[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014057880A1 - Measurement reagent and measurement method for measuring c-reactive protein - Google Patents

Measurement reagent and measurement method for measuring c-reactive protein Download PDF

Info

Publication number
WO2014057880A1
WO2014057880A1 PCT/JP2013/077085 JP2013077085W WO2014057880A1 WO 2014057880 A1 WO2014057880 A1 WO 2014057880A1 JP 2013077085 W JP2013077085 W JP 2013077085W WO 2014057880 A1 WO2014057880 A1 WO 2014057880A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
particle size
measurement
crp
particles
Prior art date
Application number
PCT/JP2013/077085
Other languages
French (fr)
Japanese (ja)
Inventor
善紀 北
Original Assignee
藤倉化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤倉化成株式会社 filed Critical 藤倉化成株式会社
Publication of WO2014057880A1 publication Critical patent/WO2014057880A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4737C-reactive protein

Definitions

  • the present invention relates to a measuring reagent and a measuring method for measuring C-reactive protein.
  • This application claims priority based on Japanese Patent Application No. 2012-227105 for which it applied to Japan on October 12, 2012, and uses the content here.
  • CRP C-reactive protein
  • a test sample is added to this measurement reagent, and the degree of aggregation of latex particles due to the reaction between CRP and an antibody or fragment thereof is optically measured to detect and quantify CRP as a measurement target substance.
  • an antibody used when measuring CRP in a test sample by latex agglutination turbidimetry a polyclonal antibody or a monoclonal antibody is usually used.
  • Latex particles are inexpensive, available in large quantities, and have consistent quality (for example, polystyrene or co-polymer of styrene and styrene sulfonic acid, acrylic acid, acrylic ester, methacrylic ester, acrylonitrile, etc.). Particles made of polymers and the like are used.
  • Patent Document 2 a method of using phosphorylcholine labeled with a fluorescent substance or the like has been proposed as a rapid and highly sensitive method for measuring CRP in serum in the normal range.
  • this method measurement by a sandwich type measurement method is performed using the specific binding property between phosphorylcholine and CRP.
  • the reagent is more expensive than the latex aggregation turbidimetric method.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a measuring reagent and a measuring method that can stably measure CRP in a test sample from a low concentration range to a high concentration range by latex agglutination turbidimetry.
  • the measuring reagent according to the first aspect of the present invention is a measuring reagent for measuring C-reactive protein by latex agglutination turbidimetry, and has particles having groups on the surface that specifically react with C-reactive protein.
  • coordinates P1 (x1, y1), V1 (x3, ymin ), V2 (x4, ymin ), P2 (x2, y2), and P1 The area of the region surrounded by the straight line connecting sequentially is 300 or more.
  • x1 and y1 respectively indicate the particle size and frequency of the peak having the largest particle size among the peaks in the region of x ⁇ 200.
  • Each of x2 and y2 represents the particle size and frequency of the peak having the smallest particle size among the peaks in the region of 200 ⁇ x.
  • y min represents the minimum value of y in the region of x1 ⁇ x ⁇ x2.
  • the group that specifically reacts with the C-reactive protein may be a phosphorylcholine group.
  • the measuring reagent according to the first aspect of the present invention has a surfactant having a steroid skeleton hydrocarbon group to which a substituent may be bonded and a group represented by the following general formula (2) in the molecular structure.
  • An agent may further be included.
  • X represents a linear alkylene group having 3 to 5 carbon atoms to which a hydroxyl group may be bonded.
  • the measurement reagent according to the first aspect of the present invention may be a kit including a first liquid that is a particle dispersion in which the particles are dispersed, and a second liquid that includes the surfactant.
  • the CRP concentration in the test sample is measured by the latex agglutination nephelometry using the measurement reagent according to the first aspect.
  • the measurement method according to the second aspect of the present invention includes a step of mixing a test sample and the measurement reagent according to the first aspect to prepare a reaction solution, and measuring the absorbance of the reaction solution, The concentration of the surfactant in it may be 0.15 to 0.40 mass%.
  • FIG. 5 is a graph (CRP concentration is 0 to 30 mg / dL) with the measurement result of the absorbance change amount Abs in Examples 1 to 27 in the examples as the vertical axis and the CRP concentration (mg / dL) of the test sample as the horizontal axis.
  • CRP concentration is 0 to 0.94 mg / dL
  • the measurement result of the absorbance change amount Abs of Examples 1 to 27 in the example as the vertical axis
  • the CRP concentration (mg / dL) of the test sample as the horizontal axis.
  • the measurement reagent according to the first embodiment of the present invention is a measurement reagent for CRP measurement by latex agglutination turbidimetry, and a group that specifically reacts with CRP (hereinafter also referred to as CRP-reactive group).
  • CRP-reactive group a group that specifically reacts with CRP
  • particles hereinafter also referred to as latex particles
  • known latex particles for example, particles in which an anti-CRP antibody or a fragment thereof is supported on the surface of the carrier particles can be used.
  • anti-CRP antibodies are derived from living organisms, and particles carrying anti-CRP antibodies and fragments thereof on the surface are expensive.
  • the present inventors have come up with the use of particles having phosphorylcholine groups on the surface as CRP-reactive groups. As will be described later, these particles can be produced at low cost using a monomer having a phosphorylcholine group in the molecule. Therefore, an inexpensive measurement reagent can be realized by using particles having phosphorylcholine groups on the surface as latex particles.
  • the phosphorylcholine group is a group represented by the following chemical formula (1) and specifically reacts with CRP.
  • the method for producing the particles having phosphorylcholine groups on the surface is not particularly limited.
  • a particle having a phosphorylcholine group on its surface is obtained by suspension polymerization or emulsion polymerization of a monomer having a phosphorylcholine group in the molecule alone or together with another monomer copolymerizable with this monomer.
  • the monomer having a phosphorylcholine group in the molecule include compounds having a phosphorylcholine group and a polymerizable double bond in the molecule (for example, 2- (meth) acryloyloxyphosphorylcholine).
  • any monomer having a polymerizable double bond in the molecule and not having a phosphorylcholine group can be used, and the type thereof is not particularly limited.
  • Specific examples include vinyl monomers such as styrene, vinyl chloride, acrylonitrile, vinyl acetate, acrylic acid ester, and methacrylic acid ester.
  • vinyl monomers such as styrene, vinyl chloride, acrylonitrile, vinyl acetate, acrylic acid ester, and methacrylic acid ester.
  • at least one selected from styrene, vinyltoluene, and methyl methacrylate is preferable because it is difficult to inhibit the reactivity of the phosphorylcholine group present on the surface.
  • the ratio of the monomer having a phosphorylcholine group is 1.5 to 7.5 parts by mass with respect to 100 parts by mass of the other monomer. It is preferable to be in the range of parts. If it is 1.5 mass parts or more, sufficient reactivity with respect to CRP is securable. If it is within 7.5 parts by mass, the reactivity is not inhibited by steric hindrance between phosphorylcholine groups.
  • the curve has at least one peak in the region of x ⁇ 200 and at least one peak in the region of 200 ⁇ x.
  • the particle size distribution curve can be obtained by analyzing a particle dispersion obtained by dispersing the latex particles in a dispersion medium such as water by a dynamic light scattering (DLS) method.
  • a dispersion medium such as water by a dynamic light scattering (DLS) method.
  • DLS dynamic light scattering
  • submicron particles have Brownian motion in a dispersion medium, and the intensity of scattered light changes (fluctuates) with time when irradiated with laser light.
  • an autocorrelation function is obtained by using a photon correlation method (JIS Z8826), a diffusion coefficient indicating a Brownian motion velocity is calculated by a cumulant analysis, and Einstein-Stokes's
  • JIS Z8826 photon correlation method
  • a diffusion coefficient indicating a Brownian motion velocity is calculated by a cumulant analysis
  • Einstein-Stokes's The average particle size can be determined using the formula.
  • a polydispersity index (PI) by the cumulant method, the particle size distribution can be obtained.
  • the particle size distribution curve has at least one peak in the region of x ⁇ 200, CRP can be stably detected in the high concentration region.
  • the number of peaks present in the region of x ⁇ 200 is preferably 1 or 2, and more preferably 1.
  • the particle diameter of the peak existing in the region of x ⁇ 200 is preferably in the range of 100 nm or more and less than 200 nm.
  • the peak particle size refers to the particle size corresponding to the peak top of the peak (the particle size with the highest frequency).
  • the particle size distribution curve has at least one peak in the region of 200 ⁇ x, CRP can be stably detected in the low concentration region.
  • the number of peaks present in the region of 200 ⁇ x is preferably 1 or 2, and more preferably 1.
  • the peak particle size existing in the region of 200 ⁇ x is preferably in the range of 200 nm to 350 nm.
  • coordinates P1 (x1, y1), V1 (x3, ymin ), V2 (x4, ymin ), P2 (x2, y2), and P1 are sequentially set.
  • the area of the region surrounded by the connecting straight line is 300 or more, preferably 500 to 2000, and more preferably 1000 to 2000.
  • Each of x1 and y1 represents the particle size and frequency of the peak having the largest particle size (hereinafter also referred to as peak 1) among the peaks in the region of x ⁇ 200.
  • Each of x2 and y2 represents the particle size and frequency of the peak having the smallest particle size (hereinafter also referred to as peak 2) among the peaks in the region of 200 ⁇ x.
  • y min represents the minimum value of y in the region of x1 ⁇ x ⁇ x2.
  • Y min is the bottom of the valley between peak 1 and peak 2
  • coordinate V1 is the position closest to peak 1 at the bottom of the valley
  • coordinate V2 is closest to peak 2 at the bottom of the valley. Indicates the position.
  • the area surrounded by the straight line connecting the coordinates P1, V1, V2, P2, and P1 is a quadrangle.
  • V1 and V2 are the same.
  • a region surrounded by a straight line connecting the coordinates P1, V1, V2, P2, and P1 is a triangle.
  • the area of a region surrounded by a straight line that sequentially connects the coordinates P1, V1, V2, P2, and P1 can be obtained from the value of each coordinate by the following formula in either case of a square or a triangle.
  • Area of region ⁇ (x2 ⁇ x1) ⁇ (larger value of y1 and y2 ⁇ y min ) ⁇ ⁇ ⁇ (x3 ⁇ x1) ⁇ (y1 ⁇ y min ) / 2 ⁇ ⁇ ⁇ (x2 ⁇ x4) ⁇ (y2-y min ) / 2 ⁇ - ⁇ (x2-x1) ⁇ (
  • FIG. 1 is a particle size distribution curve (horizontal axis: particle diameter x (nm), vertical axis: frequency y (%) in terms of mass) of latex particles contained in RA1 and RA4 manufactured in Examples described later.
  • the particle size distribution curve of latex particles contained in RA1 has one peak in the region of x ⁇ 200 and one peak in the region of 200 ⁇ x.
  • P1 is (100, 14.57) and P2 is (300, 5.77).
  • the minimum value y min of the frequency y between P1 and P2 is 0, V1 is (126.519, 0), and V2 is (193.604, 0). Therefore, the area of the quadrangular region surrounded by the straight line that sequentially connects P1, V1, V2, P2, and P1 is about 1420.
  • the particle size distribution curve of latex particles contained in RA4 has one peak in the region of x ⁇ 200 and one peak in the region of 200 ⁇ x. P1 is (180, 14.69), and P2 at the peak top of the peak in the region having a particle diameter of 200 nm or more is (300, 3.93).
  • the minimum value y min of the frequency y between P1 and P2 is 0.44, and V1 and V2 coincide with each other (229.412, 0.44). Therefore, the area surrounded by the straight lines connecting P1, V1, V2, P2, and P1 in sequence is a triangle, and its area is about 489.
  • x2 is 1.3 times or more of x1, the area of the region tends to be 300 or more.
  • x2 is 3.5 times or less of x1, a large aggregate is efficiently generated, and it becomes easy to observe a change in absorbance in a low concentration region of CRP.
  • To 0.5 and y2 is preferably in the range of 0.2 to 0.5).
  • y2 is equal to or smaller than y1, a change in absorbance at a high concentration range of CRP is easily observed. If y1 is 4 times or less of y2, a change in absorbance at a low concentration range of CRP is easily observed.
  • the latex particles are usually dispersed in water or the like and used as a particle dispersion.
  • the method for preparing the latex particles or the particle dispersion in which they are dispersed is not particularly limited.
  • a particle dispersion in which the latex particles are dispersed can be prepared by preparing a plurality of particle dispersions having different average particle diameters as a particle dispersion for preparing a measurement reagent and mixing them. Thereafter, drying, dilution, or the like may be performed as necessary.
  • At least one of the plurality of particle dispersions to be mixed at this time is a particle dispersion having an average particle diameter of less than 200 nm, and at least one is a particle dispersion having an average particle diameter of 200 nm or more.
  • the average particle diameter is obtained by analyzing the particle dispersion by the dynamic light scattering method.
  • the particle size distribution curve measured in the same manner as described above preferably has one peak.
  • the above-mentioned reaction liquid obtained by suspension polymerization or emulsion polymerization of a monomer having a phosphorylcholine group and a polymerizable double bond in the molecule can be used as a particle dispersion for preparing a measurement reagent. .
  • suspension polymerization or emulsion polymerization a plurality of times under different polymerization conditions, a plurality of particle dispersions having different average particle diameters can be obtained.
  • the area of the region surrounded by the straight line connecting the coordinates P1, V1, V2, P2, and P1 can be adjusted. For example, when two particle dispersions are mixed, the area of the region increases as the difference between the average particle diameters increases. In addition, even if the difference in average particle diameter is the same, the narrower the particle size distribution of the respective particle dispersions, the larger the area of the region.
  • the measurement reagent When the latex particle is a particle having a phosphorylcholine group on the surface, the measurement reagent according to the first embodiment of the present invention has a steroid skeleton hydrocarbon group to which a substituent may be bonded in the molecular structure.
  • a surfactant having a group represented by the following general formula (2) hereinafter referred to as “surfactant (A)”.
  • X represents a linear alkylene group having 3 to 5 carbon atoms to which a hydroxyl group may be bonded.
  • the latex particles are preferably particles having phosphorylcholine groups on the surface.
  • particles having phosphorylcholine groups on the surface are applied to CRP measurement by latex agglutination turbidimetry, particles having anti-CRP antibodies or fragments thereof supported on the surface are used. Compared to the above, the measurement efficiency of CRP is lowered. Therefore, as a result of further investigation, when particles having phosphorylcholine groups on the surface are used as latex particles, particles having an anti-CRP antibody or fragment thereof supported on the surface are used in combination with the surfactant (A).
  • Surfactant (A) is a compound having a steroid skeleton hydrocarbon group to which a substituent may be bonded and a group represented by the general formula (2) in the molecular structure.
  • the hydrocarbon group of the steroid skeleton in the hydrocarbon group of the steroid skeleton possessed by the surfactant (A) is represented by the following formula (3).
  • Examples of the substituent which may be bonded to the hydrocarbon group of the steroid skeleton include a hydroxyl group and an alkyl group, and a hydroxyl group is preferable.
  • the surfactant (A) has a hydrocarbon group having a steroid skeleton to which the substituent may be bonded at one end of the molecular structure, and a group represented by the general formula (2) at the other end.
  • a compound is preferable, and a compound represented by the following general formula (4) is particularly preferable.
  • R 1 represents a linear or branched alkylene group having 1 to 9 carbon atoms.
  • R 2 to R 3 each independently represents a group represented by the following general formula (I), a hydrogen atom, or an alkyl group having 1 to 9 carbon atoms, and one or both of R 2 and R 3 are It is group represented by the said general formula (I).
  • R 4 represents a linear or branched alkylene group having 1 to 9 carbon atoms.
  • Typical examples of the compound represented by the formula (4) include compounds represented by the following formulas (4-1) to (4-5).
  • a commercially available compound can be used for the compound represented by Formula (4).
  • the compound represented by the formula (4-1) (3-[(3-colamidopropyl) dimethylammonio] propanesulfonate), CHAPS (product name) manufactured by Dojindo Laboratories Co., Ltd. Can be mentioned.
  • the compound represented by the formula (4-2) (3-[(3-colamidopropyl) dimethylammonio] -2-hydroxypropanesulfonate), CHAPSO (product of Dojindo Laboratories) Name).
  • the measurement reagent according to the first embodiment of the present invention may further contain other components other than the latex particles and the surfactant (A) as necessary, as long as the effects of the present invention are not impaired. Good.
  • known additives can be used.
  • a surfactant, a preservative such as sodium azide, a stabilizer such as sucrose or bovine serum albumin, a buffering agent such as sodium acetate, etc. can be included in order to enhance reactivity, stability and the like.
  • a calcium ion source such as calcium chloride because the phosphorylcholine group easily binds specifically to CRP in the presence of Ca 2+ .
  • the measurement reagent according to the first embodiment of the present invention includes other components other than the latex particles
  • the measurement reagent according to the first embodiment of the present invention includes one component containing all components in one agent. It may be a measuring reagent of a type. In addition to the agent containing latex particles, it may be a multi-drug type measuring reagent further comprising one or more agents containing part or all of other components.
  • a surfactant is included as another component, the surfactant may be adsorbed on the surface of the latex particle and the storage stability may be impaired, so the latex particle and the surfactant may be blended in a different agent. preferable.
  • the measurement reagent according to the first embodiment of the present invention is preferably a kit including a first liquid that is a particle dispersion in which the latex particles are dispersed, and a second liquid that includes a surfactant.
  • a kit can be used for CRP measurement by latex agglutination turbidimetry as it is.
  • the first liquid preferably does not contain a surfactant.
  • the second liquid preferably does not contain the latex particles.
  • the explanation of the latex particles in the first liquid is the same as described above.
  • the latex particles are preferably particles having phosphorylcholine groups on the surface.
  • the amount of latex particles in the first liquid is preferably such that the concentration when mixed with the second liquid is 1% by mass or less with respect to the total mass of the obtained liquid mixture. If it is 1% by mass or less, it can be applied to many existing measuring instruments. The minimum of content is not specifically limited, What is necessary is just more than 0 mass%.
  • the first liquid contains preservatives such as sodium azide, stabilizers such as sucrose, and buffering agents such as sodium acetate in order to enhance reactivity, stability, etc., as long as the effects of the present invention are not impaired. Also good.
  • the surfactant in the second liquid the same surfactant as described above can be used.
  • the surfactant is preferably the surfactant (A).
  • the content of the surfactant (A) in the second liquid is preferably 10% by mass or less with respect to the total mass of the second liquid. If it exceeds 10% by mass, there is a possibility that it cannot be completely dissolved. The minimum of content is not specifically limited, What is necessary is just more than 0 mass%.
  • the second liquid contains a preservative such as sodium azide, a stabilizer such as bovine serum albumin, and a buffer such as sodium acetate in order to enhance reactivity, stability, etc.
  • the second liquid preferably contains a calcium source such as calcium chloride. Storage stability improves by making a 2nd liquid contain a calcium source instead of a 1st liquid.
  • the second liquid can be prepared by dissolving or dispersing each component in water or the like.
  • the CRP concentration in the test sample is measured by the latex agglutination nephelometry using the measurement reagent according to the first embodiment of the present invention.
  • the test sample any test sample that has been conventionally subjected to CRP measurement by latex agglutination turbidimetry can be used, and examples thereof include human serum samples.
  • Measurement of the CRP concentration in the test sample can be carried out in the same procedure as in the usual latex agglutination turbidimetry. For example, there is a method of preparing a reaction solution by mixing a test sample and a measurement reagent and measuring the absorbance of the obtained reaction solution.
  • reaction solution is allowed to stand under conditions where the CRP reactive group on the latex particle surface and CRP react specifically, if CRP is contained in the test sample, latex particles aggregate in the reaction solution.
  • the turbidity of the reaction solution increases and the absorbance increases.
  • the higher the CRP concentration in the test sample the greater the amount of change in absorbance.
  • a calibration curve is prepared in advance using a standard sample with a known CRP concentration, and immediately after mixing the test sample and the measuring reagent, and after mixing, the CRP reactive group on the latex particle surface and CRP react specifically.
  • the CRP concentration in the test sample can be quantified from the amount of change in the absorbance by measuring the absorbance of the reaction solution after being allowed to stand for an arbitrary time below.
  • the amount of the measurement reagent used is set in consideration of the desired latex particle concentration, surfactant (A) concentration, etc. in the reaction solution at the time of absorbance measurement.
  • the latex particle concentration in the reaction solution during the absorbance measurement is preferably 1.0% by mass or less with respect to the total mass of the reaction solution. If it is 1.0% by mass or less, it can be used for many measuring instruments, and a difference in absorbance due to aggregation can be sufficiently detected.
  • the minimum of content is not specifically limited, What is necessary is just more than 0 mass%.
  • the concentration of the surfactant (A) in the reaction solution at the time of absorbance measurement is in the range of 0.15 to 0.40 mass% with respect to the total mass of the reaction solution. Is preferred.
  • the effect by containing surfactant (A) is fully acquired as the surfactant (A) density
  • concentration at the time of a measurement is 0.15 mass% or more.
  • concentration at the time of a measurement is 0.15 mass% or more.
  • the test sample and the measurement reagent according to the first embodiment of the present invention are mixed with the second liquid and the first liquid.
  • the test sample and the second liquid are mixed and allowed to stand for an arbitrary period of time, and then the first liquid is added thereto, or the test sample, the second liquid, and the first liquid are collectively This is done by mixing.
  • it is preferable that the test sample and the second liquid are mixed and allowed to stand for an arbitrary time, and then the first liquid is added thereto.
  • the standing after the test sample and the second liquid are mixed is preferably performed under conditions of 15 to 40 ° C.
  • the standing time is not particularly limited, but is usually about 1 to 15 minutes.
  • the standing conditions after mixing the test sample and the measurement reagent according to the first embodiment of the present invention are the CRP on the latex particle surface. It can be set according to the reactive group.
  • the CRP-reactive group is a phosphorylcholine group
  • the standing temperature is preferably 15 to 40 ° C.
  • the standing time is preferably 1 to 15 minutes.
  • the absorbance of the mixed solution can be measured by a conventional method, and can be measured, for example, under the conditions shown in Examples described later.
  • the particle size distribution and the average particle size were measured by the following procedure.
  • the particle size distribution and average particle size of the latex particles were determined by diluting the latex particle dispersion with an aqueous NaCl solution having a concentration of 10 mM so that the concentration of the latex particles was 1% by mass, and a special concentrated particle size analyzer FPAR-1000 (Otsuka It was calculated
  • Latex 2 to 9 were obtained in the same manner as in Production Example 1 except that the amount (g) of each raw material used in Production Example 1 was changed according to the formulation shown in Table 1. The average particle size of latex particles contained in each latex 2-9 was measured by the above procedure. The results are shown in Table 1.
  • Latex 1-9 obtained above were mixed according to the blending ratio (mass ratio) shown in Table 2, and further sodium azide, sucrose, sodium acetate, and pure water were mixed, dissolved, and diluted, Measurement reagent first liquids RA1 to RA15 having the composition (unit: mass%) shown in Table 3 were obtained.
  • the average particle size ratio of the small particle size latex having an average particle size of less than 200 nm and the large particle size latex having an average particle size of 200 nm or more (large particle size latex).
  • the average particle size / average particle size of the small particle size latex) is also shown in Table 2.
  • FIG. 2 shows the particle size distribution curves of RA1 to RA15.
  • the particle size distribution curves of RA1 to RA12 and RA15 in which two types of latex were mixed had two peaks, and the peak top particle size of each peak corresponded to the average particle size of each of the two types of latex.
  • the particle size distribution curve of RA13 and RA14 using one type of latex alone had one peak.
  • Second reagent for measurement reagent As surfactants, CHAPS (product name, manufactured by Dojindo Laboratories, Inc., 3-[(3-colamidopropyl) dimethylammonio] propanesulfonate), CHAPSO (product name, manufactured by Dojindo Laboratories, Inc., 3 -[(3-Colamidopropyl) dimethylammonio] -2-hydroxypropanesulfonate), laurylsulfobetaine, and cholic acid were used. These surfactants, calcium chloride, sodium acetate, bovine serum albumin, sodium azide, and pure water were mixed and dissolved, and the measurement reagents of the composition (unit: mass%) shown in Table 5 Two liquids 1-1 to 1-12 were obtained.
  • CRP measurement performance As a CRP for a test sample, C. a recombinant protein of E. coli is used. Using REACTIVE PROTEIN (Roche Diagnostics Co., Ltd.), a test sample in which the concentration was halved stepwise by adding physiological saline from 30 mg / dL was prepared and used for measurement. CRP measurement was performed in the following procedure using the measurement reagent first solution and the measurement reagent second solution prepared above in the combinations shown in Tables 6 to 8.
  • Examples 1 to 4, 6 to 12, 14, 16 to 27 2.1 ⁇ L of the test sample is mixed with 120 ⁇ L of the second reagent for measurement and then allowed to stand for 5 minutes. After that, 120 ⁇ L of the first reagent for measurement is added, and the absorbance immediately after the addition of the first reagent for measurement ( (Absorbance at 0.00 hour) and absorbance after 5 minutes from the addition of the first reagent for measurement.
  • the absorbance was measured using an automatic general-purpose measuring instrument Hitachi 7170E (manufactured by Hitachi, Ltd.) at a measurement wavelength of 570 nm and a measurement temperature of 37 ° C.
  • FIGS. 3 is a graph of the entire measurement region (CRP concentration is 0 to 30 mg / dL), and FIG. 4 is a graph of a low concentration region (CRP concentration is 0 to 0.94 mg / dL).
  • Low concentration region change rate [Absorbance change amount Abs when CRP concentration is 0.5 mg / dL] ⁇ [Absorbance change amount Abs when CRP concentration is 0.0 mg / dL]
  • High concentration range change rate [Absorbance change Abs when CRP concentration is 30.0 mg / dL] ⁇ [Absorbance change Abs when CRP concentration is 0.0 mg / dL]
  • the low concentration region change rate is preferably 30 or more, and more preferably 50 or more. It shows that CRP measurement in a high concentration area
  • the rate of change in the high concentration region is preferably 3000 or more, and more preferably 4000 or more. In the present invention, it is particularly preferable that the following conditions 1 and 2 are satisfied.
  • Condition 1 Low concentration region change rate ⁇ 30
  • Condition 2 High density region change rate ⁇ 3000
  • Example 22 in which only one RA13 having a particle size distribution curve having only one peak in the region of x ⁇ 200 nm was used as the measurement reagent first solution, the rate of change in the low concentration region was low.
  • Example 23 in which only one RA14 was used in the region where the particle size distribution curve had x ⁇ 200 nm as the measurement reagent first solution, the rate of change in the high concentration region was low.
  • the particle size distribution curve has one peak each in the region of x ⁇ 200 nm and the region of x ⁇ 200 nm, and the area of the region surrounded by straight lines sequentially connecting the coordinates P1, V1, V2, P2, and P1 is 300 or more.
  • Example 1 wherein the measurement reagent first solution and the measurement reagent second solution containing the surfactant (A) were used in combination, and the concentration of the surfactant (A) during measurement was 0.15 to 0.40 mass%. In -18, both the low concentration region change rate and the high concentration region change rate were high, and the conditions 1 and 2 were satisfied.
  • the particle size distribution curve has one peak each in the region of x ⁇ 200 nm and the region of x ⁇ 200 nm, and the area of the region surrounded by straight lines sequentially connecting the coordinates P1, V1, V2, P2, and P1 is 300 or more.
  • Example 19 was used in combination with the measurement reagent second liquid containing no surfactant (A), but the high concentration range change rate of Example 19 was improved over Examples 22 and 23, and the low concentration range The rate of change was also improved from Example 22, but the rate of change in the low concentration region did not satisfy Condition 1.
  • the particle size distribution curve has one peak each in the region of x ⁇ 200 nm and the region of x ⁇ 200 nm, and the area of the region surrounded by straight lines sequentially connecting the coordinates P1, V1, V2, P2, and P1 is 300 or more.
  • the measurement reagent first liquid and the measurement reagent second liquid containing the surfactant (A) were used in combination, but the concentration of the surfactant (A) at the time of measurement was 0.1% by mass.
  • the particle size distribution curve has one peak each in the region of x ⁇ 200 nm and the region of x ⁇ 200 nm, and the area of the region surrounded by straight lines sequentially connecting the coordinates P1, V1, V2, P2, and P1 is 300 or more.
  • the measurement reagent first solution and the measurement reagent second solution containing the surfactant (A) were used in combination, but the surfactant (A) concentration at the time of measurement was 0.45% by mass.
  • the particle size distribution curve has one peak each in the region of x ⁇ 200 nm and the region of x ⁇ 200 nm, and the area of the region surrounded by straight lines sequentially connecting the coordinates P1, V1, V2, P2, and P1 is 300 or more.
  • the low concentration range change rate was improved over Example 22, but the high concentration range change rate was It became lower than Examples 22 and 23.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

A measurement reagent for use in the measurement of C-reactive protein by a latex coagulation nephelometry method comprises particles each having, on the surface thereof, a group capable of reacting specifically with C-reactive protein. In a particle size distribution curve wherein the horizontal axis represents the particle diameter (x (nm)) of each of the particles and the vertical axis represents the frequency (y (%)) of the particles in terms of mass, at least one peak appears in a region in which x is less than 200 and at least one peak appears in a region in which x is equal to or more than 200, and the area bounded by a line connecting a coordinate point P1 (x1, y1) to a coordinate point V1 (x3, ymin), a line connecting the coordinate point V1 to a coordinate point V2 (x4, ymin), a line connecting the coordinate point V2 to a coordinate point P2 (x2, y2) and a line connecting the coordinate point P2 to the coordinate point P1 in the particle size distribution curve is 300 or more.

Description

C-反応性タンパク質測定用の測定試薬および測定方法Measuring reagent and measuring method for C-reactive protein measurement
 本発明は、C-反応性タンパク質測定用の測定試薬および測定方法に関する。
  本願は、2012年10月12日に日本に出願された特願2012-227105号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a measuring reagent and a measuring method for measuring C-reactive protein.
This application claims priority based on Japanese Patent Application No. 2012-227105 for which it applied to Japan on October 12, 2012, and uses the content here.
 臨床検査の分野では、生体試料(血液、尿など)を用いて種々の疾患の診断を行っている。この診断における判定基準の一つとして、C-反応性タンパク質(以下「CRP」ともいう。)がある。CRPは、正常な状態ではほとんど血中に含まれないが、炎症や組織の破壊が起こると急速に増加することが知られている。
 CRPの測定方法としては、抗原抗体反応を利用した免疫測定法が一般的で、特にラテックス凝集比濁法が汎用されている。ラテックス凝集比濁法では、CRPに特異的に反応する抗体またはそのフラグメントを担持させたラテックス粒子が分散したラテックスが測定試薬として用いられる。この測定試薬に被験試料を加え、CRPと抗体またはそのフラグメントとの反応によるラテックス粒子の凝集の程度を光学的に測定することにより、測定対象物質であるCRPを検出、定量する。
 ラテックス凝集比濁法で、被験試料中のCRPを測定する場合に使用する抗体としては、通常、ポリクローナル抗体又はモノクローナル抗体が用いられている。また、ラテックス粒子としては、安価で、大量に入手でき、かつ品質が一定であるポリマー粒子(例えばポリスチレン、又はスチレンとスチレンスルホン酸、アクリル酸、アクリル酸エステル、メタクリル酸エステル、アクリロニトリル等との共重合体等からなる粒子)が使用されている。
In the field of clinical tests, various diseases are diagnosed using biological samples (blood, urine, etc.). One criterion for this diagnosis is C-reactive protein (hereinafter also referred to as “CRP”). It is known that CRP is hardly contained in the blood in a normal state, but rapidly increases when inflammation or tissue destruction occurs.
As a CRP measurement method, an immunoassay method utilizing an antigen-antibody reaction is generally used, and in particular, a latex agglutination turbidimetry is widely used. In the latex agglutination turbidimetry, latex in which latex particles carrying an antibody that specifically reacts with CRP or a fragment thereof are dispersed is used as a measurement reagent. A test sample is added to this measurement reagent, and the degree of aggregation of latex particles due to the reaction between CRP and an antibody or fragment thereof is optically measured to detect and quantify CRP as a measurement target substance.
As an antibody used when measuring CRP in a test sample by latex agglutination turbidimetry, a polyclonal antibody or a monoclonal antibody is usually used. Latex particles are inexpensive, available in large quantities, and have consistent quality (for example, polystyrene or co-polymer of styrene and styrene sulfonic acid, acrylic acid, acrylic ester, methacrylic ester, acrylonitrile, etc.). Particles made of polymers and the like are used.
 被験試料中のCRP濃度は疾患の状態によりまちまちであることから、CRPの測定においては、幅広い測定濃度を測定できることが求められる。
 しかし、ラテックス凝集比濁法では、含まれるラテックス粒子の粒径が単一である場合、幅広い測定範囲をカバーすることは難しい。そこで、粒径の異なるラテックス粒子を併用したり、遊離状態のモノクローナル抗体またはその断片をラテックスに含有させることが提案されている(たとえば特許文献1)。
 しかし、単純に大小の粒子を併用しただけでは、必ずしも、被験試料中のCRPを低濃度域から高濃度域まで安定して測定することはできない。たとえば、CRPの低濃度域において小粒径粒子が先に凝集してしまい、凝集粒子の成長を進めるために必要な大粒径の粒子がCRPの低濃度域で凝集しない問題等が有る。
Since the CRP concentration in the test sample varies depending on the disease state, the CRP measurement is required to be able to measure a wide range of measurement concentrations.
However, in the latex agglutination turbidimetry, it is difficult to cover a wide measurement range when the particle size of the contained latex particles is single. Thus, it has been proposed to use latex particles having different particle diameters together or to contain free monoclonal antibodies or fragments thereof in the latex (for example, Patent Document 1).
However, it is not always possible to stably measure CRP in a test sample from a low concentration range to a high concentration range simply by using large and small particles together. For example, there is a problem that the small particle size particles are first aggregated in the low concentration region of CRP, and the large particle size necessary for promoting the growth of the aggregated particles is not aggregated in the low concentration region of CRP.
 一方、正常範囲の血清中CRPの測定で、迅速で感度が高いCRPの測定方法として、蛍光物質等で標識したホスホリルコリンを使用する方法が提案されている(特許文献2)。この方法では、ホスホリルコリンとCRPとの特異的結合性を利用して、サンドイッチ型測定法による測定が行われる。しかしこの方法は、標識したホスホリルコリンを使用するため、ラテックス凝集比濁法に比べて試薬が高価になる。 On the other hand, a method of using phosphorylcholine labeled with a fluorescent substance or the like has been proposed as a rapid and highly sensitive method for measuring CRP in serum in the normal range (Patent Document 2). In this method, measurement by a sandwich type measurement method is performed using the specific binding property between phosphorylcholine and CRP. However, since this method uses labeled phosphorylcholine, the reagent is more expensive than the latex aggregation turbidimetric method.
日本国特開2004-191332号公報Japanese Unexamined Patent Publication No. 2004-191332 日本国特開2000-249703号公報Japanese Unexamined Patent Publication No. 2000-249703
 本発明は、上記事情に鑑みてなされたものであって、ラテックス凝集比濁法により被験試料中のCRPを低濃度域から高濃度域まで安定して測定できる測定試薬および測定方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a measuring reagent and a measuring method that can stably measure CRP in a test sample from a low concentration range to a high concentration range by latex agglutination turbidimetry. And
 上記の目的を達成するために、本発明は以下の構成を採用した。
 本発明の第一態様に係る測定試薬は、ラテックス凝集比濁法によるC-反応性タンパク質測定用の測定試薬であって、C-反応性タンパク質と特異的に反応する基を表面に有する粒子を含有し、前記粒子の粒径x(nm)を横軸、質量換算の頻度y(%)を縦軸とした粒度分布曲線が、x<200の領域に少なくとも1つのピーク、200≦xの領域に少なくとも1つのピークを有し、前記粒度分布曲線にて、座標P1(x1、y1)、V1(x3、ymin)、V2(x4、ymin)、P2(x2、y2)、前記P1を順次結ぶ直線で囲まれた領域の面積が300以上である。
 ただし、x1およびy1はそれぞれ、x<200の領域に有るピークのうち、粒径が最も大きいピークの粒径および頻度を示す。
 x2およびy2はそれぞれ、200≦xの領域に有るピークのうち、粒径が最も小さいピークの粒径および頻度を示す。
 yminは、x1<x<x2の領域内でのyの最小値を示す。
 x3は、x1<x<x2の領域内で、y=yminであるxの最小値を示す。
 x4は、x1<x<x2の領域内で、y=yminであるxの最大値を示す。
In order to achieve the above object, the present invention employs the following configuration.
The measuring reagent according to the first aspect of the present invention is a measuring reagent for measuring C-reactive protein by latex agglutination turbidimetry, and has particles having groups on the surface that specifically react with C-reactive protein. A particle size distribution curve containing the particle diameter x (nm) of the particles as a horizontal axis and the mass conversion frequency y (%) as a vertical axis, at least one peak in a region of x <200, and a region of 200 ≦ x In the particle size distribution curve, coordinates P1 (x1, y1), V1 (x3, ymin ), V2 (x4, ymin ), P2 (x2, y2), and P1 The area of the region surrounded by the straight line connecting sequentially is 300 or more.
However, x1 and y1 respectively indicate the particle size and frequency of the peak having the largest particle size among the peaks in the region of x <200.
Each of x2 and y2 represents the particle size and frequency of the peak having the smallest particle size among the peaks in the region of 200 ≦ x.
y min represents the minimum value of y in the region of x1 <x <x2.
x3 indicates the minimum value of x where y = y min in the region of x1 <x <x2.
x4 indicates the maximum value of x where y = y min in the region of x1 <x <x2.
 本発明の第一態様に係る測定試薬において、前記C-反応性タンパク質と特異的に反応する基が、ホスホリルコリン基であってもよい。
 本発明の第一態様に係る測定試薬は、分子構造内に、置換基が結合していてもよいステロイド骨格の炭化水素基と、下記一般式(2)で表される基とを有する界面活性剤をさらに含んでいてもよい。
In the measurement reagent according to the first aspect of the present invention, the group that specifically reacts with the C-reactive protein may be a phosphorylcholine group.
The measuring reagent according to the first aspect of the present invention has a surfactant having a steroid skeleton hydrocarbon group to which a substituent may be bonded and a group represented by the following general formula (2) in the molecular structure. An agent may further be included.
Figure JPOXMLDOC01-appb-C000002
[式中、Xは、水酸基が結合していてもよい炭素数3~5の直鎖アルキレン基を示す。]
Figure JPOXMLDOC01-appb-C000002
[Wherein, X represents a linear alkylene group having 3 to 5 carbon atoms to which a hydroxyl group may be bonded. ]
 本発明の第一態様に係る測定試薬は、前記粒子が分散した粒子分散液である第一液と、前記界面活性剤を含む第二液とを備えるキットであってもよい。
 本発明の第二態様に係る測定方法は、上記第一態様に係る測定試薬を用いて、ラテックス凝集比濁法により、被験試料中のCRP濃度を測定する。
 本発明の第二態様に係る測定方法は、被験試料と、上記第一態様に係る測定試薬とを混合して反応液を調製し、前記反応液の吸光度を測定する工程を含み、前記反応液中の前記界面活性剤の濃度が0.15~0.40質量%であってもよい。
The measurement reagent according to the first aspect of the present invention may be a kit including a first liquid that is a particle dispersion in which the particles are dispersed, and a second liquid that includes the surfactant.
In the measurement method according to the second aspect of the present invention, the CRP concentration in the test sample is measured by the latex agglutination nephelometry using the measurement reagent according to the first aspect.
The measurement method according to the second aspect of the present invention includes a step of mixing a test sample and the measurement reagent according to the first aspect to prepare a reaction solution, and measuring the absorbance of the reaction solution, The concentration of the surfactant in it may be 0.15 to 0.40 mass%.
 上記本発明の態様によれば、ラテックス凝集比濁法により被験試料中のCRPを低濃度域から高濃度域まで安定して測定できる測定試薬および測定方法を提供できる。 According to the above aspect of the present invention, it is possible to provide a measuring reagent and a measuring method capable of stably measuring CRP in a test sample from a low concentration region to a high concentration region by latex agglutination turbidimetry.
本発明の第1の実施形態に係る測定試薬に含まれる粒子の粒径x(nm)を横軸、質量換算の頻度y(%)を縦軸とした粒度分布曲線における座標P1、V1、V2、P2、およびそれらの座標を順次結ぶ直線で囲まれた領域の面積について説明するグラフである。Coordinates P1, V1, and V2 in a particle size distribution curve with the horizontal axis representing the particle size x (nm) of the particles contained in the measurement reagent according to the first embodiment of the present invention and the vertical axis representing the frequency y (%) in terms of mass. , P2, and the area of a region surrounded by a straight line connecting those coordinates sequentially. 実施例で製造したRA1~RA15の粒度分布曲線である。2 is a particle size distribution curve of RA1 to RA15 produced in Examples. 実施例の例1~27の吸光度変化量Absの測定結果を縦軸、被験試料のCRP濃度(mg/dL)を横軸としたグラフ(CRP濃度が0~30mg/dL)である。FIG. 5 is a graph (CRP concentration is 0 to 30 mg / dL) with the measurement result of the absorbance change amount Abs in Examples 1 to 27 in the examples as the vertical axis and the CRP concentration (mg / dL) of the test sample as the horizontal axis. 実施例の例1~27の吸光度変化量Absの測定結果を縦軸、被験試料のCRP濃度(mg/dL)を横軸としたグラフ(CRP濃度が0~0.94mg/dL)である。5 is a graph (CRP concentration is 0 to 0.94 mg / dL) with the measurement result of the absorbance change amount Abs of Examples 1 to 27 in the example as the vertical axis and the CRP concentration (mg / dL) of the test sample as the horizontal axis.
<測定試薬>
 本発明の第1の実施形態に係る測定試薬は、ラテックス凝集比濁法によるCRP測定用の測定試薬であって、CRPと特異的に反応する基(以下、CRP反応性基ともいう。)を表面に有する粒子(以下、ラテックス粒子ともいう。)を含む。
 ラテックス粒子としては、公知のラテックス粒子、たとえば抗CRP抗体やそのフラグメントを担体粒子表面に担持させた粒子を用いることができる。
 しかし、抗CRP抗体は生体由来であり、抗CRP抗体やそのフラグメントを表面に担持させた粒子は高価である。
 そこで、本発明者らは、CRP反応性基としてホスホリルコリン基を表面に有する粒子を用いることに想到した。この粒子は、後述するように、分子内にホスホリルコリン基を有する単量体を用いて安価に製造することができる。そのため、ホスホリルコリン基を表面に有する粒子をラテックス粒子として用いることで、安価な測定試薬を実現できる。
 ホスホリルコリン基は、下記化学式(1)で表される基であり、CRPと特異的に反応する。
<Measurement reagent>
The measurement reagent according to the first embodiment of the present invention is a measurement reagent for CRP measurement by latex agglutination turbidimetry, and a group that specifically reacts with CRP (hereinafter also referred to as CRP-reactive group). Includes particles (hereinafter also referred to as latex particles) on the surface.
As the latex particles, known latex particles, for example, particles in which an anti-CRP antibody or a fragment thereof is supported on the surface of the carrier particles can be used.
However, anti-CRP antibodies are derived from living organisms, and particles carrying anti-CRP antibodies and fragments thereof on the surface are expensive.
Therefore, the present inventors have come up with the use of particles having phosphorylcholine groups on the surface as CRP-reactive groups. As will be described later, these particles can be produced at low cost using a monomer having a phosphorylcholine group in the molecule. Therefore, an inexpensive measurement reagent can be realized by using particles having phosphorylcholine groups on the surface as latex particles.
The phosphorylcholine group is a group represented by the following chemical formula (1) and specifically reacts with CRP.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ホスホリルコリン基を表面に有する粒子の製造方法は特に限定されない。たとえば、分子内にホスホリルコリン基を有する単量体を単独で、またはこの単量体と共重合可能な他の単量体と共に、懸濁重合または乳化重合することによってホスホリルコリン基を表面に有する粒子を得ることができる。
 分子内にホスホリルコリン基を有する単量体としては、たとえば、分子内にホスホリルコリン基と重合性二重結合とを有する化合物(たとえば2-(メタ)アクリロイルオキシホスホリルコリン等)が挙げられる。
 前記他の単量体としては、たとえば分子内に重合性二重結合を有し、ホスホリルコリン基を有しない任意の単量体を用いることができ、その種類に特に制限はない。具体例としては、たとえばスチレン、塩化ビニル、アクリロニトリル、酢酸ビニル、アクリル酸エステル、メタクリル酸エステル等のビニル系単量体が挙げられる。中でも、表面に存在するホスホリルコリン基の反応性を阻害しにくい点で、スチレン、ビニルトルエン、メタアクリル酸メチルから選ばれる少なくとも1種が好ましい。
 ホスホリルコリン基を有する単量体と他の単量体とを共重合させる場合、ホスホリルコリン基を有する単量体の比率は、他の単量体100質量部に対して1.5~7.5質量部の範囲にあることが好ましい。1.5質量部以上であれば、CRPに対する充分な反応性を確保できる。7.5質量部以内であれば、ホスホリルコリン基同士の立体障害等によって反応性が阻害されることが無い。
The method for producing the particles having phosphorylcholine groups on the surface is not particularly limited. For example, a particle having a phosphorylcholine group on its surface is obtained by suspension polymerization or emulsion polymerization of a monomer having a phosphorylcholine group in the molecule alone or together with another monomer copolymerizable with this monomer. Obtainable.
Examples of the monomer having a phosphorylcholine group in the molecule include compounds having a phosphorylcholine group and a polymerizable double bond in the molecule (for example, 2- (meth) acryloyloxyphosphorylcholine).
As the other monomer, for example, any monomer having a polymerizable double bond in the molecule and not having a phosphorylcholine group can be used, and the type thereof is not particularly limited. Specific examples include vinyl monomers such as styrene, vinyl chloride, acrylonitrile, vinyl acetate, acrylic acid ester, and methacrylic acid ester. Among these, at least one selected from styrene, vinyltoluene, and methyl methacrylate is preferable because it is difficult to inhibit the reactivity of the phosphorylcholine group present on the surface.
When the monomer having a phosphorylcholine group is copolymerized with another monomer, the ratio of the monomer having a phosphorylcholine group is 1.5 to 7.5 parts by mass with respect to 100 parts by mass of the other monomer. It is preferable to be in the range of parts. If it is 1.5 mass parts or more, sufficient reactivity with respect to CRP is securable. If it is within 7.5 parts by mass, the reactivity is not inhibited by steric hindrance between phosphorylcholine groups.
 本発明の第1の実施形態に係る測定試薬においては、この測定試薬に含まれる前記ラテックス粒子の粒径x(nm)を横軸、質量換算の頻度y(%)を縦軸とした粒度分布曲線が、x<200の領域に少なくとも1つのピーク、200≦xの領域に少なくとも1つのピークを有する。
 前記粒度分布曲線は、このラテックス粒子を水等の分散媒に分散させた粒子分散液を動的光散乱法(DLS:Dynamic Light Scattering)により分析することで求められる。通常、サブミクロン以下の粒子は分散媒中でブラウン運動をしており、レーザー光を照射すると散乱光強度が時間的に変化する(ゆらぐ)。この散乱光強度のゆらぎを、例えば、光子相関法(JIS Z8826)を用いて自己相関関数を求め、キュムラント(Cumulant)法解析により、ブラウン運動速度を示す拡散係数を算出し、さらにアインシュタイン・ストークスの式を用い、平均粒径を求めることができる。また、この散乱光強度のゆらぎを、例えばキュムラント法による多分散性指数(PI:Polydispersity Index)を用いて解析することで、粒径分布を求めることができる。
In the measurement reagent according to the first embodiment of the present invention, the particle size distribution with the horizontal axis representing the particle size x (nm) of the latex particles contained in the measurement reagent and the vertical axis representing the mass conversion frequency y (%). The curve has at least one peak in the region of x <200 and at least one peak in the region of 200 ≦ x.
The particle size distribution curve can be obtained by analyzing a particle dispersion obtained by dispersing the latex particles in a dispersion medium such as water by a dynamic light scattering (DLS) method. Usually, submicron particles have Brownian motion in a dispersion medium, and the intensity of scattered light changes (fluctuates) with time when irradiated with laser light. For this fluctuation of the scattered light intensity, for example, an autocorrelation function is obtained by using a photon correlation method (JIS Z8826), a diffusion coefficient indicating a Brownian motion velocity is calculated by a cumulant analysis, and Einstein-Stokes's The average particle size can be determined using the formula. Further, by analyzing the fluctuation of the scattered light intensity using, for example, a polydispersity index (PI) by the cumulant method, the particle size distribution can be obtained.
 前記粒度分布曲線が、x<200の領域に少なくとも1つのピークを有することにより、高濃度域でのCRPの検出を安定に行うことができる。
 前記粒度分布曲線において、x<200の領域に存在するピークの数は、1または2が好ましく、1がより好ましい。
 x<200の領域に存在するピークの粒径は、100nm以上200nm未満の範囲内であることが好ましい。
 なお、ピークの粒径とは、前記ピークのピークトップに対応する粒径(頻度が最大となる粒径)を示す。
When the particle size distribution curve has at least one peak in the region of x <200, CRP can be stably detected in the high concentration region.
In the particle size distribution curve, the number of peaks present in the region of x <200 is preferably 1 or 2, and more preferably 1.
The particle diameter of the peak existing in the region of x <200 is preferably in the range of 100 nm or more and less than 200 nm.
The peak particle size refers to the particle size corresponding to the peak top of the peak (the particle size with the highest frequency).
 前記粒度分布曲線が、200≦xの領域に少なくとも1つのピークを有することにより、低濃度域でのCRPの検出を安定に行うことができる。
 前記粒度分布曲線において、200≦xの領域に存在するピークの数は、1または2が好ましく、1がより好ましい。
 200≦xの領域に存在するピークの粒径は、200nm以上350nm以下の範囲内であることが好ましい。
When the particle size distribution curve has at least one peak in the region of 200 ≦ x, CRP can be stably detected in the low concentration region.
In the particle size distribution curve, the number of peaks present in the region of 200 ≦ x is preferably 1 or 2, and more preferably 1.
The peak particle size existing in the region of 200 ≦ x is preferably in the range of 200 nm to 350 nm.
 本発明の実施形態においては、前記粒度分布曲線にて、座標P1(x1、y1)、V1(x3、ymin)、V2(x4、ymin)、P2(x2、y2)、前記P1を順次結ぶ直線で囲まれた領域の面積が300以上であり、500~2000が好ましく、1000~2000がより好ましい。
 x1およびy1はそれぞれ、x<200の領域に有るピークのうち、粒径が最も大きいピーク(以下、ピーク1ともいう。)の粒径および頻度を示す。
 x2およびy2はそれぞれ、200≦xの領域に有るピークのうち、粒径が最も小さいピーク(以下、ピーク2ともいう。)の粒径および頻度を示す。
 yminは、x1<x<x2の領域内でのyの最小値を示す。
 x3は、x1<x<x2の領域内で、y=yminであるxの最小値を示す。
 x4は、x1<x<x2の領域内で、y=yminであるxの最大値を示す。
 つまり、座標P1は、ピーク1のピークトップの位置を示し、座標P2は、ピーク2のピークトップの位置を示す。また、yminは、ピーク1とピーク2との間の谷の底の部分で、座標V1は、谷の底の最もピーク1に近い位置、座標V2は、谷の底の最もピーク2に近い位置を示す。
In the embodiment of the present invention, in the particle size distribution curve, coordinates P1 (x1, y1), V1 (x3, ymin ), V2 (x4, ymin ), P2 (x2, y2), and P1 are sequentially set. The area of the region surrounded by the connecting straight line is 300 or more, preferably 500 to 2000, and more preferably 1000 to 2000.
Each of x1 and y1 represents the particle size and frequency of the peak having the largest particle size (hereinafter also referred to as peak 1) among the peaks in the region of x <200.
Each of x2 and y2 represents the particle size and frequency of the peak having the smallest particle size (hereinafter also referred to as peak 2) among the peaks in the region of 200 ≦ x.
y min represents the minimum value of y in the region of x1 <x <x2.
x3 indicates the minimum value of x where y = y min in the region of x1 <x <x2.
x4 indicates the maximum value of x where y = y min in the region of x1 <x <x2.
That is, the coordinate P1 indicates the position of the peak top of peak 1, and the coordinate P2 indicates the position of the peak top of peak 2. Y min is the bottom of the valley between peak 1 and peak 2, coordinate V1 is the position closest to peak 1 at the bottom of the valley, and coordinate V2 is closest to peak 2 at the bottom of the valley. Indicates the position.
 前記粒度分布曲線上、P1からP2までの間で、y=yminとなるxの値が1つでない場合、V1とV2とは異なる。V1とV2が異なる場合(x3≠x4である場合)、座標P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域は四角形となる。
 前記粒度分布曲線上、P1からP2までの間で、y=yminとなるxの値が1つである場合、V1とV2とは同じである。V1とV2が同じである場合(x3=x4である場合)、座標P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域は三角形となる。
On the particle size distribution curve, V1 and V2 are different when there is not one value of x satisfying y = y min between P1 and P2. When V1 and V2 are different (when x3 ≠ x4), the area surrounded by the straight line connecting the coordinates P1, V1, V2, P2, and P1 is a quadrangle.
On the particle size distribution curve, when there is one value of x where y = y min between P1 and P2, V1 and V2 are the same. When V1 and V2 are the same (when x3 = x4), a region surrounded by a straight line connecting the coordinates P1, V1, V2, P2, and P1 is a triangle.
 前記領域の面積が大きいほど、粒径200nm前後で最も近接する2つのピーク1、2が明確に分かれていることを示す。この面積が300以上であれば、被験試料中のCRPを低濃度域から高濃度域まで安定して測定できる。この面積が300以上であることで、被験試料中のCRPを低濃度域から高濃度域まで安定して測定できる理由としては、(1)P1付近の粒径を持った粒子とP2付近の粒径を持った粒子の複合凝集塊が発生することによりCRPの低濃度域でも効率良く大きい凝集塊が発生することと、(2)P1付近の粒径を持った粒子単独の凝集塊の成長は遅いため、高濃度域でも濃度に比例した凝集塊が作られることとが相乗的に作用していると考えられる。
 一方、前記領域の面積が2000以下であると、CRPの低濃度域において、表面積の広さから抗原抗体反応しやすく凝集しやすいP1付近の粒径を持った粒子と、粒径の大きさから凝集した時に吸光度を上昇させやすいP2付近の粒径を持った粒子との複合凝集が起こりやすい。そのため、低濃度域で効率よく大きい凝集塊が発生し、吸光度の変化が観察しやすい。
The larger the area, the clearer the two peaks 1 and 2 that are closest to each other with a particle size of around 200 nm. If this area is 300 or more, CRP in the test sample can be stably measured from a low concentration range to a high concentration range. The reason why the CRP in the test sample can be stably measured from the low concentration range to the high concentration range when this area is 300 or more is as follows. (1) Particles having a particle size near P1 and particles near P2 Due to the generation of composite agglomerates of particles having a diameter, large agglomerates are efficiently generated even in a low concentration range of CRP, and (2) the growth of a single agglomerate of particles having a particle size near P1 is Since it is slow, it is considered that agglomerates proportional to the concentration are synergistically acting even in the high concentration region.
On the other hand, when the area of the region is 2000 or less, in the low concentration region of CRP, from the size of the surface area, the antigen-antibody reaction is likely to cause aggregation and the particle size near P1 is likely to aggregate. Complex aggregation with particles having a particle size in the vicinity of P2 that tends to increase the absorbance when aggregated tends to occur. Therefore, large aggregates are efficiently generated in a low concentration range, and the change in absorbance is easy to observe.
 座標P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域の面積は、四角形、三角形のいずれの場合でも、各座標の値から下記の式により求めることができる。
 領域の面積={(x2-x1)×(y1およびy2のうち大きい方の値-ymin)}-{(x3-x1)×(y1-ymin)/2}-{(x2-x4)×(y2-ymin)/2}-{(x2-x1)×(|y1-y2|)/2}
The area of a region surrounded by a straight line that sequentially connects the coordinates P1, V1, V2, P2, and P1 can be obtained from the value of each coordinate by the following formula in either case of a square or a triangle.
Area of region = {(x2−x1) × (larger value of y1 and y2−y min )} − {(x3−x1) × (y1−y min ) / 2} − {(x2−x4) × (y2-y min ) / 2}-{(x2-x1) × (| y1-y2 |) / 2}
 図1を用い、具体例を示して、座標P1、V1、V2、P2、およびそれらの座標を順次結ぶ直線で囲まれた領域の面積について説明する。図1は、後述する実施例で製造したRA1、RA4に含まれるラテックス粒子の粒度分布曲線(横軸:粒径x(nm)、縦軸:質量換算の頻度y(%))である。
 RA1に含まれるラテックス粒子の粒度分布曲線は、x<200の領域に1つのピーク、200≦xの領域に1つのピークを有する。P1は(100、14.57)であり、P2は(300、5.77)である。P1とP2との間での頻度yの最小値yminは0であり、V1は(126.519、0)、V2は(193.604、0)である。したがって、P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた四角形の領域の面積は、約1420となる。
 RA4に含まれるラテックス粒子の粒度分布曲線は、x<200の領域に1つのピーク、200≦xの領域に1つのピークを有する。P1は(180、14.69)であり、粒径200nm以上の領域のピークのピークトップのP2は(300、3.93)である。
 P1とP2との間での頻度yの最小値yminは0.44であり、V1とV2とは一致し、いずれも(229.412、0.44)である。したがって、P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域は三角形であり、その面積は約489となる。
With reference to FIG. 1, a specific example will be described to describe the areas of the coordinates P1, V1, V2, P2, and the area surrounded by a straight line connecting these coordinates in sequence. FIG. 1 is a particle size distribution curve (horizontal axis: particle diameter x (nm), vertical axis: frequency y (%) in terms of mass) of latex particles contained in RA1 and RA4 manufactured in Examples described later.
The particle size distribution curve of latex particles contained in RA1 has one peak in the region of x <200 and one peak in the region of 200 ≦ x. P1 is (100, 14.57) and P2 is (300, 5.77). The minimum value y min of the frequency y between P1 and P2 is 0, V1 is (126.519, 0), and V2 is (193.604, 0). Therefore, the area of the quadrangular region surrounded by the straight line that sequentially connects P1, V1, V2, P2, and P1 is about 1420.
The particle size distribution curve of latex particles contained in RA4 has one peak in the region of x <200 and one peak in the region of 200 ≦ x. P1 is (180, 14.69), and P2 at the peak top of the peak in the region having a particle diameter of 200 nm or more is (300, 3.93).
The minimum value y min of the frequency y between P1 and P2 is 0.44, and V1 and V2 coincide with each other (229.412, 0.44). Therefore, the area surrounded by the straight lines connecting P1, V1, V2, P2, and P1 in sequence is a triangle, and its area is about 489.
 前記粒度分布曲線において、ピーク1の粒径x1と、ピーク2の粒径x2との比は、x1:x2=1:1.3~1:3.5が好ましく(x1に対するx2は、1.3~3.5の範囲にあることが好ましく)、1:1.5~1:3.5がより好ましい(x1に対するx2は、1.5~3.5の範囲にあることがより好ましい)。
 x2がx1の1.3倍以上であると、前記領域の面積が300以上となりやすい傾向がある。x2がx1の3.5倍以下であると、大きな凝集塊が効率よく発生し、CRPの低濃度域での吸光度の変化が観察しやすくなる。
In the particle size distribution curve, the ratio of the particle size x1 of peak 1 to the particle size x2 of peak 2 is preferably x1: x2 = 1: 1.3 to 1: 3.5 (x2 with respect to x1 is 1. Is preferably in the range of 3 to 3.5), more preferably 1: 1.5 to 1: 3.5 (x2 with respect to x1 is more preferably in the range of 1.5 to 3.5). .
When x2 is 1.3 times or more of x1, the area of the region tends to be 300 or more. When x2 is 3.5 times or less of x1, a large aggregate is efficiently generated, and it becomes easy to observe a change in absorbance in a low concentration region of CRP.
 前記粒度分布曲線において、ピーク1の頻度y1と、ピーク2の頻度y2との比は、y1:y2=8:2~5:5が好ましい(y1とy2の合計に対してy1が0.8~0.5、y2が0.2~0.5の範囲にあることが好ましい)。
 y2がy1と同じかそれよりも小さいと、CRPの高濃度域での吸光度の変化が観察されやすくなる。y1がy2の4倍以下であるとCRPの低濃度域での吸光度の変化が観察されやすくなる。
In the particle size distribution curve, the ratio of the frequency y1 of peak 1 to the frequency y2 of peak 2 is preferably y1: y2 = 8: 2 to 5: 5 (y1 is 0.8 relative to the sum of y1 and y2). To 0.5 and y2 is preferably in the range of 0.2 to 0.5).
When y2 is equal to or smaller than y1, a change in absorbance at a high concentration range of CRP is easily observed. If y1 is 4 times or less of y2, a change in absorbance at a low concentration range of CRP is easily observed.
 前記ラテックス粒子は、通常、水等に分散させて粒子分散液として用いられる。
 前記ラテックス粒子またはこれが分散した粒子分散液の調製方法は特に限定されない。たとえば、測定試薬調製用の粒子分散液として、平均粒径が異なる複数の粒子分散液を用意し、それらを混合することにより、前記ラテックス粒子が分散した粒子分散液を調製できる。この後、必要に応じて乾燥、希釈等を行ってもよい。
 このとき混合する複数の粒子分散液のうち、少なくとも1つは、平均粒径が200nm未満の粒子分散液であり、少なくとも1つは、平均粒径が200nm以上の粒子分散液である。平均粒径は、上述したように、粒子分散液を動的光散乱法により分析することにより求められる。測定試薬調製用の粒子分散液においては、前記と同様にして測定される粒度分布曲線が有するピークは1つであることが好ましい。
 前述した、分子内にホスホリルコリン基と重合性二重結合とを有する単量体等を懸濁重合または乳化重合して得られた反応液を、測定試薬調製用の粒子分散液として用いることができる。懸濁重合または乳化重合を、重合条件を変えて複数回行うことで、平均粒径がそれぞれ異なる複数の粒子分散液を得ることができる。
 測定試薬調製用の粒子分散液の平均粒径、粒度分布等を調整することにより、座標P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域の面積を調整できる。たとえば、2つの粒子分散液を混合する場合、それぞれの平均粒径の差が大きいほど、前記領域の面積が大きくなる。また、平均粒径の差が同じでも、それぞれの粒子分散液の粒度分布が狭いほど、前記領域の面積が大きくなる。
The latex particles are usually dispersed in water or the like and used as a particle dispersion.
The method for preparing the latex particles or the particle dispersion in which they are dispersed is not particularly limited. For example, a particle dispersion in which the latex particles are dispersed can be prepared by preparing a plurality of particle dispersions having different average particle diameters as a particle dispersion for preparing a measurement reagent and mixing them. Thereafter, drying, dilution, or the like may be performed as necessary.
At least one of the plurality of particle dispersions to be mixed at this time is a particle dispersion having an average particle diameter of less than 200 nm, and at least one is a particle dispersion having an average particle diameter of 200 nm or more. As described above, the average particle diameter is obtained by analyzing the particle dispersion by the dynamic light scattering method. In the particle dispersion for preparing the measurement reagent, the particle size distribution curve measured in the same manner as described above preferably has one peak.
The above-mentioned reaction liquid obtained by suspension polymerization or emulsion polymerization of a monomer having a phosphorylcholine group and a polymerizable double bond in the molecule can be used as a particle dispersion for preparing a measurement reagent. . By carrying out suspension polymerization or emulsion polymerization a plurality of times under different polymerization conditions, a plurality of particle dispersions having different average particle diameters can be obtained.
By adjusting the average particle diameter, particle size distribution, etc. of the particle dispersion for preparing the measurement reagent, the area of the region surrounded by the straight line connecting the coordinates P1, V1, V2, P2, and P1 can be adjusted. For example, when two particle dispersions are mixed, the area of the region increases as the difference between the average particle diameters increases. In addition, even if the difference in average particle diameter is the same, the narrower the particle size distribution of the respective particle dispersions, the larger the area of the region.
 本発明の第1の実施形態に係る測定試薬は、前記ラテックス粒子が、ホスホリルコリン基を表面に有する粒子である場合、分子構造内に、置換基が結合していてもよいステロイド骨格の炭化水素基と、下記一般式(2)で表される基とを有する界面活性剤(以下、界面活性剤(A)という。)をさらに含むことが好ましい。 When the latex particle is a particle having a phosphorylcholine group on the surface, the measurement reagent according to the first embodiment of the present invention has a steroid skeleton hydrocarbon group to which a substituent may be bonded in the molecular structure. And a surfactant having a group represented by the following general formula (2) (hereinafter referred to as “surfactant (A)”).
Figure JPOXMLDOC01-appb-C000004
[式中、Xは、水酸基が結合していてもよい炭素数3~5の直鎖アルキレン基を示す。]
Figure JPOXMLDOC01-appb-C000004
[Wherein, X represents a linear alkylene group having 3 to 5 carbon atoms to which a hydroxyl group may be bonded. ]
 上述したように、ラテックス粒子としてはホスホリルコリン基を表面に有する粒子が好ましい。しかし、本発明者らの検討によれば、ラテックス凝集比濁法によるCRP測定に、ホスホリルコリン基を表面に有する粒子を適用する場合、抗CRP抗体やそのフラグメントを表面に担持させた粒子を用いる場合に比べて、CRPの測定効率が低くなる。そこで、さらに検討を重ねた結果、ラテックス粒子として、ホスホリルコリン基を表面に有する粒子を用いる場合、界面活性剤(A)と組み合わせることで、抗CRP抗体やそのフラグメントを表面に担持させた粒子を用いなくても、ラテックス凝集比濁法によるCRPの測定を、低濃度域から高濃度域まで安定して効率よく行うことができることを見出した。
 なお、界面活性剤(A)を、ラテックス凝集比濁法によるCRP測定に汎用されている抗体やそのフラグメントを表面に固定した粒子と組み合わせても、上記の効果は得られない。
As described above, the latex particles are preferably particles having phosphorylcholine groups on the surface. However, according to the study by the present inventors, when particles having phosphorylcholine groups on the surface are applied to CRP measurement by latex agglutination turbidimetry, particles having anti-CRP antibodies or fragments thereof supported on the surface are used. Compared to the above, the measurement efficiency of CRP is lowered. Therefore, as a result of further investigation, when particles having phosphorylcholine groups on the surface are used as latex particles, particles having an anti-CRP antibody or fragment thereof supported on the surface are used in combination with the surfactant (A). It has been found that measurement of CRP by the latex agglutination turbidimetry can be stably and efficiently performed from a low concentration range to a high concentration range even without this.
In addition, even if the surfactant (A) is combined with an antibody or fragment thereof generally used for CRP measurement by latex agglutination turbidimetry, the above effect cannot be obtained.
 界面活性剤(A)は、分子構造内に、置換基が結合していてもよいステロイド骨格の炭化水素基と、前記一般式(2)で表される基とを有する化合物である。 Surfactant (A) is a compound having a steroid skeleton hydrocarbon group to which a substituent may be bonded and a group represented by the general formula (2) in the molecular structure.
 界面活性剤(A)が有する、ステロイド骨格の炭化水素基におけるステロイド骨格の炭化水素基は、下記式(3)で表される。 The hydrocarbon group of the steroid skeleton in the hydrocarbon group of the steroid skeleton possessed by the surfactant (A) is represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記ステロイド骨格の炭化水素基に結合していてもよい置換基としては、たとえば、水酸基、アルキル基等が挙げられ、水酸基が好ましい。 Examples of the substituent which may be bonded to the hydrocarbon group of the steroid skeleton include a hydroxyl group and an alkyl group, and a hydroxyl group is preferable.
 界面活性剤(A)としては、分子構造の一端に前記置換基が結合していてもよいステロイド骨格の炭化水素基を有し、他端に前記一般式(2)で表される基を有する化合物が好ましく、下記一般式(4)に表せられる化合物が特に好ましい。 The surfactant (A) has a hydrocarbon group having a steroid skeleton to which the substituent may be bonded at one end of the molecular structure, and a group represented by the general formula (2) at the other end. A compound is preferable, and a compound represented by the following general formula (4) is particularly preferable.
Figure JPOXMLDOC01-appb-C000006
[式中、Rは、炭素数1~9の直鎖状または分岐鎖状のアルキレン基を示す。R~Rはそれぞれ独立に、下記一般式(I)で表される基、水素原子、または炭素数1~9のアルキル基を示し、RおよびRのいずれか一方または両方は、前記一般式(I)で表される基である。]
Figure JPOXMLDOC01-appb-C000006
[Wherein R 1 represents a linear or branched alkylene group having 1 to 9 carbon atoms. R 2 to R 3 each independently represents a group represented by the following general formula (I), a hydrogen atom, or an alkyl group having 1 to 9 carbon atoms, and one or both of R 2 and R 3 are It is group represented by the said general formula (I). ]
Figure JPOXMLDOC01-appb-C000007
[式中、Xは前記と同じであり、Rは、炭素数1~9の直鎖状または分岐鎖状のアルキレン基を示す。]
Figure JPOXMLDOC01-appb-C000007
[Wherein, X is the same as defined above, and R 4 represents a linear or branched alkylene group having 1 to 9 carbon atoms. ]
 式(4)で表される化合物の代表的なものとしては、下記式(4-1)~(4-5)で表される化合物等が挙げられる。 Typical examples of the compound represented by the formula (4) include compounds represented by the following formulas (4-1) to (4-5).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(4)で表される化合物は、市販の化合物を用いることができる。たとえば前記式(4-1)で表される化合物(3-[(3-コラミドプロピル)ジメチルアンモニオ]プロパンスルホネート)の市販品として、株式会社同仁化学研究所製のCHAPS(製品名)が挙げられる。前記式(4-2)で表される化合物(3-[(3-コラミドプロピル)ジメチルアンモニオ]-2-ヒドロキシプロパンスルホネート)の市販品として、株式会社同仁化学研究所製のCHAPSO(製品名)が挙げられる。 A commercially available compound can be used for the compound represented by Formula (4). For example, as a commercial product of the compound represented by the formula (4-1) (3-[(3-colamidopropyl) dimethylammonio] propanesulfonate), CHAPS (product name) manufactured by Dojindo Laboratories Co., Ltd. Can be mentioned. As a commercial product of the compound represented by the formula (4-2) (3-[(3-colamidopropyl) dimethylammonio] -2-hydroxypropanesulfonate), CHAPSO (product of Dojindo Laboratories) Name).
 本発明の第1の実施形態に係る測定試薬には、必要に応じて、本発明の効果を損なわない範囲で、ラテックス粒子および界面活性剤(A)以外の他の成分をさらに含有させてもよい。他の成分としては、既知の添加剤を用いることができる。
 たとえば、反応性、安定性等を高めるために、界面活性剤、アジ化ナトリウム等の防腐剤、スクロース、ウシ血清アルブミン等の安定剤、酢酸ナトリウム等の緩衝剤などを含有させることができる。
 ラテックス粒子として、ホスホリルコリン基を表面に有する粒子を用いる場合、ホスホリルコリン基はCa2+の存在下でCRPと特異的に結合しやすいため、塩化カルシウム等のカルシウムイオン源をさらに含有させることが好ましい。
The measurement reagent according to the first embodiment of the present invention may further contain other components other than the latex particles and the surfactant (A) as necessary, as long as the effects of the present invention are not impaired. Good. As other components, known additives can be used.
For example, a surfactant, a preservative such as sodium azide, a stabilizer such as sucrose or bovine serum albumin, a buffering agent such as sodium acetate, etc. can be included in order to enhance reactivity, stability and the like.
When particles having a phosphorylcholine group on the surface are used as latex particles, it is preferable to further contain a calcium ion source such as calcium chloride because the phosphorylcholine group easily binds specifically to CRP in the presence of Ca 2+ .
 本発明の第1の実施形態に係る測定試薬が、前記ラテックス粒子以外の他の成分を含む場合、本発明の第1の実施形態に係る測定試薬は、全成分を1剤中に含む1剤型の測定試薬であってもよい。また、ラテックス粒子を含む剤のほかに、他の成分の一部または全部を含む1以上の剤をさらに備える多剤型の測定試薬であってもよい。
 他の成分として界面活性剤を含む場合は、界面活性剤がラテックス粒子表面へ吸着して保存安定性が損なわれることがあることから、ラテックス粒子と界面活性剤とは異なる剤に配合することが好ましい。
When the measurement reagent according to the first embodiment of the present invention includes other components other than the latex particles, the measurement reagent according to the first embodiment of the present invention includes one component containing all components in one agent. It may be a measuring reagent of a type. In addition to the agent containing latex particles, it may be a multi-drug type measuring reagent further comprising one or more agents containing part or all of other components.
When a surfactant is included as another component, the surfactant may be adsorbed on the surface of the latex particle and the storage stability may be impaired, so the latex particle and the surfactant may be blended in a different agent. preferable.
 本発明の第1の実施形態に係る測定試薬は、前記ラテックス粒子が分散した粒子分散液である第一液と、界面活性剤を含む第二液とを備えるキットであることが好ましい。かかるキットは、そのままラテックス凝集比濁法によるCRP測定に用いることができる。たとえば、被験試料に、第二液、第一液を順次または同時に添加、混合したものを、そのまま吸光度の測定に供することができる。
 このキットにおいて、第一液は、界面活性剤を含まないことが好ましい。第二液は、前記ラテックス粒子を含まないことが好ましい。
The measurement reagent according to the first embodiment of the present invention is preferably a kit including a first liquid that is a particle dispersion in which the latex particles are dispersed, and a second liquid that includes a surfactant. Such a kit can be used for CRP measurement by latex agglutination turbidimetry as it is. For example, what added and mixed the 2nd liquid and the 1st liquid to the test sample sequentially or simultaneously can be used for the measurement of absorbance as it is.
In this kit, the first liquid preferably does not contain a surfactant. The second liquid preferably does not contain the latex particles.
 第一液におけるラテックス粒子についての説明は前記と同様である。
 このラテックス粒子としては、ホスホリルコリン基を表面に有する粒子であることが好ましい。
 第一液中のラテックス粒子の含有量は、第二液と混合した時の濃度が、得られる混合液の総質量に対し、1質量%以下となる量が好ましい。1質量%以下であると、既存の多くの測定機器に対応できる。含有量の下限は特に限定されず、0質量%超であればよい。
 第一液は、本発明の効果を損なわない範囲で、反応性、安定性等を高めるために、アジ化ナトリウム等の防腐剤、スクロース等の安定剤、酢酸ナトリウム等の緩衝剤を含有してもよい。
The explanation of the latex particles in the first liquid is the same as described above.
The latex particles are preferably particles having phosphorylcholine groups on the surface.
The amount of latex particles in the first liquid is preferably such that the concentration when mixed with the second liquid is 1% by mass or less with respect to the total mass of the obtained liquid mixture. If it is 1% by mass or less, it can be applied to many existing measuring instruments. The minimum of content is not specifically limited, What is necessary is just more than 0 mass%.
The first liquid contains preservatives such as sodium azide, stabilizers such as sucrose, and buffering agents such as sodium acetate in order to enhance reactivity, stability, etc., as long as the effects of the present invention are not impaired. Also good.
 第二液における界面活性剤としては前記と同様の界面活性剤が利用できる。
 第一液に含まれるラテックス粒子が、ホスホリルコリン基を表面に有する粒子である場合、界面活性剤は界面活性剤(A)であることが好ましい。
 第二液における界面活性剤(A)の含有量は、第二液の総質量に対し10質量%以下が好ましい。10質量%を超えると、溶解しきらない可能性が有る。含有量の下限は特に限定されず、0質量%超であればよい。
 第二液は、本発明の効果を損なわない範囲で、反応性、安定性等を高めるために、アジ化ナトリウム等の防腐剤、ウシ血清アルブミン等の安定剤、酢酸ナトリウム等の緩衝剤を含有してもよい。
 ラテックス粒子が、CRP反応性基としてホスホリルコリン基を有する粒子である場合、第二液が、塩化カルシウム等のカルシウム源を含有することが好ましい。カルシウム源を第一液ではなく第二液に含有させることで、保存安定性が向上する。
 第二液は、各成分を水等に溶解または分散させることにより調製できる。
As the surfactant in the second liquid, the same surfactant as described above can be used.
When the latex particles contained in the first liquid are particles having a phosphorylcholine group on the surface, the surfactant is preferably the surfactant (A).
The content of the surfactant (A) in the second liquid is preferably 10% by mass or less with respect to the total mass of the second liquid. If it exceeds 10% by mass, there is a possibility that it cannot be completely dissolved. The minimum of content is not specifically limited, What is necessary is just more than 0 mass%.
The second liquid contains a preservative such as sodium azide, a stabilizer such as bovine serum albumin, and a buffer such as sodium acetate in order to enhance reactivity, stability, etc. within the range not impairing the effects of the present invention. May be.
When the latex particles are particles having a phosphorylcholine group as a CRP-reactive group, the second liquid preferably contains a calcium source such as calcium chloride. Storage stability improves by making a 2nd liquid contain a calcium source instead of a 1st liquid.
The second liquid can be prepared by dissolving or dispersing each component in water or the like.
<測定方法>
 本発明の第2の実施形態に係る測定方法では、前記本発明の第1の実施形態に係る測定試薬を用いて、ラテックス凝集比濁法により、被験試料中のCRP濃度を測定する。
 被験試料としては、従来、ラテックス凝集比濁法によるCRP測定対象となっている任意の被験試料を用いることができ、たとえばヒト血清検体等が挙げられる。
 被験試料中のCRP濃度の測定は、通常のラテックス凝集比濁法と同様の手順で実施できる。
 たとえば、被験試料と測定試薬とを混合して反応液を調製し、得られた反応液の吸光度を測定する方法が挙げられる。
 前記反応液をラテックス粒子表面のCRP反応性基とCRPとが特異的に反応する条件下に放置すると、被験試料にCRPが含まれている場合は、反応液中でラテックス粒子の凝集が生じて反応液の濁度が高まり、吸光度が大きくなる。被験試料中のCRP濃度が高いほど、吸光度の変化量が大きい。あらかじめCRP濃度既知の標準試料を用いて検量線を作成しておき、被験試料と測定試薬との混合直後と、混合後、ラテックス粒子表面のCRP反応性基とCRPとが特異的に反応する条件下で任意の時間放置した後の反応液の吸光度を測定することで、それらの吸光度の変化量から、被験試料中のCRP濃度を定量することができる。
<Measurement method>
In the measurement method according to the second embodiment of the present invention, the CRP concentration in the test sample is measured by the latex agglutination nephelometry using the measurement reagent according to the first embodiment of the present invention.
As the test sample, any test sample that has been conventionally subjected to CRP measurement by latex agglutination turbidimetry can be used, and examples thereof include human serum samples.
Measurement of the CRP concentration in the test sample can be carried out in the same procedure as in the usual latex agglutination turbidimetry.
For example, there is a method of preparing a reaction solution by mixing a test sample and a measurement reagent and measuring the absorbance of the obtained reaction solution.
If the reaction solution is allowed to stand under conditions where the CRP reactive group on the latex particle surface and CRP react specifically, if CRP is contained in the test sample, latex particles aggregate in the reaction solution. The turbidity of the reaction solution increases and the absorbance increases. The higher the CRP concentration in the test sample, the greater the amount of change in absorbance. A calibration curve is prepared in advance using a standard sample with a known CRP concentration, and immediately after mixing the test sample and the measuring reagent, and after mixing, the CRP reactive group on the latex particle surface and CRP react specifically. The CRP concentration in the test sample can be quantified from the amount of change in the absorbance by measuring the absorbance of the reaction solution after being allowed to stand for an arbitrary time below.
 測定試薬の使用量は、吸光度測定時の反応液中の所望のラテックス粒子濃度、界面活性剤(A)濃度等を考慮して設定される。
 吸光度測定時の反応液中のラテックス粒子濃度は、反応液の総質量に対し、1.0質量%以下が好ましい。1.0質量%以下であると、多くの測定機器に対応できるほか、凝集による吸光度差が十分に検出できる。含有量の下限は特に限定されず、0質量%超であればよい。
 測定試薬が界面活性剤(A)を含む場合、吸光度測定時の反応液中の界面活性剤(A)濃度は、反応液の総質量に対し、0.15~0.40質量%の範囲内が好ましい。測定時の界面活性剤(A)濃度が0.15質量%以上であると、界面活性剤(A)を含有することによる効果が充分に得られる。0.40質量%以下であると、界面活性剤の分散安定作用による凝集阻害が起こらない。
The amount of the measurement reagent used is set in consideration of the desired latex particle concentration, surfactant (A) concentration, etc. in the reaction solution at the time of absorbance measurement.
The latex particle concentration in the reaction solution during the absorbance measurement is preferably 1.0% by mass or less with respect to the total mass of the reaction solution. If it is 1.0% by mass or less, it can be used for many measuring instruments, and a difference in absorbance due to aggregation can be sufficiently detected. The minimum of content is not specifically limited, What is necessary is just more than 0 mass%.
When the measurement reagent contains a surfactant (A), the concentration of the surfactant (A) in the reaction solution at the time of absorbance measurement is in the range of 0.15 to 0.40 mass% with respect to the total mass of the reaction solution. Is preferred. The effect by containing surfactant (A) is fully acquired as the surfactant (A) density | concentration at the time of a measurement is 0.15 mass% or more. When the content is 0.40% by mass or less, aggregation inhibition due to the dispersion stabilizing action of the surfactant does not occur.
 本発明の第1の実施形態に係る測定試薬が前記キットである場合、被験試料と本発明の第1の実施形態に係る測定試薬との混合は、被験試料に、第二液および第一液を順次または同時に混合することにより実施できる。好ましくは、被験試料と第二液とを混合し、任意の時間静置した後、そこに第一液を添加することにより行うか、または、被験試料と第二液と第一液とを一括混合することにより行う。特に、被験試料と第二液とを混合し、任意の時間静置した後、そこに第一液を添加することが好ましい。あらかじめ被験試料と第二液とをなじませておくことで、被験試料中のCRPが可溶化し、反応性が良好となる。
 被験試料と第二液とを混合した後の静置は、15~40℃の条件下で行うことが好ましい。静置時間は、特に限定されないが、通常、1~15分間程度である。
When the measurement reagent according to the first embodiment of the present invention is the kit, the test sample and the measurement reagent according to the first embodiment of the present invention are mixed with the second liquid and the first liquid. Can be carried out by mixing them sequentially or simultaneously. Preferably, the test sample and the second liquid are mixed and allowed to stand for an arbitrary period of time, and then the first liquid is added thereto, or the test sample, the second liquid, and the first liquid are collectively This is done by mixing. In particular, it is preferable that the test sample and the second liquid are mixed and allowed to stand for an arbitrary time, and then the first liquid is added thereto. By preliminarily mixing the test sample with the second solution, the CRP in the test sample is solubilized and the reactivity is improved.
The standing after the test sample and the second liquid are mixed is preferably performed under conditions of 15 to 40 ° C. The standing time is not particularly limited, but is usually about 1 to 15 minutes.
 被験試料と本発明の第1の実施形態に係る測定試薬とを混合した後の放置条件(ラテックス粒子表面のCRP反応性基とCRPとが特異的に反応する条件)は、ラテックス粒子表面のCRP反応性基に応じて設定できる。たとえばCRP反応性基がホスホリルコリン基である場合、放置温度は、15~40℃が好ましく、放置時間は1~15分間が好ましい。
 混合液の吸光度は、常法により測定でき、たとえば後述する実施例に示す条件で測定できる。
 これらの一連の操作は、ラテックス凝集比濁法による測定に用いられている汎用の自動測定装置を用いて実施することができる。手動により行ってもよい。
The standing conditions after mixing the test sample and the measurement reagent according to the first embodiment of the present invention (conditions in which the CRP-reactive group on the latex particle surface and CRP react specifically) are the CRP on the latex particle surface. It can be set according to the reactive group. For example, when the CRP-reactive group is a phosphorylcholine group, the standing temperature is preferably 15 to 40 ° C., and the standing time is preferably 1 to 15 minutes.
The absorbance of the mixed solution can be measured by a conventional method, and can be measured, for example, under the conditions shown in Examples described later.
These series of operations can be carried out using a general-purpose automatic measuring apparatus used for measurement by latex agglutination turbidimetry. It may be performed manually.
 以下、実施例により本発明をさらに詳しく説明する。ただし本発明は、以下の実施例に限定されるものではない。
 以下の各例において、粒度分布、平均粒径は以下の手順で測定した。
(粒度分布および平均粒径)
 ラテックス粒子の粒度分布と平均粒径は、ラテックス粒子分散液を、濃度10mMのNaCl水溶液で、ラテックス粒子の濃度が1質量%となるように希釈し、特濃系粒径アナライザーFPAR-1000(大塚電子株式会社製)にて分析することで求めた。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
In the following examples, the particle size distribution and the average particle size were measured by the following procedure.
(Particle size distribution and average particle size)
The particle size distribution and average particle size of the latex particles were determined by diluting the latex particle dispersion with an aqueous NaCl solution having a concentration of 10 mM so that the concentration of the latex particles was 1% by mass, and a special concentrated particle size analyzer FPAR-1000 (Otsuka It was calculated | required by analyzing by the electronic company make.
<ラテックス(粒子分散液)の製造>
 純水69.4g、スチレン20g、2-メタクリロイルオキシエチルホスホリルコリン0.6g、エタノール10g、p-スチレンスルホン酸ナトリウム0.2gを、200mLセパラブルフラスコに投入し、撹拌下で窒素を液中に流しながら72℃まで加熱昇温した後、過硫酸カリウム0.06gを添加し、3.5時間重合反応を行った。その後、93℃まで昇温し、この温度で3時間の熱処理を行ってラテックス1を得た。
 得られたラテックス1に含まれるラテックス粒子の平均粒径を前記の手順により測定したところ、100nmであった。
<Manufacture of latex (particle dispersion)>
69.4 g of pure water, 20 g of styrene, 0.6 g of 2-methacryloyloxyethyl phosphorylcholine, 10 g of ethanol and 0.2 g of sodium p-styrenesulfonate are put into a 200 mL separable flask, and nitrogen is poured into the liquid with stirring. However, after heating up to 72 ° C., 0.06 g of potassium persulfate was added, and a polymerization reaction was performed for 3.5 hours. Thereafter, the temperature was raised to 93 ° C., and a heat treatment was performed at this temperature for 3 hours to obtain Latex 1.
It was 100 nm when the average particle diameter of the latex particle contained in the obtained latex 1 was measured by the above procedure.
 製造例1で使用した各原料の使用量(g)を表1に示す配合に従って変化させた以外は製造例1と同様にしてラテックス2~9を得た。
 各ラテックス2~9に含まれるラテックス粒子の平均粒径を前記の手順により測定した。結果を表1に示す。
Latex 2 to 9 were obtained in the same manner as in Production Example 1 except that the amount (g) of each raw material used in Production Example 1 was changed according to the formulation shown in Table 1.
The average particle size of latex particles contained in each latex 2-9 was measured by the above procedure. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<測定試薬の製造>[測定試薬第一液の調製]
 前記で得たラテックス1~9を、表2に示す配合比率(質量比)に従って混合し、さらに、アジ化ナトリウムと、スクロースと、酢酸ナトリウムと、純水とを混合、溶解、希釈して、表3に示す組成(単位:質量%)の測定試薬第一液RA1~RA15を得た。
 RA1~RA12、RA15の調製に用いたラテックスのうち、平均粒径が200nm未満の小粒径ラテックスと、平均粒径が200nm以上の大粒径ラテックスとの平均粒径比(大粒径ラテックスの平均粒径/小粒径ラテックスの平均粒径)を表2に併記する。
<Manufacture of measuring reagent> [Preparation of first reagent for measuring reagent]
Latex 1-9 obtained above were mixed according to the blending ratio (mass ratio) shown in Table 2, and further sodium azide, sucrose, sodium acetate, and pure water were mixed, dissolved, and diluted, Measurement reagent first liquids RA1 to RA15 having the composition (unit: mass%) shown in Table 3 were obtained.
Among the latexes used for the preparation of RA1 to RA12 and RA15, the average particle size ratio of the small particle size latex having an average particle size of less than 200 nm and the large particle size latex having an average particle size of 200 nm or more (large particle size latex The average particle size / average particle size of the small particle size latex) is also shown in Table 2.
 RA1~RA15の粒度分布を測定した。
 図2にRA1~RA15の粒度分布曲線を示す。2種のラテックスを混合したRA1~RA12、RA15の粒度分布曲線が有するピークは2つであり、各ピークのピークトップの粒径は、2種のラテックスそれぞれの平均粒径に対応していた。1種のラテックスを単独で使用したRA13、RA14の粒度分布曲線が有するピークは1つであった。
 RA1~RA15の粒度分布曲線が有する2つのピークのうち、粒径xの小さい方のピーク(ピーク1)の頻度の最大値y1(%)とこれに対応する粒径x1(nm)、粒径の大きい方のピーク(ピーク2)の頻度の最大値y2(%)とこれに対応する粒径x2(nm)、ピーク1とピーク2との間での頻度の最小値ymimと、x1<x<x2の領域内でy=yminであるxの最小値x3と、x1<x<x2の領域内でy=yminであるxの最大値x4とを表4に示す。また、それらの値から、座標P1(x1、y1)、V1(x3、ymin)、V2(x4、ymin)、P2(x2、y2)、前記P1を順次結ぶ直線で囲まれた領域の面積を算出した。結果を表4に示す。
The particle size distribution of RA1 to RA15 was measured.
FIG. 2 shows the particle size distribution curves of RA1 to RA15. The particle size distribution curves of RA1 to RA12 and RA15 in which two types of latex were mixed had two peaks, and the peak top particle size of each peak corresponded to the average particle size of each of the two types of latex. The particle size distribution curve of RA13 and RA14 using one type of latex alone had one peak.
Among the two peaks in the particle size distribution curves of RA1 to RA15, the maximum frequency y1 (%) of the smaller peak (peak 1) of the particle size x, the corresponding particle size x1 (nm), and the particle size Maximum frequency y2 (%) of the larger peak (peak 2) and the corresponding particle size x2 (nm), minimum frequency y mim between peak 1 and peak 2, and x1 < Table 4 shows the minimum value x3 of x satisfying y = y min in the region of x <x2, and the maximum value x4 of x satisfying y = y min in the region of x1 <x <x2. In addition, from these values, coordinates P1 (x1, y1), V1 (x3, ymin ), V2 (x4, ymin ), P2 (x2, y2), and a region surrounded by a straight line connecting P1 in turn The area was calculated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[測定試薬第二液の調製]
 界面活性剤として、CHAPS(製品名、株式会社同仁化学研究所製、3-[(3-コラミドプロピル)ジメチルアンモニオ]プロパンスルホネート)、CHAPSO(製品名、株式会社同仁化学研究所製、3-[(3-コラミドプロピル)ジメチルアンモニオ]-2-ヒドロキシプロパンスルホネート)、ラウリルスルホベタイン、コール酸を用いた。
 これらの界面活性剤と、塩化カルシウムと、酢酸ナトリウムと、ウシ血清アルブミンと、アジ化ナトリウムと、純水とを混合、溶解して、表5に示す組成(単位:質量%)の測定試薬第二液1-1~1-12を得た。
[Preparation of second reagent for measurement reagent]
As surfactants, CHAPS (product name, manufactured by Dojindo Laboratories, Inc., 3-[(3-colamidopropyl) dimethylammonio] propanesulfonate), CHAPSO (product name, manufactured by Dojindo Laboratories, Inc., 3 -[(3-Colamidopropyl) dimethylammonio] -2-hydroxypropanesulfonate), laurylsulfobetaine, and cholic acid were used.
These surfactants, calcium chloride, sodium acetate, bovine serum albumin, sodium azide, and pure water were mixed and dissolved, and the measurement reagents of the composition (unit: mass%) shown in Table 5 Two liquids 1-1 to 1-12 were obtained.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[CRP測定性能の評価]
 被験試料用のCRPとして、大腸菌の組み換えタンパク質であるC.REACTIVE PROTEIN(ロシュ・ダイアグノスティックス株式会社)を用い、CRP濃度を30mg/dLから生理食塩水を加えて段階的に濃度を半減させた被験試料を調製し測定に用いた。
 CRP測定は、前記で調製した測定試薬第一液、測定試薬第二液を表6~8に示す組み合わせで使用し、以下の手順で行った。
[Evaluation of CRP measurement performance]
As a CRP for a test sample, C. a recombinant protein of E. coli is used. Using REACTIVE PROTEIN (Roche Diagnostics Co., Ltd.), a test sample in which the concentration was halved stepwise by adding physiological saline from 30 mg / dL was prepared and used for measurement.
CRP measurement was performed in the following procedure using the measurement reagent first solution and the measurement reagent second solution prepared above in the combinations shown in Tables 6 to 8.
(例1~4、6~12、14、16~27)
 2.1μLの被験試料を、120μLの測定試薬第二液と混合したのち5分間静置し、そののち、120μLの測定試薬第一液を添加し、測定試薬第一液の添加直後の吸光度(0.00時の吸光度)と、測定試薬第一液を添加してから5分経過後の吸光度とを測定した。
 吸光度の測定は、自動汎用測定機日立7170E(日立製作所(株)製)を使用し、測定波長570nm、測定温度37℃で行った。
 上記の測定結果から、5分経過後の吸光度の、0.00時の吸光度との差(5分経過後の吸光度-0.00時の吸光度)を算出し、その値を吸光度変化量Absとした。結果を表6~8に示す。
(Examples 1 to 4, 6 to 12, 14, 16 to 27)
2.1 μL of the test sample is mixed with 120 μL of the second reagent for measurement and then allowed to stand for 5 minutes. After that, 120 μL of the first reagent for measurement is added, and the absorbance immediately after the addition of the first reagent for measurement ( (Absorbance at 0.00 hour) and absorbance after 5 minutes from the addition of the first reagent for measurement.
The absorbance was measured using an automatic general-purpose measuring instrument Hitachi 7170E (manufactured by Hitachi, Ltd.) at a measurement wavelength of 570 nm and a measurement temperature of 37 ° C.
From the above measurement results, the difference between the absorbance after 5 minutes and the absorbance at 0.00 hours (absorbance after 5 minutes minus absorbance at 0.00 hours) was calculated, and the value was calculated as the absorbance change Abs. did. The results are shown in Tables 6-8.
(例5、13、15)
 2.1μLの被験試料と、120μLの測定試薬第二液と、120μLの測定試薬第一液とを一度に混合し、混合直後の吸光度(0.00時吸光度)と、混合してから5分経過後の吸光度とを前記と同様に測定した。
 上記の測定結果から、5分経過後の吸光度の0.00時時吸光度との差(5分経過後の吸光度-0.00時時吸光度)を算出し、その値を吸光度変化量Absとした。結果を表6~8に示す。
(Examples 5, 13, 15)
2.1 μL of the test sample, 120 μL of the measurement reagent second liquid, and 120 μL of the measurement reagent first liquid are mixed at once, and the absorbance immediately after mixing (absorbance at 0.00) is 5 minutes after mixing. The absorbance after the lapse was measured as described above.
From the above measurement results, the difference between the absorbance after 5 minutes and the absorbance at 0.00 hours (absorbance after 5 minutes minus absorbance at 0.00 hours) was calculated, and the value was used as the absorbance change Abs. . The results are shown in Tables 6-8.
 例1~27の吸光度変化量Absの測定結果を縦軸、被験試料のCRP濃度(mg/dL)を横軸にとったグラフを作成した。このグラフを図3~4に示す。図3は、測定領域全域(CRP濃度が0~30mg/dL)のグラフ、図4は、低濃度域(CRP濃度が0~0.94mg/dL)のグラフである。 A graph was prepared with the measurement result of the absorbance change amount Abs of Examples 1 to 27 as the vertical axis and the CRP concentration (mg / dL) of the test sample as the horizontal axis. This graph is shown in FIGS. FIG. 3 is a graph of the entire measurement region (CRP concentration is 0 to 30 mg / dL), and FIG. 4 is a graph of a low concentration region (CRP concentration is 0 to 0.94 mg / dL).
(評価)
 上記の吸光度変化量Absの測定結果から、下記式により、低濃度域変化率、高濃度域変化率を算出した。
 低濃度域変化率=[CRP濃度0.5mg/dL時の吸光度変化量Abs]-[CRP濃度0.0mg/dL時の吸光度変化量Abs]
 高濃度域変化率=[CRP濃度30.0mg/dL時の吸光度変化量Abs]-[CRP濃度0.0mg/dL時の吸光度変化量Abs]
(Evaluation)
From the measurement result of the absorbance change amount Abs, the low concentration region change rate and the high concentration region change rate were calculated by the following formulas.
Low concentration region change rate = [Absorbance change amount Abs when CRP concentration is 0.5 mg / dL] − [Absorbance change amount Abs when CRP concentration is 0.0 mg / dL]
High concentration range change rate = [Absorbance change Abs when CRP concentration is 30.0 mg / dL] − [Absorbance change Abs when CRP concentration is 0.0 mg / dL]
 低濃度域変化率の値が大きいほど、低濃度領域でのCRP測定を良好に実施できることを示す。つまり、低濃度域変化率の値が大きいほど、低濃度領域でグラフの立ち上がりがよく、CRP濃度のわずかな変化が吸光度変化量Absに反映される。低濃度域変化率は、30以上が好ましく、50以上がより好ましい。
 高濃度域変化率の値が大きいほど、高濃度領域でのCRP測定を良好に実施できることを示す。高濃度域変化率は、3000以上が好ましく、4000以上がより好ましい。
 本発明においては、特に、以下の条件1および条件2を満たすことが好ましい。
 条件1:低濃度域変化率≧30
 条件2:高濃度域変化率≧3000
It shows that CRP measurement in a low concentration area | region can be implemented favorably, so that the value of a low concentration area change rate is large. That is, the larger the value of the low concentration region change rate, the better the graph rises in the low concentration region, and a slight change in the CRP concentration is reflected in the absorbance change amount Abs. The low concentration region change rate is preferably 30 or more, and more preferably 50 or more.
It shows that CRP measurement in a high concentration area | region can be implemented favorably, so that the value of a high concentration area | region change rate is large. The rate of change in the high concentration region is preferably 3000 or more, and more preferably 4000 or more.
In the present invention, it is particularly preferable that the following conditions 1 and 2 are satisfied.
Condition 1: Low concentration region change rate ≧ 30
Condition 2: High density region change rate ≧ 3000
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 上記結果に示すとおり、測定試薬第一液として、粒度分布曲線が有するピークが、x<200nmの領域に1つのみのRA13を使用した例22は、低濃度域変化率が低かった。
 測定試薬第一液として、粒度分布曲線が有するピークが、x≧200nmの領域に1つのみのRA14を使用した例23は、高濃度域変化率が低かった。
 測定試薬第一液として、粒度分布曲線が、x<200nmの領域と、x≧200nmの領域に1つずつピークを有していても、座標P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域の面積が300未満のRA15を使用した例27は、低濃度域においても高濃度域においても変化率が低かった。
As shown in the above results, in Example 22, in which only one RA13 having a particle size distribution curve having only one peak in the region of x <200 nm was used as the measurement reagent first solution, the rate of change in the low concentration region was low.
In Example 23 in which only one RA14 was used in the region where the particle size distribution curve had x ≧ 200 nm as the measurement reagent first solution, the rate of change in the high concentration region was low.
Even if the particle size distribution curve has one peak each in the region of x <200 nm and the region of x ≧ 200 nm as the measurement reagent first solution, the straight line that sequentially connects the coordinates P1, V1, V2, P2, and P1 Example 27 using RA15 in which the area of the region surrounded by <300> was less than 300 in both the low concentration region and the high concentration region.
 粒度分布曲線が、x<200nmの領域と、x≧200nmの領域に1つずつピークを有し、座標P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域の面積が300以上の測定試薬第一液と、界面活性剤(A)を含む測定試薬第二液とを併用し、測定時の界面活性剤(A)濃度を0.15~0.40質量%とした例1~18は、低濃度域変化率、高濃度域変化率ともに高く、条件1、2を満たしていた。
 粒度分布曲線が、x<200nmの領域と、x≧200nmの領域に1つずつピークを有し、座標P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域の面積が300以上の測定試薬第一液を使用したが、界面活性剤(A)を含まない測定試薬第二液と併用した例19は、高濃度域変化率が例22、23よりも向上し、低濃度域変化率も例22より改善したが、低濃度域変化率が条件1を満たさなかった。
 粒度分布曲線が、x<200nmの領域と、x≧200nmの領域に1つずつピークを有し、座標P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域の面積が300以上の測定試薬第一液と、界面活性剤(A)を含む測定試薬第二液とを併用したが、測定時の界面活性剤(A)濃度が0.1質量%の例20は、高濃度域変化率が例22、23よりも向上し、低濃度域変化率も例22より改善したが、低濃度域変化率が条件1を満たさなかった。
 粒度分布曲線が、x<200nmの領域と、x≧200nmの領域に1つずつピークを有し、座標P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域の面積が300以上の測定試薬第一液と、界面活性剤(A)を含む測定試薬第二液とを併用したが、測定時の界面活性剤(A)濃度が0.45質量%の例21は、高濃度域変化率が例22、23よりも向上し、低濃度域変化率も例22より改善したが、低濃度域変化率が条件1を満たさなかった。
The particle size distribution curve has one peak each in the region of x <200 nm and the region of x ≧ 200 nm, and the area of the region surrounded by straight lines sequentially connecting the coordinates P1, V1, V2, P2, and P1 is 300 or more. Example 1 wherein the measurement reagent first solution and the measurement reagent second solution containing the surfactant (A) were used in combination, and the concentration of the surfactant (A) during measurement was 0.15 to 0.40 mass%. In -18, both the low concentration region change rate and the high concentration region change rate were high, and the conditions 1 and 2 were satisfied.
The particle size distribution curve has one peak each in the region of x <200 nm and the region of x ≧ 200 nm, and the area of the region surrounded by straight lines sequentially connecting the coordinates P1, V1, V2, P2, and P1 is 300 or more. Example 19 was used in combination with the measurement reagent second liquid containing no surfactant (A), but the high concentration range change rate of Example 19 was improved over Examples 22 and 23, and the low concentration range The rate of change was also improved from Example 22, but the rate of change in the low concentration region did not satisfy Condition 1.
The particle size distribution curve has one peak each in the region of x <200 nm and the region of x ≧ 200 nm, and the area of the region surrounded by straight lines sequentially connecting the coordinates P1, V1, V2, P2, and P1 is 300 or more. The measurement reagent first liquid and the measurement reagent second liquid containing the surfactant (A) were used in combination, but the concentration of the surfactant (A) at the time of measurement was 0.1% by mass. The area change rate improved from Examples 22 and 23, and the low concentration area change rate improved from Example 22, but the low concentration area change rate did not satisfy Condition 1.
The particle size distribution curve has one peak each in the region of x <200 nm and the region of x ≧ 200 nm, and the area of the region surrounded by straight lines sequentially connecting the coordinates P1, V1, V2, P2, and P1 is 300 or more. The measurement reagent first solution and the measurement reagent second solution containing the surfactant (A) were used in combination, but the surfactant (A) concentration at the time of measurement was 0.45% by mass. The area change rate improved from Examples 22 and 23, and the low concentration area change rate improved from Example 22, but the low concentration area change rate did not satisfy Condition 1.
 粒度分布曲線が、x<200nmの領域と、x≧200nmの領域に1つずつピークを有し、座標P1、V1、V2、P2、P1を順次結ぶ直線で囲まれた領域の面積が300以上の測定試薬第一液と、測定試薬第二液の界面活性剤としてラウリルスルホベタインとコール酸を用いた例24は、低濃度域変化率が例22より改善したが、高濃度域変化率が例22、23より低くなった。測定試薬第二液の界面活性剤としてラウリルスルホベタイン、コール酸をそれぞれ単独で用いた例25、例26は、低濃度域変化率、高濃度域変化率ともに例22、23より低くなった。
 これらの結果から、スルホベタイン構造を有してもステロイド骨格を有さないラウリルスルホベタインや、ステロイド骨格を有してもスルホベタイン構造を有さないコール酸では、低濃度域変化率や高濃度域変化率の改善効果は得られないことが確認できた。
The particle size distribution curve has one peak each in the region of x <200 nm and the region of x ≧ 200 nm, and the area of the region surrounded by straight lines sequentially connecting the coordinates P1, V1, V2, P2, and P1 is 300 or more. In Example 24 using lauryl sulfobetaine and cholic acid as surfactants for the first reagent and the second reagent, the low concentration range change rate was improved over Example 22, but the high concentration range change rate was It became lower than Examples 22 and 23. In Examples 25 and 26 in which lauryl sulfobetaine and cholic acid were each used alone as the surfactant of the second reagent for the measurement reagent, both the low concentration range change rate and the high concentration range change rate were lower than those in Examples 22 and 23.
From these results, low concentration range change rate and high concentration of lauryl sulfobetaine with sulfobetaine structure but no steroid skeleton and cholic acid with steroid skeleton but no sulfobetaine structure It was confirmed that the improvement effect of the area change rate was not obtained.

Claims (6)

  1.  ラテックス凝集比濁法によるC-反応性タンパク質測定用の測定試薬であって、
     C-反応性タンパク質と特異的に反応する基を表面に有する粒子を含有し、
     前記粒子の粒径x(nm)を横軸、質量換算の頻度y(%)を縦軸とした粒度分布曲線が、x<200の領域に少なくとも1つのピーク、200≦xの領域に少なくとも1つのピークを有し、
     前記粒度分布曲線にて、座標P1(x1、y1)、V1(x3、ymin)、V2(x4、ymin)、P2(x2、y2)、前記P1を順次結ぶ直線で囲まれた領域の面積が300以上である測定試薬。
     ただし、x1およびy1はそれぞれ、x<200の領域に有るピークのうち、粒径が最も大きいピークの粒径および頻度を示す。
     x2およびy2はそれぞれ、200≦xの領域に有るピークのうち、粒径が最も小さいピークの粒径および頻度を示す。
     yminは、x1<x<x2の領域内でのyの最小値を示す。
     x3は、x1<x<x2の領域内で、y=yminであるxの最小値を示す。
     x4は、x1<x<x2の領域内で、y=yminであるxの最大値を示す。
    A measuring reagent for measuring C-reactive protein by latex aggregation turbidimetry,
    Containing particles on the surface with groups that react specifically with C-reactive protein,
    The particle size distribution curve with the particle diameter x (nm) of the particles as the horizontal axis and the mass conversion frequency y (%) as the vertical axis has at least one peak in the region of x <200 and at least 1 in the region of 200 ≦ x. Has two peaks,
    In the particle size distribution curve, a region surrounded by a straight line connecting coordinates P1 (x1, y1), V1 (x3, ymin ), V2 (x4, ymin ), P2 (x2, y2), and P1 in turn. A measuring reagent having an area of 300 or more.
    However, x1 and y1 respectively indicate the particle size and frequency of the peak having the largest particle size among the peaks in the region of x <200.
    Each of x2 and y2 represents the particle size and frequency of the peak having the smallest particle size among the peaks in the region of 200 ≦ x.
    y min represents the minimum value of y in the region of x1 <x <x2.
    x3 indicates the minimum value of x where y = y min in the region of x1 <x <x2.
    x4 indicates the maximum value of x where y = y min in the region of x1 <x <x2.
  2.  前記C-反応性タンパク質と特異的に反応する基が、ホスホリルコリン基である、請求項1に記載の測定試薬。 The measurement reagent according to claim 1, wherein the group that specifically reacts with the C-reactive protein is a phosphorylcholine group.
  3.  分子構造内に、置換基が結合していてもよいステロイド骨格の炭化水素基と、下記一般式(2)で表される基とを有する界面活性剤をさらに含む、請求項2に記載の測定試薬。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Xは、水酸基が結合していてもよい炭素数3~5の直鎖アルキレン基を示す。]
    The measurement according to claim 2, further comprising a surfactant having a steroid skeleton hydrocarbon group to which a substituent may be bonded and a group represented by the following general formula (2) in the molecular structure. reagent.
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, X represents a linear alkylene group having 3 to 5 carbon atoms to which a hydroxyl group may be bonded. ]
  4.  前記粒子が分散した粒子分散液である第一液と、前記界面活性剤を含む第二液とを備えるキットである、請求項3に記載の測定試薬。 The measurement reagent according to claim 3, which is a kit comprising a first liquid, which is a particle dispersion in which the particles are dispersed, and a second liquid containing the surfactant.
  5.  請求項1~4のいずれか一項に記載の測定試薬を用いて、ラテックス凝集比濁法により、被験試料中のC-反応性タンパク質濃度を測定する測定方法。 A measurement method for measuring the C-reactive protein concentration in a test sample by latex agglutination turbidimetry using the measurement reagent according to any one of claims 1 to 4.
  6.  被験試料と、請求項3または4に記載の測定試薬とを混合して反応液を調製し、前記反応液の吸光度を測定する工程を含み、
     前記反応液中の前記界面活性剤の濃度が0.15~0.40質量%である、請求項5に記載の測定方法。
    Mixing a test sample and the measurement reagent according to claim 3 or 4 to prepare a reaction solution, and measuring the absorbance of the reaction solution,
    The measurement method according to claim 5, wherein the concentration of the surfactant in the reaction solution is 0.15 to 0.40 mass%.
PCT/JP2013/077085 2012-10-12 2013-10-04 Measurement reagent and measurement method for measuring c-reactive protein WO2014057880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-227105 2012-10-12
JP2012227105A JP2014081205A (en) 2012-10-12 2012-10-12 Measurement reagent for c-reactive protein measurement, and measurement method

Publications (1)

Publication Number Publication Date
WO2014057880A1 true WO2014057880A1 (en) 2014-04-17

Family

ID=50477347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077085 WO2014057880A1 (en) 2012-10-12 2013-10-04 Measurement reagent and measurement method for measuring c-reactive protein

Country Status (2)

Country Link
JP (1) JP2014081205A (en)
WO (1) WO2014057880A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462731A (en) * 2017-08-10 2017-12-12 迈克生物股份有限公司 A kind of immune globulin A detection reagent box and detection method
CN110823873A (en) * 2018-08-13 2020-02-21 博阳生物科技(上海)有限公司 Chemiluminescence analysis method and application thereof
WO2023060097A1 (en) * 2021-10-04 2023-04-13 Neuvivo, Inc. Treatment methods for als patients
US11938147B2 (en) 2015-11-02 2024-03-26 Neuvivo, Inc. Treatment of neurodegenerative disease with sodium chlorite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449919B (en) * 2017-08-10 2019-01-15 迈克生物股份有限公司 A kind of C reactive protein detection kit and detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259063A (en) * 1986-05-02 1987-11-11 Oriental Yeast Co Ltd Quantitative determination of c-reactive protein
JPH10123137A (en) * 1996-10-16 1998-05-15 Sekisui Chem Co Ltd Highly sensitive immunoassay method
JP2005077301A (en) * 2003-09-02 2005-03-24 Asahi Kasei Corp Immunological detection carrier and measuring method
JP2006071297A (en) * 2004-08-31 2006-03-16 Denka Seiken Co Ltd Antigen measuring method and reagent therefor
JP2006343214A (en) * 2005-06-09 2006-12-21 Matsushita Electric Ind Co Ltd Immunoreaction measuring method, and reagent for immunoreaction measurement used therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259063A (en) * 1986-05-02 1987-11-11 Oriental Yeast Co Ltd Quantitative determination of c-reactive protein
JPH10123137A (en) * 1996-10-16 1998-05-15 Sekisui Chem Co Ltd Highly sensitive immunoassay method
JP2005077301A (en) * 2003-09-02 2005-03-24 Asahi Kasei Corp Immunological detection carrier and measuring method
JP2006071297A (en) * 2004-08-31 2006-03-16 Denka Seiken Co Ltd Antigen measuring method and reagent therefor
JP2006343214A (en) * 2005-06-09 2006-12-21 Matsushita Electric Ind Co Ltd Immunoreaction measuring method, and reagent for immunoreaction measurement used therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12109228B2 (en) 2015-11-02 2024-10-08 Neuvivo, Inc. Treatment of neurodegenerative disease with sodium chlorite
US11938147B2 (en) 2015-11-02 2024-03-26 Neuvivo, Inc. Treatment of neurodegenerative disease with sodium chlorite
US11938148B2 (en) 2015-11-02 2024-03-26 Neuvivo, Inc. Treatment of neurodegenerative disease with sodium chlorite
US11938150B2 (en) 2015-11-02 2024-03-26 Neuvivo, Inc. Treatment of neurodegenerative disease with sodium chlorite
US11938149B2 (en) 2015-11-02 2024-03-26 Neuvivo, Inc. Treatment of neurodegenerative disease with sodium chlorite
US12109229B2 (en) 2015-11-02 2024-10-08 Neuvivo, Inc. Treatment of neurodegenerative disease with sodium chlorite
US12109230B2 (en) 2015-11-02 2024-10-08 Neuvivo, Inc. Treatment of neurodegenerative disease with sodium chlorite
US12109231B2 (en) 2015-11-02 2024-10-08 Neuvivo, Inc. Treatment of neurodegenerative disease with sodium chlorite
CN107462731B (en) * 2017-08-10 2018-11-20 迈克生物股份有限公司 A kind of immune globulin A detection reagent box and detection method
CN107462731A (en) * 2017-08-10 2017-12-12 迈克生物股份有限公司 A kind of immune globulin A detection reagent box and detection method
CN110823873A (en) * 2018-08-13 2020-02-21 博阳生物科技(上海)有限公司 Chemiluminescence analysis method and application thereof
WO2023060097A1 (en) * 2021-10-04 2023-04-13 Neuvivo, Inc. Treatment methods for als patients
GB2626503A (en) * 2021-10-04 2024-07-24 Neuvivo Inc Treatment methods for ALS patients

Also Published As

Publication number Publication date
JP2014081205A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
WO2014057880A1 (en) Measurement reagent and measurement method for measuring c-reactive protein
JP4976586B2 (en) Self-calibrating gradient dilution in component assays and gradient dilution apparatus performed on thin film samples
CN101310186B (en) Method of assaying antigen and kit to be used therein
JP5170806B2 (en) Latex particles for measuring reagent, sensitized latex particles, and measuring reagent for immunoturbidimetric method
CN100396331C (en) Carrier particle latex for assay reagent and assay reagent
JP4853666B2 (en) Target substance detection method, mixed particles, and target substance detection reagent
JP5823953B2 (en) Method and reagent for avoiding influence of endogenous lipoprotein
WO2007066731A1 (en) Reagent for assaying antiphospholipid antibody and reagent for assaying anti-treponema pallidum antibody
JPWO2019177157A1 (en) Reagent kit, measurement kit and measurement method
JP5288348B2 (en) Method for producing polymer fine particles
JP5288349B2 (en) Immunological analysis reagent and immunological analysis method
JP4629564B2 (en) Anti-Treponema / Paridum antibody measurement reagent
JP4646270B2 (en) Insoluble carrier used for antiphospholipid antibody measuring reagent, antiphospholipid antibody measuring reagent, and method for measuring antiphospholipid antibody
JPWO2019177158A1 (en) Reagent kit, measurement kit and measurement method
EP2019319A2 (en) Reagent for latex aggregation reaction and method for detecting target substance
JP7406327B2 (en) Particles, particles for agglutination methods, reagents containing the same, kits, and detection methods
JP5566557B1 (en) Latex particles for particle aggregation measurement
JP4716067B2 (en) C-reactive protein measuring method and measuring reagent
KR101910837B1 (en) Method for stabilizing glycerophospholipids and reagents using same
EP4276446A1 (en) Analysis method and analysis apparatus each employing measurement based on polarization anisotropy
WO2023219139A1 (en) Analysis method and analysis device employing measurement based on polarization anisotropy
JP2023168250A (en) Analysis method and analyzer by measurement based on polarization anisotropy
KR102270242B1 (en) Polymer microparticle for carrying physiologically active substance and method for preparing same
EP4435048A1 (en) Particles for specimen examinations
JP7473283B1 (en) Reagent for measuring activated partial thromboplastin time and blood coagulation time regulator for lupus anticoagulant positive blood specimen or heparin-containing blood specimen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845498

Country of ref document: EP

Kind code of ref document: A1