WO2014054133A1 - 液晶表示装置 - Google Patents
液晶表示装置 Download PDFInfo
- Publication number
- WO2014054133A1 WO2014054133A1 PCT/JP2012/075660 JP2012075660W WO2014054133A1 WO 2014054133 A1 WO2014054133 A1 WO 2014054133A1 JP 2012075660 W JP2012075660 W JP 2012075660W WO 2014054133 A1 WO2014054133 A1 WO 2014054133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- group
- carbon atoms
- crystal display
- display device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3003—Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/42—Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
- C09K19/44—Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/223—Absorbing filters containing organic substances, e.g. dyes, inks or pigments
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133512—Light shielding layers, e.g. black matrix
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/1393—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/12—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
- C09K2019/121—Compounds containing phenylene-1,4-diyl (-Ph-)
- C09K2019/122—Ph-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/12—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
- C09K2019/121—Compounds containing phenylene-1,4-diyl (-Ph-)
- C09K2019/123—Ph-Ph-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3003—Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
- C09K2019/3004—Cy-Cy
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3003—Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
- C09K2019/3009—Cy-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3003—Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
- C09K2019/301—Cy-Cy-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3003—Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
- C09K2019/3016—Cy-Ph-Ph
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3003—Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
- C09K2019/3027—Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K2019/523—Organic solid particles
Definitions
- the present invention relates to a liquid crystal display device.
- Liquid crystal display devices are used in various electric appliances for home use, measuring instruments, automotive panels, word processors, electronic notebooks, printers, computers, televisions, etc., including clocks and calculators.
- Typical liquid crystal display methods include TN (twisted nematic), STN (super twisted nematic), DS (dynamic light scattering), GH (guest / host), and IPS (in-plane switching).
- Type OCB (optical compensation birefringence) type, ECB (voltage controlled birefringence) type, VA (vertical alignment) type, CSH (color super homeotropic) type, FLC (ferroelectric liquid crystal), etc.
- As a driving method multiplex driving is generally used instead of conventional static driving, and the active matrix (AM) method driven by a TFT (thin film transistor), TFD (thin film diode) or the like has become mainstream recently. ing.
- TFT thin film transistor
- TFD thin film diode
- a general color liquid crystal display device has a transparent electrode layer (a common electrode) between one alignment film of two substrates (1) each having an alignment film (4) and the substrate. 3a) and a color filter layer (2), a pixel electrode layer (3b) is provided between the other alignment film and the substrate, these substrates are arranged so that the alignment films face each other, and a liquid crystal layer ( 5) is sandwiched.
- the color filter layer is composed of a color filter composed of a black matrix, a red colored layer (R), a green colored layer (G), a blue colored layer (B), and, if necessary, a yellow colored layer (Y).
- the liquid crystal material constituting the liquid crystal layer has been subjected to a high degree of management because impurities have a great influence on the electrical characteristics of the display device if the impurities remain in the material.
- the alignment film directly affects the liquid crystal layer and the impurities remaining in the alignment film move to the liquid crystal layer, thereby affecting the electrical characteristics of the liquid crystal layer. The characteristics of the liquid crystal display device due to the impurities in the alignment film material are being studied.
- the material such as the organic pigment used for the color filter layer is also assumed to have an influence on the liquid crystal layer due to impurities contained in the same manner as the alignment film material.
- an alignment film and a transparent electrode are interposed between the color filter layer and the liquid crystal layer, it has been considered that the direct influence on the liquid crystal layer is significantly less than that of the alignment film material.
- the alignment film is usually only 0.1 ⁇ m or less in thickness, and the common electrode used on the color filter layer side for the transparent electrode is usually 0.5 ⁇ m or less even if the film thickness is increased to increase the conductivity. .
- the color filter layer and the liquid crystal layer are placed in a completely isolated environment, and the color filter layer is formed by impurities contained in the color filter layer through the alignment film and the transparent electrode.
- display defects such as white spots due to a decrease in voltage holding ratio (VHR), an increase in ion density (ID), uneven alignment, and burn-in may occur.
- VHR voltage holding ratio
- ID ion density
- burn-in may occur.
- the elution of impurities into the liquid crystal is controlled by using pigments whose ratio of the extract of ethyl formate is not more than a specific value.
- Patent Document 1 A method (Patent Document 1) and a method (Patent Document 2) for controlling the elution of impurities into a liquid crystal by specifying a pigment in a blue colored layer have been studied. However, these methods are not significantly different from simply reducing impurities in the pigment, and are insufficient as an improvement to solve display defects even in the current state of progress in pigment purification technology. Met.
- the difficulty of dissolving the organic impurities in the liquid crystal layer is expressed by the hydrophobic parameter of the liquid crystal molecules contained in the liquid crystal layer. Because of the correlation between the parameter value and the hydrophobic parameter and the —OCF 3 group at the end of the liquid crystal molecule, a liquid crystal compound having —OCF 3 group at the end of the liquid crystal molecule is contained in a certain proportion or more.
- Patent Document 3 A method for producing a liquid crystal composition
- An object of the present invention is to provide a liquid crystal display device that solves the problem of display defects such as unevenness and burn-in.
- a liquid crystal display device using a color filter using a pigment having a specific structure prevents a decrease in the voltage holding ratio (VHR) of the liquid crystal layer and an increase in ion density (ID), white spots, alignment unevenness, burn-in, etc.
- VHR voltage holding ratio
- ID ion density
- the present invention A color filter composed of a first substrate, a second substrate, a liquid crystal composition layer sandwiched between the first substrate and the second substrate, a black matrix and at least an RGB three-color pixel portion, A pixel electrode and a common electrode;
- the liquid crystal composition layer has the general formula (I)
- R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
- 8 represents an alkenyloxy group
- A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group.
- R 3 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms
- R 4 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms. 5 to 20% of a compound having the general formula (II-2)
- R 5 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms
- R 6 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms
- B represents a fluorine-substituted group
- a liquid crystal composition containing 25 to 45% of a compound represented by the following formula: 1,4-phenylene group or trans-1,4-cyclohexylene group
- the RGB three-color pixel portion includes, as a color material, Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn in the G pixel portion.
- a halogenated metal phthalocyanine pigment having a metal selected from the group consisting of Pb as a central metal, and when the central metal is trivalent, the central metal is either a halogen atom, a hydroxyl group or a sulfonic acid group.
- the central metal is a tetravalent metal, the central metal has one oxygen atom or two halogen atoms which may be the same or different.
- a liquid crystal display device comprising a halogenated metal phthalocyanine pigment to which either a hydroxyl group or a sulfonic acid group is bonded is provided.
- the liquid crystal display device of the present invention uses a color filter using a specific liquid crystal composition and a specific pigment to prevent a decrease in voltage holding ratio (VHR) and an increase in ion density (ID) of the liquid crystal layer.
- VHR voltage holding ratio
- ID ion density
- Substrate 2 Color filter layer 2a Color filter layer 3a containing a specific pigment Transparent electrode layer (common electrode) 3b Pixel electrode layer 4 Alignment film 5 Liquid crystal layer 5a Liquid crystal layer containing a specific liquid crystal composition
- FIG. 1 An example of the liquid crystal display device of the present invention is shown in FIG.
- a transparent electrode layer (3a) serving as a common electrode and a specific pigment are provided between one alignment film of the first substrate and the second substrate (1) having the alignment film (4) and the second substrate (1).
- a color filter layer (2) containing, and a pixel electrode layer (3b) between the other alignment film and the substrate, and these substrates are arranged so that the alignment films face each other, and a specific liquid crystal is interposed therebetween.
- the liquid crystal layer (5) containing the composition is sandwiched.
- the two substrates in the display device are bonded to each other by a sealing material and a sealing material arranged in the peripheral region, and in many cases, formed by a granular spacer or a photolithography method in order to maintain a distance between the substrates.
- Spacer pillars made of the prepared resin are arranged.
- liquid crystal layer in the liquid crystal display device of the present invention has the general formula (I)
- R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
- 8 represents an alkenyloxy group
- A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group.
- R 3 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms
- R 4 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms. 5 to 20% of a compound having the general formula (II-2)
- R 5 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms
- R 6 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms
- B represents a fluorine-substituted group It represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group, which may be used as a liquid crystal composition.
- the liquid crystal layer in the liquid crystal display device of the present invention contains 30 to 50% of the compound represented by the general formula (I), preferably 35 to 45%, more preferably 38 to 42%. .
- R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a carbon atom.
- R 1 and R 2 may be the same or different, but are preferably different.
- R 1 and R 2 are both alkyl groups, the number of carbon atoms is 1, 3 or 3 having different numbers. Or an alkyl group of 5 is particularly preferred.
- the content of the compound represented by the general formula (I) in which at least one substituent of R 1 and R 2 is an alkyl group having 3 to 5 carbon atoms is in the compound represented by the general formula (I) It is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more.
- the content of the compound represented by the general formula (I) in which at least one substituent of R 1 and R 2 is an alkyl group having 3 carbon atoms is in the compound represented by the general formula (I) It is preferably 50% or more, more preferably 70% or more, further preferably 80% or more, and most preferably 100%.
- A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and preferably represents a trans-1,4-cyclohexylene group.
- the content of the compound represented by the general formula (I) in which A represents a trans-1,4-cyclohexylene group is preferably 50% or more of the compound represented by the general formula (I). 70% or more is more preferable, and 80% or more is more preferable.
- the compound represented by the general formula (I) is preferably a compound represented by the following general formula (Ia) to general formula (Ik).
- R 1 and R 2 each independently represents an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, and R 1 and R 2 in the general formula (I)) Similar embodiments are preferred.
- general formula (Ia) to general formula (Ik) general formula (Ia), general formula (Ib) and general formula (Ig) are preferable, general formula (Ia) and general formula (Ig) are more preferable, and general formula (Ia) is particularly preferable, but general formula (Ib) is also preferable when priority is given to response speed, and general formula (Ib), general formula (Ie), and general formula (If ) And general formula (Ih) are preferable, and dialkenyl compounds of general formula (Ie) and general formula (If) are particularly preferable when the response speed is important.
- the content of the compound represented by the general formula (Ia) and the general formula (Ig) is 50% or more in the compound represented by the general formula (I), and 70% or more. Is more preferably 80% or more, and most preferably 100%. Further, the content of the compound represented by the general formula (Ia) is preferably 50% or more in the compound represented by the general formula (I), more preferably 70% or more, and 80% or more. More preferably.
- the liquid crystal layer in the liquid crystal display device of the present invention contains 5 to 20% of the compound represented by the general formula (II-1), preferably 10 to 15%, and preferably 12 to 14%. More preferred.
- R 3 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyl having 2 to 8 carbon atoms.
- R 4 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms, It preferably represents an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms. It is more preferable to represent an alkyl group having 3 or an alkoxy group having 2 carbon atoms, and it is particularly preferable to represent an alkoxy group having 2 carbon atoms.
- the compound represented by the general formula (II-1) is preferably a compound represented by the following general formula (II-1a) or (II-1b).
- R 3 represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
- R 4a represents an alkyl group having 1 to 5 carbon atoms.
- R 3 is preferably the same embodiment as in general formula (II-1).
- R 4a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably an alkyl group having 2 carbon atoms.
- R 3 is preferably the same embodiment as in general formula (II-1).
- R 4a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 3 carbon atoms, and particularly preferably an alkyl group having 3 carbon atoms.
- the liquid crystal layer in the liquid crystal display device of the present invention contains 25 to 45% of the compound represented by the general formula (II-2), preferably 30 to 40%, and preferably 31 to 36%. More preferred.
- R 5 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyl having 2 to 8 carbon atoms.
- R 6 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms, It preferably represents an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms. It is more preferable to represent an alkyl group having 3 or an alkoxy group having 2 carbon atoms, and it is particularly preferable to represent an alkoxy group having 2 carbon atoms.
- B represents a 1,4-phenylene group or trans-1,4-cyclohexylene group, which may be fluorine-substituted, and an unsubstituted 1,4-phenylene group or trans-1,4-cyclohexylene group A trans-1,4-cyclohexylene group is preferable.
- the compound represented by the general formula (II-2) is preferably a compound represented by the following general formula (II-2a) to general formula (II-2d).
- R 5 represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
- R 6a represents an alkyl group having 1 to 5 carbon atoms.
- R 5 is preferably the same embodiment as in general formula (II-2).
- R 6a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably an alkyl group having 2 carbon atoms.
- R 5 is preferably the same embodiment as in general formula (II-2).
- R 6a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 3 carbon atoms, and particularly preferably an alkyl group having 3 carbon atoms.
- the general formula (II-1a) is preferable in order to increase the absolute value of the dielectric anisotropy.
- the general formula (II-2) it is preferable that at least one compound each containing B represents a 1,4-phenylene group and B represents a trans-1,4-cyclohexylene group are preferably contained.
- the liquid crystal layer in the liquid crystal display device of the present invention further has the general formula (III)
- R 7 and R 8 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 represents an alkenyloxy group
- D, E, F and G each independently represent a fluorine-substituted 1,4-phenylene group or trans-1,4-cyclohexylene
- Z 2 represents A single bond, —OCH 2 —, —OCO—, —CH 2 O— or —COO—, wherein n represents 0 or 1, provided that when n represents 0, Z 2 represents —OCH 2 —, — OCO—, —CH 2 O— or —COO—, or D, E and G each represents a 1,4-phenylene group which may be fluorine-substituted.
- the compound represented by the general formula (III) is preferably contained in an amount of 5 to 20%, preferably 8 to 15%, more preferably 10 to 1
- R 7 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms.
- D represents trans-1,4-cyclohexylene
- D preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and an alkyl group or carbon having 2 to 5 carbon atoms
- It preferably represents an alkenyl group having 2 to 4 atoms, more preferably represents an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 carbon atoms, and represents an alkyl group having 3 carbon atoms.
- D represents a 1,4-phenylene group optionally substituted with fluorine
- D preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 4 or 5 carbon atoms, More preferably, it represents a 5 alkyl group or an alkenyl group having 4 carbon atoms, and more preferably represents an alkyl group having 2 to 4 carbon atoms.
- R 8 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms
- G represents trans-1,4-cyclohexylene
- it preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and an alkyl group or carbon having 2 to 5 carbon atoms
- It preferably represents an alkenyl group having 2 to 4 atoms, more preferably represents an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 carbon atoms, and represents an alkyl group having 3 carbon atoms.
- G represents a 1,4-phenylene group optionally substituted with fluorine
- it preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 4 or 5 carbon atoms, More preferably, it represents a 5 alkyl group or an alkenyl group having 4 carbon atoms, and more preferably represents an alkyl group having 2 to 4 carbon atoms.
- R 7 and R 8 represent an alkenyl group and the bonded D or G represents a 1,4-phenylene group which may be fluorine-substituted
- the alkenyl group having 4 or 5 carbon atoms includes the following A structure is preferred.
- D, E, F and G each independently represents a fluorine-substituted 1,4-phenylene group or trans-1,4-cyclohexylene, but a 2-fluoro-1,4-phenylene group 2,3-difluoro-1,4-phenylene group, 1,4-phenylene group or trans-1,4-cyclohexylene, preferably 2-fluoro-1,4-phenylene group or 2,3- A difluoro-1,4-phenylene group and a 1,4-phenylene group are more preferable, and a 2,3-difluoro-1,4-phenylene group and a 1,4-phenylene group are particularly preferable.
- Z 2 is a single bond, -OCH 2 -, - OCO - , - CH 2 O- or represents a -COO-, single bond, it is preferable to represent a -CH 2 O-or -COO-, a single bond is more preferable.
- n represents 0 or 1, but preferably represents 0 when Z 2 represents a substituent other than a single bond.
- the compound represented by the general formula (III) is preferably a compound represented by the following general formula (III-1a) to general formula (III-1h) when n represents 0.
- R 7 and R 8 each independently represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms
- R 7 and R 8 each independently represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms
- An embodiment similar to R 7 and R 8 in (III) is preferred.
- the compound represented by the general formula (III) is preferably a compound represented by the following general formula (III-2a) to general formula (III-2l) when n represents 1.
- R 7 and R 8 each independently represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms
- R 7 and R 8 each independently represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms
- An embodiment similar to R 7 and R 8 in (III) is preferred.
- the compounds represented by general formula (II-1) and general formula (II-2) are both compounds having a negative dielectric anisotropy and a relatively large absolute value.
- the amount is preferably 30 to 65%, more preferably 40 to 55%, and particularly preferably 43 to 50%.
- the compound represented by the general formula (III) includes both a positive compound and a negative compound with respect to the dielectric anisotropy, but the dielectric anisotropy is negative and the absolute value thereof is 0.3.
- the total content of the compounds represented by formulas (II-1), (II-2) and (III) is preferably 35 to 70%, preferably 45 to 65%. Is more preferable, and 50 to 60% is particularly preferable.
- the total content of the compounds represented by the general formula (I), the general formula (II-1), the general formula (II-2) and the general formula (III) is 80 to 100% with respect to the entire composition. Preferably, 90 to 100% is more preferable, and 95 to 100% is particularly preferable.
- the liquid crystal layer in the liquid crystal display device of the present invention can use a nematic phase-isotropic liquid phase transition temperature (T ni ) in a wide range, but is preferably 60 to 120 ° C., 70 To 100 ° C is more preferable, and 70 to 85 ° C is particularly preferable.
- the dielectric anisotropy is preferably ⁇ 2.0 to ⁇ 6.0 at 25 ° C., more preferably ⁇ 2.5 to ⁇ 5.0, and ⁇ 2.5 to ⁇ 3. 5 is particularly preferred.
- the refractive index anisotropy is preferably 0.08 to 0.13 at 25 ° C., more preferably 0.09 to 0.12.
- the rotational viscosity ( ⁇ 1) is preferably 150 or less, more preferably 130 or less, and particularly preferably 120 or less.
- Z as a function of rotational viscosity and refractive index anisotropy shows a specific value.
- Z is preferably 13000 or less, more preferably 12000 or less, and particularly preferably 11000 or less.
- the liquid crystal layer in the liquid crystal display device of the present invention is required to have a specific resistance of 10 12 ( ⁇ ⁇ m) or more, preferably 10 13 ( ⁇ ⁇ m), when used for an active matrix display element. 10 14 ( ⁇ ⁇ m) or more is more preferable.
- the liquid crystal layer in the liquid crystal display device of the present invention may contain a normal nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal, an antioxidant, an ultraviolet absorber, a polymerizable monomer, etc., in addition to the above-described compound, depending on the application. good.
- X 1 and X 2 each independently represent a hydrogen atom or a methyl group
- Sp 1 and Sp 2 are each independently a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s — (wherein s represents an integer of 2 to 7, Represents an aromatic ring).
- Z 1 is —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 —, —OCO—CH 2 —, —CH 2 —COO—, —CH 2 —OCO—, —CY 1 ⁇ CY 2 — (Wherein Y 1 and Y 2 each independently represents a fluorine atom or a hydrogen atom), —C ⁇ C— or a single bond; C represents a 1,4-phenylene group,
- X 1 and X 2 are each preferably a diacrylate derivative that represents a hydrogen atom, or a dimethacrylate derivative that has a methyl group, and a compound in which one represents a hydrogen atom and the other represents a methyl group.
- diacrylate derivatives are the fastest, dimethacrylate derivatives are slow, asymmetric compounds are in the middle, and a preferred embodiment can be used depending on the application.
- a dimethacrylate derivative is particularly preferable.
- Sp 1 and Sp 2 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s —, but at least one of them is a single bond in a PSA display element.
- a compound in which both represent a single bond or one in which one represents a single bond and the other represents an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s — is preferable.
- 1 to 4 alkyl groups are preferable, and s is preferably 1 to 4.
- Z 1 is —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond
- —COO—, —OCO— or a single bond is more preferred, and a single bond is particularly preferred.
- C represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond in which any hydrogen atom may be substituted with a fluorine atom, and a 1,4-phenylene group or a single bond is preferred.
- Z 1 is preferably a linking group other than a single bond.
- Z 1 is preferably a single bond.
- the ring structure between Sp 1 and Sp 2 is specifically preferably the structure described below.
- V when C represents a single bond and the ring structure is formed of two rings, it is preferable to represent the following formulas (Va-1) to (Va-5): It is more preferable to represent the formula (Va-3) from Va-1), and it is particularly preferable to represent the formula (Va-1).
- both ends shall be bonded to Sp 1 or Sp 2.
- the polymerizable compounds containing these skeletons are optimal for PSA-type liquid crystal display elements because of the alignment regulating power after polymerization, and a good alignment state can be obtained, so that display unevenness is suppressed or does not occur at all.
- general formula (V-1) to general formula (V-4) are particularly preferable, and general formula (V-2) is most preferable.
- Sp 2 represents an alkylene group having 2 to 5 carbon atoms.
- the polymerization proceeds even in the absence of a polymerization initiator, but a polymerization initiator may be contained in order to accelerate the polymerization.
- the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.
- a stabilizer may be added in order to improve storage stability.
- Examples of the stabilizer that can be used include hydroquinones, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, ⁇ -naphthylamines, ⁇ -naphthols, nitroso compounds, and the like. It is done.
- the liquid crystal layer containing a polymerizable monomer is useful for a liquid crystal display device, particularly useful for a liquid crystal display device for driving an active matrix, and for a liquid crystal display device for a PSA mode, PSVA mode, VA mode, IPS mode or ECB mode. Can be used.
- the liquid crystal layer containing a polymerizable monomer is a liquid crystal that provides liquid crystal alignment ability by polymerizing the polymerizable monomer contained therein by ultraviolet irradiation, and controls the amount of light transmitted using the birefringence of the liquid crystal composition.
- Used for display elements As liquid crystal display elements, AM-LCD (active matrix liquid crystal display element), TN (nematic liquid crystal display element), STN-LCD (super twisted nematic liquid crystal display element), OCB-LCD and IPS-LCD (in-plane switching liquid crystal display element)
- AM-LCD active matrix liquid crystal display element
- TN nematic liquid crystal display element
- STN-LCD super twisted nematic liquid crystal display element
- OCB-LCD OCB-LCD
- IPS-LCD in-plane switching liquid crystal display element
- the color filter according to the present invention includes a black matrix and at least an RGB three-color pixel unit.
- the RGB three-color pixel unit includes, as a color material, Al, Si, Sc, Ti, V, Mg, A metal halide phthalocyanine pigment having, as a central metal, a metal selected from the group consisting of Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn, and Pb.
- the central metal is bonded to one halogen atom, hydroxyl group or sulfonic acid group, or is oxo or thio-bridged, and when the central metal is a tetravalent metal, The central metal has one oxygen atom or two halogen atoms which may be the same or different, a hydroxyl group or a sulfonic acid group. Containing Nin pigment.
- the RGB three-color pixel portion has a diketopyrrolopyrrole pigment and / or an anionic red organic dye in the R pixel portion, and an ⁇ -type copper phthalocyanine pigment and / or a cationic blue organic in the B pixel portion. It preferably contains a dye.
- Examples of the metal halide phthalocyanine pigments in the G pixel portion include the following two groups of metal halide phthalocyanine pigments.
- (First group) It has a metal selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn and Pb as a central metal, and phthalocyanine
- a metal selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn and Pb as a central metal
- phthalocyanine A halogenated metal phthalocyanine pigment in which 8 to 16 halogen atoms per molecule are bonded to the benzene ring of the phthalocyanine molecule.
- the central metal When the central metal is trivalent, the central metal contains one halogen atom, hydroxyl group Or when a sulfonic acid group (—SO 3 H) is bonded and the central metal is a tetravalent metal, the central metal has one oxygen atom or two halogens which may be the same or different.
- a halogenated metal phthalocyanine pigment to which any one of an atom, a hydroxyl group and a sulfonic acid group is bonded.
- Halogen having molecules as structural units and each central metal of these structural units bonded through a divalent atomic group selected from the group consisting of oxygen atom, sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —)
- a pigment comprising a metal halide phthalocyanine dimer.
- all the halogen atoms bonded to the benzene ring may be the same or different. Different halogen atoms may be bonded to one benzene ring.
- the halogenated metal phthalocyanine pigment used in the present invention in which 9 to 15 bromine atoms out of 8 to 16 halogen atoms per phthalocyanine molecule are bonded to the benzene ring of the phthalocyanine molecule is yellowish. It exhibits a bright green color and is optimal for use in the green pixel portion of the color filter.
- the metal halide phthalocyanine pigment used in the present invention is insoluble or hardly soluble in water or an organic solvent.
- the halogenated metal phthalocyanine pigment used in the present invention includes both a pigment that has not been subjected to a finishing treatment described later (also referred to as a crude pigment) and a pigment that has been subjected to a finishing treatment.
- halogenated metal phthalocyanine pigments belonging to the first group and the second group can be represented by the following general formula (PIG-1).
- the halogenated metal phthalocyanine pigment belonging to the first group is as follows in the general formula (PIG-1).
- X 1 to X 16 each represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom.
- the four X atoms bonded to one benzene ring may be the same or different.
- 8 to 16 are chlorine, bromine or iodine atoms.
- M represents a central metal.
- a pigment having a total of less than 8 chlorine atoms, bromine atoms and iodine atoms out of 16 X 1 to X 16 is blue.
- Y bonded to the central metal M is a monovalent atomic group selected from the group consisting of a halogen atom of any one of fluorine, chlorine, bromine or iodine, an oxygen atom, a hydroxyl group and a sulfonic acid group, and m is bonded to the central metal M. Represents the number of Y to be represented, and is an integer of 0-2.
- m The value of m is determined by the valence of the central metal M.
- One of the groups is attached to the central metal.
- the central metal M is divalent like Mg, Fe, Co, Ni, Zn, Zr, Sn, and Pb, Y does not exist.
- the halogenated metal phthalocyanine pigment belonging to the second group is as follows in the general formula (PIG-1).
- X 1 to X 16 are as defined above, and the central metal M represents a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In, m represents 1. Y represents the following atomic group.
- the central metal M has the same meaning as defined above, for the X 17 ⁇ X 32, the general formula (PIG-1) defined the same meaning as X 1 ⁇ X 16 described above in is there.
- A represents a divalent atomic group selected from the group consisting of an oxygen atom, a sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —).
- M in the general formula (PIG-1) and M in the atomic group Y are bonded via the divalent atomic group A.
- the metal halide phthalocyanine pigment belonging to the second group is a metal halide phthalocyanine dimer in which two molecules of metal halide phthalocyanine are structural units and these are bonded via the divalent atomic group.
- halogenated metal phthalocyanine pigment represented by the general formula (PIG-1) include the following (1) to (4).
- Mainly divalent metals selected from the group consisting of Mg, Fe, Co, Ni, Zn, Zr, Sn and Pb, such as halogenated tin phthalocyanine pigments, halogenated nickel phthalocyanine pigments, and halogenated zinc phthalocyanine pigments.
- a halogenated metal phthalocyanine pigment which is a metal and has 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule.
- chlorinated brominated zinc phthalocyanine pigments include C.I. I. Pigment Green 58, particularly preferred.
- a halogenated metal phthalocyanine pigment having any of the groups and having 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule.
- the center metal has a tetravalent metal selected from the group consisting of Si, Ti, V, Ge, Zr and Sn, such as halogenated oxytitanium phthalocyanine and halogenated oxyvanadium phthalocyanine.
- the valence metal is the central metal
- the halogenated metal phthalocyanine is composed of two molecules of 8-16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule.
- Each central metal of these structural units is an oxygen atom.
- a pigment comprising a metal halide phthalocyanine dimer bonded through a divalent atomic group selected from the group consisting of sulfur atom, sulfinyl and sulfonyl.
- the R pixel portion preferably contains a diketopyrrolopyrrole pigment and / or an anionic red organic dye.
- a diketopyrrolopyrrole pigment include C.I. I. Pigment Red 254, 255, 264, 272, Orange 71, 73, more preferably Red 254, 255, 264, 272, C.I. I. Pigment Red 254 is particularly preferred.
- the anionic red organic dye include C.I. I. Solvent Red 124, Acid Red 52, and 289 are preferable. I. Solvent Red 124 is particularly preferred.
- the B pixel portion preferably contains an ⁇ -type copper phthalocyanine pigment and / or a cationic blue organic dye.
- the ⁇ -type copper phthalocyanine pigment is C.I. I. Pigment Blue 15: 6.
- Specific examples of the cationic blue organic dye include C.I. I. Solvent Blue 2, 3, 4, 5, 6, 7, 23, 43, 72, 124, C.I. I. Basic Blue 7 and 26 are preferred, and C.I. I. Solvent Blue 7 and Basic Blue 7 are more preferable, and C.I. I. Solvent Blue 7 is particularly preferred.
- the RGB three-color pixel portion is a color material that contains C.I. I. Solvent Red 124 is selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn, and Pb in the G pixel portion.
- the RGB three-color pixel portion has a C.I. I. Pigment Red 254 is selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn, and Pb in the G pixel portion.
- a metal halide phthalocyanine pigment bonded with C.I. I. It is also preferable to contain Pigment Blue 15: 6.
- the RGB three-color pixel portion further includes C.I. I. Pigment Red 177, 242, 166, 167, 179, C.I. I. Pigment Orange 38, 71, C.I. I. Pigment Yellow 150, 215, 185, 138, 139, C.I. I. Solvent Red 89, C.I. I. Solvent Orange 56, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, 33, 162.
- the RGB three-color pixel portion further includes C.I. I. Pigment Yellow 150, 215, 185, 138, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, and 33.
- the RGB three-color pixel portion is further used as a color material in the B pixel portion.
- the color filter is composed of a black matrix, an RGB three-color pixel portion, and a Y pixel portion.
- the chromaticity x and chromaticity y in the XYZ color system under the C light source of each pixel portion prevent a decrease in voltage holding ratio (VHR) and an increase in ion density (ID) of the liquid crystal layer. From the viewpoint of suppressing the occurrence of display defect problems such as white spots, uneven alignment, and baking, the following are preferable.
- the chromaticity x in the XYZ color system under the C light source of the R pixel portion is preferably 0.58 to 0.69, more preferably 0.62 to 0.68, and the chromaticity y is 0. .30 to 0.36 is preferable, 0.31 to 0.35 is more preferable, chromaticity x is 0.58 to 0.69, and chromaticity y is 0.30 to 0. More preferably, the chromaticity x is 0.62 to 0.68, and the chromaticity y is more preferably 0.31 to 0.35.
- the chromaticity x in the XYZ color system under the C light source of the G pixel portion is preferably 0.19 to 0.32, more preferably 0.20 to 0.26, and the chromaticity y is 0. .60 to 0.76 is preferable, 0.68 to 0.74 is more preferable, chromaticity x is 0.19 to 0.32, and chromaticity y is 0.60 to 0. More preferably, the chromaticity x is 0.20 to 0.26, and the chromaticity y is 0.68 to 0.74.
- the chromaticity x in the XYZ color system under the C light source of the B pixel portion is preferably 0.11 to 0.16, more preferably 0.12 to 0.15, and the chromaticity y is 0. 0.04 to 0.15 is preferable, 0.05 to 0.10 is more preferable, chromaticity x is 0.11 to 0.16, and chromaticity y is 0.04 to 0. More preferably, the chromaticity x is 0.12 to 0.15, and the chromaticity y is 0.05 to 0.10.
- the chromaticity x in the XYZ color system under the C light source of the Y pixel portion is preferably 0.46 to 0.50, more preferably 0.47 to 0.48, and the chromaticity y is 0. .48 to 0.53 is preferable, 0.50 to 0.52 is more preferable, chromaticity x is 0.46 to 0.50, and chromaticity y is 0.48 to 0. More preferably, the chromaticity x is 0.47 to 0.48, and the chromaticity y is 0.50 to 0.52.
- the XYZ color system refers to a color system that was approved as a standard color system by the CIE (International Lighting Commission) in 1931.
- the chromaticity in each of the pixel portions can be adjusted by changing the type of dyes and pigments used and their mixing ratio. For example, in the case of the R pixel, a yellow dye and / or orange pigment is used as the red dye / pigment, in the case of the G pixel, the yellow dye / pigment is used in the green dye / pigment, and in the case of the B pixel, the purple dye / pigment is appropriately added It is possible to adjust by adding. It can also be adjusted by appropriately adjusting the particle size of the pigment.
- the color filter can form a color filter pixel portion by a conventionally known method.
- a typical method for forming the pixel portion is a photolithography method, which applies and heats a photocurable composition to be described later on the surface of the transparent substrate for the color filter provided with the black matrix. After drying (pre-baking), pattern exposure is performed by irradiating ultraviolet rays through a photomask to cure the photo-curable compound at the location corresponding to the pixel portion, and then developing the unexposed portion with a developer. In this method, the non-pixel portion is removed and the pixel portion is fixed to the transparent substrate. In this method, a pixel portion made of a cured colored film of a photocurable composition is formed on a transparent substrate.
- a photocurable composition to be described later is prepared for each pixel of other colors such as an R pixel, a G pixel, a B pixel, and a Y pixel as necessary.
- a color filter having colored pixel portions of pixels, G pixels, B pixels, and Y pixels can be manufactured.
- Examples of a method of applying a photocurable composition described later on a transparent substrate such as glass include a spin coating method, a slit coating method, a roll coating method, and an ink jet method.
- the drying conditions of the coating film of the photocurable composition applied to the transparent substrate vary depending on the type of each component, the blending ratio, and the like, but are usually about 50 to 150 ° C. for about 1 to 15 minutes.
- the light used for photocuring the photocurable composition it is preferable to use ultraviolet rays or visible light in the wavelength range of 200 to 500 nm. Various light sources that emit light in this wavelength range can be used.
- Examples of the developing method include a liquid filling method, a dipping method, and a spray method.
- the transparent substrate on which the necessary color pixel portion is formed is washed with water and dried.
- the color filter thus obtained is subjected to a heat treatment (post-baking) at 90 to 280 ° C. for a predetermined time by a heating device such as a hot plate or an oven, thereby removing volatile components in the colored coating film and simultaneously applying light.
- the unreacted photocurable compound remaining in the cured colored film of the curable composition is thermally cured to complete the color filter.
- the color material for a color filter of the present invention By using the color material for a color filter of the present invention with the liquid crystal composition of the present invention, the voltage holding ratio (VHR) of the liquid crystal layer is reduced and the ion density (ID) is prevented from being increased. It is possible to provide a liquid crystal display device that solves the problem of display defects such as baking.
- the color filter dye and / or pigment composition of the present invention As the method for producing the photocurable composition, the color filter dye and / or pigment composition of the present invention, an organic solvent and a dispersant are used as essential components, and these are mixed and stirred so as to be uniform.
- a pigment dispersion for forming the pixel portion of the color filter is prepared by dispersion, and then a photocurable compound and, if necessary, a thermoplastic resin or a photopolymerization initiator are added.
- the method of making the said photocurable composition is common.
- organic solvent used here examples include aromatic solvents such as toluene, xylene, methoxybenzene, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol methyl ether acetate.
- aromatic solvents such as toluene, xylene, methoxybenzene, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol methyl ether acetate.
- Acetate solvents such as diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol butyl ether acetate, propionate solvents such as ethoxyethyl propionate, alcohol solvents such as methanol and ethanol, butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol ethyl Ether, diethylene glycol dimethyl ether Ether solvents such as tellurium, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aliphatic hydrocarbon solvents such as hexane, N, N-dimethylformamide, ⁇ -butyrolactam, N-methyl-2-pyrrolidone, aniline And nitrogen compound solvents such as pyridine, lactone solvents such as ⁇ -butyrolactone, and carbamate esters such as a 48:52 mixture of
- Dispersants used here include, for example, Big Chemie's Dispersic 130, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 170, Dispersic 171, Dispersic 174, Dispersic 180, Dispersic 182, Dispersic 183, Dispersic 184, Dispersic 185, Dispersic 2000, Dispersic 2001, Dispersic 2020, Dispersic 2050, Dispersic 2070, Dispersic 2096, Dispersic 2150, Dispersic LPN21116, Dispersic LPN6919 Efka EFKA 46, EFKA 47, EFKA 452, EFKA LP4008, EFKA 009, Efka LP4010, Efka LP4050, LP4055, Efka400, Efka401, Evka402, Efka403, Efka450, Efka451, Efka453, Efka4540, Efka4550, EfkaLP4560, Efka120, Efka150, Evka
- rosin such as acrylic resin, urethane resin, alkyd resin, wood rosin, gum rosin, tall oil rosin, polymerized rosin, disproportionated rosin, hydrogenated rosin, oxidized rosin, modified rosin such as maleated rosin, Rosin derivatives such as rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin modified phenol
- a synthetic resin that is liquid and water-insoluble at room temperature can be contained. Addition of these dispersants and resins also contributes to reduction of flocculation, improvement of pigment dispersion stability, and improvement of viscosity characteristics of the dispersion.
- organic pigment derivatives such as phthalimidomethyl derivatives, sulfonic acid derivatives, N- (dialkylamino) methyl derivatives, N- (dialkylaminoalkyl) sulfonic acid amide derivatives, etc. You can also. Of course, two or more of these derivatives can be used in combination.
- thermoplastic resin used for the preparation of the photocurable composition examples include urethane resins, acrylic resins, polyamide resins, polyimide resins, styrene maleic acid resins, styrene maleic anhydride resins, and the like. .
- photocurable compound examples include 1,6-hexanediol diacrylate, ethylene glycol diacrylate, neopentyl glycol diacrylate, triethylene glycol diacrylate, bis (acryloxyethoxy) bisphenol A, and 3-methylpentanediol diacrylate.
- Bifunctional monomers such as acrylate, trimethylol propaton triacrylate, pentaerythritol triacrylate, tris [2- (meth) acryloyloxyethyl) isocyanurate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, etc.
- High molecular weight such as low molecular weight polyfunctional monomer, polyester acrylate, polyurethane acrylate, polyether acrylate, etc. Polyfunctional monomers.
- photopolymerization initiator examples include acetophenone, benzophenone, benzyldimethylketanol, benzoyl peroxide, 2-chlorothioxanthone, 1,3-bis (4′-azidobenzal) -2-propane, 1,3-bis (4 ′ -Azidobenzal) -2-propane-2'-sulfonic acid, 4,4'-diazidostilbene-2,2'-disulfonic acid, and the like.
- photopolymerization initiators include, for example, “Irgacure (trade name) -184”, “Irgacure (trade name) -369”, “Darocur (trade name) -1173” manufactured by BASF, “Lucirin- "TPO”, Nippon Kayaku Co., Ltd. "Kayacure (trade name) DETX”, “Kayacure (trade name) OA”, Stofer “Bicure 10", “Bicure 55", Akzo "Trigonal PI”, Sand “Sandray 1000" manufactured by Upjohn, “Deep” manufactured by Upjohn, and “Biimidazole” manufactured by Kurokin Kasei.
- a known and commonly used photosensitizer can be used in combination with the photopolymerization initiator.
- the photosensitizer include amines, ureas, compounds having a sulfur atom, compounds having a phosphorus atom, compounds having a chlorine atom, nitriles or other compounds having a nitrogen atom. These can be used alone or in combination of two or more.
- the blending ratio of the photopolymerization initiator is not particularly limited, but is preferably in the range of 0.1 to 30% with respect to the compound having a photopolymerizable or photocurable functional group on a mass basis. If it is less than 0.1%, the photosensitivity at the time of photocuring tends to decrease, and if it exceeds 30%, crystals of the photopolymerization initiator are precipitated when the pigment-dispersed resist coating film is dried. May cause deterioration of film properties.
- the materials as described above 300 to 1000 parts of an organic solvent and 1 to 100 parts of a dispersant per 100 parts of the color filter dye and / or pigment composition of the present invention on a mass basis.
- the dye / pigment solution can be obtained by stirring and dispersing so as to be uniform.
- the pigment dispersion is combined with 3 to 20 parts in total of the thermoplastic resin and the photocurable compound per 1 part of the pigment composition for a color filter of the present invention, and 0.05 to 3 parts per 1 part of the photocurable compound.
- a photopolymerization initiator and, if necessary, an organic solvent may be further added, and a photocurable composition for forming a color filter pixel portion can be obtained by stirring and dispersing so as to be uniform.
- the developer a known and commonly used organic solvent or alkaline aqueous solution can be used.
- the photocurable composition contains a thermoplastic resin or a photocurable compound, and at least one of them has an acid value and exhibits alkali solubility
- the color filter can be washed with an alkaline aqueous solution. It is effective for forming the pixel portion.
- the manufacturing method of the color filter pixel part by the photolithographic method was described in detail, the color filter pixel part prepared by using the pigment composition for the color filter of the present invention can be used in other electrodeposition methods, transfer methods, and micelle electrolysis methods.
- a color filter may be manufactured by forming each color pixel portion by a PVED (Photovoltaic Electrodeposition) method, an inkjet method, a reverse printing method, a thermosetting method, or the like.
- PVED Photovoltaic Electrodeposition
- the liquid crystal composition is aligned on the first substrate and the surface in contact with the liquid crystal composition on the second substrate. Although arranged between the liquid crystal layers, even if the alignment film is thick, it is as thin as 100 nm or less, and completely blocks the interaction between the pigment such as a pigment constituting the color filter and the liquid crystal compound constituting the liquid crystal layer. It is not a thing. Further, in a liquid crystal display device that does not use an alignment film, the interaction between a pigment such as a pigment constituting a color filter and a liquid crystal compound constituting a liquid crystal layer becomes larger.
- alignment film material transparent organic materials such as polyimide, polyamide, BCB (Penzocyclobutene Polymer), polyvinyl alcohol and the like can be used. Particularly, p-phenylenediamine, 4,4′-diaminodiphenylmethane, etc.
- Aliphatic or alicyclic tetracarboxylic anhydrides such as aliphatic or alicyclic diamines, butanetetracarboxylic anhydride, 2,3,5-tricarboxycyclopentylacetic anhydride, pyromellitic dianhydride
- a polyimide alignment film obtained by imidizing a polyamic acid synthesized from an aromatic tetracarboxylic anhydride such as a product is preferable.
- rubbing is generally used as a method for imparting orientation, but when used for a vertical orientation film or the like, it can be used without imparting orientation.
- the alignment film material a material containing chalcone, cinnamate, cinnamoyl or azo group in the compound can be used, and it may be used in combination with materials such as polyimide and polyamide. In this case, the alignment film is rubbed. Or a photo-alignment technique may be used.
- the alignment film is generally formed by applying the alignment film material on a substrate by a method such as spin coating to form a resin film, but a uniaxial stretching method, Langmuir-Blodgett method, or the like can also be used. .
- a conductive metal oxide can be used as a material for the transparent electrode.
- the metal oxide include indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), and zinc oxide.
- ZnO indium tin oxide
- In 2 O 3 —SnO 2 indium zinc oxide
- niobium-doped titanium dioxide Ti 1-x Nb x O 2
- fluorine-doped tin oxide graphene
- ZnO zinc oxide
- In 2 O 3 —SnO 2 indium tin oxide
- In 2 O 3 —ZnO indium zinc oxide
- a photo-etching method or a method using a mask can be used.
- the liquid crystal display device is combined with a backlight and used in various applications such as liquid crystal televisions, personal computer monitors, mobile phones, smartphone displays, notebook personal computers, personal digital assistants, and digital signage.
- the backlight include a cold cathode tube type backlight, a two-wavelength peak pseudo-white backlight and a three-wavelength peak backlight using a light emitting diode or an organic EL element using an inorganic material.
- T ni Nematic phase-isotropic liquid phase transition temperature (° C.) ⁇ n: refractive index anisotropy at 25 ° C. ⁇ : dielectric anisotropy at 25 ° C. ⁇ : viscosity at 20 ° C. (mPa ⁇ s) ⁇ 1 : rotational viscosity at 25 ° C. (mPa ⁇ s) d gap: first and second substrates of the cell gap ([mu] m) VHR: Voltage holding ratio at 70 ° C.
- Burn-in The burn-in evaluation of the liquid crystal display element is based on the following four-level evaluation of the afterimage level of the fixed pattern when the predetermined fixed pattern is displayed in the display area for 1000 hours and then the entire screen is uniformly displayed. went.
- Red dye coloring composition 2 instead of 10 parts of red dye 1 of the red dye coloring composition 1, 8 parts of red dye 1 (CI Solvent Red 124) and 2 parts of yellow dye 1 (CI Solvent Yellow 21) are used. In the same manner as above, a red dye coloring composition 2 was obtained.
- Red dye coloring composition 3 instead of 10 parts of the red dye 1 of the red dye coloring composition 1, 10 parts of red dye 2 (CI Solvent Red 1) was used to obtain a red dye coloring composition 3 in the same manner as described above.
- Green dye coloring composition 1 was obtained in the same manner as described above using 10 parts of green dye 1 (CI Solvent Green 7) instead of 10 parts of red pigment 1 of red pigment coloring composition 1.
- Blue dye coloring composition 2 instead of 10 parts of blue dye 1 of the blue dye coloring composition 1, 7 parts of blue dye 1 (CI Solvent Blue 7) and 3 parts of purple dye 1 (CI Basic Violet 10) are used. In the same manner as above, a blue dye coloring composition 2 was obtained.
- a yellow dye coloring composition 2 was obtained in the same manner as described above using 10 parts of yellow dye 4 (CI Solvent Yellow 2) instead of 10 parts of yellow dye 1 of the yellow dye coloring composition 1.
- Red pigment coloring composition 1 10 parts of red pigment 1 (CI Pigment Red 254, “IRGAPHOR RED BT-CF” manufactured by BASF) is put in a polybin, 55 parts of propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by BYK Chemie) 7.0 Add 0.3-0.4mm ⁇ zirconia beads “ER-120S” manufactured by Saint-Gobain, and disperse with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 4 hours, and then filter through a 1 ⁇ m filter to obtain a pigment dispersion. Obtained.
- red pigment 1 CI Pigment Red 254, “IRGAPHOR RED BT-CF” manufactured by BASF
- Red pigment coloring composition 2 instead of 10 parts of red pigment 1 of the above-mentioned red pigment coloring composition 1, 6 parts of red pigment 1 and 2 parts of red pigment 2 (FASTOGEN SUPER RED ATY-TR manufactured by CI Pigment Red 177 DIC Corporation), yellow pigment 2 Using 2 parts of (C.I. Pigment Yellow 139), a red pigment coloring composition 2 was obtained in the same manner as described above.
- Green pigment coloring composition 1 instead of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 10 parts of a green pigment 1 (aluminum halide phthalocyanine (AlClPcBr14ClH)) was used in the same manner as above to obtain a green colorant coloring composition 1. .
- a green pigment 1 aluminum halide phthalocyanine (AlClPcBr14ClH)
- Green pigment coloring composition 2 instead of 10 parts of the green pigment 1 of the green pigment coloring composition 1, 10 parts of a green pigment 2 (halogenated zinc phthalocyanine (ZnPcBr14ClH)) was used to obtain a green colorant coloring composition 2 in the same manner as described above. .
- a green pigment 2 halogenated zinc phthalocyanine (ZnPcBr14ClH)
- Green pigment coloring composition 3 Instead of 10 parts of the green pigment 1 of the green pigment coloring composition 1, 6 parts of green pigment 3 (FASTOGEN GREEN A110 manufactured by CI Pigment Green 58 DIC Corporation) and yellow pigment 1 (CI Pigment Yellow 150, Using 4 parts of FANCHON FAST YELLOW E4GN manufactured by LANXESS, green pigment coloring composition 3 was obtained in the same manner as described above.
- Green pigment coloring composition 4 instead of 6 parts of green pigment 3 and 4 parts of yellow pigment 1 in the green pigment coloring composition 3, 4 parts of green pigment 4 (FASTOGEN GREEN A310 manufactured by CI Pigment Green 58 DIC Corporation) and yellow pigment 3 (C.I. I. Pigment YELLOW 138) was used in the same manner as above to obtain a green pigment coloring composition 4.
- Blue pigment coloring composition 1 instead of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 9 parts of blue pigment 1 (CI Pigment Blue 15: 6, “FASTOGEN BLUE EP-210” manufactured by DIC Corporation) and purple pigment 1 (C Blue pigment coloring composition 1 was obtained in the same manner as described above using 1 part of I. Pigment VIOLET 23).
- a blue pigment dye coloring composition 2 was obtained in the same manner as described above using 1 part of purple dye 1 (CI Basic Violet 10) instead of the purple pigment 1 of the blue pigment coloring composition 1.
- yellow pigment coloring composition 1 In place of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 10 parts of yellow pigment 1 (CI Pigment Yellow 150, FANCHON FAST YELLOW E4GN manufactured by LANXESS) was used in the same manner as described above, and yellow pigment 1 A colored composition 1 was obtained.
- yellow pigment 1 CI Pigment Yellow 150, FANCHON FAST YELLOW E4GN manufactured by LANXESS
- the red coloring composition was applied to a glass substrate on which a black matrix had been formed in advance so as to have a film thickness of 2 ⁇ m by spin coating. After drying at 70 ° C. for 20 minutes, striped pattern exposure was performed through a photomask with ultraviolet rays using an exposure machine equipped with an ultrahigh pressure mercury lamp. Spray development with an alkali developer for 90 seconds, washing with ion exchange water, and air drying. Further, post-baking was performed at 230 ° C. for 30 minutes in a clean oven to form red pixels, which are striped colored layers, on a transparent substrate. Next, the green coloring composition is similarly applied by spin coating so that the film thickness becomes 2 ⁇ m.
- the striped colored layer was exposed and developed at a place different from the above-mentioned red pixel by an exposure machine, thereby forming a green pixel adjacent to the above-mentioned red pixel.
- red pixels and blue pixels adjacent to the green pixels were formed by spin coating with a film thickness of 2 ⁇ m.
- a color filter having striped pixels of three colors of red, green, and blue on the transparent substrate was obtained.
- a red pixel and a blue pixel adjacent to the green pixel were similarly formed by spin coating with a film thickness of 2 ⁇ m.
- a color filter having striped pixels of four colors of red, green, blue and yellow on the transparent substrate was obtained.
- Color filters 1 to 4 and comparative color filter 1 were prepared using the dye coloring composition or pigment coloring composition shown in Table 1.
- the liquid crystal composition 1 has a practical liquid crystal layer temperature range of 81 ° C. as a TV liquid crystal composition, has a large absolute value of dielectric anisotropy, has a low viscosity, and an optimal ⁇ n. I understand that.
- the liquid crystal display devices of Examples 1 to 4 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Examples 5 to 12 In the same manner as in Example 1, the liquid crystal compositions shown in Table 5 were sandwiched, and the liquid crystal display devices of Examples 5 to 12 were prepared using the color filters shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 6 and 7.
- liquid crystal display devices of Examples 5 to 12 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Example 13 to 24 In the same manner as in Example 1, the liquid crystal compositions shown in Table 8 were sandwiched, and the liquid crystal display devices of Examples 13 to 24 were prepared using the color filters shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 9-11.
- liquid crystal display devices of Examples 13 to 24 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Examples 25 to 36 In the same manner as in Example 1, the liquid crystal compositions shown in Table 12 were sandwiched, and the liquid crystal display devices of Examples 25 to 36 were prepared using the color filters shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 13-15.
- liquid crystal display devices of Examples 25 to 36 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Examples 37 to 48 In the same manner as in Example 1, the liquid crystal compositions shown in Table 16 were sandwiched, and the liquid crystal display devices of Examples 37 to 48 were prepared using the color filters shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 17-19.
- liquid crystal display devices of Examples 37 to 48 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Examples 49 to 60 In the same manner as in Example 1, the liquid crystal compositions shown in Table 20 were sandwiched, and the liquid crystal display devices of Examples 49 to 60 were prepared using the color filters shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 21-23.
- liquid crystal display devices of Examples 49 to 60 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Example 61 to 72 In the same manner as in Example 1, the liquid crystal compositions shown in Table 24 were sandwiched, and the liquid crystal display devices of Examples 61 to 72 were prepared using the color filters shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 25-27.
- liquid crystal display devices of Examples 61 to 72 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Example 73 to 84 The liquid crystal compositions shown in Table 28 were sandwiched in the same manner as in Example 1, and the liquid crystal display devices of Examples 73 to 84 were prepared using the color filters shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 29-31.
- liquid crystal display devices of Examples 73 to 84 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Example 85 to 96 In the same manner as in Example 1, the liquid crystal compositions shown in Table 32 were sandwiched, and the liquid crystal display devices of Examples 85 to 96 were prepared using the color filters shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 33 to 35.
- liquid crystal display devices of Examples 85 to 96 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Example 97 to 108 The liquid crystal compositions shown in Table 36 were sandwiched in the same manner as in Example 1, and the liquid crystal display devices of Examples 97 to 108 were prepared using the color filters shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 37-39.
- liquid crystal display devices of Examples 97 to 108 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Liquid crystal composition 1 was mixed with 0.3% by mass of 2-methyl-acrylic acid 4 ′- ⁇ 2- [4- (2-acryloyloxy-ethyl) -phenoxycarbonyl] -ethyl ⁇ -biphenyl-4-yl ester.
- a liquid crystal composition 28 was obtained.
- the liquid crystal composition 28 was sandwiched between the VA cells used in Example 1, and irradiated with ultraviolet rays (3.0 J / cm 2 ) for 600 seconds while applying a driving voltage between the electrodes, followed by polymerization treatment, Liquid crystal display devices of Examples 109 to 112 were prepared using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Table 40.
- liquid crystal display devices of Examples 109 to 112 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Example 113 to 116 The liquid crystal composition 13 was mixed with 0.3% by mass of bismethacrylic acid biphenyl-4,4′-diyl to obtain a liquid crystal composition 29.
- the liquid crystal composition 29 was sandwiched between the VA cells used in Example 1, and irradiated with ultraviolet rays (3.0 J / cm 2 ) for 600 seconds while a driving voltage was applied between the electrodes, followed by polymerization treatment,
- the liquid crystal display devices of Examples 113 to 116 were prepared using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Table 41.
- liquid crystal display devices of Examples 113 to 116 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Example 117 to 120 The liquid crystal composition 19 was mixed with 0.3% by mass of bismethacrylic acid 3-fluorobiphenyl-4,4′-diyl to make a liquid crystal composition 30.
- the liquid crystal composition 30 was sandwiched between the VA cells used in Example 1 and irradiated with ultraviolet rays (3.0 J / cm 2 ) for 600 seconds with a drive voltage applied between the electrodes, followed by a polymerization treatment.
- Liquid crystal display devices of Examples 117 to 120 were prepared using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Table 42.
- the liquid crystal display devices of Examples 117 to 120 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
- Comparative Examples 1 to 4 The comparative liquid crystal composition 1 shown below was sandwiched between the VA cells used in Example 1.
- Table 43 shows the physical properties of the comparative liquid crystal composition.
- Liquid crystal display devices of Comparative Examples 1 to 4 were prepared using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Table 44.
- the VHR was lower and the ID was larger than the liquid crystal display device of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
- Comparative Examples 5 to 12 As in Example 1, the liquid crystal display devices of Comparative Examples 5 to 12 were prepared by sandwiching the comparative liquid crystal compositions shown in Table 45 and using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. did. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 46-47.
- the liquid crystal display devices of Comparative Examples 5 to 12 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
- Comparative Examples 13 to 24 As in Example 1, the liquid crystal display devices of Comparative Examples 13 to 24 were prepared by sandwiching the comparative liquid crystal composition shown in Table 48 and using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. did. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 49-51.
- the liquid crystal display devices of Comparative Examples 13 to 24 have lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
- Comparative Examples 25 to 36 In the same manner as in Example 1, the comparative liquid crystal compositions shown in Table 52 were sandwiched, and the liquid crystal display devices of Comparative Examples 25 to 36 were prepared using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. did. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 53 to 55.
- the liquid crystal display devices of Comparative Examples 25 to 36 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
- Comparative Examples 37 to 48 In the same manner as in Example 1, the comparative liquid crystal compositions shown in Table 56 were sandwiched, and the liquid crystal display devices of Comparative Examples 37 to 48 were prepared using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. did. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 57 to 59.
- the liquid crystal display devices of Comparative Examples 37 to 48 had lower VHR and larger ID as compared with the liquid crystal display device of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
- Comparative Examples 49-60 In the same manner as in Example 1, the comparative liquid crystal compositions shown in Table 60 were sandwiched, and the liquid crystal display devices of Comparative Examples 49 to 60 were prepared using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. did. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 61 to 63.
- the liquid crystal display devices of comparisons 49 to 60 had lower VHR and larger ID. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
- Comparative Examples 61-72 In the same manner as in Example 1, the comparative liquid crystal compositions shown in Table 64 were sandwiched, and the liquid crystal display devices of Comparative Examples 61 to 72 were produced using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. did. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 65 to 67.
- the liquid crystal display devices of comparison 61 to 72 had lower VHR and larger ID. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
- Comparative Examples 73 to 84 In the same manner as in Example 1, the comparative liquid crystal compositions shown in Table 68 were held, and the liquid crystal display devices of Comparative Examples 73 to 84 were produced using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. did. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 69-71.
- the liquid crystal display devices of comparison 73 to 84 had lower VHR and larger ID. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
- Comparative Examples 85-88 In the same manner as in Example 1, the comparative liquid crystal composition shown in Table 72 was sandwiched, and the liquid crystal display devices of Comparative Examples 85 to 88 were produced using the color filters 1 to 4 shown in Table 1, and their VHR and ID were measured. did. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Table 73.
- the liquid crystal display devices of comparative 85 to 88 have lower VHR and larger ID. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
- Comparative Examples 89-96 The liquid crystal compositions 1, 2, 8, 13, 14, 19, 20, and 26 were sandwiched between the VA cells used in Example 1, and the liquid crystals of Comparative Examples 89 to 96 were used using the comparative color filter 1 shown in Table 1. A display device was manufactured and its VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in Tables 74 and 75.
- the liquid crystal display devices of Comparative Examples 89 to 96 have lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Liquid Crystal Substances (AREA)
- Liquid Crystal (AREA)
- Optical Filters (AREA)
Abstract
Description
前記カラーフィルタ層は、ブラックマトリックスと赤色着色層(R)、緑色着色層(G)、青色着色層(B)、及び必要に応じて黄色着色層(Y)から構成されるカラーフィルタにより構成される。
液晶層を構成する液晶材料は、材料中に不純物が残留すると表示装置の電気的特性に大きな影響を及ぼすことから不純物についての高度な管理がなされてきた。又、配向膜を形成する材料に関しても配向膜は液晶層が直接接触し、配向膜中に残存した不純物が液晶層に移動することにより、液晶層の電気的特性に影響を及ぼすことは既に知られており、配向膜材料中の不純物に起因する液晶表示装置の特性についての検討がなされつつある。
第一の基板と、第二の基板と、前記第一の基板と第二の基板間に挟持された液晶組成物層と、ブラックマトリックス及び少なくともRGB三色画素部から構成されるカラーフィルタと、画素電極と共通電極とを備え、
前記液晶組成物層が一般式(I)
前記RGB三色画素部が、色材として、G画素部中にAl、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Ga、Ge、Y、Zr、Nb、In、Sn及びPbからなる群から選ばれる金属を中心金属として有するハロゲン化金属フタロシアニン顔料であり、その中心金属が三価の場合には、その中心金属には1つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているか、又はオキソ又はチオ架橋しており、その中心金属が四価金属の場合には、その中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているハロゲン化金属フタロシアニン顔料を含有することを特徴とする液晶表示装置を提供する。
2 カラーフィルタ層
2a 特定の顔料を含有するカラーフィルタ層
3a 透明電極層(共通電極)
3b 画素電極層
4 配向膜
5 液晶層
5a 特定の液晶組成物を含有する液晶層
本発明の液晶表示装置における液晶層は、一般式(I)
炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基、炭素原子数1~5のアルコキシ基又は炭素原子数2~5のアルケニルオキシ基を表すことが好ましく、
炭素原子数2~5のアルキル基、炭素原子数2~4のアルケニル基、炭素原子数1~4のアルコキシ基又は炭素原子数2~4のアルケニルオキシ基を表すことがより好ましく、
R1がアルキル基を表すことが好ましいが、この場合炭素原子数1、3又は5のアルキル基が特に好ましい。
一般式(Ia)~一般式(Ik)において、一般式(Ia)、一般式(Ib)及び一般式(Ig)が好ましく、一般式(Ia)及び一般式(Ig)がより好ましく、一般式(Ia)が特に好ましいが、応答速度を重視する場合には一般式(Ib)も好ましく、より応答速度を重視する場合には、一般式(Ib)、一般式(Ie)、一般式(If)及び一般式(Ih)が好ましく、一般式(Ie)及び一般式(If)のジアルケニル化合物は特に応答速度を重視する場合に好ましい。
一般式(II-1a)においてR3は、一般式(II-1)における同様の実施態様が好ましい。R4aは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
本発明の液晶表示装置における液晶層は、一般式(II-2)で表される化合物を25~45%含有するが、30~40%含有することが好ましく、31~36%含有することがより好ましい。
一般式(II-2a)及び一般式(II-2b)においてR5は、一般式(II-2)における同様の実施態様が好ましい。R6aは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
又、一般式(II-2)において、Bが 1,4-フェニレン基を表す化合物及びBがトランス-1,4-シクロヘキシレン基を表す化合物をそれぞれ少なくとも1種以上含有することが好ましい。
Dがトランス-1,4-シクロヘキシレンを表す場合、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましく、
Dがフッ素置換されていてもよい、1,4-フェニレン基を表す場合、炭素原子数1~5のアルキル基又は炭素原子数4又は5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数4のアルケニル基を表すことがより好ましく、炭素原子数2~4のアルキル基を表すことがさらに好ましい。
Gがトランス-1,4-シクロヘキシレンを表す場合、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましく、
Gがフッ素置換されていてもよい、1,4-フェニレン基を表す場合、炭素原子数1~5のアルキル基又は炭素原子数4又は5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数4のアルケニル基を表すことがより好ましく、炭素原子数2~4のアルキル基を表すことがさらに好ましい。
この場合においても、炭素原子数4のアルケニル基がさらに好ましい。
nは0又は1を表すが、Z2が単結合以外の置換基を表す場合、0を表すことが好ましい。
一般式(III)で表される化合物は、nが1を表す場合、具体的には次に記載する一般式(III-2a)~一般式(III-2l)で表される化合物が好ましい。
一般式(II-1)及び一般式(II-2)で表される化合物は共に、誘電率異方性が負であってその絶対値が比較的大きい化合物であるが、これら化合物の合計含有量は、30~65%が好ましく、40~55%がより好ましく、43~50%が特に好ましい。
誘電率異方性は、25℃において、-2.0から-6.0であることが好ましく、-2.5から-5.0であることがより好ましく、-2.5から-3.5であることが特に好ましい。
屈折率異方性は、25℃において、0.08から0.13であることが好ましいが、0.09から0.12であることがより好ましい。更に詳述すると、薄いセルギャップに対応する場合は0.10から0.12であることが好ましく、厚いセルギャップに対応する場合は0.08から0.10であることが好ましい。
回転粘度(γ1)は150以下が好ましく、130以下がより好ましく、120以下が特に好ましい。
Zは、13000以下が好ましく、12000以下がより好ましく、11000以下が特に好ましい。
Sp1及びSp2はそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH2)s-(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、
Z1は-OCH2-、-CH2O-、-COO-、-OCO-、-CF2O-、-OCF2-、-CH2CH2-、-CF2CF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CY1=CY2-(式中、Y1及びY2はそれぞれ独立して、フッ素原子又は水素原子を表す。)、-C≡C-又は単結合を表し、
Cは1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表し、式中の全ての1,4-フェニレン基は、任意の水素原子がフッ素原子により置換されていても良い。)で表されるニ官能モノマーが好ましい。
これらの骨格を含む重合性化合物は重合後の配向規制力がPSA型液晶表示素子に最適であり、良好な配向状態が得られることから、表示ムラが抑制されるか、又は、全く発生しない。
重合性モノマーを添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。また、保存安定性を向上させるために、安定剤を添加しても良い。使用できる安定剤としては、例えば、ヒドロキノン類、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β-ナフチルアミン類、β-ナフトール類、ニトロソ化合物等が挙げられる。
本発明におけるカラーフィルタは、ブラックマトリックス及び少なくともRGB三色画素部から構成されるが、RGB三色画素部は、色材として、G画素部中にAl、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Ga、Ge、Y、Zr、Nb、In、Sn及びPbからなる群から選ばれる金属を中心金属として有するハロゲン化金属フタロシアニン顔料であり、その中心金属が三価の場合には、その中心金属には1つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているか、又はオキソ又はチオ架橋しており、その中心金属が四価金属の場合には、その中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているハロゲン化金属フタロシアニン顔料を含有する。また、RGB三色画素部は、色材として、R画素部中にジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を、B画素部中にε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有するのが好ましい。
G画素部中の上記ハロゲン化金属フタロシアニン顔料としては、次の2つの群のハロゲン化金属フタロシアニン顔料が挙げられる。
Al、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Ga、Ge、Y、Zr、Nb、In、Sn及びPbからなる群から選ばれる金属を中心金属として有し、フタロシアニン分子1個当たり8~16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニン顔料であり、その中心金属が三価の場合には、その中心金属には1つのハロゲン原子、水酸基又はスルホン酸基(-SO3H)のいずれかが結合しており、中心金属が四価金属の場合には、その中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているハロゲン化金属フタロシアニン顔料。
Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属とし、フタロシアニン分子1個当たり8~16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニンの2分子を構成単位とし、これら構成単位の各中心金属が酸素原子、硫黄原子、スルフィニル(-SO-)及びスルホニル(-SO2-)からなる群から選ばれる二価原子団を介して結合したハロゲン化金属フタロシアニン二量体からなる顔料。
(1) ハロゲン化錫フタロシアニン顔料、ハロゲン化ニッケルフタロシアニン顔料、ハロゲン化亜鉛フタロシアニン顔料の様な、Mg、Fe、Co、Ni、Zn、Zr、Sn及びPbからなる群から選ばれる二価金属を中心金属として有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。なお、この中で、塩素化臭素化亜鉛フタロシアニン顔料は、C.I.Pigment Green 58であり、特に好ましい。
(2) ハロゲン化クロロアルミニウムフタロシアニンの様な、Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属として有し、中心金属には1つのハロゲン原子、水酸基又はスルホン酸基のいずれかを有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。
(3) ハロゲン化オキシチタニウムフタロシアニン、ハロゲン化オキシバナジウムフタロシアニンの様な、Si、Ti、V、Ge、Zr及びSnからなる群から選ばれる四価金属を中心金属として有し、中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかを有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。
(4) ハロゲン化されたμ-オキソ-アルミニウムフタロシアニン二量体、ハロゲン化されたμ-チオ-アルミニウムフタロシアニン二量体の様な、Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属とし、フタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニンの2分子を構成単位とし、これら構成単位の各中心金属が酸素原子、硫黄原子、スルフィニル及びスルホニルからなる群から選ばれる二価原子団を介して結合したハロゲン化金属フタロシアニン二量体からなる顔料。
R画素部中には、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を含有するのが好ましい。ジケトピロロピロール顔料としては、具体的にはC.I.Pigment Red 254、同255、同264、同272、Orange 71、同73が好ましく、Red 254、同255、同264、同272がより好ましく、C.I.Pigment Red 254が特に好ましい。アニオン性赤色有機染料としては、具体的には、C.I.Solvent Red 124、Acid Red 52、同289が好ましく、C.I.Solvent Red 124が特に好ましい。
B画素部中には、ε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有するのが好ましい。ε型銅フタロシニアン顔料は、C.I.Pigment Blue 15:6である。カチオン性青色有機染料としては、具体的には、C.I.Solvent Blue 2、同3、同4、同5、同6、同7、同23、同43、同72、同124、C.I.Basic Blue7、同26が好ましく、C.I.Solvent Blue 7、Basic Blue7がより好ましく、C.I.Solvent Blue 7が特に好ましい。
フォトリソグラフィー法によるカラーフィルタ画素部の製造方法について詳記したが、本発明のカラーフィルタ用顔料組成物を使用して調製されたカラーフィタ画素部は、その他の電着法、転写法、ミセル電解法、PVED(PhotovoltaicElectrodeposition)法、インクジェット法、反転印刷法、熱硬化法等の方法で各色画素部を形成して、カラーフィルタを製造してもよい。
本発明の液晶表示装置において、第一の基板と、第二の基板上の液晶組成物と接する面には液晶組成物を配向させるため、配向膜を必要とする液晶表示装置においてはカラーフィルタと液晶層間に配置するものであるが、配向膜の膜厚が厚いものでも100nm以下と薄く、カラーフィルタを構成する顔料等の色素と液晶層を構成する液晶化合物との相互作用を完全に遮断するものでは無い。
又、配向膜を用いない液晶表示装置においては、カラーフィルタを構成する顔料等の色素と液晶層を構成する液晶化合物との相互作用はより大きくなる。
本発明の液晶表示装置において、透明電極の材料としては、導電性の金属酸化物を用いることができ、金属酸化物としては酸化インジウム(In2O3)、酸化スズ(SnO2)、酸化亜鉛(ZnO)、酸化インジウムスズ(In2O3―SnO2)、酸化インジウム亜鉛(In2O3―ZnO)、ニオブ添加二酸化チタン(Ti1-xNbxO2)、フッ素ドープ酸化スズ、グラフェンナノリボン又は金属ナノワイヤー等が使用できるが、酸化亜鉛(ZnO)、酸化インジウムスズ(In2O3―SnO2)又は酸化インジウム亜鉛(In2O3―ZnO)が好ましい。これらの透明導電膜のパターニングには、フォト・エッチング法やマスクを用いる方法などを使用することができる。
本液晶表示装置と、バックライトを組み合わせて、液晶テレビ、パソコンのモニター、携帯電話、スマートフォンのディスプレイや、ノート型パーソナルコンピューター、携帯情報端末、デジタルサイネージ等の様々な用途で使用される。バックライトとしては、冷陰極管タイプバックライト、無機材料を用いた発光ダイオードや有機EL素子を用いた、2波長ピークの擬似白色バックライトと3波長ピークのバックライト等がある。
実施例中、測定した特性は以下の通りである。
Δn :25℃における屈折率異方性
Δε :25℃における誘電率異方性
η :20℃における粘度(mPa・s)
γ1 :25℃における回転粘度(mPa・s)
dgap:セルの第一基板と第二基板のギャップ(μm)
VHR :70℃における電圧保持率(%)
(セル厚3.5μmのセルに液晶組成物を注入し、5V印加、フレームタイム200ms、パルス幅64μsの条件で測定した時の測定電圧と初期印加電圧との比を%で表した値)
ID :70℃におけるイオン密度(pC/cm2)
(セル厚3.5μmのセルに液晶組成物を注入し、MTR-1(株式会社東陽テクニカ製)で20V印加、周波数0.05Hzの条件で測定した時のイオン密度値)
焼き付き :
液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを1000時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像のレベルを目視にて以下の4段階評価で行った。
○残像ごく僅かに有るも許容できるレベル
△残像有り許容できないレベル
×残像有りかなり劣悪
尚、実施例において化合物の記載について以下の略号を用いる。
(側鎖)
-n -CnH2n+1 炭素原子数nの直鎖状アルキル基
-On -OCnH2n+1 炭素原子数nの直鎖状アルコキシ基
(環構造)
[着色組成物の調製]
[赤色染料着色組成物1]
赤色染料1(C.I.Solvent Red 124)10部をポリビンに入れ、プロピレングリコールモノメチルエーテルアセテート55部、0.3-0.4mmφセプルビーズを加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散した後、5μmのフィルタで濾過し染料着色液を得た。 この染料着色液75.00部とポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.50部、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5.00部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1.00部、ユーカーエステルEEP13.5部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、赤色染料着色組成物1を得た。
上記赤色染料着色組成物1の赤色染料1 10部に代え、赤色染料1(C.I.Solvent Red 124)8部と黄色染料1(C.I.Solvent Yellow 21)2部を用いて、上記と同様にして、赤色染料着色組成物2を得た。
上記赤色染料着色組成物1の赤色染料1 10部に代え、赤色染料2(C.I.Solvent Red 1)10部を用いて、上記と同様にして、赤色染料着色組成物3を得た。
上記赤色顔料着色組成物1の赤色顔料1 10部に代え、緑色染料1(C.I.Solvent Green 7)10部を用いて、上記と同様にして、緑色染料着色組成物1を得た。
上記赤色染料着色組成物1の赤色染料1 10部に代え、青色染料1(C.I.Solvent Blue 7)10部を用いて、上記と同様にして、青色染料着色組成物1を得た。
上記青色染料着色組成物1の青色染料1 10部に代え、青色染料1(C.I.Solvent Blue 7)7部、紫色染料1(C.I.Basic Violet 10)3部を用いて、上記と同様にして、青色染料着色組成物2を得た。
上記青色染料着色組成物2の青色染料1 7部、紫色染料1 3部に代え、青色染料2(C.I.Solvent Blue 12)10部を用いて、上記と同様にして、青色染料着色組成物3を得た。
上記赤色染料着色組成物1の赤色染料1 10部に代え、黄色染料1(C.I.Solvent Yellow 21)10部を用いて、上記と同様にして、黄色染料着色組成物1を得た。
上記黄色染料着色組成物1の黄色染料1 10部に代え、黄色染料4(C.I.Solvent Yellow 2)10部を用いて、上記と同様にして、黄色染料着色組成物2を得た。
赤色顔料1(C.I.Pigment Red 254、BASF社製「IRGAPHOR RED BT-CF」)10部をポリビンに入れ、プロピレングリコールモノメチルエーテルアセテート55部、ディスパービックLPN21116(ビックケミー株式会社製)7.0部、Saint-Gobain社製0.3-0.4mmφジルコニアビーズ「ER-120S」を加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散した後、1μmのフィルタで濾過し顔料分散液を得た。この顔料分散液75.00部とポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.50部、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5.00部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1.00部、ユーカーエステルEEP13.5部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、赤色顔料着色組成物1を得た。
上記赤色顔料着色組成物1の赤色顔料1 10部に代え、赤色顔料1 6部と赤色顔料2(C.I.Pigment Red 177 DIC株式会社製FASTOGEN SUPER RED ATY-TR)2部、黄色顔料2(C.I.Pigment Yellow 139)2部を用いて、上記と同様にして、赤色顔料着色組成物2を得た。
上記赤色顔料着色組成物1の赤色顔料1 10部に代え、緑色顔料1(ハロゲン化アルミニウムフタロシアニン(AlClPcBr14ClH))10部を用いて、上記と同様にして、緑色願料着色組成物1を得た。
上記緑色顔料着色組成物1の緑色顔料1 10部に代え、緑色顔料2(ハロゲン化亜鉛フタロシアニン(ZnPcBr14ClH))10部を用いて、上記と同様にして、緑色願料着色組成物2を得た。
上記緑色顔料着色組成物1の緑色顔料1 10部に代え、緑色顔料3(C.I.Pigment Green 58 DIC株式会社製FASTOGEN GREEN A110)6部と黄色顔料1(C.I.Pigment Yellow 150、LANXESS社製FANCHON FAST YELLOW E4GN)4部を用いて、上記と同様にして、緑色顔料着色組成物3を得た。
上記緑色顔料着色組成物3の緑色顔料3 6部、黄色顔料1 4部に代え、緑色顔料4(C.I.Pigment Green 58 DIC株式会社製FASTOGEN GREEN A310)4部と黄色顔料3(C.I.Pigment YELLOW 138)6部を用いて、上記と同様にして、緑色顔料着色組成物4を得た。
上記赤色顔料着色組成物1の赤色顔料1 10部に代え、青色顔料1(C.I.Pigment Blue 15:6、DIC株式会社製「FASTOGEN BLUE EP-210」)9部と紫色顔料1(C.I.Pigment VIOLET 23)1部を用いて、上記と同様にして、青色顔料着色組成物1を得た。
上記青色顔料着色組成物1の紫色顔料1に代え、紫色染料1(C.I.Basic Violet 10)1部を用いて、上記と同様にして、青色顔料染料着色組成物2を得た。
上記赤色顔料着色組成物1の赤色顔料1 10部に代え、黄色顔料1(C.I.Pigment Yellow 150、LANXESS社製FANCHON FAST YELLOW E4GN)10部を用いて、上記と同様にして、黄色顔料着色組成物1を得た。
予めブラックマトリックスが形成されてあるガラス基板に、赤色着色組成物をスピンコートにより膜厚2μmとなるように塗布した。70℃で20分間乾燥の後、超高圧水銀ランプを備えた露光機にて紫外線を、フォトマスクを介してストライプ状のパターン露光をした。アルカリ現像液にて90秒間スプレー現像、イオン交換水で洗浄し、風乾した。さらに、クリーンオーブン中で、230℃で30分間ポストベークを行い、ストライプ状の着色層である赤色画素を透明基板上に形成した。
次に、緑色着色組成物も同様にスピンコートにて膜厚が2μmとなるように塗布。乾燥後、露光機にてストライプ状の着色層を前述の赤色画素とはずらした場所に露光し現像することで、前述赤色画素と隣接した緑色画素を形成した。
次に、青色着色組成物についても同様にスピンコートにて膜厚2μmで赤色画素、緑色画素と隣接した青色画素を形成した。これで、透明基板上に赤、緑、青の3色のストライプ状の画素を持つカラーフィルタが得られた。
必要に応じて、黄色着色組成物についても、同様にスピンコートにて膜厚2μmで赤色画素、緑色画素と隣接した青色画素を形成した。これで、透明基板上に赤、緑、青、黄の4色のストライプ状の画素を持つカラーフィルタが得られた。
表1に示す染料着色組成物又は顔料着色組成物を用い、カラーフィルタ1~4及び比較カラーフィルタ1を作成した。
電極構造を第一及び第二の基板に作成し、各々の対向側に垂直配向性の配向膜を形成したのち弱ラビング処理を行い、VAセルを作成し、第一の基板と第二の基板の間に以下に示す液晶組成物1を挟持した。液晶組成物1の物性値を表3に示す。次に、表1に示すカラーフィルタ1~4を用いて実施例1~4の液晶表示装置を作成した(dgap=3.5μm、配向膜SE-5300)。得られた液晶表示装置のVHR及びIDを測定した。また、得られた液晶表示装置の焼き付き評価を行った。その結果を表4に示す。
実施例1~4の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
実施例1と同様に表5に示す液晶組成物を狭持し、表1に示すカラーフィルタを用いて実施例5~12の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表6及び7に示す。
実施例1と同様に表8に示す液晶組成物を狭持し、表1に示すカラーフィルタを用いて実施例13~24の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表9~11に示す。
実施例1と同様に表12に示す液晶組成物を狭持し、表1に示すカラーフィルタを用いて実施例25~36の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表13~15に示す。
実施例1と同様に表16に示す液晶組成物を狭持し、表1に示すカラーフィルタを用いて実施例37~48の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表17~19に示す。
実施例1と同様に表20に示す液晶組成物を狭持し、表1に示すカラーフィルタを用いて実施例49~60の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表21~23に示す。
実施例1と同様に表24に示す液晶組成物を狭持し、表1に示すカラーフィルタを用いて実施例61~72の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表25~27に示す。
実施例1と同様に表28に示す液晶組成物を狭持し、表1に示すカラーフィルタを用いて実施例73~84の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表29~31に示す。
実施例1と同様に表32に示す液晶組成物を狭持し、表1に示すカラーフィルタを用いて実施例85~96の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表33~35に示す。
実施例1と同様に表36に示す液晶組成物を狭持し、表1に示すカラーフィルタを用いて実施例97~108の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表37~39に示す。
液晶組成物1に2-メチル-アクリル酸4‘-{2-[4-(2-アクリロイルオキシ-エチル)-フェノキシカルボニル]-エチル}-ビフェニル-4-イルエステル0.3質量%を混合し液晶組成物28とした。実施例1で用いたVAセルにこの液晶組成物28を挟持し、電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm2)し、重合処理を行い、次に、表1に示すカラーフィルタ1~4を用いて実施例109~112の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表40に示す。
液晶組成物13にビスメタクリル酸ビフェニル‐4,4′‐ジイル 0.3質量%を混合し液晶組成物29とした。実施例1で用いたVAセルにこの液晶組成物29を挟持し、電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm2)し、重合処理を行い、次に、表1に示すカラーフィルタ1~4を用いて実施例113~116の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表41に示す。
液晶組成物19にビスメタクリル酸 3‐フルオロビフェニル‐4,4′‐ジイル 0.3質量%を混合し液晶組成物30とした。実施例1で用いたVAセルにこの液晶組成物30を挟持し、電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm2)し、重合処理を行い、次に、表1に示すカラーフィルタ1~4を用いて実施例117~120の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表42に示す。
実施例1で用いたVAセルに以下に示す比較液晶組成物1を挟持した。比較液晶組成物の物性値を表43に示す。表1に示すカラーフィルタ1~4を用いて比較例1~4の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表44に示す。
実施例1と同様に表45に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1~4を用いて比較例5~12の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表46~47に示す。
実施例1と同様に表48に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1~4を用いて比較例13~24の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表49~51に示す。
実施例1と同様に表52に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1~4を用いて比較例25~36の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表53~55に示す。
実施例1と同様に表56に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1~4を用いて比較例37~48の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表57~59に示す。
実施例1と同様に表60に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1~4を用いて比較例49~60の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表61~63に示す。
実施例1と同様に表64に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1~4を用いて比較例61~72の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表65~67に示す。
実施例1と同様に表68に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1~4を用いて比較例73~84の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表69~71に示す。
実施例1と同様に表72に示す比較液晶組成物を狭持し、表1に示すカラーフィルタ1~4を用いて比較例85~88の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表73に示す。
実施例1で用いたVAセルに液晶組成物1、2、8、13、14、19、20及び26をそれぞれ挟持し、表1に示す比較カラーフィルタ1を用いて比較例89~96の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を表74及び75に示す。
Claims (17)
- 第一の基板と、第二の基板と、前記第一の基板と第二の基板間に挟持された液晶組成物層と、ブラックマトリックス及び少なくともRGB三色画素部から構成されるカラーフィルタと、画素電極と共通電極とを備え、前記液晶組成物層が一般式(I)
- 前記液晶組成物層に、更に一般式(III)
- 前記RGB三色画素部が、色材として、R画素部中にジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を、B画素部中にε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有することを特徴とする請求項1又は2記載の液晶表示装置。
- 前記RGB三色画素部が、色材として、R画素部中にC.I.Solvent Red 124を、B画素部中にC.I.Solvent Blue 7を含有することを特徴とする請求項1~3の何れか一項に記載の液晶表示装置。
- 前記RGB三色画素部が、色材として、R画素部中にC.I.Pigment Red 254を、B画素部中にC.I.Pigment Blue 15:6を含有することを特徴とする請求項1~3の何れか一項に記載の液晶表示装置。
- G画素部中にフタロシアニン分子1個当たり8~16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したZnを中心金属として有するハロゲン化亜鉛フタロシアニン顔料を含有する請求項1~5の何れか一項に記載の液晶表示装置。
- G画素部中にC.I.Pigment Green 58を含有する請求項1~6の何れか一項に記載の液晶表示装置。
- G画素部中に更に、C.I.Pigment Yellow 150、同215、同185、同138、C.I.Solvent Yellow 21、同82、同83:1、同33からなる群から選ばれる少なくとも1種の有機染顔料を含有する請求項1~7の何れか一項に記載の液晶表示装置。
- カラーフィルタが、ブラックマトリックスとRGB三色画素部とY画素部とから構成され、色材として、Y画素部に、C.I.Pigment Yellow 150、同215、同185、同138、同139、C.I.Solvent Yellow 21、82、同83:1、同33、同162からなる群から選ばれる少なくとも1種の黄色有機染顔料を含有する請求項1~8の何れか一項に記載の液晶表示装置。
- 一般式(I)において、Aが1,4-フェニレン基を表す化合物及びAがトランス-1,4-シクロヘキシレン基を表す化合物をそれぞれ少なくとも1種以上含有する請求項1~9の何れか一項に記載の液晶表示装置。
- 一般式(II-2)において、Bが1,4-フェニレン基を表す化合物及びBがトランス-1,4-シクロヘキシレン基を表す化合物をそれぞれ少なくとも1種以上含有する請求項1~10の何れか一項に記載の液晶表示装置。
- 一般式(II-1)、一般式(II-2)及び一般式(III)で表される化合物を35~70%含有する請求項2~11の何れか一項に記載の液晶表示装置。
- 前記液晶組成物層を構成する液晶組成物の、ネマチック液晶相上限温度が60~120℃であり、ネマチック液晶相下限温度が‐20℃以下であり、ネマチック液晶相上限温度と下限温度の差が100~150である請求項1~13の何れか一項に記載の液晶表示装置。
- 前記液晶組成物層を構成する液晶組成物の比抵抗が1012(Ω・m)以上である請求項1~14の何れか一項に記載の液晶表示装置。
- 前記液晶組成物層が一般式(V)
- 一般式(V)において、Cが単結合を表しZ1が単結合を表す請求項16記載の液晶表示装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/344,823 US9193906B2 (en) | 2012-10-03 | 2012-10-03 | Liquid crystal display device |
PCT/JP2012/075660 WO2014054133A1 (ja) | 2012-10-03 | 2012-10-03 | 液晶表示装置 |
EP12876587.2A EP2733529B1 (en) | 2012-10-03 | 2012-10-03 | Liquid crystal display device |
KR1020147010669A KR101499149B1 (ko) | 2012-10-03 | 2012-10-03 | 액정 표시 장치 |
JP2013500274A JP5299593B1 (ja) | 2012-10-03 | 2012-10-03 | 液晶表示装置 |
CN201280050692.XA CN103858049B (zh) | 2012-10-03 | 2012-10-03 | 液晶显示装置 |
US14/230,495 US9298033B2 (en) | 2012-10-03 | 2014-03-31 | Liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/075660 WO2014054133A1 (ja) | 2012-10-03 | 2012-10-03 | 液晶表示装置 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/344,823 A-371-Of-International US9193906B2 (en) | 2012-10-03 | 2012-10-03 | Liquid crystal display device |
US14/230,495 Division US9298033B2 (en) | 2012-10-03 | 2014-03-31 | Liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014054133A1 true WO2014054133A1 (ja) | 2014-04-10 |
Family
ID=49396839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075660 WO2014054133A1 (ja) | 2012-10-03 | 2012-10-03 | 液晶表示装置 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9193906B2 (ja) |
EP (1) | EP2733529B1 (ja) |
JP (1) | JP5299593B1 (ja) |
KR (1) | KR101499149B1 (ja) |
CN (1) | CN103858049B (ja) |
WO (1) | WO2014054133A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160009997A1 (en) * | 2013-09-24 | 2016-01-14 | Dic Corporation | Liquid crystal display device |
WO2016021582A1 (ja) * | 2014-08-06 | 2016-02-11 | Dic株式会社 | 液晶表示装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5761456B2 (ja) * | 2012-09-11 | 2015-08-12 | Dic株式会社 | 液晶表示装置 |
KR101508226B1 (ko) * | 2012-10-12 | 2015-04-07 | 디아이씨 가부시끼가이샤 | 액정 조성물 및 그것을 사용한 액정 표시 소자 |
WO2014196527A1 (ja) * | 2013-06-06 | 2014-12-11 | Dic株式会社 | 液晶表示装置 |
WO2014203752A1 (ja) * | 2013-06-18 | 2014-12-24 | Dic株式会社 | 液晶表示装置 |
TWI536083B (zh) * | 2013-09-11 | 2016-06-01 | 友達光電股份有限公司 | 液晶面板及液晶顯示裝置 |
WO2015129672A1 (ja) * | 2014-02-27 | 2015-09-03 | Dic株式会社 | 液晶表示装置 |
CN113484386B (zh) * | 2021-05-21 | 2024-02-13 | 郑州轻工业大学 | 一种金属聚酞菁纳米材料的制备方法及其应用,适配体传感器及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000019321A (ja) | 1998-06-29 | 2000-01-21 | Toray Ind Inc | カラーフィルター用顔料、カラーペースト及びカラーフィルター |
JP2000192040A (ja) | 1998-12-25 | 2000-07-11 | Toshiba Corp | 液晶表示装置 |
JP2002309255A (ja) * | 2001-02-09 | 2002-10-23 | Chisso Corp | 液晶uvシャッター用液晶組成物 |
JP2009109542A (ja) | 2007-10-26 | 2009-05-21 | Toppan Printing Co Ltd | カラーフィルタおよびこれを備えた横電界方式の液晶表示装置 |
JP2009163014A (ja) * | 2008-01-07 | 2009-07-23 | Toppan Printing Co Ltd | 液晶表示装置及び液晶表示装置用カラーフィルタ |
WO2010095506A1 (ja) * | 2009-02-19 | 2010-08-26 | チッソ株式会社 | テトラヒドロピランおよび2,2',3,3'-テトラフルオロビフェニルを有する4環液晶性化合物、液晶組成物および液晶表示素子 |
JP2010256509A (ja) * | 2009-04-23 | 2010-11-11 | Jsr Corp | 着色組成物、カラーフィルタおよびカラー液晶表示素子 |
WO2011092973A1 (ja) * | 2010-01-26 | 2011-08-04 | Jnc株式会社 | 液晶組成物および液晶表示素子 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6826001B2 (en) * | 2001-02-23 | 2004-11-30 | Dainippon Ink And Chemicals, Inc. | Color filter |
TWI388926B (zh) * | 2003-02-07 | 2013-03-11 | Mitsubishi Chem Corp | 著色樹脂組成物、彩色濾光片及液晶顯示裝置 |
JP2008139858A (ja) * | 2006-11-08 | 2008-06-19 | Fujifilm Corp | カラーフィルタ、液晶表示装置およびccdデバイス |
EP3660129B1 (en) | 2009-01-22 | 2021-07-28 | JNC Corporation | Liquid crystal composition and liquid crystal display device |
JP5903890B2 (ja) | 2009-11-09 | 2016-04-13 | Jnc株式会社 | 液晶表示素子、液晶組成物及び配向剤並びに液晶表示素子の製造方法及びその使用 |
JP5919698B2 (ja) | 2010-11-08 | 2016-05-18 | Jsr株式会社 | カラーフィルタ用着色組成物、カラーフィルタ及び表示素子 |
CN103221849B (zh) | 2010-11-19 | 2016-07-06 | Jsr株式会社 | 滤色器的制造方法、显示元件以及滤色器 |
CN103492531B (zh) | 2011-02-05 | 2016-06-22 | 默克专利股份有限公司 | 具有垂面取向的液晶显示器 |
-
2012
- 2012-10-03 WO PCT/JP2012/075660 patent/WO2014054133A1/ja active Application Filing
- 2012-10-03 JP JP2013500274A patent/JP5299593B1/ja active Active
- 2012-10-03 CN CN201280050692.XA patent/CN103858049B/zh active Active
- 2012-10-03 US US14/344,823 patent/US9193906B2/en active Active
- 2012-10-03 EP EP12876587.2A patent/EP2733529B1/en active Active
- 2012-10-03 KR KR1020147010669A patent/KR101499149B1/ko active IP Right Grant
-
2014
- 2014-03-31 US US14/230,495 patent/US9298033B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000019321A (ja) | 1998-06-29 | 2000-01-21 | Toray Ind Inc | カラーフィルター用顔料、カラーペースト及びカラーフィルター |
JP2000192040A (ja) | 1998-12-25 | 2000-07-11 | Toshiba Corp | 液晶表示装置 |
JP2002309255A (ja) * | 2001-02-09 | 2002-10-23 | Chisso Corp | 液晶uvシャッター用液晶組成物 |
JP2009109542A (ja) | 2007-10-26 | 2009-05-21 | Toppan Printing Co Ltd | カラーフィルタおよびこれを備えた横電界方式の液晶表示装置 |
JP2009163014A (ja) * | 2008-01-07 | 2009-07-23 | Toppan Printing Co Ltd | 液晶表示装置及び液晶表示装置用カラーフィルタ |
WO2010095506A1 (ja) * | 2009-02-19 | 2010-08-26 | チッソ株式会社 | テトラヒドロピランおよび2,2',3,3'-テトラフルオロビフェニルを有する4環液晶性化合物、液晶組成物および液晶表示素子 |
JP2010256509A (ja) * | 2009-04-23 | 2010-11-11 | Jsr Corp | 着色組成物、カラーフィルタおよびカラー液晶表示素子 |
WO2011092973A1 (ja) * | 2010-01-26 | 2011-08-04 | Jnc株式会社 | 液晶組成物および液晶表示素子 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2733529A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160009997A1 (en) * | 2013-09-24 | 2016-01-14 | Dic Corporation | Liquid crystal display device |
US9951275B2 (en) * | 2013-09-24 | 2018-04-24 | Dic Corporation | Liquid Crystal Display Device |
WO2016021582A1 (ja) * | 2014-08-06 | 2016-02-11 | Dic株式会社 | 液晶表示装置 |
JP6083492B2 (ja) * | 2014-08-06 | 2017-02-22 | Dic株式会社 | 液晶表示装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2733529A4 (en) | 2015-01-07 |
CN103858049A (zh) | 2014-06-11 |
CN103858049B (zh) | 2016-05-11 |
US20150042930A1 (en) | 2015-02-12 |
EP2733529A1 (en) | 2014-05-21 |
US20140211139A1 (en) | 2014-07-31 |
JPWO2014054133A1 (ja) | 2016-08-25 |
US9298033B2 (en) | 2016-03-29 |
US9193906B2 (en) | 2015-11-24 |
KR101499149B1 (ko) | 2015-03-05 |
JP5299593B1 (ja) | 2013-09-25 |
EP2733529B1 (en) | 2016-09-21 |
KR20140062173A (ko) | 2014-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5333879B1 (ja) | 液晶表示装置 | |
JP5333880B1 (ja) | 液晶表示装置 | |
JP5321932B1 (ja) | 液晶表示装置 | |
JP5273494B1 (ja) | 液晶表示装置 | |
JP5505568B1 (ja) | 液晶表示装置 | |
JP5299593B1 (ja) | 液晶表示装置 | |
JP5413706B1 (ja) | 液晶表示装置 | |
JP5413705B1 (ja) | 液晶表示装置 | |
JP5299588B1 (ja) | 液晶表示装置 | |
WO2014203325A1 (ja) | 液晶表示装置 | |
TWI462997B (zh) | Liquid crystal display device | |
JP5299594B1 (ja) | 液晶表示装置 | |
JP5765503B2 (ja) | 液晶表示装置 | |
TWI460260B (zh) | Liquid crystal display device | |
TWI468498B (zh) | 液晶顯示裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280050692.X Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2013500274 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012876587 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012876587 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14344823 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147010669 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12876587 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |