WO2014073537A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element - Google Patents
Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element Download PDFInfo
- Publication number
- WO2014073537A1 WO2014073537A1 PCT/JP2013/079922 JP2013079922W WO2014073537A1 WO 2014073537 A1 WO2014073537 A1 WO 2014073537A1 JP 2013079922 W JP2013079922 W JP 2013079922W WO 2014073537 A1 WO2014073537 A1 WO 2014073537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- group
- carbon atoms
- aligning agent
- polysiloxane
- Prior art date
Links
- ADABUSMBYGBGET-UHFFFAOYSA-N CC(C)(C)C(C(C(C(C)(C)C)=C1)=O)=CC1=CC1CCCCC1 Chemical compound CC(C)(C)C(C(C(C(C)(C)C)=C1)=O)=CC1=CC1CCCCC1 ADABUSMBYGBGET-UHFFFAOYSA-N 0.000 description 1
- XESZUVZBAMCAEJ-UHFFFAOYSA-N CC(C)(C)c(cc1O)ccc1O Chemical compound CC(C)(C)c(cc1O)ccc1O XESZUVZBAMCAEJ-UHFFFAOYSA-N 0.000 description 1
- CSGAUKGQUCHWDP-UHFFFAOYSA-N CC(C)(CC(CC1(C)C)O)N1O Chemical compound CC(C)(CC(CC1(C)C)O)N1O CSGAUKGQUCHWDP-UHFFFAOYSA-N 0.000 description 1
- CSGAUKGQUCHWDP-UHFFFAOYSA-O CC(C)(CC(CC1(C)C)O)N1[OH2+] Chemical compound CC(C)(CC(CC1(C)C)O)N1[OH2+] CSGAUKGQUCHWDP-UHFFFAOYSA-O 0.000 description 1
- CVLHGLWXLDOELD-UHFFFAOYSA-N CC(C)c(cc1)ccc1S(O)(=O)=O Chemical compound CC(C)c(cc1)ccc1S(O)(=O)=O CVLHGLWXLDOELD-UHFFFAOYSA-N 0.000 description 1
- MFSSKWYRGXFBNK-UHFFFAOYSA-N CC(CC1C(C)(C)C)CC(C(C)(C)C)N1O Chemical compound CC(CC1C(C)(C)C)CC(C(C)(C)C)N1O MFSSKWYRGXFBNK-UHFFFAOYSA-N 0.000 description 1
- QSHKDIHEZKCYDU-UHFFFAOYSA-N CC1(C=CC=C(C)C1)S(O)(=O)=O Chemical compound CC1(C=CC=C(C)C1)S(O)(=O)=O QSHKDIHEZKCYDU-UHFFFAOYSA-N 0.000 description 1
- KYWSBBYKBQYUJY-UHFFFAOYSA-N CCCC(C(C(C(C(C)(C)C)=C1)O)C=C1OC)=C Chemical compound CCCC(C(C(C(C(C)(C)C)=C1)O)C=C1OC)=C KYWSBBYKBQYUJY-UHFFFAOYSA-N 0.000 description 1
- IGDGBZOAQBWPPM-UHFFFAOYSA-N CCCC(C(C1O)C=C(C)C=C1C(C)(C)C)=C Chemical compound CCCC(C(C1O)C=C(C)C=C1C(C)(C)C)=C IGDGBZOAQBWPPM-UHFFFAOYSA-N 0.000 description 1
- ASODNZCPFZQUKR-UHFFFAOYSA-N COc1cc([N+]([O-])=O)cc([N+]([O-])=O)c1O Chemical compound COc1cc([N+]([O-])=O)cc([N+]([O-])=O)c1O ASODNZCPFZQUKR-UHFFFAOYSA-N 0.000 description 1
- FRASJONUBLZVQX-UHFFFAOYSA-N O=C(C=C1)c2ccccc2C1=O Chemical compound O=C(C=C1)c2ccccc2C1=O FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 1
- KOOMFXGDLMRWSN-UHFFFAOYSA-N O=NNc1ccccc1 Chemical compound O=NNc1ccccc1 KOOMFXGDLMRWSN-UHFFFAOYSA-N 0.000 description 1
- GPLIMIJPIZGPIF-UHFFFAOYSA-N OC(C(C=C1)=O)=CC1=O Chemical compound OC(C(C=C1)=O)=CC1=O GPLIMIJPIZGPIF-UHFFFAOYSA-N 0.000 description 1
- 0 [*+]CCCOc1ccc(C2CCC(*)CC2)cc1 Chemical compound [*+]CCCOc1ccc(C2CCC(*)CC2)cc1 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N [O-][N+](c(cc1)cc([N+]([O-])=O)c1O)=O Chemical compound [O-][N+](c(cc1)cc([N+]([O-])=O)c1O)=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- JCRIDWXIBSEOEG-UHFFFAOYSA-N [O-][N+](c(cccc1[N+]([O-])=O)c1O)=O Chemical compound [O-][N+](c(cccc1[N+]([O-])=O)c1O)=O JCRIDWXIBSEOEG-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N c(cc1)cc2c1Sc1ccccc1N2 Chemical compound c(cc1)cc2c1Sc1ccccc1N2 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- UTGQNNCQYDRXCH-UHFFFAOYSA-N c(cc1)ccc1Nc(cc1)ccc1Nc1ccccc1 Chemical compound c(cc1)ccc1Nc(cc1)ccc1Nc1ccccc1 UTGQNNCQYDRXCH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
- G02F1/133719—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films with coupling agent molecules, e.g. silane
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13378—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
- G02F1/133788—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
Definitions
- the present invention provides a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display capable of forming a liquid crystal alignment film that controls the alignment of liquid crystal by light while suppressing a decrease in photoreactivity and further improves the response speed of liquid crystal It relates to an element.
- the liquid crystal display element is known as a light, thin, and low power consumption display device, and has been remarkably developed in recent years.
- the liquid crystal display element is configured by sandwiching and enclosing a liquid crystal layer between a pair of substrates, and orienting liquid crystals in the liquid crystal layer in a predetermined direction between the substrates.
- the liquid crystal responds and changes its orientation when a voltage is applied to electrodes provided on a pair of substrates.
- the liquid crystal display element can display a desired image using a change in the orientation of the liquid crystal due to voltage application.
- This liquid crystal display element has various liquid crystal modes in which the initial alignment state of liquid crystal molecules and the form of alignment change by voltage application are different.
- a TN (Twisted Nematic) mode in which the liquid crystal is twisted by 90 ° between a pair of substrates is known.
- liquid crystal display elements in a vertical alignment (VA) mode in which liquid crystal molecules having negative dielectric anisotropy are aligned vertically to a substrate have been actively developed (for example, see Patent Document 1 and Patent Document 2.)
- VA mode liquid crystal display element by applying a voltage, the vertically aligned liquid crystal changes its alignment so as to be parallel to the substrate while being uniformly inclined in a predetermined direction.
- the VA mode liquid crystal display element can realize a high contrast ratio, a wide viewing angle, and excellent response characteristics.
- This VA mode liquid crystal display element is required to form a state in which the liquid crystal is substantially vertically aligned as an initial alignment state of the liquid crystal when no voltage is applied in order to enable the above-described change in the alignment of the liquid crystal. That is, the VA mode liquid crystal display element is required to form an alignment state in which the liquid crystal is slightly inclined from the normal direction of the substrate toward a predetermined direction in the plane as the initial alignment state of the liquid crystal.
- VA mode liquid crystal display element several methods for realizing the above-described substantially vertical alignment state of the liquid crystal are known.
- MVA Multi-domain Vertical Alignment
- PVA Plasma-domain Vertical Alignment
- a slit structure is provided in an electrode made of ITO (Indium Tin Oxide) or the like of a substrate sandwiching a liquid crystal layer, and the tilt direction of the liquid crystal is controlled by a formed oblique electric field.
- PSA Polymer sustained Alignment
- a photopolymerizable compound is added to the liquid crystal, and an electric field is applied in a state where the liquid crystal layer is sandwiched between the substrates to tilt the liquid crystal.
- the liquid crystal layer is irradiated with light, for example, UV (ultraviolet rays) in a state where the liquid crystal is tilted and aligned.
- the photopolymerizable compound is photopolymerized, a pretilt angle is formed in the liquid crystal layer, the orientation direction of the liquid crystal that is tilted by voltage application is fixed, and the response speed of the liquid crystal is improved.
- the polymerizable compound added to the liquid crystal has low solubility, and when the addition amount is increased, it is precipitated at a low temperature.
- the addition amount of the polymerizable compound is reduced, a good alignment state and response speed cannot be obtained.
- the unreacted polymerizable compound remaining in the liquid crystal becomes an impurity in the liquid crystal, resulting in a problem that the reliability of the liquid crystal display element is lowered.
- a technique has been proposed in which the function of the polymerizable compound described above is introduced into a polymer as a side chain structure, a liquid crystal alignment film is formed from the polymer, and a VA mode liquid crystal display element is manufactured (see Patent Document 4).
- a liquid crystal aligning agent using a polymer having a structure in which a photoreactive side chain is introduced into a polymer molecule is applied to a substrate. Then, a liquid crystal layer is sandwiched between liquid crystal alignment films formed by firing, and a liquid crystal display element is manufactured by irradiating ultraviolet rays while applying a voltage to the liquid crystal layer.
- the liquid crystal display element which uses the liquid crystal aligning film using the polymer which has a photoreactive side chain implement achieves the control of the inclination alignment direction of a liquid crystal, and the improvement of a response speed.
- a liquid crystal aligning agent using a polymer having a photoreactive side chain when the coating film is formed on a substrate and heated, unnecessary components such as a solvent are removed and a crosslinking reaction between polymer components is performed.
- the photoreactive side chain may cause a thermal reaction. That is, the photoreactive side chain of the highly reactive polymer may cause unwanted reactions due to heat.
- the photoreactivity of the side chain is partially lost and lowered before the light irradiation that requires it.
- liquid crystal alignment film with reduced photoreactivity Even if such a liquid crystal alignment film with reduced photoreactivity is used, a liquid crystal layer is sandwiched, and light such as UV is irradiated while applying a voltage to the liquid crystal layer, the liquid crystal display element has a desired liquid crystal tilt. Improvement of orientation control and response speed cannot be realized.
- liquid crystal alignment film used in a VA mode liquid crystal display element, which suppresses the reaction before light irradiation of the side chain contained therein, suppresses the decrease in photoreactivity, and controls the alignment and response speed of liquid crystal by light.
- a liquid crystal alignment film that achieves improvement. That is, there is a demand for a liquid crystal aligning agent that forms a liquid crystal alignment film that suppresses a decrease in photoreactivity before light irradiation.
- An object of the present invention is to provide a liquid crystal aligning agent capable of controlling the alignment of liquid crystal by light while suppressing a decrease in photoreactivity and further forming a liquid crystal alignment film that improves the response speed of the liquid crystal, and the liquid crystal aligning agent.
- An object of the present invention is to provide a liquid crystal alignment film obtained by use and a liquid crystal display element having the liquid crystal alignment film.
- a VA mode liquid crystal display element having a liquid crystal alignment film using a polymer having a structure in which a photoreactive side chain is introduced into a polymer molecule is configured by sandwiching a liquid crystal layer between the pair of liquid crystal alignment films. Then, a voltage is applied to the liquid crystal that is vertically aligned between a pair of liquid crystal alignment films to realize the desired tilted alignment state of the liquid crystal, and then irradiation with light such as UV is performed to polymerize the photoreactive side chain.
- the polymerization reaction of the photoreactive side chain proceeds in a state where a part of the liquid crystal in the vicinity thereof is involved.
- the photopolymerization reaction of the photoreactive side chain fixes the alignment state of a part of the liquid crystal that is tilted. Therefore, a pretilt angle is formed in the liquid crystal layer sandwiched between the liquid crystal alignment films, and as a result, the response speed of the liquid crystal of the liquid crystal display element is significantly improved.
- the liquid crystal alignment film of the liquid crystal display element has a sufficient amount of photoreactive side chains.
- the liquid crystal alignment film is formed by forming a coating film by applying a liquid crystal aligning agent and heating and baking.
- the photoreactive side chain also causes a polymerization reaction by heat. Therefore, after heating and baking of the above-mentioned coating film, a sufficient amount of side chains having photoreactivity do not remain in the liquid crystal alignment film at the stage of controlling the alignment of the liquid crystal by light irradiation.
- baking may be performed at a high temperature and / or for a long time.
- the present inventors paid attention to introducing a polymerization inhibition function into the liquid crystal alignment film. That is, the liquid crystal aligning agent containing the component which shows a polymerization prohibition function with respect to the photoreactive side chain of a polymer is used for formation of a liquid crystal aligning film, and suppresses the thermal reaction of the polymer side chain before light irradiation. For example, when the side chain undergoes radical polymerization by heating and baking, a polymerization inhibiting component that captures radicals generated during the heating and baking and inactivates radical polymerization is used for forming the liquid crystal alignment film.
- the liquid crystal alignment film enables the control of the desired liquid crystal alignment by light irradiation, and as a result, the response speed of the liquid crystal can be improved. I found it.
- R 1 Si (OR 2 ) 3 (1) R 1 is a group represented by the following formula (2), and R 2 is an alkyl group having 1 to 5 carbon atoms.
- Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
- Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 17 R 18 ) b — (b is an integer of 1 to 15 , R 17 and R 18 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
- Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
- Y 4 is a divalent cyclic group selected from a single bond, a benzene ring, a cyclohexyl ring, and a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms and having a steroid skeleton, on the cyclic group
- Arbitrary hydrogen atoms are substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom May be.
- Y 5 is at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms.
- n1 is an integer of 0-4.
- Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
- R 21 , R 22 and R 23 are each independently —OCH 3 , —OC 2 H 5 , —OCH (CH 3 ) 2 , —OC (CH 3 ) 3 , —CH 3 , —Ph (phenyl group) ), —Cl, —OCOCH 3 , —OH, or R 24 is a hydrogen atom or a methyl group.
- Y 21 is a straight or branched hydrocarbon group having 1 to 8 carbon atoms which may contain a single bond or a double bond.
- Y 22 represents a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NPh—, —NHCO—, —N (CH 3 ) CO—.
- the bonding group is selected from —NHCOO— and —OCONH—.
- Y 23 and Y 24 are each independently a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms.
- Y 25 represents a single bond, —O—, or —NZ 2 —, and Z 2 represents a hydrogen atom, a linear or branched hydrocarbon group having 1 to 18 carbon atoms, an aromatic ring group, or an aliphatic group. It is a cyclic group. Cy is an alkyl group or a divalent cyclic group selected from the following and bonded at an arbitrary substitution position.
- An arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, a carbon number It may be substituted with 1 to 3 alkoxy groups, cyano groups, fluorine atoms, or chlorine atoms.
- Z 1 is a linear or branched divalent hydrocarbon group having 1 to 18 carbon atoms which may contain an aromatic ring group or an aliphatic ring group.
- the raw material alkoxysilane further contains an alkoxysilane represented by the following formula (5) having a group having a polymerization inhibiting function, and a polymerization inhibiting component
- R a Si (OR b ) 3 (5) R a is a group having a polymerization inhibiting function, and R b is an alkyl group having 1 to 5 carbon atoms.
- the hindered phenol which the polymerization prohibition component (B) contained as a substance different from the polysiloxane component (A) is phenol, catechol, benzoquinone, hydroquinone, or an ester, etherified product or alkylated thereof.
- Liquid crystal aligning agent as described in said (1) which is phenothiazine, hindered amine, hydroxyamine, or nitrosamine.
- (6) The liquid crystal alignment according to any one of (1) to (5), wherein the polymerization-inhibiting component (B) is contained in an amount of 0.01 to 20 mol% with respect to the polysiloxane component (A). Agent.
- the raw material alkoxysilane contains 2 to 30 mol% of the alkoxysilane represented by the formula (1) and 5 to 70 mol% of the alkoxysilane represented by the formula (3).
- the liquid crystal aligning agent according to any one of the above (1) to (6).
- liquid crystal aligning agent according to any one of (1) to (7) above, which contains a polysiloxane (C) formed from an alkoxysilane represented by the following formula (6).
- Si (OR 15 ) 4 (6) R 15 is an alkyl group having 1 to 5 carbon atoms.
- At least one of the polysiloxane component (A) and the polysiloxane (C) is a polysiloxane obtained by reacting an alkoxysilane further containing an alkoxysilane represented by the following formula (7) ( The liquid crystal aligning agent according to any one of 1) to (8).
- (R 13 ) n2 Si (OR 14 ) 4-n (7) R 13 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms in which the hydrogen atom may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group. It is.
- R 14 is an alkyl group having 1 to 5 carbon atoms, and n2 represents an integer of 0 to 3.
- a liquid crystal display element comprising the liquid crystal alignment film according to (11).
- the liquid crystal alignment film includes a pair of liquid crystal alignment films according to (11) and a liquid crystal layer sandwiched between the liquid crystal alignment films, and the liquid crystal alignment film emits light in a state where a voltage is applied to the liquid crystal layer.
- the liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, it is possible to form a liquid crystal alignment film that suppresses the decrease in photoreactivity, controls the alignment of the liquid crystal by light, and further improves the response speed of the liquid crystal.
- a VA mode liquid crystal display element is provided. That is, in the liquid crystal display element having the liquid crystal alignment film formed from the liquid crystal alignment agent of the present invention, the thermal reaction of the photoreactive side chain of the liquid crystal alignment film is suppressed, and the liquid crystal alignment control and response speed by light are suppressed. Will improve. In addition, the firing margin (Margin) of the liquid crystal alignment film in the manufacturing process of the liquid crystal display element can be increased.
- the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention provides a VA mode liquid crystal display element having excellent response characteristics.
- the polysiloxane component (A) contained in the liquid crystal aligning agent of the present invention is inexpensive compared with the polyimide-based material that has been conventionally used in the liquid crystal aligning film, the liquid crystal aligning agent of the present invention is It can be manufactured at a lower cost than conventional ones and is highly versatile.
- the liquid crystal aligning agent of the present invention comprises a polysiloxane component (A) formed from a raw material alkoxysilane containing an alkoxysilane represented by the formula (1) and an alkoxysilane represented by the following formula (3), and polymerization: Contains prohibited component (B).
- polysiloxane component (A) contains an alkoxysilane represented by the following formula (1) and an alkoxysilane represented by the following formula (3). It is a polysiloxane formed from raw material alkoxysilane.
- R 1 Si (OR 2 ) 3 (1) (R 1 represents the structure of the following formula (2), and R 2 represents an alkyl group having 1 to 5 carbon atoms.)
- Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
- a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO— can be selected. It is preferable from the viewpoint of facilitating the synthesis of the chain structure. It is more preferable to select any one of a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O—, or —COO—.
- Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 17 R 18 ) b — (b is an integer of 1 to 15 , R 17 and R 18 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
- — (CH 2 ) b — (b is an integer of 1 to 10) is preferable from the viewpoint of significantly improving the response speed of the liquid crystal display element.
- Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
- a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is selected. This is preferable from the viewpoint of facilitating the synthesis of the side chain structure.
- a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or —OCO— is selected. Is more preferable.
- Y 4 is a single bond or a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 to 3 carbon atoms. Or an alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Furthermore, Y 4 may be a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. Among these, an organic group having 12 to 25 carbon atoms having any one of a benzene ring, a cyclohexane ring, and a steroid skeleton is preferable.
- Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with any one of an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
- n1 is an integer of 0 to 4, preferably an integer of 0 to 2.
- Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
- an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms.
- R 2 in the above formula (1) is an alkyl group having 1 to 5, preferably 1 to 3 carbon atoms. More preferably, R 2 is a methyl group or an ethyl group.
- alkoxysilane represented by the above formula (1) include, but are not limited to, the formulas [1-1] to [1-31]. Also, R 2 in the formula [1-1] - [1-31] has the same meaning as R 2 in the formula (1).
- R 5 is —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—
- R 6 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, or a fluorine-containing alkyl group. Group or fluorine-containing alkoxy group.
- R 7 is a single bond, —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, — (CH 2 ) n O— (n is an integer of 1 to 5), —OCH 2 — or — CH 2 — and R 8 is an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group having 1 to 22 carbon atoms.
- R 9 is —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 — or —O—
- R 10 is a fluorine group , Cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy group or hydroxyl group.
- R 11 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
- R 12 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
- B 4 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom.
- B 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group.
- B 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to B 3 ).
- B 1 is bonded to an oxygen atom or —COO— * (where a bond marked with “*” is bonded to (CH 2 ) a 2 ).
- a 1 is an integer of 0 or 1
- a 2 is an integer of 2 to 10
- a 3 is an integer of 0 or 1.
- the alkoxysilane represented by the above formula (1) is the solubility of the resulting polysiloxane (A) in the solvent, the orientation of the liquid crystal when it is used as a liquid crystal alignment film, the pretilt angle characteristics, the voltage holding ratio, the accumulated charge, etc. Depending on the characteristics, one type or two or more types can be used. Further, it can be used in combination with an alkoxysilane containing a long-chain alkyl group having 10 to 18 carbon atoms.
- Such an alkoxysilane represented by the formula (1) can be produced by a known method disclosed in, for example, Japanese Patent Application Laid-Open No. 61-286393.
- the alkoxysilane represented by the formula (1) is preferably 1 mol% or more in order to obtain good liquid crystal alignment in all raw material alkoxysilanes used for obtaining the polysiloxane (A). More preferably, it is 1.5 mol% or more. More preferably, it is 3 mol% or more. Further, in order to obtain sufficient curing characteristics of the liquid crystal alignment film to be formed, 30 mol% or less is preferable. More preferably, it is 25 mol% or less.
- the liquid crystal alignment film of the liquid crystal aligning agent containing the polysiloxane (A) formed using the alkoxysilane represented by the above formula (3) is tilted and aligned in a desired direction by applying a voltage.
- the side chain having a cyclic group and a (meth) acryloyl group derived from the alkoxysilane of formula (3) undergoes a polymerization reaction upon receiving light irradiation.
- the tilted alignment state of the liquid crystal by voltage application is fixed, and a very small pretilt angle is formed in the liquid crystal layer sandwiched between the liquid crystal alignment films.
- Such a substantially vertical alignment state of the liquid crystal with a pretilt angle can realize a high-speed response of the liquid crystal in the VA mode liquid crystal display element of the present invention.
- R 21 , R 22 and R 23 in the above formula (3) are each independently —OCH 3 , —OC 2 H 5 , —OCH (CH 3 ) 2 , —OC (CH 3 ) 3 , —CH 3 , —Ph (phenyl group, ie, —C 6 H 5 ), —Cl, —OCOCH 3 , —OH, or —H.
- R 21 , R 22 and R 23 are preferably independently —OCH 3 or —OC 2 H 5 .
- R 24 represents a hydrogen atom or a methyl group, and a methyl group is preferable.
- Y 21 in the above formula (3) is a linear or branched hydrocarbon group having 1 to 8 carbon atoms which may contain a single bond or a double bond.
- Y 21 is a single bond or a linear hydrocarbon group having 3 to 5 carbon atoms.
- Y 22 in the above formula (3) represents a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NPh—, —NHCO—, — N (CH 3) CO -, - NPhCO -, - NHSO 2 -, - N (CH 3) SO 2 -, - NPhSO 2 -, - S -, - SO 2 -, - NHCONH, -N (CH 3)
- the bonding group is selected from CONH—, —NPhCONH—, —NHCOO—, and —OCONH—.
- Y 22 is preferably a single bond.
- Y 23 in the above formula (3) is a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms, and preferably Y 23 is a single bond.
- Y 24 is a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms, and preferably Y 24 is a single bond or a linear hydrocarbon group having 1 to 3 carbon atoms.
- Y 25 is a single bond, —O—, or —NZ 2 —.
- Z 2 represents a hydrogen atom, a linear or branched hydrocarbon group having 1 to 18 carbon atoms, an aromatic ring group, or an aliphatic ring group.
- Y 25 is a single bond, —O— or —NH—.
- Cy in the above formula (3) represents a divalent cyclic group selected from the following and formed at any substitution position, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms. And may be substituted with an alkoxy group having 1 to 3 carbon atoms, a cyano group, a fluorine atom, or a chlorine atom.
- Cy is a benzene ring or a biphenyl ring.
- a divalent cyclic group formed by bonding at an arbitrary substitution position means that the position of two bonds of the following cyclic group may be arbitrary.
- Z 1 represents a linear or branched divalent hydrocarbon group having 1 to 18 carbon atoms which may contain an aromatic ring group or an aliphatic ring group.
- Two or more types of alkoxysilanes represented by the above formula (1) and the above formula (3) may be contained in the raw material alkoxysilane forming the polysiloxane (A).
- the blending ratio of the alkoxysilane represented by the above formula (1) and the alkoxysilane represented by the above formula (3) when forming the polysiloxane (A) is not particularly limited.
- the alkoxysilane represented by the above formula (1) is preferably 2 to 30 mol%, particularly preferably 3 to 25 mol% in the (total) alkoxysilane used as a raw material for obtaining the polysiloxane (A). is there.
- the alkoxysilane represented by the above formula (3) is preferably 5 to 70 mol%, more preferably 5 to 60 mol% in the raw material alkoxysilane used for obtaining the siloxane (A).
- the polysiloxane (A) is an alkoxysilane other than these.
- Such other alkoxysilanes can be formed from an alkoxysilane represented by the following formula (4), and represented by the following formula (5) for introducing a polymerization inhibiting function described later. And / or alkoxysilanes represented by the following formula (7).
- R 3 in the above formula (4) is an alkyl group in which a hydrogen atom is substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group.
- the number of substituted hydrogen atoms is one or more, preferably one.
- the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
- R 4 in Formula (4) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and more preferably 1 to 2 carbon atoms.
- alkoxysilane represented by the above formula (4) are given.
- the alkoxysilane represented by the above formula (4) is preferably 5 to 80 mol%, more preferably 10 to 70 mol% in the raw material alkoxysilane used to obtain the polysiloxane (A). Two or more types of alkoxysilanes represented by formula (4) can be used.
- the alkoxysilane represented by the following formula (5) used for obtaining the polysiloxane (A) is an alkoxysilane having a polymerization inhibiting function.
- a polysiloxane (A) having a polymerization inhibiting component as a constituent part can be produced.
- R a in the formula (5) represents a group having a polymerization inhibiting function, that is, a group having a polymerization inhibitor skeleton similar to a known polymerization inhibitor.
- R b represents an alkyl group having 1 to 5 carbon atoms.
- Preferred examples of Ra include hindered phenols and hydroquinone.
- the alkoxysilane represented by the formula (5) is preferably 1 to 20 mol%, more preferably 2 to 15 mol% in the raw material alkoxysilane used for obtaining the polysiloxane (A).
- Preferred examples of the alkoxysilane represented by the formula (5) include the following compounds.
- the alkoxysilane represented by the following formula (7) used for obtaining the polysiloxane (A) is improved in adhesion to the substrate of the liquid crystal alignment film of the present invention and affinity for liquid crystal.
- it is contained in the raw material alkoxysilane. Since the alkoxysilane represented by the formula (7) can impart various properties to the polysiloxane, one or more types can be selected and used.
- the alkoxysilane represented by the following formula (7) is preferably 1 to 20 mol% in the raw material alkoxysilane used for obtaining the polysiloxane (A). (R 13 ) n2 Si (OR 14 ) 4-n (7)
- R 13 in the above formula (7) is a hydrogen atom or an organic group having 1 to 10 carbon atoms.
- R 13 include ring structures such as aliphatic hydrocarbons, aliphatic rings, aromatic rings or heterocyclic rings having 1 to 10 carbon atoms, and these include unsaturated bonds, oxygen atoms, nitrogen It may contain heteroatoms such as atoms and sulfur atoms, and may be linear or branched. The number of carbon atoms is preferably 1-6.
- the hydrogen atom of the hydrocarbon group may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group, or the like.
- R 14 in the formula (7) is an alkyl group having 1 to 5, preferably 1 to 3 carbon atoms, and n2 represents an integer of 0 to 3, preferably 0 to 2.
- alkoxysilane represented by the above formula (7) are given below.
- 3- (2-aminoethylaminopropyl) trimethoxysilane 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) Triethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethyldiethoxysi
- the alkoxysilane in which n2 is 0 is tetraalkoxysilane.
- Tetraalkoxysilane is preferable for obtaining polysiloxane (A) because it easily undergoes a polycondensation reaction with the alkoxysilane represented by the above formula (1), formula (3), formula (4) and formula (5). .
- the alkoxysilane having n2 of 0 is more preferably tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane, and particularly preferably tetramethoxysilane or tetraethoxysilane.
- n2 is 1 to 3
- the alkoxysilane represented by the formula (7) is preferably 1 to 20 mol% in the raw material alkoxysilane used for obtaining the polysiloxane (A). Particularly preferred is 1 to 10 mol%.
- the alkoxysilane represented by the formula (7) in which n2 is 0 is preferably 1 to 50 mol% in the raw material alkoxysilane used for obtaining the polysiloxane (A), and preferably 5 to 40 mol%. More preferred.
- the liquid crystal aligning agent of this invention contains the polymerization prohibition component (B) for suppressing the thermal reaction of the photoreactive side chain of a polysiloxane component (A).
- the polymerization inhibiting component (B) can introduce a polymerization inhibiting function into the liquid crystal alignment film formed from the liquid crystal aligning agent of the present invention.
- the polymerization inhibiting component (B) is a compound that retards or inhibits polymerization, and in the present invention, it is a substance that delays or inhibits the thermal reaction of the photoreactive side chain contained in the liquid crystal alignment film. .
- the polymerization inhibiting component (B) can be contained in the liquid crystal aligning agent as a constituent part of the polysiloxane component (A). That is, the polymerization-inhibiting component (B) is used in combination with the alkoxysilane of the above formula (5) for imparting a polymerization-inhibiting function when forming the polysiloxane component (A). To be included.
- the polymerization inhibiting component (B) is a component different from the polysiloxane component (A), that is, a liquid crystal aligning agent as a polymerization inhibitor which is a substance different from the polysiloxane component (A). It can be contained in the inside.
- a polymerization inhibitor has the above-described polymerization inhibition function, the molecular structure thereof is not particularly limited.
- the polymerization inhibitor should be phenol, catechol, benzoquinone, hydroquinone, their esters, etherified products or alkylated compounds Hindered phenols, phenothiazines, hindered amines, hydroxyamines such as TEMPO (2,2,6,6-tetramethylpiperidine-oxyl), and nitrosamines.
- Preferable examples of the polymerization inhibitor include the following compounds.
- the alkoxysilane of the formula (5) having the above-described polymerization inhibition function is used as a monomer in the liquid crystal aligning agent or of the formula (5) containing the alkoxysilane of the formula (5). It can be contained as a polysiloxane obtained from alkoxysilane.
- the alkoxysilane of the formula (5) functions in the same manner as the polymerization inhibitor described above, or other than, for example, polysiloxane (A) by heating and baking after forming the coating film of the liquid crystal aligning agent. It causes a polymerization reaction with the polysiloxane component, and can impart a polymerization inhibition function to the liquid crystal alignment film.
- the content of the polymerization inhibitor in the liquid crystal aligning agent is preferably 0.01 to 20 mol% based on the polysiloxane component (A), including the case where it is derived from the alkoxysilane of the formula (5). 2 to 10 mol% is more preferable.
- the liquid crystal aligning agent of this invention contains the other polysiloxane component (C) (henceforth also called polysiloxane (C)) other than a polysiloxane component (A) and a polymerization inhibition component (B). Also good.
- the polysiloxane (C) include polysiloxane obtained by reacting a raw material alkoxysilane containing an alkoxysilane represented by the following formula (6).
- the polysiloxane that is the raw material of the polysiloxane (C) preferably contains 20 to 100 mol%, more preferably 50 to 100%, of the alkoxysilane represented by the formula (6).
- Si (OR 15 ) 4 (6) However, in the above formula (6), R 15 represents an alkyl group having 1 to 5 carbon atoms.
- alkoxysilane represented by the above formula (6) tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
- the polysiloxane (C) is a polysiloxane obtained by reacting an alkoxysilane containing the alkoxysilane represented by the formula (8) in addition to the alkoxysilane represented by the formula (6). Also good.
- a liquid crystal aligning agent containing a polysiloxane (C) obtained by reacting an alkoxysilane containing an alkoxysilane represented by the formula (8) is preferable because a liquid crystal alignment film having a particularly high vertical alignment force can be formed.
- R 16 in the above formula (8) is an alkyl group having 1 to 5 carbon atoms.
- the alkyl group preferably has 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms.
- R 17 in the formula (8) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
- Specific examples of the alkoxysilane represented by the formula (8) include methyltriethoxysilane, methyltrimethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane and the like. However, it is not limited to these.
- the polysiloxane (C) is a polysiloxane obtained by reacting an alkoxysilane containing the alkoxysilane represented by the formula (4) in addition to the alkoxysilane represented by the formula (6). There may be.
- the content of the alkoxysilane represented by the formula (4) realizes the vertical alignment state of the liquid crystal desired by the liquid crystal alignment film of the present invention and further improves the response speed of the liquid crystal.
- a suitable amount is preferred. That is, the content of the alkoxysilane represented by the formula (4) is preferably 10 mol% or more, more preferably 20 mol% or more, particularly preferably 30 mol% or more in the raw material alkoxysilane of the polysiloxane (C). It is.
- 75 mol% or less is preferable.
- the polysiloxane (C) is a polysiloxane obtained by reacting an alkoxysilane containing the alkoxysilane represented by the formula (5) in addition to the alkoxysilane represented by the formula (6). Also good. Further, the polysiloxane (C) is further expressed by the above formula (7) unless the effects of the present invention are impaired for the purpose of imparting various properties such as adhesion to the substrate and improvement in affinity with the liquid crystal. Polysiloxane obtained by reacting the alkoxysilane represented may be used.
- the content of the alkoxysilane represented by the formula (7) is preferably 1 to 20 mol%, more preferably 1 to 10 mol% in the raw material alkoxysilane of the polysiloxane (C).
- the alkoxysilanes represented by the above formula (4), formula (5), formula (6), formula (7), and formula (8) are all two types. That's all.
- the blending ratio of the polysiloxane in the liquid crystal aligning agent containing the polysiloxane component (A) and other polysiloxane such as the polysiloxane component (C) is not particularly limited, but the total amount of polysiloxane contained in the liquid crystal aligning agent is not limited.
- the polysiloxane component (A) is preferably 10% by mass or more, and more preferably 50 to 90% by mass.
- the method for obtaining the polysiloxane component (A) and the polymerization inhibiting component (C) as the components of the liquid crystal aligning agent of the present invention is not particularly limited, and alkoxysilane may be reacted.
- alkoxysilane containing the alkoxysilane represented by the above formula (1) and the alkoxysilane represented by the above formula (3) is reacted (heavy) in an organic solvent.
- Condensation reaction usually, polysiloxane is obtained as a solution obtained by polycondensation of such alkoxysilanes and uniformly dissolved in an organic solvent.
- alkoxysilane used for formation of polysiloxane (A) together with the alkoxysilane represented by the above formula (1) and the above formula (3), for example, the alkoxysilane represented by the above formula (4), the above When producing the polysiloxane (A) using the alkoxysilane represented by (5) and / or the alkoxysilane represented by (7), the alkoxysilane can be reacted in the same manner as described above. .
- polysiloxane such as polysiloxane (A)
- a method of hydrolyzing and condensing contained alkoxysilane in a solvent such as alcohol or glycol can be mentioned.
- the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 times mole of water of all alkoxy groups in the alkoxysilane, but it is usually preferable to add an excess amount of water more than 0.5 times mole.
- the amount of water used in the above-mentioned reaction can be appropriately selected as desired, but it is usually 0.5 to 2.5 times mol of all alkoxy groups in the alkoxysilane contained in the alkoxysilane. It is preferably 0.5 to 2 moles.
- acid such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid, ammonia, methylamine, ethylamine, ethanolamine, triethylamine, etc.
- Catalysts such as alkali, hydrochloric acid, sulfuric acid, nitric acid and other metal salts can be used.
- a method of heating and polycondensing a mixture of alkoxysilane a solvent and oxalic acid can be mentioned. Specifically, after adding oxalic acid to alcohol in advance to obtain an alcohol solution of oxalic acid, the alkoxysilane is mixed while the solution is heated.
- the amount of succinic acid used is preferably 0.2 to 2 mol, more preferably 0.5 to 2 mol, based on 1 mol of all alkoxy groups contained in the alkoxysilane contained in the alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 ° C. to 180 ° C. A method of heating for several tens of minutes to several tens of hours under reflux is preferred so that evaporation or volatilization of volatile components such as solvents does not occur.
- each alkoxysilane may be mixed in advance as a mixture, or a plurality of alkoxysilanes may be sequentially added. You may mix. That is, there is no limitation on the order of reacting alkoxysilane, for example, alkoxysilane may be reacted at once,
- alkoxysilanes after reacting some alkoxysilanes, other alkoxysilanes may be added and reacted.
- the alkoxysilane represented by the above formula (1), the alkoxysilane represented by the above formula (3), and the above formula (4) are represented. May be mixed with each other to cause a polycondensation reaction.
- the alkoxysilane represented by the above formula (1) and the alkoxysilane represented by the above formula (4) may be subjected to a polycondensation reaction. You may make it react by adding the alkoxysilane represented by (3).
- alkoxysilane represented by the above formula (1) alkoxysilane represented by the above formula (3), and alkoxy represented by the above formula (5) Silane may be mixed and subjected to a polycondensation reaction. After a polycondensation reaction between the alkoxysilane represented by the above formula (1) and the alkoxysilane represented by the above formula (5), the above formula (3 ) May be added and reacted.
- the solvent used for polycondensation of the raw material alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it dissolves the alkoxysilane. Moreover, even when alkoxysilane does not melt
- Such a polymerization solvent include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol; ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1 Glycols such as 1,5-pentanediol, 2,4-pentanediol, 2,3-pentanediol, 1,6-hexanediol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether , Ethylene glycol monobutyl
- the polysiloxane polymerization solution obtained by the above method is a concentration obtained by converting silicon atoms of all raw material alkoxysilanes charged as raw materials into SiO 2 (hereinafter referred to as SiO 2 conversion concentration). .) Is preferably 20% by mass or less, more preferably 5 to 15% by mass. By selecting an arbitrary concentration within this concentration range, gel formation can be suppressed and a homogeneous solution can be obtained.
- liquid crystal aligning agent of the present invention in addition to the polysiloxane component (A) and the polymerization inhibiting component (B), other components, for example, inorganic fine particles, metalloxane oligomers, metalloxanes, as long as the effects of the present invention are not impaired.
- Components such as a polymer, a leveling agent and a surfactant may be contained.
- the inorganic fine particles fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and those in the state of a colloidal solution are particularly preferable.
- This colloidal solution may be a dispersion of inorganic fine particles in a dispersion medium, or a commercially available colloidal solution.
- the inorganic fine particles preferably have an average particle size of 0.001 to 0.2 ⁇ m, more preferably 0.001 to 0.1 ⁇ m. When the average particle diameter of the inorganic fine particles exceeds 0.2 ⁇ m, the transparency of the cured film formed using the prepared coating liquid may be lowered.
- the dispersion medium for inorganic fine particles examples include water and organic solvents.
- the colloidal solution it is preferable that the pH or pKa is adjusted to 1 to 10 from the viewpoint of the stability of the coating solution for forming a film. More preferably, it is 2-7.
- organic solvent used for the dispersion medium of the colloidal solution examples include alcohols such as methanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, diethylene glycol, dipropylene glycol, and ethylene glycol monopropyl ether; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and ⁇ -butyrolactone; And ethers such as tetrahydrofuran and 1,4-dioxane. Among these, alcohols and ketones are preferable. These organic solvents can be used alone or in combination of two or more as a dispersion medium.
- metalloxane oligomer and metalloxane polymer that can be used as other optional components
- single or composite oxide precursors such as silicon, titanium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used.
- the metalloxane oligomer and the metalloxane polymer may be commercial products or may be obtained from monomers such as metal alkoxides, nitrates, hydrochlorides, and carboxylates by a conventional method such as hydrolysis.
- metalloxane oligomers and metalloxane polymers include siloxane oligomers such as methyl silicate 51, methyl silicate 53A, ethyl silicate 40, ethyl silicate 48, EMS-485, and SS-101 manufactured by Colcoat.
- siloxane polymers and titanoxane oligomers such as titanium-n-butoxide tetramer manufactured by Kanto Chemical Co., Inc. You may use these individually or in mixture of 2 or more types.
- liquid crystal aligning agent of this invention the method of adding the other arbitrary component mentioned above may be simultaneous with polysiloxane (A), or after that, and is not specifically limited.
- the liquid crystal aligning agent of this invention is a liquid containing a polysiloxane component (C) and other components as needed in addition to the above-mentioned polysiloxane component (A) and polymerization inhibiting component (B).
- each said component is mixed uniformly.
- a polymerization inhibitor may be added to a reaction solution such as a polysiloxane polymerization solution obtained by the above method to form a liquid crystal aligning agent, or a reaction solution such as a polysiloxane polymerization solution obtained by the above method may be used. If necessary, it may be concentrated, diluted by adding a solvent, or substituted with another solvent, and a polymerization inhibitor may be added thereto to form a liquid crystal aligning agent.
- a solvent a solvent selected from the group consisting of the above-mentioned polysiloxane polymerization solvent and additive solvent can be used.
- the solvent in the liquid crystal aligning agent is not particularly limited as long as the polysiloxane component (A) and the polymerization inhibiting component (B) are preferably uniformly dissolved, and one or a plurality of types can be arbitrarily selected and used.
- a solvent include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and esters such as methyl acetate, ethyl acetate, and ethyl lactate. These solvents can improve the applicability when the liquid crystal aligning agent is applied onto the substrate by adjusting the viscosity of the liquid crystal aligning agent, or by spin coating, flexographic printing, ink jetting or the like.
- the content of polysiloxane including polysiloxane (A) in the liquid crystal aligning agent is preferably 0.5 to 15% by mass, more preferably 1 to 6% by mass in terms of SiO 2 concentration. In the case of such a SiO 2 equivalent concentration range, it is easy to obtain a desired film thickness by a single application, and a sufficient pot life (pot life) of the solution is easily obtained.
- content of polysiloxane in a liquid crystal aligning agent can be adjusted by using the solvent chosen from the group which consists of the polymerization solvent of the polysiloxane mentioned above, and the solvent to add.
- liquid crystal aligning agent of this invention contains the polysiloxane component (A) and polymerization inhibition component (B) which were mentioned above, the liquid crystal aligning film obtained suppresses the reaction before the light irradiation of the side chain to contain, light The decrease in reactivity can be suppressed, and the alignment control of liquid crystal by light and the improvement of response speed can be realized.
- the cured film obtained by drying, if necessary, heating and baking is then used. It can also be used as a liquid crystal alignment film.
- the cured film can be used by orientation treatment, specifically, rubbing, irradiation with polarized light or light having a specific wavelength, treatment with an ion beam, or the like.
- UV or other light is irradiated in a state where a voltage is applied to the liquid crystal layer sandwiched between the liquid crystal alignment films, thereby realizing desired alignment control of the liquid crystal.
- the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate in which a transparent electrode for driving liquid crystal is formed on the substrate is preferable.
- Specific examples include glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile.
- a plastic plate such as triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose, and a substrate on which a transparent electrode is formed.
- liquid crystal aligning agent examples include spin coating, printing, ink jet, spraying, roll coating, and the like. From the viewpoint of productivity, the transfer printing method is widely used industrially. The present invention is also preferably used.
- the step of drying the coating film after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if it is not baked immediately after coating, it is dried. It is preferable to include a process.
- the drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like.
- the coating film formed by applying the liquid crystal aligning agent by the above method can be baked to obtain a cured film.
- the calcination temperature is usually 100 to 350 ° C., preferably 140 to 300 ° C., more preferably 150 to 230 ° C., and further preferably 160 to 220 ° C.
- the firing time is usually 5 to 240 minutes.
- the time is preferably 10 to 90 minutes, more preferably 20 to 80 minutes.
- the heating can be usually performed using a known method, for example, a hot plate, a hot air circulation oven, an IR oven, a belt furnace or the like.
- the polysiloxane derived from the polysiloxane component (A) or the like in the liquid crystal alignment film usually undergoes further polycondensation in the heating and firing steps.
- firing is performed at a temperature higher by 10 ° C. or more than the curing temperature of the sealing agent so as not to be affected by heating in a heat treatment process such as curing of the sealing agent required in the manufacturing process of the liquid crystal display element. It is preferable.
- the thickness of the liquid crystal alignment film obtained as the cured film can be selected as necessary, but is preferably 5 nm or more, more preferably 10 nm or more. When the film thickness is 10 ⁇ m or more, it is preferable because the reliability of the liquid crystal display element can be easily obtained.
- the thickness of the liquid crystal alignment film is preferably 300 nm or less, more preferably 150 nm or less. A film thickness of 150 nm or less is preferable because the power consumption of the liquid crystal display element does not become extremely large.
- the liquid crystal display element of the present invention has a pair of liquid crystal alignment films of the present invention and a liquid crystal layer sandwiched between the liquid crystal alignment films.
- the liquid crystal alignment film is preferably formed by being irradiated with light while a voltage is applied to the liquid crystal layer.
- the liquid crystal display element of the present invention can be produced by appropriately using a known method after forming a liquid crystal alignment film on a substrate by the method described above.
- a method for manufacturing a liquid crystal display element a method in which a pair of substrates on which a liquid crystal alignment film of the present invention is formed is fixed with a sealant with a spacer interposed therebetween, and liquid crystal is injected and sealed is preferable.
- the size of the spacer to be used is usually 1 to 30 ⁇ m, preferably 2 to 10 ⁇ m.
- the method for injecting the liquid crystal is not particularly limited, and examples thereof include a vacuum method for injecting the liquid crystal after reducing the pressure inside the manufactured liquid crystal cell, and a dropping method for sealing after dropping the liquid crystal.
- the liquid crystal display element After obtaining a liquid crystal display element in which the liquid crystal is introduced and the liquid crystal layer is sandwiched between the pair of liquid crystal alignment films, the liquid crystal display element is irradiated with, for example, UV light. This light irradiation is performed in a state where a voltage is applied between the electrodes on both side substrates sandwiching the liquid crystal layer, that is, in a state where the liquid crystal is inclined and oriented in a uniform direction.
- a photoreaction having, for example, an acryl group or a methacryl group in the liquid crystal alignment film by irradiating UV with a voltage applied between the electrodes on both substrates For example, a polymerization reaction is carried out in a state where the hydrophilic side chain is in contact with the tilted liquid crystal.
- the liquid crystal alignment film is partially cross-linked while interacting with the liquid crystal in the vicinity.
- the liquid crystal forms a pretilt angle in a predetermined direction and is substantially vertically aligned.
- the desired liquid crystal alignment state is formed.
- a desired very small pretilt angle is formed in a part of the liquid crystal layer, and the response speed of the liquid crystal is improved.
- the voltage applied between the electrodes is 5 to 50 V pp , but preferably 5 to 30 V pp .
- the amount of light irradiation is 1 to 60 J, preferably 40 J or less. A smaller amount of light irradiation can suppress a decrease in reliability due to light deterioration of the members constituting the liquid crystal display and can reduce a light irradiation time, so that a manufacturing tact can be improved.
- the substrate used for the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate in which a transparent electrode for driving liquid crystal is formed on the substrate. Specifically, it is the same as the substrate described above. In this invention, it is also possible to use the board
- the liquid crystal display element of the present invention has a structure in which a line / slit electrode pattern of 1 to 10 ⁇ m is formed on one side substrate, and a slit pattern or a projection pattern is not formed on the opposite substrate, like the PSA type liquid crystal display. This simple structure can simplify the manufacturing process and obtain a high transmittance.
- a transistor element thin film transistor (TFT) formed between an electrode for driving a liquid crystal and a substrate is used.
- TFT thin film transistor
- a transmissive liquid crystal display element it is common to use a light-transmitting substrate as described above.
- a reflective liquid crystal display element such as aluminum that reflects light only on one substrate.
- a material can also be used, and an opaque substrate such as a silicon wafer can also be used.
- the liquid crystal display element having the liquid crystal alignment film of the present invention is excellent in response characteristics and display quality, and can be suitably used for a large-screen liquid crystal television or the like.
- TEOS Tetraethoxysilane
- MPMS 3-Methacryloxypropyltrimethoxysilane
- VTMS Trimethoxyvinylsilane
- GPS ⁇ -Glycidoxypropyltrimethoxysilane
- UPS 3-ureidopropyltriethoxysilane
- SMA compound represented by the following formula
- liquid crystal aligning agent [S1] 0.31 g of 3BHT (5 mol% with respect to MPMS) was dissolved to obtain a liquid crystal aligning agent [S2].
- 3BHT is a polymerization inhibitor component added to the liquid crystal aligning agent [S2] as a polymerization inhibitor.
- no polymerization inhibiting component is added to the liquid crystal aligning agent [S1].
- 17 g of the liquid crystal aligning agent [S1] 0.34 g of SMB in advance, 0.33 g of HG, and 0.
- a solution of 17 g and 0.17 g of PB dissolved in 0.38 g (5 mol% with respect to MPMS) was mixed, heated to 60 ° C. in an oil bath and stirred for 15 minutes, then allowed to cool, and SiO 2 A liquid crystal aligning agent [S3] having a 2 equivalent concentration of 5% by weight was obtained.
- the SMB used here is a polymerization inhibiting component added to the liquid crystal aligning agent [S3] as a polymerization inhibitor.
- liquid crystal aligning agent [S4] as the first component
- 7.56 g of the liquid crystal aligning agent [U2] as the second component
- 3.2 g of HG 1.07 g of BCS
- 4.B of PB 4.B
- the liquid crystal aligning agent [L1] was obtained by mixing 93g.
- the liquid crystal aligning agent [S5] is 3.24 g as the first component
- the liquid crystal aligning agent [U2] is 7.56 g as the second component
- HG is 3.2 g
- BCS is 1.07 g
- PB 4.93 g.
- the liquid crystal aligning agent [L2] was obtained by mixing.
- the liquid crystal aligning agent [S6] is 3.24 g as the first component
- the liquid crystal aligning agent [U2] is 7.56 g as the second component
- HG is 3.2 g
- BCS is 1.07 g
- PB is 4.4 g.
- the liquid crystal aligning agent [L3] was obtained by mixing 93g.
- the liquid crystal aligning agent [L3] is a liquid crystal aligning agent containing SMB as a polymerization inhibiting component separately from other polysiloxane components.
- SMB is an alkoxysilane monomer added to form a polymerization-inhibiting component as a part of polysiloxane constituting the liquid crystal alignment film.
- the polysiloxane in the obtained polysiloxane solution is formed by copolymerization of SMB with another alkoxysilane monomer. 41.7 g of the obtained polysiloxane solution, 25.15 g of HG, 14.58 g of BCS, and 18.6 g of PB were mixed to obtain a liquid crystal aligning agent [S7] having a SiO 2 equivalent concentration of 5% by weight. .
- Example 1 The liquid crystal aligning agent [S2] obtained in Synthesis Example 1 was spin-coated at 1500 rpm on a Cr substrate having a size of 30 mm ⁇ 30 mm, temporarily dried on an 80 ° C. hot plate for 90 seconds, and then heated at 200 ° C. in a hot air circulation oven The main baking was performed for 30 minutes to form a liquid crystal alignment film.
- the results are shown in Table 1.
- Example 3 Using the liquid crystal aligning agent [L2] obtained in Synthesis Example 2, spin coating was performed on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 ⁇ m ⁇ 300 ⁇ m and a line / space of 5 ⁇ m was formed. Next, after temporary drying for 90 seconds on a hot plate at 80 ° C., main baking was performed for 30 minutes in a hot air circulation oven at 200 ° C. to form a liquid crystal alignment film having a thickness of 100 nm.
- liquid crystal alignment film surface of the other substrate was placed inside and bonded together, and then the sealing agent (manufactured by Mitsui Chemicals) was cured to produce an empty cell.
- liquid crystal MLC-6608 manufactured by Merck & Co., Inc.
- the obtained liquid crystal cell was annealed in a circulation oven at 110 ° C. for 15 minutes.
- a VA mode liquid crystal display element was manufactured by using a liquid crystal cell irradiated with UV and sandwiching it between a pair of polarizing plates arranged in crossed Nicols. Using the liquid crystal display element, the response speed of the liquid crystal was measured. Next, the voltage holding ratio of the liquid crystal display element was measured.
- Table 2 shows the type of the liquid crystal aligning agent used in this example as [L2], and also shows the type of the liquid crystal aligning agent of the first component used for the preparation of the liquid crystal aligning agent [L2].
- [S5] is shown, and the type of the liquid crystal aligning agent of the second component is shown as [U2].
- the polymerization inhibiting component contained in the used liquid crystal aligning agent [L2] was shown, and the main baking temperature and baking time for forming the liquid crystal alignment film were also shown.
- the response speed was measured by the following method.
- [Response speed measurement] A 10 V AC voltage and a rectangular wave with a frequency of 1 kHz were applied to the liquid crystal display element, and the time change of the luminance of the liquid crystal display element at that time was captured with an oscilloscope. When the voltage was not applied, the luminance was 0%, a voltage of 10 V was applied, the saturated luminance value was 100%, and the time for the luminance to change from 10% to 90% was evaluated as the rising response speed.
- Example 4 A liquid crystal cell was produced in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L3], and a VA mode liquid crystal display element was produced.
- Example 5 A liquid crystal cell was produced in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L4], and a VA mode liquid crystal display element was produced.
- Example 2 A liquid crystal cell was produced in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L1], and a VA mode liquid crystal display device was produced.
- Example 6 A liquid crystal cell was produced in the same manner as in Example 3 except that the conditions for the main firing were changed from 200 ° C. for 30 minutes to 200 ° C. for 40 minutes, and a VA mode liquid crystal display device was produced.
- Example 7 A liquid crystal cell was prepared in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L3] and the conditions for the main firing were changed from 200 ° C. for 30 minutes to 200 ° C. for 40 minutes. A VA mode liquid crystal display element was manufactured.
- Example 3 A liquid crystal cell was prepared in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L1] and the conditions for the main firing were changed from 200 ° C. for 30 minutes to 200 ° C. for 40 minutes. A VA mode liquid crystal display element was manufactured.
- Example 8 A liquid crystal cell was produced in the same manner as in Example 3 except that the conditions for the main firing were changed from 200 ° C. for 30 minutes to 230 ° C. for 30 minutes, and a VA mode liquid crystal display device was produced.
- Example 9 A liquid crystal cell was prepared in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L3] and the conditions for the main firing were changed from 200 ° C. for 30 minutes to 230 ° C. for 30 minutes. A VA mode liquid crystal display element was manufactured.
- a liquid crystal cell was prepared in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L1] and the conditions for the main firing were changed from 200 ° C. for 30 minutes to 230 ° C. for 30 minutes.
- a VA mode liquid crystal display element was manufactured.
- Example 2 As shown in Table 2, in the liquid crystal display elements of Examples 3 to 5 in which the polymerization inhibiting component was introduced, the response speed was improved by the liquid crystal alignment film as compared with Comparative Example 2 in which the polymerization inhibiting component was not introduced.
- SMB is added to form a polymerization inhibiting component as a part of polysiloxane constituting the liquid crystal alignment film.
- the polysiloxane contained is formed by copolymerizing SMB with other alkoxysilane monomers.
- the liquid crystal display elements of Examples 6 and 7 into which the polymerization inhibiting component was introduced exhibited the same response speed as the corresponding liquid crystal display elements of Examples 3 and 4 even when the firing time was increased.
- the firing time of the liquid crystal alignment film was the same, and the response speed was improved as compared with Comparative Example 3 in which the polymerization inhibiting component was not introduced.
- the liquid crystal display elements of Examples 8 and 9 into which the polymerization inhibiting component was introduced exhibited a response speed equivalent to that of the corresponding liquid crystal display elements of Examples 3 and 4 even when the firing temperature was increased.
- the response speed was improved as compared with Comparative Example 4 in which the polymerization inhibiting component was not introduced even when the firing temperature of the liquid crystal alignment film was the same.
- a VA mode liquid crystal display element can be manufactured.
- the liquid crystal display element constitutes a VA mode liquid crystal display element of high display quality, and can be suitably used for a portable information terminal such as a large-sized liquid crystal TV or a smartphone displaying a high-definition image.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Liquid Crystal (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Silicon Polymers (AREA)
Abstract
Description
液晶表示素子は、電圧印加による液晶の配向変化を利用して、所望とする画像の表示を行うことができる。 The liquid crystal display element is configured by sandwiching and enclosing a liquid crystal layer between a pair of substrates, and orienting liquid crystals in the liquid crystal layer in a predetermined direction between the substrates. In the liquid crystal display element, the liquid crystal responds and changes its orientation when a voltage is applied to electrodes provided on a pair of substrates.
The liquid crystal display element can display a desired image using a change in the orientation of the liquid crystal due to voltage application.
このVAモード液晶表示素子では、電圧印加により、垂直配向する液晶が、所定の方向に一様に傾斜しながら、基板に平行となるように配向変化する。そして、VAモード液晶表示素子は、高いコントラスト比と広い視野角、さらに優れた応答特性を実現することができる。 In recent years, among liquid crystal display element display methods, liquid crystal display elements in a vertical alignment (VA) mode in which liquid crystal molecules having negative dielectric anisotropy are aligned vertically to a substrate have been actively developed ( For example, see Patent Document 1 and Patent Document 2.)
In this VA mode liquid crystal display element, by applying a voltage, the vertically aligned liquid crystal changes its alignment so as to be parallel to the substrate while being uniformly inclined in a predetermined direction. The VA mode liquid crystal display element can realize a high contrast ratio, a wide viewing angle, and excellent response characteristics.
例えば、VAモード液晶表示素子では、上述した液晶の略垂直配向状態を実現する突起構造を、液晶を挟持するTFT基板やカラーフィルタ基板に形成するMVA(Multi-domain Vertical Alignment)方式が知られている。また、液晶層を挟持する基板のITO(Indium Tin Oxide)等からなる電極にスリット構造を設け、形成される斜め電界によって液晶の傾斜方向を制御するPVA(Patterned Vertical Alignment)方式が知られている。さらに、別の方式として、PSA(Polymer sustained Alignment)方式がある。 In the VA mode liquid crystal display element, several methods for realizing the above-described substantially vertical alignment state of the liquid crystal are known.
For example, in a VA mode liquid crystal display element, there is known an MVA (Multi-domain Vertical Alignment) method in which a protrusion structure that realizes a substantially vertical alignment state of the liquid crystal described above is formed on a TFT substrate or a color filter substrate that sandwich the liquid crystal. Yes. Also known is a PVA (Patterned Vertical Alignment) system in which a slit structure is provided in an electrode made of ITO (Indium Tin Oxide) or the like of a substrate sandwiching a liquid crystal layer, and the tilt direction of the liquid crystal is controlled by a formed oblique electric field. . Furthermore, as another method, there is a PSA (Polymer sustained Alignment) method.
この技術では、ポリマー分子中に光反応性の側鎖を導入した構造のポリマーを用いた液晶配向剤を基板に塗布する。そして、焼成を行って形成された液晶配向膜によって液晶層を挟持し、この液晶層に電圧を印加しながら紫外線を照射して液晶表示素子を作製する。
その結果、液晶中に重合性化合物を添加しない構成でも、電圧印加によって液晶が傾斜配向する方向が制御され、また、応答速度の速い液晶表示素子を得ることが出来る。 Therefore, a technique has been proposed in which the function of the polymerizable compound described above is introduced into a polymer as a side chain structure, a liquid crystal alignment film is formed from the polymer, and a VA mode liquid crystal display element is manufactured (see Patent Document 4). .
In this technique, a liquid crystal aligning agent using a polymer having a structure in which a photoreactive side chain is introduced into a polymer molecule is applied to a substrate. Then, a liquid crystal layer is sandwiched between liquid crystal alignment films formed by firing, and a liquid crystal display element is manufactured by irradiating ultraviolet rays while applying a voltage to the liquid crystal layer.
As a result, even in a configuration in which no polymerizable compound is added to the liquid crystal, the direction in which the liquid crystal is tilted and aligned is controlled by applying a voltage, and a liquid crystal display element having a high response speed can be obtained.
ポリマー分子中に光反応性の側鎖を導入した構造のポリマーを用いた液晶配向膜を有するVAモードの液晶表示素子は、その一対の液晶配向膜によって液晶層を挟持して構成される。そして、一対の液晶配向膜間で垂直配向する液晶に電圧を印加し、所望とする液晶の傾斜配向状態を実現した後、UV等の光を照射して、光反応性の側鎖に重合反応を生じさせる。このとき、光反応性の側鎖の重合反応は、それらの近傍にある液晶の一部を巻き込む状態で進められる。その結果、光反応性の側鎖の光重合反応は、傾斜配向する一部の液晶の配向状態を固定化させる。そのため、液晶配向膜間に挟持された液晶層にプレチルト角が形成され、その結果、液晶表示素子の液晶の応答速度は格段に向上する。 As a result of research and development to achieve the above object, the present inventor has reached the present invention that can achieve this object through the following processes.
A VA mode liquid crystal display element having a liquid crystal alignment film using a polymer having a structure in which a photoreactive side chain is introduced into a polymer molecule is configured by sandwiching a liquid crystal layer between the pair of liquid crystal alignment films. Then, a voltage is applied to the liquid crystal that is vertically aligned between a pair of liquid crystal alignment films to realize the desired tilted alignment state of the liquid crystal, and then irradiation with light such as UV is performed to polymerize the photoreactive side chain. Give rise to At this time, the polymerization reaction of the photoreactive side chain proceeds in a state where a part of the liquid crystal in the vicinity thereof is involved. As a result, the photopolymerization reaction of the photoreactive side chain fixes the alignment state of a part of the liquid crystal that is tilted. Therefore, a pretilt angle is formed in the liquid crystal layer sandwiched between the liquid crystal alignment films, and as a result, the response speed of the liquid crystal of the liquid crystal display element is significantly improved.
(1)下記式(1)で表されるアルコキシシランと下記式(3)で表されるアルコキシシランを含有する原料アルコキシシランから形成されるポリシロキサン成分(A)、及び重合禁止成分(B)を含有し、該重合禁止成分(B)が、前記ポリシロキサン成分(A)の構成部分として、又は前記ポリシロキサン成分(A)と別の物質として含有することを特徴とする液晶配向剤。
R1Si(OR2)3 (1)
(R1は下記式(2)で表わされる基であり、R2は炭素数1~5のアルキル基である。)
(1) A polysiloxane component (A) formed from a raw material alkoxysilane containing an alkoxysilane represented by the following formula (1) and an alkoxysilane represented by the following formula (3), and a polymerization inhibiting component (B) And the polymerization-inhibiting component (B) is contained as a constituent part of the polysiloxane component (A) or as a substance different from the polysiloxane component (A).
R 1 Si (OR 2 ) 3 (1)
(R 1 is a group represented by the following formula (2), and R 2 is an alkyl group having 1 to 5 carbon atoms.)
Y2は単結合、二重結合を含有する炭素数3~8の直鎖状若しくは分岐状の炭化水素基、又は、-(CR17R18)b-(bは1~15の整数であり、R17及びR18は、それぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。)である。
Y3は単結合、-(CH2)c-(cは1~15の整数である)、-O-、-CH2O-、-COO-又は-OCO-である。
Y4は単結合、ベンゼン環、シクロへキシル環、及び複素環から選ばれる2価の環状基、又は、ステロイド骨格を有する炭素数12~25の2価の有機基であり、環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。
Y5はベンゼン環、シクロへキシル環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。
n1は0~4の整数である。
Y6は水素原子、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。) (Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 17 R 18 ) b — (b is an integer of 1 to 15 , R 17 and R 18 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
Y 4 is a divalent cyclic group selected from a single bond, a benzene ring, a cyclohexyl ring, and a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms and having a steroid skeleton, on the cyclic group Arbitrary hydrogen atoms are substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom May be.
Y 5 is at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms. Group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
n1 is an integer of 0-4.
Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. )
R24は水素原子、又はメチル基である。
Y21は単結合、又は、二重結合を含有していてもよい炭素数1~8の直鎖状若しくは分岐状の炭化水素基である。
Y22は単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH3)-、-NPh-、-NHCO-、-N(CH3)CO-、-NPhCO-、-NHSO2-、-N(CH3)SO2-、-NPhSO2-、-S-、-SO2-、-NHCONH、-N(CH3)CONH-、-NPhCONH-、-NHCOO-、及び-OCONH-から選ばれる結合基である。
Y23、Y24は、それぞれ独立して、単結合、又は、炭素数1~8の直鎖状若しくは分岐状の炭化水素基である。
Y25は、単結合、-O-、又は-NZ2-であり、Z2は水素原子、炭素数1~18の直鎖状若しくは分岐状の炭化水素基、芳香族環基、又は脂肪族環基である。
Cyは、アルキル基又は下記から選ばれ任意の置換位置で結合形成される2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、シアノ基、フッ素原子、又は塩素原子で置換されていてもよい。) (R 21 , R 22 and R 23 are each independently —OCH 3 , —OC 2 H 5 , —OCH (CH 3 ) 2 , —OC (CH 3 ) 3 , —CH 3 , —Ph (phenyl group) ), —Cl, —OCOCH 3 , —OH, or
R 24 is a hydrogen atom or a methyl group.
Y 21 is a straight or branched hydrocarbon group having 1 to 8 carbon atoms which may contain a single bond or a double bond.
Y 22 represents a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NPh—, —NHCO—, —N (CH 3 ) CO—. , -NPhCO -, - NHSO 2 - , - N (CH 3) SO 2 -, - NPhSO 2 -, - S -, - SO 2 -, - NHCONH, -N (CH 3) CONH -, - NPhCONH-, The bonding group is selected from —NHCOO— and —OCONH—.
Y 23 and Y 24 are each independently a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms.
Y 25 represents a single bond, —O—, or —NZ 2 —, and Z 2 represents a hydrogen atom, a linear or branched hydrocarbon group having 1 to 18 carbon atoms, an aromatic ring group, or an aliphatic group. It is a cyclic group.
Cy is an alkyl group or a divalent cyclic group selected from the following and bonded at an arbitrary substitution position. An arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, a carbon number It may be substituted with 1 to 3 alkoxy groups, cyano groups, fluorine atoms, or chlorine atoms. )
RaSi(ORb)3 (5)
(Raは、重合禁止機能を有する基であり、Rbは炭素数1~5のアルキル基である。) (2) The raw material alkoxysilane further contains an alkoxysilane represented by the following formula (5) having a group having a polymerization inhibiting function, and a polymerization inhibiting component ( The liquid crystal aligning agent as described in said (1) in which B) contains.
R a Si (OR b ) 3 (5)
(R a is a group having a polymerization inhibiting function, and R b is an alkyl group having 1 to 5 carbon atoms.)
RaSi(ORb)3 (5)
(Raは、重合禁止機能を有する基であり、Rbは炭素数1~5のアルキル基である。) (3) The liquid crystal aligning agent as described in said (1) in which the polysiloxane formed from the alkoxysilane represented by following formula (5) is contained as a substance different from the said polysiloxane component (A).
R a Si (OR b ) 3 (5)
(R a is a group having a polymerization inhibiting function, and R b is an alkyl group having 1 to 5 carbon atoms.)
(6)前記重合禁止成分(B)が、前記ポリシロキサン成分(A)に対して0.01~20モル%含有される上記(1)~(5)のいずれか1項に記載の液晶配向剤。
(7)原料アルコキシシラン中、前記式(1)で表されるアルコキシシランが、2~30モル%含有され、上記式(3)で表されるアルコキシシランが5~70モル%含有される、上記(1)~(6)いずれか1項に記載の液晶配向剤。 (5) The hindered phenol which the polymerization prohibition component (B) contained as a substance different from the polysiloxane component (A) is phenol, catechol, benzoquinone, hydroquinone, or an ester, etherified product or alkylated thereof. Liquid crystal aligning agent as described in said (1) which is phenothiazine, hindered amine, hydroxyamine, or nitrosamine.
(6) The liquid crystal alignment according to any one of (1) to (5), wherein the polymerization-inhibiting component (B) is contained in an amount of 0.01 to 20 mol% with respect to the polysiloxane component (A). Agent.
(7) The raw material alkoxysilane contains 2 to 30 mol% of the alkoxysilane represented by the formula (1) and 5 to 70 mol% of the alkoxysilane represented by the formula (3). The liquid crystal aligning agent according to any one of the above (1) to (6).
R3Si(OR4)3 (4)
(R3は、水素原子が、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基又はスチリル基で置換された炭素数1~30のアルキル基である。R4は炭素数1~5のアルキル基である。) (8) The liquid crystal aligning agent according to any one of (1) to (7), wherein the raw material alkoxysilane further contains an alkoxysilane represented by the following formula (4):
R 3 Si (OR 4 ) 3 (4)
(R 3 is an alkyl group having 1 to 30 carbon atoms in which a hydrogen atom is substituted with an acrylic group, acryloxy group, methacryl group, methacryloxy group or styryl group. R 4 is an alkyl group having 1 to 5 carbon atoms. is there.)
Si(OR15)4 (6)
(R15は炭素数1~5のアルキル基である。) (9) The liquid crystal aligning agent according to any one of (1) to (7) above, which contains a polysiloxane (C) formed from an alkoxysilane represented by the following formula (6).
Si (OR 15 ) 4 (6)
(R 15 is an alkyl group having 1 to 5 carbon atoms.)
(R13)n2Si(OR14)4-n (7)
(R13は、水素原子、又は、水素原子がヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、若しくはウレイド基で置換されていてもよい炭素数1~10の炭化水素基である。
R14は炭素数1~5のアルキル基であり、n2は0~3の整数を表す。) (10) At least one of the polysiloxane component (A) and the polysiloxane (C) is a polysiloxane obtained by reacting an alkoxysilane further containing an alkoxysilane represented by the following formula (7) ( The liquid crystal aligning agent according to any one of 1) to (8).
(R 13 ) n2 Si (OR 14 ) 4-n (7)
(R 13 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms in which the hydrogen atom may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group. It is.
R 14 is an alkyl group having 1 to 5 carbon atoms, and n2 represents an integer of 0 to 3. )
(12)上記(11)に記載の液晶配向膜を有することを特徴とする液晶表示素子。
(13)上記(11)に記載の液晶配向膜の一対と、液晶配向膜に挟持された液晶層とを有し、前記液晶配向膜が、前記液晶層に電圧が印加された状態で、光の照射を受けて形成されたものである請求項12に記載の液晶表示素子。 (11) A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of (1) to (10) above.
(12) A liquid crystal display element comprising the liquid crystal alignment film according to (11).
(13) The liquid crystal alignment film includes a pair of liquid crystal alignment films according to (11) and a liquid crystal layer sandwiched between the liquid crystal alignment films, and the liquid crystal alignment film emits light in a state where a voltage is applied to the liquid crystal layer. The liquid crystal display element according to claim 12, wherein the liquid crystal display element is formed by being irradiated.
すなわち、本発明の液晶配向剤から形成され液晶配向膜を有する液晶表示素子は、液晶配向膜が有する光反応性の側鎖の熱的な反応が抑制され、光による液晶の配向制御と応答速度が向上する。また、液晶表示素子の製造工程における液晶配向膜の焼成マージン(Margin)を拡大することができる。かくして、本発明の液晶配向剤から得られる液晶配向膜は、優れた応答特性を有するVAモードの液晶表示素子が提供される。 By using the liquid crystal aligning agent of the present invention, it is possible to form a liquid crystal alignment film that suppresses the decrease in photoreactivity, controls the alignment of the liquid crystal by light, and further improves the response speed of the liquid crystal. By using the alignment film, a VA mode liquid crystal display element is provided.
That is, in the liquid crystal display element having the liquid crystal alignment film formed from the liquid crystal alignment agent of the present invention, the thermal reaction of the photoreactive side chain of the liquid crystal alignment film is suppressed, and the liquid crystal alignment control and response speed by light are suppressed. Will improve. In addition, the firing margin (Margin) of the liquid crystal alignment film in the manufacturing process of the liquid crystal display element can be increased. Thus, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention provides a VA mode liquid crystal display element having excellent response characteristics.
本発明の液晶配向剤は、記式(1)で表されるアルコキシシランと下記式(3)で表されるアルコキシシランを含有する原料アルコキシシランから形成されるポリシロキサン成分(A)、及び重合禁止成分(B)を含有する。 <Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention comprises a polysiloxane component (A) formed from a raw material alkoxysilane containing an alkoxysilane represented by the formula (1) and an alkoxysilane represented by the following formula (3), and polymerization: Contains prohibited component (B).
ポリシロキサン成分(A)(以下、ポリシロキサン(A)ともいう。)は、上述したように、下記式(1)で表されるアルコキシシラン及び下記式(3)で表されるアルコキシシランを含有する原料アルコキシシランから形成されるポリシロキサンである。 <Polysiloxane component (A)>
As described above, the polysiloxane component (A) (hereinafter also referred to as polysiloxane (A)) contains an alkoxysilane represented by the following formula (1) and an alkoxysilane represented by the following formula (3). It is a polysiloxane formed from raw material alkoxysilane.
(R1は下記式(2)の構造を表し、R2は、炭素数1~5のアルキル基を表す。) R 1 Si (OR 2 ) 3 (1)
(R 1 represents the structure of the following formula (2), and R 2 represents an alkyl group having 1 to 5 carbon atoms.)
n1は0~4の整数であり、好ましくは、0~2の整数である。 Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with any one of an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
n1 is an integer of 0 to 4, preferably an integer of 0 to 2.
上記式(1)におけるR2は、炭素数1~5、好ましくは1~3のアルキル基である。より好ましくは、R2はメチル基又はエチル基である。 Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Among these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
R 2 in the above formula (1) is an alkyl group having 1 to 5, preferably 1 to 3 carbon atoms. More preferably, R 2 is a methyl group or an ethyl group.
B3は1,4-シクロへキシレン基又は1,4-フェニレン基である。
B2は酸素原子又は-COO-*(但し、「*」を付した結合手がB3と結合する。)である。
B1は酸素原子又は-COO-*(但し、「*」を付した結合手が(CH2)a2)と結合する。)である。
また、a1は0又は1の整数であり、a2は2~10の整数であり、a3は0又は1の整数である。)
B 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group.
B 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to B 3 ).
B 1 is bonded to an oxygen atom or —COO— * (where a bond marked with “*” is bonded to (CH 2 ) a 2 ). ).
A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is an integer of 0 or 1. )
このような式(1)で表されるアルコキシシランは、例えば、日本特開昭61-286393号公報に開示されている、公知の方法で製造することが可能である。 The alkoxysilane represented by the above formula (1) is the solubility of the resulting polysiloxane (A) in the solvent, the orientation of the liquid crystal when it is used as a liquid crystal alignment film, the pretilt angle characteristics, the voltage holding ratio, the accumulated charge, etc. Depending on the characteristics, one type or two or more types can be used. Further, it can be used in combination with an alkoxysilane containing a long-chain alkyl group having 10 to 18 carbon atoms.
Such an alkoxysilane represented by the formula (1) can be produced by a known method disclosed in, for example, Japanese Patent Application Laid-Open No. 61-286393.
R24は、水素原子又はメチル基を表し、メチル基が好ましい。 R 21 , R 22 and R 23 in the above formula (3) are each independently —OCH 3 , —OC 2 H 5 , —OCH (CH 3 ) 2 , —OC (CH 3 ) 3 , —CH 3 , —Ph (phenyl group, ie, —C 6 H 5 ), —Cl, —OCOCH 3 , —OH, or —H. R 21 , R 22 and R 23 are preferably independently —OCH 3 or —OC 2 H 5 .
R 24 represents a hydrogen atom or a methyl group, and a methyl group is preferable.
Y24は単結合、又は、炭素数1~8の直鎖状若しくは分岐状の炭化水素基であり、好ましくは、Y24は、単結合又は炭素数1~3の直鎖状の炭化水素基である。
Y25は単結合、-O-、又は、-NZ2-である。ここで、Z2は水素原子、炭素数1~18の直鎖状若しくは分岐状の炭化水素基、芳香族環基、又は、脂肪族環基を表す。好ましくは、Y25は、単結合、-O-、又は、-NH-である。 Y 23 in the above formula (3) is a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms, and preferably Y 23 is a single bond.
Y 24 is a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms, and preferably Y 24 is a single bond or a linear hydrocarbon group having 1 to 3 carbon atoms. It is.
Y 25 is a single bond, —O—, or —NZ 2 —. Here, Z 2 represents a hydrogen atom, a linear or branched hydrocarbon group having 1 to 18 carbon atoms, an aromatic ring group, or an aliphatic ring group. Preferably, Y 25 is a single bond, —O— or —NH—.
但し、Z1は、芳香族環基、又は脂肪族環基を含有していてもよい炭素数1~18の直鎖状若しくは分岐状の2価の炭化水素基を表す。
Z 1 represents a linear or branched divalent hydrocarbon group having 1 to 18 carbon atoms which may contain an aromatic ring group or an aliphatic ring group.
R3Si(OR4)3 (4)
RaSi(ORb)3 (5)
(R13)n2Si(OR14)4-n (7)
(R3、R4、Ra、Rb、R13、及びR14は、前記と同義である。) As mentioned above, in addition to the raw material alkoxysilane containing the alkoxysilane represented by the formula (1) and the alkoxysilane represented by the formula (3), the polysiloxane (A) is an alkoxysilane other than these. Such other alkoxysilanes can be formed from an alkoxysilane represented by the following formula (4), and represented by the following formula (5) for introducing a polymerization inhibiting function described later. And / or alkoxysilanes represented by the following formula (7).
R 3 Si (OR 4 ) 3 (4)
R a Si (OR b ) 3 (5)
(R 13 ) n2 Si (OR 14 ) 4-n (7)
(R 3 , R 4 , R a , R b , R 13 , and R 14 are as defined above.)
式(4)におけるR4は、炭素数1~5のアルキル基であり、好ましくは炭素数1~3であり、より好ましくは炭素数1~2である。 R 3 in the above formula (4) is an alkyl group in which a hydrogen atom is substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group. The number of substituted hydrogen atoms is one or more, preferably one. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
R 4 in Formula (4) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and more preferably 1 to 2 carbon atoms.
原料アルコキシシランを使用した場合には、構成部分として重合禁止成分を有するポリシロキサン(A)が製造することができる。
RaSi(ORb)3 (5) The alkoxysilane represented by the following formula (5) used for obtaining the polysiloxane (A) is an alkoxysilane having a polymerization inhibiting function. When the raw material alkoxysilane containing the alkoxysilane of the formula (5) is used, a polysiloxane (A) having a polymerization inhibiting component as a constituent part can be produced.
R a Si (OR b ) 3 (5)
式(7)で表されるアルコキシシランは、ポリシロキサンに種々の特性を付与し得るため、一種又は複数種を選択して用いることができる。
下記式(7)で表されるアルコキシシランは、ポリシロキサン(A)を得るために用いられる原料アルコキシシラン中、好ましくは1~20モル%である。
(R13)n2Si(OR14)4-n (7) In addition, the alkoxysilane represented by the following formula (7) used for obtaining the polysiloxane (A) is improved in adhesion to the substrate of the liquid crystal alignment film of the present invention and affinity for liquid crystal. For the purpose of, it is contained in the raw material alkoxysilane.
Since the alkoxysilane represented by the formula (7) can impart various properties to the polysiloxane, one or more types can be selected and used.
The alkoxysilane represented by the following formula (7) is preferably 1 to 20 mol% in the raw material alkoxysilane used for obtaining the polysiloxane (A).
(R 13 ) n2 Si (OR 14 ) 4-n (7)
式(7)におけるR14は炭素数1~5、好ましくは1~3のアルキル基であり、n2は0~3、好ましくは0~2の整数を表す。 R 13 in the above formula (7) is a hydrogen atom or an organic group having 1 to 10 carbon atoms. Examples of R 13 include ring structures such as aliphatic hydrocarbons, aliphatic rings, aromatic rings or heterocyclic rings having 1 to 10 carbon atoms, and these include unsaturated bonds, oxygen atoms, nitrogen It may contain heteroatoms such as atoms and sulfur atoms, and may be linear or branched. The number of carbon atoms is preferably 1-6. The hydrogen atom of the hydrocarbon group may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group, or the like.
R 14 in the formula (7) is an alkyl group having 1 to 5, preferably 1 to 3 carbon atoms, and n2 represents an integer of 0 to 3, preferably 0 to 2.
本発明の液晶配向剤は、ポリシロキサン成分(A)の光反応性の側鎖の熱的な反応を抑制するための重合禁止成分(B)を含有する。重合禁止成分(B)は、本発明の液晶配向剤から形成される液晶配向膜に重合禁止機能を導入することができる。重合禁止成分(B)は、重合を遅延、若しくは禁止させる化合物であり、本発明においては、液晶配向膜に含まれる光反応性の側鎖の熱的な反応を遅延、若しくは禁止させる物質である。
この重合禁止成分(B)は、上記のように、液晶配向剤中に、ポリシロキサン成分(A)の構成部分として含有することができる。すなわち、重合禁止成分(B)は、ポリシロキサン成分(A)を形成するときに、重合禁止機能を付与するための上記式(5)のアルコキシシランを併用し、ポリシロキサン(A)の構成部位として含有せしめる。 <Polymerization inhibition component (B)>
The liquid crystal aligning agent of this invention contains the polymerization prohibition component (B) for suppressing the thermal reaction of the photoreactive side chain of a polysiloxane component (A). The polymerization inhibiting component (B) can introduce a polymerization inhibiting function into the liquid crystal alignment film formed from the liquid crystal aligning agent of the present invention. The polymerization inhibiting component (B) is a compound that retards or inhibits polymerization, and in the present invention, it is a substance that delays or inhibits the thermal reaction of the photoreactive side chain contained in the liquid crystal alignment film. .
As described above, the polymerization inhibiting component (B) can be contained in the liquid crystal aligning agent as a constituent part of the polysiloxane component (A). That is, the polymerization-inhibiting component (B) is used in combination with the alkoxysilane of the above formula (5) for imparting a polymerization-inhibiting function when forming the polysiloxane component (A). To be included.
かかる重合禁止剤は、上記の重合禁止機能を有する限り、その分子構造等については、特に限定されるものではない。 In the present invention, the polymerization inhibiting component (B) is a component different from the polysiloxane component (A), that is, a liquid crystal aligning agent as a polymerization inhibitor which is a substance different from the polysiloxane component (A). It can be contained in the inside.
As long as such a polymerization inhibitor has the above-described polymerization inhibition function, the molecular structure thereof is not particularly limited.
重合禁止剤の好ましい例としては、例えば、下記の化合物も挙げることができる。 When the reaction of the photoreactive side chain contained in the liquid crystal alignment film is a radical reaction (?), The polymerization inhibitor should be phenol, catechol, benzoquinone, hydroquinone, their esters, etherified products or alkylated compounds Hindered phenols, phenothiazines, hindered amines, hydroxyamines such as TEMPO (2,2,6,6-tetramethylpiperidine-oxyl), and nitrosamines.
Preferable examples of the polymerization inhibitor include the following compounds.
本発明の液晶配向剤は、ポリシロキサン成分(A)及び重合禁止成分(B)の他に、その他のポリシロキサン成分(C)(以下、ポリシロキサン(C)とも言う。)を含有していてもよい。
ポリシロキサン(C)としては、下記式(6)で表されるアルコキシシランを含有する原料アルコキシシランを反応させて得られるポリシロキサンが挙げられる。
ポリシロキサン(C)の原料であるポリシロキサンは、式(6)で表されるアルコキシシランを、20~100モル%含有することが好ましく、50~100%含有していることがさらに好ましい。
Si(OR15)4 (6)
但し、上記式(6)中、R15は炭素数1~5のアルキル基を表す。 <Polysiloxane component (C)>
The liquid crystal aligning agent of this invention contains the other polysiloxane component (C) (henceforth also called polysiloxane (C)) other than a polysiloxane component (A) and a polymerization inhibition component (B). Also good.
Examples of the polysiloxane (C) include polysiloxane obtained by reacting a raw material alkoxysilane containing an alkoxysilane represented by the following formula (6).
The polysiloxane that is the raw material of the polysiloxane (C) preferably contains 20 to 100 mol%, more preferably 50 to 100%, of the alkoxysilane represented by the formula (6).
Si (OR 15 ) 4 (6)
However, in the above formula (6), R 15 represents an alkyl group having 1 to 5 carbon atoms.
式(8)で表されるアルコキシシランを含有するアルコキシシランを反応して得られるポリシロキサン(C)を含有する液晶配向剤は、特に垂直配向力が高い液晶配向膜が形成できるので好ましい。
R16Si(OR17)3 (8)
上記式(8)におけるR16は、炭素数1~5のアルキル基である。アルキル基の炭素数は1~4が好ましく、より好ましくは1~3である。 The polysiloxane (C) is a polysiloxane obtained by reacting an alkoxysilane containing the alkoxysilane represented by the formula (8) in addition to the alkoxysilane represented by the formula (6). Also good.
A liquid crystal aligning agent containing a polysiloxane (C) obtained by reacting an alkoxysilane containing an alkoxysilane represented by the formula (8) is preferable because a liquid crystal alignment film having a particularly high vertical alignment force can be formed.
R 16 Si (OR 17 ) 3 (8)
R 16 in the above formula (8) is an alkyl group having 1 to 5 carbon atoms. The alkyl group preferably has 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms.
式(8)で表されるアルコキシシランの具体例を挙げると、例えば、メチルトリエトキシシラン、メチルトリメトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン等である。しかし、これらに限定されるものではでない。 R 17 in the formula (8) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
Specific examples of the alkoxysilane represented by the formula (8) include methyltriethoxysilane, methyltrimethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane and the like. However, it is not limited to these.
さらに、ポリシロキサン(C)は、基板との密着性、液晶との親和性改善等の種々の特性を付与させることを目的として、本発明の効果を損なわない限り、さらに上記式(7)で表されるアルコキシシランを反応させて得られるポリシロキサンであってもよい。 The polysiloxane (C) is a polysiloxane obtained by reacting an alkoxysilane containing the alkoxysilane represented by the formula (5) in addition to the alkoxysilane represented by the formula (6). Also good.
Further, the polysiloxane (C) is further expressed by the above formula (7) unless the effects of the present invention are impaired for the purpose of imparting various properties such as adhesion to the substrate and improvement in affinity with the liquid crystal. Polysiloxane obtained by reacting the alkoxysilane represented may be used.
本発明の液晶配向剤の成分としてのポリシロキサン成分(A)及び重合禁止成分(C)などを得る方法は特に限定されず、アルコキシシランを反応させればよい。
例えば、ポリシロキサン成分(A)の製造においては、上記式(1)で表されるアルコキシシラン及び上記式(3)で表されるアルコキシシランを含有するアルコキシシランを、有機溶媒中で反応(重縮合反応)させて得られる。通常、ポリシロキサンは、このようなアルコキシシランを重縮合して、有機溶媒に均一に溶解した溶液として得られる。 <Method for producing polysiloxane>
The method for obtaining the polysiloxane component (A) and the polymerization inhibiting component (C) as the components of the liquid crystal aligning agent of the present invention is not particularly limited, and alkoxysilane may be reacted.
For example, in the production of the polysiloxane component (A), an alkoxysilane containing the alkoxysilane represented by the above formula (1) and the alkoxysilane represented by the above formula (3) is reacted (heavy) in an organic solvent. (Condensation reaction). Usually, polysiloxane is obtained as a solution obtained by polycondensation of such alkoxysilanes and uniformly dissolved in an organic solvent.
本発明においては、上述の反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシランの含有するアルコキシシラン中の全アルコキシ基の0.5~2.5倍モルであるのが好ましく、0.5~2倍モルがより好ましい。 As a specific method for polycondensation of alkoxysilane to obtain polysiloxane such as polysiloxane (A), for example, a method of hydrolyzing and condensing contained alkoxysilane in a solvent such as alcohol or glycol can be mentioned. . At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 times mole of water of all alkoxy groups in the alkoxysilane, but it is usually preferable to add an excess amount of water more than 0.5 times mole.
In the present invention, the amount of water used in the above-mentioned reaction can be appropriately selected as desired, but it is usually 0.5 to 2.5 times mol of all alkoxy groups in the alkoxysilane contained in the alkoxysilane. It is preferably 0.5 to 2 moles.
本発明においては、上記の重合溶媒を複数種混合して用いてもよい。 Specific examples of such a polymerization solvent include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol; ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1 Glycols such as 1,5-pentanediol, 2,4-pentanediol, 2,3-pentanediol, 1,6-hexanediol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether , Ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , Diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, Glycol ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether; N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone Dimethyl sulfoxide, tetramethylurea, hexamethylphosphotriamide, m-cresol and the like.
In the present invention, a plurality of the above polymerization solvents may be mixed and used.
本発明の液晶配向剤においては、本発明の効果を損なわない限りにおいて、ポリシロキサン成分(A)及び重合禁止成分(B)以外に、その他の成分、例えば、無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、界面活性剤等の成分が含まれていてもよい。 <Other ingredients>
In the liquid crystal aligning agent of the present invention, in addition to the polysiloxane component (A) and the polymerization inhibiting component (B), other components, for example, inorganic fine particles, metalloxane oligomers, metalloxanes, as long as the effects of the present invention are not impaired. Components such as a polymer, a leveling agent and a surfactant may be contained.
本発明の液晶配向剤においては、無機微粒子を含有させることにより、形成される硬化被膜(液晶配向膜)の表面形状及びその他の機能を付与することが可能となる。
無機微粒子としては、その平均粒子径が0.001~0.2μmであることが好ましく、より好ましくは0.001~0.1μmである。無機微粒子の平均粒子径が0.2μmを超える場合には、調製される塗布液を用いて形成される硬化被膜の透明性が低下する場合がある。 As the inorganic fine particles, fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and those in the state of a colloidal solution are particularly preferable. This colloidal solution may be a dispersion of inorganic fine particles in a dispersion medium, or a commercially available colloidal solution.
In the liquid crystal aligning agent of this invention, it becomes possible to provide the surface shape of the cured film (liquid crystal aligning film) formed, and other functions by containing inorganic fine particles.
The inorganic fine particles preferably have an average particle size of 0.001 to 0.2 μm, more preferably 0.001 to 0.1 μm. When the average particle diameter of the inorganic fine particles exceeds 0.2 μm, the transparency of the cured film formed using the prepared coating liquid may be lowered.
また、本発明の液晶配向剤においては、上述したその他の任意成分を添加する方法は、ポリシロキサン(A)と同時でも、その後であってもよく、特に限定されない。 As other optional components, known leveling agents, surfactants, and the like can be used, and commercially available products are particularly preferable because they are easily available.
Moreover, in the liquid crystal aligning agent of this invention, the method of adding the other arbitrary component mentioned above may be simultaneous with polysiloxane (A), or after that, and is not specifically limited.
本発明の液晶配向剤は、上述したポリシロキサン成分(A)及び重合禁止成分(B)のほか、必要に応じて、ポリシロキサン成分(C)やその他の成分を含有する液である。 本発明の液晶配向剤においては、上記の各成分均一に混合した状態であるのが好ましい。 <Preparation of liquid crystal aligning agent>
The liquid crystal aligning agent of this invention is a liquid containing a polysiloxane component (C) and other components as needed in addition to the above-mentioned polysiloxane component (A) and polymerization inhibiting component (B). In the liquid crystal aligning agent of this invention, it is preferable that each said component is mixed uniformly.
このような溶媒の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸メチル、酢酸エチル、乳酸エチル等のエステル類が挙げられる。これらの溶媒は、液晶配向剤の粘度の調整、又はスピンコート、フレキソ印刷、インクジェット等で液晶配向剤を基板上に塗布する際の塗布性を向上できる。 The solvent in the liquid crystal aligning agent is not particularly limited as long as the polysiloxane component (A) and the polymerization inhibiting component (B) are preferably uniformly dissolved, and one or a plurality of types can be arbitrarily selected and used. .
Specific examples of such a solvent include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and esters such as methyl acetate, ethyl acetate, and ethyl lactate. These solvents can improve the applicability when the liquid crystal aligning agent is applied onto the substrate by adjusting the viscosity of the liquid crystal aligning agent, or by spin coating, flexographic printing, ink jetting or the like.
また、上述したポリシロキサンの重合溶媒及び添加する溶媒からなる群から選ばれる溶媒を用いることにより、液晶配向剤中におけるポリシロキサンの含有量を調整できる。 The content of polysiloxane including polysiloxane (A) in the liquid crystal aligning agent is preferably 0.5 to 15% by mass, more preferably 1 to 6% by mass in terms of SiO 2 concentration. In the case of such a SiO 2 equivalent concentration range, it is easy to obtain a desired film thickness by a single application, and a sufficient pot life (pot life) of the solution is easily obtained.
Moreover, content of polysiloxane in a liquid crystal aligning agent can be adjusted by using the solvent chosen from the group which consists of the polymerization solvent of the polysiloxane mentioned above, and the solvent to add.
本発明の液晶配向剤は、上述したポリシロキサン成分(A)及び重合禁止成分(B)を含有するため、得られる液晶配向膜は、含有する側鎖の光照射前の反応を抑えて、光反応性の低下を抑制し、光による液晶の配向制御と応答速度の向上を実現することができる。 <Liquid crystal alignment film>
Since the liquid crystal aligning agent of this invention contains the polysiloxane component (A) and polymerization inhibition component (B) which were mentioned above, the liquid crystal aligning film obtained suppresses the reaction before the light irradiation of the side chain to contain, light The decrease in reactivity can be suppressed, and the alignment control of liquid crystal by light and the improvement of response speed can be realized.
また、この硬化膜を配向処理、具体的には、ラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をする等して使用することも可能である。
更に、液晶充填後の液晶表示素子においては、液晶配向膜間に挟持される液晶層に電圧を印加した状態で、例えば、UV等の光を照射し液晶の所望とする配向制御を実現する。 In the present invention, for example, after the liquid crystal aligning agent of the present invention is applied to a substrate to form a coating film, the cured film obtained by drying, if necessary, heating and baking is then used. It can also be used as a liquid crystal alignment film.
In addition, the cured film can be used by orientation treatment, specifically, rubbing, irradiation with polarized light or light having a specific wavelength, treatment with an ion beam, or the like.
Further, in the liquid crystal display element after filling with liquid crystal, for example, UV or other light is irradiated in a state where a voltage is applied to the liquid crystal layer sandwiched between the liquid crystal alignment films, thereby realizing desired alignment control of the liquid crystal.
具体例を挙げると、ガラス板の他、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロース等のプラスチック板や、これらに透明電極が形成された基板等を挙げることができる。 The substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate in which a transparent electrode for driving liquid crystal is formed on the substrate is preferable.
Specific examples include glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile. And a plastic plate such as triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose, and a substrate on which a transparent electrode is formed.
本発明の液晶表示素子は、一対の本発明の液晶配向膜と、かかる液晶配向膜に挟持された液晶層とを有する。本発明において液晶配向膜は、液晶層に電圧が印加された状態で、光の照射を受けて形成されたものであるのが好ましい。 <Liquid crystal display element>
The liquid crystal display element of the present invention has a pair of liquid crystal alignment films of the present invention and a liquid crystal layer sandwiched between the liquid crystal alignment films. In the present invention, the liquid crystal alignment film is preferably formed by being irradiated with light while a voltage is applied to the liquid crystal layer.
液晶表示素子の製造方法の一例としては、本発明の液晶配向膜が形成された1対の基板を、スペーサを挟んで、シール剤で固定し、液晶を注入して封止する方法が好ましい。その際、使用するスペーサの大きさは、通常、1~30μmであるが、2~10μmが好ましい。 The liquid crystal display element of the present invention can be produced by appropriately using a known method after forming a liquid crystal alignment film on a substrate by the method described above.
As an example of a method for manufacturing a liquid crystal display element, a method in which a pair of substrates on which a liquid crystal alignment film of the present invention is formed is fixed with a sealant with a spacer interposed therebetween, and liquid crystal is injected and sealed is preferable. In this case, the size of the spacer to be used is usually 1 to 30 μm, preferably 2 to 10 μm.
液晶が導入されて一対の液晶配向膜間に液晶層が挟持された状態の液晶表示素子を得た後、その液晶表示素子において、例えば、UVである光の照射が実施される。この光照射は、液晶層を挟持する両側基板の電極間に電圧を印加した状態、すなわち、液晶が一様な方向に傾斜配向した状態で行われる。 The method for injecting the liquid crystal is not particularly limited, and examples thereof include a vacuum method for injecting the liquid crystal after reducing the pressure inside the manufactured liquid crystal cell, and a dropping method for sealing after dropping the liquid crystal.
After obtaining a liquid crystal display element in which the liquid crystal is introduced and the liquid crystal layer is sandwiched between the pair of liquid crystal alignment films, the liquid crystal display element is irradiated with, for example, UV light. This light irradiation is performed in a state where a voltage is applied between the electrodes on both side substrates sandwiching the liquid crystal layer, that is, in a state where the liquid crystal is inclined and oriented in a uniform direction.
本発明の液晶表示素子においては、液晶層の一部に、所望とするごく小さなプレチルト角が形成されて、液晶の応答速度が向上する。 In the production of the liquid crystal display element of the present invention, a photoreaction having, for example, an acryl group or a methacryl group in the liquid crystal alignment film by irradiating UV with a voltage applied between the electrodes on both substrates. For example, a polymerization reaction is carried out in a state where the hydrophilic side chain is in contact with the tilted liquid crystal. By such side chain polymerization, the liquid crystal alignment film is partially cross-linked while interacting with the liquid crystal in the vicinity. As a result, in the liquid crystal display element, the liquid crystal forms a pretilt angle in a predetermined direction and is substantially vertically aligned. The desired liquid crystal alignment state is formed.
In the liquid crystal display element of the present invention, a desired very small pretilt angle is formed in a part of the liquid crystal layer, and the response speed of the liquid crystal is improved.
また、本発明の液晶表示素子は、PSA方式の液晶ディスプレイと同様に、片側基板に1~10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造の基板を用いても動作可能であり、この単純な構造によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。 The substrate used for the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate in which a transparent electrode for driving liquid crystal is formed on the substrate. Specifically, it is the same as the substrate described above. In this invention, it is also possible to use the board | substrate with which electrode patterns and protrusion patterns, such as conventionally well-known PVA and MVA, were formed.
In addition, the liquid crystal display element of the present invention has a structure in which a line / slit electrode pattern of 1 to 10 μm is formed on one side substrate, and a slit pattern or a projection pattern is not formed on the opposite substrate, like the PSA type liquid crystal display. This simple structure can simplify the manufacturing process and obtain a high transmittance.
透過型の液晶表示素子の場合は、上記のような光透過性の基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみに光を反射するアルミニウムのような材料を用いることも可能であり、シリコンウエハ等の不透明な基板も用いることが可能である。
本発明の液晶配向膜を有して構成された液晶表示素子は、応答特性に優れ、表示品位にも優れており、大画面の液晶テレビ等に好適に利用できる。 In a high-performance liquid crystal display element such as an active matrix liquid crystal display element, a transistor element (thin film transistor (TFT)) formed between an electrode for driving a liquid crystal and a substrate is used.
In the case of a transmissive liquid crystal display element, it is common to use a light-transmitting substrate as described above. However, in a reflective liquid crystal display element, such as aluminum that reflects light only on one substrate. A material can also be used, and an opaque substrate such as a silicon wafer can also be used.
The liquid crystal display element having the liquid crystal alignment film of the present invention is excellent in response characteristics and display quality, and can be suitably used for a large-screen liquid crystal television or the like.
TEOS:テトラエトキシシラン
MPMS:3-メタクリロキシプロピルトリメトキシシラン
VTMS:トリメトキシビニルシラン
GPS:γ-グリシドキシプロピルトリメトキシシラン
UPS:3-ウレイドプロピルトリエトキシシラン
SMA:下記式で表される化合物
TEOS: Tetraethoxysilane MPMS: 3-Methacryloxypropyltrimethoxysilane VTMS: Trimethoxyvinylsilane GPS: γ-Glycidoxypropyltrimethoxysilane
UPS: 3-ureidopropyltriethoxysilane SMA: compound represented by the following formula
SMB:下記式で表される化合物
3BHT:2,4,6-トリス(3'5'-ジ-t-ブチル-4'-ヒドロキシベンジル)メシチレン (Polymerization inhibitor)
SMB: Compound represented by the following formula
3BHT: 2,4,6-tris (3′5′-di-t-butyl-4′-hydroxybenzyl) mesitylene
HG:2-メチル-2,4-ペンタンジオール(別名:ヘキシレングリコール)
BCS:2-ブトキシエタノール
PB:プロピレングリコールモノブチルエーテル (solvent)
HG: 2-methyl-2,4-pentanediol (also known as hexylene glycol)
BCS: 2-Butoxyethanol PB: Propylene glycol monobutyl ether
マグネチックスターラーを備えた300ml四ッ口フラスコに、化合物1(11.86g)、トルエン(118.60g)を仕込み、50℃にて攪拌下、塩化チオニル(11.27g)を加え、3時間攪拌した。次に、減圧濃縮により反応液からトルエンと塩化チオニルを留去した後、室温にてヘキサン(20.08g)を加え、1時間攪拌した。続いて、析出した結晶を減圧吸引ろ過した後、減圧乾燥し、化合物2(8.98g)を得た(収率:71%、性状:淡黄色固体)。
1H-NMR(400MHz) in CDCl3: 1.47ppm(s, 18H), 5.97ppm(s, 1H), 7.98ppm(s, 2H) <Reference Example (Synthesis Example of Alkoxysilane Containing Polymerization Inhibitor Skeleton>
A 300 ml four-necked flask equipped with a magnetic stirrer was charged with compound 1 (11.86 g) and toluene (118.60 g), and thionyl chloride (11.27 g) was added with stirring at 50 ° C. for 3 hours. did. Next, toluene and thionyl chloride were distilled off from the reaction solution by concentration under reduced pressure, hexane (20.08 g) was added at room temperature, and the mixture was stirred for 1 hour. Subsequently, the precipitated crystals were subjected to suction filtration under reduced pressure, and then dried under reduced pressure to obtain Compound 2 (8.98 g) (yield: 71%, property: pale yellow solid).
1 H-NMR (400 MHz) in CDCl 3 : 1.47 ppm (s, 18H), 5.97 ppm (s, 1H), 7.98 ppm (s, 2H)
マグネチックスターラーを備えた100ml四ッ口フラスコに、化合物2(3.00g)、トルエン(30.00g)を仕込み、氷浴(5℃)にて攪拌下、アミノプロピルトリメトキシシラン(2.21g)をトルエン(12.00g)に溶解させた溶液を滴下した。更に、トリエチルアミン(1.24g)を滴下し、3時間攪拌した。次に、反応液中へ酢酸エチル(120g)を加えた後、有機相を純水(120g)で3回洗浄した。更に、有機相を硫酸ナトリウムで脱水処理した後、濃縮乾燥し、化合物3(3.97g)を得た(収率:87%、性状:黄色オイル)
1H-NMR(400MHz) in CDCl3: 0.70-0.75ppm(m, 2H), 1.46ppm(s, 18H), 1.71-1.77ppm(m, 2H), 3.44ppm(q, J = 6.4 Hz, 2H), 3.57ppm(s, 9H), 5.53ppm(s, 1H), 6.23-6.32ppm(m, 1H), 7.60ppm(s, 2H) (Synthesis of Compound 3)
A 100 ml four-necked flask equipped with a magnetic stirrer was charged with compound 2 (3.00 g) and toluene (30.00 g), and stirred in an ice bath (5 ° C.) with aminopropyltrimethoxysilane (2.21 g). ) Was added dropwise in toluene (12.00 g). Further, triethylamine (1.24 g) was added dropwise and stirred for 3 hours. Next, after adding ethyl acetate (120 g) into the reaction solution, the organic phase was washed three times with pure water (120 g). Further, the organic phase was dehydrated with sodium sulfate and then concentrated and dried to obtain Compound 3 (3.97 g) (yield: 87%, property: yellow oil).
1 H-NMR (400 MHz) in CDCl 3 : 0.70-0.75 ppm (m, 2H), 1.46 ppm (s, 18H), 1.71-1.77 ppm (m, 2H), 3.44 ppm (q, J = 6.4 Hz, 2H ), 3.57ppm (s, 9H), 5.53ppm (s, 1H), 6.23-6.32ppm (m, 1H), 7.60ppm (s, 2H)
マグネチックスターラーを備えた500ml四ッ口フラスコに、化合物4(31.64g)、トルエン(316.4g)を仕込み、60℃にて攪拌下、塩化チオニル(31.85g)を加え、2時間攪拌した。次に、減圧濃縮により反応液からトルエンと塩化チオニルを留去し、化合物5(34.09g)を得た(収率:100%、性状:橙色オイル)。
1H-NMR(400MHz) in CDCl3: 1.44ppm(s, 18H), 4.56ppm(s, 2H), 5.29ppm(s, 1H), 7.19ppm(s, 2H)
Compound 4 (31.64 g) and toluene (316.4 g) were charged into a 500 ml four-necked flask equipped with a magnetic stirrer, and thionyl chloride (31.85 g) was added with stirring at 60 ° C. for 2 hours. did. Next, toluene and thionyl chloride were distilled off from the reaction solution by concentration under reduced pressure to obtain Compound 5 (34.09 g) (yield: 100%, property: orange oil).
1 H-NMR (400 MHz) in CDCl 3 : 1.44 ppm (s, 18H), 4.56 ppm (s, 2H), 5.29 ppm (s, 1H), 7.19 ppm (s, 2H)
マグネチックスターラーを備えた500ml四ッ口フラスコに、化合物5(34.09g)、アセトニトリル(204.54g)を仕込み、氷浴(5℃)にて攪拌下、メルカプトプロピルトリメトキシシラン(26.27g)を滴下した。更に、トリエチルアミン(14.22g)を滴下し、2時間攪拌した。次に、反応液中に析出した塩を減圧吸引ろ過し、ろ液中へ酢酸エチル(200g)を加えた後、有機相を純水(200g)で3回洗浄した。更に、有機相を硫酸ナトリウムで脱水処理した後、濃縮乾燥し、化合物6の粗物(55.43g)を得た(粗収率:100%、性状:赤色オイル)。続いて、この粗物(15.06g)をクーゲルロールに仕込み、外温:215~240℃、圧力:0.6torrの条件にて減圧蒸留を行い、化合物6(6.11g)を得た(収率:41%、性状:黄色オイル)。
1H-NMR(400MHz) in CDCl3: 0.71-0.76ppm(m, 2H), 1.43ppm(s, 18H), 1.65-1.74ppm(m, 2H), 2.46-2.51ppm(m, 2H), 3.56ppm(s, 9H), 3.65ppm(s, 2H), 5.13ppm(s, 1H), 7.09ppm(s, 2H) (Synthesis of Compound 6)
Compound 5 (34.09 g) and acetonitrile (204.54 g) were charged into a 500 ml four-necked flask equipped with a magnetic stirrer, and mercaptopropyltrimethoxysilane (26.27 g) was stirred in an ice bath (5 ° C.). ) Was added dropwise. Further, triethylamine (14.22 g) was added dropwise and stirred for 2 hours. Next, the salt precipitated in the reaction solution was suction filtered under reduced pressure, ethyl acetate (200 g) was added to the filtrate, and then the organic phase was washed three times with pure water (200 g). Further, the organic phase was dehydrated with sodium sulfate and then concentrated and dried to obtain a crude product (55.43 g) of compound 6 (crude yield: 100%, property: red oil). Subsequently, this crude product (15.06 g) was charged into a Kugelrohr and distilled under reduced pressure at an external temperature of 215 to 240 ° C. and a pressure of 0.6 torr to obtain Compound 6 (6.11 g) ( Yield: 41%, property: yellow oil).
1 H-NMR (400 MHz) in CDCl 3 : 0.71-0.76 ppm (m, 2H), 1.43 ppm (s, 18H), 1.65-1.74 ppm (m, 2H), 2.46-2.51 ppm (m, 2H), 3.56 ppm (s, 9H), 3.65ppm (s, 2H), 5.13ppm (s, 1H), 7.09ppm (s, 2H)
温度計、及び還流管を備え付けた100mLの四つ口反応フラスコ中で、HGを8.10g、BCSを2.70g、TEOSを5.21g、SMAを3.75g、VTMSを1.24g及びMPMSの9.94gを混合して、原料アルコキシシランモノマーの溶液を調製した。この溶液に、予めHGの4.05g、BCSの1.35g、水の4.5g及び触媒として蓚酸の0.6gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して、30分間還流させた後、予めUPS含有量92質量%のメタノール溶液の0.24g、HGの0.14g及びBCSの0.05gの混合液を加えた。さらに、30分間還流させてから放冷して、SiO2換算濃度が12重量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液の41.7g、HGの25.12g、BCSの14.58g、及びPBの18.63gを混合し、SiO2換算濃度が5重量%の液晶配向剤[S1]を得た。 <Synthesis Example 1>
In a 100 mL four-necked reaction flask equipped with a thermometer and reflux tube, 8.10 g of HG, 2.70 g of BCS, 5.21 g of TEOS, 3.75 g of SMA, 1.24 g of VTMS and MPMS Was mixed to prepare a raw material alkoxysilane monomer solution. A solution prepared by previously mixing 4.05 g of HG, 1.35 g of BCS, 4.5 g of water, and 0.6 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature, and further 30 at room temperature. Stir for minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a mixed solution of 0.24 g of a methanol solution having a UPS content of 92% by mass, 0.14 g of HG, and 0.05 g of BCS was added in advance. . Further, the mixture was refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
41.7 g of the obtained polysiloxane solution, 25.12 g of HG, 14.58 g of BCS, and 18.63 g of PB were mixed to obtain a liquid crystal aligning agent [S1] having a SiO 2 equivalent concentration of 5% by weight. It was.
次に、温度計、及び還流管を備え付けた50mLの四つ口反応フラスコ中で、液晶配向剤[S1]を17g、及び、予めSMBの0.34gをHGの0.33g、BCSの0.17g、及びPBの0.17gに溶解させた溶液を0.38g(MPMSに対して5モル%)混合し、オイルバス中で60℃に加熱し15分間撹拌した後、放冷して、SiO2換算濃度が5重量%の液晶配向剤[S3]を得た。尚、ここで用いられるSMBは、重合禁止剤として液晶配向剤[S3]に添加された重合禁止成分である。 In 20 g of the obtained liquid crystal aligning agent [S1], 0.31 g of 3BHT (5 mol% with respect to MPMS) was dissolved to obtain a liquid crystal aligning agent [S2]. Incidentally, 3BHT is a polymerization inhibitor component added to the liquid crystal aligning agent [S2] as a polymerization inhibitor. In addition to 3BHT, no polymerization inhibiting component is added to the liquid crystal aligning agent [S1].
Next, in a 50 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 17 g of the liquid crystal aligning agent [S1], 0.34 g of SMB in advance, 0.33 g of HG, and 0. A solution of 17 g and 0.17 g of PB dissolved in 0.38 g (5 mol% with respect to MPMS) was mixed, heated to 60 ° C. in an oil bath and stirred for 15 minutes, then allowed to cool, and SiO 2 A liquid crystal aligning agent [S3] having a 2 equivalent concentration of 5% by weight was obtained. The SMB used here is a polymerization inhibiting component added to the liquid crystal aligning agent [S3] as a polymerization inhibitor.
温度計、及び還流管を備え付けた100mLの四つ口反応フラスコ中で、HGを8.10g、BCSを2.70g、TEOSを5.21g、SMAを3.75g、VTMSを1.24g及びMPMSの9.94gを混合して、原料アルコキシシランモノマーの溶液を調製した。この溶液に、予めHGの4.05g、BCSの1.35g、水の4.5g及び触媒として蓚酸の0.6gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して、30分間還流させた後、予めUPS含有量92質量%のメタノール溶液の0.24g、HGの0.14g及びBCSの0.05gの混合液を加えた。さらに30分間還流させてから、放冷して、SiO2換算濃度が12重量%のポリシロキサン溶液を得た。 <Synthesis Example 2>
In a 100 mL four-necked reaction flask equipped with a thermometer and reflux tube, 8.10 g of HG, 2.70 g of BCS, 5.21 g of TEOS, 3.75 g of SMA, 1.24 g of VTMS and MPMS Was mixed to prepare a raw material alkoxysilane monomer solution. A solution prepared by previously mixing 4.05 g of HG, 1.35 g of BCS, 4.5 g of water, and 0.6 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature, and further 30 at room temperature. Stir for minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a mixed solution of 0.24 g of a methanol solution having a UPS content of 92% by mass, 0.14 g of HG, and 0.05 g of BCS was added in advance. . The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
得られた液晶配向剤[S4]の10.80gに3BHTの0.16g(MPMSに対して5モル%)を溶解させ、液晶配向剤[S5]を得た。 41.7 g of the obtained polysiloxane solution, 25.12 g of HG, 14.58 g of BCS, and 18.63 g of PB were mixed to obtain a liquid crystal aligning agent [S4] having a SiO 2 equivalent concentration of 5 wt%. It was.
In 10.80 g of the obtained liquid crystal aligning agent [S4], 0.16 g of 3BHT (5 mol% with respect to MPMS) was dissolved to obtain a liquid crystal aligning agent [S5].
また、液晶配向剤[S5]を第1成分として3.24g、液晶配向剤[U2]を第2成分として7.56g、HGを3.2g、BCSを1.07g、及びPBを4.93g混合し、液晶配向剤[L2]を得た。 Next, 3.24 g of the liquid crystal aligning agent [S4] as the first component, 7.56 g of the liquid crystal aligning agent [U2] as the second component, 3.2 g of HG, 1.07 g of BCS, and 4.B of PB. The liquid crystal aligning agent [L1] was obtained by mixing 93g.
Further, the liquid crystal aligning agent [S5] is 3.24 g as the first component, the liquid crystal aligning agent [U2] is 7.56 g as the second component, HG is 3.2 g, BCS is 1.07 g, and PB is 4.93 g. The liquid crystal aligning agent [L2] was obtained by mixing.
温度計、及び還流管を備え付けた100mLの四つ口反応フラスコ中で、HGを8.03g、BCSを2.68g、TEOSを5.48g、SMAを4.09g、VTMSを1.24g、MPMSを9.32g、及びSMBの0.15g(MPMSに対して1モル%)を混合して、原料アルコキシシランモノマーの溶液を調製した。この溶液に、予めHGの4.01g、BCSの1.34g、水の4.5g及び触媒として蓚酸の0.6gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して、30分間還流させた後、予めUPS含有量92質量%のメタノール溶液の0.24g、HGの0.14g及びBCSの0.05gの混合液を加えた。さらに30分間還流させてから、放冷して、SiO2換算濃度が12重量%のポリシロキサン溶液を得た。 <Synthesis Example 3>
In a 100 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 8.03 g of HG, 2.68 g of BCS, 5.48 g of TEOS, 4.09 g of SMA, 1.24 g of VTMS, MPMS Was mixed with 9.32 g of SMB and 0.15 g of SMB (1 mol% with respect to MPMS) to prepare a raw material alkoxysilane monomer solution. To this solution, a solution in which 4.01 g of HG, 1.34 g of BCS, 4.5 g of water, and 0.6 g of oxalic acid as a catalyst were added dropwise over 30 minutes at room temperature, and further 30 minutes at room temperature. Stir for minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a mixed solution of 0.24 g of a methanol solution having a UPS content of 92% by mass, 0.14 g of HG, and 0.05 g of BCS was added in advance. . The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
得られたポリシロキサン溶液の41.7g、HGの25.15g、BCSの14.58g、PBの18.6gを混合し、SiO2換算濃度が5重量%の液晶配向剤[S7]を得た。 Note that SMB is an alkoxysilane monomer added to form a polymerization-inhibiting component as a part of polysiloxane constituting the liquid crystal alignment film. The polysiloxane in the obtained polysiloxane solution is formed by copolymerization of SMB with another alkoxysilane monomer.
41.7 g of the obtained polysiloxane solution, 25.15 g of HG, 14.58 g of BCS, and 18.6 g of PB were mixed to obtain a liquid crystal aligning agent [S7] having a SiO 2 equivalent concentration of 5% by weight. .
合成例1で得られた液晶配向剤[S2]を30mm×30mmの大きさのCr基板に1500rpmでスピンコートし、80℃のホットプレートで90秒間仮乾燥した後、200℃の熱風循環式オーブンで30分間本焼成を行い、液晶配向膜を形成した。得られた液晶配向膜におけるIR (ATR(attenuated total reflection)) 測定を行い、得られたスペクトルから液晶配向膜中のC=C結合の残存率(以下、C=C残存率と言う。)を算出した。結果を表1に示した。
尚、C=C残存率の算出は、次に示す方法で行った。 <Example 1>
The liquid crystal aligning agent [S2] obtained in Synthesis Example 1 was spin-coated at 1500 rpm on a Cr substrate having a size of 30 mm × 30 mm, temporarily dried on an 80 ° C. hot plate for 90 seconds, and then heated at 200 ° C. in a hot air circulation oven The main baking was performed for 30 minutes to form a liquid crystal alignment film. IR (ATR (attenuated total reflection)) measurement is performed on the obtained liquid crystal alignment film, and the residual ratio of C = C bonds in the liquid crystal alignment film (hereinafter referred to as C = C residual ratio) is obtained from the obtained spectrum. Calculated. The results are shown in Table 1.
The C = C residual ratio was calculated by the following method.
分解能4.0、スキャン回数64回の条件におけるIRスペクトルより、1511cm-1付近のPh(フェニル基)に由来するピーク強度を基準として、1633cm-1付近のC=C結合に由来するピーク強度の比率(C=Cピーク強度比)を算出した。仮乾燥のみを行った塗膜のC=Cピーク強度比(後述する表1には「仮乾燥後」と表記する。)を100とし、本焼成後の液晶配向膜のC=Cの残存率(後述する表1には「本焼成後」と表記する。)を算出した。 [Calculation of C = C residual ratio]
Resolution 4.0, than the IR spectrum at scan number 64 times the conditions, based on the peak intensity derived from Ph (phenyl group) in the vicinity of 1511cm -1, a peak intensity derived from the C = C bond at around 1633 cm -1 The ratio (C = C peak intensity ratio) was calculated. The C = C peak intensity ratio (denoted as “after provisional drying” in Table 1 to be described later) of the coating film that was only temporarily dried was 100, and the residual ratio of C = C in the liquid crystal alignment film after the main baking. (In Table 1 to be described later, it is described as “after main firing”).
液晶配向剤[S2]を液晶配向剤[S3]に変更した以外は、実施例1と同様にして液晶配向膜を作製し、ATR測定を行い、C=Cの残存率を算出し、結果を表1に示した。 <Example 2>
Except that the liquid crystal aligning agent [S2] is changed to the liquid crystal aligning agent [S3], a liquid crystal aligning film is prepared in the same manner as in Example 1, ATR measurement is performed, and the residual ratio of C = C is calculated. It is shown in Table 1.
液晶配向剤[S2]を液晶配向剤[S1]に変更した以外は、実施例1と同様にして液晶配向膜を作製し、ATR測定を行い、C=Cの残存率を算出し、結果を表1に示した。 <Comparative Example 1>
Except that the liquid crystal aligning agent [S2] is changed to the liquid crystal aligning agent [S1], a liquid crystal aligning film is prepared in the same manner as in Example 1, ATR measurement is performed, and the residual ratio of C = C is calculated. It is shown in Table 1.
合成例2で得られた液晶配向剤[L2]を用い、画素サイズが100μm×300μmで、ライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートした。次いで、80℃のホットプレートで90秒間仮乾燥した後、200℃の熱風循環式オーブンで30分間本焼成を行い、膜厚100nmの液晶配向膜を形成した。 <Example 3>
Using the liquid crystal aligning agent [L2] obtained in Synthesis Example 2, spin coating was performed on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 μm × 300 μm and a line / space of 5 μm was formed. Next, after temporary drying for 90 seconds on a hot plate at 80 ° C., main baking was performed for 30 minutes in a hot air circulation oven at 200 ° C. to form a liquid crystal alignment film having a thickness of 100 nm.
その後、UV照射された液晶セルを用い、クロスニコル配置された一対の偏光板で挟持された状態にして顕微鏡観察を行い、液晶の配向乱れであるドメインの発生状態を観察したところ、いずれの実施例においても、ドメインの発生は無いかごく少なく、良好な配向を示した。また、UV照射された液晶セルを用い、クロスニコル配置された一対の偏光板で挟持して、VAモードの液晶表示素子を製造した。その液晶表示素子を用い、液晶の応答速度を測定した。次いで、その液晶表示素子の電圧保持率の測定を行った。これらの評価結果は表2にまとめて示した。 Next, an AC voltage of 30 V pp was applied to the annealed liquid crystal cell, and 5 J of UV (wavelength: 365 nm) was irradiated from the outside of the liquid crystal cell while the AC voltage was applied.
After that, using a liquid crystal cell irradiated with UV, it was sandwiched between a pair of polarizing plates arranged in a crossed Nicol state and observed under a microscope, and the occurrence of domains, which was a disorder in the alignment of liquid crystals, was observed. Also in the examples, there was very little occurrence of domains, and good orientation was shown. In addition, a VA mode liquid crystal display element was manufactured by using a liquid crystal cell irradiated with UV and sandwiching it between a pair of polarizing plates arranged in crossed Nicols. Using the liquid crystal display element, the response speed of the liquid crystal was measured. Next, the voltage holding ratio of the liquid crystal display element was measured. These evaluation results are summarized in Table 2.
[応答速度の測定]
液晶表示素子に、10VのAC電圧、周波数1kHzの矩形波を印加し、その時の液晶表示素子の輝度の時間変化をオシロスコープにて取り込んだ。電圧を印加していない時の輝度を0%、10Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10%から90%まで変化する時間を立ち上がりの応答速度として評価した。 The response speed was measured by the following method.
[Response speed measurement]
A 10 V AC voltage and a rectangular wave with a frequency of 1 kHz were applied to the liquid crystal display element, and the time change of the luminance of the liquid crystal display element at that time was captured with an oscilloscope. When the voltage was not applied, the luminance was 0%, a voltage of 10 V was applied, the saturated luminance value was 100%, and the time for the luminance to change from 10% to 90% was evaluated as the rising response speed.
液晶配向剤[L2]を液晶配向剤[L3]に変更した以外は、実施例3と同様にして液晶セルを作製し、VAモードの液晶表示素子を製造した。 <Example 4>
A liquid crystal cell was produced in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L3], and a VA mode liquid crystal display element was produced.
液晶配向剤[L2]を液晶配向剤[L4]に変更した以外は、実施例3と同様にして液晶セルを作製し、VAモードの液晶表示素子を製造した。 <Example 5>
A liquid crystal cell was produced in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L4], and a VA mode liquid crystal display element was produced.
液晶配向剤[L2]を液晶配向剤[L1]に変更した以外は、実施例3と同様にして液晶セルを作製し、VAモードの液晶表示素子を製造した。 <Comparative Example 2>
A liquid crystal cell was produced in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L1], and a VA mode liquid crystal display device was produced.
本焼成の条件を200℃で30分間から200℃で40分間に変更した以外は、実施例3と同様にして液晶セルを作製し、VAモードの液晶表示素子を製造した。 <Example 6>
A liquid crystal cell was produced in the same manner as in Example 3 except that the conditions for the main firing were changed from 200 ° C. for 30 minutes to 200 ° C. for 40 minutes, and a VA mode liquid crystal display device was produced.
液晶配向剤[L2]を液晶配向剤[L3]に変更し、また、本焼成の条件を200℃で30分間から200℃で40分間に変更した以外は、実施例3と同様にして液晶セルを作製し、VAモードの液晶表示素子を製造した。 <Example 7>
A liquid crystal cell was prepared in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L3] and the conditions for the main firing were changed from 200 ° C. for 30 minutes to 200 ° C. for 40 minutes. A VA mode liquid crystal display element was manufactured.
液晶配向剤[L2]を液晶配向剤[L1]に変更し、また、本焼成の条件を200℃で30分間から200℃で40分間に変更した以外は、実施例3と同様にして液晶セルを作製し、VAモードの液晶表示素子を製造した。 <Comparative Example 3>
A liquid crystal cell was prepared in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L1] and the conditions for the main firing were changed from 200 ° C. for 30 minutes to 200 ° C. for 40 minutes. A VA mode liquid crystal display element was manufactured.
本焼成の条件を200℃で30分間から230℃で30分間に変更した以外は、実施例3と同様にして液晶セルを作製し、VAモードの液晶表示素子を製造した。 <Example 8>
A liquid crystal cell was produced in the same manner as in Example 3 except that the conditions for the main firing were changed from 200 ° C. for 30 minutes to 230 ° C. for 30 minutes, and a VA mode liquid crystal display device was produced.
液晶配向剤[L2]を液晶配向剤[L3]に変更し、また、本焼成の条件を200℃で30分間から230℃で30分間に変更した以外は、実施例3と同様にして液晶セルを作製し、VAモードの液晶表示素子を製造した。 <Example 9>
A liquid crystal cell was prepared in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L3] and the conditions for the main firing were changed from 200 ° C. for 30 minutes to 230 ° C. for 30 minutes. A VA mode liquid crystal display element was manufactured.
液晶配向剤[L2]を液晶配向剤[L1]に変更し、また、本焼成の条件を200℃で30分間から230℃で30分間に変更した以外は、実施例3と同様にして液晶セルを作製し、VAモードの液晶表示素子を製造した。 <Comparative example 4>
A liquid crystal cell was prepared in the same manner as in Example 3 except that the liquid crystal aligning agent [L2] was changed to the liquid crystal aligning agent [L1] and the conditions for the main firing were changed from 200 ° C. for 30 minutes to 230 ° C. for 30 minutes. A VA mode liquid crystal display element was manufactured.
尚、実施例3~5の中で、実施例5の液晶配向剤[L4]では、SMBが、重合禁止成分を液晶配向膜を構成するポリシロキサンの一部分として形成するために添加されている。さらに、含有されるポリシロキサンは、SMBが他のアルコキシシランモノマーと共重合することにより形成されている。 As shown in Table 2, in the liquid crystal display elements of Examples 3 to 5 in which the polymerization inhibiting component was introduced, the response speed was improved by the liquid crystal alignment film as compared with Comparative Example 2 in which the polymerization inhibiting component was not introduced.
In Examples 3 to 5, in the liquid crystal aligning agent [L4] of Example 5, SMB is added to form a polymerization inhibiting component as a part of polysiloxane constituting the liquid crystal alignment film. Furthermore, the polysiloxane contained is formed by copolymerizing SMB with other alkoxysilane monomers.
尚、重合禁止成分を導入した実施例6、7の液晶表示素子では、液晶配向膜の焼成時間が同様で、重合禁止成分が導入されない比較例3と比べて応答速度が向上した。 On the other hand, the liquid crystal display elements of Examples 6 and 7 into which the polymerization inhibiting component was introduced exhibited the same response speed as the corresponding liquid crystal display elements of Examples 3 and 4 even when the firing time was increased.
In the liquid crystal display elements of Examples 6 and 7 in which the polymerization inhibiting component was introduced, the firing time of the liquid crystal alignment film was the same, and the response speed was improved as compared with Comparative Example 3 in which the polymerization inhibiting component was not introduced.
尚、重合禁止成分を導入した実施例8、9の液晶表示素子では、液晶配向膜の焼成温度が同じでも、重合禁止成分が導入されない比較例4と比べて応答速度が向上した。 On the other hand, the liquid crystal display elements of Examples 8 and 9 into which the polymerization inhibiting component was introduced exhibited a response speed equivalent to that of the corresponding liquid crystal display elements of Examples 3 and 4 even when the firing temperature was increased.
In addition, in the liquid crystal display elements of Examples 8 and 9 in which the polymerization inhibiting component was introduced, the response speed was improved as compared with Comparative Example 4 in which the polymerization inhibiting component was not introduced even when the firing temperature of the liquid crystal alignment film was the same.
Claims (13)
- 下記式(1)で表されるアルコキシシランと下記式(3)で表されるアルコキシシランを含有する原料アルコキシシランから形成されるポリシロキサン成分(A)、及び重合禁止成分(B)を含有し、該重合禁止成分(B)が、前記ポリシロキサン成分(A)の構成部分として、又は前記ポリシロキサン成分(A)と別の物質として含有することを特徴とする液晶配向剤。
R1Si(OR2)3 (1)
(R1は下記式(2)で表わされる基であり、R2は炭素数1~5のアルキル基である。)
Y2は単結合、二重結合を含有する炭素数3~8の直鎖状若しくは分岐状の炭化水素基、又は、-(CR17R18)b-(bは1~15の整数であり、R17及びR18は、それぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。)である。
Y3は単結合、-(CH2)c-(cは1~15の整数である)、-O-、-CH2O-、-COO-又は-OCO-である。
Y4は単結合、ベンゼン環、シクロへキシル環、及び複素環から選ばれる2価の環状基、又は、ステロイド骨格を有する炭素数12~25の2価の有機基であり、環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。
Y5はベンゼン環、シクロへキシル環及び複素環からなる群から選ばれるの2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。
n1は0~4の整数である。
Y6は水素原子、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。)
R24は水素原子、又はメチル基である。
Y21は単結合、又は、二重結合を含有していてもよい炭素数1~8の直鎖状若しくは分岐状の炭化水素基である。
Y22は単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH3)-、-NPh-、-NHCO-、-N(CH3)CO-、-NPhCO-、-NHSO2-、-N(CH3)SO2-、-NPhSO2-、-S-、-SO2-、-NHCONH、-N(CH3)CONH-、-NPhCONH-、-NHCOO-、及び-OCONH-から選ばれる結合基である。
Y23は単結合、又は、炭素数1~8の直鎖状若しくは分岐状の炭化水素基である。
Y24は単結合、又は、炭素数1~8の直鎖状若しくは分岐状の炭化水素基である。
Y25は単結合、-O-、又は-NZ2-であり、Z2は水素原子、炭素数1~18の直鎖状若しくは分岐状の炭化水素基、芳香族環基、又は脂肪族環基である。
Cyは、下記から選ばれ任意の置換位置で結合形成される2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、シアノ基、フッ素原子、又は塩素原子で置換されていてもよい。)
R 1 Si (OR 2 ) 3 (1)
(R 1 is a group represented by the following formula (2), and R 2 is an alkyl group having 1 to 5 carbon atoms.)
Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 17 R 18 ) b — (b is an integer of 1 to 15 , R 17 and R 18 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
Y 4 is a divalent cyclic group selected from a single bond, a benzene ring, a cyclohexyl ring, and a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms and having a steroid skeleton, on the cyclic group Arbitrary hydrogen atoms are substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom May be.
Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
n1 is an integer of 0-4.
Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. )
R 24 is a hydrogen atom or a methyl group.
Y 21 is a straight or branched hydrocarbon group having 1 to 8 carbon atoms which may contain a single bond or a double bond.
Y 22 represents a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NPh—, —NHCO—, —N (CH 3 ) CO—. , -NPhCO -, - NHSO 2 - , - N (CH 3) SO 2 -, - NPhSO 2 -, - S -, - SO 2 -, - NHCONH, -N (CH 3) CONH -, - NPhCONH-, The bonding group is selected from —NHCOO— and —OCONH—.
Y 23 is a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms.
Y 24 is a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms.
Y 25 represents a single bond, —O—, or —NZ 2 —, and Z 2 represents a hydrogen atom, a linear or branched hydrocarbon group having 1 to 18 carbon atoms, an aromatic ring group, or an aliphatic ring. It is a group.
Cy is a divalent cyclic group selected from the following and bonded at an arbitrary substitution position. An arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. May be substituted with an alkoxy group, a cyano group, a fluorine atom, or a chlorine atom. )
- 前記原料アルコキシシランが、さらに、重合禁止機能を有する基を有する下記式(5)で表されるアルコキシシランを含有し、得られるポリシロキサン成分(A)の構成部分として重合禁止成分(B)が含有される、請求項1に記載の液晶配向剤。
RaSi(ORb)3 (5)
(Raは、重合禁止機能を有する基であり、Rbは炭素数1~5のアルキル基である。) The raw material alkoxysilane further contains an alkoxysilane represented by the following formula (5) having a group having a polymerization inhibiting function, and the polymerization inhibiting component (B) is a constituent part of the resulting polysiloxane component (A). The liquid crystal aligning agent of Claim 1 contained.
R a Si (OR b ) 3 (5)
(R a is a group having a polymerization inhibiting function, and R b is an alkyl group having 1 to 5 carbon atoms.) - 重合禁止機能を有する基を有する下記式(5)で表されるアルコキシシラン又は、下記式(5)で表されるアルコキシシランを含むポリシロキサンから形成されるポリシロキサンが、前記ポリシロキサン成分(A)と別の物質として含有される、請求項1に記載の液晶配向剤。
RaSi(ORb)3 (5)
(Raは、重合禁止機能を有する基であり、Rbは炭素数1~5のアルキル基である。) A polysiloxane formed from an alkoxysilane represented by the following formula (5) having a group having a polymerization inhibiting function or a polysiloxane containing an alkoxysilane represented by the following formula (5) is the polysiloxane component (A The liquid crystal aligning agent of Claim 1 contained as another substance.
R a Si (OR b ) 3 (5)
(R a is a group having a polymerization inhibiting function, and R b is an alkyl group having 1 to 5 carbon atoms.) - 前記ポリシロキサン成分(A)と別の物質として含有される重合禁止成分(B)が、
フェノール、カテコール、ベンゾキノン、ハイドロキノン、又はこれらのエステル、エーテル化物やアルキル化したことによるヒンダードフェノール、フェノチアジン、ヒンダードアミン、ヒドロキシアミン又はニトロソアミンである、請求項1に記載の液晶配向剤。 The polymerization inhibiting component (B) contained as a substance different from the polysiloxane component (A),
The liquid crystal aligning agent according to claim 1, which is phenol, catechol, benzoquinone, hydroquinone, or an ester, etherified product or alkylated hindered phenol, phenothiazine, hindered amine, hydroxyamine or nitrosamine. - 前記重合禁止成分(B)が、前記ポリシロキサン成分(A)に対して0.01~20モル%含有される、請求項1~5のいずれか1項に記載の液晶配向剤。 6. The liquid crystal aligning agent according to claim 1, wherein the polymerization-inhibiting component (B) is contained in an amount of 0.01 to 20 mol% with respect to the polysiloxane component (A).
- 原料アルコキシシラン中、前記式(1)で表されるアルコキシシランが、2~30モル%含有され、上記式(3)で表されるアルコキシシランが原料アルコキシシラン中5~70モル%含有される、請求項1~6いずれか1項に記載の液晶配向剤。 In the raw material alkoxysilane, the alkoxysilane represented by the formula (1) is contained in an amount of 2 to 30 mol%, and the alkoxysilane represented by the formula (3) is contained in the raw material alkoxysilane in an amount of 5 to 70 mol%. The liquid crystal aligning agent according to any one of claims 1 to 6.
- 原料アルコキシシランが、さらに、下記式(4)で表されるアルコキシシランを含有する請求項1~7いずれか1項に記載の液晶配向剤。
R3Si(OR4)3 (4)
(R3は、水素原子が、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基又はスチリル基で置換された炭素数1~30のアルキル基である。R4は炭素数1~5のアルキル基である。) The liquid crystal aligning agent according to any one of claims 1 to 7, wherein the raw material alkoxysilane further contains an alkoxysilane represented by the following formula (4).
R 3 Si (OR 4 ) 3 (4)
(R 3 is an alkyl group having 1 to 30 carbon atoms in which a hydrogen atom is substituted with an acrylic group, acryloxy group, methacryl group, methacryloxy group or styryl group. R 4 is an alkyl group having 1 to 5 carbon atoms. is there.) - 下記式(6)で表されるアルコキシシランから形成されるポリシロキサン(C)を含有する請求項1~7のいずれか1項に記載の液晶配向剤。
Si(OR15)4 (6)
(R15は炭素数1~5のアルキル基である。) The liquid crystal aligning agent according to any one of claims 1 to 7, comprising a polysiloxane (C) formed from an alkoxysilane represented by the following formula (6).
Si (OR 15 ) 4 (6)
(R 15 is an alkyl group having 1 to 5 carbon atoms.) - ポリシロキサン成分(A)及びポリシロキサン(C)の少なくとも一方が、下記式(7)で表されるアルコキシシランを、さらに含有するアルコキシシランを反応させて得られるポリシロキサンである請求項1~8のいずれか1項に記載の液晶配向剤。
(R13)n2Si(OR14)4-n (7)
(R13は、水素原子、又は、水素原子がヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、若しくはウレイド基で置換されていてもよい炭素数1~10の炭化水素基である。
R14は炭素数1~5のアルキル基であり、n2は0~3の整数を表す。) At least one of the polysiloxane component (A) and the polysiloxane (C) is a polysiloxane obtained by reacting an alkoxysilane further containing an alkoxysilane represented by the following formula (7): The liquid crystal aligning agent of any one of these.
(R 13 ) n2 Si (OR 14 ) 4-n (7)
(R 13 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms in which the hydrogen atom may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group. It is.
R 14 is an alkyl group having 1 to 5 carbon atoms, and n2 represents an integer of 0 to 3. ) - 請求項1~10のいずれか1項に記載の液晶配向剤を用いて得られることを特徴とする液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of claims 1 to 10.
- 請求項11に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 11.
- 請求項11に記載の液晶配向膜の一対と、液晶配向膜に挟持された液晶層とを有し、前記液晶配向膜が、前記液晶層に電圧が印加された状態で、光の照射を受けて形成されたものであるVAモードの液晶表示素子。 A pair of liquid crystal alignment films according to claim 11 and a liquid crystal layer sandwiched between the liquid crystal alignment films, wherein the liquid crystal alignment film is irradiated with light in a state where a voltage is applied to the liquid crystal layer. A VA mode liquid crystal display element formed by the above method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157014056A KR102210175B1 (en) | 2012-11-06 | 2013-11-05 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
JP2014545712A JP6459513B2 (en) | 2012-11-06 | 2013-11-05 | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
CN201380069365.3A CN104903786B (en) | 2012-11-06 | 2013-11-05 | Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-244547 | 2012-11-06 | ||
JP2012244547 | 2012-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014073537A1 true WO2014073537A1 (en) | 2014-05-15 |
Family
ID=50684640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/079922 WO2014073537A1 (en) | 2012-11-06 | 2013-11-05 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6459513B2 (en) |
KR (1) | KR102210175B1 (en) |
CN (1) | CN104903786B (en) |
TW (1) | TWI609925B (en) |
WO (1) | WO2014073537A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018505447A (en) * | 2015-06-18 | 2018-02-22 | 深▲セン▼市華星光電技術有限公司 | Liquid crystal vertical alignment film, liquid crystal display element, and method for preparing liquid crystal display element |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105199748B (en) | 2015-09-29 | 2017-10-17 | 深圳市华星光电技术有限公司 | A kind of alignment film, preparation method and its liquid crystal panel |
CN108559528A (en) * | 2018-04-20 | 2018-09-21 | 深圳市华星光电半导体显示技术有限公司 | The preparation method of liquid crystal media mixture, liquid crystal display panel and liquid crystal display panel |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010217866A (en) * | 2009-02-19 | 2010-09-30 | Jsr Corp | Liquid crystal aligning agent, liquid crystal display device, and method for manufacturing the same |
WO2010126108A1 (en) * | 2009-05-01 | 2010-11-04 | 日産化学工業株式会社 | Silicon liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element |
WO2012115157A1 (en) * | 2011-02-24 | 2012-08-30 | 日産化学工業株式会社 | Silicon-based liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4008097B2 (en) * | 1998-04-09 | 2007-11-14 | 日本ポリオレフィン株式会社 | Polyethylene resin composition for water pipes, water pipes and pipe fittings |
JP4504626B2 (en) | 2003-03-31 | 2010-07-14 | シャープ株式会社 | Liquid crystal display device and manufacturing method thereof |
CN100460432C (en) * | 2004-08-12 | 2009-02-11 | Jsr株式会社 | Side chain unsaturated polymer, radiation sensitive resin composition and spacer for liquid crystal display element |
JP2008076950A (en) | 2006-09-25 | 2008-04-03 | Sharp Corp | Liquid crystal display panel and manufacturing method thereof |
JP4995267B2 (en) | 2007-03-26 | 2012-08-08 | シャープ株式会社 | Liquid crystal display device and polymer for alignment film material |
JP5556395B2 (en) * | 2009-08-28 | 2014-07-23 | Jsr株式会社 | Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element |
JP2011095967A (en) | 2009-10-29 | 2011-05-12 | Yamaha Corp | Bus sharing system |
JP5903890B2 (en) * | 2009-11-09 | 2016-04-13 | Jnc株式会社 | Liquid crystal display element, liquid crystal composition, alignment agent, method for producing liquid crystal display element and use thereof |
CN102934013B (en) * | 2010-04-06 | 2016-03-16 | 日产化学工业株式会社 | Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells |
JP5975227B2 (en) * | 2011-03-31 | 2016-08-23 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element |
-
2013
- 2013-11-05 CN CN201380069365.3A patent/CN104903786B/en active Active
- 2013-11-05 WO PCT/JP2013/079922 patent/WO2014073537A1/en active Application Filing
- 2013-11-05 JP JP2014545712A patent/JP6459513B2/en active Active
- 2013-11-05 KR KR1020157014056A patent/KR102210175B1/en active IP Right Grant
- 2013-11-06 TW TW102140288A patent/TWI609925B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010217866A (en) * | 2009-02-19 | 2010-09-30 | Jsr Corp | Liquid crystal aligning agent, liquid crystal display device, and method for manufacturing the same |
WO2010126108A1 (en) * | 2009-05-01 | 2010-11-04 | 日産化学工業株式会社 | Silicon liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element |
WO2012115157A1 (en) * | 2011-02-24 | 2012-08-30 | 日産化学工業株式会社 | Silicon-based liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018505447A (en) * | 2015-06-18 | 2018-02-22 | 深▲セン▼市華星光電技術有限公司 | Liquid crystal vertical alignment film, liquid crystal display element, and method for preparing liquid crystal display element |
Also Published As
Publication number | Publication date |
---|---|
KR102210175B1 (en) | 2021-01-29 |
KR20150082365A (en) | 2015-07-15 |
TW201431957A (en) | 2014-08-16 |
CN104903786B (en) | 2017-12-08 |
TWI609925B (en) | 2018-01-01 |
JP6459513B2 (en) | 2019-01-30 |
CN104903786A (en) | 2015-09-09 |
JPWO2014073537A1 (en) | 2016-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6079626B2 (en) | Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element | |
KR101419962B1 (en) | A silicon-based liquid crystal aligning agent and a liquid crystal alignment film | |
JP5605359B2 (en) | Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element | |
WO2014017497A1 (en) | Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal aligning agent | |
JPWO2014142168A1 (en) | Liquid crystal aligning agent containing crosslinkable compound having photoreactive group | |
JP6398973B2 (en) | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element | |
JP6107661B2 (en) | Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element | |
JP6459513B2 (en) | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element | |
JP5761180B2 (en) | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element | |
JP5999084B2 (en) | Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element | |
TWI534511B (en) | Liquid crystal alignment device, liquid crystal alignment film, liquid crystal display device, and liquid crystal display device manufacturing method | |
JP6337595B2 (en) | Manufacturing method of liquid crystal display element, liquid crystal aligning agent, and liquid crystal aligning film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13852826 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014545712 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157014056 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13852826 Country of ref document: EP Kind code of ref document: A1 |