WO2014069329A1 - エステル基を有するシリコン含有レジスト下層膜形成組成物 - Google Patents
エステル基を有するシリコン含有レジスト下層膜形成組成物 Download PDFInfo
- Publication number
- WO2014069329A1 WO2014069329A1 PCT/JP2013/078835 JP2013078835W WO2014069329A1 WO 2014069329 A1 WO2014069329 A1 WO 2014069329A1 JP 2013078835 W JP2013078835 W JP 2013078835W WO 2014069329 A1 WO2014069329 A1 WO 2014069329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- formula
- underlayer film
- hydrolyzable silane
- represented
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0757—Macromolecular compounds containing Si-O, Si-C or Si-N bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
- C08G77/26—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
- C08G77/28—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/80—Siloxanes having aromatic substituents, e.g. phenyl side groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
- C09D183/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
- C09D183/08—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0752—Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/091—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/094—Multilayer resist systems, e.g. planarising layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/32—Liquid compositions therefor, e.g. developers
- G03F7/322—Aqueous alkaline compositions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/32—Liquid compositions therefor, e.g. developers
- G03F7/325—Non-aqueous compositions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/36—Imagewise removal not covered by groups G03F7/30 - G03F7/34, e.g. using gas streams, using plasma
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/40—Treatment after imagewise removal, e.g. baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0332—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
Definitions
- the present invention relates to a composition for forming a lower layer film between a substrate used for manufacturing a semiconductor device and a resist (for example, a photoresist or an electron beam resist). More specifically, the present invention relates to a resist underlayer film forming composition for lithography for forming an underlayer film used as a lower layer of a photoresist in a lithography process for manufacturing a semiconductor device. Moreover, it is related with the formation method of the resist pattern using the said lower layer film formation composition.
- microfabrication is obtained by forming a thin film of photoresist on a semiconductor substrate such as a silicon wafer, irradiating it with an actinic ray such as ultraviolet rays through a mask pattern on which a semiconductor device pattern is drawn, and developing it.
- actinic ray such as ultraviolet rays
- fine irregularities corresponding to the pattern are formed on the surface of the substrate by etching the substrate using the photoresist pattern as a protective film.
- Patent Document 1 a resist underlayer film containing polysiloxane using a silane having an ester bond has been proposed (see Patent Document 1, Patent Document 2, and Patent Document 3).
- An object of the present invention is to provide a resist underlayer film forming composition for lithography that can be used in the manufacture of a semiconductor device. Specifically, it is to provide a resist underlayer film forming composition for lithography for forming a resist underlayer film that can be used as a hard mask. Moreover, it is providing the resist underlayer film forming composition for lithography for forming the resist underlayer film which can be used as an antireflection film. Another object of the present invention is to provide a resist underlayer film for lithography that does not cause intermixing with the resist and has a higher dry etching rate than the resist, and a resist underlayer film forming composition for forming the underlayer film.
- the present invention provides a resist underlayer film that can form an excellent resist pattern shape when an upper layer resist is exposed and developed with an alkali developer or an organic solvent, and can transfer a rectangular resist pattern to the lower layer by subsequent dry etching.
- An object of the present invention is to provide a resist underlayer film forming composition for forming.
- the present invention includes a hydrolyzable silane as a silane, a hydrolyzate thereof, or a hydrolysis condensate thereof, wherein the hydrolyzable silane is represented by the formula (1), A hydrolyzable silane composed of a combination of the hydrolyzable silane represented by 1) and the hydrolyzable silane represented by formula (2), and the hydrolyzable silane represented by formula (1) or formula (1)
- the composition for forming a resist underlayer film for lithography, wherein the hydrolyzable silane composed of a combination of the hydrolyzable silane represented by formula (2) and the hydrolyzable silane represented by formula (2) is less than 50 mol% of the total silane.
- R 1 represents formula (1-1), formula (1-2), formula (1-3), formula (1-4), or formula (1-5):
- T 1 , T 4, and T 7 are each an alkylene group ,
- T 2 is an alkyl group
- T 3 and T 5 are Each is an aliphatic ring or an aromatic ring
- each of T 6 and T 8 is a lactone ring
- n is an integer of 1 or 2
- R 2 is an alkyl group, an aryl group, a halogenated alkyl group, a halogenated aryl group, an alkenyl group, or an organic group having an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group, or a cyano group, and Si It is bonded to a silicon atom by a —C bond.
- R 3 is an alkoxy group, an acyloxy group, or a halogen group. a represents an integer of 1, b represents an integer of 0 or 1, and a + b represents an integer of 1 or 2.
- R 4 represents the formula (2-1), the formula (2-2), or the formula (2-3): And a monovalent organic group containing a group represented by the formula (II) and bonded to a silicon atom by a Si—C bond.
- R 5 is an organic group having an alkyl group, aryl group, halogenated alkyl group, halogenated aryl group, alkenyl group, or epoxy group, acryloyl group, methacryloyl group, mercapto group, amino group, or cyano group, and Si It is bonded to a silicon atom by a —C bond.
- R 6 is an alkoxy group, an acyloxy group, or a halogen group.
- a 1 represents an integer of 1
- b 1 represents an integer of 0 or 1
- a 1 + b 1 represents an integer of 1 or 2.
- a hydrolyzable silane represented by formula (1) or a combination of a hydrolyzable silane represented by formula (1) and a hydrolyzable silane represented by formula (2) is a hydrolyzable silane in which R 4 is an organic group containing a group represented by formula (2-1), and R 4 is represented by formula (2-2).
- hydrolyzable silane is an organic group containing a group represented by), the first aspect R 4 is a hydrolyzable silane, or a mixture thereof is an organic group containing a group represented by the formula (2-3) or The resist underlayer film forming composition according to the second aspect,
- the hydrolyzable silane composed of a combination of the hydrolyzable silane represented by the formula (1) and the hydrolyzable silane represented by the formula (2) includes the hydrolyzable silane represented by the formula (1) and The resist underlayer film forming composition according to any one of the first to third aspects, which contains the hydrolyzable silane represented by the formula (2) in a molar ratio of 1: 0.01 to 10;
- the hydrolyzable silane is a hydrolyzable silane represented by the formula (1) or a combination of the hydrolyzable silane represented by the formula (1) and the hydrolyzable silane represented by the formula (2).
- R 9 is an alkyl group and bonded to a silicon atom by a Si—C bond
- R 10 represents an alkoxy group, an acyloxy group, or a halogen group
- Y represents an alkylene group or an arylene group.
- the first aspect to the fourth are at least one organosilicon compound selected from the group consisting of compounds represented by:
- the resist underlayer film forming composition for lithography according to any one of the aspects
- the hydrolyzable silane represented by the formula (1) according to any one of the first aspect to the fourth aspect and the formula (1) according to any one of the first aspect to the fourth aspect ( 2) a resist underlayer film forming composition comprising, as a polymer, a hydrolyzate of the hydrolyzable silane represented by 2) and the hydrolyzable silane represented by the formula (3) according to the fifth aspect
- the resist underlayer film forming composition according to any one of the first to sixth aspects further comprising an acid as a hydrolysis catalyst
- the resist underlayer film forming composition according to any one of the first aspect to the seventh aspect further including water
- a ninth aspect a resist underlayer film obtained by applying and
- a resist underlayer film (containing an inorganic silicon compound) formed from the composition of the present invention is coated on the substrate with or without an organic underlayer film,
- the resist film (organic resist film) is coated in this order.
- the resist underlayer film of the present invention functions as a hard mask, and hydrolyzable groups such as alkoxy groups, acyloxy groups, and halogen groups in the hydrolyzable silane compound structure represented by the above formula (1) are hydrolyzed.
- hydrolyzable groups such as alkoxy groups, acyloxy groups, and halogen groups in the hydrolyzable silane compound structure represented by the above formula (1) are hydrolyzed.
- a polysiloxane structure polymer is formed by condensation reaction of silanol groups.
- This polyorganosiloxane structure (intermediate film) is effective as a hard mask for etching an organic underlayer film existing underneath and processing (etching) a substrate. That is, it has sufficient dry etching resistance against oxygen dry etching gas of the organic underlayer film during substrate processing.
- these bond sites contained in the polyorganosiloxane structure have carbon-nitrogen bonds or carbon-oxygen bonds, and the dry etching rate with a halogen-based gas is higher than that of carbon-carbon bonds. Is effective in transferring to the resist underlayer film.
- the resist underlayer film formed from the composition of the present invention has an improved dry etching rate for these upper layer resists and has dry etching resistance during substrate processing.
- the hydrolyzable silane compound represented by the formula (1) having an ester group (that is, an ester bond), or the hydrolyzable silane compound, and an amide group (that is, an amide bond) included in the composition of the present invention By using a polyorganosiloxane based on hydrolyzable silane in combination with a hydrolyzable silane compound represented by formula (2) having a sulfone group (that is, a sulfonyl bond) or a phenyl group as a hard mask, the upper resist is exposed to alkali.
- An excellent resist pattern shape can be formed when developed with a developer or an organic solvent, and a rectangular resist pattern can be transferred to the lower layer by subsequent dry etching.
- the present invention includes a hydrolyzable silane as a silane, a hydrolyzate thereof, or a hydrolysis condensate thereof, wherein the silane is represented by the formula (1), or a hydrolysis represented by the formula (1).
- a hydrolyzable silane comprising a combination of a functional silane and a hydrolyzable silane represented by formula (2), and represented by formula (1), or a hydrolyzable silane represented by formula (1)
- a hydrolyzable silane comprising a combination of hydrolyzable silanes represented by formula (2) in an amount of less than 50 mol% of the total silane.
- the hydrolyzable silane represented by the formula (1) or the combination of the hydrolyzable silane represented by the formula (1) and the hydrolyzable silane represented by the formula (2) is 50% of all silanes. It can be used in the range of less than mol%, or 5 to 45 mol%, or 5 to 40 mol%, or 5 to 35 mol%, or 5 to 30 mol%, or 10 to 20 mol%.
- the resist underlayer film forming composition of the present invention is a hydrolyzable silane represented by formula (1) or a combination of a hydrolyzable silane represented by formula (1) and a hydrolyzable silane represented by formula (2).
- the hydrolyzable silane which consists of, its hydrolyzate, or its hydrolysis condensate, and a solvent are included.
- acid, water, alcohol, curing catalyst, acid generator, other organic polymer, light-absorbing compound, surfactant and the like can be included.
- the solid content in the resist underlayer film forming composition of the present invention is, for example, 0.1 to 50% by mass, or 0.1 to 30% by mass, and 0.1 to 25% by mass.
- the solid content is obtained by removing the solvent component from all the components of the resist underlayer film forming composition.
- the ratio of the hydrolyzable silane, its hydrolyzate, and its hydrolysis condensate in the solid content is 20% by mass or more, for example, 50 to 100% by mass, 60 to 100% by mass, 70 to 100% by mass. It is.
- hydrolyzable silane, its hydrolyzate, and its hydrolysis condensate can also be used as a mixture thereof. It can be used in a condensate obtained by hydrolyzing a hydrolyzable silane and condensing the obtained hydrolyzate.
- a hydrolysis-condensation product a partial hydrolysis product or a silane compound in which hydrolysis is not completely completed are mixed with the hydrolysis-condensation product, and the mixture can also be used.
- This condensate is a polymer having a polysiloxane structure.
- This polysiloxane includes a hydrolyzable silane represented by the formula (1), or a hydrolyzable silane composed of a combination of the hydrolyzable silane represented by the formula (1) and the hydrolyzable silane represented by the formula (2).
- a hydrolyzable silane represented by the formula (1) or a hydrolyzable silane composed of a combination of the hydrolyzable silane represented by the formula (1) and the hydrolyzable silane represented by the formula (2).
- the hydrolyzable silane which consists of a combination of the hydrolysable silane shown by Formula (1), or the hydrolyzable silane shown by Formula (1), and the hydrolyzable silane shown by Formula (2)
- a hydrolyzable silane represented by the formula (1), or a hydrolyzable silane represented by the formula (1) and a hydrolyzable silane represented by the formula (2) are added to the hydrolysis condensate (polysiloxane) of be able to.
- hydrolyzable silane which consists of a combination of the hydrolysable silane shown by Formula (1), or the hydrolyzable silane shown by Formula (1), and the hydrolyzable silane shown by Formula (2)
- a hydrolyzed silane consisting of a combination can be added.
- R 1 is represented by formula (1-1), formula (1-2), formula (1-3), formula (1-4), or A monovalent organic group containing a group represented by the formula (1-5) and bonded to a silicon atom by a Si—C bond.
- R 2 is an alkyl group, aryl group, halogenated alkyl group, halogenated aryl group, alkenyl group, or an organic group having an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group, or a cyano group, and Si—C It is bonded to a silicon atom by a bond.
- R 3 represents an alkoxy group, an acyloxy group, or a halogen group.
- a represents an integer of 1
- b represents an integer of 0 or 1
- a + b represents an integer of 1 or 2.
- T 1 , T 4, and T 7 are each an alkylene group, A cyclic alkylene group, an alkenylene group, an arylene group, a sulfur atom, an oxygen atom, an oxycarbonyl group, an amide group, a secondary amino group, or a combination thereof
- T 2 is an alkyl group
- T 3 and T 5 are each aliphatic.
- a ring or an aromatic ring, and T 6 and T 8 are each a lactone ring.
- N in the formula (1-1) represents an integer of 1 or 2.
- the hydrolyzable silane represented by the formula (1) includes a hydrolyzable silane containing an organic group containing a group represented by the formula (1-1) and an organic group containing a group represented by the formula (1-2).
- the lactone ring represented by T 6 and T 8 is one in which the carbon atom of one carbonyl group and the oxygen atom of one ester are present on the ring.
- R 4 is a monovalent group including a group represented by the formula (2-1), the formula (2-2), or the formula (2-3). And an organic group bonded to a silicon atom by a Si—C bond.
- R 5 is an organic group having an alkyl group, aryl group, halogenated alkyl group, halogenated aryl group, alkenyl group, or epoxy group, acryloyl group, methacryloyl group, mercapto group, amino group, or cyano group, and Si It is bonded to a silicon atom by a —C bond.
- R 6 is an alkoxy group, an acyloxy group, or a halogen group.
- the hydrolyzable silane represented by the formula (2) includes a hydrolyzable silane containing an organic group containing a group represented by the formula (2-1) and an organic group containing a group represented by the formula (2-2). It may be a hydrolyzable silane, a hydrolyzable silane containing an organic group containing a group represented by the formula (2-3), or a mixture thereof.
- the hydrolyzable silane represented by the formula (1) and the hydrolyzable silane represented by the formula (2) in a molar ratio of 1: 0.01 to 10 or 1 : 0.1 to 10 or 1: 0.1 to 5
- the alkyl group is a linear or branched alkyl group having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, s-butyl, t-butyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n- Propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, n-hexyl, 1-methyl-n-pentyl group, 2-methyl -N-pentyl group, 3-methyl-n-pentyl group, 4-methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n
- a cyclic alkyl group can also be used.
- a cyclic alkyl group having 1 to 10 carbon atoms includes a cyclopropyl group, a cyclobutyl group, a 1-methyl-cyclopropyl group, a 2-methyl-cyclopropyl group, a cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclopropyl group, 2 -Ethyl-cyclopropyl group, cyclohexyl group, 1-methyl-cyclopentyl group, 2-methyl-cyclopentyl group, 3-methyl-cyclopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl Group, 1,2-di
- the alkylene group can include an alkylene group derived from the above alkyl group.
- a methyl group includes a methylene group
- an ethyl group includes an ethylene group
- a propyl group includes a propylene group.
- the alkenyl group is an alkenyl group having 2 to 10 carbon atoms, and includes an ethenyl group, a 1-propenyl group, a 2-propenyl group, a 1-methyl-1-ethenyl group, a 1-butenyl group, a 2-butenyl group, and a 3-butenyl group.
- the alkenylene group includes an alkenylene group derived from the alkenyl group.
- the aryl group include aryl groups having 6 to 20 carbon atoms, such as a phenyl group, o-methylphenyl group, m-methylphenyl group, p-methylphenyl group, o-chlorophenyl group, m-chlorophenyl group, p-chlorophenyl group, o-fluorophenyl group, p-mercaptophenyl group, o-methoxyphenyl group, p-methoxyphenyl group, p-aminophenyl group, p-cyanophenyl group, ⁇ -naphthyl group, ⁇ -naphthyl Group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group
- a sulfide bond can be formed by using a sulfur atom.
- An ether bond can be formed by using an oxygen atom.
- An ester bond can be formed by using an oxycarbonyl group.
- An amide bond can be formed by using an amide group.
- An amino group can be formed by using a secondary amino group.
- an aliphatic ring structure can be formed by using an aliphatic ring.
- An aromatic ring structure can be formed by using an aromatic ring.
- a lactone ring structure can be formed by using a lactone ring.
- Examples of the organic group having an epoxy group include glycidoxymethyl, glycidoxyethyl, glycidoxypropyl, glycidoxybutyl, and epoxycyclohexyl.
- Examples of the organic group having an acryloyl group include acryloylmethyl, acryloylethyl, acryloylpropyl, and the like.
- Examples of the organic group having a methacryloyl group include methacryloylmethyl, methacryloylethyl, methacryloylpropyl, and the like.
- Examples of the organic group having a mercapto group include ethyl mercapto, butyl mercapto, hexyl mercapto, octyl mercapto and the like.
- Examples of the organic group having an amino group include aminomethyl, aminoethyl, aminopropyl, and the like.
- Examples of the organic group having a cyano group include cyanoethyl and cyanopropyl.
- alkoxy group examples include an alkoxy group having a linear, branched, or cyclic alkyl portion having 1 to 20 carbon atoms, such as a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and an n-butoxy group.
- acyloxy group examples include acyloxy groups having 2 to 20 carbon atoms, such as a methylcarbonyloxy group, an ethylcarbonyloxy group, an n-propylcarbonyloxy group, an i-propylcarbonyloxy group, an n-butylcarbonyloxy group, i-butylcarbonyloxy group, s-butylcarbonyloxy group, t-butylcarbonyloxy group, n-pentylcarbonyloxy group, 1-methyl-n-butylcarbonyloxy group, 2-methyl-n-butylcarbonyloxy group, 3-methyl-n-butylcarbonyloxy group, 1,1-dimethyl-n-propylcarbonyloxy group, 1,2-dimethyl-n-propylcarbonyloxy group, 2,2-dimethyl-n-propylcarbonyloxy group, 1-ethyl-n-propylcarbonyloxy group, n-hexyl Rucarbon
- halogen group examples include fluorine, chlorine, bromine and iodine.
- hydrolyzable silane represented by the formula (1) examples are as follows.
- T is an alkyl group, and examples of the alkyl group described above can be given, and for example, a methyl group and an ethyl group are preferable.
- R is exemplified below.
- hydrolyzable silane represented by the formula (2) can be exemplified below.
- the hydrolyzable silane is a hydrolyzable silane represented by the formula (1) or a combination of the hydrolyzable silane represented by the formula (1) and the hydrolyzable silane represented by the formula (2).
- the hydrolyzable silane is at least one organic silicon compound selected from the group consisting of the formula (3) and the formula (4), including a decomposable silane and another hydrolyzable silane.
- Hydrolyzable silane represented by formula (1) or a hydrolyzable silane composed of a combination of hydrolyzable silane represented by formula (1) and hydrolyzable silane represented by formula (2), and other hydrolysis
- the ratio of the sex silane can be blended at a molar ratio of 1: 0.1 to 100, or 1: 1 to 100, or 1: 1 to 50, or 1: 1 to 20.
- the silane includes a hydrolyzable silane, a hydrolyzate thereof, or a hydrolyzate condensate thereof. These are preferably used as a hydrolyzate condensate (polyorganosiloxane), and are hydrolyzable represented by the formula (1). Hydrolysis condensate (polyorgano) of silane or a combination of hydrolyzable silane represented by formula (1) and hydrolyzable silane represented by formula (2) and a silicon-containing compound represented by formula (3) It is preferable to use (siloxane).
- an organic group having an epoxy group, an acryloyl group, a methacryloyl group, a mercapto group, or a cyano group, and further, an alkoxy group, an acyloxy group, or a halogen group included in the hydrolyzable group is exemplified by those described above. can do.
- Hydrolyzable silanes represented by formula (3) are phenyl silanes exemplified by formula (2) (for example, phenyltrimethoxysilane, phenyltrichlorosilane, phenyltriacetoxysilane, phenyltriethoxysilane, and phenyltriacetoxy).
- phenyl silanes exemplified by formula (2) for example, phenyltrimethoxysilane, phenyltrichlorosilane, phenyltriacetoxysilane, phenyltriethoxysilane, and phenyltriacetoxy.
- a substituted phenylsilane in which the aryl group of R 7 is a substituted phenyl group.
- the aryl group of R 7 in the formula (3) is preferably a substituted aryl group, for example, a substituted phenyl group, which is an alkoxyphenyl group, an acyloxyphenyl group or an organic group containing the same, and silicon by Si—C bond. It is bonded to an atom. And two R ⁇ 7 > can also form a ring mutually and can be couple
- Examples of the silicon-containing compound represented by the formula (3) include tetramethoxysilane, tetrachlorosilane, tetraacetoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, and methyltrimethoxysilane.
- Methyltrichlorosilane methyltriacetoxysilane, methyltripropoxysilane, methyltributoxysilane, methyltriamyloxysilane, methyltriphenoxysilane, methyltribenzyloxysilane, methyltriphenethyloxysilane, glycidoxymethyltrimethoxysilane , Glycidoxymethyltriethoxysilane, ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxyethyltrimethoxysilane ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxy
- the aryl group of R 7 in the formula (3) is preferably a substituted aryl group, for example, a substituted phenyl group, and examples thereof include an alkoxyphenyl group, an acyloxyphenyl group, and silanes exemplified as an organic group containing the same. It is done.
- Examples of the silicon-containing compound represented by the formula (4) include methylene bistrimethoxysilane, methylene bistrichlorosilane, methylene bistriacetoxysilane, ethylene bistriethoxysilane, ethylene bistrichlorosilane, ethylene bistriacetoxysilane, propylene bistriethoxysilane, and butylene bistrimethoxysilane.
- the hydrolysis condensate (polyorganosiloxane) of the hydrolyzable silane can be obtained as a condensate having a weight average molecular weight of 1,000 to 1,000,000 or 1,000 to 100,000. These molecular weights are molecular weights obtained in terms of polystyrene by GPC analysis.
- GPC measurement conditions are, for example, GPC apparatus (trade name HLC-8220 GPC, manufactured by Tosoh Corporation), GPC column (trade names Shodex KF803L, KF802, KF801, Showa Denko), column temperature is 40 ° C., and eluent (elution solvent) Is tetrahydrofuran, the flow rate (flow rate) is 1.0 ml / min, and the standard sample is polystyrene (made by Showa Denko KK).
- hydrolysis of the alkoxysilyl group, acyloxysilyl group, or halogenated silyl group 0.5 to 100 mol, preferably 1 to 10 mol of water is used per mol of the hydrolyzable group. Further, 0.001 to 10 mol, preferably 0.001 to 1 mol of hydrolysis catalyst can be used per mol of the hydrolyzable group.
- the reaction temperature during the hydrolysis and condensation is usually 20 to 80 ° C.
- Hydrolysis may be complete hydrolysis or partial hydrolysis. That is, a hydrolyzate or a monomer may remain in the hydrolysis condensate.
- a catalyst can be used in the hydrolysis and condensation.
- the hydrolysis catalyst include metal chelate compounds, organic acids, inorganic acids, organic bases, and inorganic bases.
- Examples of the metal chelate compound as the hydrolysis catalyst include triethoxy mono (acetylacetonato) titanium, tri-n-propoxy mono (acetylacetonato) titanium, tri-i-propoxy mono (acetylacetonato) titanium, tri -N-Butoxy mono (acetylacetonato) titanium, tri-sec-butoxy mono (acetylacetonato) titanium, tri-t-butoxy mono (acetylacetonato) titanium, diethoxy bis (acetylacetonato) titanium , Di-n-propoxy bis (acetylacetonato) titanium, di-i-propoxy bis (acetylacetonato) titanium, di-n-butoxy bis (acetylacetonato) titanium, di-sec-butoxy bis (Acetylacetonate) Titanium, Di-t- Toxi-bis (acetylacetonato) titanium, monoethoxy-tris (acetylaceton
- Organic acids as hydrolysis catalysts include, for example, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacin Acid, gallic acid, butyric acid, merit acid, arachidonic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfone Examples include acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthal
- Organic bases as hydrolysis catalysts include, for example, pyridine, pyrrole, piperazine, pyrrolidine, piperidine, picoline, trimethylamine, triethylamine, monoethanolamine, diethanolamine, dimethylmonoethanolamine, monomethyldiethanolamine, triethanolamine, diazabicyclooctane, diazine.
- Examples include zabicyclononane, diazabicycloundecene, and tetramethylammonium hydroxide.
- the inorganic base include ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide and the like. Of these catalysts, metal chelate compounds, organic acids, and inorganic acids are preferred, and these may be used alone or in combination of two or more.
- organic solvent used in the hydrolysis examples include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, i-heptane, 2,2,4-trimethylpentane, n-octane, i- Aliphatic hydrocarbon solvents such as octane, cyclohexane and methylcyclohexane; benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propyl benzene, i-propyl benzene, diethylbenzene, i-butylbenzene, triethylbenzene, di -Aromatic hydrocarbon solvents such as i-propyl benzene, n-amyl naphthalene, trimethylbenzene; methanol, ethanol, ethanol
- acetone methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, di- Ketone solvents such as i-butyl ketone, trimethylnonanone, cyclohexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, diacetone alcohol, acetophenone, and fenchon are preferred from the viewpoint of storage stability of the solution.
- bisphenol S or a bisphenol S derivative can be added as an additive.
- Bisphenol S or a bisphenol S derivative is 0.01 to 20 parts by mass, 0.01 to 10 parts by mass, or 0.01 to 5 parts by mass with respect to 100 parts by mass of the polyorganosiloxane.
- Preferred bisphenol S or bisphenol S derivatives are exemplified below.
- the resist underlayer film forming composition of the present invention can contain a curing catalyst.
- the curing catalyst functions as a curing catalyst when a coating film containing polyorganosiloxane composed of a hydrolysis condensate is heated and cured.
- ammonium salts As the curing catalyst, ammonium salts, phosphines, phosphonium salts, and sulfonium salts can be used.
- ammonium salt the formula (D-1): (Wherein m 1 represents an integer of 2 to 11, n 1 represents an integer of 2 to 3, R 21 represents an alkyl group or an aryl group, and Y 1 - represents an anion.)
- the formula (D-7) (However, R 11 , R 12 , R 13 , and R 14 represent an alkyl group or an aryl group, P represents a phosphorus atom, Y 1 - represents an anion, and R 11 , R 12 , R 13 , and R 14 are each bonded to a phosphorus atom by a C—P bond).
- the formula (D-8) (However, R 15 , R 16 , and R 17 represent an alkyl group or an aryl group, S represents a sulfur atom, Y 1 - represents an anion, and R 15 , R 16 , and R 17 represent C—S, respectively. And a tertiary sulfonium salt which is bonded to a sulfur atom by a bond).
- the compound represented by the above formula (D-1) is a quaternary ammonium salt derived from an amine, m 1 represents an integer of 2 to 11, and n 1 represents an integer of 2 to 3.
- R 21 of this quaternary ammonium salt represents an alkyl group or aryl group having 1 to 18 carbon atoms, preferably 2 to 10 carbon atoms, such as a linear alkyl group such as an ethyl group, a propyl group or a butyl group, Cyclohexyl group, cyclohexylmethyl group, dicyclopentadienyl group and the like.
- Anions (Y 1 ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
- R 22 R 23 R 24 R 25 N + Y 1 - is a quaternary ammonium salt represented by.
- R 22 , R 23 , R 24 and R 25 are an alkyl group or aryl group having 1 to 18 carbon atoms, or a silane compound bonded to a silicon atom by a Si—C bond.
- Anions (Y 1 ⁇ ) are halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ).
- This quaternary ammonium salt can be obtained commercially, for example, tetramethylammonium acetate, tetrabutylammonium acetate, triethylbenzylammonium chloride, triethylbenzylammonium bromide, trioctylmethylammonium chloride, tributylbenzyl chloride. Examples include ammonium and trimethylbenzylammonium chloride.
- the compound represented by the above formula (D-3) is a quaternary ammonium salt derived from 1-substituted imidazole, R 26 and R 27 have 1 to 18 carbon atoms, and R 26 and R 27 The total number of carbon atoms is preferably 7 or more.
- R 26 can be exemplified by methyl group, ethyl group, propyl group, phenyl group and benzyl group, and R 27 can be exemplified by benzyl group, octyl group and octadecyl group.
- Anions (Y 1 ⁇ ) are halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
- This compound can be obtained as a commercial product.
- imidazole compounds such as 1-methylimidazole and 1-benzylimidazole are reacted with alkyl halides and aryl halides such as benzyl bromide and methyl bromide. Can be manufactured.
- the compound represented by the above formula (D-4) is a quaternary ammonium salt derived from pyridine, and R 28 is an alkyl or aryl group having 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms.
- R 28 is an alkyl or aryl group having 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms.
- Anions (Y 1 ⁇ ) are halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ).
- this compound can be obtained as a commercial product, it is produced, for example, by reacting pyridine with an alkyl halide such as lauryl chloride, benzyl chloride, benzyl bromide, methyl bromide, octyl bromide, or an aryl halide. I can do it. Examples of this compound include N-laurylpyridinium chloride and N-benzylpyridinium bromide.
- the compound represented by the above formula (D-5) is a quaternary ammonium salt derived from a substituted pyridine represented by picoline or the like, and R 29 is an alkyl having 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms. Group or aryl group, for example, methyl group, octyl group, lauryl group, benzyl group and the like.
- R 30 is an alkyl group having 1 to 18 carbon atoms or an aryl group. For example, in the case of quaternary ammonium derived from picoline, R 30 is a methyl group.
- Anions (Y 1 ⁇ ) are halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
- This compound can also be obtained as a commercial product. For example, a substituted pyridine such as picoline is reacted with an alkyl halide such as methyl bromide, octyl bromide, lauryl chloride, benzyl chloride or benzyl bromide, or an aryl halide. Can be manufactured. Examples of this compound include N-benzylpicolinium chloride, N-benzylpicolinium bromide, N-laurylpicolinium chloride and the like.
- the compound represented by the above formula (D-6) is a tertiary ammonium salt derived from an amine, m 2 represents an integer of 2 to 11, and n 2 represents an integer of 2 to 3.
- Anions (Y 1 ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ). It can be produced by reacting an amine with a weak acid such as carboxylic acid or phenol. Examples of the carboxylic acid include formic acid and acetic acid.
- the anion (Y 1 ⁇ ) When formic acid is used, the anion (Y 1 ⁇ ) is (HCOO ⁇ ), and when acetic acid is used, the anion (Y 1 ⁇ ) is (CH 3 COO ⁇ ). When phenol is used, the anion (Y 1 ⁇ ) is (C 6 H 5 O ⁇ ).
- the compound represented by the above formula (D-7) is a quaternary phosphonium salt having a structure of R 11 R 12 R 13 R 14 P + Y 1 — .
- R 11 , R 12 , R 13 , and R 14 are an alkyl group or aryl group having 1 to 18 carbon atoms, or a silane compound bonded to a silicon atom through a Si—C bond, preferably R 11 to R 14 of the 4 substituents are 3 phenyl groups or substituted phenyl groups, for example, a phenyl group or a tolyl group can be exemplified, and the remaining one is an alkyl group having 1 to 18 carbon atoms, A silane compound bonded to a silicon atom by an aryl group or Si—C bond.
- Anions (Y 1 ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
- This compound can be obtained as a commercial product, for example, a halogenated tetraalkylphosphonium such as tetra-n-butylphosphonium halide, tetra-n-propylphosphonium halide, or a trialkylbenzyl halide such as triethylbenzylphosphonium halide.
- Triphenylmonoalkylphosphonium halides such as phosphonium, triphenylmethylphosphonium halide, triphenylethylphosphonium halide, triphenylbenzylphosphonium halide, tetraphenylphosphonium halide, tritolylmonoarylphosphonium halide, or tritolyl monohalogenate Examples thereof include alkylphosphonium (the halogen atom is a chlorine atom or a bromine atom).
- halogens such as triphenylmonoalkylphosphonium halides such as triphenylmethylphosphonium halide, triphenylethylphosphonium halide, triphenylmonoarylphosphonium halides such as triphenylbenzylphosphonium halide, and halogens such as tritolylmonophenylphosphonium halide.
- Preferred is a tolylyl monoarylphosphonium halide, or a tolyl monoalkylphosphonium halide such as a tolyl monomethylphosphonium halide (the halogen atom is a chlorine atom or a bromine atom).
- the phosphines include methylphosphine, ethylphosphine, propylphosphine, isopropylphosphine, isobutylphosphine, phenylphosphine and other first phosphine, dimethylphosphine, diethylphosphine, diisopropylphosphine, diisoamylphosphine and diphenylphosphine And tertiary phosphines such as trimethylphosphine, triethylphosphine, triphenylphosphine, methyldiphenylphosphine and dimethylphenylphosphine.
- the compound represented by the above formula (D-8) is a tertiary sulfonium salt having a structure of R 15 R 16 R 17 S + Y 1 — .
- R 15 , R 16 , and R 17 are alkyl groups or aryl groups having 1 to 18 carbon atoms, or silane compounds that are bonded to silicon atoms through Si—C bonds, preferably 4 of R 15 to R 17 .
- Three of the substituents are phenyl groups or substituted phenyl groups, and examples thereof include phenyl groups and tolyl groups, and the remaining one is an alkyl group having 1 to 18 carbon atoms or an aryl group. It is.
- Anions (Y 1 ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
- This compound is available as a commercial product.
- halogenated tetraalkylsulfonium such as tri-n-butylsulfonium halide and tri-n-propylsulfonium halide
- trialkylbenzyl halide such as diethylbenzylsulfonium halide.
- Sulfonium, diphenylmonosulfonium halides such as diphenylmethylsulfonium halide, diphenylethylsulfonium halide, triphenylsulfonium halide, halogen atom is chlorine atom or bromine atom, tri-n-butylsulfonium carboxylate, tri-n- Tetraalkylphosphonium carboxylates such as propylsulfonium carboxylate and trialkylbenzines such as diethylbenzylsulfonium carboxylate Sulfonium carboxylate, diphenylmethyl sulfonium carboxylate, diphenyl monoalkyl sulfonium carboxylates such as diphenylethyl sulfonium carboxylate include triphenylsulfonium carboxylate. Particularly, triphenylsulfonium halide and triphenylsulfonium carboxylate are preferable.
- the curing catalyst is 0.01 to 10 parts by mass, 0.01 to 5 parts by mass, or 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyorganosiloxane.
- Hydrolyzable silane is hydrolyzed using a catalyst in a solvent to condense, and the resulting hydrolyzed condensate (polymer) simultaneously removes by-product alcohol, used hydrolysis catalyst, and water by distillation under reduced pressure. be able to.
- the acid and base catalyst used for hydrolysis can be removed by neutralization or ion exchange.
- an organic acid, water, alcohol, or a combination thereof can be added to the resist underlayer film forming composition containing the hydrolysis condensate for stabilization. .
- organic acid examples include oxalic acid, malonic acid, methylmalonic acid, succinic acid, maleic acid, malic acid, tartaric acid, phthalic acid, citric acid, glutaric acid, citric acid, lactic acid, and salicylic acid. Of these, oxalic acid and maleic acid are preferred.
- the organic acid to be added is 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the condensate (polyorganosiloxane).
- pure water, ultrapure water, ion exchange water, etc. can be used for the water to add, and the addition amount can be 1-20 mass parts with respect to 100 mass parts of resist underlayer film forming compositions.
- the added alcohol can be 1 to 20 parts by mass with respect to 100 parts by mass of the resist underlayer film forming composition.
- the underlayer film forming composition for lithography of the present invention can contain an organic polymer compound, a photoacid generator, a surfactant, and the like as necessary in addition to the above components.
- the dry etching rate (thickness reduction per unit time), attenuation coefficient, refractive index, etc. of the resist underlayer film formed from the underlayer film forming composition for lithography of the present invention are adjusted. can do.
- the organic polymer compound is not particularly limited, and various organic polymers can be used. Polycondensation polymers and addition polymerization polymers can be used. Addition polymerization polymers and condensation polymerization polymers such as polyester, polystyrene, polyimide, acrylic polymer, methacrylic polymer, polyvinyl ether, phenol novolak, naphthol novolak, polyether, polyamide, and polycarbonate can be used.
- An organic polymer having an aromatic ring structure such as a benzene ring, a naphthalene ring, an anthracene ring, a triazine ring, a quinoline ring, and a quinoxaline ring that functions as a light absorption site is preferably used.
- organic polymer compounds include addition polymerizable monomers such as benzyl acrylate, benzyl methacrylate, phenyl acrylate, naphthyl acrylate, anthryl methacrylate, anthryl methyl methacrylate, styrene, hydroxystyrene, benzyl vinyl ether, and N-phenylmaleimide.
- addition-polymerized polymers containing as a structural unit, and polycondensation polymers such as phenol novolac and naphthol novolak.
- the polymer compound When an addition polymerization polymer is used as the organic polymer compound, the polymer compound may be a homopolymer or a copolymer.
- An addition polymerizable monomer is used for the production of the addition polymerization polymer.
- examples of such addition polymerizable monomers include acrylic acid, methacrylic acid, acrylic ester compounds, methacrylic ester compounds, acrylamide compounds, methacrylamide compounds, vinyl compounds, styrene compounds, maleimide compounds, maleic anhydride, acrylonitrile and the like. It is done.
- acrylic ester compounds include methyl acrylate, ethyl acrylate, normal hexyl acrylate, isopropyl acrylate, cyclohexyl acrylate, benzyl acrylate, phenyl acrylate, anthryl methyl acrylate, 2-hydroxyethyl acrylate, 3-chloro-2-hydroxypropyl acrylate, 2-hydroxypropyl acrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trichloroethyl acrylate, 2-bromoethyl acrylate, 4-hydroxybutyl acrylate, 2-methoxyethyl acrylate, tetrahydrofurfuryl acrylate, 2-Methyl-2-adamantyl acrylate, 5-acryloyloxy-6-hydroxynorbornene-2-carboxy Examples include ric-6-lactone, 3-acryloxypropyltriethoxysilane, and glycidyl acrylate
- Methacrylic acid ester compounds include methyl methacrylate, ethyl methacrylate, normal hexyl methacrylate, isopropyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, phenyl methacrylate, anthryl methyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2,2, 2-trifluoroethyl methacrylate, 2,2,2-trichloroethyl methacrylate, 2-bromoethyl methacrylate, 4-hydroxybutyl methacrylate, 2-methoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 2-methyl-2-adamantyl methacrylate, 5 -Methacryloyloxy-6-hydroxynorbornene-2-carboxylic Examples include -6-lactone, 3-methacryloxypropyltriethoxysilane,
- Examples of acrylamide compounds include acrylamide, N-methyl acrylamide, N-ethyl acrylamide, N-benzyl acrylamide, N-phenyl acrylamide, N, N-dimethyl acrylamide and N-anthryl acrylamide.
- Examples of methacrylamide compounds include methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, N-benzyl methacrylamide, N-phenyl methacrylamide, N, N-dimethyl methacrylamide and N-anthryl acrylamide.
- vinyl compounds include vinyl alcohol, 2-hydroxyethyl vinyl ether, methyl vinyl ether, ethyl vinyl ether, benzyl vinyl ether, vinyl acetic acid, vinyl trimethoxysilane, 2-chloroethyl vinyl ether, 2-methoxyethyl vinyl ether, vinyl naphthalene, and vinyl anthracene. Can be mentioned.
- styrene compound examples include styrene, hydroxystyrene, chlorostyrene, bromostyrene, methoxystyrene, cyanostyrene, and acetylstyrene.
- maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide and N-hydroxyethylmaleimide.
- examples of such a polymer include a polycondensation polymer of a glycol compound and a dicarboxylic acid compound.
- examples of the glycol compound include diethylene glycol, hexamethylene glycol, butylene glycol and the like.
- examples of the dicarboxylic acid compound include succinic acid, adipic acid, terephthalic acid, maleic anhydride and the like.
- examples thereof include polyesters such as polypyromellitimide, poly (p-phenylene terephthalamide), polybutylene terephthalate, polyethylene terephthalate, polyamide, and polyimide.
- the organic polymer compound contains a hydroxyl group
- this hydroxyl group can form a crosslinking reaction with the polyorganosiloxane.
- a polymer compound having a weight average molecular weight of, for example, 1,000 to 1,000,000, 3,000 to 300,000, 5,000 to 200,000, or 10,000 to 100,000 can be used. Only one organic polymer compound can be used, or two or more organic polymer compounds can be used in combination.
- the proportion thereof is 1 to 200 parts by mass, 5 to 100 parts by mass, or 10 to 50 parts by mass, or 20 with respect to 100 parts by mass of the condensate (polyorganosiloxane). Thru
- the resist underlayer film forming composition of the present invention may contain an acid generator.
- the acid generator include a thermal acid generator and a photoacid generator.
- the photoacid generator generates an acid upon exposure of the resist. Therefore, the acidity of the lower layer film can be adjusted. This is a method for matching the acidity of the lower layer film with the acidity of the upper layer resist. Further, the pattern shape of the resist formed in the upper layer can be adjusted by adjusting the acidity of the lower layer film.
- Examples of the photoacid generator contained in the resist underlayer film forming composition of the present invention include onium salt compounds, sulfonimide compounds, and disulfonyldiazomethane compounds.
- onium salt compounds include diphenyliodonium hexafluorophosphate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoronormalbutanesulfonate, diphenyliodonium perfluoronormaloctanesulfonate, diphenyliodonium camphorsulfonate, bis (4-tert-butylphenyl) iodonium camphor.
- Iodonium salt compounds such as sulfonate and bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, and triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluoronormal butanesulfonate, triphenylsulfonium camphorsulfonate, and triphenyls Sulfonium salt compounds such as phosphonium trifluoromethanesulfonate, and the like.
- sulfonimide compounds include N- (trifluoromethanesulfonyloxy) succinimide, N- (nonafluoronormalbutanesulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide and N- (trifluoromethanesulfonyloxy) naphthalimide. Can be mentioned.
- disulfonyldiazomethane compound examples include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, and bis (2,4-dimethylbenzenesulfonyl). And diazomethane, and methylsulfonyl-p-toluenesulfonyldiazomethane.
- photoacid generator Only one type of photoacid generator can be used, or two or more types can be used in combination.
- the proportion thereof is 0.01 to 5 parts by mass, 0.1 to 3 parts by mass, or 0.5 with respect to 100 parts by mass of the condensate (polyorganosiloxane). Thru
- the surfactant is effective in suppressing the occurrence of pinholes and installations when the resist underlayer film forming composition for lithography of the present invention is applied to a substrate.
- the surfactant contained in the resist underlayer film forming composition of the present invention include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether.
- surfactants may be used alone or in combination of two or more.
- the ratio is 0.0001 to 5 parts by mass, or 0.001 to 1 part by mass, or 0.01 to 0 with respect to 100 parts by mass of the condensate (polyorganosiloxane). .5 parts by mass.
- a rheology adjusting agent, an adhesion aid and the like can be added to the resist underlayer film forming composition of the present invention.
- the rheology modifier is effective for improving the fluidity of the underlayer film forming composition.
- the adhesion aid is effective for improving the adhesion between the semiconductor substrate or resist and the lower layer film.
- the solvent used in the resist underlayer film forming composition of the present invention can be used without particular limitation as long as it is a solvent that can dissolve the solid content.
- solvents include methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, methyl isobutyl carbinol, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol mono Ether ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate , Ethyl
- a resist underlayer film is formed on a substrate by a coating method, or a resist underlayer film is formed thereon by an organic underlayer film on a substrate.
- a resist film for example, a photoresist or an electron beam resist
- a resist pattern is formed by exposure and development, and the resist underlayer film is dry-etched using the resist pattern to transfer the pattern, and the substrate is processed by the pattern, or the organic underlayer film is etched by pattern transfer. Then, the substrate is processed with the organic underlayer film.
- the resist film thickness tends to be thin to prevent pattern collapse.
- dry etching for transferring a pattern to a film existing in a lower layer by reducing the thickness of the resist, the pattern cannot be transferred unless the etching rate is higher than that of the upper layer.
- the organic component film and the inorganic component film have different dry etching rates depending on the etching gas selected.
- the organic component film has an oxygen-based gas and the dry etching rate increases.
- the inorganic component film has a halogen content. The dry etching rate increases with the contained gas.
- a resist pattern is formed, and the resist underlayer film formed from the composition of the present invention present in the lower layer is dry-etched with a halogen-containing gas to transfer the pattern to the resist underlayer film, and the resist underlayer film
- Substrate processing is performed using a halogen-containing gas with the pattern transferred to the substrate.
- the organic underlayer film under the layer is dry-etched with an oxygen-based gas to transfer the pattern to the organic underlayer film, and the pattern-transferred organic underlayer film is halogen-containing. Substrate processing is performed using gas.
- the resist underlayer film forming composition of the present invention is applied by an appropriate application method such as a spinner or a coater, and then baked to form a resist underlayer film.
- the conditions for firing are appropriately selected from firing temperatures of 80 ° C. to 250 ° C. and firing times of 0.3 to 60 minutes.
- the firing temperature is 150 ° C. to 250 ° C.
- the firing time is 0.5 to 2 minutes.
- the thickness of the formed lower layer film is, for example, 10 to 1000 nm, 20 to 500 nm, 50 to 300 nm, or 100 to 200 nm.
- a photoresist layer is formed on the resist underlayer film. Formation of the photoresist layer can be performed by a well-known method, that is, by applying a photoresist composition solution onto the lower layer film and baking.
- the film thickness of the photoresist is, for example, 50 to 10,000 nm, 100 to 2000 nm, or 200 to 1000 nm.
- a resist underlayer film can be formed thereon with the composition of the present invention, and a photoresist can be further coated thereon.
- the substrate can be processed by selecting an appropriate etching gas.
- the organic underlayer film can be processed using an oxygen-based gas as an etching gas, and the substrate can be processed using a fluorine-based gas that provides a sufficiently high etching rate for the organic underlayer film as an etching gas.
- the photoresist formed on the resist underlayer film of the present invention is not particularly limited as long as it is sensitive to light used for exposure. Either a negative photoresist or a positive photoresist can be used.
- a positive photoresist comprising a novolac resin and 1,2-naphthoquinonediazide sulfonic acid ester, a chemically amplified photoresist comprising a binder having a group that decomposes with an acid to increase the alkali dissolution rate and a photoacid generator, an acid
- a chemically amplified photoresist comprising a low-molecular compound that decomposes to increase the alkali dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, and a binder having a group that decomposes with an acid to increase the alkali dissolution rate
- a chemically amplified photoresist composed of a low molecular weight compound that de
- Examples include trade name APEX-E manufactured by Shipley, trade name PAR710 manufactured by Sumitomo Chemical Co., Ltd., and trade name SEPR430 manufactured by Shin-Etsu Chemical Co., Ltd. Also, for example, Proc. SPIE, Vol. 3999, 330-334 (2000), Proc. SPIE, Vol. 3999, 357-364 (2000), Proc. SPIE, Vol. 3999, 365-374 (2000), and fluorine-containing polymer-based photoresists.
- a KrF excimer laser (wavelength 248 nm), an ArF excimer laser (wavelength 193 nm), an F2 excimer laser (wavelength 157 nm), or the like can be used.
- post-exposure bake can be performed as necessary.
- the post-exposure heating is performed under conditions appropriately selected from a heating temperature of 70 ° C. to 150 ° C. and a heating time of 0.3 to 10 minutes.
- a resist for electron beam lithography or a resist for EUV lithography can be used instead of a photoresist as a resist.
- the electron beam resist either a negative type or a positive type can be used.
- Chemically amplified resist comprising a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, a low molecular weight compound that decomposes with an alkali-soluble binder, an acid generator and an acid to change the alkali dissolution rate of the resist
- a chemically amplified resist comprising: a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate; and a chemically amplified resist comprising a low-molecular compound that decomposes with an acid to change the alkali dissolution rate of the resist,
- non-chemically amplified resists composed of a binder having a group that changes the alkali dissolution rate by being
- a developer for example, an alkali developer.
- a developer for example, an alkali developer.
- Developers include aqueous solutions of alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline, ethanolamine, propylamine, An alkaline aqueous solution such as an aqueous amine solution such as ethylenediamine can be mentioned as an example. Further, a surfactant or the like can be added to these developers.
- the development conditions are appropriately selected from a temperature of 5 to 50 ° C. and a time of 10 to 600 seconds.
- an organic solvent can be used as a developer. After the exposure, development is performed with a developer (solvent). As a result, for example, when a positive photoresist is used, the unexposed portion of the photoresist is removed, and a photoresist pattern is formed.
- Developers include, for example, methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, isoamyl acetate, ethyl methoxyacetate, ethyl ethoxy acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl Ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monophenyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monopropyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monophenyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol No ethyl ether acetate, 2-methoxybutyl acetate, 3-methoxybutyl acetate
- the resist underlayer film (intermediate layer) of the present invention is removed using the photoresist (upper layer) pattern thus formed as a protective film, and then the patterned photoresist and the resist underlayer film of the present invention are removed.
- the organic underlayer film (lower layer) is removed using the film made of (intermediate layer) as a protective film.
- the semiconductor substrate is processed using the patterned resist underlayer film (intermediate layer) and organic underlayer film (lower layer) of the present invention as a protective film.
- the resist underlayer film (intermediate layer) of the present invention in a portion where the photoresist has been removed is removed by dry etching to expose the semiconductor substrate.
- dry etching of the resist underlayer film of the present invention tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, carbon monoxide, argon, oxygen, Gases such as nitrogen, sulfur hexafluoride, difluoromethane, nitrogen trifluoride and chlorine trifluoride, chlorine, trichloroborane and dichloroborane can be used.
- a halogen-based gas for dry etching of the resist underlayer film.
- a photoresist made of an organic substance is basically difficult to remove.
- the resist underlayer film of the present invention containing a large amount of silicon atoms is quickly removed by the halogen-based gas. Therefore, it is possible to suppress a decrease in the thickness of the photoresist accompanying dry etching of the resist underlayer film. As a result, the photoresist can be used as a thin film.
- the dry etching of the resist underlayer film is preferably performed using a fluorine-based gas.
- fluorine-based gas examples include tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), and perfluoropropane (C 3 F 8 ). , Trifluoromethane, and difluoromethane (CH 2 F 2 ).
- the organic underlayer film is removed using the patterned photoresist and the film made of the resist underlayer film of the present invention as a protective film.
- the organic underlayer film (underlayer) is preferably formed by dry etching with an oxygen-based gas. This is because the resist underlayer film of the present invention containing a large amount of silicon atoms is difficult to remove by dry etching with an oxygen-based gas.
- the semiconductor substrate is processed. The processing of the semiconductor substrate is preferably performed by dry etching with a fluorine-based gas.
- fluorine-based gas examples include tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, and difluoromethane (CH 2 F 2 ). Can be mentioned.
- an organic antireflection film can be formed on the resist underlayer film of the present invention before the formation of the photoresist.
- the antireflective coating composition used there is not particularly limited, and can be arbitrarily selected from those conventionally used in the lithography process, and can be used by a conventional method such as a spinner.
- the antireflection film can be formed by coating and baking with a coater.
- the substrate to which the resist underlayer film forming composition of the present invention is applied may have an organic or inorganic antireflection film formed on its surface by a CVD method or the like.
- the underlayer film of the invention can also be formed.
- the resist underlayer film formed from the resist underlayer film forming composition of the present invention may also absorb light depending on the wavelength of light used in the lithography process. In such a case, it can function as an antireflection film having an effect of preventing reflected light from the substrate. Further, the underlayer film of the present invention has a function for preventing an adverse effect on a substrate of a layer for preventing an interaction between the substrate and the photoresist, a material used for the photoresist or a substance generated upon exposure to the photoresist.
- a layer having a function of preventing diffusion of a substance generated from a substrate upon heating and baking into an upper layer photoresist It is also possible.
- the resist underlayer film formed from the resist underlayer film forming composition is applied to a substrate on which via holes used in the dual damascene process are formed, and can be used as a filling material that can fill the holes without gaps. Moreover, it can also be used as a planarizing material for planarizing the surface of an uneven semiconductor substrate.
- the lower layer film of the EUV resist can be used for the following purposes. Without intermixing with the EUV resist, it is possible to prevent reflection of unwanted exposure light such as UV and DUV (ArF light, KrF light) from the substrate or interface during EUV exposure (wavelength 13.5 nm).
- the resist underlayer film forming composition can be used as a resist underlayer antireflection film. Reflection can be efficiently prevented in the lower layer of the EUV resist.
- the process can be performed in the same manner as the photoresist underlayer film.
- the flask was transferred to an oil bath and allowed to react for 240 minutes under heating and refluxing, after which the reaction solution was cooled to room temperature and reacted.
- 21 g of propylene glycol monomethyl ether acetate was added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products were distilled off under reduced pressure and concentrated to obtain a hydrolyzed condensate (polymer) propylene glycol monomethyl ether acetate solution.
- Monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted so as to be 15 weight percent in terms of solid residue at 140 ° C.
- the obtained polymer had the formula (5 -1), and the weight average molecular weight by GPC was Mw 1600 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the obtained polymer corresponded to Formula (5-2), and the weight average molecular weight by GPC was Mw 1600 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the obtained polymer corresponded to Formula (5-3), and the weight average molecular weight by GPC was Mw 1600 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the obtained polymer corresponded to Formula (5-4), and the weight average molecular weight by GPC was Mw 1600 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the obtained polymer corresponded to Formula (5-5), and the weight average molecular weight by GPC was Mw 1600 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the obtained polymer corresponded to Formula (5-6), and the weight average molecular weight by GPC was Mw 1600 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the obtained polymer corresponded to Formula (5-7), and the weight average molecular weight by GPC was Mw 1600 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the obtained polymer corresponded to Formula (5-9), and the weight average molecular weight by GPC was Mw 1600 in terms of polystyrene.
- reaction solution was cooled to room temperature, and 21 g of propylene glycol monomethyl ether acetate was added to the reaction solution.
- Ethanol, water and hydrochloric acid which are living organisms, were distilled off under reduced pressure and concentrated to obtain a hydrolyzed condensate (polymer) propylene glycol monomethyl ether acetate solution.
- the solvent ratio of monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the polymer obtained corresponds to the formula (5-10), and the weight average molecular weight by GPC is polystyrene. It was Mw 1600 in conversion.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the weight average molecular weight by GPC of the obtained polymer formula (5-12) was Mw 1600 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the weight average molecular weight by GPC of the obtained polymer formula (5-13) was Mw 1600 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the weight average molecular weight by GPC of the obtained polymer formula (E-1) was Mw 1600 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the weight average molecular weight of the obtained polymer formula (E-3) by GPC was Mw 1000 in terms of polystyrene.
- the flask was transferred to an oil bath adjusted to 85 ° C. and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 21 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) propylene glycol. A monomethyl ether acetate solution was obtained.
- Propylene glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the weight average molecular weight by GPC of the obtained polymer formula (E-4) was Mw1000 in terms of polystyrene.
- the flask was transferred to an oil bath and reacted for 240 minutes under heating and reflux, after which the reaction solution was cooled to room temperature. Then, 21 g of propylene glycol monomethyl ether acetate was added to the reaction solution, and ethanol, water and hydrochloric acid as reaction by-products were distilled off under reduced pressure and concentrated to obtain a hydrolyzed condensate (polymer) propylene glycol monomethyl ether acetate solution. Glycol monoethyl ether was added, and the solvent ratio of propylene glycol monomethyl ether acetate / propylene glycol monoethyl ether 20/80 was adjusted to 15 weight percent in terms of solid residue at 140 ° C.
- the polymer formula (E The weight average molecular weight by GPC in -5) was Mw 900 in terms of polystyrene.
- maleic acid is MA
- (3-triethoxysilylpropyl) -4,5-dihydroimidazole is IMIDTEOS
- triphenylsulfonium trifluoromethanesulfonate is TPS105
- monotriphenylsulfonium maleate is TPSMA
- Phenylsulfonium camphorsulfonate is abbreviated as TPSCS
- (5- (triethoxysilyl) norbornene-2,3-dicarboxylic acid anhydride as NorAnTEOS
- PGMEA propylene glycol monomethyl ether acetate
- PGEE propylene glycol monoethyl ether
- Pure water was used, and each addition amount is shown in parts by mass. The addition amount of the polymer is not the mass of the polymer solution but the mass of the polymer.
- Si-containing resist underlayer film forming compositions prepared in Examples 1 to 22 and Comparative Examples 1 to 4 were applied onto a silicon wafer using a spinner.
- a Si-containing resist underlayer film (thickness 0.05 ⁇ m) was formed by heating on a hot plate at 200 ° C. for 1 minute. Then, these resist underlayer films were subjected to a spectroscopic ellipsometer (manufactured by JA Woollam, VUV-VASEVU-302), and a refractive index (n value) and an optical absorption coefficient (k value and attenuation coefficient) at a wavelength of 193 nm. Measured).
- Si-containing resist underlayer film film thickness 0.08 ⁇ m (for etching rate measurement with CF 4 gas), 0.05 ⁇ m (for etching rate measurement with O 2 gas)
- the organic underlayer film forming composition was formed on a silicon wafer using a spinner (film thickness 0.20 ⁇ m), and the dry etching rate was measured using O 2 gas as an etching gas. Then, the dry etching rates of the Si-containing resist underlayer films of Examples 1 to 22 and Comparative Examples 1 to 4 were compared.
- the mixture is filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m, and further filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m, so that the organic resist underlayer film forming composition used in the lithography process using a multilayer film is formed.
- a solution was prepared.
- the organic underlayer film (A layer) forming composition obtained above was applied onto a silicon wafer and baked on a hot plate at 240 ° C. for 60 seconds to obtain an organic underlayer film (A layer) having a thickness of 200 nm.
- the Si-containing resist underlayer film (B layer) forming composition obtained in Examples 1 to 11, 14 to 22 and Comparative Examples 1 to 4 was applied and baked on a hot plate at 240 ° C. for 60 seconds.
- a Si-containing resist underlayer film (B layer) was obtained.
- the film thickness of the Si-containing resist underlayer film (B layer) was 35 nm.
- a commercially available photoresist solution (trade name FAiRS-9521NT05, manufactured by FUJIFILM Corporation) was applied onto the B layer with a spinner and heated on a hot plate at 100 ° C. for 1 minute to form a 85 nm thick photoresist.
- a film (C layer) was formed.
- Tables 5 and 6 show the results of observing the bottom shape of the resist after lithography evaluation.
- the organic underlayer film (A layer) forming composition obtained above was applied onto a silicon wafer and baked on a hot plate at 240 ° C. for 60 seconds to obtain an organic underlayer film (A layer) having a thickness of 200 nm.
- the Si-containing resist underlayer film (B layer) forming composition obtained in Examples 12 to 13 and Comparative Examples 1 to 4 was applied and baked on a hot plate at 240 ° C. for 60 seconds.
- a lower layer film (B layer) was obtained.
- the film thickness of the Si-containing resist underlayer film (B layer) was 35 nm.
- a commercially available photoresist solution (trade name: AR2772 manufactured by JSR Corporation) was applied onto the B layer with a spinner and baked on a hot plate at 110 ° C. for 60 seconds to form a 120 nm-thick photoresist film (C Layer).
- Patterning of the resist was performed using an ArF exposure machine S-307E (wavelength: 193 nm, NA, ⁇ : 0.85, 0.93 / 0.85 (Dipole) immersion liquid: water) manufactured by NIKON.
- the target was exposed through a mask set so as to form a so-called line and space (dense line) in which the line width of the photoresist and the width between the lines were 0.065 ⁇ m after development.
- the substrate was baked on a hot plate at 110 ° C. for 60 seconds, cooled, and developed with an aqueous tetramethylammonium hydroxide solution (developer) having a concentration of 2.38% by mass in a single paddle process for 60 seconds.
- developer aqueous tetramethylammonium hydroxide solution
- the obtained photoresist pattern was evaluated as good if it did not cause large pattern peeling, undercut, or thickening (footing) of the bottom of the line.
- Table 7 shows the result of observing the bottom shape of the resist after lithography evaluation.
- a resist underlayer film forming composition for lithography that can be used in the manufacture of semiconductor devices.
- a resist underlayer film forming composition for lithography for forming a resist underlayer film that can be used as a hard mask.
- the resist underlayer film forming composition for lithography for forming the resist underlayer film which can be used as an antireflection film is provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials For Photolithography (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Silicon Polymers (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
Description
ところが、近年、半導体デバイスの高集積度化が進み、使用される活性光線もKrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化される傾向にある。これに伴い活性光線の半導体基板からの反射の影響が大きな問題となってきた。
また、半導体基板とフォトレジストとの間の下層膜として、シリコンやチタン等の金属元素を含むハードマスクとして知られる膜を使用することが行なわれている。この場合、レジストとハードマスクでは、その構成成分に大きな違いが有るため、それらのドライエッチングによって除去される速度は、ドライエッチングに使用されるガス種に大きく依存する。従って、ガス種を適切に選択することにより、フォトレジストの膜厚の大きな減少を伴うことなく、ハードマスクをドライエッチングによって除去することが可能となる。
このように、近年の半導体装置の製造においては、反射防止効果を初め、さまざまな効果を達成するために、半導体基板とフォトレジストの間にレジスト下層膜が配置されるようになってきている。そして、これまでもレジスト下層膜用の組成物の検討が行なわれてきているが、その要求される特性の多様性などから、レジスト下層膜用の新たな材料の開発が望まれている。
〔式中、R1は式(1-1)、式(1-2)、式(1-3)、式(1-4)、又は式(1-5):
(式(1-1)、式(1-2)、式(1-3)、式(1-4)、及び式(1-5)中、T1、T4及びT7はそれぞれアルキレン基、環状アルキレン基、アルケニレン基、アリーレン基、イオウ原子、酸素原子、オキシカルボニル基、アミド基、2級アミノ基、又はそれらの組み合わせであり、T2はアルキル基であり、T3及びT5はそれぞれ脂肪族環、又は芳香族環であり、T6及びT8はそれぞれラクトン環である。nは1又は2の整数を示す。)で示される基を含む一価の有機基であり、且つSi-C結合によりケイ素原子と結合しているものである。R2はアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルケニル基、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、もしくはシアノ基を有する有機基であり、且つSi-C結合によりケイ素原子と結合しているものである。R3はアルコキシ基、アシルオキシ基、又はハロゲン基である。aは1の整数を示し、bは0又は1の整数を示し、a+bは1又は2の整数を示す。〕、
〔式中、R4は式(2-1)、式(2-2)、又は式(2-3):
で示される基を含む一価の有機基であり、且つSi-C結合によりケイ素原子と結合しているものである。R5はアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルケニル基、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、もしくはシアノ基を有する有機基であり、且つSi-C結合によりケイ素原子と結合しているものである。R6はアルコキシ基、アシルオキシ基、又はハロゲン基である。a1は1の整数を示し、b1は0又は1の整数を示し、a1+b1は1又は2の整数を示す。〕、
第2観点として、式(1)で示される加水分解性シラン、又は式(1)で示される加水分解性シランと式(2)で示される加水分解性シランの組み合わせからなる加水分解性シランは、全シランの5乃至45モル%である第1観点に記載のレジスト下層膜形成組成物、
第3観点として、式(2)で示される加水分解性シランは、R4が式(2-1)で示される基を含む有機基である加水分解性シラン、R4が式(2-2)で示される基を含む有機基である加水分解性シラン、R4が式(2-3)で示される基を含む有機基である加水分解性シラン、又はそれらの混合物である第1観点又は第2観点に記載のレジスト下層膜形成組成物、
第4観点として、式(1)で示される加水分解性シランと式(2)で示される加水分解性シランの組み合わせからなる加水分解性シランは、式(1)で示される加水分解性シランと式(2)で示される加水分解性シランをモル比で1:0.01乃至10の割合で含有する第1観点乃至第3観点のいずれか一つに記載のレジスト下層膜形成組成物、
第5観点として、加水分解性シランが、式(1)で示される加水分解性シラン、又は式(1)で示される加水分解性シランと式(2)で示される加水分解性シランの組み合わせからなる加水分解性シランと、その他の加水分解性シランとを含み、その他の加水分解性シランが式(3):
(式中、R7はアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルケニル基、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、もしくはシアノ基を有する有機基であり、且つSi-C結合によりケイ素原子と結合しているものであり、R8はアルコキシ基、アシルオキシ基、又はハロゲン基を示し、a2は0乃至3の整数を示す。)で示される化合物、及び式(4):
(式中、R9はアルキル基で且つSi-C結合によりケイ素原子と結合しているものであり、R10はアルコキシ基、アシルオキシ基、又はハロゲン基を示し、Yはアルキレン基又はアリーレン基を示し、b2は0又は1の整数を示し、cは0又は1の整数である。)で示される化合物からなる群より選ばれた少なくとも1種の有機ケイ素化合物である第1観点乃至第4観点のいずれか一つに記載のリソグラフィー用レジスト下層膜形成組成物、
第6観点として、第1観点乃至第4観点のいずれか一つに記載の式(1)で示される加水分解性シランと、第1観点乃至第4観点のいずれか一つに記載の式(2)で示される加水分解性シランと、第5観点に記載の式(3)で示される加水分解性シランとの加水分解物をポリマーとして含むレジスト下層膜形成組成物、
第7観点として、更に加水分解触媒として酸を含む第1観点乃至第6観点のいずれか一つに記載のレジスト下層膜形成組成物、
第8観点として、更に水を含む第1観点乃至第7観点のいずれか一つに記載レジスト下層膜形成組成物、
第9観点として、第1観点乃至第8観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜、
第10観点として、第1観点乃至第8観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し、焼成しレジスト下層膜を形成する工程、前記下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後にレジストを現像しレジストパターンを得る工程、レジストパターンによりレジスト下層膜をエッチングする工程、及びパターン化されたレジストとレジスト下層膜により半導体基板を加工する工程を含む半導体装置の製造方法、及び
第11観点として、半導体基板上に有機下層膜を形成する工程、その上に第1観点乃至第8観点のいずれか一つに記載のレジスト下層膜形成組成物を塗布し焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後にレジストを現像しレジストパターンを得る工程、レジストパターンによりレジスト下層膜をエッチングする工程、パターン化されたレジスト下層膜により有機下層膜をエッチングする工程、及びパターン化された有機下層膜により半導体基板を加工する工程を含む半導体装置の製造方法である。
また、ポリオルガノシロキサン構造に含まれるこれらの結合部位は炭素-窒素結合や、炭素-酸素結合を有していて、炭素-炭素結合よりもハロゲン系ガスによるドライエッチング速度が高いので、上層レジストパターンをこのレジスト下層膜に転写する際に有効である。
固形分中に占める加水分解性シラン、その加水分解物、及びその加水分解縮合物の割合は、20質量%以上であり、例えば50乃至100質量%、60乃至100質量%、70乃至100質量%である。
また、式(1)で示される加水分解性シラン、又は式(1)で示される加水分解性シランと式(2)で示される加水分解性シランの組み合わせからなる加水分解性シランの加水分解物を含まない加水分解縮合物(ポリシロキサン)に、式(1)で示される加水分解性シラン、又は式(1)で示される加水分解性シランと式(2)で示される加水分解性シランの組み合わせからなる加水分解シランを添加することができる。
式(1)で示される加水分解性シランは、式(1-1)で示される基を含む有機基を含む加水分解性シラン、式(1-2)で示される基を含む有機基を含む加水分解性シラン、式(1-3)で示される基を含む有機基を含む加水分解性シラン、式(1-4)で示される基を含む有機基を含む加水分解性シラン、式(1-5)で示される基を含む有機基を含む加水分解性シラン、又はそれらの混合物である場合がある。
T6及びT8が示すラクトン環は一つのカルボニル基の炭素原子と、一つのエステルの酸素原子が環上に存在するものである。
式(2)で示される加水分解性シランは、式(2-1)で示される基を含む有機基を含む加水分解性シラン、式(2-2)で示される基を含む有機基を含む加水分解性シラン、式(2-3)で示される基を含む有機基を含む加水分解性シラン、又はそれらの混合物である場合がある。
また環状アルキル基を用いることもでき、例えば炭素原子数1乃至10の環状アルキル基としては、シクロプロピル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
アルキレン基は上記アルキル基に由来するアルキレン基を挙げることができる。例えばメチル基であればメチレン基、エチル基であればエチレン基、プロピル基であればプロピレン基が挙げられる。
アリール基としては炭素数6乃至20のアリール基が挙げられ、例えばフェニル基、o-メチルフェニル基、m-メチルフェニル基、p-メチルフェニル基、o-クロルフェニル基、m-クロルフェニル基、p-クロルフェニル基、o-フルオロフェニル基、p-メルカプトフェニル基、o-メトキシフェニル基、p-メトキシフェニル基、p-アミノフェニル基、p-シアノフェニル基、α-ナフチル基、β-ナフチル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基及び9-フェナントリル基が挙げられる。
アリーレン基としては上記アリール基に由来するアリーレン基が挙げられる。
またこれらのフッ素、塩素、臭素、又はヨウ素等のハロゲン原子が置換した有機基が挙げられる。
アクリロイル基を有する有機基としては、アクリロイルメチル、アクリロイルエチル、アクリロイルプロピル等が挙げられる。
シアノ基を有する有機基としては、シアノエチル、シアノプロピル等が挙げられる。
GPCの測定条件は、例えばGPC装置(商品名HLC-8220GPC、東ソー株式会社製)、GPCカラム(商品名ShodexKF803L、KF802、KF801、昭和電工製)、カラム温度は40℃、溶離液(溶出溶媒)はテトラヒドロフラン、流量(流速)は1.0ml/min、標準試料はポリスチレン(昭和電工株式会社製)を用いて行うことができる。
また、加水分解性基の1モル当たり0.001乃至10モル、好ましくは0.001乃至1モルの加水分解触媒を用いることができる。
加水分解触媒としては、金属キレート化合物、有機酸、無機酸、有機塩基、無機塩基を挙げることができる。
加水分解触媒としての無機酸は、例えば塩酸、硝酸、硫酸、フッ酸、リン酸等を挙げることができる。
また、添加剤としてビスフェノールS、又はビスフェノールS誘導体を添加することができる。ビスフェノールS、又はビスフェノールS誘導体はポリオルガノシロキサン100質量部に対して、0.01乃至20質量部、または0.01乃至10質量部、または0.01乃至5質量部である。
アンモニウム塩としては、式(D-1):
(但し、m1は2乃至11、n1は2乃至3の整数を、R21はアルキル基又はアリール基を、Y1 -は陰イオンを示す。)で示される構造を有する第4級アンモニウム塩、式(D-2):
(但し、R22、R23、R24及びR25はアルキル基又はアリール基を、Nは窒素原子を、Y1 -は陰イオンを示し、且つR22、R23、R24、及びR25はそれぞれC-N結合により窒素原子と結合されているものである)で示される構造を有する第4級アンモニウム塩、
式(D-3):
(但し、R26及びR27はアルキル基又はアリール基を、Y1 -は陰イオンを示す)で示される構造を有する第4級アンモニウム塩、
式(D-4):
(但し、R28はアルキル基又はアリール基を、Y1 -は陰イオンを示す)で示される構造を有する第4級アンモニウム塩、
式(D-5):
(但し、R29及びR30はアルキル基又はアリール基を、Y1 -は陰イオンを示す)で示される構造を有する第4級アンモニウム塩、
式(D-6):
(但し、m2は2乃至11、n2は2乃至3の整数を、Hは水素原子を、Y1 -は陰イオンを示す)で示される構造を有する第3級アンモニウム塩が上げられる。
(但し、R11、R12、R13、及びR14はアルキル基又はアリール基を、Pはリン原子を、Y1 -は陰イオンを示し、且つR11、R12、R13、及びR14はそれぞれC-P結合によりリン原子と結合されているものである)で示される第4級ホスホニウム塩が上げられる。
(但し、R15、R16、及びR17はアルキル基又はアリール基を、Sは硫黄原子を、Y1 -は陰イオンを示し、且つR15、R16、及びR17はそれぞれC-S結合により硫黄原子と結合されているものである)で示される第3級スルホニウム塩が上げられる。
本発明のリソグラフィー用下層膜形成組成物は、上記の成分の他、必要に応じて有機ポリマー化合物、光酸発生剤及び界面活性剤等を含むことができる。
メタクリルアミド化合物としては、メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、N-ベンジルメタクリルアミド、N-フェニルメタクリルアミド、N,N-ジメチルメタクリルアミド及びN-アントリルアクリルアミド等が挙げられる。
有機ポリマー化合物としては、重量平均分子量が、例えば1000乃至1000000であり、または3000乃至300000であり、または5000乃至200000であり、または10000乃至100000であるポリマー化合物を使用することができる。
有機ポリマー化合物は一種のみを使用することができ、または二種以上を組み合わせて使用することができる。
酸発生剤としては、熱酸発生剤や光酸発生剤が挙げられる。
本発明のレジスト下層膜形成組成物に含まれる界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフエノールエーテル、ポリオキシエチレンノニルフエノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロツクコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、商品名エフトップEF301、EF303、EF352((株)トーケムプロダクツ製)、商品名メガファックF171、F173、R-08、R-30(大日本インキ化学工業(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、商品名アサヒガードAG710,サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマ-KP341(信越化学工業(株)製)等を挙げることができる。これらの界面活性剤は単独で使用してもよいし、また二種以上の組み合わせで使用することもできる。界面活性剤が使用される場合、その割合としては、縮合物(ポリオルガノシロキサン)100質量部に対して0.0001乃至5質量部、または0.001乃至1質量部、または0.01乃至0.5質量部である。
また、EUVレジストとしてはメタクリレート樹脂系レジストを用いることができる。
最後に、半導体基板の加工が行なわれる。半導体基板の加工はフッ素系ガスによるドライエッチングによって行なわれることが好ましい。
また、EUVレジストの下層膜としてはハードマスクとしての機能以外に以下の目的にも使用できる。EUVレジストとインターミキシングすることなく、EUV露光(波長13.5nm)に際して好ましくない露光光、例えば上述のUVやDUV(ArF光、KrF光)の基板又は界面からの反射を防止することができるEUVレジストの下層反射防止膜として、上記レジスト下層膜形成組成物を用いることができる。EUVレジストの下層で効率的に反射を防止することができる。EUVレジスト下層膜として用いた場合は、プロセスはフォトレジスト用下層膜と同様に行うことができる。
マグネチックスターラーを付けた200mlの4つ口フラスコに、15.00gの5-ノルボルネン-2-カルボン酸メチル、3.76gのkarstedt‘s触媒(白金(0)-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の2質量%キシレン溶液)、112gのトルエンを入れ、17.81gのトリエトキシシランを10分かけて滴下した。室温にて5時間攪拌後、反応液を濃縮乾燥し、得られた粗生成物を減圧蒸留にて精製を行い、化合物1を得た。
DMSO-d6中の1H-NMR(500MHz):0.62~0.79ppm(m、1H)、1.12~1.79ppm(m、15H)、2.20~2.50ppm(m、3H)、3.57ppm(q、3H)、3.70~3.77ppm(m、6H)
マグネチックスターラーを付けた200mlの4つ口フラスコに、15.00gの3,3-ジメチル-4-ペンテン酸メチル、1.91gのkarstedt‘s触媒(白金(0)-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の2質量%キシレン溶液)、112gのトルエンを入れ、19.06gのトリエトキシシランを10分かけて滴下した。室温にて5時間攪拌後、反応液を濃縮乾燥し、得られた粗生成物を減圧蒸留にて精製を行い、化合物2を得た。
DMSO-d6中の1H-NMR(500MHz):0.50ppm(t、2H)、0.90ppm(s、6H)、1.15ppm(q、9H)、1.31ppm(quint、2H)、2.22ppm(s、2H)、3.56ppm(s、3H)、3.73ppm(q、6H)
マグネチックスターラーを付けた200mlの4つ口フラスコに、15.00gのアリルマロン酸ジエチル、1.91gのkarstedt‘s触媒(白金(0)-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の2質量%キシレン溶液)、112gのトルエンを入れ、13.54gのトリエトキシシランを10分かけて滴下した。室温にて5時間攪拌後、反応液を濃縮乾燥し、得られた粗生成物を減圧蒸留にて精製を行い、化合物3を得た。
DMSO-d6中の1H-NMR(500MHz):0.66ppm(t、2H)、1.15ppm(q、9H)、1.32ppm(quint、2H)、1.78ppm(q、2H)、3.47ppm(t、1H)、3.73ppm(t、6H)、4.11ppm(t、4H)
マグネチックスターラーを付けた200mlの4つ口フラスコに、8.01gのナトリウム-tert-ブトキシドと100gのTHF(テトラヒドロフラン)を入れ、反応容器内温を17℃以下に保持しながら18.03gのマロン酸ジイソプロピルを滴下した。滴下終了後、反応容器に10.09gのアリルブロミドを加え、そのまま攪拌を行った。反応溶液を水、tert-ブチルメチルエーテルで抽出し、減圧蒸留にて精製を行い、反応中間体であるアリルマロン酸ジイソプロピルを得た。
CDCl3中の1H-NMR(500MHz);1.20~1.27ppm(m、12H)、2.62ppm(t、2H)、3.34ppm(m、1H)、5.02~5.14ppm(m、4H)、5.77~5.92ppm(m、1H)
マグネチックスターラーを付けた200mlの4つ口フラスコに、10.00gのアリルマロン酸ジイソプロピル、1.91gのkarstedt‘s触媒(白金(0)-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の2質量%キシレン溶液)、75.00gのトルエンを入れ、7.92gのトリエトキシシランを10分かけて滴下した。室温にて5時間攪拌後、反応液を濃縮乾燥し、得られた粗生成物を減圧蒸留にて精製を行い、化合物4を得た。
DMSO-d6中の1H-NMR(500MHz):0.56ppm(t、2H)、1.11~1.18ppm(m、21H)、1.18ppm(quint、2H)、1.76ppm(q、2H)、3.34~3.39ppm(m、1H)、3.72ppm(q、6H)、4.90~4.95ppm(m、2H)
マグネチックスターラーを付けた200mlの4つ口フラスコに、8.01gのナトリウム-tert-ブトキシドと100gのTHF(テトラヒドロフラン)を入れ、反応容器内温を17℃以下に保持しながら18.03gのマロン酸ジ-tert-プロピルを滴下した。滴下終了後、反応容器に10.09gのアリルブロミドを加え、そのまま攪拌を行った。反応溶液を水、tert-ブチルメチルエーテルで抽出し、減圧蒸留にて精製を行い、反応中間体であるアリルマロン酸ジ-tert-ブチルを得た。
1H-NMR(500MHz)inCDCl3;1.48ppm(s、18H)、2.55ppm(t、2H)、3.18~3.24ppm(m、1H)、5.02~5.14ppm(m、2H)、5.79~5.92ppm(m、1H)
マグネチックスターラーを付けた200mlの4つ口フラスコに、10.00gのアリルマロン酸ジ-tert-ブチル、1.91gのkarstedt‘s触媒(白金(0)-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体の2質量%キシレン溶液)、75.00gのトルエンを入れ、7.05gのトリエトキシシランを10分かけて滴下した。室温にて5時間攪拌後、反応液を濃縮乾燥し、得られた粗生成物を減圧蒸留にて精製を行い、化合物5を得た。
1H-NMR(500MHz)inDMSO-d6:0.56ppm(t、2H)、1.13ppm(t、9H)、1.31~1.41ppm(m、20H)、1.69ppm(q、2H)、3.16~3.22ppm(m、1H)、3.73ppm(q、6H)
15.40g(全シラン中で75mol%)のテトラエトキシシラン、1.23g(全シラン中で7mol%)のメチルトリエトキシシラン、1.37g(全シラン中で7mol%)のフェニルトリメトキシシラン、1.72g(全シラン中で6mol%)のメチルスルホニルメチルフェニルトリメトキシシラン、1.62g(全シラン中で5mol%)の(5-(トリエトキシシリル)ノルボルネン-2,3-ジカルボン酸無水物、32.00gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.66gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-1)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.48g(全シラン中で75mol%)のテトラエトキシシラン、1.24g(全シラン中で7mol%)のメチルトリエトキシシラン、1.37g(全シラン中で7mol%)のフェニルトリメトキシシラン、1.73g(全シラン中で6mol%)のメチルスルホニルメチルフェニルトリメトキシシラン、1.51g(全シラン中で5mol%)の3-(トリエトキシシリル)プロピルコハク酸無水物、31.98gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.69gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-2)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.44g(全シラン中で75mol%)のテトラエトキシシラン、1.23g(全シラン中で7mol%)のメチルトリエトキシシラン、1.37g(全シラン中で7mol%)のフェニルトリメトキシシラン、1.72g(全シラン中で6mol%)のメチルスルホニルメチルフェニルトリメトキシシラン、1.56g(全シラン中で5mol%)の化合物1、31.99gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.68gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-3)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.47g(全シラン中で75mol%)のテトラエトキシシラン、1.24g(全シラン中で7mol%)のメチルトリエトキシシラン、1.37g(全シラン中で7mol%)のフェニルトリメトキシシラン、1.73g(全シラン中で6mol%)のメチルスルホニルメチルフェニルトリメトキシシラン、1.52g(全シラン中で5mol%)の化合物2、31.99gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.69gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-4)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.29g(全シラン中で75mol%)のテトラエトキシシラン、1.22g(全シラン中で7mol%)のメチルトリエトキシシラン、1.36g(全シラン中で7mol%)のフェニルトリメトキシシラン、1.70g(全シラン中で6mol%)のメチルスルホニルメチルフェニルトリメトキシシラン、1.78g(全シラン中で5mol%)の化合物3、32.03gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.61gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-5)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.20g(全シラン中で75mol%)のテトラエトキシシラン、1.21g(全シラン中で7mol%)のメチルトリエトキシシラン、1.35g(全シラン中で7mol%)のフェニルトリメトキシシラン、1.70g(全シラン中で6mol%)のメチルスルホニルメチルフェニルトリメトキシシラン、1.70g(全シラン中で5mol%)の化合物4、32.05gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.57gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-6)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.12g(全シラン中で75mol%)のテトラエトキシシラン、1.21g(全シラン中で7mol%)のメチルトリエトキシシラン、1.34g(全シラン中で7mol%)のフェニルトリメトキシシラン、1.69g(全シラン中で6mol%)のメチルスルホニルメチルフェニルトリメトキシシラン、2.03g(全シラン中で5mol%)の化合物5、32.08gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.53gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-7)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.66g(全シラン中で75mol%)のテトラエトキシシラン、1.88g(全シラン中で10.5mol%)のメチルトリエトキシシラン、1.69g(全シラン中で8.5mol%)のフェニルトリメトキシシラン、1.65g(全シラン中で5mol%)の(5-(トリエトキシシリル)ノルボルネン-2,3-ジカルボン酸無水物、0.41g(全シラン中で1mol%)の3-(トリエトキシシリルプロピル)ジアリルイソシアヌレート、31.94gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.77gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-8)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.37g(全シラン中で75mol%)のテトラエトキシシラン、1.84g(全シラン中で10.5mol%)のメチルトリエトキシシラン、1.66g(全シラン中で8.5mol%)のフェニルトリメトキシシラン、2.07g(全シラン中で5mol%)の化合物5、0.41g(全シラン中で1mol%)の3-(トリエトキシシリルプロピル)ジアリルイソシアヌレート、32.01gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.64gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-9)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.80g(全シラン中で75mol%)のテトラエトキシシラン、1.80g(全シラン中で10.0mol%)のメチルトリエトキシシラン、2.01g(全シラン中で10.0mol%)のフェニルトリメトキシシラン、1.66g(全シラン中で5mol%)の(5-(トリエトキシシリル)ノルボルネン-2,3-ジカルボン酸無水物、31.90gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.83gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-10)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.50g(全シラン中で75mol%)のテトラエトキシシラン、1.77g(全シラン中で10.0mol%)のメチルトリエトキシシラン、1.97g(全シラン中で10.0mol%)のフェニルトリメトキシシラン、2.09g(全シラン中で5mol%)の化合物5、31.98gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.70gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマーは式(5-11)に相当し、GPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.17g(全シラン中で75mol%)のテトラエトキシシラン、2.60g(全シラン中で15mol%)のメチルトリエトキシシラン、2.01g(全シラン中で5mol%)の3-(トリエトキシシリルプロピル)ジアリルイソシアヌレート、1.59g(全シラン中で5mol%)の5-(トリエトキシシリル)ノルボルネン-2,3-ジカルボン酸無水物、32.06gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.56gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマー式(5-12)のGPCによる重量平均分子量はポリスチレン換算でMw1600であった。
14.90g(全シラン中で75mol%)のテトラエトキシシラン、2.55g(全シラン中で15mol%)のメチルトリエトキシシラン、1.97g(全シラン中で5mol%)の3-(トリエトキシシリルプロピル)ジアリルイソシアヌレート、2.01g(全シラン中で5mol%)の化合物5、32.13gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.44gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマー式(5-13)のGPCによる重量平均分子量はポリスチレン換算でMw1600であった。
15.89g(全シラン中で75mol%)のテトラエトキシシラン、2.18g(全シラン中で12mol%)のメチルトリエトキシシラン、1.41g(全シラン中で7mol%)のフェニルトリメトキシシラン、1.77g(全シラン中で6mol%)のメチルスルホニルメチルフェニルトリメトキシシラン、31.88gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.88gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマー式(E-1)のGPCによる重量平均分子量はポリスチレン換算でMw1600であった。
4.30g(全シラン中で20mol%)のテトラエトキシシラン、3.68g(全シラン中で20mol%)のメチルトリエトキシシラン、10.24g(全シラン中で50mol%)のフェニルトリメトキシシラン、3.39g(全シラン中で10mol%)の(5-(トリエトキシシリル)ノルボルネン-2,3-ジカルボン酸無水物、32.43gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.96gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマー式(E-2)のGPCによる重量平均分子量はポリスチレン換算でMw800であった。
4.37g(全シラン中で20mol%)のテトラエトキシシラン、3.74g(全シラン中で20mol%)のメチルトリエトキシシラン、10.41g(全シラン中で50mol%)のフェニルトリメトキシシラン、3.05g(全シラン中で10mol%)のメチルスルホニルメチルフェニルトリメトキシシラン、32.37gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.05gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマー式(E-3)のGPCによる重量平均分子量はポリスチレン換算でMw1000であった。
4.15g(全シラン中で20mol%)のテトラエトキシシラン、3.55g(全シラン中で20mol%)のメチルトリエトキシシラン、9.88g(全シラン中で50mol%)のフェニルトリメトキシシラン、4.12g(全シラン中で10mol%)の3-(トリエトキシシリルプロピル)ジアリルイソシアヌレート、32.55gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸5.75gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマー式(E-4)のGPCによる重量平均分子量はポリスチレン換算でMw1000であった。
4.34g(全シラン中で20mol%)のテトラエトキシシラン、3.71g(全シラン中で20mol%)のメチルトリエトキシシラン、10.32g(全シラン中で50mol%)のフェニルトリメトキシシラン、1.51g(全シラン中で5mol%)のメチルスルホニルメチルフェニルトリメトキシシラン、1.71g(全シラン中で5mol%)の(5-(トリエトキシシリル)ノルボルネン-2,3-ジカルボン酸無水物、32.40gのアセトンを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸6.00gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート21gを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。プロピレングリコールモノエチルエーテルを加え、プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノエチルエーテル20/80の溶媒比率として140℃における固形残物換算で15重量パーセントとなるように調整した。得られたポリマー式(E-5)のGPCによる重量平均分子量はポリスチレン換算でMw900であった。
上記合成例1乃至14、比較合成例1乃至4で得られたケイ素含有ポリマー、酸、硬化触媒、添加剤、溶媒、水を表1に示す割合で混合し、0.1μmのフッ素樹脂製のフィルターで濾過することによって、レジスト下層膜形成用組成物の溶液をそれぞれ調製した。
表1及び表2中でマレイン酸はMA、(3-トリエトキシシリプロピル)-4,5-ジヒドロイミダゾールはIMIDTEOS、トリフェニルスルホニウムトリフルオロメタンスルホネートはTPS105、マレイン酸モノトリフェニルスルフォニウムはTPSMA、トリフェニルスルホニウムカンファスルホネートはTPSCS、(5-(トリエトキシシリル)ノルボルネン-2,3-ジカルボン酸無水物はNorAnTEOS、プロピレングリコールモノメチルエーテルアセテートはPGMEA、プロピレングリコールモノエチルエーテルはPGEEと略した。水は超純水を用いた。各添加量は質量部で示した。ポリマーの添加量はポリマー溶液の質量ではなく、ポリマーの質量である。
実施例1乃至22、比較例1乃至4で調製したSi含有レジスト下層膜形成組成物をスピナーを用い、シリコンウェハー上にそれぞれ塗布した。ホットプレート上で200℃1分間加熱し、Si含有レジスト下層膜(膜厚0.05μm)を形成した。そして、これらのレジスト下層膜を分光エリプソメーター(J.A.Woollam社製、VUV-VASEVU-302)を用い、波長193nmでの屈折率(n値)及び光学吸光係数(k値、減衰係数とも呼ぶ)を測定した。
ドライエッチング速度の測定に用いたエッチャー及びエッチングガスは以下のものを用いた。
ES401(日本サイエンティフィック製):CF4
RIE-10NR(サムコ製):O2
実施例1乃至22、比較例1乃至4で調製したSi含有レジスト下層膜形成組成物の溶液をスピナーを用い、シリコンウェハー上に塗布した。ホットプレート上で240℃1分間加熱し、Si含有レジスト下層膜(膜厚0.08μm(CF4ガスでのエッチング速度測定用)、0.05μm(O2ガスでのエッチング速度測定用)をそれぞれ形成した。また、同様に有機下層膜形成組成物をスピナーを用い、シリコンウェハー上に塗膜を形成(膜厚0.20μm)した。エッチングガスとしてO2ガスを使用してドライエッチング速度を測定し、実施例1乃至22、比較例1乃至4のSi含有レジスト下層膜のドライエッチング速度との比較を行った。
窒素下、100mL四口フラスコにカルバゾール(6.69g、0.040mol、東京化成工業(株)製)、9-フルオレノン(7.28g、0.040mol、東京化成工業(株)製)、パラトルエンスルホン酸一水和物(0.76g、0.0040mol、東京化成工業(株)製)を加え、1,4-ジオキサン(6.69g、関東化学(株)製)を仕込み撹拌し、100℃まで昇温し溶解させ重合を開始した。24時間後60℃まで放冷後、クロロホルム(34g、関東化学(株)製)を加え希釈し、メタノール(168g、関東化学(株)製)へ再沈殿させた。得られた沈殿物をろ過し、減圧乾燥機で80℃、24時間乾燥し、目的とするポリマー(式(E-6)、以下PCzFLと略す)9.37gを得た。
PCzFLの1H-NMRの測定結果は以下の通りであった。
1H-NMR(400MHz,DMSO-d6):δ7.03-7.55(br,12H),δ7.61-8.10(br,4H),δ11.18(br,1H)
PCzFLのGPCによるポリスチレン換算で測定される重量平均分子量Mwは2800、多分散度Mw/Mnは1.77であった。
上記で得られた有機下層膜(A層)形成組成物をシリコンウエハー上に塗布し、ホットプレート上で240℃で60秒間ベークし、膜厚200nmの有機下層膜(A層)を得た。その上に、実施例1乃至11,14乃至22、比較例1乃至4で得られたSi含有レジスト下層膜(B層)形成組成物を塗布し、ホットプレート上で240℃で60秒間ベークし、Si含有レジスト下層膜(B層)を得た。Si含有レジスト下層膜(B層)の膜厚は35nmであった。
B層の上に市販のフォトレジスト溶液(富士フイルム(株)製、商品名FAiRS-9521NT05)をスピナーによりそれぞれ塗布し、ホットプレート上で100℃にて1分間加熱し、膜厚85nmのフォトレジスト膜(C層)を形成した。
(株)ニコン製NSR-S307Eスキャナー(波長193nm、NA、σ:0.85、0.93/0.85)を用い、現像後にフォトレジストのライン幅及びそのライン間の幅が0.060μm、すなわち0.060μmのラインアンドスペース(L/S)=1/2のデンスラインが形成されるように設定されたマスク、また現像後にフォトレジストのライン幅及びそのライン間の幅が0.058μm、すなわち0.058μmのラインアンドスペース(L/S)=1/1のデンスラインが形成されるように設定されたマスクにそれぞれを通して露光を行った。その後、ホットプレート上100℃で60秒間ベークし、冷却後、酢酸ブチル(溶剤現像液)を用いて60秒現像し、レジスト下層膜(B層)上にネガ型のパターンを形成した。得られたフォトレジストパターンについて、大きなパターン剥がれやアンダーカット、ライン底部の太り(フッティング)が発生しないものを良好として評価した。
上記で得られた有機下層膜(A層)形成組成物をシリコンウエハー上に塗布し、ホットプレート上で240℃で60秒間ベークし、膜厚200nmの有機下層膜(A層)を得た。その上に、実施例12乃至13、比較例1乃至4で得られたSi含有レジスト下層膜(B層)形成組成物を塗布し、ホットプレート上で240℃で60秒間ベークし、Si含有レジスト下層膜(B層)を得た。Si含有レジスト下層膜(B層)の膜厚は35nmであった。B層の上に市販のフォトレジスト溶液(JSR(株)製、商品名AR2772)をスピナーによりそれぞれ塗布し、ホットプレート上で110℃にて60秒間ベークし、膜厚120nmのフォトレジスト膜(C層)を形成した。レジストのパターニングはNIKON社製ArF露光機S-307E(波長193nm、NA、σ:0.85、0.93/0.85(Dipole)液浸液:水)を用いて行った。ターゲットは現像後にフォトレジストのライン幅およびそのライン間の幅が0.065μmである、いわゆるラインアンドスペース(デンスライン)が形成されるように設定されたマスクを通して露光を行った。
その後、ホットプレート上110℃で60秒間ベークし、冷却後、60秒シングルパドル式工程にて2.38質量%濃度のテトラメチルアンモニウムヒドロキシド水溶液(現像液)で現像した。得られたフォトレジストパターンについて、大きなパターン剥がれやアンダーカット、ライン底部の太り(フッティング)が発生しないものを良好とて評価した。
表7にリソグラフィー評価後のレジストのすそ形状を観察した結果を示した。
Claims (11)
- シランとして加水分解性シラン、その加水分解物、又はその加水分解縮合物を含み、該加水分解性シランが式(1)で示される加水分解性シラン、又は式(1)で示される加水分解性シランと式(2)で示される加水分解性シランの組み合わせからなる加水分解性シランを含み、且つ該式(1)で示される加水分解性シラン、又は式(1)で示される加水分解性シランと式(2)で示される加水分解性シランの組み合わせからなる加水分解性シランが全シランの50モル%未満である、リソグラフィー用レジスト下層膜形成組成物。
〔式中、R1は式(1-1)、式(1-2)、式(1-3)、式(1-4)、又は式(1-5):
(式(1-1)、式(1-2)、式(1-3)、式(1-4)、及び式(1-5)中、T1、T4及びT7はそれぞれアルキレン基、環状アルキレン基、アルケニレン基、アリーレン基、イオウ原子、酸素原子、オキシカルボニル基、アミド基、2級アミノ基、又はそれらの組み合わせであり、T2はアルキル基であり、T3及びT5はそれぞれ脂肪族環、又は芳香族環であり、T6及びT8はそれぞれラクトン環である。nは1又は2の整数を示す。)で示される基を含む一価の有機基であり、且つSi-C結合によりケイ素原子と結合しているものである。R2はアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルケニル基、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、もしくはシアノ基を有する有機基であり、且つSi-C結合によりケイ素原子と結合しているものである。R3はアルコキシ基、アシルオキシ基、又はハロゲン基である。aは1の整数を示し、bは0又は1の整数を示し、a+bは1又は2の整数を示す。〕、
〔式中、R4は式(2-1)、式(2-2)、又は式(2-3):
で示される基を含む一価の有機基であり、且つSi-C結合によりケイ素原子と結合しているものである。R5はアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルケニル基、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、もしくはシアノ基を有する有機基であり、且つSi-C結合によりケイ素原子と結合しているものである。R6はアルコキシ基、アシルオキシ基、又はハロゲン基である。a1は1の整数を示し、b1は0又は1の整数を示し、a1+b1は1又は2の整数を示す。〕。 - 式(1)で示される加水分解性シラン、又は式(1)で示される加水分解性シランと式(2)で示される加水分解性シランの組み合わせからなる加水分解性シランは、全シランの5乃至45モル%である請求項1に記載のレジスト下層膜形成組成物。
- 式(2)で示される加水分解性シランは、R4が式(2-1)で示される基を含む有機基である加水分解性シラン、R4が式(2-2)で示される基を含む有機基である加水分解性シラン、R4が式(2-3)で示される基を含む有機基である加水分解性シラン、又はそれらの混合物である請求項1又は請求項2に記載のレジスト下層膜形成組成物。
- 式(1)で示される加水分解性シランと式(2)で示される加水分解性シランの組み合わせからなる加水分解性シランは、式(1)で示される加水分解性シランと式(2)で示される加水分解性シランをモル比で1:0.01乃至10の割合で含有する請求項1乃至請求項3のいずれか1項に記載のレジスト下層膜形成組成物。
- 加水分解性シランが、式(1)で示される加水分解性シラン、又は式(1)で示される加水分解性シランと式(2)で示される加水分解性シランの組み合わせからなる加水分解性シランと、その他の加水分解性シランとを含み、その他の加水分解性シランが式(3):
(式中、R7はアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化アリール基、アルケニル基、又はエポキシ基、アクリロイル基、メタクリロイル基、メルカプト基、もしくはシアノ基を有する有機基であり、且つSi-C結合によりケイ素原子と結合しているものであり、R8はアルコキシ基、アシルオキシ基、又はハロゲン基を示し、a2は0乃至3の整数を示す。)で示される化合物、及び式(4):
(式中、R9はアルキル基で且つSi-C結合によりケイ素原子と結合しているものであり、R10はアルコキシ基、アシルオキシ基、又はハロゲン基を示し、Yはアルキレン基又はアリーレン基を示し、b2は0又は1の整数を示し、cは0又は1の整数である。)で示される化合物からなる群より選ばれた少なくとも1種の有機ケイ素化合物である請求項1乃至請求項4のいずれか1項に記載のリソグラフィー用レジスト下層膜形成組成物。 - 請求項1乃至請求項4のいずれか1項に記載の式(1)で示される加水分解性シランと、請求項1乃至請求項4のいずれか1項に記載の式(2)で示される加水分解性シランと、請求項5に記載の式(3)で示される加水分解性シランとの加水分解物をポリマーとして含むレジスト下層膜形成組成物。
- 更に加水分解触媒として酸を含む請求項1乃至請求項6のいずれか1項に記載のレジスト下層膜形成組成物。
- 更に水を含む請求項1乃至請求項7のいずれか1項に記載レジスト下層膜形成組成物。
- 請求項1乃至請求項8のいずれか1項に記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜。
- 請求項1乃至請求項8のいずれか1項に記載のレジスト下層膜形成組成物を半導体基板上に塗布し、焼成しレジスト下層膜を形成する工程、前記下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後にレジストを現像しレジストパターンを得る工程、レジストパターンによりレジスト下層膜をエッチングする工程、及びパターン化されたレジストとレジスト下層膜により半導体基板を加工する工程を含む半導体装置の製造方法。
- 半導体基板上に有機下層膜を形成する工程、その上に請求項1乃至請求項8のいずれか1項に記載のレジスト下層膜形成組成物を塗布し焼成しレジスト下層膜を形成する工程、前記レジスト下層膜の上にレジスト用組成物を塗布しレジスト膜を形成する工程、前記レジスト膜を露光する工程、露光後にレジストを現像しレジストパターンを得る工程、レジストパターンによりレジスト下層膜をエッチングする工程、パターン化されたレジスト下層膜により有機下層膜をエッチングする工程、及びパターン化された有機下層膜により半導体基板を加工する工程を含む半導体装置の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014544460A JP6436301B2 (ja) | 2012-10-31 | 2013-10-24 | エステル基を有するシリコン含有レジスト下層膜形成組成物 |
EP13851241.3A EP2916170A4 (en) | 2012-10-31 | 2013-10-24 | ESTER GROUP-CONTAINING COMPOSITION FOR FORMING SILICON RESERVE UNDERLAYER FILM |
CN201380055105.0A CN104737076B (zh) | 2012-10-31 | 2013-10-24 | 具有酯基的含硅抗蚀剂下层膜形成用组合物 |
US14/439,791 US10372039B2 (en) | 2012-10-31 | 2013-10-24 | Resist underlayer film forming composition containing silicon having ester group |
KR1020157010611A KR102307208B1 (ko) | 2012-10-31 | 2013-10-24 | 에스테르기를 갖는 실리콘함유 레지스트 하층막 형성조성물 |
SG11201503389VA SG11201503389VA (en) | 2012-10-31 | 2013-10-24 | Resist underlayer film forming composition containing silicon having ester group |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012240249 | 2012-10-31 | ||
JP2012-240249 | 2012-10-31 | ||
JP2012-249620 | 2012-11-13 | ||
JP2012249620 | 2012-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014069329A1 true WO2014069329A1 (ja) | 2014-05-08 |
Family
ID=50627238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078835 WO2014069329A1 (ja) | 2012-10-31 | 2013-10-24 | エステル基を有するシリコン含有レジスト下層膜形成組成物 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10372039B2 (ja) |
EP (1) | EP2916170A4 (ja) |
JP (1) | JP6436301B2 (ja) |
KR (1) | KR102307208B1 (ja) |
CN (1) | CN104737076B (ja) |
SG (1) | SG11201503389VA (ja) |
TW (1) | TWI639891B (ja) |
WO (1) | WO2014069329A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI503628B (zh) * | 2014-07-11 | 2015-10-11 | Everlight Chem Ind Corp | 負型感光性樹脂組成物 |
JP2016139123A (ja) * | 2014-12-30 | 2016-08-04 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | オーバーコートされたフォトレジストと共に使用するためのコーティング組成物 |
KR20170018816A (ko) * | 2014-06-17 | 2017-02-20 | 닛산 가가쿠 고교 가부시키 가이샤 | 페닐기 함유 크로모퍼를 갖는 실리콘 함유 레지스트 하층막 형성 조성물 |
WO2018181989A1 (ja) * | 2017-03-31 | 2018-10-04 | 日産化学株式会社 | カルボニル構造を有するシリコン含有レジスト下層膜形成組成物 |
JP2020063203A (ja) * | 2018-10-16 | 2020-04-23 | 信越化学工業株式会社 | ケイ素化合物の製造方法及びケイ素化合物 |
JP2020076999A (ja) * | 2014-07-15 | 2020-05-21 | 日産化学株式会社 | 脂肪族多環構造含有有機基を有するシリコン含有レジスト下層膜形成組成物 |
EP3736632A1 (en) | 2019-04-26 | 2020-11-11 | Shin-Etsu Chemical Co., Ltd. | Method for measuring distance of diffusion of curing catalyst |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3222688A4 (en) | 2014-11-19 | 2018-06-27 | Nissan Chemical Industries, Ltd. | Film-forming composition containing crosslinkable reactive silicone |
JP7143763B2 (ja) * | 2016-02-24 | 2022-09-29 | 日産化学株式会社 | シリコン含有パターン反転用被覆剤 |
KR102674631B1 (ko) * | 2017-07-06 | 2024-06-12 | 닛산 가가쿠 가부시키가이샤 | 알칼리성 현상액 가용성 실리콘함유 레지스트 하층막 형성 조성물 |
JP7307004B2 (ja) * | 2019-04-26 | 2023-07-11 | 信越化学工業株式会社 | ケイ素含有レジスト下層膜形成用組成物及びパターン形成方法 |
KR20220086638A (ko) | 2019-10-24 | 2022-06-23 | 브레우어 사이언스, 인코포레이션 | 규소 함량이 높은 습식 제거성 평탄화 층 |
US20220163889A1 (en) * | 2020-11-20 | 2022-05-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Metallic photoresist patterning and defect improvement |
WO2024024490A1 (ja) * | 2022-07-29 | 2024-02-01 | 日産化学株式会社 | レジスト下層膜形成用組成物 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004310019A (ja) | 2003-03-24 | 2004-11-04 | Shin Etsu Chem Co Ltd | 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法 |
JP2004334107A (ja) * | 2003-05-12 | 2004-11-25 | Fuji Photo Film Co Ltd | ポジ型レジスト組成物 |
WO2006057782A1 (en) | 2004-11-03 | 2006-06-01 | International Business Machines Corporation | Silicon containing tarc/barrier layer |
JP2007226170A (ja) | 2006-01-27 | 2007-09-06 | Shin Etsu Chem Co Ltd | 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法 |
JP2008019423A (ja) * | 2006-06-16 | 2008-01-31 | Shin Etsu Chem Co Ltd | ケイ素含有膜形成用組成物、ケイ素含有膜、ケイ素含有膜形成基板及びこれを用いたパターン形成方法 |
WO2010140551A1 (ja) * | 2009-06-02 | 2010-12-09 | 日産化学工業株式会社 | スルフィド結合を有するシリコン含有レジスト下層膜形成組成物 |
JP2012078797A (ja) * | 2010-09-09 | 2012-04-19 | Jsr Corp | レジストパターン形成方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7855043B2 (en) | 2006-06-16 | 2010-12-21 | Shin-Etsu Chemical Co., Ltd. | Silicon-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method |
US8652750B2 (en) * | 2007-07-04 | 2014-02-18 | Shin-Etsu Chemical Co., Ltd. | Silicon-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method |
US8828879B2 (en) * | 2009-09-16 | 2014-09-09 | Nissan Chemical Industries, Ltd. | Silicon-containing composition having sulfonamide group for forming resist underlayer film |
KR101947105B1 (ko) * | 2010-02-19 | 2019-02-13 | 닛산 가가쿠 가부시키가이샤 | 질소 함유환을 가지는 실리콘 함유 레지스트 하층막 형성 조성물 |
TW201202691A (en) * | 2010-07-06 | 2012-01-16 | Univ Nat Cheng Kung | Multi-gas sensor and fabrication method thereof |
JP5765298B2 (ja) * | 2010-09-09 | 2015-08-19 | Jsr株式会社 | レジストパターン形成方法 |
SG192113A1 (en) * | 2011-01-24 | 2013-08-30 | Nissan Chemical Ind Ltd | Composition for forming resist underlayer film, containing silicon that bears diketone-structure-containing organic group |
KR20130012844A (ko) * | 2011-07-26 | 2013-02-05 | 삼성메디슨 주식회사 | 도플러 각도 자동 보정 방법 및 그를 위한 초음파 시스템 |
-
2013
- 2013-10-24 SG SG11201503389VA patent/SG11201503389VA/en unknown
- 2013-10-24 US US14/439,791 patent/US10372039B2/en active Active
- 2013-10-24 KR KR1020157010611A patent/KR102307208B1/ko active IP Right Grant
- 2013-10-24 CN CN201380055105.0A patent/CN104737076B/zh active Active
- 2013-10-24 EP EP13851241.3A patent/EP2916170A4/en not_active Withdrawn
- 2013-10-24 JP JP2014544460A patent/JP6436301B2/ja active Active
- 2013-10-24 WO PCT/JP2013/078835 patent/WO2014069329A1/ja active Application Filing
- 2013-10-31 TW TW102139554A patent/TWI639891B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004310019A (ja) | 2003-03-24 | 2004-11-04 | Shin Etsu Chem Co Ltd | 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法 |
JP2004334107A (ja) * | 2003-05-12 | 2004-11-25 | Fuji Photo Film Co Ltd | ポジ型レジスト組成物 |
WO2006057782A1 (en) | 2004-11-03 | 2006-06-01 | International Business Machines Corporation | Silicon containing tarc/barrier layer |
JP2007226170A (ja) | 2006-01-27 | 2007-09-06 | Shin Etsu Chem Co Ltd | 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法 |
JP2008019423A (ja) * | 2006-06-16 | 2008-01-31 | Shin Etsu Chem Co Ltd | ケイ素含有膜形成用組成物、ケイ素含有膜、ケイ素含有膜形成基板及びこれを用いたパターン形成方法 |
WO2010140551A1 (ja) * | 2009-06-02 | 2010-12-09 | 日産化学工業株式会社 | スルフィド結合を有するシリコン含有レジスト下層膜形成組成物 |
JP2012078797A (ja) * | 2010-09-09 | 2012-04-19 | Jsr Corp | レジストパターン形成方法 |
Non-Patent Citations (4)
Title |
---|
PROC. SPIE, vol. 3999, 2000, pages 330 - 334 |
PROC. SPIE, vol. 3999, 2000, pages 357 - 364 |
PROC. SPIE, vol. 3999, 2000, pages 365 - 374 |
See also references of EP2916170A4 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170018816A (ko) * | 2014-06-17 | 2017-02-20 | 닛산 가가쿠 고교 가부시키 가이샤 | 페닐기 함유 크로모퍼를 갖는 실리콘 함유 레지스트 하층막 형성 조성물 |
KR102314080B1 (ko) | 2014-06-17 | 2021-10-18 | 닛산 가가쿠 가부시키가이샤 | 페닐기 함유 크로모퍼를 갖는 실리콘 함유 레지스트 하층막 형성 조성물 |
CN105278250A (zh) * | 2014-07-11 | 2016-01-27 | 台湾永光化学工业股份有限公司 | 负型感光性树脂组合物 |
TWI503628B (zh) * | 2014-07-11 | 2015-10-11 | Everlight Chem Ind Corp | 負型感光性樹脂組成物 |
JP2020076999A (ja) * | 2014-07-15 | 2020-05-21 | 日産化学株式会社 | 脂肪族多環構造含有有機基を有するシリコン含有レジスト下層膜形成組成物 |
CN112558410A (zh) * | 2014-07-15 | 2021-03-26 | 日产化学工业株式会社 | 具有含脂肪族多环结构的有机基团的含硅抗蚀剂下层膜形成用组合物 |
JP2016139123A (ja) * | 2014-12-30 | 2016-08-04 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | オーバーコートされたフォトレジストと共に使用するためのコーティング組成物 |
JPWO2018181989A1 (ja) * | 2017-03-31 | 2020-02-06 | 日産化学株式会社 | カルボニル構造を有するシリコン含有レジスト下層膜形成組成物 |
KR20190135026A (ko) * | 2017-03-31 | 2019-12-05 | 닛산 가가쿠 가부시키가이샤 | 카르보닐구조를 갖는 실리콘함유 레지스트 하층막 형성 조성물 |
WO2018181989A1 (ja) * | 2017-03-31 | 2018-10-04 | 日産化学株式会社 | カルボニル構造を有するシリコン含有レジスト下層膜形成組成物 |
JP7208590B2 (ja) | 2017-03-31 | 2023-01-19 | 日産化学株式会社 | カルボニル構造を有するシリコン含有レジスト下層膜形成組成物 |
KR102577038B1 (ko) * | 2017-03-31 | 2023-09-12 | 닛산 가가쿠 가부시키가이샤 | 카르보닐구조를 갖는 실리콘함유 레지스트 하층막 형성 조성물 |
JP2020063203A (ja) * | 2018-10-16 | 2020-04-23 | 信越化学工業株式会社 | ケイ素化合物の製造方法及びケイ素化合物 |
EP3736632A1 (en) | 2019-04-26 | 2020-11-11 | Shin-Etsu Chemical Co., Ltd. | Method for measuring distance of diffusion of curing catalyst |
US11592287B2 (en) | 2019-04-26 | 2023-02-28 | Shin-Etsu Chemical Co., Ltd. | Method for measuring distance of diffusion of curing catalyst |
Also Published As
Publication number | Publication date |
---|---|
JP6436301B2 (ja) | 2018-12-12 |
KR20150081269A (ko) | 2015-07-13 |
KR102307208B1 (ko) | 2021-10-01 |
EP2916170A4 (en) | 2016-06-08 |
SG11201503389VA (en) | 2015-06-29 |
TWI639891B (zh) | 2018-11-01 |
US20150316849A1 (en) | 2015-11-05 |
CN104737076B (zh) | 2020-04-03 |
US10372039B2 (en) | 2019-08-06 |
EP2916170A1 (en) | 2015-09-09 |
TW201432386A (zh) | 2014-08-16 |
CN104737076A (zh) | 2015-06-24 |
JPWO2014069329A1 (ja) | 2016-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6150088B2 (ja) | スルホン構造を有する新規シラン化合物 | |
JP5360416B2 (ja) | ウレア基を有するシリコン含有レジスト下層膜形成組成物 | |
JP5534250B2 (ja) | スルホンアミド基を有するシリコン含有レジスト下層膜形成組成物 | |
JP5618095B2 (ja) | スルフィド結合を有するシリコン含有レジスト下層膜形成組成物 | |
JP6436301B2 (ja) | エステル基を有するシリコン含有レジスト下層膜形成組成物 | |
JP6217940B2 (ja) | 環状ジエステル基を有するシリコン含有レジスト下層膜形成組成物 | |
JP5590354B2 (ja) | アミック酸を含むシリコン含有レジスト下層膜形成組成物 | |
JP6597980B2 (ja) | ハロゲン化スルホニルアルキル基を有するシリコン含有レジスト下層膜形成組成物 | |
WO2016080226A1 (ja) | 架橋反応性シリコン含有膜形成組成物 | |
JP6882724B2 (ja) | フェニル基含有クロモファーを有するシラン化合物 | |
JP6694162B2 (ja) | ハロゲン含有カルボン酸アミド基を有する加水分解性シランを含むリソグラフィー用レジスト下層膜形成組成物 | |
WO2014021256A1 (ja) | スルホン酸オニウム塩を含有するケイ素含有euvレジスト下層膜形成組成物 | |
JP5818026B2 (ja) | ジケトン構造含有有機基を含むシリコン含有レジスト下層膜形成組成物 | |
WO2016009965A1 (ja) | 脂肪族多環構造含有有機基を有するシリコン含有レジスト下層膜形成組成物 | |
JP6754098B2 (ja) | カーボネート骨格を有する加水分解性シランを含むリソグラフィー用レジスト下層膜形成組成物 | |
WO2018181989A1 (ja) | カルボニル構造を有するシリコン含有レジスト下層膜形成組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13851241 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014544460 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157010611 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14439791 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013851241 Country of ref document: EP |