WO2014057553A1 - 空気入りタイヤ - Google Patents
空気入りタイヤ Download PDFInfo
- Publication number
- WO2014057553A1 WO2014057553A1 PCT/JP2012/076251 JP2012076251W WO2014057553A1 WO 2014057553 A1 WO2014057553 A1 WO 2014057553A1 JP 2012076251 W JP2012076251 W JP 2012076251W WO 2014057553 A1 WO2014057553 A1 WO 2014057553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- belt
- tire
- pneumatic tire
- tread
- reinforcing layer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/04—Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/01—Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C3/00—Tyres characterised by the transverse section
- B60C3/04—Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/1835—Rubber strips or cushions at the belt edges
- B60C9/185—Rubber strips or cushions at the belt edges between adjacent or radially below the belt plies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C9/2003—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
- B60C9/2006—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/28—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C2009/2061—Physical properties or dimensions of the belt coating rubber
- B60C2009/2064—Modulus; Hardness; Loss modulus or "tangens delta"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C2009/2074—Physical properties or dimension of the belt cord
- B60C2009/2083—Density in width direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C2009/2074—Physical properties or dimension of the belt cord
- B60C2009/209—Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C9/22—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
- B60C2009/2238—Physical properties or dimensions of the ply coating rubber
- B60C2009/2242—Modulus; Hardness; Loss modulus or "tangens delta"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C9/22—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
- B60C2009/2252—Physical properties or dimension of the zero degree ply cords
- B60C2009/2261—Modulus of the cords
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C9/22—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
- B60C2009/2252—Physical properties or dimension of the zero degree ply cords
- B60C2009/2266—Density of the cords in width direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
- B60C2011/0016—Physical properties or dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
- B60C2011/0016—Physical properties or dimensions
- B60C2011/0025—Modulus or tan delta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
- B60C2011/0016—Physical properties or dimensions
- B60C2011/0033—Thickness of the tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0355—Circumferential grooves characterised by depth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C2200/00—Tyres specially adapted for particular applications
- B60C2200/06—Tyres specially adapted for particular applications for heavy duty vehicles
Definitions
- the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can improve riding comfort performance.
- Recent heavy-duty tires mounted on trucks and buses have a low flatness ratio, while maintaining the shape of the tread portion by arranging a circumferential reinforcing layer on the belt layer.
- This circumferential reinforcing layer is a belt ply having a belt angle of approximately 0 [deg] with respect to the tire circumferential direction, and is laminated on a pair of cross belts.
- Patent Documents 1 to 3 techniques described in Patent Documents 1 to 3 are known.
- the present invention has been made in view of the above, and an object thereof is to provide a pneumatic tire that can improve riding comfort performance.
- a pneumatic tire according to the present invention includes a carcass layer, a belt layer disposed on the outer side in the tire radial direction of the carcass layer, and a tread rubber disposed on the outer side in the tire radial direction of the belt layer.
- a pneumatic tire including at least three circumferential main grooves extending in the tire circumferential direction and a plurality of land portions defined by the circumferential main grooves, the belt layer Is within a range of ⁇ 5 [deg] with respect to the tire circumferential direction, and a pair of cross belts having a belt angle of 10 [deg] or more and 45 [deg] or less in absolute value and mutually different signs of belt angles.
- FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
- FIG. 2 is an explanatory view showing a belt layer of the pneumatic tire shown in FIG.
- FIG. 3 is an explanatory view showing a belt layer of the pneumatic tire shown in FIG. 1.
- FIG. 4 is an explanatory view showing the operation of the pneumatic tire shown in FIG.
- FIG. 5 is an explanatory diagram showing the operation of the pneumatic tire depicted in FIG. 1.
- FIG. 6 is an enlarged view showing a main part of the pneumatic tire shown in FIG. 1.
- FIG. 7 is an enlarged view showing a main part of the pneumatic tire shown in FIG. 1.
- FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
- FIG. 2 is an explanatory view showing a belt layer of the pneumatic tire shown in FIG.
- FIG. 3 is an explanatory view showing
- FIG. 8 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 1.
- FIG. 9 is an explanatory view illustrating a modified example of the pneumatic tire depicted in FIG. 1.
- FIG. 10 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
- FIG. 11 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
- FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire 1 according to an embodiment of the present invention.
- FIG. 1 shows a heavy-duty radial tire mounted on a truck, a bus, etc. for long-distance transportation.
- Reference sign CL is a tire equator plane.
- the tread end P and the tire ground contact end T coincide.
- the circumferential reinforcing layer 145 is hatched.
- the pneumatic tire 1 includes a pair of bead cores 11, 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, a tread rubber 15, and a pair of sidewall rubbers 16, 16. (See FIG. 1).
- the pair of bead cores 11 and 11 has an annular structure and constitutes the core of the left and right bead portions.
- the pair of bead fillers 12 and 12 includes a lower filler 121 and an upper filler 122, which are disposed on the tire radial direction outer periphery of the pair of bead cores 11 and 11, respectively, to reinforce the bead portion.
- the carcass layer 13 is bridged in a toroidal shape between the left and right bead cores 11 and 11 to form a tire skeleton. Further, both ends of the carcass layer 13 are wound and locked from the inner side in the tire width direction to the outer side in the tire width direction so as to wrap the bead core 11 and the bead filler 12.
- the carcass layer 13 is formed by coating a plurality of carcass cords made of steel or an organic fiber material (for example, nylon, polyester, rayon, etc.) with a coating rubber and rolling them, and has an absolute value of 85 [deg] or more and 95. [Deg] The following carcass angle (inclination angle in the fiber direction of the carcass cord with respect to the tire circumferential direction).
- the belt layer 14 is formed by laminating a plurality of belt plies 141 to 145, and is arranged around the outer periphery of the carcass layer 13. A specific configuration of the belt layer 14 will be described later.
- the tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14 to constitute a tread portion of the tire.
- the pair of side wall rubbers 16 and 16 are respectively arranged on the outer side in the tire width direction of the carcass layer 13 to constitute left and right side wall portions.
- the pneumatic tire 1 includes seven circumferential main grooves 2 extending in the tire circumferential direction and eight land portions 3 that are partitioned by these circumferential main grooves 2. I have.
- Each land portion 3 is a block that is divided in the tire circumferential direction by ribs that are continuous in the tire circumferential direction or lug grooves (not shown).
- the circumferential main groove refers to a circumferential groove having a groove width of 5.0 [mm] or more.
- the groove width of the circumferential main groove is measured excluding notches and chamfers formed in the groove openings.
- the left and right circumferential main grooves 2 and 2 on the outermost side in the tire width direction are called outermost circumferential main grooves.
- the left and right land portions 3 and 3 on the outer side in the tire width direction defined by the left and right outermost circumferential main grooves 2 and 2 are referred to as shoulder land portions.
- FIG. 2 and 3 are explanatory views showing a belt layer of the pneumatic tire shown in FIG.
- FIG. 2 shows one side region of the tread portion with the tire equatorial plane CL as a boundary
- FIG. 3 shows a laminated structure of the belt layer 14.
- the thin lines in the belt plies 141 to 145 schematically show the belt cords of the belt plies 141 to 145.
- the belt layer 14 is formed by laminating a high-angle belt 141, a pair of cross belts 142 and 143, a belt cover 144, and a circumferential reinforcing layer 145, and is arranged around the outer periphery of the carcass layer 13. (See FIG. 2).
- the high-angle belt 141 is formed by coating a plurality of belt cords made of steel or organic fiber material with a coat rubber and rolling the belt, and an absolute value of a belt angle of 45 [deg] or more and 70 [deg] or less (tire circumferential direction). The inclination angle of the belt cord in the fiber direction). Further, the high-angle belt 141 is laminated and disposed on the outer side in the tire radial direction of the carcass layer 13.
- the pair of cross belts 142 and 143 is formed by rolling a plurality of belt cords made of steel or organic fiber material covered with a coat rubber, and has an absolute value of a belt angle of 10 [deg] or more and 45 [deg] or less. Have. Further, the pair of cross belts 142 and 143 have belt angles with different signs from each other, and are laminated so that the fiber directions of the belt cords cross each other (cross-ply structure).
- the cross belt 142 located on the inner side in the tire radial direction is called an inner diameter side cross belt
- the cross belt 143 located on the outer side in the tire radial direction is called an outer diameter side cross belt. Note that three or more cross belts may be laminated (not shown).
- the pair of cross belts 142 and 143 are disposed so as to be stacked on the outer side in the tire radial direction of the high-angle belt 141.
- the belt cover 144 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and has a belt angle of 10 [deg] or more and 45 [deg] or less in absolute value. Further, the belt cover 144 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 142 and 143. In this embodiment, the belt cover 144 has the same belt angle as the outer diameter side crossing belt 143 and is disposed in the outermost layer of the belt layer 14.
- the circumferential reinforcing layer 145 is formed by winding a steel belt cord covered with a coat rubber in a spiral manner while inclining within a range of ⁇ 5 [deg] with respect to the tire circumferential direction. Further, the circumferential reinforcing layer 145 is disposed between the pair of cross belts 142 and 143. Further, the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction with respect to the left and right edge portions of the pair of cross belts 142 and 143. Specifically, one or a plurality of wires are spirally wound around the outer circumference of the inner diameter side crossing belt 142 to form the circumferential reinforcing layer 145. The circumferential reinforcing layer 145 reinforces the rigidity in the tire circumferential direction, so that the durability performance of the tire is improved.
- this pneumatic tire 1 employs the following configuration in order to improve riding comfort performance (see FIGS. 1 to 3).
- the distance Gcc from the tread profile to the tire inner peripheral surface on the tire equatorial plane CL and the distance Gsh from the tread end P to the tire inner peripheral surface are 1.10.
- the ratio Gsh / Gcc is preferably in the range of 1.20 ⁇ Gsh / Gcc, as shown in the results of performance tests described later (see FIG. 10).
- the upper limit of the ratio Gsh / Gcc is not particularly limited, but when the tire is mounted on the specified rim and applied with the specified internal pressure to be in an unloaded state, the radius at the tread end P of the tread profile is It is preferable to be equal to or less than the radius on the equatorial plane CL. That is, the tread profile has an arc shape or a linear shape having a center on the inner side in the tire radial direction, and is configured not to have an inverted R shape (an arc shape having a center on the outer side in the tire radial direction).
- the upper limit of the ratio Gsh / Gcc is about 1.4 to 1.5.
- the upper limit of the ratio Gsh / Gcc is about 1.3 to 1.4.
- the distance Gcc is measured as a distance from the intersection of the tire equator plane CL and the tread profile to the intersection of the tire equator plane CL and the tire inner peripheral surface in a sectional view in the tire meridian direction. Therefore, in the configuration having the circumferential main groove 2 on the tire equatorial plane CL as in the configuration of FIGS. 1 and 2, the distance Gcc is measured excluding the circumferential main groove 2.
- the distance Gsh is measured as the length of a perpendicular line dropped from the tread end P to the tire inner peripheral surface in a sectional view in the tire meridian direction.
- the pneumatic tire 1 includes an inner liner 18 on the inner peripheral surface of the carcass layer 13, and the inner liner 18 is arranged over the entire inner peripheral surface of the tire.
- the distance Gcc and the distance Gsh are measured using the surface of the inner liner 18 as a reference (tire inner peripheral surface).
- the tread end P is (1) a point having a square shoulder portion, which is a point of the edge portion.
- the tread end P and the tire ground contact end T coincide with each other because the shoulder portion has a square shape.
- a tread edge P is defined as a vertical leg drawn from the intersection P 'to the shoulder.
- the tire ground contact end T is a tire when a tire is mounted on a specified rim and applied with a specified internal pressure, and is placed perpendicular to a flat plate in a stationary state and applied with a load corresponding to the specified load.
- the stipulated rim is an “applicable rim” defined in JATMA, a “Design Rim” defined in TRA, or a “Measuring Rim” defined in ETRTO.
- the specified internal pressure refers to the “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO.
- the specified load is the “maximum load capacity” specified in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified in TRA, or “LOAD CAPACITY” specified in ETRTO.
- the specified internal pressure is air pressure 180 [kPa]
- the specified load is 88 [%] of the maximum load capacity.
- FIG. 4 and 5 are explanatory views showing the action of the pneumatic tire shown in FIG.
- FIG. 4 shows a ground contact state of tires having different ratios Gsh / Gcc
- FIG. 5 shows a deformation amount of the shoulder portion (circumferential reinforcing layer 145 at the time of contact of each tire in FIG. 4). (Distortion at the end of the belt cord).
- the tread profile has a shoulder drop shape in which the outer diameter decreases from the tire equatorial plane CL toward the tread end P (not shown).
- the tread rubber 15 is greatly deformed to the road surface side (tire radial direction outer side) at the shoulder portion, and the belt plies 141 to 145 of the belt layer 14 are It curves greatly toward the road surface side (tire radial direction outer side) toward the direction outer side.
- the envelope characteristics of the tread portion are degraded, and the riding comfort performance of the tire is likely to deteriorate.
- the difference between the outer diameter of the tread profile at the tire equatorial plane CL and the outer diameter at the tread end P is small, and the tread surface is generally flat (substantially parallel to the tire rotation axis). (See FIGS. 1 and 2).
- the volume (distance Gsh) of the tread rubber 15 in the shoulder portion is secured, and the rigidity of the shoulder land portion 3 is secured. Thereby, the envelope characteristic of a tread part is ensured and the riding comfort performance of a tire improves.
- the intersection of the perpendicular drawn from the tread end P to the tire inner peripheral surface and the wide cross belt 142 of the pair of cross belts 142 and 143 is defined as a point Q1.
- the leg of the perpendicular drawn from the edge part of the tire direction direction outer side of the circumferential direction reinforcement layer 145 to the wide cross belt 142 be the point Q2.
- the points Q1 and Q2 are defined as points on an arc connecting the apexes on the outer side in the tire radial direction of the belt cord of the wide cross belt 142 in a sectional view in the tire meridian direction.
- the upper limit of the ratio Gs / Ge is not particularly limited, but is preferably Gs / Ge ⁇ 1.30.
- the volume (distance Gs) of the tread rubber 15 becomes too thick, which is not preferable because the durability of the tire decreases.
- a pair of cross belts 142 and 143 are arranged with the circumferential reinforcing layer 145 sandwiched therebetween, and the cross belt 142 on the inner side in the tire radial direction is more than the other cross belt 143.
- the distance Gs and the distance Ge are prescribed
- the present invention is not limited to this, and the cross belt on the outer side in the tire radial direction of the pair of cross belts 142 and 143 may have a wide structure (not shown).
- the distance Gs and the distance Ge are defined with reference to the cross belt on the outer side in the tire radial direction.
- the tread width TW and the width Ws of the circumferential reinforcing layer 145 have a relationship of 0.70 ⁇ Ws / TW ⁇ 0.90.
- the tread width TW is the distance between the left and right tread ends P, P in the tire rotation axis direction, and is measured as a no-load state while attaching a tire to a specified rim and applying a specified internal pressure.
- the width Ws of the circumferential reinforcing layer 145 is a distance in the tire rotation axis direction between the left and right ends of the circumferential reinforcing layer 145, and is measured as a no-load state while applying a specified internal pressure by attaching the tire to a specified rim.
- the width Ws of the circumferential reinforcing layer 145 is the distance between the outermost ends of the divided portions.
- a general pneumatic tire has a bilaterally symmetric structure with the tire equatorial plane CL as the center. For this reason, the distance from the tire equatorial plane CL to the tread end P is TW / 2, and the distance from the tire equatorial plane CL to the circumferential reinforcing layer 145 is Ws / 2.
- the range of the ratio Ws / TW between the tread width TW and the circumferential reinforcing layer width Ws is based on the tire equatorial plane CL. It is regulated by converting to half width. Specifically, the distance TW ′ (not shown) from the tire equatorial plane CL to the tread end P and the distance Ws ′ from the tire equatorial plane CL to the end of the circumferential reinforcing layer 145 are 0.70 ⁇ Ws. The relationship is set to '/TW' ⁇ 0.90.
- the tire center diameter of the steel cord belt ply that forms the belt center line of the circumferential main groove 2 that is closest to the tire equatorial plane CL and the belt layer 14 in a sectional view in the tire meridian direction is defined as a point Q3.
- the circumferential main groove 2 closest to the tire equatorial plane CL is the circumferential main groove 2 when the circumferential main groove 2 is present on the tire equatorial plane CL (see FIGS. 1 and 6).
- the circumferential main groove 2 located closest to the tire equator plane CL among the plurality of circumferential main grooves 2 is referred to.
- the point Q ⁇ b> 3 is a cross-sectional view in the tire meridian direction between the tread profile (virtual line in FIG. 6) and an arc connecting the top of the belt cord of the belt ply on the outer side in the tire radial direction. Defined as distance. Since it is a steel cord belt ply, the point Q3 is defined excluding the belt ply made of an organic fiber belt cord. For example, in the configuration of FIGS. 1 and 6, all belt plies 141 to 145 constituting the belt layer 14 are made of steel cords, and the point Q3 is defined with reference to the belt cover 144 in the outermost layer.
- the groove depth Dc of the circumferential main groove 2 closest to the tire equatorial plane CL and the distance Tc from the point Q3 to the tread profile are 1.30 ⁇ Tc / Dc ⁇ 1. .55 relationship.
- the ratio Tc / Dc is preferably in the range of 1.35 ⁇ Tc / Dc ⁇ 1.55.
- the groove depth Dc is measured as the distance between the tread profile and the groove bottom. Further, the groove depth Dc is measured by excluding the bottom upper part such as a stone ejector formed at the groove bottom.
- An intersection point with the belt ply (belt cover 144 in FIG. 7) located on the outermost side in the direction is defined as a point Q4.
- the groove depth De of the circumferential main groove 2 on the outermost side in the tire width direction and the distance Te from the point Q4 to the tread profile have a relationship of 1.35 ⁇ Te / De ⁇ 1.60. .
- the relationship between the groove depth De in the vicinity of the end of the circumferential reinforcing layer 145 and the tread gauge (distance Te) is optimized.
- the groove depth De is measured as the distance between the tread profile and the groove bottom. Further, the groove depth De is measured by excluding the upper part of the bottom such as a stone ejector formed on the groove bottom.
- the width Wb2 of the wide cross belt 142 and the width Wca of the carcass layer 13 have a relationship of 0.74 ⁇ Wb2 / Wca ⁇ 0.89.
- the ratio Wb2 / Wca is preferably in the range of 0.78 ⁇ Wb2 / Wca ⁇ 0.83.
- the width Wb1 of the high-angle belt 141 and the width Wb3 of the narrower cross belt 143 of the pair of cross belts 142 and 143 are 0.85 ⁇ Wb1 / Wb3 ⁇ 1.05. It is preferable to have the relationship (see FIG. 3). Thereby, the ratio Wb1 / Wb3 is optimized.
- the width Wb1 of the high-angle belt 141 and the width Wb3 of the crossing belt 143 are measured as the distance in the tire width direction when the tire is mounted on the specified rim to apply the specified internal pressure and the load is not loaded.
- the belt layer 14 has a bilaterally symmetric structure centered on the tire equatorial plane CL, and the cross belt is narrower than the width Wb ⁇ b> 1 of the high-angle belt 141.
- the width Wb3 of 143 has a relationship of Wb1 ⁇ Wb3.
- the edge part of the high angle belt 141 is arrange
- the present invention is not limited to this, and the width Wb1 of the high-angle belt 141 and the width Wb3 of the narrow cross belt 143 may have a relationship of Wb1 ⁇ Wb3 (not shown).
- the belt cord of the high-angle belt 141 is a steel wire and has an end number of 15 [lines / 50 mm] or more and 25 [lines / 50 mm] or less (see FIG. 4).
- the belt cords of the pair of cross belts 142 and 143 are preferably steel wires and have an end number of 18 [lines / 50 mm] or more and 28 [lines / 50 mm] or less.
- the belt cord of the circumferential reinforcing layer 145 is preferably a steel wire and has an end number of 17 [pieces / 50 mm] or more and 30 [pieces / 50 mm] or less. Thereby, the strength of each belt ply 141, 142, 143, 145 is ensured appropriately.
- the modulus E1 when the coated rubber of the high-angle belt 141 is 100% stretched and the modulus Es when the coated rubber of the circumferential reinforcing layer 145 is stretched 100% have a relationship of 0.90 ⁇ Es / E1 ⁇ 1.10. Is preferred (see FIG. 4).
- the modulus E2 and E3 when the coat rubber of the pair of cross belts 142 and 143 is 100% stretched and the modulus Es when the coat rubber of the circumferential reinforcing layer 145 is 100% stretched are 0.90 ⁇ Es / E2 ⁇ 1.10. And it is preferable to have a relationship of 0.90 ⁇ Es / E3 ⁇ 1.10.
- the modulus Es when the coated rubber of the circumferential reinforcing layer 145 is 100% stretched is preferably in the range of 4.5 [MPa] ⁇ Es ⁇ 7.5 [MPa]. Thereby, the modulus of each belt ply 141, 142, 143, 145 is optimized.
- the modulus at 100% elongation is measured by a tensile test at room temperature according to JIS K6251 (using No. 3 dumbbell).
- the breaking elongation ⁇ 1 of the coat rubber of the high-angle belt 141 is preferably in the range of ⁇ 1 ⁇ 200 [%] (see FIG. 4). Further, it is preferable that the breaking elongations ⁇ 2 and ⁇ 3 of the coat rubber of the pair of cross belts 142 and 143 are in the range of ⁇ 2 ⁇ 200 [%] and ⁇ 3 ⁇ 200 [%]. In addition, the elongation at break ⁇ s of the coated rubber of the circumferential reinforcing layer 145 is preferably in the range of ⁇ s ⁇ 200 [%]. Thereby, durability of each belt ply 141, 142, 143, 145 is ensured appropriately.
- Elongation at break is 2 [mm] using a tensile tester (INSTRON 5585H, manufactured by Instron) in accordance with JIS-K7161 for test pieces of JIS-K7162 standard type 1B (dumbbell type with a thickness of 3 mm). / Min].
- the elongation at a tensile load of 100 [N] to 300 [N] is 1.0 [%] or more and 2.5 [%] or less.
- the elongation at a tensile load of 500 [N] to 1000 [N] is preferably 0.5 [%] or more and 2.0 [%] or less.
- Such a belt cord (high elongation steel wire) has a better elongation at low load than normal steel wire, and can withstand the load applied to the circumferential reinforcing layer 145 from the time of manufacture to the time of tire use. This is preferable in that damage to the circumferential reinforcing layer 145 can be suppressed.
- the elongation of the belt cord is measured according to JIS G3510.
- the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction from the left and right edge portions of the narrow cross belt 143 of the pair of cross belts 142 and 143. Further, the width Wb3 of the narrow cross belt 143 and the distance S from the edge portion of the circumferential reinforcing layer 145 to the edge portion of the narrow cross belt 143 satisfy 0.03 ⁇ S / Wb3 ⁇ 0.12. It is preferable to be in the range. Thereby, the distance of the edge part of the width Wb3 of the cross belt 143 and the edge part of the circumferential direction reinforcement layer 145 is ensured appropriately. This also applies to the configuration (not shown) in which the circumferential reinforcing layer 145 has a divided structure.
- the distance S of the circumferential reinforcing layer 145 is measured as a distance in the tire width direction when the tire is mounted on a specified rim to apply a specified internal pressure and is in a no-load state.
- the circumferential reinforcing layer 145 is formed by winding a single steel wire in a spiral shape.
- the present invention is not limited to this, and the circumferential reinforcing layer 145 may be formed by spirally winding a plurality of wires while running parallel to each other (multiple winding structure).
- the number of wires is preferably 5 or less.
- the winding width per unit when multiple windings of five wires are 12 [mm] or less. Thereby, a plurality of wires (2 or more and 5 or less) can be properly wound while being inclined within a range of ⁇ 5 [deg] with respect to the tire circumferential direction.
- the circumferential reinforcing layer 145 is disposed between the pair of cross belts 142 and 143 (see FIG. 2).
- the present invention is not limited to this, and the circumferential reinforcing layer 145 may be disposed on the outer side in the tire radial direction of the pair of cross belts 142 and 143 (not shown).
- the circumferential reinforcing layer 145 may be disposed inside the pair of cross belts 142 and 143.
- the circumferential reinforcing layer 145 may be (1) disposed between the high angle belt 141 and the inner diameter side crossing belt 142, or (2) disposed between the carcass layer 13 and the high angle belt 141. (Not shown).
- the elongation at break of the tread rubber 15 is in a range of 350 [%] or more. Thereby, the strength of the tread rubber 15 is ensured, and the occurrence of tears in the outermost circumferential main groove 2 is suppressed.
- the upper limit of the elongation at break of the tread rubber 15 is not particularly limited, but is restricted by the type of rubber compound of the tread rubber 15.
- the tread rubber 15 preferably has a hardness of 70 or less. Thereby, the strength of the tread rubber 15 is ensured, and the occurrence of tears in the outermost circumferential main groove 2 is suppressed.
- the upper limit of the hardness of the tread rubber 15 is not particularly limited, but is restricted by the type of rubber compound of the tread rubber 15.
- Rubber hardness means JIS-A hardness according to JIS-K6263.
- FIG. 8 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 1. This figure shows a configuration having a round shoulder.
- the shoulder portion has a square shape, and the tire ground contact end T and the tread end P coincide with each other.
- the shoulder portion may have a round shape as shown in FIG.
- the intersection P ′ between the profile of the tread portion and the profile of the sidewall portion is taken, and the perpendicular foot drawn from the intersection P ′ to the shoulder portion. Is the tread edge P. For this reason, normally, the tire ground contact edge T and the tread edge P are in different positions.
- FIG. 9 is an explanatory view illustrating a modified example of the pneumatic tire depicted in FIG. 1. This figure shows an enlarged view of the end of the belt layer 14 on the outer side in the tire width direction. Further, in the same figure, the circumferential reinforcing layer 145 and the belt edge cushion 19 are hatched.
- the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction from the left and right edge portions of the narrow cross belt 143 of the pair of cross belts 142 and 143. Further, the belt edge cushion 19 is sandwiched and disposed at a position between the pair of cross belts 142 and 143 and corresponding to the edge portions of the pair of cross belts 142 and 143. Specifically, the belt edge cushion 19 is disposed on the outer side in the tire width direction of the circumferential reinforcing layer 145 and is adjacent to the circumferential reinforcing layer 145, and a pair of ends from the outer end of the circumferential reinforcing layer 145 in the tire width direction.
- the cross belts 142 and 143 are arranged so as to extend to the outer ends in the tire width direction.
- the belt edge cushion 19 has a structure thicker than the circumferential reinforcing layer 145 as a whole by increasing the thickness toward the outer side in the tire width direction. .
- the belt edge cushion 19 has a modulus E at 100% extension lower than the coat rubber of each cross belt 142, 143.
- the modulus E at 100% extension of the belt edge cushion 19 and the modulus Eco of the coat rubber have a relationship of 0.60 ⁇ E / Eco ⁇ 0.95.
- the belt edge cushion 19 has a two-color structure including a stress relaxation rubber 191 and an end relaxation rubber 192 in the configuration of FIG. 1.
- the stress relaxation rubber 191 is disposed between the pair of cross belts 142 and 143 and outside the circumferential reinforcing layer 145 in the tire width direction and is adjacent to the circumferential reinforcing layer 145.
- the end relaxation rubber 192 is disposed between the pair of cross belts 142 and 143, and is disposed on the outer side in the tire width direction of the stress relaxation rubber 191 and at a position corresponding to the edge portion of the pair of cross belts 142 and 143. Adjacent to rubber 191.
- the belt edge cushion 19 has a structure in which the stress relaxation rubber 191 and the end relaxation rubber 192 are continuously provided in the tire width direction in the tire meridian cross-sectional view, and the tire of the circumferential reinforcing layer 145 The region from the end portion on the outer side in the width direction to the edge portion of the pair of cross belts 142 and 143 is filled in.
- the modulus Ein when the stress relaxation rubber 191 is stretched 100% and the modulus Es when the coat rubber of the circumferential reinforcing layer 145 is stretched 100% have a relationship of Ein ⁇ Es.
- the modulus Ein of the stress relaxation rubber 191 and the modulus Es of the circumferential reinforcing layer 145 have a relationship of 0.6 ⁇ Ein / Es ⁇ 0.9.
- the modulus Eout at 100% extension of the end relaxation rubber 192 and the modulus Ein at 100% extension of the stress relaxation rubber 191 have a relationship of Eout ⁇ Ein.
- the modulus Ein at 100% elongation of the stress relaxation rubber 191 is preferably in the range of 4.0 [MPa] ⁇ Ein ⁇ 5.5 [MPa].
- the pneumatic tire 1 includes the carcass layer 13, the belt layer 14 disposed outside the carcass layer 13 in the tire radial direction, and the tread rubber 15 disposed outside the belt layer 14 in the tire radial direction. (See FIG. 1). Further, the belt layer 14 has a belt angle of 10 [deg] or more and 45 [deg] or less in absolute value, and a pair of cross belts 142 and 143 having mutually different belt angles, and the tire circumferential direction. A circumferential reinforcing layer 145 having a belt angle within a range of ⁇ 5 [deg] is laminated (see FIG. 3).
- the distance Gcc from the tread profile to the tire inner peripheral surface on the tire equatorial plane CL and the distance Gsh from the tread end P to the tire inner peripheral surface have a relationship of 1.10 ⁇ Gsh / Gcc (see FIG. 2). ). Further, the distance Gs from the point Q1 to the tread profile and the distance Ge from the point Q2 to the tread profile have a relationship of 1.00 ⁇ Gs / Ge.
- the tread width TW and the width Ws of the circumferential reinforcing layer 145 have a relationship of 0.70 ⁇ Ws / TW ⁇ 0.90 (see FIG. 1).
- the ratio Ws / TW of the tread width TW and the width Ws of the circumferential reinforcing layer 145 is optimized, so that the amount of deformation of the shoulder portion at the time of tire contact is effectively reduced (FIG. 4 ( b) and FIG. 5).
- the width Ws of the circumferential reinforcing layer 145 is appropriately secured, and the deformation amount of the shoulder portion at the time of tire contact is reduced. Further, since Ws / TW ⁇ 0.90, deformation at each belt ply end is suppressed when the tire is in contact with the ground, thereby reducing distortion at each belt ply end.
- the groove depth Dc of the circumferential main groove 2 closest to the tire equatorial plane CL and the distance Tc from the predetermined point Q3 to the tread profile are 1.30 ⁇ Tc / Dc ⁇
- the relationship is 1.55 (see FIG. 6).
- the groove depth De of the circumferential main groove 2 located on the outermost side in the tire width direction and the distance Te from the predetermined point Q4 to the tread profile are 1.35 ⁇ Te / De. ⁇ 1.60 (see FIG. 7).
- a tread gauge (distance Te) is optimized. That is, by satisfying 1.35 ⁇ Te / De, the tread gauge (distance Te) at the end of the circumferential reinforcing layer 145 is appropriately secured, and the occurrence of groove cracks in the circumferential main groove 2 is suppressed. .
- Te / De ⁇ 1.60 an effect of improving riding comfort performance can be appropriately obtained, and an increase in tire weight due to an excessive tread gauge can be suppressed.
- the width Wb2 of the wide cross belt 142 and the width Wca of the carcass layer 13 have a relationship of 0.74 ⁇ Wb2 / Wca ⁇ 0.89 (see FIG. 1). Accordingly, there is an advantage that the width Wb2 of the wide cross belt is optimized.
- the belt cords of the cross belts 142 and 143 are steel wires and have an end number of 18 [lines / 50 mm] or more and 28 [lines / 50 mm] or less.
- the number of ends of the belt cords of the cross belts 142 and 143 is optimized. That is, the strength of the cross belts 142 and 143 is appropriately ensured by being 18 [lines / 50 mm] or more.
- the rubber amount of the coat rubber of the cross belts 142 and 143 is appropriately secured, and the separation of the rubber material between the adjacent belt plies is suppressed.
- the belt layer 14 has a high-angle belt 141 having a belt angle of 45 [deg] or more and 70 [deg] or less in absolute value (see FIGS. 1 and 3). Accordingly, there is an advantage that the belt layer 14 is reinforced and distortion at the end of the belt layer 14 at the time of tire contact is suppressed.
- the belt cord of the high-angle belt 141 is a steel wire and has an end number of 15 [lines / 50 mm] or more and 25 [lines / 50 mm] or less.
- the number of ends of the belt cord of the high-angle belt 141 is optimized. That is, the strength of the high-angle belt 141 is appropriately ensured by being 15 [lines / 50 mm] or more.
- the amount of the coated rubber of the high-angle belt 141 is appropriately ensured by being 25 [pieces / 50 mm] or less, the separation of the rubber material between the adjacent belt plies (cross belt 142 in FIG. 2) is ensured. It is suppressed.
- the width Wb1 of the high-angle belt 141 and the width Wb3 of the narrower cross belt 143 of the pair of cross belts 142 and 143 are 0.85 ⁇ Wb1 / Wb3 ⁇ 1.05. (See FIG. 3).
- the ratio Wb1 / Wb3 between the width Wb1 of the high-angle belt 141 and the width Wb3 of the narrow cross belt 143 is optimized. Thereby, there exists an advantage by which the distortion of the edge part of the belt layer 14 at the time of tire contact is suppressed.
- the tread rubber 15 has a hardness of 70 or less. Thereby, there exists an advantage by which the intensity
- the belt cord of the circumferential reinforcing layer 145 is a steel wire and has an end number of 17 [pieces / 50 mm] or more and 30 [pieces / 50 mm] or less.
- the number of ends of the belt cord of the circumferential direction reinforcement layer 145 is optimized. That is, the strength of the circumferential reinforcing layer 145 is appropriately secured by being 17 [lines / 50 mm] or more.
- the rubber amount of the coating rubber of the circumferential reinforcing layer 145 is appropriately secured by being 30 [pieces / 50 mm] or less, the adjacent belt plies (in FIG. 3, the pair of cross belts 142 and 143 and the circumferential direction) Separation of the rubber material between the reinforcing layers 145) is suppressed.
- the elongation of the belt cord constituting the circumferential reinforcing layer 145 at the time of a tensile load of 500 [N] to 1000 [N] is 0.5 [%] or more and 2.0 [%]. It is the following. Thereby, there exists an advantage by which the suppression effect of the diameter growth of the center area
- the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction from the left and right edge portions of the narrow cross belt 143 of the pair of cross belts 142 and 143 (see FIG. 3). ).
- the pneumatic tire 1 is disposed between the pair of cross belts 142 and 143 and on the outer side in the tire width direction of the circumferential reinforcing layer 145 and adjacent to the circumferential reinforcing layer 145, and a pair of An end portion relaxation rubber 192 disposed between the cross belts 142 and 143 and located outside the stress relaxation rubber 191 in the tire width direction and corresponding to the edge portions of the pair of cross belts 142 and 143 and adjacent to the stress relaxation rubber 191. (See FIG. 9).
- the circumferential reinforcing layer 145 is arranged on the inner side in the tire width direction with respect to the left and right edge portions of the narrow cross belt 143 of the pair of cross belts 142 and 143, whereby the edge of the circumferential reinforcing layer 145 There is an advantage that fatigue rupture of peripheral rubber at the portion is suppressed. Further, since the stress relaxation rubber 191 is disposed on the outer side in the tire width direction of the circumferential reinforcing layer 145, the shear strain of the peripheral rubber between the edge portion of the circumferential reinforcing layer 145 and between the cross belts 142 and 143 is relaxed.
- the end relaxation rubber 192 is disposed at a position corresponding to the edge portions of the cross belts 142 and 143, the shear strain of the peripheral rubber at the edge portions of the cross belts 142 and 143 is reduced.
- the modulus Ein of the stress relaxation rubber 191 when stretched 100% and the modulus Eco of the coat rubber of the pair of cross belts 142 and 143 when stretched 100% have a relationship of Ein ⁇ Eco.
- the modulus Ein of the stress relaxation rubber 191 is optimized, and there is an advantage that the shear strain of the peripheral rubber between the edge portion of the circumferential reinforcing layer 145 and the cross belts 142 and 143 is relaxed.
- the modulus Ein when the stress relaxation rubber 191 is stretched 100% and the modulus Eco when the coat rubber of the pair of cross belts 142 and 143 is stretched 100% are 0.6 ⁇ Ein / Eco ⁇ 0. .9 relationship. Accordingly, there is an advantage that the ratio Ein / Eco is optimized and the shear strain of the peripheral rubber between the edge portion of the circumferential reinforcing layer 145 and the cross belts 142 and 143 is alleviated.
- the modulus Ein at 100% elongation of the stress relaxation rubber 191 is in the range of 4.0 [MPa] ⁇ Ein ⁇ 5.5 [MPa] (see FIG. 9).
- the modulus Ein of the stress relaxation rubber 191 is optimized, and there is an advantage that the shear strain of the peripheral rubber between the edge portion of the circumferential reinforcing layer 145 and the cross belts 142 and 143 is relaxed.
- the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction from the left and right edge portions of the narrow cross belt 143 of the pair of cross belts 142 and 143 (see FIG. 3). ). Further, the width Wb3 of the narrow cross belt 143 and the distance S from the edge portion of the circumferential reinforcing layer 145 to the edge portion of the narrow cross belt 143 satisfy 0.03 ⁇ S / Wb3 ⁇ 0.12. Is in range. Thereby, there exists an advantage by which positional relationship S / Wb3 of the edge part of the cross belts 142 and 143 and the edge part of the circumferential direction reinforcement layer 145 is optimized.
- the pneumatic tire 1 is a heavy load having a flatness ratio of 40% to 70% in a state where the tire is assembled on a regular rim and a normal internal pressure and a normal load are applied to the tire. It is preferably applied to heavy duty tires.
- the heavy load tire has a larger load when the tire is used than the tire for a passenger car. For this reason, the difference in diameter between the arrangement region of the circumferential reinforcing layer 145 on the tread surface and the region outside the circumferential reinforcing layer 145 in the tire width direction tends to be large. Further, in a tire having a low flatness ratio as described above, the ground contact shape tends to be a drum shape. Therefore, by making such a heavy-duty tire to be applied, the above-described riding performance improvement effect of the tire can be remarkably obtained.
- 10 and 11 are charts showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
- the pneumatic tire 1 of Examples 1 to 31 has the configuration described in FIGS.
- the conventional pneumatic tire has a numerical value range different from that of the pneumatic tire 1 of the first embodiment in the configuration shown in FIGS.
- the pneumatic tires 1 of Examples 1 to 31 can improve the riding comfort performance of the tire while ensuring the durability performance of the tire.
- Examples 1 to 16 are compared, 1.20 ⁇ Gsh / Gcc, 1.00 ⁇ Gs / Ge, 0.70 ⁇ Ws / TW ⁇ 0.90, 1.30 ⁇ Tc / Dc ⁇ 1
- .55 and 1.35 ⁇ Te / De ⁇ 1.60 it is possible to obtain an effect (evaluation of 110 or more) having a significant advantage in the riding comfort performance of the tire while ensuring the durability performance of the tire. I understand.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
図1は、この発明の実施の形態にかかる空気入りタイヤ1を示すタイヤ子午線方向の断面図である。同図は、空気入りタイヤ1の一例として、長距離輸送用のトラック、バスなどに装着される重荷重用ラジアルタイヤを示している。なお、符号CLは、タイヤ赤道面である。また、同図では、トレッド端Pとタイヤ接地端Tとが、一致している。また、同図では、周方向補強層145にハッチングを付してある。
図2および図3は、図1に記載した空気入りタイヤのベルト層を示す説明図である。これらの図において、図2は、タイヤ赤道面CLを境界としたトレッド部の片側領域を示し、図3は、ベルト層14の積層構造を示している。なお、図3では、各ベルトプライ141~145中の細線が各ベルトプライ141~145のベルトコードを模式的に示している。
トラック・バスなどにシングル装着される近年の重荷重用タイヤは、低い偏平率を有する一方で、ベルト層に周方向補強層を配置することにより、トレッド部の形状を保持している。具体的には、周方向補強層が、トレッド部センター領域に配置されてタガ効果を発揮することにより、トレッド部の径成長を抑制してトレッド部の形状を保持している。
図8は、図1に記載した空気入りタイヤの変形例を示す説明図である。同図は、ラウンド形状のショルダー部を有する構成を示している。
図9は、図1に記載した空気入りタイヤの変形例を示す説明図である。同図は、ベルト層14のタイヤ幅方向外側の端部の拡大図を示している。また、同図では、周方向補強層145、ベルトエッジクッション19にハッチングを付してある。
以上説明したように、この空気入りタイヤ1は、カーカス層13と、カーカス層13のタイヤ径方向外側に配置されるベルト層14と、ベルト層14のタイヤ径方向外側に配置されるトレッドゴム15とを備える(図1参照)。また、ベルト層14が、絶対値で10[deg]以上45[deg]以下のベルト角度を有すると共に相互に異符号のベルト角度を有する一対の交差ベルト142、143と、タイヤ周方向に対して±5[deg]の範囲内にあるベルト角度を有する周方向補強層145とを積層して成る(図3参照)。また、タイヤ赤道面CLにおけるトレッドプロファイルからタイヤ内周面までの距離Gccと、トレッド端Pからタイヤ内周面までの距離Gshとが、1.10≦Gsh/Gccの関係を有する(図2参照)。また、点Q1からトレッドプロファイルまでの距離Gsと、点Q2からトレッドプロファイルまでの距離Geとが、1.00≦Gs/Geの関係を有する。
また、この空気入りタイヤ1は、タイヤが正規リムにリム組みされると共にタイヤに正規内圧および正規荷重が付与された状態にて、偏平率が40[%]以上70[%]以下である重荷重用タイヤに適用されることが好ましい。重荷重用タイヤでは、乗用車用タイヤと比較して、タイヤ使用時の負荷が大きい。このため、トレッド面における周方向補強層145の配置領域と、周方向補強層145よりもタイヤ幅方向外側の領域との径差が大きくなり易い。また、上記のような低い偏平率を有するタイヤでは、接地形状が鼓形状となり易い。そこで、かかる重荷重用タイヤを適用対象とすることにより、上記したタイヤの乗心地性能向上効果を顕著に得られる。
Claims (19)
- カーカス層と、前記カーカス層のタイヤ径方向外側に配置されるベルト層と、前記ベルト層のタイヤ径方向外側に配置されるトレッドゴムとを備えると共に、タイヤ周方向に延在する少なくとも3本の周方向主溝と、これらの周方向主溝に区画されて成る複数の陸部とを備える空気入りタイヤであって、
前記ベルト層が、絶対値で10[deg]以上45[deg]以下のベルト角度を有すると共に相互に異符号のベルト角度を有する一対の交差ベルトと、タイヤ周方向に対して±5[deg]の範囲内にあるベルト角度を有する周方向補強層とを積層して成り、
タイヤ赤道面におけるトレッドプロファイルからタイヤ内周面までの距離Gccと、トレッド端からタイヤ内周面までの距離Gshとが、1.10≦Gsh/Gccの関係を有し、且つ、
トレッド端からタイヤ内周面に引いた垂線と前記一対の交差ベルトのうち幅広な交差ベルトとの交点を点Q1とし、前記周方向補強層のタイヤ幅方向外側の端部から前記幅広な交差ベルトに引いた垂線の足を点Q2とするときに、
点Q1からトレッドプロファイルまでの距離Gsと、点Q2からトレッドプロファイルまでの距離Geとが、1.00≦Gs/Geの関係を有することを特徴とする空気入りタイヤ。 - トレッド幅TWと、前記周方向補強層の幅Wsとが、0.70≦Ws/TW≦0.90の関係を有する請求項1に記載の空気入りタイヤ。
- タイヤ子午線方向の断面視にて、タイヤ赤道面に最も近い前記周方向主溝の溝中心線と、前記ベルト層を構成するスチールコード製のベルトプライのうちタイヤ径方向の最も外側にあるベルトプライとの交点を点Q3とするときに、
タイヤ赤道面に最も近い前記周方向主溝の溝深さDcと、点Q3からトレッドプロファイルまでの距離Tcとが、1.30≦Tc/Dc≦1.55の関係を有する請求項1または2に記載の空気入りタイヤ。 - タイヤ子午線方向の断面視にて、前記周方向補強層の端部からトレッドプロファイルに引いた垂線と、前記ベルト層を構成するスチールコード製のベルトプライのうちタイヤ径方向の最も外側にあるベルトプライとの交点を点Q4とするときに、
タイヤ幅方向の最も外側にある前記周方向主溝の溝深さDeと、点Q4からトレッドプロファイルまでの距離Teとが、1.35≦Te/De≦1.60の関係を有する請求項1~3のいずれか一つに記載の空気入りタイヤ。 - 前記幅広な交差ベルトの幅Wb2と、前記カーカス層の幅Wcaとが、0.74≦Wb2/Wca≦0.89の関係を有する請求項1~4のいずれか一つに記載の空気入りタイヤ。
- 前記交差ベルトのベルトコードが、スチールワイヤであり、18[本/50mm]以上28[本/50mm]以下のエンド数を有する請求項1~5のいずれか一つに記載の空気入りタイヤ。
- 前記ベルト層が、絶対値で45[deg]以上70[deg]以下のベルト角度を有する高角度ベルトを有する請求項1~6のいずれか一つに記載の空気入りタイヤ。
- 前記高角度ベルトのベルトコードが、スチールワイヤであり、15[本/50mm]以上25[本/50mm]以下のエンド数を有する請求項7に記載の空気入りタイヤ。
- 前記高角度ベルトの幅Wb1と、前記一対の交差ベルトのうち幅狭な交差ベルトの幅Wb3とが、0.85≦Wb1/Wb3≦1.05の関係を有する請求項7または8に記載の空気入りタイヤ。
- 前記トレッドゴムの硬度が、70以下の範囲にある請求項1~9のいずれか一つに記載の空気入りタイヤ。
- 前記周方向補強層のベルトコードが、スチールワイヤであり、17[本/50mm]以上30[本/50mm]以下のエンド数を有する請求項1~10のいずれか一つに記載の空気入りタイヤ。
- 前記周方向補強層を構成するベルトコードの部材時における引張り荷重100[N]から300[N]時の伸びが1.0[%]以上2.5[%]以下である請求項1~11のいずれか一つに記載の空気入りタイヤ。
- 前記周方向補強層を構成するベルトコードのタイヤ時における引張り荷重500[N]から1000[N]時の伸びが0.5[%]以上2.0[%]以下である請求項1~12のいずれか一つに記載の空気入りタイヤ。
- 前記周方向補強層が、前記一対の交差ベルトのうち幅狭な交差ベルトの左右のエッジ部よりもタイヤ幅方向内側に配置され、且つ、
前記一対の交差ベルトの間であって前記周方向補強層のタイヤ幅方向外側に配置されて前記周方向補強層に隣接する応力緩和ゴムと、
前記一対の交差ベルトの間であって前記応力緩和ゴムのタイヤ幅方向外側かつ前記一対の交差ベルトのエッジ部に対応する位置に配置されて前記応力緩和ゴムに隣接する端部緩和ゴムとを備える請求項1~13のいずれか一つに記載の空気入りタイヤ。 - 前記応力緩和ゴムの100%伸張時モジュラスEinと、前記一対の交差ベルトのコートゴムの100%伸張時モジュラスEcoとが、Ein<Ecoの関係を有する請求項14に記載の空気入りタイヤ。
- 前記応力緩和ゴムの100%伸張時モジュラスEinと、前記一対の交差ベルトのコートゴムの100%伸張時モジュラスEcoとが、0.6≦Ein/Eco≦0.9の関係を有する請求項14または15に記載の空気入りタイヤ。
- 前記応力緩和ゴムの100%伸張時モジュラスEinが、4.0[MPa]≦Ein≦5.5[MPa]の範囲内にある請求項14~16のいずれか一つに記載の空気入りタイヤ。
- 前記周方向補強層が、前記一対の交差ベルトのうち幅狭な交差ベルトの左右のエッジ部よりもタイヤ幅方向内側に配置され、且つ、
前記幅狭な交差ベルトの幅Wb3と前記周方向補強層のエッジ部から前記幅狭な交差ベルトのエッジ部までの距離Sとが、0.03≦S/Wb3の範囲にある請求項1~17のいずれか一つに記載の空気入りタイヤ。 - 偏平率70[%]以下の重荷重用タイヤに適用される請求項1~17のいずれか一つに記載の空気入りタイヤ。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/076251 WO2014057553A1 (ja) | 2012-10-10 | 2012-10-10 | 空気入りタイヤ |
US14/434,357 US10369845B2 (en) | 2012-10-10 | 2012-10-10 | Pneumatic tire |
DE112012006999.4T DE112012006999B9 (de) | 2012-10-10 | 2012-10-10 | Luftreifen |
CN201280076333.1A CN104703815B (zh) | 2012-10-10 | 2012-10-10 | 充气轮胎 |
JP2012547358A JP5966929B2 (ja) | 2012-10-10 | 2012-10-10 | 空気入りタイヤ |
KR1020157011325A KR101730943B1 (ko) | 2012-10-10 | 2012-10-10 | 공기입 타이어 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/076251 WO2014057553A1 (ja) | 2012-10-10 | 2012-10-10 | 空気入りタイヤ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014057553A1 true WO2014057553A1 (ja) | 2014-04-17 |
Family
ID=50477042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076251 WO2014057553A1 (ja) | 2012-10-10 | 2012-10-10 | 空気入りタイヤ |
Country Status (6)
Country | Link |
---|---|
US (1) | US10369845B2 (ja) |
JP (1) | JP5966929B2 (ja) |
KR (1) | KR101730943B1 (ja) |
CN (1) | CN104703815B (ja) |
DE (1) | DE112012006999B9 (ja) |
WO (1) | WO2014057553A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021030869A (ja) * | 2019-08-23 | 2021-03-01 | 横浜ゴム株式会社 | 重荷重用空気入りタイヤ |
US11179971B2 (en) | 2015-10-06 | 2021-11-23 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6393690B2 (ja) * | 2013-10-29 | 2018-09-19 | 株式会社ブリヂストン | タイヤ |
JP6217726B2 (ja) * | 2015-10-06 | 2017-10-25 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP6661949B2 (ja) * | 2015-10-06 | 2020-03-11 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP6728617B2 (ja) * | 2015-10-06 | 2020-07-22 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2018008664A (ja) * | 2016-07-15 | 2018-01-18 | 横浜ゴム株式会社 | 空気入りタイヤ |
DE112018005919T5 (de) * | 2017-11-20 | 2020-07-30 | The Yokohama Rubber Co., Ltd. | Luftreifen |
FR3102096B1 (fr) * | 2019-10-22 | 2021-09-17 | Michelin & Cie | Armature de sommet pour pneumatique de type metropolitain |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0466304A (ja) * | 1990-07-04 | 1992-03-02 | Sumitomo Rubber Ind Ltd | ラジアルタイヤ |
JP2003211914A (ja) * | 2002-01-22 | 2003-07-30 | Sumitomo Rubber Ind Ltd | 重荷重用タイヤ |
JP2006528103A (ja) * | 2003-07-18 | 2006-12-14 | ソシエテ ド テクノロジー ミシュラン | 重車両用のタイヤ |
JP2008001264A (ja) * | 2006-06-23 | 2008-01-10 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP4918948B1 (ja) * | 2011-09-22 | 2012-04-18 | 横浜ゴム株式会社 | 空気入りタイヤ |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS582758B2 (ja) | 1972-06-13 | 1983-01-18 | アイダエンジニアリング カブシキガイシヤ | フンマツセイケイプレス ニオケル ダイフドウボウシソウチ |
JPS52611B2 (ja) | 1972-12-22 | 1977-01-08 | ||
JPS5237844B2 (ja) * | 1974-04-23 | 1977-09-26 | ||
JP3020184B2 (ja) * | 1991-07-08 | 2000-03-15 | 横浜ゴム株式会社 | 乗用車用空気入りラジアルタイヤ |
FR2770458B1 (fr) | 1997-11-05 | 1999-12-03 | Michelin & Cie | Armature de sommet pour pneumatique "poids-lours" |
US6703126B1 (en) * | 1999-10-25 | 2004-03-09 | Sumitomo Rubber Industries, Ltd. | Metallic cord and pneumatic tire employing the metallic cord |
WO2003051651A1 (fr) * | 2001-12-14 | 2003-06-26 | Sumitomo Rubber Industries, Ltd. | Pneu poids lourd |
EP1459909B1 (en) | 2001-12-21 | 2011-05-18 | Sumitomo Rubber Industries, Ltd. | Heavy-duty tire |
JP2003221914A (ja) * | 2003-01-14 | 2003-08-08 | Maizuru:Kk | 金属製床束 |
FR2857620B1 (fr) | 2003-07-18 | 2005-08-19 | Michelin Soc Tech | Pneumatique pour vehicules lourds |
BRPI0412723B1 (pt) | 2003-07-18 | 2013-12-24 | Michelin Rech Tech | Pneumático com armação de carcaça radial |
JP4342874B2 (ja) * | 2003-08-20 | 2009-10-14 | 住友ゴム工業株式会社 | 空気入りタイヤ |
DE602006013825D1 (de) * | 2005-06-23 | 2010-06-02 | Yokohama Rubber Co Ltd | Flacher hochleistungs-radialluftreifen und herstellungsverfahren dafür |
JP4978351B2 (ja) * | 2007-07-10 | 2012-07-18 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP5410038B2 (ja) * | 2007-12-17 | 2014-02-05 | 株式会社ブリヂストン | 空気入りタイヤ |
JP4670880B2 (ja) * | 2008-03-11 | 2011-04-13 | 横浜ゴム株式会社 | 重荷重用空気入りタイヤ |
WO2013021499A1 (ja) * | 2011-08-10 | 2013-02-14 | 横浜ゴム株式会社 | 空気入りタイヤ |
WO2013042256A1 (ja) | 2011-09-22 | 2013-03-28 | 横浜ゴム株式会社 | 空気入りタイヤ |
CN104321207B (zh) | 2012-07-13 | 2016-02-10 | 横滨橡胶株式会社 | 充气轮胎 |
-
2012
- 2012-10-10 WO PCT/JP2012/076251 patent/WO2014057553A1/ja active Application Filing
- 2012-10-10 DE DE112012006999.4T patent/DE112012006999B9/de active Active
- 2012-10-10 US US14/434,357 patent/US10369845B2/en active Active
- 2012-10-10 CN CN201280076333.1A patent/CN104703815B/zh active Active
- 2012-10-10 KR KR1020157011325A patent/KR101730943B1/ko active IP Right Grant
- 2012-10-10 JP JP2012547358A patent/JP5966929B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0466304A (ja) * | 1990-07-04 | 1992-03-02 | Sumitomo Rubber Ind Ltd | ラジアルタイヤ |
JP2003211914A (ja) * | 2002-01-22 | 2003-07-30 | Sumitomo Rubber Ind Ltd | 重荷重用タイヤ |
JP2006528103A (ja) * | 2003-07-18 | 2006-12-14 | ソシエテ ド テクノロジー ミシュラン | 重車両用のタイヤ |
JP2008001264A (ja) * | 2006-06-23 | 2008-01-10 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP4918948B1 (ja) * | 2011-09-22 | 2012-04-18 | 横浜ゴム株式会社 | 空気入りタイヤ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11179971B2 (en) | 2015-10-06 | 2021-11-23 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
JP2021030869A (ja) * | 2019-08-23 | 2021-03-01 | 横浜ゴム株式会社 | 重荷重用空気入りタイヤ |
Also Published As
Publication number | Publication date |
---|---|
KR101730943B1 (ko) | 2017-05-11 |
DE112012006999B9 (de) | 2022-08-04 |
JP5966929B2 (ja) | 2016-08-10 |
JPWO2014057553A1 (ja) | 2016-08-25 |
DE112012006999T5 (de) | 2015-06-18 |
CN104703815B (zh) | 2016-12-28 |
US20150258856A1 (en) | 2015-09-17 |
CN104703815A (zh) | 2015-06-10 |
KR20150065806A (ko) | 2015-06-15 |
US10369845B2 (en) | 2019-08-06 |
DE112012006999B4 (de) | 2022-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9604503B2 (en) | Pneumatic tire | |
JP5974895B2 (ja) | 空気入りタイヤ | |
JP5966929B2 (ja) | 空気入りタイヤ | |
JP5182455B1 (ja) | 空気入りタイヤ | |
JP5974896B2 (ja) | 空気入りタイヤ | |
JP5182454B1 (ja) | 空気入りタイヤ | |
WO2014103068A1 (ja) | 空気入りタイヤ | |
WO2014010091A1 (ja) | 空気入りタイヤ | |
WO2014103069A1 (ja) | 空気入りタイヤ | |
JP6015450B2 (ja) | 空気入りタイヤ | |
WO2014103064A1 (ja) | 空気入りタイヤ | |
JP6079237B2 (ja) | 空気入りタイヤ | |
JP6107649B2 (ja) | 空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012547358 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12886384 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14434357 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120069994 Country of ref document: DE Ref document number: 112012006999 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157011325 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12886384 Country of ref document: EP Kind code of ref document: A1 |