[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014051318A2 - Short interference rna gene delivery system for systemic circulation - Google Patents

Short interference rna gene delivery system for systemic circulation Download PDF

Info

Publication number
WO2014051318A2
WO2014051318A2 PCT/KR2013/008560 KR2013008560W WO2014051318A2 WO 2014051318 A2 WO2014051318 A2 WO 2014051318A2 KR 2013008560 W KR2013008560 W KR 2013008560W WO 2014051318 A2 WO2014051318 A2 WO 2014051318A2
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
cys
peg
complex
arginine
Prior art date
Application number
PCT/KR2013/008560
Other languages
French (fr)
Korean (ko)
Other versions
WO2014051318A3 (en
Inventor
김용희
임광석
이현린
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130060230A external-priority patent/KR101497668B1/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201380061873.7A priority Critical patent/CN104870023A/en
Priority to US14/431,586 priority patent/US9713645B2/en
Publication of WO2014051318A2 publication Critical patent/WO2014051318A2/en
Publication of WO2014051318A3 publication Critical patent/WO2014051318A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a gene carrier with improved efficiency of siRNA delivery and its systemic circulation in the body. More specifically, the present invention is based on polyethylene glycol (PEG) and R9 (arginine) peptides, and systemic circulation. Invention for siRNA gene delivery system.
  • PEG polyethylene glycol
  • R9 arginine
  • Gene therapy systems can be broadly classified into viral vector-mediated systems and non-viral vector-mediated systems.
  • Viral vectors made using retroviruses or adenoviruses have the advantage of having high transfection efficiency into cells, but have problems with immunogenicity in vivo and Inherent problems such as genetic recombination.
  • various polymeric gene delivery systems have been developed as an alternative to traditional viral vector-based gene delivery methods.
  • polymeric vectors have the problem of having intracellular trafficking barriers such as endosomal escape and nuclear localization.
  • Gene delivery systems based on synthetic peptides can overcome the above problems associated with polymeric gene delivery systems by condensing DNA by causing leakage in the endosomal membrane at low pH and also promoting endosomal escape.
  • RNAi nucleic acid delivery since the stability of the complex with the nucleic acid was low, the delivery to the synthetic peptide was difficult. Therefore, it was made by using lipids or liposomes, and it was difficult to effectively systemic systemic circulation.
  • the present inventors while studying a gene delivery system using a peptide, in particular, by PEGylating the vector of the R9 structure in which Cys is bound to one or both ends, it is possible to significantly improve the siRNA delivery efficiency. And the present invention was completed.
  • the main object of the present invention is to provide a siRNA carrier containing polyethylene glycol (PEG) and R9 (arginine) peptide and a method for delivering it into the body by systemic administration.
  • PEG polyethylene glycol
  • R9 arginine
  • Another object of the present invention is polyethylene glycol (PEG) and R9 (arginine) peptide; And to provide a complex containing the desired siRNA.
  • PEG polyethylene glycol
  • R9 arginine
  • Still another object of the present invention is to provide various uses of the complex containing siRNA carriers and siRNA for systemic circulation.
  • Polyethyleneglycol (PEG) and R9 (arginine) peptide base structure (PEG-R9) provides a variety of uses for siRNA delivery system for systemic circulation.
  • the present invention relates to an effective method of delivering siRNA genes for treating a desired disease into the body by systemic administration.
  • the present invention provides a siRNA delivery system for systemic circulation (PEG-R9) containing polyethylene glycol (PEG) and R9 (arginine) peptide.
  • the present invention provides a systemic circulating complex (PEG-R9-siRNA) containing polyethylene glycol (PEG), an R9 (arginine) peptide and a siRNA gene for treating a desired disease; And it provides a pharmaceutical composition for systemic circulation containing the same.
  • PEG-R9-siRNA polyethylene glycol
  • R9 arginine
  • the R9 (arginine) peptide is characterized in that Cys is bonded to one or both ends, and preferably has a Cys- (D-R9) -Cys or Gly- (D-R9) -Cys structure. . Most preferably it forms a Cys- (D-R9) -Cys structure.
  • PEG has a structure in which PEG is bonded to one or both ends of the peptide by the amine group (-NH 2 ) of Cys.
  • the polyethylene glycol (PEG) preferably has a molecular weight of 500 Daltons.
  • systemic circulation complex of the present invention has an advantage of having a small size as a siRNA carrier by having a nano size of 200 nm or less in diameter, and having an excellent charge ratio (+/-) of 6: 1 to 15: 1. Has transfection efficiency. In this case, when the charge ratio (+ /-) of 12: 1, the transfection efficiency is the best.
  • the complex can exhibit an excellent therapeutic effect by increasing the body's circulation time of siRNA for the treatment of the desired disease.
  • siVEGF was used as the cancer treatment gene siRNA.
  • PEG-R9-siRNA of the present invention can be used as an siRNA delivery system in which systemic circulation in the body is effective, having high transfection efficiency, low cytotoxicity, and high target gene expression efficiency.
  • PEG-R9 of the present invention may be the basis for siRNA delivery systems that significantly increase the delivery efficiency in the body, particularly by systemic administration of siRNA. Effective systemic administration can be achieved by PEGylating the ends of the R9 construct having Cys bound to one or both ends of the present invention, among various protein delivery domain types, thereby significantly improving the systemic delivery efficiency of siRNA. It is very useful as siRNA gene delivery system.
  • FIG. 1 is a schematic diagram of a nucleic acid carrier using a conjugate of polyethylene glycol (PEG) and oligo arginine (R9) of the present invention.
  • PEG polyethylene glycol
  • R9 oligo arginine
  • Figure 2 is a result of confirming the conjugate formation and stability of PEG-R9.
  • luciferase assay for intracellular gene transfer efficiency and an MTT assay (b) for cytotoxicity.
  • Fig. 7 shows the results of size and zeta potential analysis in the delivery vehicle using cys-R9-cys, PEG-R9 and PEG-cys-R9-cys.
  • Fig. 8 shows the results of size and zeta potential analysis in the delivery vehicle using PEG-cys-R9-cys, PEG-TAT, and PEG-cys-TAT-cys.
  • FIG. 9 is a graph comparing the growth rate of cancer cells according to PEG-R9-siVEGF complex (polyplexes) administration.
  • FIG. 10 is a photograph observing the inhibition of cancer cell growth 10 days after administration in nude mice transplanted with cancer.
  • Gene means any nucleic acid sequence or portion thereof that has a functional role in protein coding or transcription or in the regulation of other gene expression.
  • the gene may consist of any nucleic acid encoding a functional protein or only a portion of a nucleic acid encoding or expressing a protein.
  • Nucleic acid sequences may include gene abnormalities in exons, introns, initiation or termination regions, promoter sequences, other regulatory sequences, or unique sequences adjacent to genes.
  • polynucleotide refers to nucleotide polymers of all lengths, including ribonucleotides as well as deoxyribonucleotides.
  • Nucleic acid is meant to include any DNA or RNA, eg, chromosomes, mitochondria, viruses, and / or bacterial nucleic acids present in tissue samples. One or both strands of a double stranded nucleic acid molecule and any fragment or portion of an intact nucleic acid molecule.
  • Representative nucleic acids intended for delivery in the present invention is siRNA.
  • vector refers to a nucleic acid molecule capable of carrying another nucleic acid to which it is associated.
  • expression vector includes plasmids, cosmids or phages capable of synthesizing proteins encoded by each recombinant gene carried by the vector. Preferred vectors are those capable of self replication and expression of the associated nucleic acid.
  • Transfection refers to a method of expressing genotypes in a cell by directly introducing nucleic acids (DNA, RNA, etc.) into a culture animal cell. Putting it in is a common way. When the introduced gene was stabilized in cells, it was often interrupted by chromosomes. A cell into which a nucleic acid is introduced is called a transducer. Since the transduction efficiency is very low, several methods have been developed to increase the efficiency. Among them, calcium phosphate coprecipitation and DEAE-textlan treatment. Electroporation, redistribution (fusion method with cells that make artificial membranes and DNA complexes called liposomes).
  • zeta potential is meant an electrodynamic potential difference resulting from the difference in positive charge density in the diffusion bilayer of immobilized moisture that is easily attached to the charged particle surface and movable moisture that is easily separated from the particle.
  • electrical potential difference sometimes referred to as the electrical potential difference or zeta potential between the cell surface and the surrounding culture.
  • Charge rate refers to the proportion of each charge used in a complex that functions as a gene carrier, in which negatively charged DNA binds to a positively charged carrier or carrier through electrostatic attraction. After the complex is formed, the transfer efficiency is good when the overall charge is positive, because the cell membrane is negatively charged.
  • amino acid and amino acid residue refer to natural amino acids, unnatural amino acids, and modified amino acids. Unless stated otherwise, all references to amino acids include references to both D and L stereoisomers (where the structure allows such stereoisomeric forms), either generically or by name.
  • Natural amino acids include alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Gln), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Ile), Leucine (Leu), Lysine (Lys), Methionine (Met), Phenylalanine (Phe), Proline (Pro), Serine (Ser), Threonine (Thr), Tryptophan (Trp), Tyrosine (Tyr) and Valine (Val) is included. In the present invention, it is preferable to use the D isomer of arginine (Arg).
  • gene expression generally refers to a cellular process in which a biologically active polypeptide is produced from a DNA sequence and exhibits biological activity in a cell.
  • gene expression includes not only transcriptional and translational processes, but also posttranscriptional and posttranslational processes that can affect the biological activity of a gene or gene product.
  • the processes include RNA synthesis, processing and transport, as well as post-translational modifications of polypeptide synthesis, transport and polypeptides.
  • Luciferase is an enzyme that promotes the oxidation of luciferin and converts chemical energy into light energy to emit light. It is used to measure expression continuously and in real time in vivo. It functions as a reporter gene that allows you to verify the effect. It can be obtained directly from insects such as firefly or glow-worm or by expression from microorganisms comprising recombinant DNA fragments encoding such enzymes.
  • a “carrier” or “carrier” refers to a polymer material that is responsible for transporting a carrier when an active substance in an organism is present in combination with another substance or when a substance is transferred through a cell membrane.
  • carriers include, but are not limited to, buffers such as phosphate, citrate and other organic acids, antioxidants such as ascorbic acid, low molecular weight polypeptides (less than about 10 residues), proteins such as serum albumin, gelatin or immunoglobulins, polyvinylpyrrolidone Hydrophilic polymers, such as glycine glutamine, asparagine, arginine or lysine, monosaccharides, disaccharides and other carbohydrates including glucose, mannose, or dextrins, chelating agents such as EDTA, sugar alcohols such as mannitol or sorbitol, sodium Salt-forming counterions, and / or nonionic surfactants such as TWEEN®, polyethylene glycol (PEG) and PLURONICS®.
  • Treatment is an approach for obtaining beneficial or desired results, including clinical results.
  • Treatment or “mitigation” of a disease, disorder or condition is a progression of progression with less and / or less clinical signs and / or undesirable clinical signs of the condition, disorder or disease state as compared to not treating the disorder. Means slowing down or getting longer.
  • beneficial or desirable clinical outcomes may alleviate or ameliorate one or more symptoms, reduce the extent of disease, or stabilize (ie, not worsen) a disease. , Delaying or slowing disease progression, ameliorating or alleviating disease state, and soothing (partial or total).
  • Treatment can also mean prolonging survival as compared to expected survival if untreated.
  • treatment does not need to occur by administration of a single dose and often occurs upon administration of a series of doses.
  • a therapeutically effective amount, an amount sufficient to alleviate, or an amount sufficient to treat a disease, disorder or condition may be administered in one or more administrations.
  • disorder is any condition that would benefit from treatment with molecules identified using the transgenic animal model of the present invention. This includes chronic and acute diseases or conditions, including pathological conditions that make mammals susceptible to mysterious diseases. Examples of diseases to be dealt with herein are, but are not limited to, cancer and the like.
  • a “therapeutically effective amount” means an active compound in a composition that will elicit a biological or medical response in a tissue, system, subject or human being sought by a researcher, veterinarian, physician or other clinician, which includes alleviating the symptoms of the disorder to be treated. Means the amount of.
  • Geneology refers to treating a genetic disease by correcting a mutated gene or treating a disease by controlling protein expression using a gene or RNAi. In other words, it is a method of treating a disease by transplanting a normal gene to a patient's cell and changing the phenotype of the cell.
  • “About” means 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4 for reference quantities, levels, values, numbers, frequencies, percentages, dimensions, sizes, quantities, weights, or lengths. , Amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length, varying by about 3, 2 or 1%.
  • the present invention relates to intracellular transfection of nucleic acid, and more particularly, to various uses, including a carrier and a method for enhancing the systemic delivery efficiency of siRNA by systemic administration.
  • non-viral siRNA gene delivery or vector for systemic circulation including polyethylene glycol (PEG) and poly (oligo-arginine), in particular R9 (arginine) peptide; And a method of using the same.
  • PEG polyethylene glycol
  • oligo-arginine in particular R9 (arginine) peptide
  • a non-viral gene transfer vector is a generic term for a carrier that carries a gene into a cell without using a virus.
  • the non-viral gene transfer vector uses a negative charge property of the nucleic acid constituting the gene.
  • Vectors in the form of coating nucleic acids using interactions are representative examples.
  • the poly (oligo-arginine) of the present invention includes poly (oligo-L-arginine) and poly (oligo-D-arginine), and among them, poly (oligo-D-arginine) is most preferred.
  • High molecular weight poly (oligo-D-arginine) effectively promotes condensation of DNA to form stable complexes and internalization of DNA into cells, and after internalization the complexes escape from the endosome to the cytoplasmic space by reduction of disulfide bonds. do.
  • the reducing poly (oligo-D-arginine) of the present invention is preferably composed of a cationic oligomer including terminal cysteine crosslinked with disulfide, but is not limited thereto.
  • Cysteine is the only amino acid that contains sulfhydryl groups that form disulfide cross-linking with other adjacent cysteine molecules, and the protein delivery domain (PTD) moiety other than the disulfide-crosslinked terminal cysteine is any cationic peptide.
  • PTD protein delivery domain
  • the reducing poly (oligo-D-arginine) of the present invention is characterized in that Cys is bonded to one or both ends. Most preferably, Cys is bonded to both ends. For example, it may consist of Cys- (D-R9) -Cys or Gly- (D-R9) -Cys repeat units.
  • Such reducing poly (oligo-D-arginine) can be prepared by DMSO oxidation of the terminal cysteine-thiol groups of Cys- (D-R9) -Cys or Gly- (D-R9) -Cys repeat units, and reduction It can be fragmented into Cys- (DR) 9-Cys as a reagent.
  • the reducing poly (oligo-arginine) of the present invention has a structure composed of nine arginine (R9) in which Cys is bonded at one or both ends thereof, preferably Cys- (D-R9) -Cys or Gly- (D-R9) -Cys structure, most preferably Cys- (D-R9) -Cys. Cys is located at both ends such that the effective condensation of the oligo peptoplex (peptoplex) and thus the neutral charge properties of the complex can be retained.
  • the gene delivery system of the present invention is characterized by binding polyethylene glycol (PEG) to an R9 (arginine) structure in which Cys is bound to one or both ends for systemic circulation.
  • PEG polyethylene glycol
  • R9 arginine
  • PEG-R9 refers to a structure in which polyethylene glycol (PEG) is bonded to one or more ends of R9 (arginine) in which Cys is bonded to one or both ends.
  • PEG polyethylene glycol
  • R9 arginine
  • PEGylation of protein is used to improve the systemic circulation efficiency of the transfer gene, the conjugation reaction occurs mainly through the four functional groups of the protein (carboxyl PEGylation, amine, respectively) It is called Amine PEGylation, N-terminal PEGylation, or Thiol PEGylation.
  • R9 peptide structure for example, Cys- (D-R9) -Cys or Gly- (D-R9) -Cys peptide structure, in which Cys is bonded at one or both ends, Amine PEGylation was used.
  • the PEG-R9 vector of the present invention is efficient for in vivo delivery of nucleic acid. Among them, it is very preferable for efficient in vivo delivery of siRNA.
  • RNA interference is a natural mechanism that involves specifically down-regulating expression of a gene of interest by a double helix, short interfering RNA (siRNA), which is an example of the type of RNAi reagent that mediates such RNAi.
  • siRNA short interfering RNA
  • miRNA miRNA
  • shRNA small hairpin RNA
  • Liposomes which have been used for siRNA delivery in the body, are lost in the circulatory system by phagocytosis of macrophages in the liver or spleen due to the adsorption of blood proteins, as in the case of other particulate drug carriers for systemic circulation. Or, there was a problem that the drug is released from liposomes during the blood circulation. In particular, phagocytosis of macrophages occurs due to the adsorption of opsonic proteins on the surface of liposomes.
  • phospholipid-PEG derivatives incorporating PEG (poly [ethylene glycol]) at the end of phospholipid Liposomes that can inhibit the adsorption of opsonine proteins have been developed by using as a constituent of liposomes or by coating the surface of the prepared liposomes with PEG or polysaccharides.
  • liposomes when such a phospholipid-PEG derivative is used as a constituent of liposomes, liposomes have a low self-stability and have low transfection efficiency and toxicity. Therefore, it is difficult to apply in vivo for in vivo administration. In addition, since most of them go to the liver after administration, there was also a problem of low distribution of tumors compared to liver.
  • PEG-R9 of the present invention most preferably PEG-Cys-R9-Cys construct, is very effective in the systemic circulation of siRNA without such problems.
  • the present invention polyethylene glycol (PEG); R9 (arginine) peptides; And siRNA complexes for systemic circulation, consisting of siRNA; And it relates to a composition for treating a target disease comprising the same, to a configuration in which the target gene siRNA is coupled to the gene carrier.
  • PEG polyethylene glycol
  • R9 arginine
  • siRNA complexes for systemic circulation consisting of siRNA
  • any desired siRNA for the desired treatment can be inserted, and they may exist or be synthesized in nature, and may exist in various sizes from oligonucleotides to chromosomes in size. have. These genes come from humans, animals, plants, bacteria, viruses and the like. These can be obtained using methods known in the art.
  • the complex may also include therapeutic gene expression regulators of a desired disease, such as cancer, such as transcriptional promoters, enhancers, silencers, operators, terminators, attenuators and other expression regulators.
  • therapeutic gene expression regulators of a desired disease such as cancer, such as transcriptional promoters, enhancers, silencers, operators, terminators, attenuators and other expression regulators.
  • polyethylene glycol (PEG); R9 (arginine) peptides can provide a composition for treating a target disease comprising a siRNA delivery complex consisting of a siRNA for treating the desired disease.
  • siRNAs are expressed from transcriptional units inserted into nucleic acid vectors (commonly referred to as recombinant vectors or expression vectors).
  • Vectors can be used to deliver nucleic acid molecules encoding siRNA into cells to target specific genes.
  • transfection of cells expressing a target gene can be carried out using a variety of methods for transfection, such as, for example, electroporation, the use of cationic lipids or cationic polymers as helpers for transfection. Can be. Thereafter, the cells are cultured under suitable conditions to allow expression of the target gene. The expression of the target gene is then measured using a suitable technique such as, for example, measuring the amount of RT-PCR or reporter gene.
  • any type of cell can be used for transfection, but in a preferred embodiment the cell is a eukaryotic cell, preferably an animal cell, more preferably a mammalian cell, most preferably a human cell.
  • siVEGF for anticancer was used as siRNA.
  • VEGF vascular endothelial growth factor
  • cancer tumor cells
  • the PEG-R9 transporter of the present invention which can efficiently deliver siVEGF to cancer cells, may be usefully used for anticancer purposes.
  • VEGF overexpress VEGF
  • lung cancer gynecologic malignancies, melanoma, breast cancer, pancreatic cancer, ovarian cancer, uterine cancer, colorectal cancer, prostate cancer, kidney cancer, head cancer, pancreatic cancer, liver cancer (hepatocellular cancer) ), Cervical cancer, neck cancer, kidney cancer (renal cell cancer), sarcoma, myeloma, lymphoma and the like can be usefully used.
  • a therapeutically effective amount of the complex or composition according to the invention can be provided by known routes of administration.
  • Embodiments according to the invention are applied to enable the transfection of PEG-R9-siVEGF into cancer cells.
  • composition of the present invention may include or use any of the above means for transfecting genetic material into target cells, but not limited thereto.
  • the siRNA may further include a cationic amphiphilic material to be released into cancer cells.
  • nucleic acid molecules and promoters of the present invention may be formulated into pharmaceutical compositions prepared according to conventional pharmaceutical synthesis techniques.
  • compositions may comprise the active agent or a pharmaceutically acceptable salt of the active agent.
  • the composition may be administered simultaneously or sequentially.
  • These compositions may comprise, in addition to one active substance, pharmaceutically acceptable excipients, carriers, buffers, stabilizers or other substances well known in the art. These substances should be nontoxic and should not interfere with the efficacy of the active ingredient.
  • the carrier can take a variety of forms depending on whether it is the form of preparation desired for administration, eg, topical, intravenous, oral, meninges, neural epithelium, or parenteral. It can generally be prepared for oral or parenteral administration by mixing with fillers, dilators, binders, wetting agents, disintegrating agents, diluents such as surfactants, excipients.
  • Dosages and schedules effective for the administration of the complex and compositions comprising the complex can be determined empirically and can be appropriately determined by one skilled in the art. Single or multiple doses may be used.
  • PEG-R9 based transporters and complexes for the systemic circulation of siRNA have the following advantages.
  • PEG-R9 of the present invention is well conjugated with siRNA and excellent in its protective effect.
  • the transfection efficiency of PEG-R9 of the present invention is a charge ratio (+/-) of 6: 1 to 15: 1, moreover, because condensation of PEG-R9 and gene siRNA occurs well above a charge ratio of 6: 1.
  • it has a charge ratio (+ /-) of 9: 1 to 15: 1.
  • the carrier of the present invention exhibited the highest gene transfection efficiency at a charge ratio of 12: 1.
  • the charge ratio is a phosphate (phosphate) of the components of the gene (nucleic acid) is a negative charge and arginine of the components of the carrier is a positive charge, the negative charge of the gene as a reference to 1 and then reacted
  • increasing the amount of the carrier 6 to 15 times means the rate of reaction with the gene.
  • having a charge ratio of 6: 1 to 15: 1 means that the amount of the carrier is 6 to 15 times larger than the target gene.
  • the cell membrane is negatively charged, so that when the gene transfer complex is positively charged as a whole, the transfer efficiency is excellent.
  • the complex When the complex is negatively charged, it does not easily pass through the cell membrane, whereas when the complex is positively charged, it can easily pass through the cell membrane by a charge-to-charge reaction.
  • the amount of charge affects cell membrane permeability, and the higher the amount of charge, the greater the ability to pass through the cell membrane.
  • PEG-R9 of the present invention has a much higher gene expression efficiency compared to the cationic carrier PEI that is commonly used. That is, PEG-R9 showed more effective siRNA condensation ability, and protected from DNA degradation in serum at an appropriate charge ratio.
  • PEG-R9 of the present invention combines with siRNA to form a nano sized complex and has a positive zeta potential value.
  • PEG-R9 when bound with siRNA, concentrates DNA more effectively by electrostatic interaction.
  • the positive charge is displayed in the neutral condition, so that the complex can be effectively concentrated to the nano-size (about 200 nm or less), and the zeta of the charge ratio of about 5 or more (positive) It can have potential.
  • the negative electrode cannot easily pass through the cell membrane having the same negative charge, while the positively charged complex can easily pass through the cell membrane by a charge-to-charge reaction, thereby providing a positive amount of the present invention.
  • the property of zeta potential suggests excellent gene transfer efficiency.
  • the particle size of the PEG-bonded complex is smaller than when PEG is not bound; And when the cysteine (cyctein, Cys) is bonded to both ends of R9 was confirmed that the size of the particles are smaller and uniform.
  • the most preferred form of the present invention is that cysteine is bonded to both ends of the R9 oligopeptide, and furthermore, PEG is bonded thereto.
  • PEG-R9 of the present invention is excellent in the siRNA delivery efficiency and expression rate in the cell, there is no cytotoxicity.
  • PEG-R9 of the present invention is low in cytotoxicity so that it can be used in vivo.
  • PEG-R9 showed at least 95% cell viability compared to toxic PEI (FIG. 6).
  • PEG-R9 shows an excellent anticancer effect by increasing the circulating time of siRNA.
  • the PEG-R9 and the siRNA conjugate were observed by intravenous injection into nude mice, and it was confirmed that cancer cell growth was significantly inhibited.
  • the PEG-R9 and PEG-R9-siRNA of the present invention can be used as an siRNA delivery system in which systemic circulation in the body is effective, having high transfection efficiency, low cytotoxicity, and high target gene expression efficiency.
  • FIG. 1 A schematic diagram of a nucleic acid carrier using a conjugate of polyethylene glycol and oligo arginine is shown in FIG. 1.
  • N-Hydroxysuccinimide (NHS) ester PEG molecular weight 500, Thermo Fisher Scientific Inc. Rockford, IL USA
  • NHS ester PEG molecular weight 500, Thermo Fisher Scientific Inc. Rockford, IL USA
  • Peptide binding occurs when the peptide reacts with NHS ester PEG at a reaction ratio of 1: 1 at slightly basic conditions of pH 7-8.
  • siVEGF (5-AUGUGAAUGCAGACCAAAGAA dTdT-3) was purchased from Bioneer and the peptide (PEG-Cys- (D-R9) -Cys) was synthetically ordered from Anigen.
  • siVEGF 50 pmol siVEGF, deionized water and PEG-R9 (charge ratio: 6, 9) were incubated at room temperature for 20 minutes to prepare oligo peptoplexes (oligo-peptoplexe). After incubation, electrophoresis was performed at 2% agarose gel at 100V for 20 minutes. In addition, after incubating siVEGF and PEG-R9, the mouse serum was added at a volume ratio of 90% to perform a stability test for up to 24 hours. Heparin was added to isolate PEG-R9 and siVEGF to determine whether the band of siVEGF was maintained.
  • PEG-R9 form also showed that the conjugate with the nucleic acid is well formed, it was confirmed that the protective effect of the nucleic acid to the serum is excellent.
  • siVEGF 5 ⁇ g siVEGF, deionized water and PEG-R9 (charge ratio: 6, 9, 12, 15) were incubated at room temperature for 30 minutes to prepare oligo peptoplexes.
  • the average diameter and surface zeta potential of the oligo peptoplexes were determined using a DLS with Zetasizer-Nano ZS (Malvern Instruments, UK).
  • the zeta potential showed a positive value at the charge ratio 6 or more, and the average diameter was less than 200 nm at the charge ratio 6 or more.
  • the average diameter was the smallest at charge ratio 12 (100 nm).
  • R9 used for PEG-R9 is bound to PEG in the structure of C- (D-R9) -C.
  • C- (D-R9) -C In order to check whether the structure of C- (D-R9) -C is optimal, the following groups were compared.
  • a complex of the carrier of G- (D-R9) -G, G- (D-R9) -C, C- (D-R9) -G, C- (D-R9) -C and luciferase DNA Formation was evaluated for transfection efficiency in cells.
  • the composite used in the present example was formed by forming a charge ratio of 1: 5.
  • Intracellular permeability of PEG-R9 / FITC-siVEGF was assessed using flow cytometry (FACS).
  • FACS flow cytometry
  • SCC7 cells were purchased from ATCC to induce differentiation. SCC7 cells were cultured in 37 ° C., 5% CO 2 atmosphere in complete medium supplemented with RPMI 1640, 10% FBS, 1% penicillin and streptomycin. Cells were passaged three times a week.
  • the obtained SCC7 cells were seeded in 12 well plates at 1 ⁇ 10 5 . After 24 hours of seeding, complexes were formed and transfected with 100 pmol of FITC-siVEGF and PEG-R9 (charge ratio: 8, 15, 23). PEI complex was used as control at charge ratio 8. After 4 hours of incubation, the cells were obtained by washing with PBS, trypsinized, transferred to 1.5 ml microtubes, and then centrifuged at 1,300 rpm for 3 minutes. After washing with FACS (Fluorescence Activated Cell Sorter) buffer, it was measured by FACS.
  • FACS Fluorescence Activated Cell Sorter
  • Luciferase gene expression was measured with a luciferase assay kit, and cell viability assays were performed by MTT assay.
  • Luciferase assay kit was purchased from Promega (USA) and DC protein assay kit and bovine serum albumin standard were purchased from Bio-Rad Laboratories (USA). SCC7 cells were seeded 2 ⁇ 10 4 in 24 well plates. After 24 hours of seeding, cells were transfected with 4 ⁇ g of plasmid luciferase and R9 and PEG-R9 complexes with a charge ratio of 12.
  • PEI complex was used as control at charge ratio 8. After 48 hours of incubation, cells were washed with PBS and treated with 150 ⁇ l of 1 ⁇ cell lysis buffer reagent for 20 minutes. Cell lysates were scraped off and transferred to 1.5 ml microtubes and centrifuged for 3 minutes at 13,000 rpm. Luminescence of cell lysates was measured by 96-well plate photometer (Berthold Detection Systems, Germany) by 20 seconds integration and expressed as relative luminescence units (RLU) per mg of cell protein. .
  • Proteins were determined with a DC protein assay kit using bovine serum albumin standard. The above method was used to compare PEG500 and PEG1000, and the optimum PEG was selected.
  • SCC7 cells were cultured in 24 well plates and treated with R9, PEG-R9 and PEI complexes at defined charge rates. After 48 hours of transfection, 50 ⁇ l MTT reagent and 500 ⁇ l medium were added to each well and incubated at 37 ° C. for 3 hours. The culture medium was removed and 500 ⁇ l dimethyl sulfoxide (DMSO) was added to each well and incubated for 20 minutes at room temperature. Absorbance was measured at 570 nm.
  • DMSO dimethyl sulfoxide
  • PEG-R9 expresses the gene well in the cell, and the cytotoxicity is very low compared to other gene carriers (ex. PEI). .
  • siRNA delivery After conjugation of siVEGF and various types of transporters, their size and zeta potential analysis were used to find an optimal transporter for siRNA delivery.
  • the particle size of the PEG-coupled carrier was smaller than when PEG was not bound, and when cysteine was not present at the terminal of R9, the particle size was rather increased (FIG. 7). Through this, it was found that cysteine is bonded to both ends of R9, and furthermore, the binding rate of siRNA is improved when PEG is bound.
  • the cancer model was induced by injecting 2 ⁇ 10 6 SCC7 cells into the hind limbs of 7 week old nude mice. Treatment started when the tumor volume reached 100 mm 3 or more. PEG-R9, R9 and PEI complexes at 10 ⁇ g of siVEGF and defined charge ratios were administered as tail vein three times a week for 2 weeks. The number of nude mice in each group was five.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a gene delivery system which improves siRNA delivery and the in vivo systemic circulation efficiency thereof More particularly, the present invention is a siRNA gene delivery system for systemic circulation based on polyethylene glycol (PEG) and an arginine 9 (R9) peptide.

Description

전신 순환을 위한 짧은 간섭 RNA 유전자 전달체Short Interfering RNA Gene Carriers for Systemic Circulation
본 발명은 siRNA 전달 및 이의 체내 전신 순환(systemic circulation)의 효율이 개선된 유전자 전달체에 대한 발명으로서, 보다 구체적으로 본 발명은 폴리에틸렌글리콜(PEG) 및 R9(arginine) 펩타이드를 기반으로 하는, 전신 순환용 siRNA 유전자 전달 시스템에 대한 발명이다.The present invention relates to a gene carrier with improved efficiency of siRNA delivery and its systemic circulation in the body. More specifically, the present invention is based on polyethylene glycol (PEG) and R9 (arginine) peptides, and systemic circulation. Invention for siRNA gene delivery system.
통상적인 단백질 치료의 대용으로서 다양한 유전자 치료 기법이 발달되어 왔으나, 이에는 여전히 해결되어야 할 중요한 과제들이 존재한다. 유전자 치료의 주요한 과제 중 하나는 최소 세포독성을 가지고 원형질막(동물세포) 및 핵막을 통한 효율적인 유전자 유입(influx)을 달성하는 것이다.Although various gene therapy techniques have been developed as a substitute for conventional protein therapy, there are still important challenges to be solved. One of the major challenges of gene therapy is to achieve efficient influx through plasma membranes (animal cells) and nuclear membranes with minimal cytotoxicity.
유전자 치료 시스템은 크게 바이러스성 벡터-매개 시스템 및 비바이러스성 벡터-매개 시스템으로 분류될 수 있다. 레트로바이러스(retrovirus) 또는 아데노바이러스(adenovirus) 등을 이용하여 만든 바이러스성 벡터는 세포 내로의 높은 형질 주입 (트랜스펙션(transfection)) 효율을 갖는다는 장점이 있으나, in vivo 에서 면역원성의 문제 및 유전자 재조합과 같은 내재적 문제점 등을 갖는다. 이러한 바이러스성 벡터의 안정성 문제를 극복하기 위하여, 다양한 중합체성 유전자 전달 시스템이 전통적인 바이러스성 벡터-기재 유전자 전달 방법에 대한 대안으로서 발달되어 왔다. 그러나, 중합체성 벡터는 엔도좀 탈출(endosomal escape) 및 핵 편재화(nuclear localization)와 같은 세포내 트래피킹(trafficking) 장벽을 갖는다는 문제점이 있다.Gene therapy systems can be broadly classified into viral vector-mediated systems and non-viral vector-mediated systems. Viral vectors made using retroviruses or adenoviruses have the advantage of having high transfection efficiency into cells, but have problems with immunogenicity in vivo and Inherent problems such as genetic recombination. To overcome the stability problem of these viral vectors, various polymeric gene delivery systems have been developed as an alternative to traditional viral vector-based gene delivery methods. However, polymeric vectors have the problem of having intracellular trafficking barriers such as endosomal escape and nuclear localization.
합성 펩타이드에 기초한 유전자 전달 시스템은, 낮은 pH 에서 엔도좀 막 내에서의 누출을 야기시킴으로써 DNA 를 응축시키고, 또한 엔도좀 탈출을 촉진하므로 중합체성 유전자 전달 시스템과 관련된 상기 문제점들을 극복할 수 있다. Gene delivery systems based on synthetic peptides can overcome the above problems associated with polymeric gene delivery systems by condensing DNA by causing leakage in the endosomal membrane at low pH and also promoting endosomal escape.
이러한 이유로, 다양한 합성 펩타이드가 in vitro 에서 여러 세포주에서의 유전자 전달을 촉진하는 것으로 개발되어 왔다. 그러나, 이 역시 in vivo 적용에 있어서 독성 및 혈청 불안정성 등의 문제점이 존재한다. 특히, 이와 관련하여 짧은 양이온성 펩타이드를 이용한 벡터에 대한 연구가 진행되고 있으나, 이 경우 세포외 공간에서 핵산이 불안정하다는 문제점이 있으며, 또한 핵산과의 복합체의 안정성 및 유전자 발현의 수준 등이 불충분하다는 문제점이 존재한다. For this reason, various synthetic peptides have been developed to promote gene transfer in different cell lines in vitro . However, there are also problems such as toxicity and serum instability in in vivo applications. In particular, studies on vectors using short cationic peptides have been conducted in this regard, but in this case, there is a problem that the nucleic acid is unstable in the extracellular space, and that the stability of the complex with the nucleic acid and the level of gene expression are insufficient. There is a problem.
그 중에서도, RNAi 핵산 전달의 경우는, 핵산과의 복합체의 안정성이 낮아 합성 펩타이드로의 전달이 어려웠는 바, 종래 지질이나 리포솜 등을 이용하여 이루어졌고, 효과적인 체내 전신순환이 어려운 단점이 있었다. Among them, in the case of RNAi nucleic acid delivery, since the stability of the complex with the nucleic acid was low, the delivery to the synthetic peptide was difficult. Therefore, it was made by using lipids or liposomes, and it was difficult to effectively systemic systemic circulation.
이에 본 발명자들은 펩타이드를 이용한 유전자 전달 시스템을 연구하던 중, 특히, 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 R9 구조의 벡터를 페길레이션(PEGylation)시킴으로써 siRNA의 체내 전달 효율을 현저히 향상시킬 수 있음을 발견하고, 본 발명을 완성하였다.Therefore, the present inventors, while studying a gene delivery system using a peptide, in particular, by PEGylating the vector of the R9 structure in which Cys is bound to one or both ends, it is possible to significantly improve the siRNA delivery efficiency. And the present invention was completed.
본 발명의 주요 목적은 폴리에틸렌글리콜(PEG) 및 R9(arginine) 펩타이드를 함유하는 siRNA 전달체 및 전신 투여에 의해 이를 체내로 전달하는 방법를 제공하는 데 있다.The main object of the present invention is to provide a siRNA carrier containing polyethylene glycol (PEG) and R9 (arginine) peptide and a method for delivering it into the body by systemic administration.
본 발명의 다른 목적은 폴리에틸렌글리콜(PEG) 및 R9(arginine) 펩타이드; 및 목적 siRNA를 함유하는 복합체를 제공하는 데 있다.Another object of the present invention is polyethylene glycol (PEG) and R9 (arginine) peptide; And to provide a complex containing the desired siRNA.
본 발명의 또 다른 목적은 상기 전신 순환용 siRNA 전달체 및 siRNA를 함유하는 복합체의 다양한 용도를 제공하는데 있다.Still another object of the present invention is to provide various uses of the complex containing siRNA carriers and siRNA for systemic circulation.
상기 과제를 해결하기 위하여, In order to solve the above problems,
폴리에틸렌글리콜(PEG) 및 R9(arginine) 펩타이드를 기본 구조로 하는(PEG-R9), 전신 순환용 siRNA 전달체의 다양한 용도를 제공한다. 특히 전신 투여에 의해 목적 질환 치료용 siRNA 유전자를 체내로 전달하는 효과적인 방법에 관한 것이다.Polyethyleneglycol (PEG) and R9 (arginine) peptide base structure (PEG-R9), provides a variety of uses for siRNA delivery system for systemic circulation. In particular, the present invention relates to an effective method of delivering siRNA genes for treating a desired disease into the body by systemic administration.
일 구체적인 태양으로, 본 발명은 폴리에틸렌글리콜(PEG) 및 R9(arginine) 펩타이드를 함유하는, 전신 순환용 siRNA 전달체(PEG-R9)를 제공한다. In one specific aspect, the present invention provides a siRNA delivery system for systemic circulation (PEG-R9) containing polyethylene glycol (PEG) and R9 (arginine) peptide.
다른 구체적인 태양으로, 본 발명은 폴리에틸렌글리콜(PEG), R9(arginine) 펩타이드 및 목적 질환 치료용 siRNA 유전자를 함유하는 전신 순환용 복합체(PEG-R9-siRNA); 및 이를 함유하는 전신 순환용 약학적 조성물을 제공한다. In another specific aspect, the present invention provides a systemic circulating complex (PEG-R9-siRNA) containing polyethylene glycol (PEG), an R9 (arginine) peptide and a siRNA gene for treating a desired disease; And it provides a pharmaceutical composition for systemic circulation containing the same.
특히, 상기 R9(arginine) 펩타이드는 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 것을 특징으로 하고, 바람직하게는 Cys-(D-R9)-Cys 또는 Gly-(D-R9)-Cys 구조를 가진다. 가장 바람직하게는 Cys-(D-R9)-Cys 구조를 이룬다.In particular, the R9 (arginine) peptide is characterized in that Cys is bonded to one or both ends, and preferably has a Cys- (D-R9) -Cys or Gly- (D-R9) -Cys structure. . Most preferably it forms a Cys- (D-R9) -Cys structure.
이 때, 상기 Cys의 아민기(-NH2)에 의해 PEG가 펩타이드 한쪽 말단 또는 양쪽 말단에 결합되어 있는 구조를 지닌다.At this time, PEG has a structure in which PEG is bonded to one or both ends of the peptide by the amine group (-NH 2 ) of Cys.
그리고, 폴리에틸렌글리콜(PEG)은 500 달톤의 분자량을 가지는 것이 바람직하다.The polyethylene glycol (PEG) preferably has a molecular weight of 500 Daltons.
또한, 본 발명의 전신 순환용 복합체는 200nm 이하의 직경의 나노 크기를 가짐으로써 siRNA 전달체로써 작은 크기를 가지는 장점이 있고, 6:1 ~ 15:1의 전하비율(+/-)을 가짐으로써 우수한 트랜스펙션 효율을 가진다. 이때, 12:1의 전하비율(+/-)을 가지는 경우 트랜스펙션 효율이 가장 우수하다.In addition, the systemic circulation complex of the present invention has an advantage of having a small size as a siRNA carrier by having a nano size of 200 nm or less in diameter, and having an excellent charge ratio (+/-) of 6: 1 to 15: 1. Has transfection efficiency. In this case, when the charge ratio (+ /-) of 12: 1, the transfection efficiency is the best.
상기 복합체는 목적하는 질환의 치료를 위한 siRNA의 체내 순환시간을 증가시킴으로써, 뛰어난 치료 효과를 나타낼 수 있다. The complex can exhibit an excellent therapeutic effect by increasing the body's circulation time of siRNA for the treatment of the desired disease.
본 발명의 일 실시에에서는 암 치료 유전자 siRNA로서 siVEGF를 사용하였다.In one embodiment of the present invention, siVEGF was used as the cancer treatment gene siRNA.
이처럼, 본 발명의 PEG-R9-siRNA는 높은 트랜스펙션 효율, 낮은 세포독성, 높은 목적 유전자 발현 효율을 가지는, 체내 전신 순환이 효과적인 siRNA 전달 시스템으로 사용될 수 있다.As such, PEG-R9-siRNA of the present invention can be used as an siRNA delivery system in which systemic circulation in the body is effective, having high transfection efficiency, low cytotoxicity, and high target gene expression efficiency.
본 발명의 PEG-R9는 특히 siRNA의 전신 투여에 의한 체내 전달 효율을 현저히 높이는 siRNA 전달 시스템의 기반이 될 수 있다. 다양한 단백질 전달 도메인 종류 중에서도 특히 본 발명의 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 R9 구조체의 말단을 페길레이션(PEGylation) 시킴으로써 siRNA의 체내(systemic) 전달 효율을 현저히 향상시킬 수 있으므로, 효과적인 전신 투여용 siRNA 유전자 전달 시스템으로 매우 유용하다.PEG-R9 of the present invention may be the basis for siRNA delivery systems that significantly increase the delivery efficiency in the body, particularly by systemic administration of siRNA. Effective systemic administration can be achieved by PEGylating the ends of the R9 construct having Cys bound to one or both ends of the present invention, among various protein delivery domain types, thereby significantly improving the systemic delivery efficiency of siRNA. It is very useful as siRNA gene delivery system.
도 1은 본 발명의 폴리에틸렌글리콜(PEG)과 올리고 아르기닌(R9)의 접합체를 이용한 핵산 전달체 모식도이다. 1 is a schematic diagram of a nucleic acid carrier using a conjugate of polyethylene glycol (PEG) and oligo arginine (R9) of the present invention.
도 2는 PEG-R9의 접합체 형성 확인 및 이의 안정성 확인 결과이다.Figure 2 is a result of confirming the conjugate formation and stability of PEG-R9.
도 3은 PEG-R9-siVEGF 복합체(polyplexes) 형성 후 크기 및 제타 포텐셜 측정 결과이다.3 shows the results of size and zeta potential measurements after PEG-R9-siVEGF complexes (polyplexes) formation.
도 4는 PEG-R9에서 C-(D-R9)-C의 구조를 가지는데 이는 다른 구조의 D-R9과 트랜스팩션의 효율을 비교한 결과이다.4 shows the structure of C- (D-R9) -C in PEG-R9, which is a result of comparing the efficiency of transfection with D-R9 of another structure.
도 5는 최적의 PEG 분자량을 찾기 위해 PEG500과 PEG1000을 이용하여 루시퍼라제 분석 결과이다.5 shows the results of luciferase analysis using PEG500 and PEG1000 to find the optimal PEG molecular weight.
도 6은 세포내 유전자 전달 효율에 대한 루시페라제 분석(a) 및 세포 독성에 대한 MTT 분석 결과(b)이다. 6 is a luciferase assay (a) for intracellular gene transfer efficiency and an MTT assay (b) for cytotoxicity.
도 7은 cys-R9-cys, PEG-R9, PEG-cys-R9-cys의 각 경우를 이용한 전달체에 있어서의 크기 및 제타 포텐셜 분석 결과이다.Fig. 7 shows the results of size and zeta potential analysis in the delivery vehicle using cys-R9-cys, PEG-R9 and PEG-cys-R9-cys.
도 8은 PEG-cys-R9-cys, PEG-TAT, PEG-cys-TAT-cys의 각 경우를 이용한 전달체에 있어서의 크기 및 제타 포텐셜 분석 결과이다.Fig. 8 shows the results of size and zeta potential analysis in the delivery vehicle using PEG-cys-R9-cys, PEG-TAT, and PEG-cys-TAT-cys.
도 9는 PEG-R9-siVEGF 복합체(polyplexes) 투여에 따른 암세포의 성장 속도를 비교한 그래프이다.9 is a graph comparing the growth rate of cancer cells according to PEG-R9-siVEGF complex (polyplexes) administration.
도 10은 암을 이식한 누드마우스에서 투여 10일 후 암세포 성장 억제를 관찰한 사진이다.10 is a photograph observing the inhibition of cancer cell growth 10 days after administration in nude mice transplanted with cancer.
본 발명에서 사용되는 용어에 대한 정의는 이하와 같다.Definitions of terms used in the present invention are as follows.
"유전자"는 단백질 코딩 또는 전사시에 또는 다른 유전자 발현의 조절시에 기능적 역할을 갖는 임의의 핵산 서열 또는 그의 일부를 의미한다. 유전자는 기능적 단백질을 코딩하는 모든 핵산 또는 단백질을 코딩 또는 발현하는 핵산의 일부만으로 이루어질 수 있다. 핵산 서열은 엑손, 인트론, 개시 또는 종료 영역, 프로모터 서열, 다른 조절 서열 또는 유전자에 인접한 특유한 서열 내에 유전자 이상을 포함할 수 있다."Gene" means any nucleic acid sequence or portion thereof that has a functional role in protein coding or transcription or in the regulation of other gene expression. The gene may consist of any nucleic acid encoding a functional protein or only a portion of a nucleic acid encoding or expressing a protein. Nucleic acid sequences may include gene abnormalities in exons, introns, initiation or termination regions, promoter sequences, other regulatory sequences, or unique sequences adjacent to genes.
"폴리뉴클레오티드(polynucleotide)"라는 용어는 리보뉴클레오티드 뿐만 아니라 디옥시리보뉴클레오티드 등 온갖 길이의 뉴클레오티드 중합체를 의미한다. The term "polynucleotide" refers to nucleotide polymers of all lengths, including ribonucleotides as well as deoxyribonucleotides.
"핵산"은 임의의 DNA 또는 RNA, 예를 들어, 조직 샘플에 존재하는 염색체, 미토콘드리아, 바이러스 및/또는 세균 핵산을 포함하는 의미이다. 이중가닥 핵산 분자의 하나 또는 두개 모두의 가닥을 포함하고, 무손상 핵산 분자의 임의의 단편 또는 일부를 포함한다. 본 발명에서 전달코자 하는 대표적인 핵산은 siRNA이다."Nucleic acid" is meant to include any DNA or RNA, eg, chromosomes, mitochondria, viruses, and / or bacterial nucleic acids present in tissue samples. One or both strands of a double stranded nucleic acid molecule and any fragment or portion of an intact nucleic acid molecule. Representative nucleic acids intended for delivery in the present invention is siRNA.
"벡터(vector)"라는 용어는 다른 핵산을 그것이 연관된 곳으로 운반할 수 있는 핵산 분자를 의미한다. "발현벡터(expression vector)"라는 용어는 벡터에 의해 운반된 각각의 재조합 유전자에 의해 암호화된 단백질을 합성할 수 있는 플라스미드, 코스미드(cosmid) 또는 파지(phage)를 포함한다. 바람직한 벡터는 연관된 핵산의 자가복제와 발현이 가능한 것이다.The term "vector" refers to a nucleic acid molecule capable of carrying another nucleic acid to which it is associated. The term "expression vector" includes plasmids, cosmids or phages capable of synthesizing proteins encoded by each recombinant gene carried by the vector. Preferred vectors are those capable of self replication and expression of the associated nucleic acid.
"트랜스펙션(transfection)"은 배양동물 세포에 핵산(DNA, RNA 등)을 직접 도입하여 세포 내에서 유전형질을 발현시키는 방법을 의미한다.도입한 핵산은 목적으로 하는 유전자를 플라스미드 등의 매개체에 넣어 도입하는 것이 일반적인 방법이다. 도입한 유전자가 세포에서 안정화된 경우는 염색체에 끼어들어간 경우가 많았다. 핵산을 도입한 세포를 형질도입체라고 한다. 형질도입 효율이 매우 낮기 때문에 효율을 높이기 위해서 여러 가지 방법을 개발되었다. 그 중에서도 인산칼슘공침법, DEAE-텍스트란처리법. 전기천공법, 재분포법(리포솜이라는 인공막과 DNA복합체를 만들게 하는 세포와 융합시키는 방법) 등이 있다."Transfection" refers to a method of expressing genotypes in a cell by directly introducing nucleic acids (DNA, RNA, etc.) into a culture animal cell. Putting it in is a common way. When the introduced gene was stabilized in cells, it was often interrupted by chromosomes. A cell into which a nucleic acid is introduced is called a transducer. Since the transduction efficiency is very low, several methods have been developed to increase the efficiency. Among them, calcium phosphate coprecipitation and DEAE-textlan treatment. Electroporation, redistribution (fusion method with cells that make artificial membranes and DNA complexes called liposomes).
"제타 포텐셜(zeta potential)"이란 대전된 입자표면에 붙어 있는 불가동수분과 입자로부터 쉽게 떨어져 나갈 수 있는 가동수분의 확산 이중층에서의 양전하 밀도차이에서 유래되는 전기역학적인 전위차를 의미한다. 세포표면과 주변 배양액 사이의 전기적 전위차 또는 제타전위로 나타내기도 한다.By "zeta potential" is meant an electrodynamic potential difference resulting from the difference in positive charge density in the diffusion bilayer of immobilized moisture that is easily attached to the charged particle surface and movable moisture that is easily separated from the particle. Sometimes referred to as the electrical potential difference or zeta potential between the cell surface and the surrounding culture.
"전하 비율"은 유전자 전달체로서 기능하고 있는 복합체에 있어서, 음전하를 지닌 DNA가 정전기적 인력을 통해 양전하의 담체 또는 캐리어(carrier)와 결합함에 있어서 사용된 각 전하량의 비율을 의미한다. 복합체가 만들어진 후 전체적인 전하가 양전하일 때 전달효율이 좋은데, 이는 세포막이 음전하를 띠고 있기 때문이다. "Charge rate" refers to the proportion of each charge used in a complex that functions as a gene carrier, in which negatively charged DNA binds to a positively charged carrier or carrier through electrostatic attraction. After the complex is formed, the transfer efficiency is good when the overall charge is positive, because the cell membrane is negatively charged.
"아미노산" 및 "아미노산 잔기"는 천연 아미노산, 비천연 아미노산, 및 변형된 아미노산을 의미한다. 달리 언급되지 않는 한, 아미노산에 대한 모든 언급은, 일반적으로 또는 명칭에 따라 특이적으로, D 및 L 입체이성질체(구조가 이같은 입체이성질체 형태를 허용하는 경우) 양쪽 모두에 대한 언급을 포함한다. 천연 아미노산에는 알라닌 (Ala), 아르기닌 (Arg), 아스파라긴 (Asn), 아스파르트산 (Asp), 시스테인 (Cys), 글루타민 (Gln), 글루탐산 (Glu), 글리신 (Gly), 히스티딘 (His), 이소류신 (Ile), 류신 (Leu), 라이신 (Lys), 메티오닌 (Met), 페닐알라닌 (Phe), 프롤린 (Pro), 세린 (Ser), 트레오닌 (Thr), 트립토판 (Trp), 타이로신 (Tyr) 및 발린(Val)이 포함된다. 본 발명에서는 아르기닌(Arg)의 D 이성질체를 사용하는 것이 바람직하다."Amino acid" and "amino acid residue" refer to natural amino acids, unnatural amino acids, and modified amino acids. Unless stated otherwise, all references to amino acids include references to both D and L stereoisomers (where the structure allows such stereoisomeric forms), either generically or by name. Natural amino acids include alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Gln), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Ile), Leucine (Leu), Lysine (Lys), Methionine (Met), Phenylalanine (Phe), Proline (Pro), Serine (Ser), Threonine (Thr), Tryptophan (Trp), Tyrosine (Tyr) and Valine (Val) is included. In the present invention, it is preferable to use the D isomer of arginine (Arg).
"유전자 발현"이란 용어는 일반적으로 생물학적 활성이 있는 폴리펩티드가 DNA 서열로부터 생성되고 세포에서 생물학적 활성을 나타내는 세포 과정을 의미한다. 그런 의미로, 유전자 발현은 전사 및 해독 과정을 포함할 뿐만 아니라, 유전자 또는 유전자 산물의 생물학적 활성에 영향을 끼칠 수 있는 전사후 및 해독후 과정을 포함한다. 상기 과정들은 RNA 합성, 가공 및 수송뿐만 아니라, 폴립펩티드 합성, 수송 및 폴리펩티드의 해독후 변형을 포함한다.The term “gene expression” generally refers to a cellular process in which a biologically active polypeptide is produced from a DNA sequence and exhibits biological activity in a cell. In that sense, gene expression includes not only transcriptional and translational processes, but also posttranscriptional and posttranslational processes that can affect the biological activity of a gene or gene product. The processes include RNA synthesis, processing and transport, as well as post-translational modifications of polypeptide synthesis, transport and polypeptides.
"루시페라제(luciferase)"는 루시페린의 산화를 촉진하여 화학에너지를 빛에너지로 전환시켜 광을 발산하게하는 효소로, 생체 내에서 연속적, 실시간적으로 발현을 측정하고, 목적의 물질들에 대한 효과를 검증할 수 있게 하는 리포터 유전자(reporter gene) 기능을 한다. 반딧불이(firefly; 개똥벌레) 또는 딱정벌레(glow-worm)와 같은 곤충체로부터 직접 수득하거나 이러한 효소를 암호화하는 재조합 DNA 절편을 포함하는 미생물로부터의 발현에 의해 수득할 수 있다. Luciferase is an enzyme that promotes the oxidation of luciferin and converts chemical energy into light energy to emit light. It is used to measure expression continuously and in real time in vivo. It functions as a reporter gene that allows you to verify the effect. It can be obtained directly from insects such as firefly or glow-worm or by expression from microorganisms comprising recombinant DNA fragments encoding such enzymes.
"담체 또는 캐리어(carrier)"는, 생물체 내에 있는 활성물질이 다른물질과 결합하여 존재하는 경우, 또는 세포막을 통한 물질의 이동인 운반체수송을 담당하는 고분자 물질을 총칭한다. 담체의 예로는 비제한적으로 포스페이트, 시트레이트 및 다른 유기산과 같은 완충제, 아스코르브산과 같은 항산화제, 저분자량 폴리펩티드(약 10 잔기 미만), 혈청 알부민, 젤라틴 또는 면역글로불린과 같은 단백질, 폴리비닐피롤리돈과 같은 친수성 폴리머, 글리신 글루타민, 아스파라긴, 아르기닌 또는 라이신과 같은 아미노산, 단당류, 이당류 및 글루코스, 만노스, 또는 덱스트린을 포함하는 다른 탄수화물, EDTA와 같은 킬레이트화제, 만니톨 또는 소르비톨과 같은 당알코올, 나트륨과 같은 염-형성 반대이온(salt-forming counterion), 및/또는 TWEEN®, 폴리에틸렌글리콜(PEG) 및 PLURONICS®같은 무이온 계면활성제를 포함한다.A "carrier" or "carrier" refers to a polymer material that is responsible for transporting a carrier when an active substance in an organism is present in combination with another substance or when a substance is transferred through a cell membrane. Examples of carriers include, but are not limited to, buffers such as phosphate, citrate and other organic acids, antioxidants such as ascorbic acid, low molecular weight polypeptides (less than about 10 residues), proteins such as serum albumin, gelatin or immunoglobulins, polyvinylpyrrolidone Hydrophilic polymers, such as glycine glutamine, asparagine, arginine or lysine, monosaccharides, disaccharides and other carbohydrates including glucose, mannose, or dextrins, chelating agents such as EDTA, sugar alcohols such as mannitol or sorbitol, sodium Salt-forming counterions, and / or nonionic surfactants such as TWEEN®, polyethylene glycol (PEG) and PLURONICS®.
"치료"는 임상 결과를 포함하여 이로운 또는 원하는 결과를 수득하기 위한 접근법이다. 질환, 장애 또는 병태의 "치료" 또는 "완화"는, 장애를 치료하지 않는 것과 비교하여,병태, 장애 또는 질환 상태의 정도 및/또는 바람직하지 않은 임상 징후가 적어지고/적어지거나 경시적인 진행 추이가 느려지거나 길어지는 것을 의미한다. 본 발명의 목적을 위하여, 이롭거나 바람직한 임상 결과는, 검출가능 또는 검출불능 여부와 상관없이, 1가지 이상의 증상의 경감 또는 개선, 질환 정도의 축소, 질환의 안정화된(즉, 악화되지 않는) 상태, 질환 진행의 지연 또는 감속, 질환 상태의 개선 또는 완화, 및 진정 (부분적 또는 전체적)을 포함하지만, 이에 한정되지 않는다. "치료"는 치료를 받지 않은 경우에 예상되는 생존과 비교하여 생존을 연장시키는 것을 또한 의미할 수 있다. 또한, 치료는 1회 용량의 투여에 의해 발생할 필요가 없고, 일련의 용량의 투여 시에 종종 발생한다. 따라서, 치료상 유효량, 완화에 충분한 양, 또는 질환, 장애 또는 병태의 치료에 충분한 양이 1회 이상의 투여로 투여될 수 있다."Treatment" is an approach for obtaining beneficial or desired results, including clinical results. "Treatment" or "mitigation" of a disease, disorder or condition is a progression of progression with less and / or less clinical signs and / or undesirable clinical signs of the condition, disorder or disease state as compared to not treating the disorder. Means slowing down or getting longer. For the purposes of the present invention, beneficial or desirable clinical outcomes, whether detectable or non-detectable, may alleviate or ameliorate one or more symptoms, reduce the extent of disease, or stabilize (ie, not worsen) a disease. , Delaying or slowing disease progression, ameliorating or alleviating disease state, and soothing (partial or total). "Treatment" can also mean prolonging survival as compared to expected survival if untreated. In addition, treatment does not need to occur by administration of a single dose and often occurs upon administration of a series of doses. Thus, a therapeutically effective amount, an amount sufficient to alleviate, or an amount sufficient to treat a disease, disorder or condition may be administered in one or more administrations.
"질환(disorder)"이라는 용어는 본 발명의 유전자도입 동물 모델을 사용하여 동정되는 분자를 이용하여 치료하는 것으로부터 이익을 얻을 수 있는 어떤 상태이다. 이것은 포유류를 의문의 질환에 걸리기 쉽게 하는 병리학적 조건들을 포함한 만성과 급성 질환들 또는 질병들을 포함한다. 본 명세서에서 다루어질 질병들의 예들은, 이에 제한되는 것은 아니나, 암 등이다.The term "disorder" is any condition that would benefit from treatment with molecules identified using the transgenic animal model of the present invention. This includes chronic and acute diseases or conditions, including pathological conditions that make mammals susceptible to mysterious diseases. Examples of diseases to be dealt with herein are, but are not limited to, cancer and the like.
"치료상 유효량"은 치료될 장애의 증상의 경감이 포함되는, 연구원, 수의사, 의사 또는 기타 임상의학자에 의해 추구되는 조직, 시스템, 대상 또는 인간에서의 생물학적 또는 의학적 응답을 도출할 조성물 내의 활성 화합물의 양을 의미한다.A "therapeutically effective amount" means an active compound in a composition that will elicit a biological or medical response in a tissue, system, subject or human being sought by a researcher, veterinarian, physician or other clinician, which includes alleviating the symptoms of the disorder to be treated. Means the amount of.
"유전자 치료(gene therapy)"는 돌연변이를 일으킨 유전자를 정정하여 유전병을 치료하거나, 유전자 혹은 RNAi를 이용하여 단백질 발현을 조절하여 질병을 치료하는 것을 말한다. 즉 환자의 세포에 외부에서 정상유전자를 이식하여 그 세포의 표현형을 변화시킴으로써 병을 치료하는 방법이다. "Geneology" refers to treating a genetic disease by correcting a mutated gene or treating a disease by controlling protein expression using a gene or RNAi. In other words, it is a method of treating a disease by transplanting a normal gene to a patient's cell and changing the phenotype of the cell.
"약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다."About" means 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4 for reference quantities, levels, values, numbers, frequencies, percentages, dimensions, sizes, quantities, weights, or lengths. , Amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length, varying by about 3, 2 or 1%.
본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 원소, 또는 단계 또는 원소들의 군을 포함하나, 임의의 다른 단계 또는 원소, 또는 단계 또는 원소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.Throughout this specification, the terms “comprises” and “comprising”, unless otherwise indicated in the context, include a given step or element, or group of steps or elements, but any other step or element, or step or element It should be understood that this group is not excluded.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 핵산(nucleic acid)의 세포 내 전달(transfection)에 관한 것으로, 특히, 전신투여에 의한 siRNA의 체내(systemic) 전달 효율을 높이기 위한 전달체 및 방법을 포함하는 다양한 이용에 관한 것이다.The present invention relates to intracellular transfection of nucleic acid, and more particularly, to various uses, including a carrier and a method for enhancing the systemic delivery efficiency of siRNA by systemic administration.
본 발명은 일 관점에서 폴리에틸렌글리콜(PEG) 및 폴리(올리고-아르기닌), 특히 R9(arginine) 펩타이드를 포함하는, 전신순환용 비바이러스성 siRNA 유전자 전달체 또는 벡터; 및 이의 이용 방법에 관한 것이다. The present invention in one aspect, non-viral siRNA gene delivery or vector for systemic circulation, including polyethylene glycol (PEG) and poly (oligo-arginine), in particular R9 (arginine) peptide; And a method of using the same.
비바이러스성 유전자 전달 벡터는 바이러스를 이용하지 않고 유전자를 세포내로 운반하는 캐리어를 총칭하는 의미로서, 유전자를 구성하는 핵산이 음전하를 띠는 성질을 이용하여 양이온상의 양이온 부위와 핵산상의 음이온 부위의 전기적 상호작용을 이용하여 핵산을 코팅하는 형태의 벡터가 대표적인 예이다. A non-viral gene transfer vector is a generic term for a carrier that carries a gene into a cell without using a virus. The non-viral gene transfer vector uses a negative charge property of the nucleic acid constituting the gene. Vectors in the form of coating nucleic acids using interactions are representative examples.
본 발명의 폴리(올리고-아르기닌)은 폴리(올리고-L-아르기닌)과 폴리(올리고-D-아르기닌)을 포함하며, 그 중에서도 폴리(올리고-D-아르기닌)인 것이 가장 바람직하다. 고분자량 폴리(올리고-D-아르기닌)은 DNA 의 응축을 효과적으로 촉진하여 안정한 복합체 및 DNA 의 세포 내로의 내재화를 형성하고, 내재화 후에는 복합체가 이황화결합의 환원에 의하여 엔도좀으로부터 세포질 공간으로 탈출하게 된다.The poly (oligo-arginine) of the present invention includes poly (oligo-L-arginine) and poly (oligo-D-arginine), and among them, poly (oligo-D-arginine) is most preferred. High molecular weight poly (oligo-D-arginine) effectively promotes condensation of DNA to form stable complexes and internalization of DNA into cells, and after internalization the complexes escape from the endosome to the cytoplasmic space by reduction of disulfide bonds. do.
본 발명의 환원성 폴리(올리고-D-아르기닌)은 이황화물로 가교된 말단 시스테인을 포함하는 양이온성 올리고머로 구성된 것이 바람직하나, 이에 제한되는 것은 아니다. 시스테인은 인접하는 다른 시스테인 분자와 이황화 가교(cross-linking)를 형성하는 설프하이드릴기를 함유하는 유일한 아미노산으로서, 이황화물로 가교된 말단 시스테인 이외의 단백질 전달 도메인(PTD) 부분은 임의의 양이온성 펩타이드가 될 수 있다. The reducing poly (oligo-D-arginine) of the present invention is preferably composed of a cationic oligomer including terminal cysteine crosslinked with disulfide, but is not limited thereto. Cysteine is the only amino acid that contains sulfhydryl groups that form disulfide cross-linking with other adjacent cysteine molecules, and the protein delivery domain (PTD) moiety other than the disulfide-crosslinked terminal cysteine is any cationic peptide. Can be
더욱, 바람직하게는 본 발명의 환원성 폴리(올리고-D-아르기닌)은 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 것을 특징으로 한다. 가장 바람직하게는 양쪽 말단에 Cys가 결합되어 있는 형태가 좋다. 예를 들어, Cys-(D-R9)-Cys 또는 Gly-(D-R9)-Cys 반복 단위로 구성될 수 있다. 이러한 환원성 폴리(올리고-D-아르기닌)은 Cys-(D-R9)-Cys 또는 Gly-(D-R9)-Cys 반복 단위의 말단 시스테인-티올기의 DMSO 산화 과정에 의하여 제조될 수 있으며, 환원시약으로써 Cys-(D-R)9-Cys 로 단편화될 수 있다. More preferably, the reducing poly (oligo-D-arginine) of the present invention is characterized in that Cys is bonded to one or both ends. Most preferably, Cys is bonded to both ends. For example, it may consist of Cys- (D-R9) -Cys or Gly- (D-R9) -Cys repeat units. Such reducing poly (oligo-D-arginine) can be prepared by DMSO oxidation of the terminal cysteine-thiol groups of Cys- (D-R9) -Cys or Gly- (D-R9) -Cys repeat units, and reduction It can be fragmented into Cys- (DR) 9-Cys as a reagent.
즉, 본 발명의 환원성 폴리(올리고-아르기닌)은 9개의 아르기닌(R9)으로 구성된, 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 구조, 바람직하게는 Cys-(D-R9)-Cys 또는 Gly-(D-R9)-Cys 구조, 가장 바람직하게는 Cys-(D-R9)-Cys를 가지는 것을 특징으로 한다. 이처럼 Cys가 양쪽 말단에 위치함으로써 올리고 펩토플렉스(펩타이드 복합체, peptoplex)의 효과적인 응축 및 이에 따른 복합체의 중성 전하 특성을 보유할 수 있게 되는 것이다.That is, the reducing poly (oligo-arginine) of the present invention has a structure composed of nine arginine (R9) in which Cys is bonded at one or both ends thereof, preferably Cys- (D-R9) -Cys or Gly- (D-R9) -Cys structure, most preferably Cys- (D-R9) -Cys. Cys is located at both ends such that the effective condensation of the oligo peptoplex (peptoplex) and thus the neutral charge properties of the complex can be retained.
본 발명의 유전자 전달체는 전신순환(systemic circulation)을 위해, 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 R9(arginine) 구조체에 폴리에틸렌글리콜(PEG)을 결합시키는 것을 특징으로 한다. The gene delivery system of the present invention is characterized by binding polyethylene glycol (PEG) to an R9 (arginine) structure in which Cys is bound to one or both ends for systemic circulation.
이러한 구성을 가지는 본 발명의 전달체에 대해서 본 발명 명세서에서는 "PEG-R9"의 약어로 기재하기도 한다. 즉, 본 발명에서 PEG-R9는 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 R9(arginine)의 하나 이상의 말단에 폴리에틸렌글리콜(PEG)을 결합시킨 구조체를 일컫는다. 단, 비교예에서 Cys의 결합효과를 알아보기 위한 실험에서는 Cys를 별도로 표기하였다.About the carrier of this invention which has such a structure, it may be described in the specification of this invention by the abbreviation of "PEG-R9." That is, in the present invention, PEG-R9 refers to a structure in which polyethylene glycol (PEG) is bonded to one or more ends of R9 (arginine) in which Cys is bonded to one or both ends. However, in the experiment for determining the binding effect of Cys in the comparative example, Cys was separately indicated.
단백질의 페길레이션(PEGylation)은 전달 유전자의 전신순환 효율 향상을 위해 사용한 방법으로, 단백질의 4가지 반응기(functional group)를 통하여 주로 접합반응이 일어나는데, 이들을 각각 카프복실 페길레이션(Carboxyl PEGylation), 아민 페길레이션(Amine PEGylation), N-말단 페길레이션(N-terminal PEGylation), 티올 페길레이션(Thiol PEGylation)이라고 한다. PEGylation (PEGylation) of protein is used to improve the systemic circulation efficiency of the transfer gene, the conjugation reaction occurs mainly through the four functional groups of the protein (carboxyl PEGylation, amine, respectively) It is called Amine PEGylation, N-terminal PEGylation, or Thiol PEGylation.
본 발명에서는 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 R9 펩타이드 구조, 예를 들어, Cys-(D-R9)-Cys 또는 Gly-(D-R9)-Cys 펩티드 구조를 기반으로 하고 있고, Cys의 아민 페길레이션(Amine PEGylation)을 사용하였다.In the present invention, it is based on the R9 peptide structure, for example, Cys- (D-R9) -Cys or Gly- (D-R9) -Cys peptide structure, in which Cys is bonded at one or both ends, Amine PEGylation was used.
한편, 본 발명의 PEG-R9 벡터는 핵산의 체내 전달에 효율적이다. 그 중에서도 siRNA의 효율적인 체내 전달에 매우 바람직하다.On the other hand, the PEG-R9 vector of the present invention is efficient for in vivo delivery of nucleic acid. Among them, it is very preferable for efficient in vivo delivery of siRNA.
RNA 간섭(RNAi)은 이중 나선의 짧은 간섭 RNA(siRNA)에 의해 대상 유전자의 발현을 특이적으로 하향 조절시키는 것을 포함하는 자연적인 기작으로서, 이러한 RNAi를 매개하는 RNAi 시약의 타입에 대한 예로, siRNA(짧은 간섭 RNA) 또는 miRNA (마이크로RNA) 또는 소형 헤어핀 RNA (shRNA)를 들 수 있고, 본 발명은 이 중에서도 특히, siRNA(짧은 간섭 RNA)의 체내 전달에 바람직하다.RNA interference (RNAi) is a natural mechanism that involves specifically down-regulating expression of a gene of interest by a double helix, short interfering RNA (siRNA), which is an example of the type of RNAi reagent that mediates such RNAi. (Short interfering RNA) or miRNA (microRNA) or small hairpin RNA (shRNA), and the present invention is particularly preferred for in vivo delivery of siRNA (short interfering RNA).
종래 체내 siRNA 전달에 사용된 리포솜은, 전신순환을 목적으로 하는 다른 입자형 약물전달체의 경우와 마찬가지로 혈중 단백질의 흡착으로 인해 간이나 비장에 많이 존재하는 대식세포의 식작용(phagocytosis)에 의해 순환계에서 소실되거나, 혈중 순환과정 중 리포솜으로부터 약물이 유출되는 문제점을 가지고 있었다. 특히, 대식세포의 식작용은 리포솜 표면에 옵소닌 단백질(opsonic protein)의 흡착을 통해 발생하기 때문에 이러한 문제점을 해결하는 기술로서 인지질의 말단에 PEG(poly[ethylene glycol])을 결합시킨 인지질-PEG유도체를 리포솜의 구성성분으로 사용하거나, 제조된 리포솜의 표면을 PEG 또는 다당류 등으로 코팅함으로써 옵소닌 단백질의 흡착을 억제할 수 있는 리포솜이 개발되었다. Liposomes, which have been used for siRNA delivery in the body, are lost in the circulatory system by phagocytosis of macrophages in the liver or spleen due to the adsorption of blood proteins, as in the case of other particulate drug carriers for systemic circulation. Or, there was a problem that the drug is released from liposomes during the blood circulation. In particular, phagocytosis of macrophages occurs due to the adsorption of opsonic proteins on the surface of liposomes. As a technique to solve this problem, phospholipid-PEG derivatives incorporating PEG (poly [ethylene glycol]) at the end of phospholipid Liposomes that can inhibit the adsorption of opsonine proteins have been developed by using as a constituent of liposomes or by coating the surface of the prepared liposomes with PEG or polysaccharides.
그러나 이러한 인지질-PEG유도체를 리포솜의 구성성분으로 사용하는 경우에 리포솜의 자체 안정성이 떨어지는 문제점이 있으며 트랜스팩션 효율이 낮고, 독성을 나타내기 때문에 생체 내 투여를 위한 in vivo 적용이 어려웠다. 그리고, 투여 후 대부분이 간으로 가게 되어 간 대비 종양에 대한 분포도가 낮은 문제점 또한 존재하였다. However, when such a phospholipid-PEG derivative is used as a constituent of liposomes, liposomes have a low self-stability and have low transfection efficiency and toxicity. Therefore, it is difficult to apply in vivo for in vivo administration. In addition, since most of them go to the liver after administration, there was also a problem of low distribution of tumors compared to liver.
이에 반해, 본 발명의 PEG-R9의 구조체, 가장 바람직하게는 PEG-Cys-R9-Cys 구성은 상기와 같은 문제점 없이 siRNA의 전신 순환(systemic circulation)에 매우 효과적이다.In contrast, the construct of PEG-R9 of the present invention, most preferably PEG-Cys-R9-Cys construct, is very effective in the systemic circulation of siRNA without such problems.
본 발명은 다른 관점에서, 폴리에틸렌글리콜(PEG); R9(arginine) 펩타이드; 및 siRNA로 구성되는, 전신 순환용 siRNA 전달용 복합체; 및 이를 포함하는 목적 질환 치료용 조성물에 관한 것으로, 상기 유전자 전달체에 목적 유전자 siRNA가 결합된 구성에 관한 것이다. 이 때, R9 펩타이드는 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 것이 바람직하다.In another aspect, the present invention, polyethylene glycol (PEG); R9 (arginine) peptides; And siRNA complexes for systemic circulation, consisting of siRNA; And it relates to a composition for treating a target disease comprising the same, to a configuration in which the target gene siRNA is coupled to the gene carrier. In this case, it is preferable that Cys is bonded to one or both ends of the R9 peptide.
본 발명의 복합체가 전달하는 유전자 siRNA로는, 목적하는 치료를 위한 바람직한 임의의 siRNA를 삽입할 수 있고, 이들은 자연에 존재하거나 합성될 수 있으며, 크기에 있어서 올리고뉴클레오티드에서 크로모좀까지 다양한 크기로 존재할 수 있다. 이들 유전자는 인간, 동물, 식물, 박테리아, 바이러스 등으로부터 기원된다. 이들은 당 분야에 공지된 방법을 이용하여 획득될 수 있다.As the gene siRNA delivered by the complex of the present invention, any desired siRNA for the desired treatment can be inserted, and they may exist or be synthesized in nature, and may exist in various sizes from oligonucleotides to chromosomes in size. have. These genes come from humans, animals, plants, bacteria, viruses and the like. These can be obtained using methods known in the art.
또한 상기 복합체는 목적하는 질환, 예를 들의 암의 치료 유전자 발현조절인자, 예를 들면 전사프로모터, 인헨서, 사일렌서, 오퍼레이터, 터미네이터, 어테뉴에이터 및 기타 발현조절인자 등을 포함할 수 있다. The complex may also include therapeutic gene expression regulators of a desired disease, such as cancer, such as transcriptional promoters, enhancers, silencers, operators, terminators, attenuators and other expression regulators.
본 발명의 일 구체예로서, 폴리에틸렌글리콜(PEG); R9(arginine) 펩타이드; 및 목적하는 질환 치료용 siRNA로 구성되는 siRNA 전달용 복합체를 포함하는 목적 질환 치료용 조성물을 제공할 수 있다. In one embodiment of the present invention, polyethylene glycol (PEG); R9 (arginine) peptides; And it can provide a composition for treating a target disease comprising a siRNA delivery complex consisting of a siRNA for treating the desired disease.
일부 구현예에서, siRNA는 핵산 벡터 (일반적으로 재조합 벡터 또는 발현 벡터로 언급되기도 함) 내로 삽입된 전사 단위로부터 발현된다. 벡터를 사용하여 siRNA를 암호화하는 핵산 분자를 세포 내로 전달하여 특이 유전자를 표적화할 수 있다. In some embodiments, siRNAs are expressed from transcriptional units inserted into nucleic acid vectors (commonly referred to as recombinant vectors or expression vectors). Vectors can be used to deliver nucleic acid molecules encoding siRNA into cells to target specific genes.
이 외에도, 적합한 다수의 방법이 본 기술분야에서 공지되어 있다. 일반적으로, 표적 유전자를 발현하는 세포에 형질감염시키는데,형질감염을 위해서는 예를 들어, 일렉트로포레이션 (electroporation), 형질감염을 위한 헬퍼로서 양이온성 리피드 또는 양이온성 폴리머의 사용과 같은 다양한 방법이 사용될 수 있다. 그 후, 세포를 표적 유전자의 발현을 가능하게 하는 적합한 조건 하에서 배양한다. 이어서 표적 유전자의 발현을 예를 들어, RT-PCR 또는 리포터 유전자의 양의 측정과 같은 적합한 기술을 사용하여 측정한다. 기본적으로, 어떤 종류의 세포라도 형질감염전환을 위해서 사용될 수 있지만, 바람직한 구체예에서 세포는 진핵세포, 바람직하게는 동물 세포, 더욱 바람직하게는 포유동물 세포, 가장 바람직하게는 인간 세포이다. In addition, many suitable methods are known in the art. In general, transfection of cells expressing a target gene can be carried out using a variety of methods for transfection, such as, for example, electroporation, the use of cationic lipids or cationic polymers as helpers for transfection. Can be. Thereafter, the cells are cultured under suitable conditions to allow expression of the target gene. The expression of the target gene is then measured using a suitable technique such as, for example, measuring the amount of RT-PCR or reporter gene. Basically, any type of cell can be used for transfection, but in a preferred embodiment the cell is a eukaryotic cell, preferably an animal cell, more preferably a mammalian cell, most preferably a human cell.
본 발명의 일 실시예에서는 siRNA로서 항암용 siVEGF를 이용하였다.In one embodiment of the present invention, siVEGF for anticancer was used as siRNA.
VEGF(혈관내피성장인자)는 갑상선암, 유방암, 전립선암, 대장암, 자궁경부암 등 대부분의 암(종양) 세포에서 과발현되는 인자로써, 암의 발생, 재발, 전이 등과 밀접하게 관련되어 있다. 그러므로, siVEGF를 효율적으로 암세포에 전달할 수 있는 본 발명의 PEG-R9 전달체를 항암 용도로 유용하게 사용할 수 있을 것이다.VEGF (vascular endothelial growth factor) is a factor that is overexpressed in most cancer (tumor) cells such as thyroid cancer, breast cancer, prostate cancer, colon cancer and cervical cancer, and is closely related to the occurrence, recurrence and metastasis of cancer. Therefore, the PEG-R9 transporter of the present invention, which can efficiently deliver siVEGF to cancer cells, may be usefully used for anticancer purposes.
VEGF를 과발현하는 암인, 예를 들어, 폐암, 부인과 악성종양, 흑색종, 유방암, 췌장암, 난소암, 자궁암, 결장직장암, 전립선암, 콩팥암, 두부암(head cancer), 췌장암, 간암(간세포암), 자궁암, 경부암(neck cancer), 콩팥암(신세포암), 육종, 골수종, 림프종 등의 치료에 유용하게 사용할 수 있다.Cancers that overexpress VEGF, such as lung cancer, gynecologic malignancies, melanoma, breast cancer, pancreatic cancer, ovarian cancer, uterine cancer, colorectal cancer, prostate cancer, kidney cancer, head cancer, pancreatic cancer, liver cancer (hepatocellular cancer) ), Cervical cancer, neck cancer, kidney cancer (renal cell cancer), sarcoma, myeloma, lymphoma and the like can be usefully used.
본 발명에 따른 복합체 또는 조성물의 치료적 유효량은 공지의 투여 경로에 의하여 제공될 수 있다. 본 발명에 따른 구현예는 PEG-R9-siVEGF를 암세포 내로 형질감염시킬 수 있도록 적용된다. A therapeutically effective amount of the complex or composition according to the invention can be provided by known routes of administration. Embodiments according to the invention are applied to enable the transfection of PEG-R9-siVEGF into cancer cells.
본 발명의 조성물은 이에 제한되지 않으나 유전자 물질을 표적 세포 내로 형질감염시키기 위한 상기한 수단들 중 임의의 것을 포함 또는 이용할 수 있다. 상기 siRNA이 암세포 내로 방출될 수 있도록 양이온성 양친매성 물질을 추가로 포함할 수도 있다.The composition of the present invention may include or use any of the above means for transfecting genetic material into target cells, but not limited thereto. The siRNA may further include a cationic amphiphilic material to be released into cancer cells.
그리고, 본 발명의 핵산 분자 및 촉진제는 통상적인 약학 합성 기법에 따라 제조되는 약학 조성물로 제형화 될 수도 있다. In addition, the nucleic acid molecules and promoters of the present invention may be formulated into pharmaceutical compositions prepared according to conventional pharmaceutical synthesis techniques.
조성물은 활성 제제 또는 활성 제제의 약학적으로 허용가능한 염을 포함할 수 있다. 상기 조성물은 동시적, 또는 연속적으로 투여될 수 있다. 이들 조성물은 하나의 활성 물질 이외에, 당업계에 잘 알려진 약학적으로 허용가능한 부형제, 담체, 버퍼, 안정화제 또는 다른 물질을 포함할 수 있다. 이러한 물질들은 비독성이어야 하며 활성 성분의 효능을 방해해서는 안된다. The composition may comprise the active agent or a pharmaceutically acceptable salt of the active agent. The composition may be administered simultaneously or sequentially. These compositions may comprise, in addition to one active substance, pharmaceutically acceptable excipients, carriers, buffers, stabilizers or other substances well known in the art. These substances should be nontoxic and should not interfere with the efficacy of the active ingredient.
담체는 투여를 위해 바람직한 제제 형태, 예를 들어, 국소형, 정맥내, 경구, 뇌막, 신경상막 또는 비경구인지에 따라 다양한 형태를 취할 수 있다. 일반적으로 충진제, 확장제, 결합제, 습윤제(wetting agent), 붕해제(disintegrating agent), 계면 활성제와 같은 희석제, 부형제와 혼합함으로써 경구 또는 비경구 투여용으로 제조할 수 있다. The carrier can take a variety of forms depending on whether it is the form of preparation desired for administration, eg, topical, intravenous, oral, meninges, neural epithelium, or parenteral. It can generally be prepared for oral or parenteral administration by mixing with fillers, dilators, binders, wetting agents, disintegrating agents, diluents such as surfactants, excipients.
상기 복합체 및 복합체를 포함하는 조성물의 투여에 효과적인 투여량 및 계획은 경험적으로 결정할 수 있고, 당업자가 적절하게 결정할 수 있다. 단일 또는 다중 투여량을 사용할 수 있다.Dosages and schedules effective for the administration of the complex and compositions comprising the complex can be determined empirically and can be appropriately determined by one skilled in the art. Single or multiple doses may be used.
본 발명에 있어서, siRNA의 체내 전신 순환을 위한 PEG-R9 기반의 전달체 및 복합체는 다음과 같은 장점을 가진다.In the present invention, PEG-R9 based transporters and complexes for the systemic circulation of siRNA have the following advantages.
(1) 본 발명의 "PEG-R9"은 siRNA와 접합체 형성이 잘 되고 이의 보호 효과가 우수하다.(1) "PEG-R9" of the present invention is well conjugated with siRNA and excellent in its protective effect.
본 발명의 PEG-R9의 트랜스펙션 효율은 6:1의 전하 비율 이상에서 PEG-R9과 유전자 siRNA의 응축이 잘 일어나기 때문에, 6:1 ~ 15:1의 전하비율(+/-), 더욱 바람직하게는 9:1 ~ 15:1의 전하비율(+/-)을 가지는 것이 좋다. 특히, 일 구체예에서 본 발명의 전달체는 전하비율 12:1에서 가장 높은 유전자 트랜스펙션 효율을 보였다. The transfection efficiency of PEG-R9 of the present invention is a charge ratio (+/-) of 6: 1 to 15: 1, moreover, because condensation of PEG-R9 and gene siRNA occurs well above a charge ratio of 6: 1. Preferably it has a charge ratio (+ /-) of 9: 1 to 15: 1. In particular, in one embodiment the carrier of the present invention exhibited the highest gene transfection efficiency at a charge ratio of 12: 1.
본 발명에서 상기 전하비율이란, 유전자(핵산)의 구성성분 중 인산(phosphate)이 음전하를 띠고 있고 전달체의 구성성분 중 아르기닌이 양전하를 띠고 있는데 유전자가 가지고 있는 음전하를 1로 기준으로 삼은 다음 반응시킬 전달체의 양을 6배 ~ 15배 높여서 유전자와 반응시키는 비율을 의미한다. 즉, 6:1 ~15:1의 전하비율을 가지는 것은 목적 유전자보다 전달체의 양을 6배~15배로 크게 구성하는 것을 말한다. In the present invention, the charge ratio is a phosphate (phosphate) of the components of the gene (nucleic acid) is a negative charge and arginine of the components of the carrier is a positive charge, the negative charge of the gene as a reference to 1 and then reacted By increasing the amount of the carrier 6 to 15 times means the rate of reaction with the gene. In other words, having a charge ratio of 6: 1 to 15: 1 means that the amount of the carrier is 6 to 15 times larger than the target gene.
이는 세포막이 음전하를 띠고 있기 때문에, 유전자 전달 복합체가 전체적으로 양전하를 띠고 있을 때, 전달효율이 우수하기 때문이다. 복합체가 음전하를 띠는 경우는 세포막을 쉽게 통과하지 못하는 반면 양전하를 띠는 경우는 전하대 전하 반응으로 쉽게 세포막을 통과할 수 있는 것이다. 또한, 전하량은 세포막 투과능에 영향을 끼치는데, 전하량이 높을수록 세포막을 통과할 수 있는 능력도 커지게 된다. This is because the cell membrane is negatively charged, so that when the gene transfer complex is positively charged as a whole, the transfer efficiency is excellent. When the complex is negatively charged, it does not easily pass through the cell membrane, whereas when the complex is positively charged, it can easily pass through the cell membrane by a charge-to-charge reaction. In addition, the amount of charge affects cell membrane permeability, and the higher the amount of charge, the greater the ability to pass through the cell membrane.
한편, 통상적으로 사용되고 있는 양이온 담체 PEI와 비교하여 본 발명의 PEG-R9는 훨씬 높은 유전자 발현 효율을 가진다. 즉, PEG-R9에 의해 더욱 효과적인 siRNA 응축 능력을 나타내었고, 적정 전하 비율에서 혈청에서 DNA 가 분해(degradation)되지 않도록 보호하였다.On the other hand, PEG-R9 of the present invention has a much higher gene expression efficiency compared to the cationic carrier PEI that is commonly used. That is, PEG-R9 showed more effective siRNA condensation ability, and protected from DNA degradation in serum at an appropriate charge ratio.
(2) 본 발명의 "PEG-R9"은 siRNA와 결합하여 나노 사이즈 크기의 복합체를 형성하고 양(positive)의 제타 포텐셜 값을 가진다.(2) "PEG-R9" of the present invention combines with siRNA to form a nano sized complex and has a positive zeta potential value.
PEG-R9은 siRNA와 결합하는 경우, 정전기적 상호작용에 의해 보다 효과적으로 DNA를 농축한다. 본 발명의 R9 양 말단에 Cys 구조를 포함하는 경우, 중성 조건에서 양성 전하를 나타내어 효과적으로 복합체를 나노크기 사이즈로 농축할 수 있고(약 200 nm 이하), 전하 비율 약 5 이상의 양(positive)의 제타 포텐셜을 가질 수 있는 것이다.PEG-R9, when bound with siRNA, concentrates DNA more effectively by electrostatic interaction. In the case of including the Cys structure at both ends of the R9 of the present invention, the positive charge is displayed in the neutral condition, so that the complex can be effectively concentrated to the nano-size (about 200 nm or less), and the zeta of the charge ratio of about 5 or more (positive) It can have potential.
앞서 설명한 바와 같이, 복합체가 음전하를 띠는 경우는 같은 음전하를 가지는 세포막을 쉽게 통과하지 못하는 반면 양전하를 띠는 경우는 전하대 전하 반응으로 쉽게 세포막을 통과할 수 있으므로, 본 발명의 양(positive)의 제타 포텐셜 값을 가지는 특성은 유전자 전달효율이 우수함을 시사한다. As described above, when the complex is negatively charged, the negative electrode cannot easily pass through the cell membrane having the same negative charge, while the positively charged complex can easily pass through the cell membrane by a charge-to-charge reaction, thereby providing a positive amount of the present invention. The property of zeta potential suggests excellent gene transfer efficiency.
특히, 본 발명의 실시예를 통해 PEG를 결합하지 않았을 때보다 PEG를 결합한 복합체의 입자 크기가 더 작다는 점; 및 R9의 양쪽 말단에 시스테인(cyctein, Cys)을 결합시킨 경우 입자의 크기가 더 작고 균일하다는 점을 확인하였다. 즉, 본 발명의 가장 바람직한 형태는 R9 올리고펩타이드 양 말단에 시스테인이 결합되어 있고, 나아가 이에 PEG를 결합시킨 구성인 것이다.In particular, through the embodiments of the present invention the particle size of the PEG-bonded complex is smaller than when PEG is not bound; And when the cysteine (cyctein, Cys) is bonded to both ends of R9 was confirmed that the size of the particles are smaller and uniform. In other words, the most preferred form of the present invention is that cysteine is bonded to both ends of the R9 oligopeptide, and furthermore, PEG is bonded thereto.
(3) 본 발명의 “PEG-R9”은 세포 내 siRNA 전달효율 및 발현율이 우수하고, 세포독성이 없다..(3) "PEG-R9" of the present invention is excellent in the siRNA delivery efficiency and expression rate in the cell, there is no cytotoxicity.
다른 유전자 전달체인 TAT보다 본 발명의 R9에 Cys 및 PEG를 결합한 경우가 siRNA 전달 효율이 더욱 높음을 확인하였고(도 8), 루시페라제 DNA를 이용하여 세포 내 발현율도 높음을 확인하였다(도 6).When Cys and PEG were coupled to R9 of the present invention than other gene carriers, TAT, siRNA delivery efficiency was higher (FIG. 8), and intracellular expression rate was also confirmed using luciferase DNA (FIG. 6). ).
또한, 통상의 고분자 양이온 담체 PEI 등과 비교하여, 본 발명의 PEG-R9는 생체 내에서 이용할 수 있을 정도로 세포 독성이 낮다. 본 발명의 일 실시예에서는 PEG-R9은 독성의 PEI와 비교하여 95% 이상의 세포 생존능을 보였다(도 6).In addition, compared with the conventional polymeric cationic carrier PEI and the like, PEG-R9 of the present invention is low in cytotoxicity so that it can be used in vivo. In one embodiment of the invention PEG-R9 showed at least 95% cell viability compared to toxic PEI (FIG. 6).
(4) 본 발명의 “PEG-R9’은 siRNA의 체내 순환시간을 증가시킴으로써, 뛰어난 항암효과를 나타낸다. (4) "PEG-R9" of the present invention shows an excellent anticancer effect by increasing the circulating time of siRNA.
본 발명의 실시예에서 PEG-R9과 siRNA 접합체를 누드 마우스에 정맥 주사하여 관찰한 결과, 유의하게 암세포 성장이 억제됨을 확인하였다. In the present invention, the PEG-R9 and the siRNA conjugate were observed by intravenous injection into nude mice, and it was confirmed that cancer cell growth was significantly inhibited.
요컨대, 본 발명의 PEG-R9 및 PEG-R9-siRNA는 높은 트랜스펙션 효율, 낮은 세포독성, 높은 목적 유전자 발현 효율을 가지는, 체내 전신 순환이 효과적인 siRNA 전달 시스템으로 사용될 수 있다.In short, the PEG-R9 and PEG-R9-siRNA of the present invention can be used as an siRNA delivery system in which systemic circulation in the body is effective, having high transfection efficiency, low cytotoxicity, and high target gene expression efficiency.
[실시예]EXAMPLE
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1: PEG-R9-siRNA 복합체 형성Example 1: PEG-R9-siRNA Complex Formation
폴리에틸렌글리콜과 올리고 아르기닌의 접합체를 이용한 핵산 전달체 모식도를 도 1에 도시하였다.A schematic diagram of a nucleic acid carrier using a conjugate of polyethylene glycol and oligo arginine is shown in FIG. 1.
Cys-(D-R9)-Cys 구조에서 Cys의 아민기(-NH2)에 N-Hydroxysuccinimide (NHS) ester PEG (분자량 500, Thermo Fisher Scientific Inc. Rockford, IL USA)이 결합되는 구조를 지닌다. pH 7 ~ 8 정도의 약간 염기성인 조건에서 펩타이드와 NHS ester PEG를 반응비 1 : 1로 반응시키면 펩타이드 결합이 일어난다.In the Cys- (D-R9) -Cys structure, N-Hydroxysuccinimide (NHS) ester PEG (molecular weight 500, Thermo Fisher Scientific Inc. Rockford, IL USA) is bonded to the amine group (-NH2) of Cys. Peptide binding occurs when the peptide reacts with NHS ester PEG at a reaction ratio of 1: 1 at slightly basic conditions of pH 7-8.
siVEGF (5-AUGUGAAUGCAGACCAAAGAA dTdT-3)는 바이오니아로부터 구입하고, 펩타이드 (PEG-Cys-(D-R9)-Cys)는 애니젠으로부터 합성주문하였다.siVEGF (5-AUGUGAAUGCAGACCAAAGAA dTdT-3) was purchased from Bioneer and the peptide (PEG-Cys- (D-R9) -Cys) was synthetically ordered from Anigen.
50 pmol siVEGF, 탈이온수 및 PEG-R9 (전하비율: 6, 9)를 20분 동안 상온에서 배양하여 올리고 펩토플렉스(oligo-peptoplexe)를 제작하였다. 배양시킨 후, 2% 아가로즈 젤(agarose gel)에 100V로 20분 동안 전기영동 시킨다. 또한, siVEGF와 PEG-R9을 배양시킨 후, 마우스 혈청을 부피비 90%로 첨가하여 안정성 테스트를 24시간까지 실시하였다. 헤파린을 첨가하여 PEG-R9과 siVEGF를 분리하여 siVEGF의 밴드가 유지되는지 확인하였다.50 pmol siVEGF, deionized water and PEG-R9 (charge ratio: 6, 9) were incubated at room temperature for 20 minutes to prepare oligo peptoplexes (oligo-peptoplexe). After incubation, electrophoresis was performed at 2% agarose gel at 100V for 20 minutes. In addition, after incubating siVEGF and PEG-R9, the mouse serum was added at a volume ratio of 90% to perform a stability test for up to 24 hours. Heparin was added to isolate PEG-R9 and siVEGF to determine whether the band of siVEGF was maintained.
그 결과, 도 2에 도시한 바와 같이, PEG-R9 형태에서도 핵산과의 접합체 형성이 잘되며, 혈청에 대해 핵산의 보호 효과가 우수함을 확인할 할 수 있었다.As a result, as shown in Figure 2, PEG-R9 form also showed that the conjugate with the nucleic acid is well formed, it was confirmed that the protective effect of the nucleic acid to the serum is excellent.
실시예 2 : PEG-R9-siRNA 복합체 크기 및 제타 포텐셜Example 2 PEG-R9-siRNA Complex Size and Zeta Potential
PEG-R9/siVEGF 올리고-펩토플렉스(복합체)의 제타 포텐셜 및 평균 직경을 DLS(dynamic light scattering)을 이용하여 측정하였다. Zeta potential and mean diameter of PEG-R9 / siVEGF oligo-peptoplex (complex) were measured using dynamic light scattering (DLS).
5 μg siVEGF , 탈이온수 및 PEG-R9 (전하비율: 6, 9, 12, 15)를 30분동안 상온에서 배양하여 올리고 펩토플렉스(oligo-peptoplexe)를 제작하였다. 상기 올리고 펩토플렉스의 평균 직경 및 표면 제타 포텐셜을 Zetasizer-Nano ZS (Malvern Instruments, UK) 구비 DLS를 사용하여 측정하였다5 μg siVEGF, deionized water and PEG-R9 (charge ratio: 6, 9, 12, 15) were incubated at room temperature for 30 minutes to prepare oligo peptoplexes. The average diameter and surface zeta potential of the oligo peptoplexes were determined using a DLS with Zetasizer-Nano ZS (Malvern Instruments, UK).
그 결과 도 3에 나타낸 바와 같이, 전하 비율 6 이상에서 제타 포텐셜은 양(positive)의 값을 나타냈고, 전하 비율 6 이상에서 평균 직경은 200nm 미만이었다. 전하 비율 12에서 평균 직경이 가장 작게 나타났다(100nm). As a result, as shown in FIG. 3, the zeta potential showed a positive value at the charge ratio 6 or more, and the average diameter was less than 200 nm at the charge ratio 6 or more. The average diameter was the smallest at charge ratio 12 (100 nm).
실시예 3: PEG-R9의 세포내 전달(트랜스펙션) 효율 평가Example 3: Evaluation of Intracellular Delivery (Transfection) Efficiency of PEG-R9
PEG-R9에 사용한 R9은 C-(D-R9)-C의 구조로 PEG와 결합되어 있다. C-(D-R9)-C의 구조가 최적인지 확인을 하기 위하여 다음의 군을 비교하였다. G-(D-R9)-G, G-(D-R9)-C, C-(D-R9)-G, C-(D-R9)-C의 전달체와 루시페라아제(Luciferase) DNA의 복합체를 형성하여 세포에 트랜스팩션 효율을 평가하였다. 본 실시에서 사용한 복합체는 전하비율 1:5 형성하여 진행하였다. R9 used for PEG-R9 is bound to PEG in the structure of C- (D-R9) -C. In order to check whether the structure of C- (D-R9) -C is optimal, the following groups were compared. A complex of the carrier of G- (D-R9) -G, G- (D-R9) -C, C- (D-R9) -G, C- (D-R9) -C and luciferase DNA Formation was evaluated for transfection efficiency in cells. The composite used in the present example was formed by forming a charge ratio of 1: 5.
그 결과는 도 4에 도시하였다. The result is shown in FIG.
이중 C-(D-R9)-G와 C-(D-R9)-C 구조에서 트랜스팩션 효율이 높게 나타났으며, 이 중 C-(D-R9)-C를 선택하여 효율을 평가하였다. Among the C- (D-R9) -G and C- (D-R9) -C structures, transfection efficiency was high, and C- (D-R9) -C was selected to evaluate the efficiency.
실시예 4: PEG-R9의 세포내 전달(트랜스펙션) 효율 평가Example 4 Evaluation of Intracellular Delivery (Transfection) Efficiency of PEG-R9
Flow cytometry (FACS)를 이용하여 PEG-R9/FITC-siVEGF의 세포내 투과율을 평가하였다. FITC-siVEGF는 바이오니아로부터 구입하였다.Intracellular permeability of PEG-R9 / FITC-siVEGF was assessed using flow cytometry (FACS). FITC-siVEGF was purchased from Bioneer.
우선, Squamous Cell Carcinoma (SCC7) 세포를 ATCC로부터 구입하여 분화를 유도하였다. SCC7 세포를 RPMI 1640, 10% FBS, 1% 페니실린 및 스트렙토마이신 보충된 완전 배지에서 37℃, 5% CO2 대기 하 배양하였다. 세포들을 일주일에 3회 계대 배양하였다. First, Squamous Cell Carcinoma (SCC7) cells were purchased from ATCC to induce differentiation. SCC7 cells were cultured in 37 ° C., 5% CO 2 atmosphere in complete medium supplemented with RPMI 1640, 10% FBS, 1% penicillin and streptomycin. Cells were passaged three times a week.
수득한 SCC7 세포를 12 웰 플레이트에 1 × 105 으로 씨딩하였다. 세포들을 씨딩한지 24시간 후에, FITC-siVEGF 100 pmol과 PEG-R9(전하비율: 8, 15, 23)으로 복합체를 형성하고 트랜스펙션하였다. PEI 복합체를 전하 비율 8에서 대조군으로 사용하였다. 배양 4시간 후, 세포들을 PBS로 세척하고 트립신 처리하여 수득하고 1.5 ml 마이크로 튜브로 옮긴 후 1,300 rpm에서 3분 동안 원심분리하였다. FACS(Fluorescence Activated Cell Sorter) 버퍼로 세척한 뒤, FACS로 측정하였다.The obtained SCC7 cells were seeded in 12 well plates at 1 × 10 5 . After 24 hours of seeding, complexes were formed and transfected with 100 pmol of FITC-siVEGF and PEG-R9 (charge ratio: 8, 15, 23). PEI complex was used as control at charge ratio 8. After 4 hours of incubation, the cells were obtained by washing with PBS, trypsinized, transferred to 1.5 ml microtubes, and then centrifuged at 1,300 rpm for 3 minutes. After washing with FACS (Fluorescence Activated Cell Sorter) buffer, it was measured by FACS.
그 결과, 이하 표에 기재한 바와 같이, PEG-R9/FITC-siVEGF가 양성 대조군인 PEI/FITC-siVEGF 만큼 세포내 전달효율이 높은 것을 확인할 수 있었다.As a result, as shown in the following table, PEG-R9 / FITC-siVEGF was confirmed that the intracellular delivery efficiency as high as PEI / FITC-siVEGF positive control.
표 1
트랜스펙션 효율
4H Control Naked FITC-siVGF PEI/FITC-siVEGF PEG-9R/FITC-siVEGF (8) PEG-9R/FITC-siVEGF (15) PEG-9R/FITC-siVEGF (23)
% 0.17 10.3 96.37 71.51 86.87 90.32
Table 1
Transfection Efficiency
4H Control Naked FITC-siVGF PEI / FITC-siVEGF PEG-9R / FITC-siVEGF (8) PEG-9R / FITC-siVEGF (15) PEG-9R / FITC-siVEGF (23)
% 0.17 10.3 96.37 71.51 86.87 90.32
실시예 5: PEG-R9의 발현 효율 및 독성 평가Example 5: Expression efficiency and toxicity evaluation of PEG-R9
루시퍼라아제 분석 키트로 루시퍼라아제 유전자 발현을 측정하였고, MTT 분석으로 세포 생존능 분석을 수행하였다.Luciferase gene expression was measured with a luciferase assay kit, and cell viability assays were performed by MTT assay.
루시퍼라아제 분석 키트를 Promega(USA)로부터 구입하고, DC 단백질 분석 키트 및 소혈청 알부민 스탠다드를 Bio-Rad Laboratories(USA)로부터 구입하였다. SCC7 세포를 24 웰 플레이트에 2 × 104 으로 씨딩하였다. 씨딩한지 24시간 후에, 세포들을 플라스미드 루시퍼라아제 4 μg과 전하비율 12의 R9 및 PEG-R9 복합체를 트랜스펙션하였다. Luciferase assay kit was purchased from Promega (USA) and DC protein assay kit and bovine serum albumin standard were purchased from Bio-Rad Laboratories (USA). SCC7 cells were seeded 2 × 10 4 in 24 well plates. After 24 hours of seeding, cells were transfected with 4 μg of plasmid luciferase and R9 and PEG-R9 complexes with a charge ratio of 12.
PEI 복합체를 전하비율 8에서 대조군으로 사용하였다. 배양 48시간 후, 세포들을 PBS로 세척하고 150 μl의 1x cell 용해 버퍼 시약을 20분 동안 처리하였다. 세포 용해물을 긁어내어 수득하고 1.5 ml 마이크로 튜브로 옮긴 후 13,000 rpm에서 3분 동안 원심분리하였다. 세포 용해물의 형광도(luminescence)를 20초 이ㅌ네그레이션(integration)으로 96-웰 플레이트 광도계(Berthold Detection Systems, Germany)로 측정하고 세포 단백질의 mg 당 RLU(relative luminescence units)값으로 표현하였다. PEI complex was used as control at charge ratio 8. After 48 hours of incubation, cells were washed with PBS and treated with 150 μl of 1 × cell lysis buffer reagent for 20 minutes. Cell lysates were scraped off and transferred to 1.5 ml microtubes and centrifuged for 3 minutes at 13,000 rpm. Luminescence of cell lysates was measured by 96-well plate photometer (Berthold Detection Systems, Germany) by 20 seconds integration and expressed as relative luminescence units (RLU) per mg of cell protein. .
소혈청 알부민 스탠다드를 사용하는 DC 단백질 분석키트로 단백질을 결정하였다. 위의 방법을 통하여 PEG500 및 PEG1000의 비교하였고, 최적의 PEG를 선정하였다. Proteins were determined with a DC protein assay kit using bovine serum albumin standard. The above method was used to compare PEG500 and PEG1000, and the optimum PEG was selected.
그 결과를 도 5에 도시하였다. 세포내 도입 효율을 평가한 결과 PEG 500이 PEG 1000과 비교하여 더 우수한 유전자 전달 효능을 보였는 바, PEG 500을 본 발명의 실험에 사용하였다.The results are shown in FIG. As a result of evaluating the efficiency of transduction, PEG 500 showed better gene transfer efficacy compared to PEG 1000, and PEG 500 was used in the experiment of the present invention.
한편, 세포 생존능을 MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] 분석법으로 측정하였다.Meanwhile, cell viability was measured by MTT [3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide] assay.
SCC7 세포들을 24 웰 플레이트에서 배양시키고, 규정된 전하비율에서 R9, PEG-R9 및 PEI 복합체로 처리하였다. 트랜스펙션 48시간 후, 50 μl MTT 시약 및 500 μl 배지를 각 웰에 첨가하고 3시간 동안 37℃에서 배양하였다. 상기 배양 배지들을 제거하고 500 μl 디메틸 설폭사이드(DMSO)를 각 웰에 첨가하고 상온에서 20분 동안 배양하였다. 흡광도를 570nm에서 측정하였다. SCC7 cells were cultured in 24 well plates and treated with R9, PEG-R9 and PEI complexes at defined charge rates. After 48 hours of transfection, 50 μl MTT reagent and 500 μl medium were added to each well and incubated at 37 ° C. for 3 hours. The culture medium was removed and 500 μl dimethyl sulfoxide (DMSO) was added to each well and incubated for 20 minutes at room temperature. Absorbance was measured at 570 nm.
그 결과를 도 6에 도시하였다.The results are shown in FIG.
세포내 유전자 전달 효율을 Luciferase assay를 통하여 확인한 결과 PEG-R9은 유전자를 세포내로 잘 전달하여 발현하는 것으로 나타났고, 또한 세포독성이 타 유전자 전달체 (ex. PEI) 와 비교하여 매우 낮음을 알 수 있었다.As a result of the luciferase assay, PEG-R9 expresses the gene well in the cell, and the cytotoxicity is very low compared to other gene carriers (ex. PEI). .
비교예 1 : siRNA 전달을 위한 최적의 전달체 확인Comparative Example 1 Identification of Optimal Transporter for siRNA Delivery
또한, siVEGF 및 다양한 종류의 전달체를 접합한 후, 이의 크기 및 제타 포텐셜 분석을 통해 siRNA 전달을 위한 최적의 전달체를 찾고자 하였다.In addition, after conjugation of siVEGF and various types of transporters, their size and zeta potential analysis were used to find an optimal transporter for siRNA delivery.
cys-R9-cys, PEG-R9, PEG-cys-R9-cys의 각 경우; 및 PEG-cys-R9-cys, PEG-TAT, PEG-cys-TAT-cys,를전달체군 및 로 사용하여 비교하였다. each case of cys-R9-cys, PEG-R9, PEG-cys-R9-cys; And PEG-cys-R9-cys, PEG-TAT, PEG-cys-TAT-cys, were compared using the delivery group and.
그 결과를 도 7 및 도 8에 도시하였다.The results are shown in FIGS. 7 and 8.
우선, PEG를 결합하지 않았을 때보다 PEG를 결합한 전달체의 입자 크기가 더 작았으며, R9의 말단에 시스테인이 없을 경우에는 입자의 크기가 오히려 다소 커지는 것을 확인하였다(도 7). 이를 통해,R9의 양 말단에 시스테인이 결합되어 있고, 나아가 PEG를 결합하는 경우 siRNA와 결합률이 가장 향상됨을 알 수 있었다. First, the particle size of the PEG-coupled carrier was smaller than when PEG was not bound, and when cysteine was not present at the terminal of R9, the particle size was rather increased (FIG. 7). Through this, it was found that cysteine is bonded to both ends of R9, and furthermore, the binding rate of siRNA is improved when PEG is bound.
또한, TAT을 사용하여 R9과 유전자 결합 능력을 비교 평가한 결과, TAT보다 R9에 PEG를 결합하였을 때가 siRNA 전달을 위한 최적의 전달체임을 알 수 있었다(도 8)In addition, as a result of comparing and evaluating gene binding ability with R9 using TAT, it was found that when PEG is bound to R9 rather than TAT, it is an optimal carrier for siRNA delivery (FIG. 8).
이처럼, 상기 실험을 통해, 본 발명의 R9의 말단에 시스테인(cyctein) 및 PEG가 접합되어 있는 경우에 siRNA와의 결합이 가장 효율적이고, 나노입자의 크기도 균일함을 알 수 있었다.As such, it was found that when cysteine and PEG are conjugated to the terminal of R9 of the present invention, the binding with siRNA is most efficient, and the size of nanoparticles is uniform.
실시예 6: PEG-R9-siVEGF의 항암 효능Example 6: Anticancer Efficacy of PEG-R9-siVEGF
7주령 누드마우스의 뒷다리 쪽에 SCC7 세포를 2 × 106 으로 주입하여 암 모델을 유도하였다. 종양의 부피가 100mm3 이상이 되면 치료를 시작하였다. siVEGF 10 μg과 규정된 전하비율에서의 PEG-R9, R9 및 PEI 복합체를 tail vein으로 일주일에 세 번 2주 동안 투여하였다. 각 군별 누드마우스의 수는 5마리였다. The cancer model was induced by injecting 2 × 10 6 SCC7 cells into the hind limbs of 7 week old nude mice. Treatment started when the tumor volume reached 100 mm 3 or more. PEG-R9, R9 and PEI complexes at 10 μg of siVEGF and defined charge ratios were administered as tail vein three times a week for 2 weeks. The number of nude mice in each group was five.
그 결과, 도 9 및 도 10에 나타난 바와 같이, 누드마우스에 암을 이식하고 tail vein으로 siVEGF 복합체를 투여하였을 때, PEG-R9/siVEGF 투여군에서 다른 군과 비교하여 종양의 성장 속도가 느린 것을 확인함으로써 항암 효과를 증명하였다.As a result, as shown in Figure 9 and 10, when cancer was implanted in the nude mouse and administered the siVEGF complex with the tail vein, it was confirmed that the growth rate of tumors in the PEG-R9 / siVEGF administration group is slow compared to other groups This proved the anticancer effect.

Claims (15)

  1. 폴리에틸렌글리콜(PEG) 및 R9(arginine) 펩타이드를 함유하는, 전신 순환용 siRNA 전달체.A siRNA delivery system for systemic circulation, comprising polyethylene glycol (PEG) and R9 (arginine) peptide.
  2. 제1항에 있어서, 상기 R9(arginine) 펩타이드는 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 것을 특징으로 하는 전신 순환용 siRNA 전달체.The siRNA delivery system for systemic circulation according to claim 1, wherein the R9 (arginine) peptide has Cys attached to one or both ends thereof.
  3. 제2항에 있어서, 상기 R9(arginine) 펩타이드는 Cys-(D-R9)-Cys 또는 Gly-(D-R9)-Cys구조를 가지는 것을 특징으로 하는 전신 순환용 siRNA 전달체.The siRNA delivery system for systemic circulation according to claim 2, wherein the R9 (arginine) peptide has a Cys- (D-R9) -Cys or Gly- (D-R9) -Cys structure.
  4. 폴리에틸렌글리콜(PEG); R9(arginine) 펩타이드; 및 siRNA로 구성되는 전신 순환용 siRNA 전달용 복합체.Polyethylene glycol (PEG); R9 (arginine) peptides; And siRNA delivery complex for systemic circulation consisting of siRNA.
  5. 제4항에 있어서, 상기 R9(arginine) 펩타이드는 한쪽 말단 또는 양쪽 말단에 Cys가 결합되어 있는 것을 특징으로 하는 복합체.The complex of claim 4, wherein the R9 (arginine) peptide has Cys attached to one or both ends.
  6. 제5항에 있어서, 상기 R9(arginine) 펩타이드는 Cys-(D-R9)-Cys 또는 Gly-(D-R9)-Cys 구조를 가지는 것을 특징으로 하는 복합체.The complex of claim 5, wherein the R9 (arginine) peptide has a Cys- (D-R9) -Cys or Gly- (D-R9) -Cys structure.
  7. 제6항에 있어서, 상기 R9(arginine) 펩타이드는 Cys-(D-R9)-Cys 구조를 가지는 것을 특징으로 하는 복합체.The complex of claim 6, wherein the R9 (arginine) peptide has a Cys- (D-R9) -Cys structure.
  8. 제4항에 있어서, 상기 폴리에틸렌글리콜(PEG)은 분자량 500 달톤의 PEG 500인 것을 특징으로 하는 복합체.The composite according to claim 4, wherein the polyethylene glycol (PEG) is PEG 500 having a molecular weight of 500 daltons.
  9. 제4항에 있어서, 상기 복합체의 200nm 이하의 직경을 가지는 것을 특징으로 하는 복합체.The composite according to claim 4, wherein the composite has a diameter of 200 nm or less.
  10. 제4항에 있어서, 상기 복합체는 6:1 ~ 15:1의 전하비율(+/-)을 가지는 것을 특징으로 하는 복합체.The complex of claim 4, wherein the complex has a charge ratio (+/−) of 6: 1 to 15: 1.
  11. 제10항에 있어서, 상기 복합체는 12:1의 전하비율(+/-)을 가지는 것을 특징으로 하는 복합체.The complex of claim 10, wherein the complex has a charge ratio (+/−) of 12: 1.
  12. 폴리에틸렌글리콜(PEG); R9(arginine) 펩타이드; 및 siVEGF로 구성되는, 전신 순환을 위한 항암용 siRNA 전달용 복합체.Polyethylene glycol (PEG); R9 (arginine) peptides; And consisting of siVEGF, anti-cancer siRNA delivery complex for systemic circulation.
  13. 제12항에 있어서, 상기 R9(arginine) 펩타이드는 Cys-(D-R9)-Cys 구조를 가지는 것을 특징으로 하는 복합체.The complex of claim 12, wherein the R9 (arginine) peptide has a Cys- (D-R9) -Cys structure.
  14. 제12항의 복합체를 유효성분으로 함유하는 VEGF 과발현 암 치료용 조성물.A composition for treating VEGF overexpressing cancer, comprising the complex of claim 12 as an active ingredient.
  15. 제14항에 있어서, 상기 VEGF 과발현 암은 폐암, 부인과 악성종양, 흑색종, 유방암, 췌장암, 난소암, 자궁암, 결장직장암, 전립선암, 콩팥암, 두부암(head cancer), 췌장암, 간암(간세포암), 자궁암, 경부암(neck cancer), 콩팥암(신세포암), 육종, 골수종 및 림프종으로부터 선택되는 것인 조성물.15. The method of claim 14, wherein the VEGF overexpression cancer is lung cancer, gynecological malignancy, melanoma, breast cancer, pancreatic cancer, ovarian cancer, uterine cancer, colorectal cancer, prostate cancer, kidney kidney, head cancer, pancreatic cancer, liver cancer Cancer), cervical cancer, neck cancer, kidney cancer (renal cell cancer), sarcoma, myeloma and lymphoma.
PCT/KR2013/008560 2012-09-28 2013-09-25 Short interference rna gene delivery system for systemic circulation WO2014051318A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380061873.7A CN104870023A (en) 2012-09-28 2013-09-25 Short interference RNA gene delivery system for systemic circulation
US14/431,586 US9713645B2 (en) 2012-09-28 2013-09-25 Short interference RNA gene delivery system for systemic circulation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120109003 2012-09-28
KR10-2012-0109003 2012-09-28
KR10-2013-0060230 2013-05-28
KR1020130060230A KR101497668B1 (en) 2012-09-28 2013-05-28 A siRNA gene Delivery System for Systemic Circulation

Publications (2)

Publication Number Publication Date
WO2014051318A2 true WO2014051318A2 (en) 2014-04-03
WO2014051318A3 WO2014051318A3 (en) 2014-05-22

Family

ID=50389092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008560 WO2014051318A2 (en) 2012-09-28 2013-09-25 Short interference rna gene delivery system for systemic circulation

Country Status (1)

Country Link
WO (1) WO2014051318A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207966A1 (en) * 2006-03-03 2007-09-06 University Of Utah Polymeric carrier for delivery of small interfering RNA
KR100825519B1 (en) * 2007-01-05 2008-04-25 주식회사 바이오폴리메드 A chitosan based polymer conjugate and a method for producing the same
KR20100105674A (en) * 2007-12-13 2010-09-29 뽈리쁠뤼스-트랑스펙씨옹 Means for delivery of nucleic acids active for gene silencing using synthetic polymers
US20110053829A1 (en) * 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207966A1 (en) * 2006-03-03 2007-09-06 University Of Utah Polymeric carrier for delivery of small interfering RNA
KR100825519B1 (en) * 2007-01-05 2008-04-25 주식회사 바이오폴리메드 A chitosan based polymer conjugate and a method for producing the same
KR20100105674A (en) * 2007-12-13 2010-09-29 뽈리쁠뤼스-트랑스펙씨옹 Means for delivery of nucleic acids active for gene silencing using synthetic polymers
US20110053829A1 (en) * 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EL-SAYED, AYMAN ET AL.: 'Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment' THE AAPS JOURNAL vol. 11, no. 1, 2009, pages 13 - 22 *

Also Published As

Publication number Publication date
WO2014051318A3 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
Kim et al. Anti-apoptotic cardioprotective effects of SHP-1 gene silencing against ischemia–reperfusion injury: Use of deoxycholic acid-modified low molecular weight polyethyleneimine as a cardiac siRNA-carrier
AU705035B2 (en) Nucleic acid transporters for delivery of nucleic acids into a cell
Schellinger et al. Melittin-grafted HPMA-oligolysine based copolymers for gene delivery
WO2013180537A2 (en) Skin-permeating peptide
WO2011142515A1 (en) Asymmetric liposomes for the highly efficient encapsulation of nucleic acids and hydrophilic anionic compounds, and method for preparing same
US9765329B2 (en) Adipocyte-targeting non-viral gene delivery system
Chung et al. Highly potent monomethyl auristatin E prodrug activated by caspase-3 for the chemoradiotherapy of triple-negative breast cancer
Yin et al. Appropriate delivery of the CRISPR/Cas9 system through the nonlysosomal route: Application for therapeutic gene editing
TW200902051A (en) Enzymatic anticancer therapy
Yi et al. Sequentially targeting cancer‐associated fibroblast and mitochondria alleviates tumor hypoxia and inhibits cancer metastasis by preventing “soil” formation and “seed” dissemination
Guo et al. Head-to-tail macrocyclization of albumin-binding domain fused interferon alpha improves the stability, activity, tumor penetration, and pharmacology
US9687563B2 (en) Ph-sensitive peptides and their nanoparticles for drug delivery
Piña et al. A double safety lock tumor-specific device for suicide gene therapy in breast cancer
WO2022065726A1 (en) Liposome complex for cancer treatment, comprising novel cd47 binder and polynucleotide
WO2014051318A2 (en) Short interference rna gene delivery system for systemic circulation
WO2021125762A1 (en) Composition for preventing or treating dementia, containing peptide nucleic acid complex with blood-brain barrier penetration ability as active ingredient
WO2016068617A1 (en) Polyol-based osmotic polydixylitol polymer based gene transporter and use thereof
WO2022131745A1 (en) Composition for preventing or treating glioblastoma comprising peptide nucleic acid complex as active ingredient
KR101497668B1 (en) A siRNA gene Delivery System for Systemic Circulation
EP4360655A2 (en) Molecular guide system peptides and uses thereof
WO2024054062A1 (en) Novel polypeptide composition for intracellular transfection
WO2012133997A1 (en) Polysorbitol-based osmotically active transporter and gene therapy using same
WO2023229366A1 (en) Surface-engineered extracellular vesicles and therapeutic uses thereof
WO2022065724A1 (en) Cd47 binder and liposome complex for treating cancer
WO2023038479A1 (en) Plasmid platform for stable expression and delivery of biomolecules

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14431586

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13842206

Country of ref document: EP

Kind code of ref document: A2