A (en) | 2014-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6300106B2 (en) | Non-contact power transmission device | |
JP6300107B2 (en) | Non-contact power transmission device | |
US10250071B2 (en) | Wireless power supply coil | |
JP5924496B2 (en) | Power transmission system | |
US9876364B2 (en) | Power receiving device, vehicle, and power transmission device | |
US20140306655A1 (en) | Contactless battery charger | |
JP2010172084A (en) | Non-contact power feeding device | |
US20150061585A1 (en) | Contactless feeding pad and contactless feeding device | |
WO2015072574A1 (en) | Power-receiving device and power-transmitting device | |
US11211189B2 (en) | Coil device | |
JP5896226B2 (en) | Contactless power supply | |
WO2015076274A1 (en) | Coil unit and contactless power transfer device | |
JP2013215073A (en) | Feeding apparatus and power reception apparatus for non-contact power transmission system | |
US9748773B2 (en) | Contactless power supply device | |
WO2014076953A1 (en) | Core to be used in coil of non-contact power transmission apparatus | |
JP2016086592A (en) | Power transmission system, power transmission apparatus, and power reception apparatus | |
JP2013225980A (en) | Non-contact power supply device | |
JP2014093320A (en) | Power transmission system | |
JP6226500B2 (en) | Contactless power supply system | |
WO2015155834A1 (en) | Non-contact power supply coil | |
WO2015155836A1 (en) | Non-contact power supply coil | |
JP2014093798A (en) | Power transmission system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13855796 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13855796 Country of ref document: EP Kind code of ref document: A1 |