WO2014061967A1 - Polyamide-based macromolecular compound, and gas-separation asymmetrical hollow-fibre membrane comprising same - Google Patents
Polyamide-based macromolecular compound, and gas-separation asymmetrical hollow-fibre membrane comprising same Download PDFInfo
- Publication number
- WO2014061967A1 WO2014061967A1 PCT/KR2013/009203 KR2013009203W WO2014061967A1 WO 2014061967 A1 WO2014061967 A1 WO 2014061967A1 KR 2013009203 W KR2013009203 W KR 2013009203W WO 2014061967 A1 WO2014061967 A1 WO 2014061967A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyimide
- polymer compound
- formula
- boiling point
- gas
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 116
- 238000000926 separation method Methods 0.000 title claims abstract description 72
- 229920002647 polyamide Polymers 0.000 title abstract description 4
- 239000000835 fiber Substances 0.000 title abstract 3
- 229920002521 macromolecule Polymers 0.000 title abstract 3
- 150000001875 compounds Chemical class 0.000 claims abstract description 112
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 229920001721 polyimide Polymers 0.000 claims description 134
- 239000007789 gas Substances 0.000 claims description 104
- 239000004642 Polyimide Substances 0.000 claims description 90
- 229920000642 polymer Polymers 0.000 claims description 90
- 239000012510 hollow fiber Substances 0.000 claims description 58
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 43
- 238000009835 boiling Methods 0.000 claims description 36
- 239000000178 monomer Substances 0.000 claims description 35
- 238000002360 preparation method Methods 0.000 claims description 29
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 28
- 239000002904 solvent Substances 0.000 claims description 25
- 238000009987 spinning Methods 0.000 claims description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- 239000003960 organic solvent Substances 0.000 claims description 18
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 17
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 239000001569 carbon dioxide Substances 0.000 claims description 14
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- -1 Diane hydride compound Chemical class 0.000 claims description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000000578 dry spinning Methods 0.000 claims description 6
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- 229940100630 metacresol Drugs 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 4
- 238000006068 polycondensation reaction Methods 0.000 claims description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 3
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 230000008719 thickening Effects 0.000 claims description 2
- 239000000701 coagulant Substances 0.000 claims 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims 1
- 230000035699 permeability Effects 0.000 abstract description 28
- 239000000126 substance Substances 0.000 abstract description 9
- 150000004985 diamines Chemical class 0.000 abstract description 7
- 239000003495 polar organic solvent Substances 0.000 abstract description 4
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 39
- 150000004984 aromatic diamines Chemical class 0.000 description 23
- 230000008569 process Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 5
- 229920002492 poly(sulfone) Polymers 0.000 description 5
- 238000002166 wet spinning Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 125000002723 alicyclic group Chemical group 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 229920005575 poly(amic acid) Polymers 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 3
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 2
- PZKPUGIOJKNRQZ-UHFFFAOYSA-N 1-methylcyclohexa-3,5-diene-1,3-diamine Chemical compound CC1(N)CC(N)=CC=C1 PZKPUGIOJKNRQZ-UHFFFAOYSA-N 0.000 description 2
- OBCSAIDCZQSFQH-UHFFFAOYSA-N 2-methyl-1,4-phenylenediamine Chemical compound CC1=CC(N)=CC=C1N OBCSAIDCZQSFQH-UHFFFAOYSA-N 0.000 description 2
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 2
- QGMGHALXLXKCBD-UHFFFAOYSA-N 4-amino-n-(2-aminophenyl)benzamide Chemical compound C1=CC(N)=CC=C1C(=O)NC1=CC=CC=C1N QGMGHALXLXKCBD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- WFKAJVHLWXSISD-UHFFFAOYSA-N isobutyramide Chemical compound CC(C)C(N)=O WFKAJVHLWXSISD-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000010815 organic waste Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 1
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 1
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 1
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 1
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 1
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 1
- ABFQGXBZQWZNKI-UHFFFAOYSA-N 1,1-dimethoxyethanol Chemical compound COC(C)(O)OC ABFQGXBZQWZNKI-UHFFFAOYSA-N 0.000 description 1
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 1
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 1
- PZHIWRCQKBBTOW-UHFFFAOYSA-N 1-ethoxybutane Chemical compound CCCCOCC PZHIWRCQKBBTOW-UHFFFAOYSA-N 0.000 description 1
- DVVGIUUJYPYENY-UHFFFAOYSA-N 1-methylpyridin-2-one Chemical compound CN1C=CC=CC1=O DVVGIUUJYPYENY-UHFFFAOYSA-N 0.000 description 1
- ZVDSMYGTJDFNHN-UHFFFAOYSA-N 2,4,6-trimethylbenzene-1,3-diamine Chemical compound CC1=CC(C)=C(N)C(C)=C1N ZVDSMYGTJDFNHN-UHFFFAOYSA-N 0.000 description 1
- XUSNPFGLKGCWGN-UHFFFAOYSA-N 3-[4-(3-aminopropyl)piperazin-1-yl]propan-1-amine Chemical compound NCCCN1CCN(CCCN)CC1 XUSNPFGLKGCWGN-UHFFFAOYSA-N 0.000 description 1
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- HYDATEKARGDBKU-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]phenoxy]aniline Chemical group C1=CC(N)=CC=C1OC1=CC=C(C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 HYDATEKARGDBKU-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229940126657 Compound 17 Drugs 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 1
- LJHFUFVRZNYVMK-ZDUSSCGKSA-N [3-[4-(aminomethyl)-6-(trifluoromethyl)pyridin-2-yl]oxyphenyl]-[(3S)-3-hydroxypyrrolidin-1-yl]methanone Chemical compound NCC1=CC(=NC(=C1)C(F)(F)F)OC=1C=C(C=CC=1)C(=O)N1C[C@H](CC1)O LJHFUFVRZNYVMK-ZDUSSCGKSA-N 0.000 description 1
- KPAMAAOTLJSEAR-UHFFFAOYSA-N [N].O=C=O Chemical compound [N].O=C=O KPAMAAOTLJSEAR-UHFFFAOYSA-N 0.000 description 1
- WREOTYWODABZMH-DTZQCDIJSA-N [[(2r,3s,4r,5r)-3,4-dihydroxy-5-[2-oxo-4-(2-phenylethoxyamino)pyrimidin-1-yl]oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1N(C=C\1)C(=O)NC/1=N\OCCC1=CC=CC=C1 WREOTYWODABZMH-DTZQCDIJSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 229940026110 carbon dioxide / nitrogen Drugs 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125797 compound 12 Drugs 0.000 description 1
- 229940126543 compound 14 Drugs 0.000 description 1
- 229940125758 compound 15 Drugs 0.000 description 1
- 229940126142 compound 16 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940125810 compound 20 Drugs 0.000 description 1
- 108010041382 compound 20 Proteins 0.000 description 1
- 229940126086 compound 21 Drugs 0.000 description 1
- 229940126208 compound 22 Drugs 0.000 description 1
- 229940125833 compound 23 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 150000003949 imides Chemical group 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940110728 nitrogen / oxygen Drugs 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
- C08G73/1078—Partially aromatic polyimides wholly aromatic in the diamino moiety
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
- B01D71/64—Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1039—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1042—Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
- C08G73/105—Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D2053/221—Devices
- B01D2053/223—Devices with hollow tubes
- B01D2053/224—Devices with hollow tubes with hollow fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/42—Details of membrane preparation apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/022—Asymmetric membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/22—Thermal or heat-resistance properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/30—Chemical resistance
Definitions
- the present invention is a polyimide-based high molecular compound prepared using DOCDA and at least one diamine selected from the group consisting of MDA, ODA, PDA, TDA, TrMPD, TeMPD and MBCA and asymmetric hollow for gas separation comprising the same It is related to the desert. Specifically, it has both gas permeability and high selectivity, and has high heat resistance, chemical resistance, and mechanical properties. It is not only excellent in solubility in polar organic solvents, but also has a high molecular weight suitable for wet and dry spinning.
- the present invention relates to a polyimide-based polymer compound that is easy to process a hollow fiber membrane having a structure, and an asymmetric hollow fiber membrane for gas separation including the same.
- Separex's spiral wound CAs have been successfully applied to recover 3 ⁇ 4 from waste gas from refinery and petrochemical processes, to adjust 3 ⁇ 4 composition in ammonia plants, and methanol plants. do. Subsequently, attempts were made to broaden the scope of application to co 2 as well as 3 ⁇ 4.
- natural gas collected from oil fields is generally composed of 40-45 mol% of C0 2 and 54-59 mol% of CH 4 , and the membrane separation process is introduced into the separation of C0 2 / CH 4 , which is very successful. Applied. Since then, many researches have been conducted.
- Membrane materials used in the gas separation process using membranes mostly use non-porous polymer membranes, and high pressure and high temperature when the membranes using polymers are thinned at the same time with high gas permeability and high selectivity in order to be applied to the commercial industry. It requires excellent thermal and mechanical stability to withstand, and have chemical characteristics that can tolerate the toxicity of the gas to be treated. In addition, when mass-produced in the form of hollow fiber membranes, it must have a high molecular weight so as to have a high viscosity suitable for the solubility and spinning for the organic solvent to which the phase transition process can be applied.
- gas separation membrane materials include polysulfone and polyimide, cellulose acetate, polycarbonate, polypyrrolone, and the like.
- Polysulfone is brominated by Air Products, Inc. in the US, and polycarbonate brominated by MGI, polyimide by Ube, Japan, and cellulose acetate-based material by Dow, Inc. It became.
- polyimide-based materials have higher chemical and thermal stability than polysulfone, cellulose acetate, and polycarbonate, and high carbon dioxide / methane, oxygen / Due to the gas separation characteristics of nitrogen, hydrogen / nitrogen and carbon dioxide / nitrogen, many various efforts have been made to develop membranes.
- Ube Japan
- dioxotetrahydrofuryl 3-methyl-3-cyclohexene- 1,2-dicarboxylic anhydride
- asymmetric gas by wet and dry spinning method for commercialization.
- the study of separation hollow fiber membrane showed excellent gas separation characteristics. It was confirmed that the present invention was completed.
- An object of the present invention is to provide a polyimide polymer compound that is easy to prepare asymmetric hollow fiber membrane for gas separation.
- Another object of the present invention is to provide a method for producing the polyimide polymer compound.
- Another object of the present invention to provide an asymmetric hollow fiber membrane for gas separation comprising the polyimide polymer compound.
- Another object of the present invention to provide a method for producing the asymmetric hollow fiber membrane for gas separation.
- Another object of the present invention is to provide a method for separating a mixed gas using the asymmetric hollow fiber membrane for gas separation.
- the present invention provides a polyimide polymer compound represented by the following Chemical Formula 1:
- n is an integer from 50 to 150).
- the present invention comprises a polycondensation reaction of the monomer compound of Formula 2 and at least one monomer compound selected from Formulas 3 to 10 at a reaction temperature of 150-203 ° C under a metacresol semicoagulant Provided are methods for preparing the mid-based polymer compound:
- the present invention provides an asymmetric hollow fiber membrane for gas separation comprising the polyimide polymer compound.
- the present invention comprises the steps of preparing a spinning solution comprising the polyimide-based polymer compound, a high boiling point nonpolar organic solvent, a low boiling point non-solvent and a high boiling point non-solvent as a pore-forming agent (step 1); And
- step 2 The step of spinning the spinning solution prepared in step 1 in the presence of an internal arch agent using a wet and dry spinning apparatus equipped with a double-tubular nozzle (step 2); manufacturing method of the asymmetric hollow fiber membrane for gas separation comprising the To provide. Furthermore, the present invention provides a method for separating a mixed gas comprising the step of separating the mixed gas using the asymmetric hollow fiber membrane for gas separation.
- the polyimide polymer compound according to the present invention has excellent gas permeability and high selectivity, and also has high heat resistance, chemical resistance and mechanical properties, and has excellent solubility in polar organic solvents and high viscosity due to high molecular weight. Therefore, it can be easily used for the production of a hollow fiber membrane of the asymmetric structure for gas separation.
- FIG. 1 is a view showing an apparatus for manufacturing a hollow fiber membrane according to the present invention.
- Figure 2 is a graph showing the _ NMR spectrum of the polyimide-based polymer compound and polyamic acid according to the present invention.
- FIG 3 is a graph showing the FT-IR spectrum of the polyimide polymer compound according to the present invention.
- polyimide polymer compound means a polyimide polymer prepared by condensation of 1 equivalent of diane hydride and 1 equivalent of diamine as a monomer. More specifically, the "polyimide-based high molecular compound” is D0CDA (5- (2,5-dioxotetrahydrofuryl) -3-cyclonuxene -1,2-dicarboxylic acid which is a "dian hydride” Hydride, 5- (2,5-dioxotetrahydrofuryl) -3-mehtyl-3- eye 1 ohexene-1, 2-di car boxy 1 ic anhydride) 1 equivalent and 'diamine' MDA (4,4'-methylene Dianiline, 4 , 4'-Methylene dianiline), 0DA (4,4'—oxy dianiline, 4,4'-0xy di aniline), / PDA (para-phenylenediamine , par a-pheny 1
- n is an integer from 50 to 150). Since the polyimide polymer compound according to the present invention has excellent gas permeability and high gas separation selectivity, it is possible to effectively separate methane from a mixed gas, in particular, a biogas mixture. In addition, the polyimide polymer compound according to the present invention has excellent chemical resistance and mechanical properties, has excellent solubility in polar organic solvents, has a high molecular weight, and has a high permeability asymmetric hollow structure used for commercial purposes. Easy to process deserts
- D0CDA MDA-compound of the present invention is 1.11 dL / g; D0CDA-0DA The mixture was 0.45 dL / g; And DOCDA- ⁇ PDA compounds at 0.34 dL / g, comparable to those of gas separation membrane polymers of currently available commercially available polysulfones, matimides, polysulfones, polyimides (eg P84®) Since it has an inherent viscosity, it can be seen that it has a high viscosity suitable for spinning for producing a hollow fiber membrane.
- the polyimide polymer compound is more preferably a compound represented by the following formula (11).
- the present invention is a metacresol reaction solvent of at least one monomer compound selected from the group consisting of the monomer compound of the following formula (2) and the following formula (3 to 10) It provides a method for producing the polyimide-based polymer compound according to the invention comprising the step of polycondensation reaction at a reaction temperature of 150-203 ° C.
- the monomer compound of Chemical Formula 2 is a cycloaliphatic dianhydride compound having excellent solubility in organic solvents due to an alicyclic ring structure which may give asymmetry or asymmetry to the main chain.
- dioxotetrahydrofuryU-S-mehtyl-S-cyclohexene-U-dicarboxylic anhydride) and the monomer compounds of Formulas 3 to 10 are aromatic diamine compounds MDA (4,4'-Methylene dianiline), 0DA (4,4'-0xy) dianiline), -PDA (par a-pheny 1 ened i am i ne), m-TDA (meta-toluenediamine), p— TDA (ar a-1 o 1 uened i am i ne), TrMPD (2,4, 6-Tr i me t hy 1-1, 3-pheny 1 ened i am i ne),
- TeMPD (2,3,5,6-Tetramethyl-l, 4-phen lenediamine) and MBCA (4, 4'—Met hy 1 eneb i s (2-chloroani 1 ine)).
- the polycondensation reaction is a D0CDA monomer compound of Formula 2 and MDA, ODA, / PDA, zrTDA, TrMPD, TeMPD and MBCA of Formula 3 to 10. It is characterized in that it is prepared while forming an imide ring by a reaction that one molecule of water is bonded while dehydrating between one or more monomer compounds selected from monomer compounds of.
- the reaction temperature is preferably 150 ° C.-203 ° C. If the reaction is less than 150 ° C there is a problem that the degree of imidization falls and the degree of polymerization is lowered. In addition, since the boiling point of the metacresol is 203 ° C., heating above this is not preferable.
- the present invention provides an asymmetric hollow fiber membrane for gas separation comprising the polyimide-based polymer compound according to the present invention, wherein the gas to be separated is preferably methane.
- the gas to be separated is preferably methane.
- the present invention comprises the steps of preparing a spinning solution comprising a polyimide polymer compound according to the present invention, a high boiling point film forming solvent, a low boiling point non-solvent and a high boiling point non-solvent as a pore-forming agent (step 1) and
- the step 1 includes a pleimide-based polymer compound according to the present invention, a high boiling point film forming solvent, a low boiling point non-solvent and a high boiling point non-solvent which is a pore-forming agent. It is a step of preparing the use liquid.
- the spinning solution of step 1 preferably contains 20 to 40% by weight of the polyimide polymer compound having gas selectivity, and includes 25 to 35% by weight. More preferably.
- the polyimide-based polymer compound is included in an amount less than 20% by weight, the viscosity is so low that the strength of the manufactured hollow fiber membrane is weak and there is a problem that the selectivity of gas separation is lost.
- the polyimide-based polymer compound is included in an amount less than 20% by weight, the viscosity is so low that the strength of the manufactured hollow fiber membrane is weak and there is a problem that the selectivity of gas separation is lost.
- the polyimide-based polymer compound is included in more than 40% by weight there is a problem that spinning is difficult in the form of hollow fiber is too high.
- the organic solvent of the high boiling point of the step 1 serves to dissolve the polyimide-based polymer compound, N-methylpyridone, dimethylacetamide and die
- One or more high boiling organic solvents selected from methylformamide can be used.
- the low boiling point non-solvent of step 1 does not dissolve the polyimide polymer compound but has a swelling property, thereby forming a gaseous select skin worm.
- One or more low boiling point solvents selected from tetrahydrofuran (THF), acetone, methanol and ethanol can be used.
- the high solvent boiling point of the step 1 serves to help the pore formation of the hollow fiber membrane, butanol, isopropyl alcohol, dimethoxyethanol, daahydroxy
- One or more high boiling point non-solvents selected from butylene oxide, appendix methanol, butoxyethane and diglycidyl dimethyl may be used.
- the internal unggojeung of the step 1 is used by mixing a high boiling point organic solvent and low boiling point and non-solvent, the spinning solution is contained in the internal
- the mixing ratio of the organic solvent of the point, the low boiling point nonsolvent, and the high boiling point nonsolvent which is a pore-type agent is preferably 80:10:10-60: 20: 20, and 75:10 15:10 -65: 25: 10 More preferred.
- the present invention provides a method for separating a mixed gas comprising the step of separating the mixed gas using the asymmetric hollow fiber membrane for gas separation according to the present invention.
- Combustion exhaust gases emitted during the combustion of fossil fuels such as methane mixture gas, coal and natural gas generated during anaerobic decomposition of organic waste such as landfill, livestock waste, sewage sludge, food waste, etc.
- the hollow fiber membrane according to the present invention can be effectively used to separate various gases such as methane, carbon dioxide, oxygen, hydrogen sulfide, nitrogen hydrogen, water vapor, oxygen and nitrogen, nitrogen and carbon dioxide from the mixed gas.
- the mixed gas is preferably a mixed gas containing methane.
- the hollow fiber membrane according to the present invention has a particularly high pure gas permeability for carbon dioxide, while a pure gas permeability for methane is significantly low, so that C0 2 / CH 4 Since the selectivity can be confirmed to be the best, the method for separating a mixed gas according to the present invention is a mixed gas containing methane and carbon dioxide, and more preferably, a method for separating methane from biogas. [Form for implementation of invention]
- the alicyclic dianhydride monomer D0CDA and the aromatic diamine monomer MDA (4.4'-Methylene dianiline) were put in different isotropic glass flasks, and a mechanical stirrer, thermometer, and condenser were installed therein, and D0CDA (26.4 g) was added under nitrogen atmosphere. 0.1 mol) and MDA 19.8 g: 0.1 mol) are dissolved in m-cresol. After that After stirring for 2 hours at 60 ° C-70 ° C, 18 hours at 200 ° C., a high molecular weight polyimide solution was obtained.
- the resulting polyimide solution was diluted with dimethylformamide (DMF) and slowly dropped into a beaker containing methanol to precipitate each, followed by washing with a large amount of methanol.
- the washed polyimide powder was vacuum dried at 60 ° C. for 12 hours to obtain a polyimide polymer compound (D0CDA-MDA).
- Example 2 The same method as in Example 1 was performed except that 0DA (4,4'-0xy dianiline: 20.0 g, 0.01 mol) was used instead of MDA (4.4'-Methylene dianiline) as an aromatic diamine monomer.
- MDA 4.4'-Methylene dianiline
- a polyimide polymer compound (DOCDA-0DA) was prepared.
- a polyimide-based polymer was prepared in the same manner as in Example 1 except that ⁇ PDA (par a-phenylenedi amine: 0.1 mol) was used instead of MDA (4.4'-Methylene dianiline) as an aromatic diamine monomer.
- MDA 4.4'-Methylene dianiline
- Compound (D0CDA-H A) was prepared.
- a polyimide-based polymer was prepared in the same manner as in Example 1, except that para-phenyl enediamine (0.1 mol) was used instead of MDA (4.4 '-Methylene dianiline) as the aromatic diamine monomer.
- Compound (D0CDA- / zrTDA) was prepared.
- a polyimide polymer compound was prepared in the same manner as in Example 1, except that para-toluenediamine (0.1 mol) was used instead of DA (4.4'-Methylene dianiline) as an aromatic diamine monomer. DOCDA— // TDA) was prepared.
- Example 6 Preparation of Polyimide-Based Polymer Compound-6
- Tr MPD (4.4'-Methylene dianiline) as the aromatic diamine monomer
- Tr MPD 2, 4, 6-Tr i me t hy 1-1, 3-pheny 1 ened i am i ne: 0.1 mol
- TeMPD (4.4'-Methylene dianiline) as an aromatic diamine monomer
- TeMPD 2, 3, 5, 6-Te tem a hy t 1-1, 4-pheny 1 ened i am i ne: 0.1 mol
- Example 11 Preparation of Polyimide-Based Polymer Compound-11
- MDA 4.4'-Methylene dianiline
- a polyimide polymer compound (D0CDA-PDA + 0DA) was prepared.
- MDA 4'-Methylene dianiline
- Example 2 Except for using MDA (4.4'-Methylene dianiline) as an aromatic diamine monomer, except that IPDA (4,4'-Isopropylene dianiline: 22.6 g 0.1 mol) was used, the same procedure as in Example 1 The mid-based polymer compound was prepared.
- MDA 4.4'-Methylene dianiline
- IPDA 4,4'-Isopropylene dianiline: 22.6 g 0.1 mol
- the polyimide polymer compound prepared in Examples 1 to 17 was dissolved in dimethylformamide (DMF) at a concentration of 10% by weight, and then cast on a glass plate. Then, dried for 24 hours at 60 ° C vacuum oven, and dried for 12 hours at 130 ° C. to prepare a dense flat membrane of 50 ⁇ thickness. .
- DMF dimethylformamide
- Examples 18 to 34 except for using the polyimide-based polymer compound prepared in Comparative Examples 1 to 6 instead of using the polyimide-based polymer compound prepared in Examples 1 to 17 as a gas-selective polymer 50 ⁇ thick dense flat membrane was prepared by the same method as described above.
- Example 35-51-Preparation of Hollow Fiber Membrane Containing Polyimide Polymer Compound-1-17 350 g of the polyimide polymer compound prepared in Examples 1 to 17 as a gas-selective polymer in a 2000 ml isometric flask was 400 g of dimethylacetylamide (DMAc) as a high boiling point solvent, 150 g of non-special ethanol as a high boiling point nonsolvent, and pores A low boiling point non-solvent tetrahydrofuran (THF, 100 g) serving as a former was added, and the gas-selective polymer was completely dissolved to prepare a 35% polymer solution.
- DMAc dimethylacetylamide
- THF low boiling point non-solvent tetrahydrofuran
- the prepared polymer solution was decompressed using a vacuum pump to completely remove bubbles generated during the preparation of the polymer solution, and then a spinning solution was prepared.
- a solution obtained by mixing dimethyl acetylamide (DMAc) and glycerin in a weight ratio of 70:30 was prepared as an internal curing agent, and the spinning solution and the internal curing agent were subjected to reduced pressure using a wet and dry spinning apparatus as shown in FIG. 1.
- a hollow fiber membrane was prepared.
- the hollow fiber membrane manufacturing apparatus of FIG. 1 supplies the spinning solution of a certain flow rate through the gear pump to the outside of the double-tubular nozzle of the spinneret, and supplies an internal arch agent of a certain flow rate through a liquid transfer pump (HPLC pump). It is fed into the distillation nozzle of the spinneret.
- HPLC pump liquid transfer pump
- the hollow yarn radiated from the double-tubular nozzle of the spinneret passes through a certain gap of air gap, and the phase transition between the spinning solution and the inner arch is started to form the inner channel of the hollow fiber membrane.
- the hollow desert which is introduced into the unggo tank (water), is introduced into the secondary unggozo at a constant speed through the tension controller to remove the remaining solvent using hot water treatment and diffusion through contact with the non-solvent, and soak in the final winding tank. It becomes.
- the hollow fiber membrane prepared through the above process was dried in Obon at 50 ° C. for more than 48 hours to complete the preparation of the vaporized membrane. At this time, the air-gap was 5 cm, the spinning speed was 75 m / min, and the spinning temperature was 170 ° C.
- polydimethylsiloxane was dissolved in 3% by weight of nucleic acid to prepare a solution, and the solution was continuously coated on the dried hollow fiber membrane.
- the outer diameter, cross section, and inner surface structure of the finally manufactured hollow yarns were analyzed using an electron scanning microscope (JE0L-840A).
- the outer diameter of the manufactured hollow yarns was about 400, and the inner diameter was about 200-250. It became.
- the polyamic acid which is the primary condensate of Banung, and the aromatic characteristic peak and the polar proton peak region of the polyimide 3 ⁇ 4-NMR spectrum after completion were monitored according to Examples 1 to 8 according to the present invention.
- the high molecular compounds were confirmed to be complete imidization due to disappearance of 11 ppm (-COOH) and 8 ppm (-NH-) due to the polyamic acid.
- 3 shows the FT-IR spectrum of the polyimide polymer compound prepared in Examples 1 to 4, wherein the H band 3200 cm— 1 and the NH band 3350 cm— 1, which are absorption bands of the polyamic acid, were not observed.
- the -polyimide polymer compound of Examples 1 to 8 and the commercialized gas of Comparative Example 1 to 6 Intrinsic viscosity of the membrane polymers was measured and the results are shown in Table 1 below. The intrinsic viscosity was immediately dissolved by dissolving the polyimide polymer compound in dimethylacetamide (DMAc) at a concentration of 0.5 g / dL using a Cannon ⁇ Fenske viscometer at 30 ° C.
- DMAc dimethylacetamide
- Intrinsic Viscosity (dL / g) As shown in Table 1, the intrinsic viscosity of the polyimide polymer compound (D0CDA-MDA) of Example 1 was 1.11 dL / g; Polyimide-based high molecular compound (D0CDA-0DA) of Example 2 was 0.45 dL / g; Polyimide-based polymer compound (D0CDA- ⁇ PDA) of Example 3 was 0.35 dL / g; The polyimide polymer compound (DOCDA- «rTDA) of Example 4 was 0.46 dL / g; Polyimide-based high molecular compound (D0CDA-TDA) of Example 5 was 0.41 dL / g; The polyamide-based polymer compound (DOCDA-TrMPD) of Example 6 was 0.52 dL / g; The polyimide polymer compound (DOCDA-TeMPD) of Example 7 was 0.60 dL / g; And the polyimide-
- the upper portion at 25 ° C. 2000 torr, 2 per tor pressures of CH 4 , N 2 , 0 2 , C0 2 and C0 2 / C3 ⁇ 4, C0 2 small / N 2 , 0 2 / N 2 , N 2 / CH
- the selectivity of 4 was measured.
- the permeation selectivity by the relative ratio of the permeation rate of the specific gas to the gas separation material and the permeability of the components of the complex to be separated depends on the performance, and the permeability and selectivity are usually measured. do.
- the coefficient of permeability is represented by Barrer, which is a coefficient that normalizes the pressure, area, and thickness of a specific sample so as to show the inherent permeability of the material, as shown in Equation 1 below.
- the permeability of the material processed into the separator can be expressed.
- the pressure and area are expressed by a GPUCGas Permeation Rate (normalized coefficient).
- Equation 3 shows the selectivity of carbon dioxide / methane.
- Tables 3 and 4 show pure gas permeability (GPU) and selectivity of the flat membrane, and Table 4 shows pure gas permeability (GPU) and selectivity of the hollow fiber membrane.
- the flat film containing the polyimide polymer compound according to the present invention has excellent gas selectivity compared to the flat film containing the polyimide polymer compound used conventionally.
- the flat membranes of the embodiment including the polyimide polymer compound of the present invention have a Pco 2 / PcH 4 selectivity of 46.3-67.0; P C02 / P N2 selectivity of 17.6-35.9; P 02 / P N2 selectivity 6.0-6.93; And P N2 / P CH4 selectivity was found to be 1.48-2.6, while In the case of the DOCDA-MDA flat membrane of 18 and the DOCDA-ODA flat membrane of Example 19, the flat membrane of the comparative example including DOCDA-IPDA, DOCDA-BAPB, DOCDA-APPP, DOCDA 'BAPBP, D0CDA-3BAPB or DOCDA—BAPP conventionally used P C02 / P CH4 selectivity 28.6-40.8; P C02 / P N2 selectivity of 12.0-27,9; P 02 / P N 2 selectivity of 4.8-5.69; And P N2 / P CH4 selectivity is shown to be 1.2-2.4, it can be seen that the flat film of
- the flat membrane of Example 19 and the hollow fiber membrane of Example 36 contained excellent pure gas permeability in all gases C , N 2 , 0 2 , C0 2 and It was confirmed that the selectivity was shown, and from this, it can be seen that the D0CDA-0DA compound among the polyimide polymer compounds according to the present invention can be most easily used as a polymer for gas separation.
- the hollow fiber membranes of Examples 35-51 compared to the flat membranes of Examples 18-34 are generally significantly higher in pure gas permeability in all of the gases CH 4, N 2 , 0 2 , C0 2 , according to the present invention, It can be seen that the hollow fiber membrane is more effective than the flat membrane in the gas and separation membrane containing the polyimide polymer compound.
- the gas separation membrane prepared from the polyimide polymer compound according to the present invention has excellent selectivity to C0 2 / CH 4 , C0 2 / N 2 , 0 2 / N 2 , N 2 / CH 4 , and in particular, The permeability to carbon dioxide was significantly higher and the permeability to methane was significantly lower, so that C0 2 / CH 4 , showed the highest selectivity.
- the asymmetric hollow fiber membrane for gas separation containing the polyimide polymer compound of the present invention is not only easily used for separating oxygen / nitrogen gas from the mixed gas, but also for separating methane from the mixed gas including methane and carbon dioxide. It can be seen that it can be used more easily.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
The present invention relates to: a polyamide-based macromolecular compound which is produced by using DOCDA and one or more diamines selected from the group consisting of MDA, ODA, PDA, TDA, TrMPD, TeMPD and MBCA; and a gas-separation asymmetrical hollow-fibre membrane comprising same. The polyamide-based macromolecular compound according to the present invention can advantageously be used in the production of a gas-separation hollow-fibre membrane having an asymmetrical structure since said compound is highly viscous due to a high molecular weight in addition to having outstanding gas permeability and high selectivity while having excellent high heat resistance, chemical resistance and mechanical properties and being outstandingly soluble in polar organic solvents.
Description
【명세서】 【Specification】
【발명의 명칭] [Name of invention]
폴리이미드계 고분자 화합물 및 이를 포함하는 기체 분리용 비대칭 중공사 Polyimide Polymer Compound and Asymmetric Hollow Fiber for Gas Separation Containing the Same
-] -]
【기술분야] Technical Field
본 발명은 MDA, ODA, PDA, TDA, TrMPD, TeMPD 및 MBCA 로 이루어진 군으로 부터 선택되는 1종 이상의 다이아민과 DOCDA를 이용하여 제조되는 폴리이미드계 고 분자 화합물 및 이를 포함하는 기체 분리용 비대칭 중공사막에 관한 것으로, 구체 적으로 기체투과도와 고선택성을 동시에 가지면서 고내열성, 내화학성 및 기계적 성질이 우수하며, 극성 유기용매에 우수한 용해성을 가질 뿐만 아니라 건습식 방사 에 적합한 고분자량을 가지고 있어 비대칭구조의 중공사막을 가공하기에 용이한 폴 리이미드계 고분자 화합물 및 이를 포함하는 기체 분리용 비대칭 중공사막에 관한 것이다. The present invention is a polyimide-based high molecular compound prepared using DOCDA and at least one diamine selected from the group consisting of MDA, ODA, PDA, TDA, TrMPD, TeMPD and MBCA and asymmetric hollow for gas separation comprising the same It is related to the desert. Specifically, it has both gas permeability and high selectivity, and has high heat resistance, chemical resistance, and mechanical properties. It is not only excellent in solubility in polar organic solvents, but also has a high molecular weight suitable for wet and dry spinning. The present invention relates to a polyimide-based polymer compound that is easy to process a hollow fiber membrane having a structure, and an asymmetric hollow fiber membrane for gas separation including the same.
[배경기술】 Background Art
산업현장에서 가장 보편적으로 사용하는 기체 분리공정은 에너지 다소비형 인 증류법 (distillation), 추출법 (extract ion), 증발법 (evaporat ion) , 흡수법 • (absorption), 돕착법 (adsorpt ion), 심넁법 (cryogenics), 결정화 (crystal 1 izat ion) 등이 있으며, 산업내의 전체 에너지 소비량의 약 40% 정도가 분리공정에 소비된다. 따라서 이러한 에너지 다소비 형태의 공정을 대체할 수 있는 분리공정에 대한 연구 및 개발이 많은 연구자들에 의해 진행 중이며 그 대체 공정중의 하나로 떠오른 공 정이 바로 분리막 (membrane)을 이용한 막분리 공정이라 할 수 있다. 분리막을 이용한 막분리 공정의 경우 일반적으로 분리과정에서 상변화를 수 반하지 않는 것으로 알려져 있어 에너지 소비가 적고 친환경적이며 장치가 간단하 여 많은 사용공간을 필요로 하지 않을 뿐만 아니라, 운전, 유지, 관리가 용이하다 는 장점이 있다. 나아가, 스케일 업 (scale— up)이 용이하며, 다른 분리공정과 쉽게 결합시켜 하이브리드 (hybrid) 형태로 적용이 용이하다는 장점도 있다.
이러한 분리막의 연구역사를 보면 1960년대 본격적인 기체 분리막에 대한 연구가 진행되기 시작하여, Loeb과 Sourirajan이 개발한 비대칭 역삼투압막의 제조 법이 1970년대 기체분리에 적용되기 시작하면서 급격한 발전을 이루기 시작하였다. 특히, 1977년초 Monsanto사가 처음으로 정제 공정에서 발생하는 수소의 분 리 ·회수 공정에 중공사막을 적용하고자 시도하였고, 성공적인 결과를 바탕으로Gas most commonly used in industrial separation processes for energy rather non-formation of the distillation (distillation), extraction (extract ion), evaporation (evaporat ion), absorption • (absorption), to help chakbeop (adsorpt ion), Siem nyaengbeop (cryogenics), crystallization (crystal 1 izat ion), and about 40% of the total energy consumption in the industry is spent in the separation process. Therefore, research and development of a separation process that can replace such an energy-saving process is being conducted by many researchers, and one of the alternative processes has emerged as a membrane separation process using a membrane. have. In the case of membrane separation process using membrane, it is generally known that it does not involve phase change in the separation process, so it is low in energy consumption, environmentally friendly, and simple in equipment, which does not require much use space, operation, maintenance and management. There is an advantage that it is easy. Furthermore, scale-up is easy, and it is easy to combine with other separation processes, and thus it is easy to apply in a hybrid form. According to the research history of these membranes, full-fledged research on gas separation membranes began in the 1960s, and the development of asymmetric reverse osmosis membranes developed by Loeb and Sourirajan began to be applied to gas separation in the 1970s. In particular, in early 1977, Monsanto attempted to apply the hollow fiber membrane to the hydrogen separation and recovery process generated for the first time in the refining process.
1979년 PRISM 이라는 상품명으로 시판을 시작하였다. 이를 바탕으로 Monsanto 사는 전 세계적으로 75 개의 막분리 시스템을 판매하게 되었다. It began marketing in 1979 under the trade name PRISM. Based on this, Monsanto has sold 75 membrane separation systems worldwide.
Monsanto 사의 PRISM 외에도 미국의 Separex사의 나권형 CA모들 등이 정유 공정 및 석유화학공정 등에서 발생하는 폐가스로부터 ¾를 회수하는 공정, 암모니 아 플랜트에서 ¾ 조성을 조절하기 위한 공정, 메탄올 플랜트 등에서 매우 성공적 으로 적용되게 된다. 그 후, ¾의 분리뿐만 아니라 co2의 분리에도 그 적용범위를 넓히고자 시도 하였다. 특히 유전에서 채취된 천연가스는 일반적으로 40 - 45 mol%의 C02와 54 - 59 mol%의 CH4로 구성되어 있으며 C02/CH4의 분리공정에 막분리 공정이 도입되어 매 우 성공적으로 적용되었다. 이후에도 많은 연구가 진행되었고 그 결과 천연가스나 바이오가스에서 co2 를 제거하여 CH4를 정제하는 공정은 상업화로 이어져 많은 회사가 생겼고 다양한 적용분야를 개척하여 성장해 가고 있으며 기존에 전통적으로 사용되어 오던 심넁법 이나 흡수법, 흡착법 등을 대체할 만큼의 경쟁력을 갖춘 공정으로 자리 잡았다. 막을 이용한 기체 분리 공정의 경제성은 주로 막소재의 선택도는 주로 회수 율을 좌우하고 투과도는 막모들 및 플랜트 비용을 좌우한다. 따라서 기체분리막의 상업화에 성공하였음에도 불구하고 보다 높은 투과도와 선택도를 갖으며, 높은 온 도 ·압력 등의 가혹한 조건에서도 사용가능한 분리막을 개발하기 위하여 많은 연구
0 가 추가로 진행 중이다. 막을 이용한 기체분리 공정에 사용되는 막 소재 물질을 대부분 비다공성의 고분자 막을 사용하며, 고분자를 이용한 분리막이 실제 상업적으로 산업에 적용되 기 위해서는 높은 기체 투과도와 높은 선택도와 함께 동시에 박막화했을 경우 높은 압력과 고온에 견딜 수 있는 우수한 열적, 기계적 안정성이 필요하며 처리하고자 하는 기체들의 독성에 견딜 수 있는 화학적 특성이 있어야 한다'. 이와 함께 중공사 막의 형태로 대량생산될 경우, 상전이 공정을 적용할 수 있는 유기용매에 대한 용 해성과 방사에 적합한 고점도를 가질 수 있도록 고분자량을 가지고 있어야 한다. 이러한 이유로 분리막 소재의 경우 지금까지 1,000가지 이상의 소재가 연구 되고 개발되었으나 소재의 가격이나 생산성, 성능 등을 복합적으로 고려하여 8-9가 지 정도의 극히 일부만의 소재가 상용화되어 사용되고 있다. 현재까지 기체분리용 막 소재로 상용화된 예는 폴리술폰 (polysulfone)과 폴리이미드 (polyimide), 셀를로 오즈 아세테이트 (cellulose acetate), 폴리카보네이트 (polycarbonate), 폴리피를론 (polypyrrolone), 등이 있으며 미국의 Air Products.사에 폴리설폰이 그리고 MGI사 에 의해 브롬화된 폴리카보네이트가, 일본 우베 (Ube)사에 의해 폴리이미드가, 그리 고 다우 (Dow)사에 의해 셀를로오스 아세테이트계 소재가 상업화되었다. 이 중 폴리이미드계 소재는 폴리설폰, 셀를로오스 아세테이트, 폴리카보네 이트 등의 소재에 비해 아주 높은 화학적, 열적 안정성과 함께 이미드 고리의 극성 이면서도 경직된 분자쇄가 주는 높은 이산화탄소 /메탄, 산소 /질소, 수소 /질소, 이 산화탄소 /질소 등의 기체분리특성으로 인하여 분리막으로 개발하기 위한 많은 다양 한노력이 이루어져 왔다. 예를 들면 일본의 우베사의 경우 자체개발된 바이페닐계 의 방향족 폴리이미드인 Upilex— R(BPDA-ODA) 공중합체 소재를 대상으로 기체분리용 중공사막을 상업화하였으며 독일의 Evonic사는 방향족 폴리이미드 공중합체인 P84 소재를 대상으로 메탄분리용 증공사막을 상업화하였으며 미국의 Air Liquide사는 미국의 Hunsmann사의 지환족 다이안하이드라이드를 사용한 용해성 폴리이미드인 Matrimide를 대상으로 기체분리용 중공사막을 개발하여 상업적으로 최근 시판하고
바이오메탄과 천연가스 시장을 확대 적용하고 있다. 이러한 기업들은 자체개발된 폴리이미드 소재를 대상으로 분리막을 개발하여 독점적으로 전세계시장에 공급을 하고 있다. 특히, 현재 전세계에서는 석유자원의 고갈로 인한 천연가스의 정제시장과 유기성 폐기물에서 유래하는 바이오메탄의 정제를 위한 분리막공정, 연소배기가스 로부터 이산화탄소의 회수용 막분리기술, 복합화력발전이나 순산소연소 분야에서 수소 /이산화탄소 질소 /산소 분라용 막공정 석유화학이나 합성가스의 생산에서 수 소분리용 분리막 등의 분야에서 시장이 급격히 확산되고 있으며, 이러한 메탄 /이산 화탄소, 산소 /질소, 수소 /이산화탄소의 정제분야에서 높은 제품경쟁력을 가진 분리 막올 개발하기 위해서는 기체 선택성이 높으면서도 유기용매에 대한 용해성이 우수 하며 분자량이 높아 중공사막으로 가공성이 우수한 새로운 폴리이미드 원천소재가 절실히 요구되고 있다. 미국등록특허 제 4,851,505호 및 미국등록특허 게 4,912,197호에는 일반적인 범용 용매에 우수한 용해성을 가짐으로써 공정상에서 특정 반복단위를 갖는 어닐링 된 폴리이마드 중합체를 통해 높은 선택성, 생산성 및 기계적 안정성을 가지며 고 분자.가공의 어려움을 줄인 폴리이미드 기쎄 분리막이 개시되어 있다. 미국특허공개 제 2009— 0227744호 에는 특정 반복단위를 갖는 어닐링 된 폴리 이미드 폴리머를 통해 높은 선택성, 생산성 및 기계적 안정성을 갖는 막이 개시되 어 있다. 이에, 본 발명자는 기체 분리용 폴리이미드의 소재로서 주쇄에 비를림이나 비대칭성을 줄 수 있는 지환족 고리구조로 인해 유기용매에 대한 용해성이 아주 우수하다고 알려진 D0CDA(5-(2,5-dioxotetrahydrofuryl)— 3-methyl-3-cyclohexene- 1,2-dicarboxylic anhydride)를 단량체로 하여 다이아민을 변화시키면서 D0CDA계 폴리미미드 고분자 화합물을 제조하고ᅳ 상용화를 위해 건습식 방사법에 의해 비대칭구조의 기체분리용 중공사막의 연구를 수행한 결과 우수한 기체분리특성을
가짐을 확인하고 본 발명을 완성하였다. In addition to Monsanto's PRISM, Separex's spiral wound CAs have been successfully applied to recover ¾ from waste gas from refinery and petrochemical processes, to adjust ¾ composition in ammonia plants, and methanol plants. do. Subsequently, attempts were made to broaden the scope of application to co 2 as well as ¾. In particular, natural gas collected from oil fields is generally composed of 40-45 mol% of C0 2 and 54-59 mol% of CH 4 , and the membrane separation process is introduced into the separation of C0 2 / CH 4 , which is very successful. Applied. Since then, many researches have been conducted. As a result, the process of purifying CH 4 by removing co 2 from natural gas or biogas has led to commercialization, and many companies have been created and are growing by pioneering various applications. It has become a competitive process that can replace the method of absorption, absorption, and adsorption. The economics of the gas separation process using membranes mainly depends on the selectivity of the membrane material and the permeability on the membranes and plant costs. Therefore, despite the successful commercialization of gas separation membranes, many studies have been made to develop separation membranes having higher permeability and selectivity and usable under severe conditions such as high temperature and pressure. 0 is in progress. Membrane materials used in the gas separation process using membranes mostly use non-porous polymer membranes, and high pressure and high temperature when the membranes using polymers are thinned at the same time with high gas permeability and high selectivity in order to be applied to the commercial industry. It requires excellent thermal and mechanical stability to withstand, and have chemical characteristics that can tolerate the toxicity of the gas to be treated. In addition, when mass-produced in the form of hollow fiber membranes, it must have a high molecular weight so as to have a high viscosity suitable for the solubility and spinning for the organic solvent to which the phase transition process can be applied. For this reason, more than 1,000 materials have been researched and developed so far in the case of separator materials, but only a few of 8-9 materials have been commercialized and used in consideration of the cost, productivity, and performance of materials. Examples of commercially available gas separation membrane materials include polysulfone and polyimide, cellulose acetate, polycarbonate, polypyrrolone, and the like. Polysulfone is brominated by Air Products, Inc. in the US, and polycarbonate brominated by MGI, polyimide by Ube, Japan, and cellulose acetate-based material by Dow, Inc. It became. Among them, polyimide-based materials have higher chemical and thermal stability than polysulfone, cellulose acetate, and polycarbonate, and high carbon dioxide / methane, oxygen / Due to the gas separation characteristics of nitrogen, hydrogen / nitrogen and carbon dioxide / nitrogen, many various efforts have been made to develop membranes. For example, Ube, Japan, has commercialized gas separation hollow fiber membranes for its own biphenyl-based aromatic polyimide, Upilex—R (BPDA-ODA) copolymer, and Germany's Evonic is an aromatic polyimide copolymer. Commercialized methane separation membrane for P84 material was commercialized, and US Air Liquide developed gas separation hollow fiber membrane for soluble polyimide using alicyclic dianhydride of Hunsmann of USA and commercially marketed it recently. The biomethane and natural gas markets are expanding. These companies develop membranes for polyimide, which are developed in-house, and supply them exclusively to the global market. In particular, the world is currently pursuing a market for refining natural gas due to exhaustion of petroleum resources, membrane process for refining biomethane derived from organic waste, membrane separation technology for recovering carbon dioxide from combustion exhaust gas, combined cycle power generation and pure oxygen combustion. Membrane Process for Hydrogen / Carbon Dioxide Nitrogen / Oxygen Separation The market is rapidly expanding in the fields of petrochemical and syngas separation membranes for the separation of hydrogen, and the purification of methane / carbon dioxide, oxygen / nitrogen, hydrogen / carbon dioxide. In order to develop a separation membrane having a high product competitiveness in Korea, there is an urgent need for a new polyimide source material having high gas selectivity and high solubility in organic solvents and having high molecular weight and excellent processability as a hollow fiber membrane. U.S. Patent No. 4,851,505 and U.S. Patent No. 4,912,197 have high selectivity, productivity, and mechanical stability through an annealed polyimide polymer having specific repeating units in the process by having excellent solubility in general general purpose solvents. A polyimide-based separator is disclosed that reduces the difficulty of processing high molecular weight molecules. US Patent Publication No. 2009-0227744 discloses membranes with high selectivity, productivity and mechanical stability through annealed polyimide polymers with certain repeating units. Accordingly, the inventors of the present invention have described D0CDA (5- (2,5-), which is known to have excellent solubility in organic solvents due to an alicyclic ring structure which may give a slight asymmetry to the main chain as a material of polyimide for gas separation. dioxotetrahydrofuryl) —3-methyl-3-cyclohexene- 1,2-dicarboxylic anhydride) is used to prepare a D0CDA-based polyimide polymer compound while changing diamines, and asymmetric gas by wet and dry spinning method for commercialization. The study of separation hollow fiber membrane showed excellent gas separation characteristics. It was confirmed that the present invention was completed.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】 [Technical problem]
본 발명의 목적은 기체 분리용 비대칭 중공사막의 제조에 용이한 폴리이미 드계 고분자 화합물을 제공하는 데 있다. SUMMARY OF THE INVENTION An object of the present invention is to provide a polyimide polymer compound that is easy to prepare asymmetric hollow fiber membrane for gas separation.
본 발명의 다른 목적은 상기 폴리이미드계 고분자 화합물의 제조방법을 제 공하는 데 있다. Another object of the present invention is to provide a method for producing the polyimide polymer compound.
본 발명의 또 다른 목적은 상기 폴리이미드계 고분자 화합물을 포함하는 기 체 분리용 비대칭 중공사막을 제공하는 데 있다. Another object of the present invention to provide an asymmetric hollow fiber membrane for gas separation comprising the polyimide polymer compound.
본 발명의 다른 목적은 상기 기체 분리용 비대칭 중공사막의 제조방법을 제 공하는 데 있다. Another object of the present invention to provide a method for producing the asymmetric hollow fiber membrane for gas separation.
본 발명의 또 다른 목적은 상기 기체 분리용 비대칭 중공사막을 사용하는 흔합기체의 분리방법을 제공하는 데 있다. Another object of the present invention is to provide a method for separating a mixed gas using the asymmetric hollow fiber membrane for gas separation.
【기술적 해결방법】 Technical Solution
상기 목적을 달성하기 위하여, In order to achieve the above object ,
본 발명은 하기 화학식 1로 표시되는 폴리이미드계 고분자 화합물을 제공한 다: The present invention provides a polyimide polymer compound represented by the following Chemical Formula 1:
n은 50 - 150의 정수이다). 또한, 본 발명은 하기 화학식 2의 단량체 화합물과 하기 화학식 3 내지 10 으로부터 선택되는 1종 이상의 단량체 화합물을 메타크레졸 반웅용매 하에 150 - 203 °C의 반웅온도에서 중축합반웅시키는 단계를 포함하는 상기 폴리이미드계 고분 자 화합물의 제조방법을 제공한다: n is an integer from 50 to 150). In addition, the present invention comprises a polycondensation reaction of the monomer compound of Formula 2 and at least one monomer compound selected from Formulas 3 to 10 at a reaction temperature of 150-203 ° C under a metacresol semicoagulant Provided are methods for preparing the mid-based polymer compound:
[화학식 2] [Formula 2]
[화학식 4] [Formula 4]
[화학식 8] [Formula 8]
나아가, 본 발명은 상기 폴리이미드계 고분자 화합물을 포함하는 기체 분리 용 비대칭 중공사막을 제공한다. 또한, 본 발명은 상기 폴리이미드계 고분자 화합물, 고비점의 비극성 유기 용매, 저비점의 비용매 및 기공형성제인 고비점의 비용매를 포함하는 방사용액을 제조하는 단계 (단계 1); 및 Furthermore, the present invention provides an asymmetric hollow fiber membrane for gas separation comprising the polyimide polymer compound. In addition, the present invention comprises the steps of preparing a spinning solution comprising the polyimide-based polymer compound, a high boiling point nonpolar organic solvent, a low boiling point non-solvent and a high boiling point non-solvent as a pore-forming agent (step 1); And
상기 단계 1에서 제조한 상기 방사용액을 이중관형 노즐을 장착한 건습식 방사장치를 사용하여 내부웅고제 존재 하에 방사하는 단계 (단계 2);를 포함하는 상 기 기체 분리용 비대칭 중공사막의 제조방법을 제공한다. 나아가, 본 발명은 상기 기체 분리용 비대칭 중공사막을 사용하여 흔합기체 를 분리하는 단계를 포함하는 흔합기체의 분리방법을 제공한다.
Q The step of spinning the spinning solution prepared in step 1 in the presence of an internal arch agent using a wet and dry spinning apparatus equipped with a double-tubular nozzle (step 2); manufacturing method of the asymmetric hollow fiber membrane for gas separation comprising the To provide. Furthermore, the present invention provides a method for separating a mixed gas comprising the step of separating the mixed gas using the asymmetric hollow fiber membrane for gas separation. Q
o o
【유리한 효과】 Advantageous Effects
본 발명에 따른 폴리이미드계 고분자 화합물은 우수한 기체투과도와 고선택 성을 가짐과 동시에 고내열성, 내화학성 및 기계적 성질이 뛰어나며, 극성 유기용 매에 우수한 용해성을 가질 뿐만 아니라 고분자량으로 인한 고점도를 가지므로, 기 체 분리용 비대칭구조의 중공사막의 제조에 용이하게 사용될 수 있다. The polyimide polymer compound according to the present invention has excellent gas permeability and high selectivity, and also has high heat resistance, chemical resistance and mechanical properties, and has excellent solubility in polar organic solvents and high viscosity due to high molecular weight. Therefore, it can be easily used for the production of a hollow fiber membrane of the asymmetric structure for gas separation.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명에 따른 중공사막을 제조하기 위한 장치를 나타낸 도면이다. 도 2는 본 발명에 따른 폴리이미드계 고분자 화합물 및 폴리아믹산의 _ NMR스펙트럼을 나타내는 그래프이다. 1 is a view showing an apparatus for manufacturing a hollow fiber membrane according to the present invention. Figure 2 is a graph showing the _ NMR spectrum of the polyimide-based polymer compound and polyamic acid according to the present invention.
도 3은 본 발명에 따른 폴리이미드계 고분자 화합물의 FT-IR 스펙트럼올 나타내는 그래프이다. 3 is a graph showing the FT-IR spectrum of the polyimide polymer compound according to the present invention.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
본 명세서에 있어서, "폴리이미드계 고분자 화합물 "이란 단량체로서 다이안 하이드라이드 1 당량 및 다이아민 1 당량을 축합하여 제조되는 폴리이미드계 중합 체를 의미한다. 보다 구체적으로는, 상기 "폴리이미드계 고분자 화합물 "은 '다이안 하이드라이드 '인 D0CDA(5-(2,5-다이옥소테트라하이드로퓨릴) -3—사이클로핵센 -1,2- 다이카르복실릭 안하이드라이드, 5-(2,5-dioxotetrahydrofuryl)-3-mehtyl-3- eye 1 ohexene-1 , 2-di car boxy 1 i c anhydride) 1 당량과 '다이아민'인 MDA(4,4'-메틸렌 다이아닐린, 4, 4' -Methylene dianiline), 0DA(4,4'—옥시 다이아닐린, 4,4'-0xy di aniline), / PDA (파라 -페닐렌다이아민, par a-pheny 1 ened i am i ne ) , /? ΌΑ (메타-를 루엔다이아민, meta-toluenediamine), /广 TDA (파라 -를루엔다이아민, para- toluenediamine), TrMPD(2,4,6-트리메틸 -1,3-페닐렌다이아민, 2,4,6-Tr imethyl- 1 , 3-pheny 1 ened i amine), TeMPD(2,3,5,6-테트라메틸 -1,4,-페닐렌다이아민, 2,3,5,6- Tetramethyl-1, 4-phenyl ened i amine) 및 MBCA(4, 4 'ᅳ메틸비스 (2-클로로아닐린 ), 4,4'-Methylenebis(2-chloroaniline))로 이루어진 군으로부터 선택되는 1종 이상의 다이아민 1 당량과 반응하여 생성되는 폴리이미드계 중합체로서, 이때, 단일한 다 이아민이 중합에 사용되는 경우에 생성되는 단일증합체 (homopolymer); 및 서로 다
른 2종 이상의 다이아민이 사용되는 경우에 공중합체 (copolymer)를 모두 포함한다. 이하, 본 발명을 상세히 설명한다. 본 발명은 하기 화학식 1로 표시되는 폴리이미드계 고분자 화합물을 제공한 다: As used herein, the term "polyimide polymer compound" means a polyimide polymer prepared by condensation of 1 equivalent of diane hydride and 1 equivalent of diamine as a monomer. More specifically, the "polyimide-based high molecular compound" is D0CDA (5- (2,5-dioxotetrahydrofuryl) -3-cyclonuxene -1,2-dicarboxylic acid which is a "dian hydride" Hydride, 5- (2,5-dioxotetrahydrofuryl) -3-mehtyl-3- eye 1 ohexene-1, 2-di car boxy 1 ic anhydride) 1 equivalent and 'diamine' MDA (4,4'-methylene Dianiline, 4 , 4'-Methylene dianiline), 0DA (4,4'—oxy dianiline, 4,4'-0xy di aniline), / PDA (para-phenylenediamine , par a-pheny 1 ened i am i ne), /? ΌΑ (meta-toluenediamine), / 广 TDA (para-toluenediamine), TrMPD (2,4,6-trimethyl-1,3-phenylenediamine , 2 , 4,6-Tr imethyl- 1, 3-pheny 1 ened i amine), TeMPD (2,3,5,6-tetramethyl-1,4, -phenylenediamine , 2,3,5,6- At least one diamond selected from the group consisting of tetramethyl-1, 4-phenyl ened i amine) and MBCA (4, 4'-methylaniline), 4,4'-Methylenebis (2-chloroaniline) A polyimide polymer produced by reacting with 1 equivalent of Min, wherein a homopolymer produced when a single diamine is used for polymerization; And each other When two or more diamines are used, all of the copolymers are included. Hereinafter, the present invention will be described in detail. The present invention provides a polyimide polymer compound represented by the following Chemical Formula 1:
(상기 화학식 1에 있어서, (In the above formula 1,
n은 50 - 150의 정수이다). 본 발명에 따른 상기 폴리이미드계 고분자 화합물은 우수한 기체투과도를 가짐과 동시에 높은 기체분리 선택성을 가지므로, 흔합기체 특히, 바이오가스 흔합 물로부터 메탄을 효과적으로 분리할 수 있다. 또한, 본 발명에 따른 상기 폴리이미 드계 고분자 화합물은 내화학성 및 기계적 성질이 우수하며, 극성 유기용매에 우수 한 용해성을 가지며 고분자량을 가지고 있어 상업적인 목적으로 사용되는 고선택투 과성의 비대칭구조의 중공사막을 가공하기에 용이하다. n is an integer from 50 to 150). Since the polyimide polymer compound according to the present invention has excellent gas permeability and high gas separation selectivity, it is possible to effectively separate methane from a mixed gas, in particular, a biogas mixture. In addition, the polyimide polymer compound according to the present invention has excellent chemical resistance and mechanical properties, has excellent solubility in polar organic solvents, has a high molecular weight, and has a high permeability asymmetric hollow structure used for commercial purposes. Easy to process deserts
먼저, 본 '발명에 따른 실험예 3을 참조하면, 본 발명의 폴리이미드계 고분 자 화합물은 고유 점도의 측정 결과, D0CDA-MDA 화합물은 1.11 dL/g; D0CDA-0DA 화
합물은 0.45 dL/g; 및 DOCDA-^PDA 화합물은 0.34 dL/g로, 현재 상용화되어 있는 폴리설폰, 매트리미드, 폴리이서설폰, 폴리이미드 (예를 들면, P84®)의 기체 분리 막 고분자와 비교하여도 비슷한 수준의 고유 점도를 가지므로, 중공사막을 제조하 기 위한 방사에 적합한 고점도를 갖는 것을 알 수 있다. First, when the "see Example 3 according to the invention, the polyimide-based compound is mounds character inherent viscosity measurement results, D0CDA MDA-compound of the present invention is 1.11 dL / g; D0CDA-0DA The mixture was 0.45 dL / g; And DOCDA- ^ PDA compounds at 0.34 dL / g, comparable to those of gas separation membrane polymers of currently available commercially available polysulfones, matimides, polysulfones, polyimides (eg P84®) Since it has an inherent viscosity, it can be seen that it has a high viscosity suitable for spinning for producing a hollow fiber membrane.
또한, 본 발명에 따른 실험예 4를 참조하면, 본 발명의 폴리이미드계 고분 자 화합물은 여러 유기용제에 대하여 우수한 용해성을 나타내고 있으므로, 중공사 막을 제조할 경우 상전이 공정을 적용하는 것이 용이함을 알 수 있다. In addition, referring to Experimental Example 4 according to the present invention, since the polyimide-based polymer compound of the present invention exhibits excellent solubility in various organic solvents, it can be seen that it is easy to apply a phase transition process when preparing hollow fiber membranes. have.
나아가, 본 발명에 따른 실험예 5의 표 3을 참조하면, 본 발명의 폴리이미 드계 고분자 화합물을 포함하는 기체분리막의 경우, D0CDAᅳ IPDA, DOCDA-BAPB, DOCDA-APPP, DOCDA-BAPBP, D0CDA-3BAPB, DOCDA-BAPP와 같은 폴리이미드계 고분자 기체분리막 비해 C02/CH4, C02/N2및 02/ ^에 대한 선택도가 더 우수하므로, 본 발명 에 따른 폴리이미드계 고분자 화합물들이 기체 분리용 고분자로서 더욱 용이하게 사용될 수 있음을 알 수 있다. 또한, 본 발명에 따른 실험예 5의 표 3 및 4를 참조하면, D0CDA-0DA 기체분 리막이 순수 기체 투과도 및 선택도의 측면에서 가장 우수한 효과가 았는 것을 확 인할 수 있으므로, 본 발명에 따른 상기 폴리이미드계 고분자 화합물은 하기 화학 식 11로 표시되는 화합물인 것이 더욱 바람직하다. Furthermore, referring to Table 3 of Experimental Example 5 according to the present invention, in the case of the gas separation membrane including the polyimide polymer compound of the present invention, D0CDAC IPDA, DOCDA-BAPB, DOCDA-APPP, DOCDA-BAPBP, D0CDA- Since the selectivity for C0 2 / CH 4 , C0 2 / N 2 and 0 2 / ^ is better than that of polyimide polymer gas separation membranes such as 3BAPB and DOCDA-BAPP, the polyimide polymer compounds according to the present invention It can be seen that it can be used more easily as a separation polymer. In addition, referring to Tables 3 and 4 of Experimental Example 5 according to the present invention, it can be seen that the D0CDA-0DA gas separation membrane had the best effect in terms of pure gas permeability and selectivity. The polyimide polymer compound is more preferably a compound represented by the following formula (11).
(상기 화학식 11에 있어서, n은 50 ᅳ 150의 정수이다.) 한편, 본 발명은 하기 화학식 2의 단량체 화합물과 하기 화학식 3 내지 10 으로 이루어진 군으로부터 선택되는 1종 이상의 단량체 화합물을 메타크레졸 반응 용매 하에 150 - 203°C의 반응온도에서 중축합반웅시키는 단계를 포함하는 본 발명 에 따른 상기 폴리이미드계 고분자 화합물의 제조방법을 제공한다. (In Formula 11, n is an integer of 50 ᅳ 150.) Meanwhile, the present invention is a metacresol reaction solvent of at least one monomer compound selected from the group consisting of the monomer compound of the following formula (2) and the following formula (3 to 10) It provides a method for producing the polyimide-based polymer compound according to the invention comprising the step of polycondensation reaction at a reaction temperature of 150-203 ° C.
【화학식 2】
η [Formula 2] η
【화학 【chemistry
【화학 【chemistry
【화학식 7】 [Formula 7]
구체적으로, 상기 화학식 2의 단량체 화합물은 주쇄에 비를림이나 비대칭성 을 줄 수 있는 지환족 고리구조로 인해 유기용매에 대한 용해성이 아주 우수한 지 환족 다이안하이드라이드 화합물인 D0CDA(5— ( S-dioxotetrahydrofuryU-S-mehtyl- S-cyclohexene-U-dicarboxylic anhydride)이고, 상기 화학식 3 내지 10의 단량체 화합물은 방향족 다이아민 화합물인 MDA(4,4' -Methylene dianiline), 0DA(4,4'-0xy dianiline), -PDA (par a-pheny 1 ened i am i ne ) , m-TDA(meta-toluenediamine) , p— TDA( ar a- 1 o 1 uened i am i ne ) , TrMPD (2,4, 6-Tr i me t hy 1 - 1 , 3-pheny 1 ened i am i ne ) ,Specifically, the monomer compound of Chemical Formula 2 is a cycloaliphatic dianhydride compound having excellent solubility in organic solvents due to an alicyclic ring structure which may give asymmetry or asymmetry to the main chain. dioxotetrahydrofuryU-S-mehtyl-S-cyclohexene-U-dicarboxylic anhydride) and the monomer compounds of Formulas 3 to 10 are aromatic diamine compounds MDA (4,4'-Methylene dianiline), 0DA (4,4'-0xy) dianiline), -PDA (par a-pheny 1 ened i am i ne), m-TDA (meta-toluenediamine), p— TDA (ar a-1 o 1 uened i am i ne), TrMPD (2,4, 6-Tr i me t hy 1-1, 3-pheny 1 ened i am i ne),
TeMPD (2,3,5,6-Tetramethyl-l, 4-phen lenediamine) 및 MBCA ( 4 , 4 '—Me t hy 1 eneb i s ( 2- chloroani 1 ine))이다. TeMPD (2,3,5,6-Tetramethyl-l, 4-phen lenediamine) and MBCA (4, 4'—Met hy 1 eneb i s (2-chloroani 1 ine)).
또한, 본 발명에 따른 상기 폴리이미드계 고분자 화합물의 제조방법에 있어 서, 상기 중축합 반웅은 화학식 2의 D0CDA 단량체 화합물과 화학식 3 내지 10의 MDA, ODA, / PDA, zrTDA, TrMPD, TeMPD 및 MBCA 의 단량체 화합물로부터 선택되는 1 이상의 단량체 화합물 사이에서 물 한 분자가 탈수되면서 결합하는 반웅에 의해 이미드 고리를 형성하면서 제조되는 것을 특징으로 한다. In addition, in the method for preparing the polyimide-based polymer compound according to the present invention, the polycondensation reaction is a D0CDA monomer compound of Formula 2 and MDA, ODA, / PDA, zrTDA, TrMPD, TeMPD and MBCA of Formula 3 to 10. It is characterized in that it is prepared while forming an imide ring by a reaction that one molecule of water is bonded while dehydrating between one or more monomer compounds selected from monomer compounds of.
나아가, 본 발명에 따른 상기 폴리이미드계 고분자 화합물의 제조방법에 있 어서, 반웅 온도는 150°C ― 203 °C 인 것이 바람직하다. 반웅 은도가 150°C 미만인 경우 이미드화도가 떨어지고 중합도가 낮아지는 문제점이 있다. 또한, 메타크레졸 의 비등점이 203 °C이므로 이 이상 가열하는 것은 바람직하지 않다. Furthermore, in the method for producing the polyimide polymer compound according to the present invention, the reaction temperature is preferably 150 ° C.-203 ° C. If the reaction is less than 150 ° C there is a problem that the degree of imidization falls and the degree of polymerization is lowered. In addition, since the boiling point of the metacresol is 203 ° C., heating above this is not preferable.
한편, 본 발명은 본 발명에 따른 상기 폴리이미드계 고분자 화합물을 포함 하는 기체 분리용 비대칭 중공사막을 제공하며, 상기 분리되는 기체는 메탄인 것이 바람직하다 .
본 발명에 따른 실험예 5의 표 3 및 4를 참조하면, 본 발명의 폴리이미드계 고분자 화합물 용액을 유리판 위에 캐스팅하여 제조된 평막에 비해, 건습식 방사장 치를 사용하여 제조된 중공사막의 경우, 순수 기체 투과도가 우수한 것을 확인할 수 있으며, 이로부터 증공사막으로 제조한 경우 기체 분리에 더욱 용이하게 사용될 수 있음을 알 수 있다. 또한 본 발명에 따른 실험예 5의 표 3 및 4를 참조하면 메 탄의 순수 기체.투과도가 다른 기체에 비해 현저히 낮으므로, 본 발명에 따른 비대 칭 중공사막은 특히, 메탄 기체 분리에 더욱 용이하게 사용될 수 있음을 알 수 있 다. 한편, 본 발명은 본 발명에 따른 폴리이미드계 고분자 화합물, 고비점의 제 막 용매, 저비점의 비용매 및 기공형성제인 고비점 비용매를 포함하는 방사용액을 제조하는 단계 (단계 1) 및 On the other hand, the present invention provides an asymmetric hollow fiber membrane for gas separation comprising the polyimide-based polymer compound according to the present invention, wherein the gas to be separated is preferably methane. Referring to Tables 3 and 4 of Experimental Example 5 according to the present invention, in the case of the hollow fiber membrane prepared using a wet-and-water spinning apparatus, compared to the flat membrane prepared by casting the polyimide polymer compound solution of the present invention on a glass plate, It can be seen that the gas permeability is excellent, from which it can be seen that it can be used more easily in the gas separation when prepared with a membrane. In addition, referring to Tables 3 and 4 of Experimental Example 5 according to the present invention, since pure gas of permeability is significantly lower than other gases, the asymmetric hollow fiber membrane according to the present invention is more particularly easy to methane gas separation. It can be seen that it can be used. On the other hand, the present invention comprises the steps of preparing a spinning solution comprising a polyimide polymer compound according to the present invention, a high boiling point film forming solvent, a low boiling point non-solvent and a high boiling point non-solvent as a pore-forming agent (step 1) and
단계 1에서 제조한 상기 방사용액을 이중관형 노즐을 장착한 건습식 방사장 치를 사용하여 내부웅고제 존재 하에 방사하는 단계 (단계 2)를 포함하는 기체 분리 용 비대칭 중공사막의 제조방법을 제공한다. 이하, 본 발명에 따른 상기 기체 분리용 비대칭 중공사막의 제조방법을 단 계별로 상세히 설명한다. 본 발명에 따른 상기 중공사막의 제조방법에 있어세 상기 단계 1은 본 발 명에 따른 플리이미드계 고분자 화합물, 고비점의 제막 용매, 저비점의 비용매 및 기공형성제인 고비점 비용매를 포함하는 방사용액을 제조하는 단계이다. 구체적으로, 본 발명에 따른 중공사막의 제조방법에 있어서, 상기 단계 1의 방사용액은 기체선택성을 갖는 폴리이미드계 고분자 화합물을 20 - 40 증량 % 포함 하는 것이 바람직하며, 25 - 35 중량 %를 포함하는 것이 더욱 바람직하다. 상기 폴 리이미드계 고분자 화합물이 20 증량 % 미만으로 포함되는 경우 점도가 너무 낮아 제조되는 중공사막의 강도가 약하고 기체분리의 선택성이 없어진다는 문제점이 있
는 반면, 40 중량 % 초과로 포함되는 경우 점도가 너무 높아 중공사 형태로 방사가 어렵다는 문제점이 있다. 또한, 본 발명에 따른 중공사막의 제조방법에 있어서, 상기 단계 1의 고비 점의 유기 용매는 상기 폴리이미드계 고분자 화합물을 용해시키는 역할을 하는데, N-메틸피를리돈, 다이메틸아세트아마이드 및 다이메틸포름아마이드로부터 선택되는 1종 이상의 고비점의 유기 용매를 사용할 수 있다. 나아가, 본 발명에 따른 중공사막의 제조방법에 있어서, 상기 단계 1의 저 비점의 비용매는 상기 폴리이미드계 고분자 화합물을 용해시키진 않지만 팽윤하는 특성이 있어, 기체 선택성이 있는 스킨충을 형성시키는 역할을 하는데, 테트라하이 드로퓨란 (THF), 아세톤, 메탄올 및 에탄올로부터 선택되는 1종 이상의 저비점의 비 용매를 사용할 수 있다. 또한, 본 발명에 따른 중공사막의 제조방법에 있어서, 상기 단계 1의 고비 점의 바용매는 중공사막의 기공형성을 돕는 역할을 하는데, 부탄올, 이소프로필알 콜, 다이메톡시에탄올, 다아메록시 부틸렌옥사이드, 부록시메탄올, 부톡시에탄을 및 다이글리시딜다이메틸이서로부터 선택되는 1종 이상의 고비점의 비용매를 사용 할 수 있다. 나아가, 본 발명에 따른 중공사믹 1의 제조방법에 있어서, 상기 단계 1의 내 부웅고제는 고비점의 유기용매 및 저비점와 비용매를 혼합하여 사용하며, 상기 방 사 용액은 내부웅고제에 포함되는 고비점의 유기용매, 저비점의 비용매 및 기공형 성제인 고비점의 비용매의 혼합비가 80:10:10 - 60 :20 :20인 것이 바람직하며, 75: 15: 10 - 65 :25 :10인 것이 더욱 바람직하다. 상기 고비점의 유기용매의 비가 60 미만인 경우 중공사 표면의 선택층이 너무 두껍게 형성되어 투과도가 낮아지는 문 제점이 있는 반면 80 초과인 경우 막 자체의 선택층 형성이 어려워서 선택성이 떨 어지는 문제점이 있어 바람직하지 않다.
한편, 본 발명은 본 발명에 따른 상기 기체 분리용 비대칭 중공사막을 사용 하여 흔합기체를 분리하는 단계를 포함하는 흔합기체의 분리방법을 제공한다. 상기 흔합기체로 매립지, 축산폐기물, 하수 슬러지, 음식물 쓰레기 등의 유기성 폐기물 의 혐기성 분해과정에서 발생되는 메탄 흔합기체, 석탄과 천연가스 등의 화석연료 의 연소과정에서 배출되는 연소배기가스, 공기 내의 산소 /질소 /수증기, IGCC( Integrated Gasification Combined Cycle; 석탄가스화복합발전) 또는 수소 제 조과정에서 발생하는 이산화탄소 /수소 /일산화탄소 기체 혼합물 등이 있다. 본 발명 에 따른 중공사막은 상기 흔합기체로부터 메탄, 이산화탄소, 산소, 황화수소, 질소 수소, 수증기, 산소와 질소, 질소와 이산화탄소 등의 다양한 기체를 분리하는데 효 과적으로 사용될 수 있다. 나아가, 본 발명에 따른 흔합기체의 분리방법에 있어서, 상기 혼합기체는 메탄을 포함하는 흔합기체인 것이 바람직하다. 본 발명의 실험예 5의 표 4를 참조하면, 본 발명에 따른 중공사막은 특히, 이산화탄소에 대한 순수 기체 투과도가 현저히 높은 반면, 메탄에 대한 순수 기체 투과도는 현저히 낮으므로, C02/CH4의 선택도가 가장 우수함을 확인할 수 있으므로, 본 발명에 따른 흔합기체의 분리방법은 메탄과 이산화탄소를 포함하는 흔합기체로, 특히 바이오가스부터 메탄의 분리방법인 것이 더욱 바람직하다. 【발명의 실시를 위한 형태】 It provides a method for producing an asymmetric hollow fiber membrane for gas separation comprising the step (step 2) of spinning the spinning solution prepared in step 1 in the presence of an internal curing agent using a wet and dry spinning apparatus equipped with a double-tubular nozzle. Hereinafter, a method of manufacturing the asymmetric hollow fiber membrane for gas separation according to the present invention will be described in detail step by step. In the method of manufacturing the hollow fiber membrane according to the present invention, the step 1 includes a pleimide-based polymer compound according to the present invention, a high boiling point film forming solvent, a low boiling point non-solvent and a high boiling point non-solvent which is a pore-forming agent. It is a step of preparing the use liquid. Specifically, in the method of manufacturing a hollow fiber membrane according to the present invention, the spinning solution of step 1 preferably contains 20 to 40% by weight of the polyimide polymer compound having gas selectivity, and includes 25 to 35% by weight. More preferably. When the polyimide-based polymer compound is included in an amount less than 20% by weight, the viscosity is so low that the strength of the manufactured hollow fiber membrane is weak and there is a problem that the selectivity of gas separation is lost. On the other hand, when included in more than 40% by weight there is a problem that spinning is difficult in the form of hollow fiber is too high. In addition, in the manufacturing method of the hollow fiber membrane according to the present invention, the organic solvent of the high boiling point of the step 1 serves to dissolve the polyimide-based polymer compound, N-methylpyridone, dimethylacetamide and die One or more high boiling organic solvents selected from methylformamide can be used. Furthermore, in the method of manufacturing a hollow fiber membrane according to the present invention, the low boiling point non-solvent of step 1 does not dissolve the polyimide polymer compound but has a swelling property, thereby forming a gaseous select skin worm. One or more low boiling point solvents selected from tetrahydrofuran (THF), acetone, methanol and ethanol can be used. In addition, in the manufacturing method of the hollow fiber membrane according to the present invention, the high solvent boiling point of the step 1 serves to help the pore formation of the hollow fiber membrane, butanol, isopropyl alcohol, dimethoxyethanol, daahydroxy One or more high boiling point non-solvents selected from butylene oxide, appendix methanol, butoxyethane and diglycidyl dimethyl may be used. Furthermore, in the method for manufacturing hollow fiber MIC 1 according to the present invention, the internal unggojeung of the step 1 is used by mixing a high boiling point organic solvent and low boiling point and non-solvent, the spinning solution is contained in the internal The mixing ratio of the organic solvent of the point, the low boiling point nonsolvent, and the high boiling point nonsolvent which is a pore-type agent is preferably 80:10:10-60: 20: 20, and 75:10 15:10 -65: 25: 10 More preferred. If the ratio of the high-boiling organic solvent is less than 60, there is a problem that the select layer on the surface of the hollow fiber is too thick to lower the permeability, whereas if the ratio is higher than 80, the selectivity of the membrane itself is difficult to form and the selectivity falls. Not desirable On the other hand, the present invention provides a method for separating a mixed gas comprising the step of separating the mixed gas using the asymmetric hollow fiber membrane for gas separation according to the present invention. Combustion exhaust gases emitted during the combustion of fossil fuels such as methane mixture gas, coal and natural gas generated during anaerobic decomposition of organic waste such as landfill, livestock waste, sewage sludge, food waste, etc. Nitrogen / water vapor, Integrated Gasification Combined Cycle (IGCC) or a mixture of carbon dioxide / hydrogen / carbon monoxide from hydrogen production. The hollow fiber membrane according to the present invention can be effectively used to separate various gases such as methane, carbon dioxide, oxygen, hydrogen sulfide, nitrogen hydrogen, water vapor, oxygen and nitrogen, nitrogen and carbon dioxide from the mixed gas. Furthermore, in the method for separating a mixed gas according to the present invention, the mixed gas is preferably a mixed gas containing methane. Referring to Table 4 of Experimental Example 5 of the present invention, the hollow fiber membrane according to the present invention has a particularly high pure gas permeability for carbon dioxide, while a pure gas permeability for methane is significantly low, so that C0 2 / CH 4 Since the selectivity can be confirmed to be the best, the method for separating a mixed gas according to the present invention is a mixed gas containing methane and carbon dioxide, and more preferably, a method for separating methane from biogas. [Form for implementation of invention]
이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다. Hereinafter, the present invention will be described in detail by Examples and Experimental Examples.
단, 하기 실시예 및 실험예는 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 실시예 및 실험예에 의해 한정되는 것은 아니다. <실시예 1>폴리이미드계 고분자 화합물의 제조 - 1 However, the following Examples and Experimental Examples specifically illustrate the present invention, and the content of the present invention is not limited to the Examples and Experimental Examples. Example 1 Preparation of Polyimide-Based Polymer Compound-1
지환족 다이안하이드라이드 단량체인 D0CDA와 방향족 다이아민 단량체인 MDA(4.4 '-Methylene dianiline)를 각각 다른 등근 유리플라스크에 넣고, 기계식 교 반기, 온도계, 콘덴서를 장착하여 여기에 질소 분위기 하에서 D0CDA(26.4 g: 0.1 mol)와 MDA 19.8 g: 0.1 mol)를 m-크레졸 (m-cresol )에 넣어서 용해시킨다. 그 후
60 °C - 70°C에서 2 시간, 200°C에서 18 시간 교반시켜, 고분자량의 폴리이미드 용 액을 얻었다. 만들어진 폴리이미드 용액을 다이메틸포름아마이드 (DMF)로 희석시킨 후 메탄올이 담긴 비커에 서서히 떨어뜨려 각각 침전시킨 후 다량의 메탄올로 세척 하였다. 세척이 끝난 폴리이미드 분말을 60°C에서 12 시간 진공건조시켜 폴리이미 드 고분자 화합물 (D0CDA-MDA)을 얻었다. The alicyclic dianhydride monomer D0CDA and the aromatic diamine monomer MDA (4.4'-Methylene dianiline) were put in different isotropic glass flasks, and a mechanical stirrer, thermometer, and condenser were installed therein, and D0CDA (26.4 g) was added under nitrogen atmosphere. 0.1 mol) and MDA 19.8 g: 0.1 mol) are dissolved in m-cresol. After that After stirring for 2 hours at 60 ° C-70 ° C, 18 hours at 200 ° C., a high molecular weight polyimide solution was obtained. The resulting polyimide solution was diluted with dimethylformamide (DMF) and slowly dropped into a beaker containing methanol to precipitate each, followed by washing with a large amount of methanol. The washed polyimide powder was vacuum dried at 60 ° C. for 12 hours to obtain a polyimide polymer compound (D0CDA-MDA).
<실시예 2>폴리이미드계 고분자 화합물의 제조 - 2 Example 2 Preparation of Polyimide-Based Polymer Compound-2
방향족 다이아민 단량체로 MDA(4.4'-Methylene dianiline)를 사용하는 대신 에 0DA(4,4'-0xy dianiline: 20.0 g, 0.01 mol)를 사용한 것을 제외하고는 상기 실 시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물 (DOCDA— 0DA)을 제조 하였다. The same method as in Example 1 was performed except that 0DA (4,4'-0xy dianiline: 20.0 g, 0.01 mol) was used instead of MDA (4.4'-Methylene dianiline) as an aromatic diamine monomer. A polyimide polymer compound (DOCDA-0DA) was prepared.
<실시예 3>폴리이미드계 고분자 화합물의 제조 - 3 Example 3 Preparation of Polyimide-Based Polymer Compound-3
방향족 다이아민 단량체로 MDA(4.4'-Methylene dianiline)를 사용하는 대신 에 ^PDA( par a-phenylenedi amine: 0.1 mol)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA-H A)을 제조하였 다. A polyimide-based polymer was prepared in the same manner as in Example 1 except that ^ PDA (par a-phenylenedi amine: 0.1 mol) was used instead of MDA (4.4'-Methylene dianiline) as an aromatic diamine monomer. Compound (D0CDA-H A) was prepared.
<실시예 4>폴리이미드계 고분자 화합물의 제조 - 4 Example 4 Preparation of Polyimide-Based Polymer Compound-4
방향족 다이아민 단량체로 MDA(4.4 '-Methylene dianiline)를 사용하는 대신 에 ?rTDA(para— phenyl enedi amine: 0.1 mol)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA-/zrTDA)을 제조하였 다. <실시예 5>폴리이미드계 고분자 화합물의 제조 - 5 A polyimide-based polymer was prepared in the same manner as in Example 1, except that para-phenyl enediamine (0.1 mol) was used instead of MDA (4.4 '-Methylene dianiline) as the aromatic diamine monomer. Compound (D0CDA- / zrTDA) was prepared. Example 5 Preparation of Polyimide-Based Polymer Compound-5
방향족 다이아민 단량체로 DA(4.4' -Methylene dianiline)를 사용하는 대신 에 / TDA(para-toluenediamine: 0.1 mol)를 사용한 것을 제외하고는 상기 실시예 1 과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물 (DOCDA— // TDA)을 제조하였 다.
<실시예 6>폴리이미드계 고분자 화합물의 제조 - 6 A polyimide polymer compound was prepared in the same manner as in Example 1, except that para-toluenediamine (0.1 mol) was used instead of DA (4.4'-Methylene dianiline) as an aromatic diamine monomer. DOCDA— // TDA) was prepared. Example 6 Preparation of Polyimide-Based Polymer Compound-6
방향족 다이아민 단량체로 MDA(4.4 '-Methylene dianiline)를 사용하는 대신 에 Tr MPD ( 2 , 4 , 6-Tr i me t hy 1 - 1 , 3-pheny 1 ened i am i ne: 0.1 mol)를 사용한 것을 제외하 고는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA- ffrTDA)을 제조하였다. Instead of using MDA (4.4'-Methylene dianiline) as the aromatic diamine monomer, Tr MPD (2, 4, 6-Tr i me t hy 1-1, 3-pheny 1 ened i am i ne: 0.1 mol) Except for using the same method as in Example 1 to prepare a polyimide-based polymer compound (D0CDA-ffrTDA).
<실시예 7 폴리이미드계 고분자 화합물의 제조 - 7 Example 7 Preparation of Polyimide-Based Polymer Compound-7
방향족 다이아민 단량체로 MDA(4.4 '-Methylene dianiline)를 사용하는 대신 에 TeMPD ( 2 , 3 , 5 , 6-Te t r ame t hy 1 - 1 , 4-pheny 1 ened i am i ne: 0.1 mol)를 사용한 것을 제 외하고는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA-?rTDA)을 제조하였다. Instead of using MDA (4.4'-Methylene dianiline) as an aromatic diamine monomer, TeMPD (2, 3, 5, 6-Te tem a hy t 1-1, 4-pheny 1 ened i am i ne: 0.1 mol) Except for using the same method as in Example 1 to prepare a polyimide-based polymer compound (D0CDA-? RTDA).
<실시예 8>폴리이미드계 고분자 화합물의 제조 - 8 Example 8 Preparation of Polyimide-Based Polymer Compound-8
방향족 다이아민 단량체로 MDA(4.4'-Methylene dianiline)를 사용하는 대신 에 MBCA(4,4'-Methylenebis(2-chloroani 1 ine): 0.1 mol)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA-/z TDA)을 제조하였다. <실시예 9>폴리이미드계 고분자 화합물의 제조 - 9 The same method as in Example 1, except that MBCA (4,4'-Methylenebis (2-chloroani 1 ine): 0.1 mol) was used instead of MDA (4.4'-Methylene dianiline) as the aromatic diamine monomer. To perform a polyimide-based polymer compound (D0CDA- / z TDA) was prepared. Example 9 Preparation of Polyimide-Based Polymer Compound-9
방향족 다이아만 단량체로 MDA(4.4 '-Methylene dianiline)* 사용하는 대신 에 //rTDA:MDA=l:l 흔합물 (0.1 mol)을 사용한 것을 제외하고는 상기 실시예 1과 동 일한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA-//HOA+MDA)을 제조하였다. <실시예 10>폴리이미드계 고분자 화합물의 제조 - 10 、 방향족 다이아민 단량체로 MDA(4.4 '-Methylene dianiline)를 사용하는 대신 에 PDA:MDA=l:l 흔합물 (0.1 mol)을사용한 것을 제외하고는 상기 실시예 1과 동 일한 방법을 수행하여 폴리이미드계 고분자 화합물 (DOCDA-^PDA+MDA)을 제조하였다.
<실시예 11>폴리이미드계 고분자 화합물의 제조 - 11 The same procedure as in Example 1 was performed except that a // rTDA: MDA = l: l mixture (0.1 mol) was used instead of MDA (4.4 '-Methylene dianiline) * as an aromatic diamanic monomer. A polyimide polymer compound (D0CDA − // HOA + MDA) was prepared. Example 10 Preparation of Polyimide-Based High Molecular Compounds-10, except that PDA: MDA = l: l complex (0.1 mol) was used instead of MDA (4.4'-Methylene dianiline) as the aromatic diamine monomer. Then, the same method as in Example 1 was carried out to prepare a polyimide polymer compound (DOCDA- ^ PDA + MDA). Example 11 Preparation of Polyimide-Based Polymer Compound-11
방향족 다이아민 단량체로 MDA(4.4 '-Methylene dianiline)를 사용하는 대신 에 0DA:MDA=1:1 흔합물 (0.1 mol)을 사용한 것을 제외하고는 상기 실시예 1과 동일 한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA-0DA+MDA)을 제조하였다. Polyimide was carried out in the same manner as in Example 1, except that 0DA: MDA = 1: 1 mixture (0.1 mol) was used instead of MDA (4.4'-Methylene dianiline) as the aromatic diamine monomer. Based polymer compound (D0CDA-0DA + MDA) was prepared.
' <실시예 12>폴리이미드계 고분자 화합물의 제조 - 12 Example 12 Preparation of Polyimide-Based Polymer Compound-12
방향족 다이아민 단량체로 MDA(4.4 '-Methylene dianiline)를 사용하는 대신 에 ?rTDA:ODA=l:l 흔합물 (0.1 mol)을 사용한 것을 제외하고는 상기 실시예 1과 등 일한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CD세 TDA+0DA)을 제조하였다. Except for using MDA (4.4 '-Methylene dianiline) as the aromatic diamine monomer, except that a? RTDA: ODA = l: l mixture (0.1 mol) was used to perform the same method as in Example 1 A mid type high molecular compound (TDA + 0DA of D0CD) was produced.
<실시예 13>폴리이미드계 고분자 화합물의 제조 - 13 Example 13 Preparation of Polyimide-Based Polymer Compound-13
방향족 다이아민 단량체로 MDA(4.4' -Methylene dianiline)를 사용하는 대신 에 /广 PDA:0DA=1:1 흔합물 (0.1 mol)을 사용한 것을 제외하고는 상기 실시예 1과 동 일한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA- PDA+0DA)을 제조하였다. The same procedure as in Example 1 was performed except that the / 广 PDA: 0DA = 1: 1 mixture (0.1 mol) was used instead of MDA (4.4'-Methylene dianiline) as the aromatic diamine monomer. A polyimide polymer compound (D0CDA-PDA + 0DA) was prepared.
<실시예 14>폴리이미드계 고분자 화합물의 제조 - 14 Example 14 Preparation of Polyimide-Based Polymer Compound-14
방향족 다이아민 단량체로 MDA(4.4 '-Methylene dianiline)을 사용하는 대산 에 TeMPD:ODA=l:l 흔합물 (0.1 mol)을 사용한 것을 제외하고는 상기 실시예 1과 동 일한 방법을 수행하여 폴리이미드계 고분자 화합물 (DOCDA-^PDA+ODA)을 제조하였다. Polyimide was carried out in the same manner as in Example 1, except that TeMPD: ODA = l: l mixture (0.1 mol) was used in Daesan using MDA (4.4'-Methylene dianiline) as the aromatic diamine monomer. Based polymer compound (DOCDA- ^ PDA + ODA) was prepared.
<실시예 15>폴리이미드계 고분자 화합물의 제조 - 15 Example 15 Preparation of Polyimide-Based Polymer Compound-15
방향족 다이아민 단량체로 MDA( 4. '-Methylene dianiline)를 사용하는 대신 에 MBCA:0DA=1:1흔합물 (0.1 mol)을 사용한 것을 제외하고는 상기 실시예 1과 동일 한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA-H A+0DA)을 제조하였다. The same procedure as in Example 1 was carried out except that MBCA: 0DA = 1: 1 mixture (0.1 mol) was used instead of MDA (4'-Methylene dianiline) as the aromatic diamine monomer. The mid-based high molecular compound (D0CDA-H A + 0DA) was prepared.
<실시예 16>폴리이미드계 고분자 화합물의 제조 - 16 Example 16 Preparation of Polyimide-Based Polymer Compound-16
방향족 다이아민 단량체로 MDA(4.4 '-Methylene dianiline)를 사용하는 대신 에 TeMPD:MDA=l:l 흔합물 (0.1 mol)을 사용한 것을 제외하고는 상기 실시예 1과 동 일한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA-/广 PDA+0DA)을 제조하였다.
1Ω Polyimide was carried out in the same manner as in Example 1, except that TeMPD: MDA = l: l mixture (0.1 mol) was used instead of MDA (4.4'-Methylene dianiline) as the aromatic diamine monomer. Based polymer compound (D0CDA- / 广 PDA + 0DA) was prepared. 1Ω
丄 y 丄 y
<실시예 17>폴리이미드계 고분자 화합물의 제조 - 17 Example 17 Preparation of Polyimide-Based Polymer Compound-17
방향족 다이아민 단량체로 MDA .4' -Methylene dianiline)를 사용하는 대신 에 MBCA:MDA=1:1 흔합물 (0.1 mol)을 사용한 것을 제외하고는 상기 실시예 1과 동일 한 방법을 수행하여 폴리이미드계 고분자 화합물 (D0CDA-rPDA+0DA)을 제조하였다. Polyimide was carried out in the same manner as in Example 1, except that MBCA: MDA = 1: 1 mixture (0.1 mol) was used instead of MDA .4'-Methylene dianiline) as the aromatic diamine monomer. Based polymer compound (D0CDA-rPDA + 0DA) was prepared.
<비교예 1> 폴리이미드계 고분자 화합물의 제조 - 18 Comparative Example 1 Preparation of Polyimide-Based Polymer Compound-18
방향족 다이아민 단량체로 MDA(4.4' -Methylene dianiline)를 사용하는 대신 에 IPDA(4,4'-Isopropylene dianiline: 22.6 g 0.1 mol)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물을 제조하였 다. Except for using MDA (4.4'-Methylene dianiline) as an aromatic diamine monomer, except that IPDA (4,4'-Isopropylene dianiline: 22.6 g 0.1 mol) was used, the same procedure as in Example 1 The mid-based polymer compound was prepared.
<비교예 2> 폴리이미드계 고분자 화합물의 제조 - 19 Comparative Example 2 Preparation of Polyimide-Based Polymer Compound-19
방향족 다이아민 단량체로 MDA( 4.4 '-Methylene dianiline)를 사용하는 대신 에 4-BAPBC 1 , 4-bi s-(4-ami nophenoxy) -benzene :29.2 g 0.1 mol)를 사용한 것을 제 외하고는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물을 제조하였다. Except for using 4-BAPBC 1, 4-bi s- (4-ami nophenoxy) -benzene: 29.2 g 0.1 mol) instead of MDA (4.4'-Methylene dianiline) as aromatic diamine monomer, A polyimide polymer compound was prepared in the same manner as in Example 1.
<비교예 3> 폴리이미드계 고분자 화합물의 제조 - 20 Comparative Example 3 Preparation of Polyimide-Based Polymer Compound-20
방향족 다이아민 단량체로 MDA(4.4 '-Methylene dianiline)를 사용하는 대신 에 4APPP( 2 , 2-b 1 s- [ 4- ( am i nophenoxy ) -pheny 1 ] -propane: 0.1 mol)를 사용한 것을 제 외하고는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물을 제조하였다. <비교예 4> 폴리이미드계 고분자 화합물의 제조 - 21 Instead of using MDA (4.4'-Methylene dianiline) as aromatic diamine monomer, 4APPP (2, 2-b 1 s- [4- (am i nophenoxy) -pheny 1] -propane: 0.1 mol) was used. A polyimide polymer compound was prepared in the same manner as in Example 1 except for the above. Comparative Example 4 Preparation of Polyimide-Based Polymer Compound-21
방향족 다이아민 단량체로 MDA( 4.4' -Methylene dianiline)를 사용하는 대신 에 BAPBP(4,4'-bis— (4-aminophenoxy)-biphenyl: 0.1 mol)를 사용한 것을 제외하고 는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물을 제조하 였다.
<비교예 5> 폴리이미드계 고분자화합물의 제조 - 22 Same as Example 1 except that BAPBP (4,4'-bis— (4-aminophenoxy) -biphenyl: 0.1 mol) was used instead of MDA (4.4'-Methylene dianiline) as the aromatic diamine monomer. A polyimide polymer compound was prepared by the method. Comparative Example 5 Preparation of Polyimide-Based Polymer Compound-22
방향족 다이아민 단량체로 MDA( 4, 4 '-Methylene dianiline)를 사용하는 대신 에 3-BAPB( 1 , 3-b i s- (4-am i nophenoxy) -benzene: 0.1 mol)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물을 제조하였 다 · Except for using 3-BAPB (1, 3-bi s- (4-am i nophenoxy) -benzene: 0.1 mol) instead of MDA (4, 4'-Methylene dianiline) as aromatic diamine monomer In the same manner as in Example 1, a polyimide polymer compound was prepared.
<비교예 6> 폴리이미드계 고분자화합물의 제조 - 23 Comparative Example 6 Preparation of Polyimide-Based Polymer Compound-23
방향족 다이아민 단량체로 MDA(4.4 '-Methylene dianiline)를 사용하는 대신 에 BAPP( 2 , 2-b i s [ 4- ( 4-am i nophenoxy ) -pheny 1 ] r opane: 0.1 mol)를 사용한 것을 제 외하고는 상기 실시예 1과 동일한 방법을 수행하여 폴리이미드계 고분자 화합물을 제조하였다. Except using BAPP (2, 2-bis [4- (4-am i nophenoxy) -pheny 1] r opane: 0.1 mol) instead of MDA (4.4 '-Methylene dianiline) as aromatic diamine monomer Then, a polyimide polymer compound was prepared in the same manner as in Example 1.
<실시예 18 - 34>폴리이미드계 고분자화합물을포함하는 평막의 제조 - 1 - 17 Example 18 Preparation of Flat Membrane Containing Polyimide Polymer Compound
기체선택성 고분자로서 , 실시예 1 내지 17에서 제조한 폴리이미드계 고분자 화합물을 다이메틸포름아마이드 (DMF)에 10 중량 % 농도로 용해시킨 다음, 유리판 위 에 캐스팅하였다. 그 후, 60°C 진공오본에서 24시간 동안 건조시키고, 130°C에서 12시간 동안 건조시켜 50 μηι 두께의 치밀한 평막을 제조하였다. . As the gas-selective polymer, the polyimide polymer compound prepared in Examples 1 to 17 was dissolved in dimethylformamide (DMF) at a concentration of 10% by weight, and then cast on a glass plate. Then, dried for 24 hours at 60 ° C vacuum oven, and dried for 12 hours at 130 ° C. to prepare a dense flat membrane of 50 μηι thickness. .
<비교예 7 - 12>폴리이미드계 고분자화합물을포함하는 평막의 제조 - 18Comparative Examples 7 and 12 Preparation of a Flat Membrane Containing a Polyimide Polymer Compound 18
~ 23 ~ 23
기체선택성 고분자로서, 실시예 1 내지 17에서 제조된 폴리이미드계 고분자 화합물을 사용하는 대신에 비교예 1 내지 6에서 제조된 폴리이미드계 고분자 화합 물을 사용하는 것을 제외하고는 상기 실시예 18 내지 34과 동일한 방법으로 수행하 여 50 μηι 두께의 치밀한 평막을 제조하였다. Examples 18 to 34, except for using the polyimide-based polymer compound prepared in Comparative Examples 1 to 6 instead of using the polyimide-based polymer compound prepared in Examples 1 to 17 as a gas-selective polymer 50 μηι thick dense flat membrane was prepared by the same method as described above.
<실시예 35 - 51>폴리이미드계 고분자화합물을포함하는 중공사막의 제조 - 1 - 17
2000 ml 등근 플라스크에 기체선택성 고분자로 실시예 1 내지 17에서 제조 한 폴리이미드계 고분자 화합물 350 g을 고비점 용매인 다이메틸아세틸아마이드 (DMAc) 400 g, 고비점 비용매인 부특시 에탄올 150 g, 기공형성제 역할올 하는 저 비점 비용매인 테트라하이드로퓨란 (THF, 100 g)을 넣고, 상기 기체선택성 고분자를 완전히 용해시켜 35% 고분자용액을 제조하였다. 제조된 고분자 용액을 진공펌프를 사용해 감압하여 고분자 용액 제조 과정에서 발생한 기포를 완전히 제거한 후 방사 용액을 제조하였다. 다음으로, 다이메틸아세틸아마이드 (DMAc)와 글리세린을 70:30 의 중량비로 혼합한 용액을 내부웅고제로 제조하여, 상기 방사용액과 내부웅고제를 도 1과 같은 건습식 방사장치를 사용하여 감압 하에 중공사막을 제조하였다. Example 35-51-Preparation of Hollow Fiber Membrane Containing Polyimide Polymer Compound-1-17 350 g of the polyimide polymer compound prepared in Examples 1 to 17 as a gas-selective polymer in a 2000 ml isometric flask was 400 g of dimethylacetylamide (DMAc) as a high boiling point solvent, 150 g of non-special ethanol as a high boiling point nonsolvent, and pores A low boiling point non-solvent tetrahydrofuran (THF, 100 g) serving as a former was added, and the gas-selective polymer was completely dissolved to prepare a 35% polymer solution. The prepared polymer solution was decompressed using a vacuum pump to completely remove bubbles generated during the preparation of the polymer solution, and then a spinning solution was prepared. Next, a solution obtained by mixing dimethyl acetylamide (DMAc) and glycerin in a weight ratio of 70:30 was prepared as an internal curing agent, and the spinning solution and the internal curing agent were subjected to reduced pressure using a wet and dry spinning apparatus as shown in FIG. 1. A hollow fiber membrane was prepared.
구체적으로, 도 1의 중공사막 제조장치는 기어 펌프를 통하여 일정 유량의 방사 용액을 방사노출기의 이중관형 노즐 외부로 공급하고, 액체이송 펌프 (HPLC 펌 프)를 통하여 일정 유량의 내부웅고제를 방사노출기의 이증관형 노즐 내부로 공급 한다. 상기 방사노출기의 이중관형 노즐에서 방사되어 나온 중공사는 일정 구간의 공기 층 (air gap)을 지나면서, 방사 용액과 내부웅고제 간의 상전이가 시작되어 중 공사막의 내부 채널을 형성하기 시작하고, 일차 웅고조 (물) 내부로 투입되어 중공 사막은 장력조절기를 통해 일정 속도로 이차 웅고조 내부로 투입되어 열수 처리와 비용매와의 접촉을 통한 확산을 이용하여 잔존 용매를 제거하며 마지막 권치조에 잠기게 된다. 상기 공정을 거쳐 제조된 중공사막을 50°C의 오본에서 48 시간 이상 건조하여 증공사막의 제조를 완료하였다. 이때, 공기충 (air-gap)은 5 cm이었고, 방 사 속도는 75 m/min이었으며, 방사온도는 170°C였다. 추가적으로, 중공사막의 표면 에 결함을 없애기 위해, 폴리다이메틸실록산을 핵산에 3 중량 % 용해시켜 용액을 제 조하고 이 용액을 상기 건조된 중공사막 위에 연속 코팅했다. Specifically, the hollow fiber membrane manufacturing apparatus of FIG. 1 supplies the spinning solution of a certain flow rate through the gear pump to the outside of the double-tubular nozzle of the spinneret, and supplies an internal arch agent of a certain flow rate through a liquid transfer pump (HPLC pump). It is fed into the distillation nozzle of the spinneret. The hollow yarn radiated from the double-tubular nozzle of the spinneret passes through a certain gap of air gap, and the phase transition between the spinning solution and the inner arch is started to form the inner channel of the hollow fiber membrane. The hollow desert, which is introduced into the unggo tank (water), is introduced into the secondary unggozo at a constant speed through the tension controller to remove the remaining solvent using hot water treatment and diffusion through contact with the non-solvent, and soak in the final winding tank. It becomes. The hollow fiber membrane prepared through the above process was dried in Obon at 50 ° C. for more than 48 hours to complete the preparation of the vaporized membrane. At this time, the air-gap was 5 cm, the spinning speed was 75 m / min, and the spinning temperature was 170 ° C. In addition, in order to eliminate defects on the surface of the hollow fiber membrane, polydimethylsiloxane was dissolved in 3% by weight of nucleic acid to prepare a solution, and the solution was continuously coated on the dried hollow fiber membrane.
최종적으로 제조된 중공사의 외경과 단면 및 내 외부 표면의 구조를 전자주 사현미경 (JE0L-840A)을 사용하여 분석한 결과, 제조된 중공사의 외경은 약 400 이었으며 , 내경은 약 200— 250 으로 조사되었다. The outer diameter, cross section, and inner surface structure of the finally manufactured hollow yarns were analyzed using an electron scanning microscope (JE0L-840A). The outer diameter of the manufactured hollow yarns was about 400, and the inner diameter was about 200-250. It became.
<실험예 1 - 2> ¾-NMR및 FT-IR스펙트럼 분석
실시예 1 - 6에 의해, 본 발명에 따른 폴리이미드계 고분자 화합물이 성공 적으로 합성되었는지 확인하기 위하여, 실시예 1 - 8에 의해 제조된 고분자 화합물 에 대하여 — NMR(¾_nuclear magnetic resonance spectroscopy) 및 FT-IR(Four ier transfrm infrared spectroscopy) 스펙트럼을 분석하고 그 결과를 도 2 및 도 3에 나타내었다. ¾-NMR은 Bruker DRX-300 FT-NMR Spectrometer로, FT-IR은 Bio-Rad Digilab FTS-165 FT-IR Spectrometer로 측정하였다. 도 2에 반웅의 1차 축합물인 폴리아믹산와 완성 후의 폴리이미드 ¾-NMR 스 펙트럼 중 방향족 특성피크 및 극성 양성자 (Proton) 피크 영역을 모니터링한 결과, 본 발명에 따른 실시예 1 - 8에 의해 제조된 고분자 화합물들은 폴리아믹산에 기인 한 11 ppm(-COOH)과 8 ppm(-NH-) 피크가 사라져 이미드화가 완성되었음올 확인할 수 있었다. 또한, 도 3에 실시예 1 - 4에 의해 제조된 폴리이미드계 고분자 화합물의 FT-IR 스펙트럼을 나타내었는데, 폴리아믹산의 흡수띠인 으 H 신축 3200 cm—1와 N-H 신축 3350 cm—1는 관찰되지 않았으며 1780 cnf1과 1710 cm—1에 비대칭 C=0신축과 대 칭 C=0 신축 피크가 보이고, 1380 cm—1에서 ON-C 신축 피크가 나타남에 따라 폴리 이미드가 합성되었음을 다시 확인하였다. <실험예 3>고유 점도의 분석 Experimental Examples 1 and 2 ¾-NMR and FT-IR Spectrum Analysis In order to confirm whether the polyimide polymer compound according to the present invention was successfully synthesized according to Examples 1 to 6, the polymer compound prepared according to Examples 1 to 8 — NMR (¾_nuclear magnetic resonance spectroscopy) and FT Four ier transfrm infrared spectroscopy (IR) spectra were analyzed and the results are shown in FIGS. 2 and 3. ¾-NMR was measured with a Bruker DRX-300 FT-NMR Spectrometer and FT-IR was measured with a Bio-Rad Digilab FTS-165 FT-IR Spectrometer. In FIG. 2, the polyamic acid, which is the primary condensate of Banung, and the aromatic characteristic peak and the polar proton peak region of the polyimide ¾-NMR spectrum after completion were monitored according to Examples 1 to 8 according to the present invention. The high molecular compounds were confirmed to be complete imidization due to disappearance of 11 ppm (-COOH) and 8 ppm (-NH-) due to the polyamic acid. 3 shows the FT-IR spectrum of the polyimide polymer compound prepared in Examples 1 to 4, wherein the H band 3200 cm— 1 and the NH band 3350 cm— 1, which are absorption bands of the polyamic acid, were not observed. The polyimide was reconstructed as the asymmetric C = 0 stretch and symmetric C = 0 stretch peaks were observed at 1780 cnf 1 and 1710 cm- 1 , and the ON-C stretch peak was at 1380 cm- 1 . Experimental Example 3 Analysis of Inherent Viscosity
본 발명에 따른 폴리이미드계 고분자 화합물의 중공사막을 제조하기 위한 방사에 적합한 고 점도를 가지는지 확인하기 위하여 , 실시예 1 - 8의 -폴리이미드계 고분자 화합물 및 비교예 1 一 6의 상용화된 기체 분리막 고분자들의 고유 점도를 측정하고 그 결과를 하기 표 1에 나타내었다. 고유 점도는 폴리이미드계 고분자 화 합물을 다이메틸아세트아마이드 (DMAc)에 0.5 g/dL의 농도로 녹인 후 30°C에서 Cannon一 Fenske viscometer를 사용하여 즉정하였다. In order to confirm that the polyimide polymer compound according to the present invention has a high viscosity suitable for spinning for producing the hollow fiber membrane, the -polyimide polymer compound of Examples 1 to 8 and the commercialized gas of Comparative Example 1 to 6 Intrinsic viscosity of the membrane polymers was measured and the results are shown in Table 1 below. The intrinsic viscosity was immediately dissolved by dissolving the polyimide polymer compound in dimethylacetamide (DMAc) at a concentration of 0.5 g / dL using a Cannon 一 Fenske viscometer at 30 ° C.
【표 1】 Table 1
구분 고유 점도 (dL/g)
상기 표 1에 나타낸 바와 같이, 고유 점도가 실시예 1의 폴리이미드계 고분 자 화합물 (D0CDA-MDA)은 1.11 dL/g; 실시예 2의 폴리이미드계 고분자 화합물 (D0CDA-0DA)은 0.45 dL/g; 실시예 3의 폴리이미드계 고분자 화합물 (D0CDA-广 PDA)은 0.35 dL/g; 실시예 4의 폴리이미드계 고분자 화합물 (DOCDA-«rTDA)은 0.46 dL/g; 실 시예 5의 폴리이미드계 고분자 화합물 (D0CDA- TDA)은 0.41 dL/g; 실시예 6의 폴리 아미드계 고분자 화합물 (DOCDA-TrMPD)은 0.52 dL/g; 실시예 7의 폴리이미드계 고분 자 화합물 (DOCDA-TeMPD)은 0.60 dL/g; 및 실시예 8의 폴리이미드계 고분자 화합물 (D0CDA-MBCA)은 0.51 dL/g으로 고분자의 형성이 이루어졌음을 확인하였고, 현재 상 용화되어 있는 비교예 1 - 6의 기체 분리막 고분자와 비교하여도, 비슷한 수준의 고유 점도를 가지므로 본 발명에 따른 폴리이미드계 고분자 화합물이 증공사막을 제조하기 위한 방사에 적합한 고 점도를 가짐을 확인하였다. Category Intrinsic Viscosity (dL / g) As shown in Table 1, the intrinsic viscosity of the polyimide polymer compound (D0CDA-MDA) of Example 1 was 1.11 dL / g; Polyimide-based high molecular compound (D0CDA-0DA) of Example 2 was 0.45 dL / g; Polyimide-based polymer compound (D0CDA- 广 PDA) of Example 3 was 0.35 dL / g; The polyimide polymer compound (DOCDA- «rTDA) of Example 4 was 0.46 dL / g; Polyimide-based high molecular compound (D0CDA-TDA) of Example 5 was 0.41 dL / g; The polyamide-based polymer compound (DOCDA-TrMPD) of Example 6 was 0.52 dL / g; The polyimide polymer compound (DOCDA-TeMPD) of Example 7 was 0.60 dL / g; And the polyimide-based polymer compound (D0CDA-MBCA) of Example 8 was confirmed that the polymer was formed at 0.51 dL / g, compared to the gas separation membrane polymer of Comparative Examples 1-6 currently commercialized, Since it has a similar level of intrinsic viscosity, it was confirmed that the polyimide-based polymer compound according to the present invention has a high viscosity suitable for spinning for producing a thickening membrane.
<실험예 4>유기용제에 대한용해도 분석
본 발명에 따른 폴리이미드계 고분자 화합물로 중공사막을 제조할 경우, 상 전이 공정을 적용할 수 있도록, 유기용매에 대한 용해성이 우수한지 확인하기 위하 여, 실시예 1 - 3의 폴리이미드계 고분자 화합물 및 비교예 1 - 4의 상용화된 기체 분리막 고분자들의 고유 점도를 측정하고, 그 결과를 하기 표 2 나타내었다. 용해 도 실험은 하기 표 2에 기재된 유기용제를 사용하였으며, 24 시간 동안 상온에서 교반하였다. 용해도 정도를 구분하기 위해서 완전히 용해되었을 경우에는 + +, 부분 적으로 용해되었을 경우에는 +, 용해되지 않을 경우에는 -로 나누어 표시하였다. 【표 2】 Experimental Example 4 Solubility Analysis of Organic Solvents When the hollow fiber membrane is manufactured from the polyimide polymer compound according to the present invention, the polyimide polymer compound of Examples 1 to 3 in order to check whether the solubility in an organic solvent is excellent so that a phase transfer process can be applied. And the intrinsic viscosity of the commercialized gas separation membrane polymers of Comparative Examples 1-4 were measured, and the results are shown in Table 2 below. Solubility experiment was used for the organic solvent described in Table 2 below, and stirred at room temperature for 24 hours. In order to distinguish the degree of solubility, the solution was divided into + + when completely dissolved, + when partially dissolved, and − when not dissolved. Table 2
상기 표 2에 나타낸 바와 같이 , 본 발명에 따른 실시예 1 - 3에 의해 제조 된 폴리이미드계 고분자 화합물은 상용화된 기체 분리막 고분자들과 비교하였을 때, 여러 가지 유기용제에 대하여 우수한 용해성을 나타냄을 확인하였으며, 이로부터 본 발명에 따른 폴리이미드계 고분자 화합물로 중공사막을 제조할 경우, 상전이 공
정의 적용이 용이함을 알 수 있다. As shown in Table 2, it was confirmed that the polyimide-based polymer compound prepared in Examples 1 to 3 according to the present invention exhibits excellent solubility in various organic solvents when compared with commercially available gas separation membrane polymers. From this, when the hollow fiber membrane is prepared from the polyimide polymer compound according to the present invention, the phase transition process It can be seen that the definition is easy to apply.
<실험예 5> 기체 투과도 및 선택도 분석 Experimental Example 5 Gas Permeability and Selectivity Analysis
본 발명에 따른 폴리이미드계 고분자 화합물을 포함하는 기체 분리막의 우 수한 투과도 및 선택도를 확인하기 위하여, 실시예 18 - 34의 평막 및 실시예 35 - 51의 중공사막에 대하여, 25°C에서 상부 2000 토르 (torr), 하부 2 토르 (torr) 압력 으로 CH4, N2, 02, C02의 투과도 및 C02/C¾, C02소 /N2, 02/ N2, N2/CH4의 선택도를 측 정하였다. 기체분리막의 경우는 기체분리용 소재에 대한 특정가스의 투과속도와 분 리하고자 하는 흔합물의 성분의 투과도의 상대비에 의한 투과선택성이 성능을 좌우 하며, 통상 투과도 계수 (Permeability)와 선택도가 측정된다. 일반적으로, 투과도 계수는 하기 수학식 1에 나타낸 바와 같이 물질의 고유 한 투과성을 나타낼 수 있도록 압력, 면적, 특정샘플의 두께를 정규화한 계수인 Barrer로 나타낸다. 또한, 복합막의 경우 분리막으로 가공된 소재의 투과성을 나타 낼 수 있도록 하기 .수학식 2에 나타낸 바와 같이 압력과 면적을 정규화한 계수인 GPUCGas Permeation Rate)로 나타낸다. 나아가, 선택도는 분리하고자 하는 기체의 투과도의 비로 나타내며 단위는 무차원이다. 하기 수학식 3에 이산화탄소 /메탄의 선택도를 표시하였다. 하기 수학식에 의해서 나온 결과를 하기 표 3 및 표 4에 나 타내었다. 이때, 표 3에는 평막의 순수 기체 투과도 (GPU) 및 선택도를, 표 4에는 중공사막의 순수 기체 투과도 (GPU) 및 선택도를 나타내었다. In order to confirm the excellent permeability and selectivity of the gas separation membrane comprising the polyimide polymer compound according to the present invention, for the flat membrane of Examples 18-34 and the hollow fiber membrane of Examples 35-51, the upper portion at 25 ° C. 2000 torr, 2 per tor pressures of CH 4 , N 2 , 0 2 , C0 2 and C0 2 / C¾, C0 2 small / N 2 , 0 2 / N 2 , N 2 / CH The selectivity of 4 was measured. In the case of gas separation membranes, the permeation selectivity by the relative ratio of the permeation rate of the specific gas to the gas separation material and the permeability of the components of the complex to be separated depends on the performance, and the permeability and selectivity are usually measured. do. In general, the coefficient of permeability is represented by Barrer, which is a coefficient that normalizes the pressure, area, and thickness of a specific sample so as to show the inherent permeability of the material, as shown in Equation 1 below. In addition, in the case of the composite membrane, the permeability of the material processed into the separator can be expressed. As shown in Equation 2 below, the pressure and area are expressed by a GPUCGas Permeation Rate (normalized coefficient). Further, the selectivity is expressed as the ratio of the permeability of the gas to be separated and the unit is dimensionless. Equation 3 shows the selectivity of carbon dioxide / methane. The results obtained by the following equations are shown in Tables 3 and 4. Table 3 shows pure gas permeability (GPU) and selectivity of the flat membrane, and Table 4 shows pure gas permeability (GPU) and selectivity of the hollow fiber membrane.
【수학식 1】 [Equation 1]
【수학식 2】 ι<3ηΐ=ίΰ'6 χᅳᅳ [Equation 2] ι <3ηΐ = ίΰ '6 χ ᅳ ᅳ
상기 표 3에 나타낸 바와 같이 , 본 발명에 따른 폴리이미드계 고분자 화합 물을 포함하는 평막은 종래 사용되고 있는 폴리이미드계 고분자 화합물을 포함하고 있는 평막과 대비하여 기체 선택성이 우수한 것을 알 수 있다. As shown in Table 3, it can be seen that the flat film containing the polyimide polymer compound according to the present invention has excellent gas selectivity compared to the flat film containing the polyimide polymer compound used conventionally.
보다 구체적으로 , 본 발명의 폴리이미드계 고분자 화합물을 포함하는 실시 예의 평막들은 Pco2/PcH4 선택도가 46.3-67.0; PC02/PN2 선택도가 17.6-35.9; P02/PN2 선택도가 6.0-6.93; 및 PN2/PCH4 선택도가 1.48-2.6인 것으로 나타난 반면, 실시예
18의 DOCDA-MDA 평막 및 실시예 19의 DOCDA-ODA 평막의 경우, 종래 사용되고 있는 DOCDA-IPDA, DOCDA-BAPB , DOCDA-APPP , DOCDAᅳ BAPBP, D0CDA-3BAPB 또는 DOCDA— BAPP 를 포함하는 비교예의 평막들은 PC02/PCH4 선택도가 28.6-40.8; PC02/PN2 선택도가 12.0-27,9; P02/PN2 선택도가 4.8-5.69; 및 PN2/PCH4 선택도가 1.2-2.4인 것으로 나타 나, 실시예의 평막이 비교예의 평막에 비해 적게는 1.1배에서 많게는 1.6배의 높은 기체 선택성을 갖는 것을 알 수 있다. 또한, 본 발명에 따른 폴리이미드계 고분자 화합물 중에서도 D0CDA-0DA를 포함하고 있는 실시예 19의 평막 및 실시예 36의 중공사막은 C , N2, 02, C02 모든 기체에서 우수한 순수 기체 투과도 및 선택도를 보임을 확인하였으며, 이로부터 본 발명에 따른 폴리이미드계 고분자 화합물 중에서도 D0CDA-0DA 화합물이 기체 분리 용 고분자로서 가장 용이하게 사용될 수 있음을 알 수 있다. 나아가, 실시예 18 - 34의 평막에 비해 실시예 35 - 51의 중공사막이 CH4, N2, 02, C02 모든 기체에 있어서, 순수 기체 투과도가 전반적으로 현저히 높으므로, 본 발명에 따른 폴리이미드계 고분자 화합물을 포함하는 기체.분리용 막에 있어서 평막보다 중공사막이 더 효과적임을 알 수 있다. 또한, 본 발명에 따른 폴리이미드계 고분자 화합물로부터 제조되는 기체 분 리막은 C02/CH4, C02/N2, 02/ N2, N2/CH4에 대한 선택도가 우수하고, 특히 이산화탄 소에 대한 투과도가 현저히 높고, 메탄에 대한 투과도가 현저히 낮으므로, C02/CH4, 의 선택도가 가장 높은 특성을 보였다. 이로부터 본 발명의 폴리이미드계 고분자 화합물을 포함하는 기체 분리용 비대칭 중공사막은 흔합기체로부터 산소 /질소 기체 분리하는 것에 용이하게 사용될 뿐만 아니라, 특히 메탄과 이산화탄소를 포함하는 흔합기체로부터 메탄을 분리하는 것에 더욱 용이하게 사용될 수 있음을 알 수 있다.
More specifically, the flat membranes of the embodiment including the polyimide polymer compound of the present invention have a Pco 2 / PcH 4 selectivity of 46.3-67.0; P C02 / P N2 selectivity of 17.6-35.9; P 02 / P N2 selectivity 6.0-6.93; And P N2 / P CH4 selectivity was found to be 1.48-2.6, while In the case of the DOCDA-MDA flat membrane of 18 and the DOCDA-ODA flat membrane of Example 19, the flat membrane of the comparative example including DOCDA-IPDA, DOCDA-BAPB, DOCDA-APPP, DOCDA 'BAPBP, D0CDA-3BAPB or DOCDA—BAPP conventionally used P C02 / P CH4 selectivity 28.6-40.8; P C02 / P N2 selectivity of 12.0-27,9; P 02 / P N 2 selectivity of 4.8-5.69; And P N2 / P CH4 selectivity is shown to be 1.2-2.4, it can be seen that the flat film of the Example has a gas selectivity of 1.1 times to 1.6 times higher than the flat film of the comparative example. In addition, among the polyimide-based polymer compounds according to the present invention, the flat membrane of Example 19 and the hollow fiber membrane of Example 36 contained excellent pure gas permeability in all gases C , N 2 , 0 2 , C0 2 and It was confirmed that the selectivity was shown, and from this, it can be seen that the D0CDA-0DA compound among the polyimide polymer compounds according to the present invention can be most easily used as a polymer for gas separation. Furthermore, since the hollow fiber membranes of Examples 35-51 compared to the flat membranes of Examples 18-34 are generally significantly higher in pure gas permeability in all of the gases CH 4, N 2 , 0 2 , C0 2 , according to the present invention, It can be seen that the hollow fiber membrane is more effective than the flat membrane in the gas and separation membrane containing the polyimide polymer compound. In addition, the gas separation membrane prepared from the polyimide polymer compound according to the present invention has excellent selectivity to C0 2 / CH 4 , C0 2 / N 2 , 0 2 / N 2 , N 2 / CH 4 , and in particular, The permeability to carbon dioxide was significantly higher and the permeability to methane was significantly lower, so that C0 2 / CH 4 , showed the highest selectivity. From this, the asymmetric hollow fiber membrane for gas separation containing the polyimide polymer compound of the present invention is not only easily used for separating oxygen / nitrogen gas from the mixed gas, but also for separating methane from the mixed gas including methane and carbon dioxide. It can be seen that it can be used more easily.
Claims
(상기 화학식 1에 있어서, (In the above formula 1,
【청구항 2】 [Claim 2]
하기 화학식 2로 '표시되는 다이안하이드라이드 화합물과 하기 화학식 3 내 지 10으로 표시되는 다이아민 화합물로 이루어진 군으로부터 선택되는 1종 이상의 단량체 화합물을 메타크레졸 반웅용매 하에 150 - 203°C의 반응온도에서 중축합반 응시키는 단계를 포함하는 제 1항의 폴리이미드계 고분자 화합물의 제조방법 : To to and Diane hydride compound represented 'by general formula (2) formula (3) in support of a monomer compound at least one selected from the group consisting of a diamine compound represented by the 10 under metacresol banung solvent 150 - at a reaction temperature of 203 ° C Method for producing a polyimide-based polymer compound of claim 1 comprising the step of polycondensation reaction:
[화학식 2] [Formula 2]
[화학식 3]
FCT/Κί? 2013. / 00920 3[Formula 3] FCT / Κί? 2013. / 00920 3
WO 2014/061967 PCT/KR2013/009203 WO 2014/061967 PCT / KR2013 / 009203
[화학식 4] [Formula 4]
【청구항 3】 [Claim 3]
제 1항의 폴리이미드계 고분자 화합물을 포함하는 기체 분리용 비대칭 중공
ΡΓΤ/ιπ? AiQ / oo 9203Asymmetric hollow for gas separation comprising the polyimide polymer compound of claim 1 ΡΓΤ / ιπ? AiQ / oo 9203
WO 2014/061967 PCT/KR2013/009203 WO 2014/061967 PCT / KR2013 / 009203
33 사막. 33 deserts.
【청구항 4】 [Claim 4]
제 3항에 있어서, 상기 기체는 메탄인 것을 특징으로 하는 기체 분리용 비대 칭 중공사막. 4. The asymmetric hollow fiber membrane for gas separation according to claim 3, wherein the gas is methane.
【청구항 5】 [Claim 5]
제 1항의 폴리이미드계 고분자 화합물, 고비점의 비극성 유기 용매, 저비점 의 비용매, 기공형성제인 고비점의 비용매를 포함하는 방사용액을 제조하는 단계 (단계 1); 및 Preparing a spinning solution comprising the polyimide polymer compound of claim 1, a high boiling point nonpolar organic solvent, a low boiling point nonsolvent, and a high boiling point nonsolvent as a pore-forming agent (step 1); And
상기 단계 1에서 제조한 상기 방사용액을 이중관형 노즐을 장착한 건습식 방사장치를 사용하여 내부웅고제 존재 하에 방사하는 단계 (단계 2);를 포함하는 제 3항의 기체 분리용 비대칭 중공사막의 제조방법. 【청구항 6】 The step of spinning the spinning solution prepared in step 1 in the presence of an internal arch agent using a wet-and-dry spinning apparatus equipped with a double-tubular nozzle (step 2); Preparation of the asymmetric hollow fiber membrane for gas separation comprising a Way. [Claim 6]
제 5항에 있어서, 상기 방사 용액은 폴리이미드계 고분자 화합물을 20 - 40 중량 % 포함하는 것을 특징으로 하는 기체 분리용 비대칭 중공사막의 제조방법. The method of claim 5, wherein the spinning solution comprises 20 to 40% by weight of a polyimide polymer compound.
【청구항 7】 [Claim 7]
제 5항에 있어서, 상기 고비점의 비극성 유기용매는 Ν-메틸피를리돈, 다이메 틸아세트아마이드 및 다이메틸포름아마이드아마이드 선택되는 1종 이상이고, 상기 저비점의 비용매는 테트라하이드로퓨란 (THF), 아세톤, 메탄올 및 에탄을로 이루어 진 군으로부터 선택되는 1종 이상이고, 상기 고비점의 비용매는 부탄올, 이소프로 필알콜, 다이메특시에탄올, 다이메록시 부틸렌옥사이드, 부록시메탄을, 부톡시에탄 올 및 디글리시딜다이메틸이서로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 기체 분리용 비대칭 중공사막의 제조방법. The non-boiling organic solvent of claim 5, wherein the high boiling point nonpolar organic solvent is one or more selected from Ν-methylpyridone, dimethylacetamide and dimethylformamide, and the low boiling point nonsolvent is tetrahydrofuran (THF). At least one selected from the group consisting of acetone, methanol, and ethane, and the high boiling point non-solvent includes butanol, isopropyl alcohol, dimetheethanol, dimethoxy butylene oxide, and appendicemethane. A method for producing asymmetric hollow fiber membranes for gas separation, characterized in that at least one selected from the group consisting of oxyethanol and diglycidyl dimethyl.
【청구항 8] [Claim 8]
거 15항에 있어서, 상기 내부응고제는 고비점의 제막용매 및 저비점의 비용매
ΡΓΤ/ ντ> m I η ο g 20The method of claim 15, wherein the internal coagulant is a high boiling point film forming solvent and a low boiling point non-solvent ΡΓΤ / ντ> m I η ο g 20
WO 2014/061967 34 PCT/KR2013/009203 의 흔합하여 사용하되, In combination with WO 2014/061967 34 PCT / KR2013 / 009203,
상기 내부응고제에 포함되는 고비점의 제막용매, 저비점의 비용매 및 기공 형성제인 고비점의 비용매의 흔합비는 중량 대비 80:10:10 - 60:20:20인 것을 특징 으로 하는 기체 분리용 비대칭 증공사막의 제조방법. The mixing ratio of the high boiling point film forming solvent, the low boiling point non-solvent and the high boiling point non-solvent as a pore-forming agent included in the internal coagulant is 80:10:10-60:20:20 to weight. Method for producing asymmetric thickening membrane.
【청구항 9】 [Claim 9]
제 3항의 기체 분리용 비대칭 중공사막을 사용하여 흔합기체를 분리하는 단 계를 포함하는 흔합기체의 분리방법. A method for separating a mixed gas comprising the step of separating the mixed gas by using the asymmetric hollow fiber membrane for gas separation according to claim 3.
【청구항 10】 [Claim 10]
제 9항에 있어서, 상기 흔합 기체를 분리하는 단계는 메탄과 이산화탄소를 포함하는 흔합기체로부터 메탄, 산소와 질소, 또는 질소와 이산화탄소를 분리하는 것을 특징으로 하는 혼합기체의 분리방법 .
The method of claim 9, wherein the separating of the mixed gas comprises separating methane, oxygen and nitrogen, or nitrogen and carbon dioxide from a mixed gas including methane and carbon dioxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/687,353 US9511320B2 (en) | 2012-10-15 | 2015-04-15 | Polyimide-based macromolecular compound and gas-separation asymmetrical hollow-fibre membrane comprising the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120114029 | 2012-10-15 | ||
KR10-2012-0114029 | 2012-10-15 | ||
KR1020130122425A KR101531607B1 (en) | 2012-10-15 | 2013-10-15 | Polyimide based polymeric compound and asymmetric hollow fiber membranes containing the same for gas separation |
KR10-2013-0122425 | 2013-10-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/687,353 Continuation US9511320B2 (en) | 2012-10-15 | 2015-04-15 | Polyimide-based macromolecular compound and gas-separation asymmetrical hollow-fibre membrane comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014061967A1 true WO2014061967A1 (en) | 2014-04-24 |
Family
ID=50488469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/009203 WO2014061967A1 (en) | 2012-10-15 | 2013-10-15 | Polyamide-based macromolecular compound, and gas-separation asymmetrical hollow-fibre membrane comprising same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014061967A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023148353A1 (en) | 2022-02-04 | 2023-08-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Device and method for estimating the soiling of photovoltaic panels |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100025989A (en) * | 2008-08-28 | 2010-03-10 | 한국화학연구원 | Polyimide particle and its process for producing |
-
2013
- 2013-10-15 WO PCT/KR2013/009203 patent/WO2014061967A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100025989A (en) * | 2008-08-28 | 2010-03-10 | 한국화학연구원 | Polyimide particle and its process for producing |
Non-Patent Citations (3)
Title |
---|
CHOI, K-Y. ET AL.: "Synthesis and Characterization of Novel Polyimides from Alicyclic Dianhydride", KOREA POLYMER J., vol. 4, no. 2, 1996, pages 117 - 124 * |
COSUTCHI, A. C. ET AL.: "Effects of the Aliphatic/Aromatic Structure on the Miscibility, Thermal, Optical, and Rheological Properties of Some Polyimide Blends", POLYMER ENGINEERING AND SCIENCE, 2012, pages 1429 - 1439 * |
LIU, Y. ET AL.: "Chemical Cross-Linking Modification of Polyimide/Poly(ethersulfone) Dual- Layer Hollow-Fiber Membranes for Gas Separation", IND. ENG. CHEM. RES., vol. 42, 2003, pages 1190 - 1195 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023148353A1 (en) | 2022-02-04 | 2023-08-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Device and method for estimating the soiling of photovoltaic panels |
FR3132604A1 (en) | 2022-02-04 | 2023-08-11 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | device and method for estimating the soiling of photovoltaic panels |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Thermally rearranged polybenzoxazole copolymers incorporating Tröger's base for high flux gas separation membranes | |
Li et al. | Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation | |
Hu et al. | Highly permeable polyimides incorporating Tröger's base (TB) units for gas separation membranes | |
CN105263989B (en) | Dianhydride, polyimides based on triptycene, and its method of manufacture and use thereof respectively | |
WO2014087928A1 (en) | Gas separation membrane, gas separation module, gas separation device, and gas separation method | |
US8083834B2 (en) | High permeability membrane operated at elevated temperature for upgrading natural gas | |
US20110278227A1 (en) | Polymer membranes prepared from aromatic polyimide membranes by thermal treating and uv crosslinking | |
US8814982B2 (en) | Tetrazole functionalized polymer membranes | |
US20140047976A1 (en) | Cardo-Polybenzoxazole Polymer/Copolymer Membranes For Improved Permeability And Method For Fabricating The Same | |
WO2011037706A2 (en) | Method to improve the selectivity of polybenzoxazole membranes | |
KR101531607B1 (en) | Polyimide based polymeric compound and asymmetric hollow fiber membranes containing the same for gas separation | |
CN105531014B (en) | Trapezoidal monomer and polymer and respective preparation method and application method based on triptycene | |
KR20170107360A (en) | Method of producing a thermally rearranged pbx, thermally rearranged pbx and membrane | |
Gye et al. | PEG-imidazolium-incorporated polyimides as high-performance CO2-selective polymer membranes: The effects of PEG-imidazolium content | |
US9889412B2 (en) | Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method | |
US20100331437A1 (en) | Polybenzoxazole membranes prepared from aromatic polyamide membranes | |
KR102152278B1 (en) | BCDA-based semi-alicyclic polyimide membrane materials for gas separation and the preparation method thereof | |
WO2020176585A1 (en) | Aromatic co-polyimide gas separation membranes derived from 6fda-6fpda-type homo-polyimides | |
KR101568119B1 (en) | Polyimide-polyethylene glycol copolymer pervaporation membranes and preparation method thereof | |
KR102236277B1 (en) | High temperature polymer membrane for selective separation of water having H2O stability and reaction-separation hybrid system using the same | |
WO2014061967A1 (en) | Polyamide-based macromolecular compound, and gas-separation asymmetrical hollow-fibre membrane comprising same | |
US9308488B1 (en) | High permeability polyimide membranes: gas selectivity enhancement through UV treatment | |
KR101572512B1 (en) | Method for preparation of crosslinked thermally rearranged poly(benzoxazole-co-imide) membranes for flue gas separation and membranes for flue gas separation prepared thereby | |
KR101592256B1 (en) | Gas separation membrane for carbon dioxide and preparation method thereof | |
WO2021014821A1 (en) | M-phenylenediamine compound, polymer and method for producing same, gas separation membrane using this polymer, gas separation module and gas separation apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13847438 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13847438 Country of ref document: EP Kind code of ref document: A1 |