[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014050941A1 - 処理液供給装置、基板処理装置、処理液供給方法、基板処理方法、処理液処理装置および処理液処理方法 - Google Patents

処理液供給装置、基板処理装置、処理液供給方法、基板処理方法、処理液処理装置および処理液処理方法 Download PDF

Info

Publication number
WO2014050941A1
WO2014050941A1 PCT/JP2013/076006 JP2013076006W WO2014050941A1 WO 2014050941 A1 WO2014050941 A1 WO 2014050941A1 JP 2013076006 W JP2013076006 W JP 2013076006W WO 2014050941 A1 WO2014050941 A1 WO 2014050941A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing
liquid
processing liquid
pipe
Prior art date
Application number
PCT/JP2013/076006
Other languages
English (en)
French (fr)
Inventor
宮城 雅宏
荒木 浩之
政典 鈴木
朋且 佐藤
川瀬 信雄
Original Assignee
大日本スクリーン製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012215294A external-priority patent/JP6044951B2/ja
Priority claimed from JP2013194293A external-priority patent/JP6212818B2/ja
Application filed by 大日本スクリーン製造株式会社 filed Critical 大日本スクリーン製造株式会社
Priority to KR1020157006772A priority Critical patent/KR20150046148A/ko
Priority to CN201380047457.1A priority patent/CN104662644B/zh
Priority to US14/431,992 priority patent/US10133173B2/en
Publication of WO2014050941A1 publication Critical patent/WO2014050941A1/ja
Priority to US16/008,710 priority patent/US10761422B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices

Definitions

  • the present invention relates to a processing liquid supply apparatus, a substrate processing apparatus, a processing liquid supply method, a substrate processing method, a processing liquid processing apparatus, and a processing liquid processing method.
  • the processing object using the processing liquid includes a substrate, a container, an optical component, and the like.
  • Substrates used as objects to be processed include, for example, semiconductor wafers, glass substrates for liquid crystal display devices, substrates for plasma displays, substrates for FED (Field Emission Display), substrates for OLED (organic electroluminescence), substrates for optical disks, and magnetism.
  • Substrates such as a disk substrate, a magneto-optical disk substrate, a photomask substrate, a ceramic substrate, and a solar cell substrate are included.
  • a treatment liquid is supplied to the surface of a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display panel, and the surface of the substrate is washed with the treatment liquid.
  • a substrate processing apparatus that performs a single wafer cleaning process that processes substrates one by one, a spin chuck that rotates the substrate while holding the substrate substantially horizontally with a plurality of chuck pins, and the spin chuck And a processing liquid nozzle for supplying a processing liquid to the surface of the substrate rotated by.
  • the substrate is rotated by the spin chuck. Then, the chemical solution is supplied from the nozzle to the surface of the rotating substrate. The chemical solution supplied onto the surface of the substrate flows on the surface of the substrate toward the peripheral edge under the centrifugal force due to the rotation of the substrate. As a result, the chemical solution spreads over the entire surface of the substrate, and the treatment of the substrate surface with the chemical solution is achieved. And after the process by this chemical
  • pure water is supplied from the treatment liquid nozzle to the surface of the substrate rotated by the spin chuck, and the pure water spreads by receiving the centrifugal force due to the rotation of the substrate, so that the chemical solution adhered to the surface of the substrate Is washed away.
  • the rotation speed of the substrate by the spin chuck is increased, and spin dry treatment is performed in which pure water adhering to the substrate is shaken off and dried (see Patent Document 1 below).
  • the substrate may be fluidly charged.
  • the substrate is a glass substrate or a silicon wafer
  • the substrate is positively charged. If the substrate is charged, there is a risk of destruction of devices formed on the surface of the substrate when the discharge of the charge occurs.
  • a batch type substrate processing apparatus that processes a plurality of substrates at once is also used.
  • the batch-type substrate processing apparatus includes, for example, a plurality of processing tanks including a chemical processing tank storing a chemical and a rinsing processing tank storing water. When processing is performed on a plurality of substrates at once, the substrates are sequentially immersed in the chemical solution processing tank and the rinse processing tank.
  • the substrate is charged during the rinsing process in the rinsing tank.
  • the substrate is a silicon wafer or a glass substrate
  • the substrate is positively charged. If the substrate after a series of treatments is charged, there is a risk that the device formed on the surface of the substrate will be destroyed when the discharge of the charge occurs.
  • the same problem may occur when the object to be treated is charged before being carried into the treatment tank. Therefore, it is required to perform a rinsing process (a process using a processing liquid) while preventing the substrate from being charged and eliminating the charge.
  • Antistatic and neutralization in processing using a processing solution are not limited to the case where the processing target is a substrate, but are common issues when the processing target is a container or other optical component.
  • an object of the present invention is to provide a processing liquid supply apparatus and a processing liquid supply method capable of supplying a processing liquid to the processing object while preventing or neutralizing the processing object.
  • Another object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of performing processing using a processing liquid on the substrate while preventing or eliminating the charge of the substrate.
  • Another object of the present invention is to provide a processing liquid processing apparatus and a processing liquid processing method capable of performing processing using a processing liquid on a processing object while preventing or neutralizing the processing object. It is.
  • a first aspect of the present invention is a processing liquid supply device for discharging a processing liquid from a discharge port and supplying the processing liquid to a processing object, and a first pipe through which the processing liquid can circulate
  • the processing liquid supply apparatus includes: a first pipe whose inside communicates with the discharge port; and an X-ray irradiation unit that irradiates the processing liquid existing in the first pipe with X-rays. .
  • the processing liquid existing in the first pipe is irradiated with X-rays. Further, the processing liquid discharged from the discharge port communicating with the inside of the first pipe is supplied to the processing object.
  • irradiation portion of the treatment liquid In the portion of the treatment liquid that is irradiated with X-rays (hereinafter referred to as “irradiation portion of the treatment liquid”), electrons are emitted from the water molecules by excitation of the water molecules, and as a result, positive ions and electrons of the water molecules Is formed in a plasma state.
  • the processing liquid discharged from the discharge port is supplied to the processing object and comes into contact with the processing object.
  • the case where the processing liquid discharged from the discharge port is connected to the liquid state between the discharge port and the processing target will be considered.
  • the processing object and the irradiated portion of the processing liquid are connected via the processing liquid.
  • the processing object can be neutralized through the processing liquid connected to the liquid state according to the principle described above.
  • the treatment liquid can be supplied to the treatment object while preventing the charge of the treatment object or eliminating the charge.
  • X-ray means an electromagnetic wave having a wavelength of about 0.001 nm to 10 nm, “soft X-ray” having a relatively long wavelength (about 0.1 nm to 10 nm), This includes “hard X-rays” (about 0.001 nm to 0.1 nm) having a relatively short wavelength.
  • processing object includes a substrate, a container, an optical component, and the like.
  • the first pipe has an opening in its pipe wall, and the opening is closed by a window member formed using a material that can transmit X-rays.
  • the X-ray irradiation unit irradiates the processing liquid existing in the first pipe with X-rays through the window member.
  • the window member is formed using a material capable of transmitting X-rays. And the X-ray irradiated from the X-ray irradiation means is irradiated to the process liquid which exists in the said 1st piping through a window member. Thereby, the plasma state in which positive ions of water molecules and electrons are mixed can be satisfactorily formed in the irradiated portion of the treatment liquid.
  • the window member may be formed using beryllium or polyimide resin.
  • the substance has a small atomic weight such as beryllium, X-rays with low penetrating power can be transmitted. Therefore, by forming the window member using beryllium, X-rays can pass through the window member.
  • the window member when the window member is formed using polyimide resin, X-rays can pass through the window member. Moreover, since the polyimide resin is excellent in chemical stability, the window member can be used over a long period of time.
  • the wall surface of the window member on the side where the treatment liquid exists is hydrophilic. In this case, it is possible to suppress or prevent air bubbles from being mixed between the wall surface and the treatment liquid. Thereby, X-ray
  • the wall surface of the window member on the side where the treatment liquid is present may be coated with a film. Thereby, an irradiation window can be protected.
  • the window member when the window member is formed using beryllium having poor acid resistance, the window member can be well protected from the acidic treatment liquid.
  • This film is preferably formed using a hydrophilic material. In this case, it is possible to suppress or prevent air bubbles from being mixed between the film and the treatment liquid. Thereby, X-ray
  • the film may be a film containing one or more materials of polyimide resin, diamond-like carbon, fluorine resin, and hydrocarbon resin.
  • the X-ray irradiation means may include an X-ray generator that has an irradiation window disposed to face the window member, generates X-rays, and irradiates the generated X-rays from the irradiation window. Good.
  • the X-ray generated by the X-ray generator is irradiated from the irradiation window of the X-ray generator to the processing liquid flowing in the first pipe.
  • the X-ray irradiation means may further include a cover surrounding the X-ray generator with a space from the X-ray generator, and a gas supply means for supplying a gas to the inside of the cover. .
  • the X-ray generator generates heat by driving the X-ray generator.
  • the X-ray generator can be cooled, and the temperature rise in the ambient atmosphere of the X-ray generator can be suppressed.
  • the first pipe includes a processing liquid pipe through which a processing liquid flows toward the discharge port, and the X-ray irradiating means is a process that circulates in the first pipe.
  • the liquid may be irradiated with the X-ray.
  • the apparatus further includes a processing liquid pipe through which the processing liquid flows toward the discharge port, and the first pipe includes a branch pipe branched from the processing liquid pipe. Also good. In this case, the X-ray is irradiated to the processing liquid present in the branch pipe.
  • the processing liquid discharged from the discharge port flows along the fibrous substance, even when the discharge flow rate of the processing liquid from the discharge port is a small flow rate, the processing liquid discharged from the discharge port An aspect can be made into the continuous flow form connected to both the said discharge outlet and the said process target object. Therefore, it is possible to connect the processing object and the irradiated portion of the processing liquid through the processing liquid with a simple configuration.
  • the tip of the fibrous substance may be in contact with the liquid film of the processing liquid or the processing object.
  • the mode of the processing liquid discharged from the discharge port is easily maintained in the continuous flow as described above.
  • the electrode may further include an electrode disposed downstream of the X-ray irradiation position in the first pipe in the treatment liquid flow direction and a power source for applying a voltage to the electrode.
  • the power supply applies a voltage to the electrodes in conjunction with the X-ray irradiation to the treatment liquid existing in the first pipe.
  • a voltage to the electrode By applying a voltage to the electrode, a positive charge or a negative charge can be generated in the electrode.
  • the electrode may be disposed at the tip of the first pipe.
  • the electrode is arrange
  • the processing liquid supply device includes a processing liquid detection means for detecting the presence or absence of a processing liquid at the irradiation position of the X-ray in the first pipe, and when the processing liquid is present at the irradiation position, the X-ray An X-ray irradiation control unit that performs X-ray irradiation by the irradiation unit and that does not perform X-ray irradiation by the X-ray irradiation unit when the treatment liquid is not present at the irradiation position may be further included.
  • the X-rays may leak out of the first pipe.
  • 1st aspect of this invention provides the substrate processing apparatus which contains the board
  • X-rays are irradiated to the processing liquid existing in the first pipe of the processing liquid supply apparatus.
  • the processing liquid discharged from the discharge port communicating with the inside of the first pipe is supplied to the main surface of the substrate.
  • electrons are emitted from the water molecules by excitation of the water molecules, and as a result, a plasma state in which positive ions and electrons of the water molecules are mixed is formed.
  • the processing liquid discharged from the discharge port is supplied to the main surface of the substrate and comes into contact with the main surface of the substrate.
  • a case where the processing liquid discharged from the discharge port is connected in a liquid state between the discharge port and the main surface of the substrate will be considered.
  • the main surface of the substrate and the irradiated portion of the processing liquid are connected via the processing liquid.
  • the processing liquid in which electrons from the irradiated portion of the processing liquid are in contact with the substrate due to a potential difference between the irradiated portion of the processing liquid and the positively charged substrate Toward the liquid, it moves along the processing liquid connected to the liquid state. As a result, since the processing liquid in contact with the substrate has a large amount of electrons, the positively charged substrate is neutralized.
  • the object to be treated can be neutralized through the treatment liquid connected to the liquid according to the principle described above. As a result, it is possible to prevent device destruction due to charging of the substrate.
  • the substrate can be treated with the treatment liquid while preventing or eliminating the charge of the substrate.
  • the substrate holding unit includes a substrate holding and rotating unit that rotates a substrate around a predetermined rotation axis while holding the substrate in a horizontal posture
  • the substrate processing apparatus includes the substrate holding and rotating unit.
  • a cylindrical liquid receiving member surrounding the periphery of the means; and the processing liquid supply device further includes a processing liquid pipe through which the processing liquid flows toward the discharge port, and the processing liquid supply device includes:
  • the first pipe includes a branch pipe branched from the processing liquid pipe, and the branch pipe has a liquid receiving outlet for discharging the processing liquid toward the liquid receiving member.
  • the X-ray irradiation means irradiates the processing liquid flowing through the branch pipe while discharging the processing liquid from the liquid receiving discharge port toward the liquid receiving member.
  • a plasma state in which positive ions of water molecules and electrons are mixed is formed in the irradiated portion of the treatment liquid in the branch pipe.
  • the processing liquid discharged from the liquid receiving discharge port is supplied to the liquid receiving member and comes into contact with the liquid receiving member.
  • the processing liquid discharged from the liquid receiving discharge port is connected in a liquid state between the liquid receiving discharge port and the liquid receiving member, the liquid receiving member and the irradiated portion of the processing liquid receive the processing liquid. Connected through.
  • the liquid receiving member is positively charged, electrons from the irradiated portion of the processing liquid are received by the potential difference between the irradiated portion of the processing liquid and the positively charged liquid receiving member. It moves along the treatment liquid connected to the liquid toward the treatment liquid in contact with the member. As a result, since the processing liquid in contact with the liquid receiving member has a large amount of electrons, the positively charged liquid receiving member is neutralized.
  • the substrate holding means includes substrate holding rotating means for rotating the substrate around a predetermined vertical rotation axis while holding the substrate in a horizontal posture
  • the substrate holding rotating means includes the substrate A support member that is in contact with at least a part of the lower surface of the substrate and supports the substrate in a horizontal posture, the support member is formed using a porous material, and the processing liquid discharged from the discharge port Supplied to the support member.
  • the processing liquid supplied to the support member is impregnated inside the support member.
  • the treatment liquid impregnated inside the support member oozes out from the support member and forms a liquid film of the treatment liquid on the support member.
  • the liquid film of the processing liquid comes into contact with the lower surface of the substrate, the lower surface of the substrate is processed.
  • the discharge port is connected to the discharge port through the processing liquid impregnated inside the support member.
  • the lower surface of the substrate is connected in a liquid state, and therefore, the lower surface of the substrate and the irradiated portion of the processing liquid are connected via the processing liquid.
  • the treatment using the treatment liquid can be performed on the lower surface of the substrate while preventing the charge of the substrate and eliminating the charge.
  • the substrate holding means may include substrate holding and conveying means for conveying the substrate in a predetermined conveying direction while holding the substrate.
  • the processing liquid discharged from the discharge port is supplied to the main surface (upper surface) of the substrate transported by the substrate holding transport means, and comes into contact with the main surface (upper surface) of the substrate.
  • the processing liquid in which electrons from the irradiated portion of the processing liquid are in contact with the substrate due to a potential difference between the irradiated portion of the processing liquid and the positively charged substrate Toward the liquid, it moves along the processing liquid connected to the liquid state. As a result, since the processing liquid in contact with the substrate has a large amount of electrons, the positively charged substrate is neutralized.
  • the substrate holding and transporting means is transported while holding the substrate in a posture that is inclined along the transport direction and with respect to a horizontal plane.
  • the processing liquid discharged from the discharge port flows on the substrate along the inclined surface. Therefore, since the processing liquid does not stay on the substrate, it is possible to prevent or suppress the load from being concentrated on a predetermined portion of the substrate due to the weight of the processing liquid. Further, since the processing liquid flows smoothly on the substrate, a liquid film of the processing liquid spreading over a wide range can be formed on the upper surface of the substrate. As a result, it is possible to prevent charge and eliminate static electricity over a wide range of the substrate.
  • 1st aspect of this invention is a processing liquid supply method which discharges a processing liquid from the discharge outlet of a processing liquid supply apparatus, and supplies this processing liquid to a process target object, Comprising: The said discharge outlet is set to the said process target object.
  • the X-ray irradiation step of irradiating the X-ray to the treatment liquid existing inside the first pipe communicating with the discharge port, And a processing liquid discharge step for discharging the processing liquid from the discharge port.
  • a processing liquid supply method is provided in which the processing liquid is in a liquid state between the discharge port and the processing object. To do.
  • the processing liquid existing in the first pipe is irradiated with X-rays. Further, the processing liquid discharged from the discharge port communicating with the inside of the first pipe is supplied to the processing object. In the portion of the treatment liquid that is irradiated with X-rays, electrons are emitted from the water molecules by excitation of the water molecules, and as a result, a plasma state in which positive ions and electrons of the water molecules are mixed is formed.
  • the processing liquid discharged from the discharge port is connected in a liquid state between the discharge port and the object to be processed.
  • the processing object and the irradiated portion of the processing liquid are connected via the processing liquid.
  • the processing object can be neutralized through the processing liquid connected to the liquid state according to the principle described above.
  • the treatment liquid can be supplied to the treatment object while preventing the charge of the treatment object or eliminating the charge.
  • the processing liquid discharged from the discharge port has a continuous flow shape connected to both the discharge port and the processing object.
  • the processing object and the irradiated portion of the processing liquid can be easily connected via the processing liquid.
  • the processing object may be a second pipe through which liquid flows, or a container for storing articles.
  • 1st aspect of this invention is a substrate processing method which processes a board
  • a processing liquid discharge step of discharging a processing liquid from the discharge port, and in the processing liquid discharge step, the processing liquid is connected in a liquid state between the discharge port and the main surface of the substrate.
  • the processing liquid existing in the first pipe is irradiated with X-rays.
  • the processing liquid discharged from the discharge port communicating with the inside of the first pipe is supplied to the main surface of the substrate.
  • electrons are emitted from the water molecules by excitation of the water molecules, and as a result, a plasma state in which positive ions and electrons of the water molecules are mixed is formed.
  • the processing liquid discharged from the discharge port is supplied to the upper surface of the substrate and comes into contact with the upper surface of the substrate.
  • the processing liquid discharged from the discharge port is connected in a liquid state between the discharge port and the main surface of the substrate. In this case, the main surface of the substrate and the irradiated portion of the processing liquid are connected via the processing liquid.
  • the processing liquid in which electrons from the irradiated portion of the processing liquid are in contact with the substrate due to a potential difference between the irradiated portion of the processing liquid and the positively charged substrate Toward the liquid, it moves along the processing liquid connected to the liquid state. As a result, since the processing liquid in contact with the substrate has a large amount of electrons, the positively charged substrate is neutralized.
  • the object to be treated can be neutralized through the treatment liquid connected to the liquid according to the principle described above. As a result, it is possible to prevent device destruction due to charging of the substrate.
  • the substrate can be treated with the treatment liquid while preventing or eliminating the charge of the substrate.
  • the processing liquid discharged from the discharge port has a continuous flow shape connected to both the discharge port and the main surface of the substrate.
  • substrate and the irradiation part of a process liquid can be connected easily via a process liquid.
  • the substrate is held in a horizontal posture by the substrate holding means, and the opposing arrangement step is such that the discharge port faces the upper surface of the substrate held by the substrate holding means.
  • the processing liquid discharged from the discharge port is supplied to the upper surface of the substrate and comes into contact with the upper surface of the substrate.
  • the processing liquid discharged from the discharge port is connected in a liquid state between the discharge port and the upper surface of the substrate, and the processing object and the irradiated portion of the processing liquid are connected via the processing liquid.
  • the substrate is held in a horizontal posture by the substrate holding means, and the opposing arrangement step is such that the discharge port is placed on the lower surface of the substrate held by the substrate holding means.
  • the substrate processing method is executed in parallel with the processing liquid discharge step, and rotates the substrate about a predetermined vertical rotation axis, and the processing liquid
  • an upper surface processing liquid supply step for supplying a processing liquid to the upper surface of the substrate is further included.
  • the processing liquid discharged from the discharge port is supplied to the lower surface of the substrate and comes into contact with the lower surface of the substrate.
  • the processing liquid in contact with the lower surface of the substrate spreads to the peripheral edge along the lower surface of the substrate, and a liquid film of the processing liquid is formed over the entire lower surface of the substrate.
  • the processing liquid that reaches the peripheral edge of the lower surface of the substrate goes around the peripheral end surface of the substrate and reaches the peripheral edge of the upper surface of the substrate.
  • the processing liquid is supplied to the upper surface of the substrate.
  • the processing liquid supplied to the substrate receives a centrifugal force due to the rotation of the substrate and spreads the upper surface of the substrate toward the peripheral portion, thereby forming a liquid film of the processing liquid over the entire upper surface of the substrate.
  • the processing liquid that has come around from the lower surface side of the substrate merges with the liquid film of the processing liquid on the upper surface side of the substrate, and as a result, the liquid film of the processing liquid on the upper surface side of the substrate and the liquid film of the processing liquid on the lower surface side of the substrate. Will be connected.
  • both the upper surface of the substrate and the lower surface of the substrate connect the irradiated portions of the processing liquid via the processing liquid. Therefore, it is possible to prevent charging and charge removal on both the upper and lower surfaces of the substrate.
  • the process may further include a second X-ray irradiation process that is performed in parallel with the liquid draining process or the drying process that is performed after the processing liquid discharge process is completed and that irradiates the main surface of the substrate with X-rays.
  • the processing liquid is removed from the main surface of the substrate by the liquid draining process or the drying process.
  • X-rays are irradiated to the main surface of the substrate immediately after the treatment liquid is removed.
  • it is possible to more reliably achieve prevention of static charge and neutralization of the substrate.
  • a substrate holding means for holding a substrate, an X-ray irradiation means for irradiating the surface of the substrate held by the substrate holding means with X-rays, and the substrate holding means.
  • the processing liquid supply means for supplying the processing liquid to the surface of the substrate, and the X-ray irradiation means and the processing liquid supply means so that the supply of the processing liquid to the surface of the substrate and the X-ray irradiation are performed in parallel.
  • a control means for controlling the substrate.
  • the liquid film of the processing liquid that contacts the surface is formed on the surface of the substrate.
  • X-rays are irradiated to the liquid film of the processing liquid.
  • a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules coexist as a result of electrons being emitted from the water molecules by excitation of water molecules. Is formed.
  • electrons generated in the processing liquid due to X-ray irradiation are generated on the substrate through the liquid film of the processing liquid.
  • the X-ray irradiation means includes an irradiation window, and includes an X-ray generator that generates X-rays and irradiates the generated X-rays from the irradiation window.
  • the surface of the substrate is irradiated with X-rays generated by the X-ray generator from the irradiation window of the X-ray generator.
  • the substrate processing apparatus further includes a cover that surrounds the X-ray generator with a space therebetween, and an opening is formed in the cover at a portion facing the irradiation window.
  • the periphery of the X-ray generator is covered with a cover.
  • the cover has an opening at a portion facing the irradiation window, and X-rays from the irradiation window are guided to the surface of the substrate through the opening.
  • the substrate processing apparatus further includes a gas supply unit that supplies a gas into the cover.
  • a gas supply unit that supplies a gas into the cover.
  • the gas supplied from the gas supply means to the inside of the cover include CDA (low humidity clean air) and nitrogen gas.
  • the gas supply means may supply a gas having a temperature higher than room temperature.
  • the high-temperature gas supplied into the cover reaches the outer surface of the irradiation window through the space between the X-ray generator and the cover.
  • the high-temperature gas water droplets adhering to the outer surface of the irradiation window can be removed by evaporation, thereby suppressing or preventing fogging of the irradiation window.
  • the outer surface of the irradiation window may be coated with a film. Thereby, an irradiation window can be protected.
  • the irradiation window is formed using beryllium having poor acid resistance, the irradiation window can be well protected from the acidic treatment liquid.
  • This film is preferably formed using a water-repellent material.
  • moisture is prevented from precipitating in the form of a film over the entire irradiation window, and the moisture is made into fine water droplets.
  • Water droplets adhering to the outer surface of the irradiation window are in a state where they can easily move on the outer surface. Therefore, it is possible to easily remove water droplets from the outer surface of the irradiation window, thereby suppressing or preventing the irradiation window from being fogged.
  • the substrate processing apparatus preferably includes both the coating by the film on the outer surface of the irradiation window and the gas supply means. Since the water droplets adhering to the outer surface of the irradiation window are in a state of being easily moved on the outer surface, the water droplets adhering to the outer surface of the irradiation window move by receiving the air flow formed in the space. Thereby, water droplets can be favorably removed from the outer surface of the irradiation window, and the irradiation window can be reliably prevented from being fogged.
  • the film may be a polyimide resin film.
  • the film may be a diamond-like carbon film.
  • the film may be an amorphous fluororesin film.
  • a heating member is disposed around the opening of the cover and at least one of the irradiation window.
  • the periphery of the irradiation window of the X-ray generator is heated by the heat generating member. Therefore, water droplets adhering to the outer surface of the irradiation window can be removed by evaporation, thereby suppressing or preventing fogging of the irradiation window.
  • the substrate processing apparatus may further include a shielding member that is disposed to face the surface of the substrate held by the substrate holding means and shields a space on the surface of the substrate from the periphery thereof.
  • the shielding member is for keeping X-rays irradiated from the irradiation window in a space on the surface of the substrate.
  • the shielding member may be provided so as to be movable together with the cover.
  • the substrate processing apparatus further includes moving means for moving the X-ray irradiation means along the surface of the substrate held by the substrate holding means.
  • the X-ray irradiation means is moved along the surface of the substrate while the X-ray irradiation means is irradiated with the X-ray while the X-ray irradiation means is opposed to the surface of the substrate.
  • the ionized processing liquid can be supplied to the entire surface of the substrate.
  • the substrate can be neutralized over the entire area of the substrate.
  • the treatment liquid may be water.
  • a processing liquid supply step for supplying a processing liquid to the surface of the substrate held by the substrate holding means, and a substrate held by the substrate holding means in parallel with the processing liquid supply step.
  • An X-ray irradiation step of irradiating the surface of the substrate with X-rays is provided.
  • a liquid film of the processing liquid that contacts the surface is formed on the surface of the substrate.
  • X-rays are irradiated to the liquid film of the processing liquid.
  • a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules coexist as a result of electrons being emitted from the water molecules by excitation of water molecules. Is formed.
  • electrons generated in the processing liquid due to X-ray irradiation are generated on the substrate through the liquid film of the processing liquid.
  • a third aspect of the present invention is a processing liquid processing apparatus that performs processing by immersing a processing object in the processing liquid, storing the processing liquid and immersing the processing object in the processing liquid. And the processing liquid stored in the processing tank or a pipe through which the processing liquid can flow, and the processing liquid existing in the pipe communicating with the processing tank is irradiated with X-rays
  • a processing liquid processing apparatus including X-ray irradiation means.
  • X-rays are irradiated to the processing liquid stored in the processing tank or the processing liquid existing inside the pipe communicating with the processing tank.
  • treatment liquid irradiation portion In a portion of the treatment liquid that is irradiated with X-rays (treatment liquid irradiation portion), electrons are emitted from the water molecules by excitation of water molecules, and as a result, plasma in which positive ions and electrons of water molecules are mixed. A state is formed.
  • the processing object immersed in the processing liquid stored in the processing tank and the irradiated portion of the processing liquid are stored in the processing tank. It is connected through the processing solution.
  • the processing object is positively charged, electrons from the irradiation part of the processing liquid are directed toward the processing object due to a potential difference between the irradiation part of the processing liquid and the processing object positively charged. It moves through the processing liquid stored in the processing tank. Thereby, as a result of supplying a large amount of electrons to the processing target, the positively charged processing target is neutralized.
  • the processing object immersed in the processing liquid stored in the processing tank and the irradiated portion of the processing liquid are stored in the processing tank. It is connected via the processing liquid which has been processed and the processing liquid in the pipe.
  • the processing object is positively charged, electrons from the irradiation part of the processing liquid are directed toward the processing object due to a potential difference between the irradiation part of the processing liquid and the processing object that is positively charged. It moves through the processing liquid stored in the processing tank and the processing liquid in the pipe. Thereby, as a result of supplying a large amount of electrons to the processing target, the positively charged processing target is neutralized.
  • the treatment object is treated via the treatment liquid in the treatment tank or the treatment liquid in the pipe according to the principle described above. Can neutralize things.
  • the pipe wall of the pipe or the wall of the processing tank has an opening, and the opening is closed by a window member formed using a material that can transmit X-rays.
  • the X-ray irradiation means irradiates X-rays through the window member.
  • the window member is formed using a material capable of transmitting X-rays. And the X-ray irradiated from the X-ray irradiation means is irradiated to the process liquid which exists in the said piping through a window member. Thereby, the plasma state in which positive ions of water molecules and electrons are mixed can be satisfactorily formed in the irradiated portion of the treatment liquid.
  • the window member may be formed using beryllium or polyimide resin.
  • the substance has a small atomic weight such as beryllium, X-rays with low penetrating power can be transmitted. Therefore, by forming the window member using beryllium, X-rays can pass through the window member.
  • the window member when the window member is formed using a polyimide resin, X-rays can be transmitted through the window member. Moreover, since the polyimide resin is excellent in chemical stability, the window member can be used over a long period of time.
  • the wall surface of the window member on the side where the treatment liquid exists is hydrophilic. In this case, it is possible to suppress or prevent air bubbles from being mixed between the wall surface and the treatment liquid. Thereby, it is possible to satisfactorily irradiate X-rays to the processing liquid existing in the pipe.
  • the wall surface of the window member on the side where the treatment liquid is present may be coated with a film. Thereby, an irradiation window can be protected.
  • the window member when the window member is formed using beryllium having poor acid resistance, the window member can be well protected from the acidic treatment liquid.
  • This film is preferably formed using a hydrophilic material. In this case, it is possible to suppress or prevent air bubbles from being mixed between the film and the treatment liquid. Thereby, it is possible to satisfactorily irradiate X-rays to the processing liquid existing in the pipe.
  • the film may be a film containing one or more materials of polyimide resin, diamond-like carbon, fluorine resin, and hydrocarbon resin.
  • the X-ray irradiation means may include an X-ray generator that has an irradiation window disposed to face the window member, generates X-rays, and irradiates the generated X-rays from the irradiation window. Good.
  • the X-ray generated by the X-ray generator is irradiated to the processing liquid flowing in the pipe from the irradiation window of the X-ray generator.
  • the X-ray irradiation means may further include a cover surrounding the X-ray generator with a space from the X-ray generator, and a gas supply means for supplying a gas to the inside of the cover. .
  • the X-ray generator generates heat by driving the X-ray generator.
  • the X-ray generator can be cooled, and the temperature rise in the ambient atmosphere of the X-ray generator can be suppressed.
  • the pipe includes a processing liquid supply pipe that communicates with the inside of the processing tank and supplies a processing liquid into the processing tank, and the X-ray irradiation means includes the processing liquid supply You may irradiate the said process liquid currently distribute
  • the said processing tank stores the processing liquid
  • the inner tank which immerses a process target object in the processing liquid
  • the outer tank which collect
  • the pipe includes an overflow pipe through which the processing liquid collected in the outer tank flows, and the X-ray irradiation means irradiates the processing liquid flowing through the overflow pipe with the X-ray. Also good.
  • the treatment tank includes an inner tank for storing the treatment liquid and immersing the treatment object in the treatment liquid, and an outer tank for recovering the treatment liquid overflowing from the inner tank.
  • the X-ray irradiation means may irradiate the X-ray to the processing liquid stored in the inner tank.
  • the treatment tank includes an inner tank for storing the treatment liquid and immersing the treatment object in the treatment liquid, and an outer tank for recovering the treatment liquid overflowing from the inner tank.
  • the pipe may include a pipe that communicates with the inside of the inner tank.
  • the third aspect of the present invention is stored in the processing tank in parallel with the processing object immersion step for immersing the processing object in the processing liquid stored in the processing tank and the processing object immersion step.
  • X-rays are irradiated to the processing liquid stored in the processing tank or the processing liquid existing inside the piping communicating with the processing tank.
  • treatment liquid irradiation portion In a portion of the treatment liquid that is irradiated with X-rays (treatment liquid irradiation portion), electrons are emitted from the water molecules by excitation of water molecules, and as a result, plasma in which positive ions and electrons of water molecules are mixed. A state is formed.
  • the processing object immersed in the processing liquid stored in the processing tank and the irradiated portion of the processing liquid are stored in the processing tank. It is connected through the processing solution.
  • the processing object is positively charged, electrons from the irradiation part of the processing liquid are directed toward the processing object due to a potential difference between the irradiation part of the processing liquid and the processing object positively charged. It moves through the processing liquid stored in the processing tank. Thereby, as a result of supplying a large amount of electrons to the processing target, the positively charged processing target is neutralized.
  • the processing object immersed in the processing liquid stored in the processing tank and the irradiated portion of the processing liquid are stored in the processing tank. It is connected via the processing liquid which has been processed and the processing liquid in the pipe.
  • the processing object is positively charged, electrons from the irradiation part of the processing liquid are directed toward the processing object due to a potential difference between the irradiation part of the processing liquid and the processing object that is positively charged. It moves through the processing liquid stored in the processing tank and the processing liquid in the pipe. Thereby, as a result of supplying a large amount of electrons to the processing target, the positively charged processing target is neutralized.
  • the treatment object is treated via the treatment liquid in the treatment tank or the treatment liquid in the pipe according to the principle described above. Can neutralize things.
  • 4th aspect of this invention is the processing liquid processing method for immersing a process target object in the processing liquid stored by the processing tank, and processing, Comprising: In the processing liquid stored by the said processing tank A treatment object immersion step for immersing the treatment object, a treatment liquid discharge step for discharging treatment liquid from a discharge port toward the inside of the treatment tank, and the treatment liquid discharge step in parallel with the treatment object immersion step.
  • the X-ray irradiation step of irradiating the processing liquid existing inside the pipe communicating with the discharge port with X-rays is stored in the discharge port and the processing tank in the processing liquid discharge step.
  • This is a processing liquid processing method in which the processing liquid is connected to the liquid surface of the processing liquid.
  • X-rays are irradiated to the processing liquid existing in the pipe. Further, the processing liquid discharged from the discharge port communicating with the inside of the pipe is supplied to the processing object. In the portion of the treatment liquid that is irradiated with X-rays, electrons are emitted from the water molecules by excitation of the water molecules, and as a result, a plasma state in which positive ions and electrons of the water molecules are mixed is formed.
  • the processing liquid discharged from the discharge port is connected in liquid form with the liquid surface of the processing liquid.
  • the processing object and the irradiated portion of the processing liquid are connected via the processing liquid.
  • the treatment object can be treated with the treatment liquid while preventing or removing the charge of the treatment object.
  • FIG. 2 is a schematic longitudinal sectional view of the integrated head shown in FIG. 1. It is a block diagram which shows the electric constitution of the substrate processing apparatus shown in FIG. It is process drawing which shows the process example performed in the substrate processing apparatus shown in FIG. It is an illustration sectional view showing the irradiation state of soft X-rays in the water nozzle. It is a figure which shows the state which has performed the rinse process to the board
  • substrate. 6 is a flowchart for explaining a modification of the processing example shown in FIG. 4. It is a figure which shows typically the structure of the integrated head which concerns on 2nd Embodiment of this invention.
  • FIG. 9 is a cross-sectional view taken along section line IX-IX in FIG. It is a figure for demonstrating the structure of the integrated head which concerns on 3rd Embodiment of this invention. It is a figure which shows the structure of the substrate processing apparatus which concerns on 4th Embodiment of this invention. It is a figure which shows the structure of the substrate processing apparatus which concerns on 5th Embodiment of this invention. It is a figure explaining discharge of the processing liquid in a 5th embodiment of the present invention. It is a figure which shows the structure of the substrate processing apparatus which concerns on 6th Embodiment of this invention. It is a figure which shows the structure of the substrate processing apparatus which concerns on 7th Embodiment of this invention.
  • FIG. 18 it is a figure which shows the flow of DIW at the time of a rinse process. It is a figure which shows the structure of the substrate processing apparatus which concerns on 11th Embodiment of this invention. It is a figure which shows the state which the water supply unit shown in FIG. 20 is supplying DIW to the inclination part of the cup upper part.
  • FIG. 25 is a cross-sectional view showing a state in which the soft X-ray irradiation apparatus shown in FIG.
  • FIG. 32 is a schematic longitudinal sectional view of the soft X-ray irradiation head shown in FIG. 31.
  • FIG. 32 is a plan view showing movement of the soft X-ray irradiation head shown in FIG. 31.
  • FIG. 32 is a block diagram showing an electrical configuration of the substrate processing apparatus shown in FIG. 31.
  • FIG. 32 is a process diagram showing an example of processing executed in the substrate processing apparatus shown in FIG. 31. It is an illustration figure for demonstrating a rinse process. It is an illustration figure which shows the state of the surface vicinity of the board
  • FIG. 45 is a schematic cross-sectional view illustrating a configuration of a branch pipe and a soft X-ray irradiation unit illustrated in FIG. 44.
  • FIG. 45 is a process diagram illustrating an example of a substrate process performed in the substrate processing apparatus illustrated in FIG. 44. It is an illustration figure which shows the irradiation state of the soft X-ray to the branch piping shown in FIG. It is a figure which shows the structure of the substrate processing apparatus with which the processing liquid processing apparatus which concerns on 20th Embodiment of this invention was applied.
  • FIG. 1 is a diagram showing a configuration of a substrate processing apparatus 1 according to the first embodiment of the present invention.
  • the substrate processing apparatus 1 is a single wafer used for processing a surface (processing target surface) of a circular semiconductor wafer (silicon wafer) as an example of a substrate (processing target) W with a processing solution (chemical solution and water). Device.
  • a processing solution chemical solution and water
  • water is used for rinsing the substrate W performed after the chemical treatment.
  • the substrate processing apparatus 1 includes a spin chuck (substrate holding rotating means) 4 for rotating the substrate W in a horizontal posture in a processing chamber 3 partitioned by a partition wall (not shown), and an upper surface (upper side) of the substrate W.
  • Water supply unit treatment liquid supply
  • DIW deionized water
  • a chemical nozzle 7 for supplying a chemical to the upper surface of the substrate W held by the spin chuck 4.
  • the spin chuck 4 includes a spin motor 8, a spin shaft 9 integrated with a drive shaft of the spin motor 8, and a disk-shaped spin base attached substantially horizontally to the upper end of the spin shaft 9. 10 and a plurality of clamping members 11 provided at a plurality of positions on the peripheral edge of the spin base 10 at substantially equal intervals.
  • the spin chuck 4 rotates the spin base 10 by the rotational driving force of the spin motor 8 in a state where the substrate W is sandwiched by the plurality of sandwiching members 11 so that the substrate W is placed in a substantially horizontal posture. In this state, it can be rotated around the vertical rotation axis C together with the spin base 10.
  • the spin chuck 4 is not limited to a sandwiching type, and for example, by vacuum-sucking the back surface of the substrate W, the substrate W is held in a horizontal posture and further rotated around a vertical rotation axis in that state.
  • a vacuum chucking type vacuum chuck
  • a vacuum chuck that can rotate the held substrate W may be employed.
  • the spin chuck 4 is accommodated in a cup (liquid receiving member) 17.
  • the cup 17 includes a cup lower part 18 and a cup upper part 19 provided so as to be movable up and down above the cup lower part 18.
  • the cup lower part 18 has a bottomed cylindrical shape whose center axis coincides with the rotation axis C.
  • An exhaust port (not shown) is formed on the bottom surface of the cup lower portion 18, and the atmosphere in the cup 17 is always exhausted from the exhaust port while the substrate processing apparatus 1 is in operation.
  • the cup upper portion 19 includes a cylindrical cylindrical portion 20 having a central axis common to the cup lower portion 18, and an inclined portion 21 that is inclined so as to increase from the upper end of the cylindrical portion 20 toward the central axis of the cylindrical portion 20. Integrated.
  • a cup elevating unit 22 for moving the cup upper portion 19 up and down (moving up and down) is coupled to the cup upper portion 19. By the cup lifting / lowering unit 22, the cup upper portion 19 is moved to a position where the cylindrical portion 20 is disposed on the side of the spin base 10 and a position where the upper end of the inclined portion 21 is disposed below the spin base 10.
  • the cup upper portion 19 and the cup lower portion 18 are each formed using a resin material (for example, PTFE (polytetrafluoroethylene)).
  • a resin material for example, PTFE (polytetrafluoroethylene)
  • the chemical nozzle 7 is, for example, a straight nozzle that discharges chemical liquid in a continuous flow state, and is fixedly disposed above the spin chuck 4 with its discharge port directed toward the rotation center of the substrate W.
  • a chemical liquid supply pipe 15 to which a chemical liquid from a chemical liquid supply source is supplied is connected to the chemical liquid nozzle 7.
  • a chemical solution valve 16 for switching supply / stop of supply of the chemical solution from the chemical solution nozzle 7 is interposed in the middle portion of the chemical solution supply pipe 15.
  • the chemical nozzle 7 does not need to be fixedly arranged with respect to the spin chuck 4.
  • the chemical nozzle 7 is attached to an arm that can swing in a horizontal plane above the cup 17, and the substrate is moved by the swing of the arm.
  • a so-called scan nozzle configuration in which the position where the chemical liquid is deposited on the surface of W is scanned may be employed.
  • a liquid according to the content of the treatment for the surface of the substrate W is used.
  • APM ammonia-hydrogen peroxide mixture
  • TMAH tetramethylammonium hydroxide aqueous solution
  • SPM sulfuric acid / A resist stripping solution and a polymer removing solution such as hydrogen peroxide mixture (sulfuric acid / hydrogen peroxide mixture) and APM (ammonia-hydrogen peroxide mixture) are used.
  • Cleaning treatment to remove metal contaminants includes hydrofluoric acid, HPM (hydrochloric acid / hydrogen peroxide mixture) and SPM (sulfuric acid / hydrogen peroxide mixture). Is used.
  • the water supply unit 100 has an integrated head 6 disposed so as to face the upper side of the spin chuck 4.
  • the integrated head 6 includes a water nozzle (treatment liquid nozzle) 61 for discharging DIW as an example of water, and a soft X-ray irradiation unit (for irradiating soft X-rays to water flowing through the water nozzle 61).
  • X-ray irradiation means) 62 is integrally provided.
  • the soft X-ray irradiation unit 62 is attached to the water nozzle 61.
  • the water nozzle 61 is, for example, a straight nozzle that discharges a chemical solution in a continuous flow state, and is disposed with its discharge port 53 facing downward.
  • the water nozzle 61 is connected to a water supply pipe 13 to which DIW from a DIW supply source is supplied.
  • a water valve 14 for switching supply / stop of supply of DIW from the water nozzle 61 is interposed in the middle of the water supply pipe 13.
  • the soft X-ray irradiation unit 62 will be described later.
  • FIG. 2 is a schematic longitudinal sectional view of the integrated head 6.
  • the water nozzle 61 of the integrated head 6 has a first nozzle pipe 51 having a round tubular shape (cylindrical shape) extending in the vertical direction.
  • the first nozzle pipe 51 is formed using, for example, a resin material such as polyvinyl-chloride, PTFE (polytetrafluoroethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer). ing.
  • a round discharge port 53 is opened at the front end (lower end) of the first nozzle pipe 51.
  • a circular first opening 52 is formed in the middle pipe wall.
  • a soft X-ray irradiation unit 62 is attached to the first nozzle pipe 51 so as to close the first opening 52.
  • the integrated head 6 is fixedly disposed above the rotation axis C of the substrate W by the spin chuck 4 with its discharge port 53 directed downward (near the rotation center of the substrate W).
  • An annular electrode 56 is fitted and fixed to the tip of the first nozzle pipe 51.
  • a voltage with respect to the apparatus ground is applied to the electrode 56 by a power source 57 (see FIG. 3), whereby an electric field is applied to the processing liquid passing near the electrode 56.
  • the soft X-ray irradiation unit 62 includes a soft X-ray generator (X-ray generator) 25, a cover 26 made of, for example, polyvinyl-chloride covering the periphery of the soft X-ray generator 25, A gas nozzle (gas supply means) 27 for supplying a gas to the inside of the cover 26 is provided, and soft X-rays are irradiated sideways.
  • the cover 26 has a horizontally long rectangular box shape surrounding the soft X-ray generator 25 with a space from the soft X-ray generator 25.
  • a circular second opening 28 having the same diameter as the first opening 52 is formed in a portion facing the irradiation window 35 described next.
  • the soft X-ray irradiation unit 62 includes a nozzle pipe so that the second opening 28 of the cover 26 coincides with the first opening 52 of the first nozzle pipe 51 and the lateral wall 26A is in close contact with the outer periphery of the first nozzle pipe 51. 51 is attached.
  • the second opening 28 is closed by a disk-shaped window member 71.
  • the window member 71 closes the second opening 28 from the inside of the cover 26.
  • the window member 71 closes not only the second opening 28 but also the first opening 52.
  • a substance having a small atomic weight is used so that soft X-rays having a low penetrating power are easily transmitted.
  • beryllium (Be) is adopted as the material of the window member 71.
  • the thickness of the window member 71 is set to about 0.3 mm, for example.
  • the soft X-ray generator 25 emits (radiates) soft X-rays used to ionize the processing liquid passing through the first nozzle pipe 51.
  • the soft X-ray generator 25 includes a case body 29, a soft X-ray tube 30 that is long to generate soft X-rays, and a high voltage unit 31 that supplies a high voltage to the soft X-ray tube 30. Yes.
  • the case body 29 is in the shape of a horizontally long rectangular tube that accommodates the soft X-ray tube 30 and the high voltage unit 31, and is made of a material having conductivity and heat conductivity (for example, a metal material such as aluminum). It is formed using.
  • the high voltage unit 31 inputs a drive voltage having a high potential of ⁇ 9.5 kV, for example, to the soft X-ray tube 30.
  • the high voltage unit 31 is supplied with a voltage from a power source (not shown) through a feed line 43 drawn out of the cover 26 through a through hole 42 formed in the cover 26.
  • the soft X-ray tube 30 is made of a glass or metal cylindrical vacuum tube, and is arranged so that the tube direction is horizontal. One end (opening end, left end shown in FIG. 2) of the soft X-ray tube 30 forms a circular opening 41. The other end of the soft X-ray tube 30 (the right end shown in FIG. 2) is closed and serves as a stem 32.
  • a filament 33 serving as a cathode and a target 36 serving as an anode are disposed so as to face each other.
  • the soft X-ray tube 30 houses a filament 33 and a focus 34. Specifically, a filament 33 as a cathode is disposed on the stem 32.
  • the filament 33 is electrically connected to the high voltage unit 31.
  • the filament 33 is surrounded by a cylindrical focus 34.
  • the open end of the soft X-ray tube 30 is closed by a plate-shaped irradiation window 35 having a vertical posture.
  • the irradiation window 35 has a disk shape, for example, and is fixed to the wall surface of the open end of the soft X-ray tube 30 by silver brazing.
  • As the material of the irradiation window 35 a substance having a small atomic weight is used so that soft X-rays having a low transmission power can be easily transmitted. For example, beryllium (Be) is adopted.
  • the thickness of the irradiation window 35 is set to about 0.3 mm, for example.
  • the irradiation window 35 faces the inner surface 71 ⁇ / b> A of the window member 71 and is arranged at a minute distance from the window member 71.
  • a metal target 36 is formed on the inner surface 35A of the irradiation window 35 by vapor deposition.
  • a metal having a high atomic weight and a high melting point such as tungsten (W) or tantalum (Ta) is used.
  • the filament 33 When the drive voltage from the high voltage unit 31 is applied to the filament 33 which is a cathode, the filament 33 emits electrons. The electrons emitted from the filament 33 are converged by the focus 34 to become an electron beam and collide with the target 36 to generate soft X-rays. The generated soft X-rays are emitted (radiated) from the irradiation window 35 in the lateral direction (leftward in FIG. 2), and irradiate the inside of the first nozzle pipe 51 through the window member 71 and the first opening 52.
  • the soft X-ray irradiation angle (irradiation range) from the irradiation window 35 is a wide angle (for example, 130 °) as shown in FIG. Soft X-rays irradiated from the irradiation window 35 into the first nozzle pipe 51 have a wavelength of, for example, 0.13 to 0.4 nm.
  • the entire outer surface of the window member 71 (the wall surface on the side where the treatment liquid flows in the closed window) 71B is covered with a hydrophilic film (film) 38.
  • the hydrophilic film 38 is, for example, a polyimide resin film.
  • the reason why the outer surface 71B of the window member 71 is covered with the hydrophilic film 38 is to protect the window member 71 made of beryllium having poor acid resistance from an acid contained in a treatment liquid such as water.
  • the film thickness of the hydrophilic film 38 is 50 ⁇ m or less, and preferably about 10 ⁇ m. Since the hydrophilic film 38 has hydrophilicity, it is possible to suppress or prevent air bubbles from being mixed between the film 38 and DIW. Thereby, the soft X-rays from the irradiation window 35 can be favorably irradiated to the DIW flowing through the first nozzle pipe 51.
  • the discharge port of the gas nozzle 27 opens in the horizontal wall of the cover 26.
  • Gas from a gas supply source (not shown) is supplied to the gas nozzle 27 via a gas valve (gas supply means) 37.
  • the gas discharged from the gas nozzle 27 include CDA (clean air with low humidity) and inert gas such as nitrogen gas.
  • the gas discharged from the gas nozzle 27 is supplied into the cover 26.
  • the soft X-ray generator 25 generates heat by driving the soft X-ray generator 25.
  • the soft X-ray generator 25 is cooled to generate soft X-rays. The temperature rise in the ambient atmosphere of the vessel 25 can be suppressed.
  • FIG. 3 is a block diagram showing an electrical configuration of the substrate processing apparatus 1.
  • the substrate processing apparatus 1 further includes a control device (X-ray irradiation control means) 40 having a configuration including a microcomputer.
  • the control device 40 is connected with a cup lifting unit 22, a spin motor 8, a high voltage unit 31, a chemical liquid valve 16, a water valve 14, a power source 57, a gas valve 37, and the like as control targets.
  • gas valve 37 is always open while the substrate processing apparatus 1 is powered on in order to release the heat in the cover 26.
  • FIG. 4 is a process diagram showing a processing example of the substrate W executed in the substrate processing apparatus 1.
  • the rinse process is performed after the chemical process.
  • the processing of the substrate W in the substrate processing apparatus 1 will be described with reference to FIGS. 1, 3, and 4.
  • an unprocessed substrate W is carried into the processing chamber 3 by a transfer robot (not shown) (step S1), and is transferred to the spin chuck 4 with its surface facing upward.
  • the control device 40 controls the spin motor 8 to start the rotation of the substrate W by the spin chuck 4 (step S2).
  • the rotation speed of the substrate W is increased to a predetermined liquid processing speed (for example, 500 rpm), and then maintained at the liquid processing speed.
  • the control device 40 opens the chemical liquid valve 16 and discharges the chemical liquid from the chemical liquid nozzle 7 toward the rotation center of the upper surface of the substrate W.
  • the chemical solution supplied to the upper surface of the substrate upper surface W receives centrifugal force due to the rotation of the substrate W and flows toward the periphery of the substrate W (spreads over the entire area of the substrate W). Thereby, the process by a chemical
  • control device 40 closes the chemical solution valve 16 and stops the supply of the chemical solution from the chemical solution nozzle 7.
  • control device 40 opens the water valve 14 and discharges DIW from the water nozzle 61 of the integrated head 6 toward the rotation center of the upper surface of the substrate W in a rotating state (step S4).
  • the soft X-ray irradiation timing comes.
  • the predetermined time is provided so that soft X-ray irradiation is started after DIW is sufficiently filled in the first nozzle pipe 51.
  • the control device 40 controls the high voltage unit 31 to generate soft X-rays in the soft X-ray generator 25 of the soft X-ray irradiation unit 62 and irradiates the soft X-rays. Irradiation from the window 35 to the inside of the first nozzle pipe 51 through the window member 71 (step S5). Thereby, soft X-rays are irradiated to DIW which distribute
  • FIG. 5 is a schematic cross-sectional view showing a state of soft X-ray irradiation into the water nozzle 61.
  • the soft X-rays are irradiated to the DIW flowing through the first nozzle pipe 51 of the water nozzle 61. Further, the processing liquid discharged from the discharge port 53 is supplied to the upper surface of the substrate W.
  • the part irradiated with soft X-rays (the part facing the first opening 52 in the first nozzle pipe 51. The shaded part shown in FIG. 5. 54 "), electrons are emitted from the water molecules by excitation of the water molecules. As a result, a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the irradiated portion 54 of DIW.
  • FIG. 6 is a diagram showing a state where the substrate W is rinsed.
  • the DIW supplied to the upper surface of the substrate W receives centrifugal force due to the rotation of the substrate W and flows toward the peripheral edge of the substrate W (spreads over the entire area of the substrate W).
  • a DIW liquid film 63 in contact with the upper surface is formed over the entire upper surface of the substrate W.
  • the chemical solution adhering to the upper surface of the substrate W is washed away by the liquid film 63 of DIW.
  • the DIW supply flow rate to the water nozzle 61 is set to a relatively large flow rate (for example, 0.5 to 2.0 L / min). Therefore, the form of DIW discharged from the discharge port 53 of the water nozzle 61 forms a continuous flow connected to both the discharge port 53 and the DIW liquid film 63 on the upper surface of the substrate W, and the first nozzle In the pipe 51, DIW is in a liquid-tight state. At this time, the DIW liquid film 63 and the DIW irradiated portion 54 are connected via the DIW.
  • the substrate W can be subjected to the rinsing process while preventing or eliminating the charge of the substrate W.
  • liquid property of DIW does not change by irradiation with soft X-rays, unlike the case where the substrate W is processed using an acidic processing solution such as carbonated water, there is no possibility of adversely affecting the devices on the substrate W. .
  • the electrode 56 of the power source 57 is applied to the electrode 56 of the power source 57.
  • the electrode 56 is preferably charged to a positive charge.
  • the electrons generated in the DIW irradiated portion 54 due to the soft X-ray irradiation due to the positive charge of the electrode 56 are pulled toward the electrode 56, and the first nozzle pipe 51 (water nozzle 61) with the electrode 56 is provided. It moves to the tip. That is, a large amount of electrons can be pulled toward the discharge port 53 of the water nozzle 61. Thereby, the movement of the electrons to the substrate W side can be promoted.
  • the control device 40 closes the water valve 14 to stop supplying DIW (step S6), and the high voltage
  • the unit 31 is controlled to stop the soft X-ray irradiation from the irradiation window 35 of the soft X-ray irradiation unit 62 (step S7).
  • the control device 40 also stops the application of the electric field to the electrode 56 in conjunction with the stop of the soft X-ray irradiation from the soft X-ray irradiation unit 62.
  • control device 40 controls the spin motor 8 to increase the rotation speed of the substrate W to a spin dry rotation speed (for example, 2500 rpm).
  • a spin dry rotation speed for example, 2500 rpm.
  • step S9 When the spin drying is performed for a predetermined drying time, the rotation of the spin chuck 4 is stopped. Thereafter, the processed substrate W is unloaded from the processing chamber 3 by a transfer robot (not shown) (step S9).
  • soft X-rays are irradiated to the DIW flowing through the first nozzle pipe 51 of the water nozzle 61.
  • a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the irradiated portion 54 of DIW.
  • These electrons travel along the continuous flow DIW and move to the DIW liquid film 63, and as a result, the DIW liquid film 63 has a large amount of electrons.
  • charging of the substrate W due to contact separation with DIW does not occur. Therefore, charging of the substrate W during the rinsing process can be prevented.
  • the charge on the substrate W can be removed (that is, static elimination). As a result, device destruction due to charging of the substrate W can be prevented.
  • liquid property of DIW does not change by irradiation with soft X-rays, unlike the case where the substrate W is processed using an acidic processing solution such as carbonated water, there is no possibility of adversely affecting the devices on the substrate W. .
  • FIG. 7 is a flowchart for explaining a modification of the processing example shown in FIG.
  • the water supply unit 100 detects the presence / absence of DIW in the first nozzle pipe 51 at the predetermined water detection position 102 in the first nozzle pipe 51 of the water nozzle 61.
  • a liquid detection sensor (processing liquid detection means) 101 is disposed.
  • the water detection position 102 is set to the same position as the first opening (opening, soft X-ray irradiation position) 52 (see FIG. 2) or a position close to the first opening 52 with respect to the flow direction of the first nozzle pipe 51. ing.
  • the liquid detection sensor 101 is constituted by, for example, a capacitance type sensor, and is directly attached to or arranged close to the outer peripheral wall (not shown) of the first nozzle pipe 51.
  • the liquid detection sensor 101 detects the presence or absence of DIW in the first nozzle pipe 51 around the water detection position 102 and outputs a signal corresponding to the detection result.
  • DIW is present near the first opening 52 of the first nozzle pipe 51
  • DIW is detected.
  • DIW is not present near the first opening 52 of the first nozzle pipe 51
  • DIW is not detected. .
  • liquid detection sensor 101 an optical sensor (for example, a combination of a light emitting diode and a light receiving element and using a difference in refractive index between gas and liquid) or a conductivity sensor may be employed.
  • an optical sensor for example, a combination of a light emitting diode and a light receiving element and using a difference in refractive index between gas and liquid
  • a conductivity sensor may be employed.
  • the control device 40 refers to the detection output of the liquid detection sensor 101 to determine whether there is DIW near the first opening 52 (with liquid). Whether or not there is liquid is checked (step S12). If there is DIW near the first opening 52 (YES in step S12), the control device 40 starts X-ray irradiation by the soft X-ray irradiation unit 62 (step S13).
  • the liquid detection sensor 101 is also used in water supply units 230, 250, and 600 (see FIGS. 15A, 15B, 16, and 28) in which the same configuration as the water supply unit 100 is adopted. Is possible. In this case, the process shown in FIG. 7 can be executed.
  • FIG. 8 is a diagram schematically showing the configuration of an integrated head 6A according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along section line IX-IX in FIG.
  • the integrated head 6A parts common to the integrated head 6 according to the first embodiment are denoted by the same reference numerals as in FIGS. 1 to 6, and description thereof is omitted.
  • the main point that the integrated head 6A differs from the integrated head 6 is that a first nozzle pipe 51A having a flat tip is used for the water nozzle 61. Similar to the first nozzle pipe 51, the first nozzle pipe 51 ⁇ / b> A in the region excluding the tip has a round tubular shape (cylindrical shape).
  • the first nozzle pipe 51A extends in the vertical direction, and also includes polyvinyl-chloride, PTFE (polytetrafluorofluoroethylene), PFA (perfluoro-alkylvinyl-ether-tetrafluoro). -ethlene-copolymer) and the like.
  • a flat portion 151 having a substantially rectangular cross section is formed at the tip of the first nozzle pipe 51A.
  • the flat portion 151 is obtained by deforming a round tube by thermoforming.
  • a width W1 between the pair of flat wall portions 152 and 153 is set to about 5 to 10 mm, for example.
  • a circular third opening (opening, X-ray irradiation position) 52A is formed in the middle of the first nozzle pipe 51A.
  • a soft X-ray irradiation unit 62 is attached to the first nozzle pipe 51A so as to close the third opening 52A.
  • the second opening 28 of the cover 26A coincides with the third opening 52A of the first nozzle pipe 51A, and the lateral wall 26A is in close contact with the outer periphery of the first nozzle pipe 51A. Thus, it is attached to the first nozzle pipe 51A.
  • the width W1 of the flat portion 151 is such that soft X-rays irradiated from the irradiation window 35 of the soft X-ray irradiation unit 62 reach the other flat wall portion 153 in a state where the flat portion 151 is filled with DIW.
  • the width is set. Therefore, the soft X-rays from the soft X-ray irradiation unit 62 are irradiated to all the DIWs that flow through the flat portion 151 of the first nozzle pipe 51A.
  • the irradiation part 54 of DIW can be maintained in a wide range, the amount of electrons contained in the DIW liquid film 63 on the upper surface of the substrate W can be further increased. As a result, the occurrence of charging of the substrate W due to contact separation with DIW can be more reliably suppressed, and even if the substrate W is charged before the rinsing process, the substrate W can be more reliably discharged.
  • FIG. 10 (a) and 10 (b) are diagrams for explaining the configuration of an integrated head 6B according to a third embodiment of the present invention.
  • FIG. 10A is a cross-sectional view of the main part of the integrated head 6B during the rinsing process
  • FIG. 10B is a view of FIG. 10A viewed from below.
  • a fiber bundle (fibrous substance) 65 configured by bundling a large number of string-like fibers is attached to the discharge port 53 of the first nozzle pipe 51 of the water nozzle 61.
  • the fiber bundle 65 has a cylindrical shape having a central axis along the longitudinal direction of the first nozzle pipe 51.
  • the protruding length of the fiber bundle 65 from the discharge port 53 of the first nozzle pipe 51 is set to be approximately the same as the interval between the substrate W held by the spin chuck 4 and the discharge port 53.
  • DIW discharged from the discharge port 53 of the first nozzle pipe 51 flows downward along a large number of fibers included in the fiber bundle 65.
  • the tip of the fiber bundle 65 is in contact with the DIW liquid film 63 formed on the upper surface of the substrate W, and floats in the liquid film 63. Since the fiber bundle 65 leads the DIW well from the discharge port 53 to the DIW liquid film 63, the DIW mode discharged from the discharge port 53 is a continuous flow that connects both the discharge port 53 and the DIW liquid film 63. Easy to maintain.
  • the mode of DIW discharged from the discharge port 53 can be maintained in the above-described continuous flow state. Accordingly, it is possible to prevent the substrate W from being charged and to remove the charge from the substrate W while reducing the consumption of DIW.
  • the tip of the fiber bundle 65 may be in contact with the upper surface of the substrate W in addition to the liquid film 63 during the rinsing process.
  • the fiber bundle 65 at the tip of the first nozzle pipe 51A (see FIG. 8). Further, in the water supply units 230, 250, and 600 (see FIGS. 15A, 15B, 16 and 28) in which the same configuration as the water supply unit 100 is adopted, the tip of the first nozzle pipe 51 is used. It is also possible to provide a fiber bundle 65 in the part.
  • the fibrous substance attached to the discharge port 53 of the first nozzle pipe 51 of the water nozzle 61 the fiber bundle 65 configured by bundling a large number of string-like fibers has been described as an example.
  • the fibrous substance is not limited to a structure in which a large number of string-like fibers are bundled.
  • the fibrous substance may be constituted by a single thick string-like fiber, or a cloth-like material instead of a string-like material. You may be comprised with the fiber.
  • FIG. 11 is a diagram showing a configuration of a substrate processing apparatus 201 according to the fourth embodiment of the present invention.
  • a water supply unit 200 in which a nozzle and a soft X-ray irradiation unit are separately provided is provided. Is provided.
  • the water supply unit 200 exists in the water nozzle 202, a water supply pipe (treatment liquid pipe) 204 that supplies DIW (an example of water) from the DIW supply source to the water nozzle 202, and the water supply pipe 204.
  • a soft X-ray irradiation unit (X-ray irradiation means) 203 for irradiating the DIW with soft X-rays.
  • the soft X-ray irradiation unit 203 is attached to the water supply pipe 204.
  • the water nozzle 202 has a round tubular (cylindrical) nozzle pipe, and is attached to the tip of the water supply pipe 204.
  • the water nozzle 202 is configured by a straight nozzle that discharges liquid in a continuous flow state, and the water nozzle 202 is fixedly disposed in the processing chamber 3 with the discharge port 202A directed toward the center of the upper surface of the substrate W. ing.
  • the water nozzle 202 has the same configuration as the water nozzle 61 (see FIG. 2) of the first embodiment except that the first opening 52 (see FIG. 2) is not formed. That is, an annular electrode 56 is fitted and fixed to the tip of the nozzle pipe of the water nozzle 202, and a voltage with respect to the apparatus ground is applied to the electrode 56 by a power source 57 (see FIG. 3). It has become.
  • the water supply pipe 204 has a round tubular shape (cylindrical shape).
  • the water supply pipe 204 is formed using a resin material such as polyvinyl-chloride, PTFE (polytetrafluoroethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • a resin material such as polyvinyl-chloride, PTFE (polytetrafluoroethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • An opening (not shown) is formed in the tube wall in the middle of the water supply pipe 204.
  • the soft X-ray irradiation unit 203 adopts the same configuration as the soft X-ray irradiation unit 62 (see FIG. 2) according to the first embodiment.
  • the soft X-ray irradiation unit 203 is attached to the water supply pipe 204 so as to close the opening of the water supply pipe 204.
  • the opening of the cover of the soft X-ray irradiation unit 203 (the opening corresponding to the second opening 28 (see FIG. 2) of the cover 26 of the soft X-ray irradiation unit 62) is the opening of the water supply pipe 204.
  • the wall surface of the cover of the soft X-ray irradiation unit 203 (corresponding to the lateral wall 26A (see FIG.
  • the high voltage unit of the soft X-ray irradiation unit 203 (corresponding to the high voltage unit 31 (see FIG. 2) of the soft X-ray irradiation unit 62 according to the first embodiment) is connected to the control device 40 (see FIG. 3). Yes.
  • the water supply pipe 204 is provided with a water valve 205 for opening and closing the water supply pipe 204.
  • a water valve 205 for opening and closing the water supply pipe 204.
  • DIW is supplied from the water supply pipe 204 to the water nozzle 202, and when the water valve 205 is closed, the supply of DIW from the water supply pipe 204 to the water nozzle 202 is stopped.
  • the water valve 205 is connected to the control device 40 (see FIG. 3).
  • the control device 40 opens the water valve 205. Thereby, DIW flowing through the water supply pipe 204 is supplied to the water nozzle 202. DIW is discharged from the discharge port 202A of the water nozzle 202 toward the rotation center of the upper surface of the substrate W in a rotating state.
  • the control device 40 controls the high voltage unit of the soft X-ray irradiation unit 203 so that the soft X-ray irradiation unit 203 has a soft X-ray irradiation timing.
  • a soft X-ray is generated in a X-ray generator (corresponding to the soft X-ray generator 25 (see FIG. 2) of the soft X-ray irradiation unit 62 according to the first embodiment), and the soft X-ray is supplied to the water supply pipe 204. Irradiate the inside. Thereby, soft X-rays are irradiated to DIW which distribute
  • the DIW supplied to the upper surface of the substrate W receives a centrifugal force due to the rotation of the substrate W and flows toward the periphery of the substrate W (spreads over the entire area of the substrate W). As a result, a DIW liquid film is formed over the entire upper surface of the substrate W. The chemical liquid adhering to the upper surface of the substrate W is washed away by the liquid film of DIW.
  • the DIW supply flow rate to the water nozzle 202 is set to a relatively large flow rate (for example, 0.5 to 2.0 L / min). Therefore, the mode of DIW discharged from the discharge port 202A of the water nozzle 202 is a continuous flow mode connected to both the discharge port 202A and the DIW liquid film on the upper surface of the substrate W. Further, DIW is in a liquid-tight state in the nozzle pipe of the water nozzle 202 and the water supply pipe 204.
  • the DIW irradiated portion in the water supply pipe 204 (shown in FIG. 5 of the DIW according to the first embodiment) In a portion equivalent to the irradiated portion 54), electrons are emitted from the water molecules by excitation of the water molecules. As a result, a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the DIW irradiated portion in the water supply pipe 204.
  • the DIW irradiated portion is connected to the DIW liquid film formed on the upper surface of the substrate W via the DIW.
  • FIG. 12 is a diagram showing a configuration of a substrate processing apparatus 211 according to the fifth embodiment of the present invention.
  • Parts common to the substrate processing apparatus 201 according to the fourth embodiment are denoted by the same reference numerals as those in FIG.
  • the difference between the substrate processing apparatus 211 and the substrate processing apparatus 201 is that a water nozzle 212 having a plurality of discharge ports 216 is provided instead of the water nozzle 202 (see FIG. 11).
  • the water nozzle 212 includes a main body 213 formed of a round tubular (cylindrical) nozzle pipe, and a plurality of (for example, three in FIG. 12) discharge port portions arranged in the horizontal direction at the tip of the main body 213. 215 and a communication part 214 that communicates the internal space of the main body part 213 and the internal space of each discharge port part 215. Each discharge port portion 215 has a discharge port 216. Each discharge port portion 215 is configured by a straight nozzle that discharges liquid in a continuous flow state. An electrode 56 is fitted and fixed to each discharge port portion 215. The water nozzle 212 is fixedly disposed in the processing chamber 3 with the plurality of discharge ports 216 directed toward the center of the upper surface of the substrate W. A water supply pipe 204 is connected to the main body 213 of the water nozzle 212.
  • DIW an example of water
  • DIW is supplied to the water nozzle 212, and DIW is discharged from each discharge port 216 of the water nozzle 212.
  • a DIW liquid film is formed over the entire upper surface of the substrate W.
  • the DIW mode discharged from the individual discharge ports 216 is a continuous flow that leads to both the discharge port 216 and the DIW liquid film on the upper surface of the substrate W.
  • the aspect is made. Further, DIW is in a liquid-tight state in the nozzle pipe of the water nozzle 212 and the water supply pipe 204.
  • the substrate processing apparatus 211 if the aspect of DIW discharged from at least one discharge port 216 has a continuous flow shape connected to both the discharge port 216 and the DIW liquid film on the upper surface of the substrate W. Good.
  • the nozzle pipe of the water nozzle 212 and the DIW liquid film on the upper surface of the substrate W need only be connected by at least one continuous flow 64A (see FIG. 13).
  • one discharge port 216A has a continuous flow shape connected to both the discharge port 216 and the DIW liquid film on the upper surface of the substrate W.
  • the other discharge ports 216B and 216C do not form a continuous flow.
  • DIW is ejected in the form of droplets from the ejection port 216B and the ejection port 216C, or DIW is not ejected.
  • the nozzle pipe of the water nozzle 212 and the DIW liquid film on the upper surface of the substrate W are connected by at least one continuous flow 64A. Therefore, when the substrate W is positively charged, electrons from the DIW irradiated portion in the water supply pipe 204 move along the single continuous flow 64A toward the DIW liquid film 63 on the upper surface of the substrate W. To do. As a result, it is possible to prevent the substrate W from being charged and to neutralize the substrate W.
  • FIG. 14 is a diagram showing a configuration of a substrate processing apparatus 221 according to the sixth embodiment of the present invention.
  • a water supply unit (processing liquid supply apparatus) 220 is provided instead of the water supply unit 200.
  • the water supply unit 220 includes a water nozzle 202, a water supply pipe 204, a first branch pipe (branch pipe) 222 that branches from the middle of the water supply pipe 204, and a DIW present in the first branch pipe 222.
  • the soft X-ray irradiation unit 223 is attached to the first branch pipe 222. That is, in the water supply unit 220, the soft X-ray irradiation unit 223 is attached to the first branch pipe 222 instead of the water supply pipe 204.
  • the first branch pipe 222 branches from the upstream side of the water valve 205 in the water supply pipe 204.
  • the first branch pipe 222 is a round tube (cylindrical), such as poly-vinyl-chloride, PTFE (poly-tetra-fluoro-ethylene), PFA (perfluoro-alkyl vinyl-ether-tetrafluoro-ethlene-copolymer), etc. These resin materials are used.
  • a branch valve 225 for opening and closing the first branch pipe 222 is interposed in the middle of the first branch pipe 222.
  • the branch valve 225 is connected to the control device 40 (see FIG. 3).
  • an opening (not shown) is formed in a predetermined portion of the pipe wall upstream of the branch valve 225.
  • a first cup nozzle 224 is attached to the downstream end of the first branch pipe 222.
  • the first cup nozzle 224 is constituted by a straight nozzle that discharges liquid in a continuous flow state.
  • the discharge port (liquid receiving discharge port) 224A is connected to the outer wall of the cup upper portion 19 (for example, the upper surface of the inclined portion 21). ) And is fixedly disposed above the cup upper portion 19 in the processing chamber 3.
  • the soft X-ray irradiation unit 223 employs the same configuration as the soft X-ray irradiation unit 62 (see FIG. 2) according to the first embodiment.
  • the soft X-ray irradiation unit 223 is attached to the first branch pipe 222 so as to close the opening of the first branch pipe 222.
  • the opening of the cover of the soft X-ray irradiation unit 223 (corresponding to the second opening 28 (see FIG. 2) of the cover 26 of the soft X-ray irradiation unit 62) is aligned with the opening of the first branch pipe 222.
  • the wall surface of the cover of the soft X-ray irradiation unit 223 (corresponding to the lateral wall 26A of the cover 26 of the soft X-ray irradiation unit 62 (see FIG. 2)) is in close contact with the outer periphery of the first branch pipe 222.
  • the high voltage unit of the soft X-ray irradiation unit 223 (corresponding to the high voltage unit 31 (see FIG. 2) of the soft X-ray irradiation unit 62 according to the first embodiment) is connected to the control device 40 (see FIG. 3). Yes.
  • the cup 17 since the cup upper part 19 is moved up and down by the cup elevating unit 22, the cup 17 (particularly the cup upper part 19) may be charged. For this reason, it is necessary to neutralize the cup upper portion 19 prior to executing the processing on the substrate W.
  • the control device 40 controls the high voltage unit of the soft X-ray irradiation unit 223 to control the soft X-ray generator (the soft X-ray irradiation unit 62 according to the first embodiment) of the soft X-ray irradiation unit 223.
  • the soft X-ray generator 25 (refer to FIG. 2) generates soft X-rays and irradiates the soft X-rays toward the inside of the first branch pipe 222. Thereby, soft X-rays are irradiated to DIW existing in the first branch pipe 222.
  • control device 40 opens the branch valve 225 while closing the water valve 205. Accordingly, DIW flowing through the first branch pipe 222 is supplied to the first cup nozzle 224. DIW is discharged from the discharge port 224A of the first cup nozzle 224 toward the upper surface of the inclined portion 21 of the cup upper portion 19. The supplied DIW flows downward along the upper surface of the inclined portion 21. Therefore, a DIW liquid film is formed on the upper surface of the inclined portion 21. At this time, the supply flow rate of DIW to the first cup nozzle 224 is set to a relatively large flow rate (for example, 0.5 to 2.0 L / min).
  • the DIW mode discharged from the discharge port 224A of the first cup nozzle 224 has a continuous flow mode connected to both the discharge port 224A and the DIW liquid film on the upper surface of the inclined portion 21. Further, DIW is in a liquid-tight state in the nozzle pipe of the first cup nozzle 224 and in the first branch pipe 222.
  • the potential difference between the DIW irradiation portion in the first branch pipe 222 and the positively charged cup upper portion 19 causes the DIW in the first branch pipe 222 to be positive. Electrons from the irradiated portion move toward the DIW liquid film on the upper surface of the inclined portion 21 along the continuous flow DIW. As a result, the DIW liquid film on the upper surface of the inclined portion 21 has a large amount of electrons, so that the portion of the positively charged cup upper portion 19 that is in contact with the DIW liquid film is neutralized.
  • the unprocessed substrate W is carried into the processing chamber 3 and delivered to the spin chuck 4.
  • the control device 40 controls the spin motor 8 to start the rotation of the substrate W by the spin chuck 4 (step S2 in FIG. 4).
  • the rotation speed of the substrate W is increased to a predetermined liquid processing speed (for example, 500 rpm), and then maintained at the liquid processing speed.
  • control device 40 opens the water valve 205 while closing the branch valve 225.
  • the control device 40 controls the high voltage unit of the soft X-ray irradiation unit 223 to control the soft X-ray irradiation unit 223.
  • Soft X-rays are generated in the line generator, and the soft X-rays are irradiated toward the inside of the first branch pipe 222. Thereby, soft X-rays are irradiated to DIW which distribute
  • DIW is discharged from the discharge port 202A of the water nozzle 202 toward the rotation center of the upper surface of the substrate W in a rotating state. During the rinsing process, a DIW liquid film is formed over the entire upper surface of the substrate W.
  • the mode of DIW discharged from the discharge port 202A of the water nozzle 202 is a continuous flow mode connected to both the discharge port 202A and the DIW liquid film on the upper surface of the substrate W. Further, DIW is in a liquid-tight state in the nozzle pipe of the water nozzle 202, the water supply pipe 204, and the first branch pipe 222.
  • the DIW irradiated portion in the first branch pipe 222 (according to the first embodiment shown in FIG. 5).
  • the DIW irradiated portion 54 electrons are emitted from the water molecules by excitation of the water molecules.
  • a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the DIW irradiated portion in the first branch pipe 222.
  • the DIW irradiated portion is connected to the DIW liquid film formed on the upper surface of the substrate W via the DIW.
  • the hydrophilic film (corresponding to the hydrophilic film 38 (see FIG. 2)) is peeled off from the outer surface of the window member of the X-ray irradiation unit 223 (corresponding to the outer surface 71B (see FIG. 2) of the window member 71), There is a risk that beryllium contained in the window member dissolves into a processing solution such as DIW. Even in such a case, since the X-ray irradiation unit 223 is provided in the first branch pipe 222, the DIW containing such beryllium is supplied to the first cup nozzle 224 instead of the water nozzle 202. The Thereby, it is possible to reliably prevent the DIW containing beryllium from being supplied to the substrate W.
  • DIW an example of water
  • 202 is used to remove static electricity from the second nozzle pipes (second pipes) 232 and 262 through which the processing liquid flows using DIW (an example of water).
  • DIW an example of water
  • 15 (a) and 15 (b) are diagrams showing the configuration of the substrate processing apparatus 231 according to the seventh embodiment of the present invention.
  • the substrate processing apparatus 231 is different from the substrate processing apparatus 1 according to the first embodiment in that the substrate processing apparatus 231 includes a second nozzle pipe 232 for supplying a processing liquid to the substrate W held on the spin chuck 4.
  • the point is that DIW as an example of water is supplied to the second nozzle pipe 232 by the water supply unit 230. Since the water supply unit 230 employs a configuration equivalent to that of the water supply unit 100 (see FIG. 1), the same reference numerals as those in the case of the water supply unit 100 are attached and description thereof is omitted. In FIGS. 15A and 15B, only the configuration related to the water supply unit 230 is described, and the other portions are not shown. FIG.
  • FIG. 15A is a cross-sectional view showing a state in which the second nozzle pipe 232 is accommodated in the standby pod 237 described below
  • FIG. 15B is a cross-sectional line B-- in FIG. It is sectional drawing seen from B.
  • FIG. 15A is a cross-sectional view showing a state in which the second nozzle pipe 232 is accommodated in the standby pod 237 described below
  • FIG. 15B is a cross-sectional line B-- in FIG. It is sectional drawing seen from B.
  • the second nozzle pipe 232 is integrally provided with a cylindrical horizontal portion 233 extending in the horizontal direction and a cylindrical hanging portion 234 hanging from the tip of the horizontal portion 233.
  • the second nozzle pipe 232 is made of a resin material such as polyvinyl-chloride, PTFE (polytetrafluoroethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • a processing liquid flow passage 235 is formed inside the second nozzle pipe 232.
  • the processing liquid flow passage 235 is opened in a circular shape as the discharge port 236 at the lower end of the hanging part 234.
  • a processing liquid (chemical solution or water) from a processing liquid supply source is supplied to the second nozzle pipe 232 via a processing liquid valve (not shown). When the processing liquid valve is opened, the processing liquid is supplied to the upstream end of the horizontal portion 233 of the second nozzle pipe 232.
  • the processing liquid introduced into the second nozzle pipe 232 is discharged from the discharge port 236 after flowing through the processing liquid flow passage 235.
  • the second nozzle pipe 232 is supported by a support shaft (not shown) extending substantially vertically on the side of the cup 17 (see FIG. 1), and rotational force is input to the support shaft to rotate the support shaft. By moving it, the second nozzle pipe 232 can be swung above the spin chuck 4 (see FIG. 1). That is, the second nozzle pipe 232 has a form as a scan nozzle.
  • the processing liquid is not supplied to the substrate W (see FIG. 1)
  • the second nozzle pipe 232 is retracted to the home position installed on the side of the cup 17 (see FIG. 1).
  • the second nozzle pipe 232 is moved above the substrate W.
  • the substrate processing apparatus 231 includes a bowl-shaped standby pod 237 for accommodating the second nozzle pipe 232 at the home position.
  • the standby pod 237 has a pod body 238 having a substantially rectangular cross section along the longitudinal direction of the second nozzle pipe 232.
  • a liquid storage groove 239 extending along the longitudinal direction of the second nozzle pipe 232 is formed on the upper surface of the pod body 238.
  • the liquid reservoir groove 239 is formed over the entire area in the longitudinal direction except for both ends in the longitudinal direction.
  • the liquid reservoir groove 239 has a substantially U-shaped cross section. The width and depth of the liquid reservoir groove 239 are set to a size that can accommodate the second nozzle pipe 232.
  • End walls 240 are provided at both ends of the pod main body 238 in the longitudinal direction. Each end wall 240 is formed with an insertion hole 241 formed of a round hole substantially aligned with the second nozzle pipe 232.
  • a waste liquid pipe 242 is connected to the bottom of the liquid reservoir groove 239. In the middle of the waste liquid pipe 242, a waste liquid valve 243 for opening and closing the waste liquid pipe 242 is interposed.
  • the second nozzle pipe 232 is at the home position, the second nozzle pipe 232 is accommodated in the liquid storage groove 239. At this time, the second nozzle pipe 232 is inserted through the insertion holes 241 of both end walls 240.
  • the water nozzle 61 of the water supply unit 230 has a second nozzle pipe 232 fixedly disposed above the standby pod 237 with the discharge port 53 directed to the liquid storage groove 239.
  • the second nozzle pipe 232 is disposed at the home position.
  • DIW is discharged from the water nozzle 61 of the water supply unit 230.
  • DIW is stored in the liquid storage groove 239 of the standby pod 237.
  • the entire area in the circumferential direction of the second nozzle pipe 232 (the horizontal portion 233 thereof) is immersed by the DIW stored in the liquid storage groove 239.
  • the DIW discharged from the water nozzle 61 is continued.
  • the supply flow rate of DIW to the water nozzle 61 is set to a relatively large flow rate (for example, 0.5 to 2.0 L / min). Therefore, the mode of DIW discharged from the discharge port 53 of the water nozzle 61 is a continuous flow mode connected to both the discharge port 53 and the DIW stored in the liquid storage groove 239. That is, DIW discharged from the discharge port 53 is connected in a liquid state between the discharge port 53 and the outer peripheral wall of the second nozzle pipe 232. In the first nozzle pipe 51, DIW is in a liquid-tight state.
  • the soft X-rays from the soft X-ray irradiation unit 62 are irradiated inside the water nozzle 61 (first nozzle pipe 51).
  • the irradiated portion 54 see FIG. 5 of the DIW.
  • a plasma state is formed.
  • the DIW irradiation portion 54 and the DIW in contact with the outer peripheral wall of the second nozzle pipe 232 are connected via the DIW.
  • the processing liquid remains inside the second nozzle pipe 232 (particularly the horizontal portion 233).
  • the outer peripheral wall of the second nozzle pipe 232 is positively or negatively charged, the residual processing liquid in the second nozzle pipe 232 may be positively or negatively charged due to induction charging.
  • the processing liquid in such a charged state is supplied to the substrate W, even the substrate W is charged, and when the charge is discharged, the device formed on the upper surface of the substrate W is destroyed. May occur.
  • DIW irradiation is caused by a potential difference between the DIW irradiation portion 54 (see FIG. 5) and the outer peripheral wall of the positively charged second nozzle pipe 232. Electrons from the portion 54 (see FIG. 5) move toward the outer peripheral wall of the second nozzle pipe 232 through the continuous flow DIW and the DIW stored in the liquid storage groove 239. As a result, the outer peripheral wall of the second nozzle pipe 232 that is positively charged is removed.
  • FIG. 16 is a diagram showing a configuration of a substrate processing apparatus 251 according to the eighth embodiment of the present invention.
  • the substrate processing apparatus 251 is different from the substrate processing apparatus 231 according to the seventh embodiment (see FIGS. 15A and 15B) in that the second nozzle pipe 232 is connected to the DIW stored in the liquid storage groove 239.
  • the DIW from the discharge port 53 of the water nozzle 61 of the water supply unit (processing liquid supply device) 250 is directly supplied to the outer peripheral wall of the second nozzle pipe 232, thereby immersing the second nozzle pipe 232. This is the point of eliminating static electricity.
  • the water supply unit 250 employs a configuration equivalent to that of the water supply unit 100 (see FIG. 1) except for the configuration of the moving unit 252 described below. Therefore, the same reference numerals as those in the case of the water supply unit 100 are attached, and the description is omitted.
  • a moving unit 252 for moving the integrated head 6 in the horizontal direction is coupled to the integrated head 6.
  • the moving unit 252 is configured using a ball nut or a motor, and is connected to the control device 40 (see FIG. 3) as a control target.
  • the control device 40 supplies DIW (an example of water) to the water nozzle 61 (first nozzle pipe 51) and at the same time the water nozzle 61 (first The soft X-rays from the soft X-ray irradiation unit 62 are irradiated inside the one nozzle pipe 51). DIW discharged from the water nozzle 61 of the integrated head 6 is supplied to the outer peripheral wall of the second nozzle pipe 232 and flows down along the outer peripheral wall of the second nozzle pipe 232.
  • DIW an example of water
  • the supply flow rate of DIW to the water nozzle 61 is set to a relatively large flow rate (for example, 0.5 to 2.0 L / min). Therefore, the mode of DIW discharged from the discharge port 53 of the water nozzle 61 is a continuous flow mode connected to both the discharge port 53 and the outer peripheral wall of the second nozzle pipe 232. In the first nozzle pipe 51, DIW is in a liquid-tight state.
  • the soft X-rays from the soft X-ray irradiation unit 62 are irradiated inside the water nozzle 61 (first nozzle pipe 51).
  • the irradiated portion 54 see FIG. 5 of the DIW.
  • a plasma state is formed.
  • the DIW irradiation portion 54 and the DIW in contact with the outer peripheral wall of the second nozzle pipe 232 are connected via the DIW.
  • the control device 40 controls the moving unit 252 to move the DIW liquid landing site on the outer peripheral wall of the second nozzle pipe 232 (horizontal portion 233) in one direction along the longitudinal direction of the second nozzle pipe 232. Or reciprocate. Accordingly, the position of the second nozzle pipe 232 to be neutralized can be moved along the longitudinal direction of the second nozzle pipe 232 (horizontal portion 233). Therefore, the second nozzle pipe 232 (horizontal portion 233) It is possible to remove static electricity in a substantially entire area of the outer peripheral wall.
  • 17 (a) and 17 (b) are diagrams showing the configuration of the substrate processing apparatus 261 according to the ninth embodiment of the present invention.
  • the substrate processing apparatus 261 includes a water supply unit (processing liquid supply apparatus) 260 instead of the water supply unit 100 (see FIG. 1) according to the first embodiment, and the substrate processing apparatus 1 according to the first embodiment (
  • the other configuration is the same as that of the substrate processing apparatus 1.
  • 17 (a) and 17 (b) show only the configuration related to the water supply unit 260, and the other parts are not shown.
  • FIG. 17A is a longitudinal sectional view of a second nozzle pipe 262 and a third nozzle pipe 272 to be described next, and FIG. 17B is viewed from a cutting plane line B1-B1 in FIG. 17A. It is sectional drawing.
  • the water supply unit 260 includes a second nozzle pipe 262 and a third nozzle pipe 272.
  • the second nozzle pipe 262 and the third nozzle pipe 272 form a double pipe structure by inserting the second nozzle pipe 262 into the third nozzle pipe 272.
  • the second nozzle pipe 262 is integrally provided with a cylindrical horizontal portion 263 extending in the horizontal direction and a cylindrical hanging portion 264 that hangs down from the tip of the horizontal portion 263.
  • the second nozzle pipe 262 is formed of a resin material such as polyvinyl-chloride, PTFE (polytetrafluoroethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • a processing liquid flow passage 265 is formed inside the second nozzle pipe 262.
  • the processing liquid flow passage 265 opens in a circular shape as the discharge port 266 at the lower end of the hanging part 264.
  • a processing liquid (chemical solution or water) from a processing liquid supply source is supplied to the second nozzle pipe 262 via a processing liquid valve (not shown).
  • the water supply unit 260 includes a part of the configuration of the water supply unit 200 (see FIG. 11) according to the fourth embodiment. That is, the water supply unit 260 includes a water supply pipe 204, a soft X-ray irradiation unit 203, and a water valve 205.
  • the soft X-ray irradiation unit 203 and the water supply pipe 204 are described in the fourth embodiment except that the water supply pipe 204 supplies DIW (an example of water) from the DIW supply source to the third nozzle pipe 272. Since it is the structure as it was, detailed description is abbreviate
  • the third nozzle pipe 272 is integrally provided with a cylindrical horizontal portion 273 extending in the horizontal direction and a cylindrical hanging portion 274 depending from the tip of the horizontal portion 273.
  • the third nozzle pipe 272 is formed of a resin material such as polyvinyl-chloride, PTFE (polytetrafluoroethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • the horizontal portion 263 of the second nozzle pipe 262 passes through the horizontal portion 273 of the third nozzle pipe 272, passes through the wall of the drooping portion 274 of the third nozzle pipe 272, and the downstream end thereof is the second nozzle pipe.
  • a water flow passage 275 is formed in a space between the inner wall of the third nozzle pipe 272 and the outer wall of the second nozzle pipe 262.
  • the water flow passage 275 opens in an annular shape as a discharge port 276 at the lower end of the hanging portion 274.
  • the processing liquid valve When performing the processing liquid processing using the processing liquid on the substrate W, the processing liquid valve is opened.
  • the processing liquid valve is opened, the processing liquid is supplied to the upstream end of the horizontal portion 263 of the second nozzle pipe 262.
  • the processing liquid introduced into the second nozzle pipe 262 is discharged from the discharge port 266 after flowing through the processing liquid flow passage 265.
  • the processing liquid valve is closed, but then the processing liquid remains inside the second nozzle pipe 262 (particularly the horizontal portion 263).
  • the water valve 205 When supplying DIW to the substrate W, the water valve 205 is opened. DIW is supplied to the upstream end of the water flow passage 275 of the third nozzle pipe 272. DIW introduced into the third nozzle pipe 272 is discharged from the discharge port 276 after flowing through the water flow passage 275. When the DIW supply stop timing is reached, the water valve 205 is closed, but DIW remains in the space between the inner wall of the third nozzle pipe 272 and the outer wall of the second nozzle pipe 262 thereafter.
  • the residual processing liquid in the second nozzle pipe 262 may be positively or negatively charged due to induction charging.
  • the processing liquid in such a charged state is supplied to the substrate W, even the substrate W is charged, and when the charge is discharged, the device formed on the upper surface of the substrate W is destroyed. May occur.
  • the outer peripheral wall of the third nozzle pipe 272 is charged first, and then the outer wall of the second nozzle pipe 262 and the inner wall of the third nozzle pipe 272. It is conceivable that the outer peripheral wall of the second nozzle pipe 262 is charged through the residual DIW between the first nozzle pipe 262 and the second nozzle pipe 262.
  • the soft X-ray irradiation unit 203 softens the water supply pipe 204. X-ray irradiation continues.
  • DIW remaining between the outer wall of the second nozzle pipe 262 and the inner wall of the third nozzle pipe 272 and DIW existing in the water supply pipe 204 are in a liquid-tight state (in a continuous flow form). )It is connected.
  • the potential difference between the DIW irradiated portion in the water supply pipe 204 and the positively charged third nozzle pipe 272 causes a difference in the water supply pipe 204. Electrons from the irradiated portion of DIW travel through DIW in the water supply pipe 204 and DIW remaining between the outer wall of the second nozzle pipe 262 and the inner wall of the third nozzle pipe 272 toward the third nozzle pipe 272. Move. As a result, the positively charged third nozzle pipe 272 is neutralized.
  • the third nozzle pipe 272 when the third nozzle pipe 272 is negatively charged, the electrons from the third nozzle pipe 272 are directed toward the positive ions at the DIW irradiated portion in the water supply pipe 204, and the DIW in the water supply pipe 204.
  • the second nozzle pipe 262 moves along the DIW remaining between the outer wall of the second nozzle pipe 262 and the inner wall of the third nozzle pipe 272. As a result, the third nozzle pipe 272 is neutralized.
  • the second nozzle pipe 262 is positively charged, electrons from the DIW irradiated portion in the water supply pipe 204 are transferred to the DIW in the water supply pipe 204 and the outer wall of the second nozzle pipe 262. The residual DIW is transferred to the inner wall of the three-nozzle pipe 272 and moves toward the second nozzle pipe 262. If the second nozzle pipe 262 is negatively charged, the electrons from the second nozzle pipe 262 are directed toward the positive ions at the DIW irradiated portion in the water supply pipe 204, and the DIW in the water supply pipe 204. The second nozzle pipe 262 moves along the DIW remaining between the outer wall of the second nozzle pipe 262 and the inner wall of the third nozzle pipe 272. That is, even if the second nozzle pipe 262 is charged, the charge removal of the second nozzle pipe 262 can be achieved in this way.
  • FIG. 18 is a diagram showing a configuration of a substrate processing apparatus 301 according to the tenth embodiment of the present invention.
  • the substrate processing apparatus 301 includes a water supply unit (treatment liquid supply apparatus) 300 for supplying DIW (an example of water) to the lower surface of the substrate W, and the water supply unit 100 with respect to the upper surface of the substrate W. It differs from the substrate processing apparatus 1 (refer FIG. 1) which concerns on 1st Embodiment in the point which replaces (refer FIG. 1) and supplies DIW (an example of water) with the water nozzle 302 mainly.
  • DIW an example of water
  • the water nozzle 302 is constituted by a straight nozzle that discharges liquid in a continuous flow state, and the water nozzle 302 is fixedly disposed in the processing chamber 3 with the discharge port directed toward the center of the upper surface of the substrate W. Yes.
  • a water supply pipe 303 to which DIW is supplied from a DIW supply source is connected to the water nozzle 302.
  • the water supply pipe 303 is provided with a water valve 304 for opening and closing the water supply pipe 303.
  • the spin shaft 9 is a hollow shaft.
  • a lower processing liquid supply pipe 305 is inserted into the spin shaft 9 in a non-contact state.
  • the water supply unit 300 supplies DIW from the DIW supply source to the lower processing liquid supply pipe 305, the lower surface nozzle 306 attached to the upper end of the lower processing liquid supply pipe 305, and the lower processing liquid supply pipe 305.
  • a water supply pipe (treatment liquid pipe) 307 to be supplied and a soft X-ray irradiation unit (X-ray irradiation means) 309 for irradiating the DIW existing in the water supply pipe 307 with soft X-rays are included.
  • the soft X-ray irradiation unit 309 is attached to the water supply pipe 307.
  • the lower surface nozzle 306 is disposed so that its discharge port 306A (see FIG. 19) is close to the center of the lower surface of the substrate W supported by the sandwiching member 11.
  • a water supply pipe 307 is connected to the lower processing liquid supply pipe 305.
  • DIW can be supplied from the lower processing liquid supply pipe 305 to the lower surface nozzle 306 and discharged from the discharge port 306A (see FIG. 19) of the lower surface nozzle 306 toward the center of the lower surface of the substrate W. .
  • the water supply pipe 307 has a round tubular shape (cylindrical shape).
  • the water supply pipe 307 is formed using a resin material such as polyvinyl-chloride, PTFE (poly-tetra-fluoro-ethylene), or PFA (perfluoro-alkyl vinyl-ether-tetrafluoro-ethlene-copolymer).
  • a resin material such as polyvinyl-chloride, PTFE (poly-tetra-fluoro-ethylene), or PFA (perfluoro-alkyl vinyl-ether-tetrafluoro-ethlene-copolymer).
  • An opening (not shown) is formed in the tube wall in the middle of the water supply pipe 307.
  • the soft X-ray irradiation unit 309 employs the same configuration as the soft X-ray irradiation unit 62 (see FIG. 2) according to the first embodiment.
  • the soft X-ray irradiation unit 309 is attached to the water supply pipe 307 so as to close the opening of the water supply pipe 307.
  • the opening of the cover of the soft X-ray irradiation unit 309 corresponds with the opening of the water supply pipe 307.
  • the wall surface of the cover of the soft X-ray irradiation unit 309 (corresponding to the lateral wall 26A (see FIG.
  • the high voltage unit of the soft X-ray irradiation unit 309 (corresponding to the high voltage unit 31 (see FIG. 2) of the soft X-ray irradiation unit 62 according to the first embodiment) is connected to the control device 40 (see FIG. 3). Yes.
  • the water supply pipe 307 is provided with a water valve 308 for opening and closing the water supply pipe 307.
  • the water valve 308 is connected to the control device 40 (see FIG. 3).
  • the same processing as in the processing example shown in FIG. 4 is performed.
  • the control device 40 opens the water valve 304. Thereby, DIW is discharged from the water nozzle 302 toward the center of the upper surface of the substrate W.
  • the control device 40 opens the water valve 308.
  • DIW flowing through the water supply pipe 307 is supplied to the lower surface nozzle 306. DIW is discharged upward from the discharge port 306A of the lower surface nozzle 306 toward the center of the lower surface of the substrate W.
  • the control device 40 controls the high voltage unit of the soft X-ray irradiation unit 309 to generate soft X-rays of the soft X-ray irradiation unit 309.
  • a soft X-ray is generated in a vessel (corresponding to the soft X-ray generator 25 (see FIG. 2) of the soft X-ray irradiation unit 62 according to the first embodiment), and this soft X-ray is generated inside the water supply pipe 307. Irradiate toward Thereby, soft X-rays are irradiated to DIW which distribute
  • FIG. 19 is a diagram showing a DIW flow of the rinsing process in the substrate processing apparatus 301.
  • the DIW supplied to the central portion of the upper surface of the substrate W receives a centrifugal force due to the rotation of the substrate W, and spreads on the upper surface of the substrate W from the central portion toward the peripheral portion. As a result, a DIW liquid film is formed over the entire upper surface of the substrate W. The chemical liquid adhering to the upper surface of the substrate W is washed away by the liquid film of DIW.
  • DIW supplied to the central portion of the lower surface of the substrate W receives a centrifugal force due to the rotation of the substrate W, propagates along the lower surface of the substrate W to the outer side of the rotation radius, and reaches the lower peripheral edge 321 of the substrate W It reaches. Therefore, a DIW liquid film is formed on the entire lower surface of the substrate W.
  • DIW that has reached the lower surface peripheral portion 321 goes around the peripheral end surface 322 of the substrate W and reaches the upper surface peripheral portion 323 of the substrate W.
  • the DIW that has passed through the upper surface of the substrate W and the DIW that has come around from the peripheral end surface 322 of the substrate W come to merge at the upper peripheral edge 323 of the substrate W as shown in FIG. Therefore, the DIW liquid film formed on the upper surface of the substrate W and the DIW liquid film formed on the lower surface of the substrate W are connected to each other.
  • the supply flow rate of DIW to the lower surface nozzle 306 during the rinsing process is set to a relatively large flow rate (for example, 0.5 to 2.0 L / min). Therefore, the mode of DIW discharged from the discharge port 306A of the lower surface nozzle 306 is a continuous flow mode connected to both the discharge port 306A and the liquid film of DIW formed on the lower surface of the substrate W.
  • the DIW discharged from the discharge port 306A is Not only the DIW liquid film formed on the lower surface but also the DIW liquid film formed on the upper surface of the substrate W are connected in liquid form. Further, DIW is in a liquid-tight state in the nozzle pipe of the lower surface nozzle 306, the lower processing liquid supply pipe 305, and the water supply pipe 307.
  • the DIW irradiated portion in the water supply pipe 307 (shown in FIG. 5 of the DIW according to the first embodiment)
  • electrons are emitted from the water molecules by excitation of the water molecules.
  • a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the DIW irradiated portion in the water supply pipe 307.
  • the DIW irradiated portion is connected to the DIW liquid film formed on the lower surface of the substrate W and the DIW liquid film formed on the upper surface of the substrate W via the DIW.
  • the potential difference between the DIW irradiated portion in the water supply pipe 307 and the positively charged substrate W is different from the DIW irradiated portion in the water supply pipe 307. Electrons move along the lower processing liquid supply pipe 305, the water supply pipe 307, and the continuous flow DIW toward the DIW liquid films on the upper surface and the lower surface of the substrate W. Thereby, the liquid films of DIW formed on the lower surface and the upper surface of the substrate W each have a large amount of electrons.
  • the substrate W when simultaneous rinsing processing is performed on both the upper and lower surfaces of the substrate W, even if DIW is supplied to the upper and lower surfaces of the rotating substrate W, the substrate W is not charged by contact separation with the DIW. The charging of the substrate W at the time can be prevented. Further, even if the substrate W is charged before the rinsing process, the charge on the substrate W can be removed (that is, static elimination). As a result, device destruction due to charging of the substrate W can be prevented.
  • FIG. 20 is a diagram showing a configuration of a substrate processing apparatus 311 according to the eleventh embodiment of the present invention.
  • a water supply unit (processing liquid supply apparatus) 310 is provided instead of the water supply unit 300 (see FIG. 18).
  • a soft X-ray irradiation device 314 is disposed in the processing chamber 3. In the eleventh embodiment, these points are different from the tenth embodiment.
  • the water supply unit 310 includes a lower processing liquid supply pipe 305, a lower surface nozzle 306, a water supply pipe 307, a second branch pipe (branch pipe) 312 that branches from a middle portion of the water supply pipe 307, and a second branch. And a soft X-ray irradiation unit (X-ray irradiation means) 319 for irradiating DIW (an example of water) existing in the pipe 312 with soft X-rays.
  • the soft X-ray irradiation unit 319 is attached to the second branch pipe 312.
  • the second branch pipe 312 branches from a portion upstream of the water valve 308 in the water supply pipe 307.
  • the second branch pipe 312 has a round tubular shape (cylindrical shape), such as poly-vinyl-chloride, PTFE (polytetrafluoroethylene), PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer), etc. These resin materials are used.
  • a branch valve 318 for opening and closing the second branch pipe 312 is interposed in the middle of the second branch pipe 312.
  • the branch valve 318 is connected to the control device 40 (see FIG. 3).
  • the second branch pipe 312 has an opening (not shown) in a predetermined portion of the pipe wall upstream of the branch valve 318.
  • a second cup nozzle 313 is attached to the downstream end of the second branch pipe 312.
  • the second cup nozzle 313 is constituted by a straight nozzle that discharges liquid in a continuous flow state, and the discharge port 313A (see FIG. 21. liquid receiving discharge port) is connected to the inner wall (for example, inclined) of the cup upper portion 19. In a state facing the lower surface of the portion 21, for example, it is fixedly disposed on the outer wall of the spin chuck 4.
  • the soft X-ray irradiation unit 319 employs the same configuration as the soft X-ray irradiation unit 62 (see FIG. 2) according to the first embodiment.
  • the soft X-ray irradiation unit 319 is attached to the second branch pipe 312 so as to close the opening of the second branch pipe 312.
  • the opening of the cover of the soft X-ray irradiation unit 319 (corresponding to the second opening 28 (see FIG. 2) of the cover 26 of the soft X-ray irradiation unit 62) is equal to the opening of the second branch pipe 312.
  • the wall surface of the cover of the soft X-ray irradiation unit 319 (corresponding to the lateral wall 26A (see FIG.
  • the high voltage unit of the soft X-ray irradiation unit 319 (corresponding to the high voltage unit 31 (see FIG. 2) of the soft X-ray irradiation unit 62 according to the first embodiment) is connected to the control device 40 (see FIG. 3). Yes.
  • DIW is supplied from the water supply pipe 307 to the lower surface nozzle 306 via the lower processing liquid supply pipe 305 and is discharged from the discharge port 306A of the lower surface nozzle 306. DIW is discharged.
  • the branch valve 318 is opened with the water valve 308 closed, DIW is supplied from the second branch pipe 312 to the second cup nozzle 313, and DIW is discharged from the discharge port 313A of the second cup nozzle 313.
  • the soft X-ray irradiation device 314 includes a soft X-ray generator 315 having an irradiation window 316.
  • Soft X-rays generated in the irradiation window 316 are emitted (radiated) outside the soft X-ray irradiation device 314.
  • the irradiation angle (irradiation range) of soft X-rays from the irradiation window 316 is, for example, 130 °, and the soft X-rays irradiated from the irradiation window 316 have a wavelength of, for example, 0.13 to 0.41 nm.
  • the soft X-ray generator 315 adopts the same configuration as the soft X-ray generator 25 (see FIG.
  • the soft X-ray irradiation device 314 is disposed above the cup upper portion 19 so that the irradiation window 316 faces the upper surface of the inclined portion 21 of the cup upper portion 19.
  • the same processing as in the processing example shown in FIG. 4 is performed. However, before the substrate W is loaded in step S 1 of FIG.
  • the eleventh embodiment is common to the sixth embodiment in that the cup 17 is subjected to charge removal.
  • the eleventh embodiment is not limited to supplying DIW to the cup upper portion 19 but also softening in parallel with the supply of DIW. It differs from the case of 6th Embodiment by the point which soft X-rays are irradiated from the X-ray irradiation apparatus 314, and the cup 17 is neutralized.
  • the control device 40 controls the high voltage unit of the soft X-ray irradiation unit 319, and the soft X-ray generator of the soft X-ray irradiation unit 319 (the soft X-ray irradiation unit 62 according to the first embodiment).
  • the soft X-ray generator 25 (refer to FIG. 2) generates soft X-rays and irradiates the soft X-rays toward the inside of the second branch pipe 312. Further, the control device 40 opens the branch valve 318 while closing the water valve 308. Thereby, DIW which circulated through the 2nd branch piping 312 is discharged from discharge port 313A (refer to Drawing 21) of nozzle 313 for the 2nd cup.
  • FIG. 21 is a view showing a state where the water supply unit 310 shown in FIG. 20 supplies DIW to the inclined portion 21 of the cup upper portion 19.
  • DIW discharged from the discharge port 313A is supplied to the lower surface of the inclined portion 21 of the cup upper portion 19 and flows downward along the lower surface of the inclined portion 21. Therefore, a DIW liquid film is formed on the lower surface of the inclined portion 21.
  • the supply flow rate of DIW to the second cup nozzle 313 is set to a relatively large flow rate (for example, 0.5 to 2.0 L / min). Therefore, the mode of DIW discharged from the discharge port 313A of the second cup nozzle 313 has a continuous flow mode connected to both the discharge port 313A and the DIW liquid film on the lower surface of the inclined portion 21. Further, DIW is in a liquid-tight state in the nozzle pipe of the second cup nozzle 313 and in the second branch pipe 312.
  • the potential difference between the DIW irradiated portion in the second branch pipe 312 and the positively charged cup upper portion 19 causes the DIW in the second branch pipe 312 to be positive. Electrons from the irradiated portion move along the continuous flow DIW toward the DIW liquid film on the lower surface of the inclined portion 21. As a result, the DIW liquid film on the lower surface of the inclined portion 21 has a large amount of electrons, so that a portion of the positively charged cup upper portion 19 that is in contact with the DIW liquid film is discharged.
  • the cup upper portion 19 when the cup upper portion 19 is negatively charged, the electrons from the cup upper portion 19 move along the continuous flow treatment liquid toward the positive ions in the DIW irradiated portion in the second branch pipe 312. To do. Therefore, the portion of the cup upper portion 19 that is negatively charged and in contact with the DIW liquid film is neutralized.
  • control device 40 controls the high voltage unit of the soft X-ray irradiation device 314 to generate soft X-rays in the soft X-ray generator 315 of the soft X-ray irradiation device 314, Irradiate the upper surface of the inclined portion 21 of the cup upper portion 19.
  • the inclined portion 21 of the cup upper portion 19 is a member that is disposed around the substrate W during processing. However, by applying soft X-rays from the soft X-ray irradiation device 314, the inclined portion 21 can be prevented from being charged and discharged. .
  • the unprocessed substrate W is carried into the processing chamber 3 and delivered to the spin chuck 4.
  • the control device 40 controls the spin motor 8 to start the rotation of the substrate W by the spin chuck 4 (step S2 in FIG. 4).
  • the rotation speed of the substrate W is increased to a predetermined liquid processing speed (for example, 500 rpm), and then maintained at the liquid processing speed.
  • the control device 40 In the rinsing process (steps S4 to S6 in FIG. 4), the control device 40 (see FIG. 3) opens the water valve 308 while closing the branch valve 318. In addition, when a predetermined time elapses after the opening of the water valve 308 and the soft X-ray irradiation timing is reached, the control device 40 controls the high voltage unit of the soft X-ray irradiation unit 319 so that the soft X-ray irradiation unit 319 has a soft X-ray irradiation timing. Soft X-rays are generated in the line generator, and the soft X-rays are irradiated toward the inside of the second branch pipe 312. Thus, DIW is discharged from the lower surface nozzle 306 toward the center of the lower surface of the substrate W.
  • the DIW supplied to the central portion of the lower surface of the substrate W spreads to the outer side of the rotation radius along the lower surface of the substrate W, as in the case of the tenth embodiment, and the peripheral end surface 322 (see FIG. 19) of the substrate W. It goes around and reaches the peripheral edge of the upper surface of the substrate W. Then, the DIW that has traveled along the upper surface of the substrate W and the DIW that has circulated from the peripheral end surface 322 of the substrate W merge at the peripheral edge of the upper surface of the substrate W, and as a result, the DIW formed over the entire upper surface of the substrate W. And the DIW liquid film formed over the entire lower surface of the substrate W are connected to each other.
  • the mode of DIW discharged from the discharge port 306A of the lower surface nozzle 306 is a continuous flow mode connected to both the discharge port 306A and the liquid film of DIW formed on the lower surface of the substrate W. Since the DIW liquid film formed on the upper surface of the substrate W and the DIW liquid film formed on the lower surface of the substrate W are connected to each other, the DIW discharged from the discharge port 306A is formed on the lower surface of the substrate W. In addition to the DIW liquid film, the DIW liquid film formed on the upper surface of the substrate W is connected in liquid form. Further, DIW is in a liquid-tight state in the nozzle pipe of the lower surface nozzle 306, the lower processing liquid supply pipe 305, the water supply pipe 307, and the second branch pipe 312.
  • the DIW irradiated portion in the second branch pipe 312 When the DIW existing in the second branch pipe 312 is irradiated with soft X-rays during the rinsing process, the DIW irradiated portion in the second branch pipe 312 (according to the first embodiment shown in FIG. 5). In the DIW irradiated portion 54), electrons are emitted from the water molecules by excitation of the water molecules. As a result, a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the DIW irradiated portion in the second branch pipe 312. The DIW irradiated portion is connected to the DIW liquid film formed on the lower surface of the substrate W and the DIW liquid film formed on the upper surface of the substrate W via the DIW.
  • step S8 soft X-ray irradiation by the soft X-ray irradiation apparatus 314 may be performed prior to the loading of the substrate W, but not only before the loading of the substrate W but also spin dry (FIG. 4).
  • step S8 soft X-ray irradiation by the soft X-ray irradiation apparatus 314 may be performed.
  • the surface of the substrate W immediately after the treatment liquid is shaken off is irradiated with soft X-rays. Prevention and static elimination can be achieved more reliably.
  • two water supply units 310 and a soft X-ray irradiation device 314 having a configuration including the second cup nozzle 313 are provided.
  • only one of the water supply unit 310 and the soft X-ray irradiation device 314 may be provided.
  • FIG. 22 is a diagram showing a configuration of a substrate processing apparatus 401 according to the twelfth embodiment of the present invention.
  • the substrate processing apparatus 401 mainly includes a spin chuck (substrate holding and rotating means) 402 instead of the spin chuck 4 and supplies DIW (an example of water) to the lower surface of the substrate W via the spin chuck 402. Two points are different from the substrate processing apparatus 301 (see FIG. 18) according to the tenth embodiment.
  • the substrate processing apparatus 401 includes a water supply unit (processing liquid supply apparatus) 400.
  • the spin chuck 402 is a sandwich type. Specifically, the spin chuck 402 includes a spin motor 403, a spin shaft (support member) 404 integrated with a drive shaft of the spin motor 403, and a disc attached substantially horizontally to the upper end of the spin shaft 404.
  • a spin base (support member) 405 having a plurality of shapes, and a plurality of sandwiching members 406 provided at substantially equal intervals at a plurality of positions on the peripheral edge of the spin base 405 are provided.
  • the spin shaft 404 includes an inner shaft portion 407 formed using a resin, steel, or the like, and an outer cylinder portion 408 formed using a porous material, and the inner shaft portion 407 is inserted into the outer cylinder portion 408. It is integrated in the state. That is, the outer periphery of the inner shaft portion 407 is surrounded by the outer cylinder portion 408 in a close contact state.
  • the spin base 405 is formed using a porous material.
  • An upper end surface of the outer cylinder portion 408 is connected to the lower surface 405B of the spin base 405 in a close contact state.
  • the clamping member 406 is formed using a steel material or the like. In a state where the substrate W is sandwiched by the plurality of sandwiching members 406, the specifications of the sandwiching member 406 and the thickness in the height direction of the spin base 405 are such that the entire lower surface of the substrate W is in contact with the upper surface of the spin base 405. , Each is set.
  • the porous material that is the material of the outer cylindrical portion 408 of the spin shaft 404 and the spin base 405 is, for example, a sponge made of PVA (polyvinyl alcohol) and has a large number of pores.
  • the pores of the porous material have a size (for example, a diameter of 0.05 to 100 ⁇ m) through which DIW (an example of water) can pass. Therefore, it is possible to pass the DIW through the pores of the porous material. Therefore, it is possible to move the DIW in the outer cylinder portion 408 or the spin base 405.
  • urethane resin as a raw material of the porous material, urethane resin, fluorine resin (PTFE (polytetrafluoroethylene)), PEEK (polyether-ether-ketone), PVC (polyvinyl chloride), and
  • PTFE polytetrafluoroethylene
  • PEEK polyether-ether-ketone
  • PVC polyvinyl chloride
  • PFA perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer
  • the water supply unit 400 exists in the water nozzle 409, a water supply pipe (treatment liquid pipe) 410 that supplies DIW (an example of water) from a DIW supply source to the water nozzle 409, and the water supply pipe 410.
  • a soft X-ray irradiation unit (X-ray irradiation means) 412 for irradiating the DIW with soft X-rays.
  • the soft X-ray irradiation unit 412 is attached to the water supply pipe 410.
  • the water nozzle 409 has a round tubular (cylindrical) nozzle pipe and is attached to the tip of the water supply pipe 410.
  • the water nozzle 409 is configured by a straight nozzle that discharges liquid in a continuous flow state, and the discharge port 409A is fixed in the processing chamber 3 with the discharge port 409A facing the outer cylindrical portion 408 of the spin shaft 404. Has been placed.
  • the water supply pipe 410 has a round tubular shape (cylindrical shape).
  • the water supply pipe 410 is formed using a resin material such as polyvinyl-chloride, PTFE (poly-tetra-fluoro-ethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • a resin material such as polyvinyl-chloride, PTFE (poly-tetra-fluoro-ethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • An opening (not shown) is formed in the tube wall in the middle of the water supply pipe 410.
  • the soft X-ray irradiation unit 412 adopts the same configuration as the soft X-ray irradiation unit 62 (see FIG. 2) according to the first embodiment.
  • the soft X-ray irradiation unit 412 is attached to the water supply pipe 410 so as to close the opening of the water supply pipe 410.
  • the opening of the cover of the soft X-ray irradiation unit 412 corresponds with the opening of the water supply pipe 410.
  • the wall surface of the cover of the soft X-ray irradiation unit 412 (corresponding to the lateral wall 26A (see FIG.
  • a high voltage unit of the soft X-ray irradiation unit 412 (corresponding to the high voltage unit 31 (see FIG. 2) of the soft X-ray irradiation unit 62 according to the first embodiment) is connected to the control device 40 (see FIG. 3). Yes.
  • a water valve 411 for opening and closing the water supply pipe 410 is interposed in the water supply pipe 410.
  • the water valve 411 is connected to the control device 40 (see FIG. 3).
  • the control device 40 see FIG. 3
  • DIW is supplied from the water supply pipe 410 to the water nozzle 409, and when the water valve 411 is closed, the supply of DIW to the water nozzle 409 is stopped.
  • FIG. 23 is a diagram illustrating a state in which the water supply unit 400 is supplying DIW to the outer cylinder portion 408.
  • the same processing as in the processing example shown in FIG. 4 is performed.
  • the control device 40 opens the water valve 304. Accordingly, DIW is discharged from the discharge port 302A of the water nozzle 302 toward the center of the upper surface of the substrate W.
  • the DIW supplied to the central portion of the upper surface of the substrate W receives a centrifugal force due to the rotation of the substrate W and spreads on the upper surface of the substrate W from the central portion toward the peripheral portion. As a result, a DIW liquid film is formed over the entire upper surface of the substrate W. The chemical liquid adhering to the upper surface of the substrate W is washed away by the liquid film of DIW.
  • the control device 40 opens the water valve 411 in conjunction with the opening of the water valve 304.
  • DIW flowing through the water supply pipe 410 is supplied to the water nozzle 409. DIW is discharged laterally from the discharge port 409A of the water nozzle 409 toward the outer cylinder portion 408 of the spin shaft 404.
  • DIW supplied to the outer peripheral surface of the outer cylinder portion 408 penetrates into the outer cylinder portion 408, passes through the outer cylinder portion 408, and is supplied to the lower surface 405B of the spin base 405.
  • the DIW supplied to the lower surface 405B of the spin base 405 penetrates into the spin base 405, passes through the outer cylindrical portion 408, and is supplied to the upper surface 405A of the spin base 405.
  • the DIW impregnated in the spin base 405 oozes out from the upper surface 405A, and as shown in FIG. 23, a DIW liquid film is formed on the upper surface 405A.
  • the DIW liquid film is in contact with the lower surface of the substrate W, the chemical liquid adhering to the lower surface of the substrate W is washed away by the DIW. Thereby, the rinsing process can be performed on the entire lower surface of the substrate W.
  • the water nozzle 409 has a discharge port 409A disposed at a small distance S1 from the outer peripheral surface of the outer tube portion 408. Further, the DIW supply flow rate to the water nozzle 61 during the rinsing process is set to a relatively large flow rate (for example, 0.5 to 2.0 L / min). Therefore, the form of DIW discharged from the discharge port 409A of the water nozzle 409 forms a continuous flow that is connected to both the discharge port 409A and the outer peripheral surface of the outer cylindrical portion 408 of the spin shaft 404. Therefore, the DIW discharged from the discharge port 409A is connected in liquid form to the DIW liquid film formed on the lower surface of the substrate W. Further, DIW is in a liquid-tight state in the nozzle pipe of the water nozzle 409 and the water supply pipe 410.
  • the control device 40 controls the high voltage unit of the soft X-ray irradiation unit 412 to generate soft X-rays of the soft X-ray irradiation unit 412.
  • a soft X-ray is generated in a vessel (corresponding to the soft X-ray generator 25 (see FIG. 2) of the soft X-ray irradiation unit 62 according to the first embodiment), and the soft X-ray is generated inside the water supply pipe 410. Irradiate toward Thereby, soft X-rays are irradiated to DIW circulating in the water supply pipe 410.
  • the DIW irradiated portion in the water supply pipe 410 (shown in FIG. 5 of the DIW according to the first embodiment) In the same manner as the irradiated portion 54), electrons are emitted from the water molecules by excitation of the water molecules. As a result, a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the DIW irradiated portion in the water supply pipe 410.
  • the DIW irradiated portion is connected to the DIW liquid film formed on the lower surface of the substrate W via the DIW.
  • the DIW in the water supply pipe 410 is determined by the potential difference between the DIW irradiated portion in the water supply pipe 410 and the lower surface of the positively charged substrate W. Electrons from the irradiated portion move toward the DIW liquid film in contact with the lower surface of the substrate W along the continuous flow DIW. As a result, the liquid film of DIW in contact with the lower surface of the substrate W has a large amount of electrons.
  • the present invention is based on the single wafer processing apparatus 1,201, 211, 221, 231, 251, 261, 301, 311, 401 for processing the circular substrate W.
  • the present invention can also be applied to a substrate transport type substrate processing apparatus for processing a square (sheet-like) substrate.
  • FIG. 24 is an illustrative perspective view showing the configuration of the substrate processing apparatus 501 according to the thirteenth embodiment of the present invention.
  • the substrate processing apparatus 501 is an apparatus used for cleaning the surface (surface to be processed) of a square glass substrate for a liquid crystal display device as an example of the substrate W using a processing liquid such as water.
  • the length of one side of the square substrate W to be processed is, for example, in the range of several tens of cm to 2 m, and the plate thickness is in the range of about 0.5 to 1.2 mm.
  • the horizontal direction along the transport direction of the substrate W which will be described below, is defined as the X direction
  • the horizontal direction orthogonal to the X direction is defined as the Y direction
  • the vertical direction is defined as the Z direction.
  • the substrate processing apparatus 501 includes a roller transport unit 504 (substrate holding and transporting unit) for transporting the substrate W along the X direction, and DIW (treatment liquid) on the surface of the substrate W transported by the roller transport unit 504.
  • a water supply unit (processing liquid supply device) 500 for supplying water (an example of water), a gas knife nozzle 519 for blowing nitrogen gas as an example of an inert gas onto the surface of the substrate W being transferred by the roller transfer unit 504, And a soft X-ray irradiation device 512 that irradiates the surface of the substrate W transported by the roller transport unit 504 with soft X-rays.
  • the substrate processing apparatus 501 supplies DIW to the surface of the substrate W and performs a cleaning process chamber 502 for cleaning the surface of the substrate W, and a liquid draining process for draining DIW adhering to the surface of the substrate W.
  • the cleaning processing chamber 502 and the liquid draining chamber 503 are disposed adjacent to each other.
  • a supply unit 500 is disposed above the roller transport unit 504 in the cleaning processing chamber 502.
  • a gas knife nozzle 519 and a soft X-ray irradiation device 512 are arranged in this order in the transport direction above the roller transport unit 504.
  • the roller transport unit 504 is arranged in a state extending in the left-right direction so as to straddle between the internal space of the cleaning processing chamber 502 and the internal space of the liquid draining chamber 503.
  • the substrate W carried in from the substrate carry-in port 523 formed on the upstream side wall of the cleaning processing chamber 502 is transported by the roller transport unit 504, and is supplied to the partition wall 521 that partitions the cleaning processing chamber 502 and the liquid draining chamber 503. It is transferred to the liquid draining chamber 503 through the formed substrate passage port 522. Then, the inside of the liquid draining chamber 503 is transported by the roller transport unit 504, and unloaded from the substrate unloading port 524 formed on the side wall on the downstream side of the liquid draining chamber 503.
  • the substrate W is placed on the roller transport unit 504 with its surface facing upward.
  • the surface of the substrate W is sequentially scanned by the water supply position P1 and the inert gas injection position P2.
  • DIW is first supplied on the surface of the substrate W, and then nitrogen gas is injected after a predetermined time delay.
  • FIG. 25 is a perspective view showing the configuration of the roller transport unit 504.
  • the conveyance rollers 505 are arranged in parallel at substantially equal pitches in the X direction. Each transport roller 505 is synchronously rotated in the same direction by driving of a drive unit (not shown).
  • Each conveyance roller 505 includes a roller shaft 515 that is inclined with respect to a horizontal plane in a plane (YZ plane) orthogonal to the X direction. Therefore, the conveyance path realized by the roller conveyance unit 504 is entirely inclined in the Y direction with respect to the horizontal plane.
  • the substrate W is transported while maintaining an inclined posture.
  • the inclination angle ⁇ (see FIG. 26) of the substrate W with respect to the horizontal plane is set to about 5 °, for example.
  • Each conveying roller 505 includes, for example, a pair of left and right side rollers 516 that are fitted on the left and right sides of the roller shaft 515 so as to be able to rotate together with the roller shaft 515, and a center roller 517 provided at the center of the roller shaft 515. Is a so-called partially supported transport roller.
  • Each individual side roller 516 has a flange 516A provided integrally with the side roller 516 on the outer side.
  • the flange 516A prevents the substrate W to be transported from being laterally displaced, and prevents the substrate W from sliding along the inclined surface by the lower flange 516A.
  • an O-ring (not shown) made of rubber or the like is externally fitted to each of the rollers 516 and 517, and the sliding of the O-ring prevents the substrate W from falling down more reliably.
  • the water supply unit 500 is for supplying DIW to a plurality (for example, three in FIG. 24) of water nozzles 531 disposed in the cleaning processing chamber 502 and to each of the water nozzles 531.
  • a water supply pipe (treatment liquid pipe) 533 and a water collecting pipe 532 to which the upstream ends of the individual water supply pipes 533 are connected are included.
  • the plurality of water nozzles 531 are arranged, for example, at equal intervals along the X direction.
  • Each water nozzle 531 is fixedly arranged with its discharge port 531A facing downward at a position facing the upper portion of the substrate W transported by the roller transport unit 504.
  • the water collecting pipe 532 is a pipe for supplying DIW (an example of water) from the DIW supply source to the plurality of water supply pipes 533.
  • An annular electrode 56 is fitted and fixed to the tip of each water nozzle 531, and a voltage with respect to the apparatus ground is applied to the electrode 56 by a power source 57 (see FIG. 3). .
  • the water supply unit 500 further includes a soft X-ray irradiation unit (X-ray irradiation means) 534 for irradiating the DIW existing in the water collecting pipe 532 with soft X-rays.
  • the soft X-ray irradiation unit 534 is attached to the water collecting pipe 532.
  • the water collecting pipe 532 has a round tubular shape (cylindrical shape), and is formed using, for example, polyvinyl-chloride.
  • a collecting valve 535 for opening and closing the water collecting pipe 532 is interposed in the middle of the water collecting pipe 532.
  • an opening (not shown) is formed in a predetermined portion of the pipe wall downstream of the collecting.
  • the soft X-ray irradiation unit 534 has the same configuration as the soft X-ray irradiation unit 62 (see FIG. 2) according to the first embodiment.
  • the soft X-ray irradiation unit 534 is attached to the water collecting pipe 532 so as to close the opening of the water collecting pipe 532.
  • the opening of the cover of the soft X-ray irradiation unit 534 corresponds with the opening of the water collecting pipe 532.
  • the wall surface of the cover of the soft X-ray irradiation unit 534 (corresponding to the lateral wall 26A (see FIG.
  • the high voltage unit of the soft X-ray irradiation unit 534 (corresponding to the high voltage unit 31 (see FIG. 2) of the soft X-ray irradiation unit 62 according to the first embodiment) is connected to the control device 40 (see FIG. 3). Yes.
  • the collecting valve 535 is opened, DIW is supplied from the water collecting pipe 532 to each water supply pipe 533, and DIW is discharged from the discharge port 531A of each water nozzle 531.
  • the gas knife nozzle 519 has a nitrogen gas as an example of an inert gas on the upper surface of the substrate W transported by the roller transport unit 504 in order to blow off DIW adhering to the upper surface of the substrate W. It is a nozzle for injecting. Another example of the inert gas is CDA (clean air with low humidity).
  • the gas knife nozzle 519 has a slit injection port 519 ⁇ / b> A that is long in the Y direction, and can supply nitrogen gas over the entire width in the Y direction of the substrate W transported by the roller transport unit 504.
  • the gas knife nozzle 519 is fixedly disposed in the liquid draining chamber 503 so that the slit injection port 519A faces the upper surface of the substrate W with a minute gap.
  • Nitrogen gas from a nitrogen gas supply source is supplied to the gas knife nozzle 519 via an inert gas valve 511.
  • the gas knife nozzle 519 injects nitrogen gas in a strip shape along the Y direction.
  • the blowing direction of the inert gas from the slit injection port 519A of the gas knife nozzle 519 with respect to the upper surface of the substrate W is inclined in the direction opposite to the transport direction of the substrate W (left side shown in FIG. 24) with respect to the vertical direction. Yes.
  • the inclination angle ⁇ (see FIG. 27) is in the range of 20 ° to 70 °, for example. *
  • the soft X-ray irradiation apparatus 512 has a built-in soft X-ray generator 513 having an irradiation window 514. Soft X-rays generated in the irradiation window 514 are emitted (radiated) outside the soft X-ray irradiation apparatus 512.
  • the irradiation angle (irradiation range) of soft X-rays from the irradiation window 514 is, for example, 130 °, and the soft X-rays irradiated from the irradiation window 514 have a wavelength of, for example, 0.13 to 0.41 nm.
  • the soft X-ray generator 513 has the same configuration as the soft X-ray generator 25 (see FIG. 2) included in the soft X-ray irradiation unit 534, and the irradiation window 514 is the irradiation window 35 (see FIG. 2). It corresponds to.
  • the soft X-ray irradiation device 512 is disposed on the downstream side of the gas knife nozzle 519 above the substrate W transported by the roller transport unit 504. Specifically, the soft X-ray irradiation apparatus 512 is disposed so that the irradiation window 514 faces the inert gas injection position P2.
  • FIG. 26 is a cross-sectional view showing a state where the water supply unit 500 supplies DIW to the substrate W.
  • FIG. 27 is a cross-sectional view showing a state where the soft X-ray irradiation apparatus 512 irradiates the upper surface of the substrate W with soft X-rays.
  • DIW discharged from each discharge port 531A is supplied to the water supply position P1 on the upper surface of the substrate W, and flows along the inclined surface on the upper surface of the substrate W. As a result, a liquid film of DIW is formed on the upper surface of the substrate W.
  • the DIW supply flow rate to each water nozzle 531 is set to a relatively large flow rate (for example, 1 to several tens L / min depending on the size of the glass substrate and the degree of cleaning). Therefore, the DIW discharged from each of the discharge ports 531A is in a continuous flow mode connected to both the discharge port 531A of the water nozzle 531 and the DIW liquid film on the upper surface of the substrate W. Further, DIW is in a liquid-tight state in the nozzle pipe of the water nozzle 531, the water collecting pipe 532, and the water supply pipe 533.
  • soft X-rays from the soft X-ray irradiation unit 534 are irradiated into the water collecting pipe 532.
  • the DIW irradiated portion in the water collecting pipe 532 (equivalent to the DIW irradiated portion 54 according to the first embodiment shown in FIG. 5). )
  • Electrons are emitted from the water molecules by excitation of the water molecules.
  • a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the DIW irradiated portion in the water collecting pipe 532.
  • the DIW irradiated portion is connected to the DIW liquid film formed on the upper surface of the substrate W via the DIW.
  • the electrons from the DIW irradiated portion in the water collecting pipe 532 are converted into a substrate by the potential difference between the DIW irradiated portion in the water collecting pipe 532 and the positively charged substrate W. It moves along the continuous flow of DIW toward the liquid film of DIW on the upper surface of W. Thus, the DIW liquid film on the upper surface of the substrate W has a large amount of electrons.
  • the nitrogen gas from the slit injection port 519A of the gas knife nozzle 519 is connected to the discharge port 531A via a DIW liquid film (DIW continuous flow) formed on the upper surface of the substrate W. Sprayed on the liquid film).
  • DIW liquid film DIW continuous flow
  • the upper surface of the substrate W is irradiated with soft X-rays generated by the soft X-ray generator 513 of the soft X-ray irradiation apparatus 512.
  • the case where the substrate W is processed using water (for example, DIW) in the cleaning processing chamber 502 has been described as an example.
  • processing using a chemical solution and water is used in the cleaning processing chamber 502.
  • the substrate W can be processed.
  • the chemical liquid nozzle 506 is arranged on the upstream side of the water supply unit 500.
  • a chemical solution from a chemical solution supply source is supplied to the chemical solution nozzle 506 via a chemical solution valve 508. That is, the chemical solution supply position P0 is set upstream of the water supply position P1.
  • roller transport unit 504 that transports the substrate W in an inclined posture has been described as an example, but the roller transport unit 504 may transport the substrate W while maintaining the horizontal posture.
  • the substrate processing apparatus 501 has been described by taking as an example an apparatus that cleans the upper surface (upper main surface) of the substrate W.
  • the substrate processing apparatus 501 is a type of substrate processing apparatus that performs a cleaning process on both surfaces of the substrate.
  • the present invention can be applied.
  • the water supply unit 500 and the gas knife nozzle 519 are also arranged below the roller transport unit 504, respectively, and the water supply unit on the lower side at the water supply position P1. DIW is supplied to the lower surface of the substrate W by 500, and nitrogen gas is injected to the lower surface of the substrate W by the lower gas knife nozzle 519 at the inert gas injection position P2.
  • 200, 220, 230, 250, 260, 300, 310, 400, 500 have been described as examples, but the present invention can also be applied to processing units other than the substrate W as processing objects.
  • the processing object is a substrate container (container) 602, and a container cleaning device 601 for cleaning the processing object using a cleaning liquid (processing liquid) will be described as an example.
  • FIG. 28 is a diagram showing a configuration of an article cleaning apparatus 601 according to the fourteenth embodiment of the present invention.
  • FIG. 29 is a perspective view showing the configuration of the substrate container 602.
  • the substrate container 602 is a container that accommodates the substrate W in a sealed state.
  • An example of the substrate container 602 is FOSB (Front Opening Shipping Box).
  • the FOSB is exclusively used to deliver the substrate W from the semiconductor wafer manufacturer to the semiconductor device manufacturer.
  • the FOSB accommodates a plurality of unprocessed substrates W and prevents damage to the substrates W while maintaining the cleanliness of these substrates W.
  • the article cleaning apparatus 601 includes a mounting table 607 for mounting the container main body 603 of the substrate container 602, and water for supplying DIW as an example of a cleaning liquid to the substrate container 602.
  • a supply unit (processing liquid supply device) 600 is provided.
  • the water supply unit 600 employs the same configuration as the water supply unit 100 (see FIG. 1) according to the first embodiment. Therefore, the same reference numerals are given to FIG. 28 and the description is omitted.
  • the water nozzle 61 of the water supply unit 600 is disposed above the container main body 603 mounted on the mounting table 607 with its discharge port 53 facing downward.
  • the substrate container 602 includes a bottomed box-shaped container body 603 having an opening 603A on the side, and a lid 604 for opening and closing the opening 603A of the container body 603 (FIG. 28 shows a closed state of the lid 604).
  • a multi-stage container support shelf 606 attached to the inner wall of the container body 603, and a multi-stage lid support shelf 605 attached to the lid 604.
  • the substrate W is put in and out of the container main body 603 through the opening 603A.
  • the container body 603 and the lid 604 are each formed using a resin material such as polyvinyl-chloride.
  • the container main body 603 has a substantially cubic outer shape, and as shown in FIG. 28, the opening side may have a slightly larger diameter than the bottom side. In this case, the upper surface of the container body 603 has an inclined surface.
  • DIW is supplied from the water supply unit 600 to the outer wall of the container body 603 of the substrate container 602. Specifically, the water valve 14 is opened, and DIW flowing through the water supply pipe 13 is supplied to the water nozzle 61. Accordingly, DIW is discharged downward from the discharge port 53 of the water nozzle 61 toward the upper surface of the outer wall of the container body 603.
  • the control device 40 generates soft X-rays in the soft X-ray generator 25 (see FIG. 2) and irradiates the soft X-rays toward the inside of the first nozzle pipe 51 of the water nozzle 61. Thereby, soft X-rays are irradiated to DIW which distribute
  • the DIW supplied to the upper side surface of the outer wall of the container main body 603 flows down along the upper side surface and the bottom surface formed of inclined surfaces. As a result, a DIW liquid film is formed on the outer wall of the container body 603. By this liquid film, dirt or dust adhering to the outer wall of the container body 603 is washed away.
  • the DIW supply flow rate to the water nozzle 61 is set to a relatively large flow rate (for example, 1 to 10 L / min depending on the size of the substrate container 602). Therefore, the mode of DIW discharged from the discharge port 53 of the water nozzle 61 is a continuous flow mode connected to both the discharge port 53 and the outer wall of the container body 603. Therefore, a DIW liquid film is formed on the outer wall of the container body 603. By this liquid film, the liquid film 63 formed on the outer wall of the container body 603 and the DIW irradiation portion 54 are connected via the DIW. Further, DIW is in a liquid-tight state in the nozzle pipe of the water nozzle 61.
  • the potential difference between the DIW irradiation portion 54 and the outer wall of the container main body 603 that is positively charged causes an electron from the DIW irradiation portion 54.
  • it moves along the continuous flow DIW toward the DIW liquid film in contact with the outer wall of the container body 603.
  • the DIW liquid film in contact with the outer wall of the container body 603 has a large amount of electrons.
  • the DIW liquid film 63 and the DIW irradiated portion 54 are connected via the DIW.
  • charging of the container body 603 during the cleaning process can be prevented. Moreover, even if the container main body 603 is charged before the cleaning process, the charge on the container main body 603 can be removed (that is, static elimination).
  • the case where the container main body 603 is cleaned has been described as an example.
  • the cleaning method is similarly adopted.
  • the lid 604 and the support shelves 605 and 606 can be subjected to a cleaning process while removing electricity from the lid 604 and the support shelves 605 and 606.
  • the FOSB has been described as an example of the substrate container 602
  • the FOUP Front-Opening-Unified
  • the substrate container 602 other types of substrate containers such as FOUP (Front Opening Unified Unified Pod), SMIF (Standard Mechanical Interface) pod, OC (Open Cassette) can be exemplified.
  • the container is not limited to the one that accommodates the substrate W.
  • a medium container that accommodates a disk-shaped medium such as a CD, a DVD, or a blue disk, or an optical component such as a lens, a mirror, or a diffraction grating.
  • the component container which accommodates can be made into a process target object.
  • a static elimination test is performed to confirm that the processing object such as a silicon wafer, a glass substrate, and a container can be eliminated by supplying DIW (an example of water) from a water supply unit containing a soft X-ray irradiation unit. went.
  • DIW an example of water
  • FIG. 30 is a diagram for explaining a test apparatus 651 used in the static elimination test.
  • the test apparatus 651 includes a resin-made bottomed container 652, a charged body holding base 653 that holds the charged body E in the container 652, and the charged body E that is held by the charged body holding base 653.
  • a water supply unit 654 for supplying the treatment liquid a charging plate monitor 655 for measuring the charge amount of the charging body E while charging the charging body E held on the charging body holding base 653,
  • the charging plate monitor 655 has a metal plate 671 that is electrically connected to the charged body E.
  • An example of the charging plate monitor 655 is CPM210 manufactured by Ion Systems, Inc.
  • an example of the recorder 656 is HIOKI8841 manufactured by Hioki Electric Co., Ltd.
  • the water supply unit 654 includes a water nozzle 661, a soft X-ray irradiation unit 662 for irradiating the DIW (an example of water) flowing through the water nozzle 661 with soft X-rays, and a DIW tank 670 for the water nozzle 661. And a water supply pipe 663 for supplying DIW.
  • the soft X-ray irradiation unit 662 is attached to the water supply pipe 663.
  • the water supply pipe 663 is provided with a valve 664 for adjusting the opening / closing and opening of the water supply pipe 663.
  • the water nozzle 661 includes an ionization chamber 665, an inlet portion 666 having an inlet 666A for allowing DIW to flow into the ionization chamber 665, and an outlet portion 667 having an outlet 667A of DIW flowing through the ionization chamber 665.
  • the ionization chamber 665 is formed in a rectangular flat shape, and the internal space of the ionization chamber 665 is set to a rectangular space having a length of about 100 mm in the flow direction, a width of about 5 mm in the flow direction, and a depth of about 60 mm in the flow direction. .
  • the soft X-ray irradiation unit 662 adopts the same configuration as the soft X-ray irradiation unit 62 according to the first embodiment.
  • the soft X-ray irradiation unit 662 has a soft X-ray generator corresponding to the soft X-ray generator 25 (see FIG. 2) according to the first embodiment.
  • An example of the soft X-ray generator is a soft X-ray ionizer (L9490, manufactured by Hamamatsu Photonics).
  • the diameter of the round opening corresponding to the second opening 28 is, for example, 17 mm.
  • a rectangular metal plate (130 mm ⁇ 93 mm ⁇ thickness 1 mm) is used as the charged body E to be measured.
  • the substrate holding table 653 holds the charged body E in an inclined posture inclined at a predetermined angle with respect to the horizontal plane.
  • the charged body E is insulated from the container 652 by a block 668 made of PTFE (polytetrafluoroethylene) contained in the substrate holding table 653.
  • the distance between the upper end of the charged body E and the outlet 667A is, for example, 55 mm.
  • Second step Adjusting the valve 664, DIW (conductivity: 1 ⁇ S / cm or less in this case) is dropped in the form of droplets (discontinuous flow) from the outlet 667A of the water nozzle 661.
  • a droplet form means a state where a droplet is not connected to the next droplet.
  • Second step The charged body E is charged via the metal plate 671 of the charging plate monitor 655, and the soft X-ray generator of the soft X-ray irradiation unit 662 is turned on / off.
  • Table 1 shows the experimental results when DIW was dropped into droplets. As shown in Table 1, the time (static elimination time) during which the potential of the charged body E decays from +/ ⁇ 4.5 kV to +/ ⁇ 3.0 kV is almost constant regardless of whether the soft X-ray generator is on or off. It was. From the experimental results shown in Table 1, it can be seen that when DIW is dropped into droplets, the charged body E is hardly neutralized.
  • Table 2 shows the experimental results when DIW was allowed to flow down continuously. As shown in Table 2, when the DIW flow rate is 0.774 L / min and 0.08 L / min, the potential of the charged body E is +/- 1 kV ⁇ +/ ⁇ when the soft X-ray generator is turned on. Time to decay to 0.1kV (static elimination time) has been shortened. The static elimination time in this case is just over 1 second. From the experimental results shown in Table 2, it can be seen that when DIW is allowed to flow down in a continuous flow, the charge removal performance is improved.
  • Table 3 shows the experimental results when the distance from the outlet of the water nozzle 661 to the charged body E is changed while allowing DIW to flow down in a continuous flow.
  • Table 3 shows the experimental results when the distance from the outlet of the water nozzle 661 to the charged body E is changed while allowing DIW to flow down in a continuous flow.
  • this distance is 3000 mm, the charge can be removed in 1 to 2 seconds. From this, it can be seen that the distance from the outlet of the water nozzle 661 to the charged body E does not significantly affect the charge removal performance.
  • the principle of static elimination that neutralizes the processing object by supplying DIW from the water supply unit incorporating the soft X-ray irradiation unit is estimated as follows. That is, electrons are emitted from water molecules excited by soft X-ray irradiation, and this irradiated portion is in a plasma state in which positive ions and electrons of water molecules excited by soft X-rays are mixed.
  • the potential difference between the DIW irradiated part and the charged object to be processed is directed toward the object to be charged which is positively charged with electrons in the DIW irradiated part.
  • the object to be processed which is moved and positively charged is neutralized.
  • electrons move from the charged object to be processed toward positive ions in the irradiated part of the DIW, and the object to be negatively charged is neutralized.
  • FIG. 31 is a diagram showing a configuration of a substrate processing apparatus 701 according to the fifteenth embodiment of the present invention.
  • the substrate processing apparatus 701 is a single-wafer type apparatus used for processing a surface (processing target surface) of a circular semiconductor wafer (silicon wafer) as an example of the substrate W with a processing liquid (chemical solution and water). .
  • a processing liquid chemical solution and water.
  • water is used for rinsing the substrate W performed after the chemical treatment.
  • an oxide film or the like is formed on the surface of the substrate W to be processed.
  • a substrate processing apparatus 701 includes a spin chuck (substrate holding means) 704 that rotates a substrate W held in a horizontal posture in a processing chamber 703 partitioned by a partition wall 702, and a substrate W held by the spin chuck 704.
  • Soft X-rays are applied to the surface of a substrate W held by a spin nozzle 704 and a water nozzle (water supply means) 705 for discharging DIW (deionized water, pure water) as an example of water onto the surface (upper surface).
  • DIW deionized water, pure water
  • the spin chuck 704 for example, a sandwich type is adopted.
  • the spin chuck 704 includes a spin motor 708, a spin shaft 709 integrated with a drive shaft of the spin motor 708, and a disk-shaped spin base attached substantially horizontally to the upper end of the spin shaft 709. 710 and a plurality of clamping members 711 provided at a plurality of positions on the peripheral edge of the spin base 710 at substantially equal intervals.
  • the spin chuck 704 rotates the spin base 710 by the rotational driving force of the spin motor 708 in a state where the substrate W is sandwiched by the plurality of sandwiching members 711, so that the substrate W is placed in a substantially horizontal posture. In this state, it can be rotated around the rotation axis C together with the spin base 710.
  • the spin chuck 704 is not limited to a sandwich type, and for example, the back surface of the substrate W is vacuum-sucked to hold the substrate W in a horizontal posture and further rotate around the vertical rotation axis C in that state.
  • a vacuum chucking type vacuum chuck capable of rotating the held substrate W may be employed.
  • the water nozzle 705 is, for example, a straight nozzle that discharges DIW in a continuous flow state, and is fixedly disposed above the spin chuck 704 so that the discharge port faces the vicinity of the rotation center of the substrate W.
  • a water supply pipe 713 to which DIW from a DIW supply source is supplied is connected to the water nozzle 705.
  • a water valve (water supply means) 714 for switching supply / stop of supply of DIW from the water nozzle 705 is interposed in the middle of the water supply pipe 713.
  • the chemical nozzle 707 is, for example, a straight nozzle that discharges the chemical in a continuous flow state, and is fixedly disposed above the spin chuck 704 with its discharge port directed toward the vicinity of the rotation center of the substrate W.
  • a chemical solution supply pipe 715 to which a chemical solution from a chemical solution supply source is supplied is connected to the chemical solution nozzle 707.
  • a chemical solution valve 716 for switching supply / stop of supply of the chemical solution from the chemical solution nozzle 707 is interposed in the middle of the chemical solution supply pipe 715.
  • the chemical nozzle 707 does not need to be fixedly arranged with respect to the spin chuck 704.
  • the chemical nozzle 707 is attached to an arm that can be swung in a horizontal plane above the spin chuck 704, and the arm is swung.
  • a so-called scan nozzle form in which the position of the chemical solution on the surface of the substrate W is scanned may be employed.
  • a support shaft 717 extending in the vertical direction is disposed on the side of the spin chuck 704.
  • An arm 718 extending in the horizontal direction is coupled to the upper end of the support shaft 717, and a soft X-ray irradiation head 706 is attached to the tip of the arm 718.
  • the support shaft 717 includes a swing drive mechanism (moving means) 719 for rotating the support shaft 717 around the axis, and a lift drive mechanism (for moving the support shaft 717 up and down along the axial direction). Moving means) 720.
  • the arm 718 By inputting a driving force from the swing drive mechanism 719 to the support shaft 717 and rotating the support shaft 717 within a predetermined angular range, the arm 718 is moved above the substrate W held by the spin chuck 704.
  • the support shaft 717 is swung as a fulcrum.
  • the soft X-ray irradiation head 706 is moved to a position including the rotation axis C of the substrate W (a position facing the rotation center of the substrate W) and a home position set to the side of the spin chuck 704. Can be moved between.
  • the soft X-ray irradiation head 706 is brought close to the surface of the substrate W held by the spin chuck 704 by inputting a driving force to the support shaft 717 from the lifting drive mechanism 720 and moving the support shaft 717 up and down. It is moved up and down between a position (a position indicated by a two-dot chain line in FIG. 31) and a retreat position (a position indicated by a solid line in FIG. 31) for retreating above the substrate W.
  • the proximity position is a predetermined distance (for example, the distance between the surface of the substrate W held by the spin chuck 704 and the lower surface of the soft X-ray irradiation head 706 (the lower surface of the lower wall 726A) is 1 to 30 mm (for example, It is set to a position that will be about 10mm).
  • An opening 721 for carrying the substrate W in and out of the processing chamber 703 is formed on the side wall (one of the plurality of side walls) of the partition wall 702.
  • a transfer robot (not shown) facing the opening 721 outside the processing chamber 703 accesses the hand into the processing chamber 703 through the opening 721.
  • the unprocessed substrate W can be placed on the spin chuck 704, or the processed substrate W can be removed from the spin chuck 704.
  • the opening 721 is opened and closed by a shutter 722.
  • the shutter 722 has a closed position (shown by a solid line in FIG. 31) covering the opening 721 and an open position (open by a two-dot chain line in FIG. 31) covering the opening 721 by a shutter lifting mechanism (not shown) coupled to the shutter 722. As shown).
  • FIG. 32 is a schematic cross-sectional view of the soft X-ray irradiation head 706.
  • the soft X-ray irradiation head 706 includes an X-ray generator 725, a cover 726 made of, for example, polyvinyl chloride (PVC) covering the periphery of the X-ray generator 725, and a gas for supplying gas to the inside of the cover 726. And a nozzle (gas supply means) 727.
  • the cover 726 is in the shape of a vertically long rectangular box that surrounds the X-ray generator 725 with a space from the X-ray generator 725.
  • the cover 726 has a horizontal plate-like lower wall 726A next to the X-ray generator 725. For example, a circular opening 728 is formed in a portion facing the irradiation window 735 described above.
  • the X-ray generator 725 emits (radiates) soft X-rays used to ionize DIW on the substrate W.
  • the X-ray generator 725 includes a case body 729, a vertically long X-ray tube 730 for generating X-rays, and a high voltage unit 731 that supplies a high voltage to the X-ray tube 730.
  • the case body 729 is a vertically long rectangular tube that accommodates the X-ray tube 730 and the high voltage unit 731 and is made of a material having conductivity and thermal conductivity (for example, a metal material such as aluminum). Is formed.
  • the high voltage unit 731 inputs, for example, a high potential drive voltage of ⁇ 9.5 kV to the X-ray tube 730.
  • the high voltage unit 731 is supplied with a voltage from a power source (not shown) through a feed line 743 drawn out of the cover 726 through a through hole 742 formed in the cover 726.
  • the X-ray tube 730 is made of a glass or metal cylindrical vacuum tube, and is arranged so that the tube direction is vertical. A lower end portion (opening end portion) of the X-ray tube 730 is opened to form a circular opening 741. The upper end portion of the X-ray tube 730 is closed and serves as a stem 732.
  • a filament 733 serving as a cathode and a target 736 serving as an anode are disposed so as to face each other.
  • the X-ray tube 730 contains a filament 733 and a focus 734. Specifically, a filament 733 as a cathode is disposed on the stem 732. The filament 733 is electrically connected to the high voltage unit 731. The filament 733 is surrounded by a cylindrical focus 734.
  • the open end of the X-ray tube 730 is closed by a plate-shaped irradiation window 735 that has a vertical posture.
  • the irradiation window 735 has a disk shape, for example, and is fixed to the wall surface of the open end of the X-ray tube 730 by silver brazing.
  • As the material of the irradiation window 735 a substance having a small atomic weight that is easy to transmit soft X-rays having a low transmission power is used, and beryllium (Be) is employed in this embodiment.
  • the thickness of the irradiation window 735 is set to about 0.3 mm, for example.
  • a metal target 736 is formed on the inner surface 735A of the irradiation window 735 by vapor deposition.
  • a metal having a high atomic weight and a high melting point such as tungsten (W) or tantalum (Ta) is used.
  • the filament 733 When the drive voltage from the high voltage unit 731 is applied to the filament 733 that is a cathode, the filament 733 emits electrons. The electrons emitted from the filament 733 are converged at the focus 734 to become an electron beam, and soft X-rays are generated by colliding with the target 736. The generated soft X-rays are emitted (radiated) downward from the irradiation window 735.
  • the irradiation angle (irradiation range) of soft X-rays from the irradiation window 735 is a wide angle (for example, 130 °) as shown in FIG.
  • the wavelength of soft X-rays irradiated from the irradiation window 735 to the outside of the soft X-ray irradiation head 706 is, for example, 0.13 to 0.41 nm.
  • the irradiation window 735 is a generation source that generates soft X-rays. Therefore, if the irradiation window 735 is clouded due to adhesion of water droplets or the like to the outer surface 735B, there is a possibility that the irradiation of soft X-rays from the irradiation window 735 may be hindered.
  • the entire outer surface 735B of the irradiation window 735 is covered with a polyimide resin film 738 having water repellency.
  • the reason why the outer surface 735B of the irradiation window 735 is covered with the film 738 is to protect the irradiation window 735 made of beryllium having poor acid resistance from an acid contained in a treatment liquid such as water.
  • the polyimide resin film 738 has a polyamic acid type polyimide resin.
  • the film thickness of the polyimide resin film 738 is 50 ⁇ m or less, and preferably about 10 ⁇ m. Since the film 738 has water repellency, moisture can be excluded from the outer surface 735B of the irradiation window 735.
  • the polyimide resin film 738 has high chemical stability, the outer surface 735B of the irradiation window 735 can be protected for a long period of time.
  • the reason why the X-ray generator 725 is covered with the cover 726 is to protect the X-ray generator 725 from moisture. Since the X-ray generator 725 includes the high voltage unit 731 as described above, if the atmosphere around the X-ray generator 725 contains a large amount of moisture, a high voltage is generated when soft X-rays are generated. May leak. Therefore, the X-ray generator 725 is covered with a cover 726 in order to prevent moisture from entering the X-ray generator 725.
  • the discharge port of the gas nozzle 727 opens on the upper wall of the cover 726.
  • Gas from a gas supply source (not shown) is supplied to the gas nozzle 727 via a gas valve (gas supply means) 737.
  • the gas nozzle 727 is supplied with a gas having a temperature higher than room temperature (for example, 25 ° C.) (for example, 60 ° C.). Therefore, the gas nozzle 727 discharges a gas having a high temperature (for example, 60 ° C.).
  • Examples of the gas discharged from the gas nozzle 727 include CDA (clean air with low humidity) and inert gas such as nitrogen gas.
  • the gas discharged from the gas nozzle 727 is supplied into the cover 726.
  • the lower wall 726A of the cover 726 is formed with an opening 728 for transmitting soft X-rays from the irradiation window 735. Therefore, in combination with the supply of gas into the cover 726, that is, in the space between the cover 726 and the outer wall of the X-ray generator 725, an air flow toward the opening 728 is formed. Therefore, the atmosphere outside the cover 726 can be suppressed or prevented from entering the cover 726 through the opening 728, and moisture can be further prevented from entering the atmosphere around the X-ray generator 725. be able to.
  • the water repellent coating 738 is formed on the outer surface 735B of the irradiation window 735. Therefore, moisture is not deposited in the form of a film on the front surface of the irradiation window 735, but becomes fine water droplets. Since the water droplets adhering to the outer surface 735B of the irradiation window 735 are in contact with the outer surface 735B at a high contact angle, it can be said that the water droplets easily move on the outer surface 735B.
  • the gas supplied into the cover 726 reaches the outer surface of the irradiation window 735 through the space 739 between the X-ray generator 725 and the cover 726.
  • the water droplets adhering to the outer surface 735B of the irradiation window 735 move in response to the airflow formed in the space 739. Thereby, water droplets can be favorably eliminated from the outer surface 735B of the irradiation window 735, and the irradiation window 735 can be reliably prevented from being fogged. Further, since the gas supplied into the cover 726 is at a high temperature, water droplets adhering to the outer surface 735B of the irradiation window 735 can be removed by evaporation, so that the irradiation window 735 can be further clouded. It can be surely prevented.
  • a sheet-like heater (heating member) 744 is disposed in the vicinity of the periphery of the opening 728 on the lower wall 726A of the cover 726.
  • the heater 744 is formed by printing a resistor on a sheet.
  • the heater 744 is heated by energization of the heater 744, the surrounding members are warmed, and the irradiation window 735 is also warmed. Therefore, water droplets adhering to the outer surface 735B of the irradiation window 735 can also be removed by evaporation, and thereby the irradiation window 735 can be more reliably prevented from being fogged.
  • FIG. 33 is a plan view showing an arrangement position of the soft X-ray irradiation head 706.
  • the soft X-ray irradiation head 706 draws an arc-shaped locus intersecting the rotation direction of the substrate W on the surface of the substrate W held by the spin chuck 704. It is provided to be movable. When the soft X-ray irradiation head 706 irradiates the surface of the substrate W with soft X-rays, the soft X-ray irradiation head 706 is disposed at a close position. And, during irradiation with soft X-rays, it remains arranged in the proximity position. The arrangement position of the soft X-ray irradiation head 706 shown by a solid line in FIG.
  • the arrangement position of the soft X-ray irradiation head 706 indicated by a two-dot chain line in FIG. 33 is the edge proximity position, and the proximity position including the peripheral edge of the surface of the substrate W in the irradiation area from the irradiation window 735 of the soft X-ray irradiation head 706. It is.
  • FIG. 34 is a block diagram showing an electrical configuration of the substrate processing apparatus 701.
  • the substrate processing apparatus 701 further includes a control device (control means) 740 having a configuration including a microcomputer.
  • a spin motor 708, a high voltage unit 731, a swing drive mechanism 719, a lift drive mechanism 720, a chemical solution valve 716, a water valve 714, a gas valve 737, a heater 744, and the like are connected to the control device 740 as control targets.
  • the gas valve 737 is always opened and the heater 744 is driven while the substrate processing apparatus 701 is powered on.
  • the heater 744 is heated and raised to about 100 ° C., for example.
  • FIG. 35 is a process diagram showing a processing example of the substrate W executed in the substrate processing apparatus 701.
  • the rinse process is performed after the chemical process.
  • the surface of the substrate W is irradiated with soft X-rays from the soft X-ray irradiation head 706.
  • the shutter 722 When processing the substrate W, the shutter 722 is changed from the closed state to the open state. Thereby, the opening 721 is opened. Thereafter, an unprocessed substrate W is carried into the processing chamber 703 through the opening 721 by a transfer robot (not shown) (step S701), and delivered to the spin chuck 704 with the surface thereof facing upward. . At this time, the soft X-ray irradiation head 706 is disposed at the home position so as not to hinder the loading of the substrate W. After the hand of the transfer robot has retreated from the processing chamber 703, the shutter 722 is closed.
  • the control device 740 controls the spin motor 708 to start the rotation of the substrate W by the spin chuck 704 (step S702).
  • the rotation speed of the substrate W is increased to a predetermined liquid processing speed (for example, 500 rpm), and then maintained at the liquid processing speed.
  • the controller 740 opens the chemical liquid valve 716 and discharges the chemical liquid from the chemical liquid nozzle 707 toward the rotation center of the surface of the substrate W (S703: supply of chemical liquid).
  • the chemical solution supplied to the surface of the substrate W receives a centrifugal force due to the rotation of the substrate W and flows toward the periphery of the substrate W (spreads over the entire area of the substrate W). As a result, the entire surface of the substrate W is treated with the chemical solution.
  • control device 740 closes the chemical solution valve 716 and stops the supply of the chemical solution from the chemical solution nozzle 707.
  • control device 740 opens the water valve 714 and discharges DIW from the water nozzle 705 toward the rotation center of the surface of the substrate W in a rotating state (step S704). Further, the control device 740 controls the swing drive mechanism 719 to move the soft X-ray irradiation head 706 from the home position set on the side of the spin chuck 704 to above the spin chuck 704 and then drive it up and down. By controlling the mechanism 720, the soft X-ray irradiation head 706 is disposed at a close position close to the surface of the substrate W.
  • control device 740 controls the high voltage unit 731 to generate soft X-rays in the X-ray generator 725 of the soft X-ray irradiation head 706 and irradiate downward from the irradiation window 735 (step S704). .
  • the DIW supplied to the surface of the substrate W flows toward the periphery of the substrate W due to the centrifugal force generated by the rotation of the substrate W (spreads over the entire area of the substrate W). Thereby, the chemical solution adhering to the surface of the substrate W is washed away by DIW (rinsing process).
  • FIG. 36 is an illustrative view for explaining the rinsing process.
  • the soft X-ray irradiation by the soft X-ray irradiation head 706 is continuously executed in parallel with the supply of DIW to the substrate W.
  • the soft X-ray irradiation head 706 is reciprocated between the center proximity position and the edge proximity position.
  • the irradiation position on the surface of the substrate W to which the soft X-rays from the soft X-ray irradiation head 706 are guided crosses the rotation direction of the substrate W within a range from the rotation center of the substrate W to the peripheral edge of the substrate W. It moves back and forth while drawing an arcuate trajectory. As a result, soft X-rays can be irradiated over the entire surface of the substrate W.
  • FIG. 37 is an illustrative view showing a state in the vicinity of the surface of the substrate W in the rinsing process.
  • the surface of the substrate W is irradiated with soft X-rays while DIW is supplied to the surface of the substrate W.
  • the soft X-rays are applied to the DIW flowing toward the periphery of the surface of the substrate W.
  • DIW flowing on the surface of the substrate W forms a liquid film of DIW in contact with the surface on the surface of the substrate W.
  • the surface portion of this liquid film (the portion shaded in FIG. 37) ) Is irradiated with soft X-rays.
  • the control device 740 closes the water valve 714 and stops supplying DIW (step S705). Thereby, the rinsing process ends.
  • the control device 740 controls the high voltage unit 731 to stop the soft X-ray irradiation from the irradiation window 735 of the soft X-ray irradiation head 706 (step S706). . In addition, the control device 740 controls the swing drive mechanism 719 and the lift drive mechanism 720 to return the soft X-ray irradiation head 706 to the home position. It should be noted that the X-ray irradiation on the surface of the substrate W by the soft X-ray irradiation head 706 is executed until immediately before the start of the spin dry described below.
  • the control device 740 controls the spin motor 708 to increase the rotation speed of the substrate W to a spin dry rotation speed (for example, 2500 rpm).
  • a spin dry rotation speed for example, 2500 rpm.
  • the rotation of the spin chuck 704 is stopped. Thereafter, the shutter 722 is changed from the closed state to the open state, and the opening 721 is opened. Then, the processed substrate W is unloaded by the transfer robot (not shown) through the opening 721 (step S708).
  • the liquid film of DIW formed on the surface of the substrate W is irradiated with soft X-ray X-rays.
  • the DIW liquid film irradiated with soft X-rays electrons are emitted from the water molecules by excitation of the water molecules, resulting in a plasma state in which a large amount of electrons and a large amount of positive ions of the water molecules coexist. Is formed.
  • FIG. 38 is a cross-sectional view for explaining a test apparatus 902 used for these tests.
  • the test apparatus 902 has a rectangular box-shaped water tank 903 for storing DIW and an X-ray irradiation for irradiating soft X-rays to the DIW attached to the water tank 903 from above and stored in the water tank 903.
  • the water tank 903 has a width of 100 mm, a depth of 100 mm, and a height of 100 mm.
  • the bottom wall, the four side walls, and the top wall of the water tank 903 are each made of a PVC plate having a thickness of 5 mm.
  • the X-ray irradiation head 904 is a soft X-ray ionizer (manufactured by Hamamatsu Photonics) having a configuration equivalent to that of the X-ray generator 725 shown in FIG. 32 and the like, and is arranged with the irradiation window 735 facing downward. .
  • An opening 905 is formed in the upper wall of the water tank 903, and the lower end portion of the soft X-ray irradiation head 904 including the irradiation window 735 enters the water tank through the opening 905.
  • the lower surface of the irradiation window of the soft X-ray irradiation head 904 is located 5 mm below the lower surface of the upper wall of the water tank 903.
  • a silicon rubber packing 906 is fitted in a gap between the side edge of the opening 905 on the upper wall of the water tank 903 and the lower end of the soft X-ray irradiation head 904, and thereby the soft X-ray irradiation head 904 is fixed to the upper wall of the water tank 903.
  • a stainless steel square (80 cm ⁇ 80 cm) mesh 911, 912 (having a lattice shape and forming a plate shape as a whole) is used as a measurement object in place of a substrate such as a silicon wafer or a glass substrate.
  • Two meshes 911 and 912 are attached to the water tank 903 in a horizontal posture with a space in the vertical direction.
  • the distance between the upper mesh 911 and the outer surface 735B of the irradiation window 735 of the soft X-ray irradiation head 904 is, for example, 10 mm.
  • the distance between the lower mesh 912 and the outer surface 735B of the irradiation window 735 of the soft X-ray irradiation head 904 is, for example, 25 mm.
  • a drain nipple 907 and a water injection nipple 908 are attached to the side wall of the water tank 903.
  • the nipples 907 and 908 respectively penetrate the inside and outside of the side wall of the water tank 903.
  • the drain nipple 907 is disposed at a position 20 mm from the lower surface of the upper wall of the water tank 903 (that is, a position 5 mm below the upper mesh 911 and 10 mm above the lower mesh 912).
  • the water injection nipple 908 is disposed below the lower mesh 912 with a large gap.
  • a water injection hose (not shown) is connected to the water injection nipple 908, and a water discharge hose (not shown) is connected to the water discharge nipple 907. Water is supplied to the water tank 903 via the water injection hose and discharged through the drainage nipple 907 and the drainage hose.
  • the lower mesh 912 is connected to a metal plate (not shown) of a charged plate monitor CPM (CPM210, manufactured by Ion Systems Inc., USA) with a high voltage cable.
  • CPM charged plate monitor
  • the charge removal time when charged to +/- 1 kV was within 1 second, and the charge removal time when charged to +/- 5 kV was about 2 seconds.
  • This static elimination test shows that the charged body (lower mesh 912) in the DIW can be satisfactorily eliminated by irradiating the DIW with soft X-rays.
  • (2) Ionization test A superinsulation resistance meter (Model 4329A manufactured by Yokogawa Hewlett-Packard Co., Ltd.) was connected between the upper and lower meshes 911, 912, and two meshes 911, 912 depending on the presence or absence of soft X-ray irradiation. The change in electrical resistance was measured.
  • DIW is accumulated in the water tank 903 up to the height of the nipple 907 for drainage. Then, with the soft X-ray irradiation head 904 turned off, a voltage of 10 V was applied to the lower mesh 912, and the electrical resistance between the two meshes 911 and 912 was measured. Next, while applying a voltage of 10 V to the lower mesh 912, the soft X-ray irradiation head 904 is turned on, and the DIW stored in the water tank 903 is irradiated with soft X-rays, and between the two meshes 911, 912 The electrical resistance was measured.
  • the electrical resistance during soft X-ray irradiation decreased from 1 ⁇ 10 11 ( ⁇ ) before soft X-ray irradiation to 1 ⁇ 10 9 ( ⁇ ).
  • This ionization test shows that DIW can be ionized by irradiating DIW with soft X-rays.
  • DIW can be ionized by irradiating DIW with soft X-rays. It can be seen that due to the ionization of the IW, the charged body in contact with the DIW can be well discharged.
  • FIG. 39 is a diagram schematically showing the configuration of the substrate processing apparatus 820 according to the sixteenth embodiment of the present invention. Parts common to the substrate processing apparatus 820 according to the fifteenth embodiment are denoted by the same reference numerals as in FIGS. 31 to 37, and description thereof is omitted.
  • the main difference between the substrate processing apparatus 820 and the substrate processing apparatus 701 is that a water nozzle (water supply means) 821 adopting a scan nozzle form is provided in place of the fixed water nozzle 705.
  • the water nozzle 821 is, for example, a straight nozzle that discharges DIW in a continuous flow state.
  • the water nozzle 821 is attached to the tip of a water arm 823 that extends substantially horizontally with its discharge port facing downward.
  • a water supply pipe 713 is connected to the water nozzle 821.
  • the water arm 823 is provided so as to be able to turn around a predetermined swing axis extending in the vertical direction.
  • the water arm 823 is coupled to a water arm swing drive mechanism 822 for swinging the water arm 823 within a predetermined angle range.
  • the water nozzle 821 is positioned between the position on the rotation axis C of the substrate W (position facing the rotation center of the substrate W) and the home position set to the side of the spin chuck 704. It is moved with.
  • the water arm swing driving mechanism 822 is controlled, and the water nozzle 821 is reciprocated between the rotation center of the substrate W and the peripheral edge.
  • the supply position on the surface of the substrate W to which DIW from the water nozzle 821 is guided is an arc shape that intersects the rotation direction of the substrate W within a range from the rotation center of the substrate W to the peripheral edge of the substrate W.
  • the swing positions of the water nozzle 821 and the soft X-ray irradiation head 706 are controlled so that the water nozzle 821 and the soft X-ray irradiation head 706 do not interfere with each other.
  • FIG. 40 is a diagram schematically showing the configuration of the substrate processing apparatus 830 according to the seventeenth embodiment of the present invention. Portions common to the substrate processing apparatus 701 according to the fifteenth embodiment are denoted by the same reference numerals as in FIGS. 31 to 37, and description thereof is omitted.
  • the main difference between the substrate processing apparatus 830 and the substrate processing apparatus 701 is that an integrated head 831 having a water nozzle and a soft X-ray irradiation head is provided.
  • the integrated head 831 includes a water nozzle (water supply means) 833 having a configuration equivalent to that of the water nozzle 821 of the second embodiment and a soft X-ray having a configuration equivalent to that of the soft X-ray irradiation head 706 of the first embodiment.
  • An irradiation unit (X-ray irradiation means) 834 and a holder 835 for holding a water nozzle 833 and a soft X-ray irradiation unit 834 are provided.
  • the integrated head 831 is attached to the tip of an arm 832 that extends substantially horizontally.
  • the arm 832 is provided so as to be able to turn around a predetermined swing axis extending in the vertical direction. By swinging the arm 832, the integrated head 831 moves between a position on the rotation axis C of the substrate W (a position facing the rotation center of the substrate W) and a home position set to the side of the spin chuck 704. It is moved with.
  • the integrated head 831 is reciprocated between the rotation center of the substrate W and the peripheral edge.
  • the supply position on the surface of the substrate W to which DIW from the water nozzle 833 is guided and the irradiation position on the surface of the substrate W to which soft X-rays from the soft X-ray irradiation unit 834 are guided are the rotation center of the substrate W.
  • FIG. 41 is a diagram schematically showing the configuration of the substrate processing apparatus 840 according to the eighteenth embodiment of the present invention.
  • the substrate processing apparatus 840 includes a soft X-ray irradiation head (X-ray irradiation means) 841 instead of the soft X-ray irradiation head 706 of the first embodiment.
  • the main difference between the soft X-ray irradiation head 841 and the soft X-ray irradiation head 706 is that it projects outward from the lower edge of the side wall of the cover 726 in the horizontal direction (projects from the cover 726 to the side). This is a point provided with a shielding plate portion (shielding member) 842.
  • the shielding plate portion 842 has a square ring plate shape, and the lower surface thereof has a horizontal plane continuous with the lower wall 726A of the cover 726. During the rinsing process, the shielding plate portion 842 is disposed to face the surface of the substrate W held by the spin chuck 704. Soft X-rays emitted from the irradiation window 735 are placed in the space between the substrate W and the shielding plate 842 by the shielding plate 842. Therefore, it is possible to suppress or prevent the soft X-rays irradiated from the irradiation window 735 from being scattered around the substrate W, and thus the safety of the substrate processing apparatus 840 can be improved.
  • FIG. 44 is a diagram showing a configuration of a substrate processing apparatus 1001 to which the processing liquid processing apparatus according to the nineteenth embodiment of the present invention is applied.
  • the substrate processing apparatus 1001 is, for example, a batch type substrate processing apparatus that collectively performs processing liquid processing (cleaning processing) on a plurality of substrates W.
  • the substrate processing apparatus 1001 includes a processing tank 1002 for storing a processing liquid, a processing liquid nozzle 1003 for supplying the processing liquid to the processing tank 1002, and a lifter 1004 for immersing the substrate W in the processing liquid stored in the processing tank 1002.
  • a circulation mechanism 1005 that circulates the treatment liquid stored in the treatment tank 1002 and a control device 1006 that controls each device and valve provided in the substrate treatment apparatus 1001 are included.
  • the treatment tank 1002 has a double tank structure including an inner tank 1007 and an outer tank 1008 having an upper opening opened upward.
  • the inner tank 1007 is configured to store the processing liquid and accommodate a plurality of substrates W.
  • the outer tub 1008 is provided on the outer surface of the upper opening of the inner tub 1007, and the height of its upper edge is set higher than the height of the upper edge of the inner tub 1007.
  • a drain valve 1020 is interposed on the bottom wall of the inner tank 1007.
  • the drainage valve 1020 is a so-called piston valve that opens and closes a part of the bottom wall of the inner tank 1007 by moving a piston (not shown) forward and backward. Due to the retreat of the piston (not shown), a part of the bottom surface of the inner tank 1007 is detached and a drain port is formed on the bottom surface of the inner tank 1007, whereby the processing liquid is quickly drained. Yes. That is, the processing tank 1002 has a QDR (Quick Dump Rinse) function. The processing liquid discharged from the bottom of the inner tank 1007 is sent to a waste liquid device for processing.
  • QDR Quality Dump Rinse
  • the processing liquid nozzle 1003 is connected to a processing liquid pipe 1010 in which a processing liquid valve 1009 is interposed.
  • the processing liquid nozzle 1003 has a large number of fine discharge ports (not shown), and is constituted by, for example, a shower nozzle that discharges liquid in the form of droplets.
  • the control device 1006 opens the processing liquid valve 1009, the processing liquid discharged from the processing liquid nozzle 1003 in a shower shape is supplied into the inner tank 1007.
  • the overflowing processing liquid is received by the outer tank 1008 and collected.
  • Water or diluted chemical is used as the treatment liquid.
  • any of DIW (deionized water), carbonated water, electrolytic ionic water, hydrogen water, ozone water, and dilute concentration (for example, about 10 ppm to 100 ppm) hydrochloric acid water can be employed.
  • Diluent solutions include hydrofluoric acid diluted to a predetermined concentration, BHF (BufferdPMHF), APM (ammonia-hydrogen peroxide mixture), TMAH (tetramethylammonium hydroxide aqueous solution), aqueous ammonia, HPM (hydrochloric acid / hydrogen / peroxide mixture) can be used. The same applies to not only this embodiment (19th embodiment) but also the 19th to 27th embodiments.
  • the substrate W held by the lifter 1004 is immersed in the processing liquid stored in the inner tank 1007.
  • the lifter 1004 includes a plurality of holding bars 1011 extending horizontally.
  • the plurality of substrates W are held in an upright position (vertical posture) with the lower edges of the substrates W being brought into contact with each other by the plurality of holding rods 1011 in a state where the plurality of substrates W are aligned in the frontward direction of the drawing.
  • Lifter 1004 includes an elevating mechanism 1022.
  • the lifting mechanism 1022 includes a processing position where the substrate W held by the lifter 1004 is positioned in the inner tank 1007 (position shown in FIG. 44), and the substrate W held by the lifter 1004 is positioned above the inner tank 1007.
  • the lifter 1004 is moved up and down between the retracted position (not shown). Accordingly, when the lifter 1004 is moved to the processing position by the lifting mechanism 1022, a plurality of substrates W held by the lifter 1004 are immersed in the processing liquid. Thereby, the process using the process liquid with respect to the board
  • the circulation mechanism 1005 includes a circulation pipe 1012 that guides the treatment liquid discharged from the treatment tank 1002 to the treatment tank 1002 again, a plurality of circulation nozzles 1013 connected to the downstream end of the circulation pipe 1012, and the circulation pipe 1012. And a circulation pump 1014 for sending the processing liquid to the circulation nozzle 1013.
  • the circulation pipe 1012 includes a return pipe (overflow pipe) 1019 having an upstream end connected to the bottom of the outer tank 1008, and a branch pipe (treatment liquid supply pipe) branched into a plurality from the downstream end of the return pipe 1019. ) 1016.
  • a circulation nozzle 1013 is attached to the tip of each branch pipe 1016.
  • Each circulation nozzle 1013 has one or a plurality of discharge ports, and discharges the processing liquid into the inner tank 1007.
  • a circulation pump 1014, a filter 1015, and a circulation valve 1021 are interposed in this order from the upstream side.
  • the filter 1015 is a filter 1015 for filtering the processing liquid flowing through the circulation pipe 1012
  • the circulation valve 1021 is a valve for opening and closing the return pipe 1019.
  • a soft X-ray irradiation unit (X-ray irradiation means) 1017 is attached to at least one of the plurality of branch pipes 1016 (one in this embodiment).
  • the soft X-ray irradiation unit 1017 is a unit for irradiating the processing liquid existing in the branch pipe 1016 with soft X-rays.
  • FIG. 45A is a schematic cross-sectional view showing the configuration of the branch pipe 1016 and the soft X-ray irradiation unit 1017, respectively.
  • the branch pipe 1016 is formed using a resin material such as polyvinyl-chloride, PTFE (poly-tetra-fluoro-ethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • a resin material such as polyvinyl-chloride, PTFE (poly-tetra-fluoro-ethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • a circular first opening 1052 is formed in the middle pipe wall.
  • a soft X-ray irradiation unit 1017 is attached to the branch pipe 1016 so as to close the first opening 1052.
  • the soft X-ray irradiation unit 1017 includes a soft X-ray generator (X-ray generator) 1025, a cover 1026 made of, for example, polyvinyl-chloride covering the periphery of the soft X-ray generator 1025, A gas nozzle (gas supply means) 1027 for supplying a gas to the inside of the cover 1026 is provided, and soft X-rays are irradiated sideways.
  • the cover 1026 is in the shape of a horizontally long rectangular box surrounding the soft X-ray generator 1025 with a space from the soft X-ray generator 1025, and the soft X-ray generator 1025 is formed on the vertical plate-shaped horizontal wall 1026A.
  • a circular second opening 1028 having the same diameter as the first opening 1052 is formed in a portion facing the irradiation window 1035 described next.
  • the soft X-ray irradiation unit 1017 is attached to the branch pipe 1016 so that the second opening 1028 of the cover 1026 coincides with the first opening 1052 of the branch pipe 1016 and the lateral wall 1026A is in close contact with the outer periphery of the branch pipe 1016.
  • the second opening 1028 is closed by a disk-shaped window member 1071.
  • the window member 1071 closes the second opening 1028 from the inside of the cover 1026.
  • the window member 1071 closes not only the second opening 1028 but also the first opening 1052.
  • a substance having a small atomic weight is used so that soft X-rays having a low penetrating power are easily transmitted.
  • beryllium (Be) is adopted as the material of the window member 1071.
  • the thickness of the window member 1071 is set to about 0.3 mm, for example.
  • Soft X-ray generator 1025 emits (radiates) soft X-rays used to ionize the processing liquid passing through the branch pipe 1016.
  • the soft X-ray generator 1025 includes a case body 1029, a soft X-ray tube 1030 that is long to generate soft X-rays, and a high voltage unit 1031 that supplies a high voltage to the soft X-ray tube 1030.
  • the case body 1029 is a horizontally long rectangular tube housing the soft X-ray tube 1030 and the high voltage unit 1031 therein, and is made of a material having conductivity and heat conductivity (for example, a metal material such as aluminum). It is formed using.
  • the high voltage unit 1031 inputs a driving voltage having a high potential of ⁇ 9.5 kV, for example, to the soft X-ray tube 1030.
  • the high voltage unit 1031 is supplied with a voltage from a power source (not shown) through a feed line 1043 drawn out of the cover 1026 through a through hole 1042 formed in the cover 1026.
  • the soft X-ray tube 1030 is made of a glass or metal cylindrical vacuum tube, and is arranged so that the tube direction is horizontal. One end (opening end, left end shown in FIG. 45A) of the soft X-ray tube 1030 forms a circular opening 1041. The other end of the soft X-ray tube 1030 (the right end shown in FIG. 45A) is closed and serves as a stem 1032.
  • a filament 1033 serving as a cathode and a target 1036 serving as an anode are disposed so as to face each other.
  • the soft X-ray tube 1030 contains a filament 1033 and a focus 1034. Specifically, a filament 1033 as a cathode is disposed on the stem 1032. The filament 1033 is electrically connected to the high voltage unit 1031. Filament 1033 is surrounded by a cylindrical focus 1034.
  • the open end of the soft X-ray tube 1030 is closed by a plate-shaped irradiation window 1035 having a vertical posture.
  • the irradiation window 1035 has a disk shape, for example, and is fixed to the wall surface of the open end of the soft X-ray tube 1030 by silver brazing.
  • a material of the irradiation window 1035 a substance having a small atomic weight is used so that soft X-rays having a low transmission power can be easily transmitted.
  • beryllium (Be) is adopted.
  • the thickness of the irradiation window 1035 is set to about 0.3 mm, for example.
  • the irradiation window 1035 faces the inner surface 1071A of the window member 1071 and is arranged with a small gap from the window member 1071.
  • a metal target 1036 is formed on the inner surface 1035A of the irradiation window 1035 by vapor deposition.
  • a metal having a high atomic weight and a high melting point such as tungsten (W) or tantalum (Ta) is used.
  • the filament 1033 When the driving voltage from the high voltage unit 1031 is applied to the filament 1033 which is a cathode, the filament 1033 emits electrons. The electrons emitted from the filament 1033 are converged at the focus 1034 to become an electron beam, and soft X-rays are generated by colliding with the target 1036. The generated soft X-rays are emitted (radiated) from the irradiation window 1035 in the lateral direction (leftward in FIG. 45A), and irradiate the inside of the branch pipe 1016 through the window member 1071 and the first opening 1052.
  • the irradiation angle (irradiation range) of soft X-rays from the irradiation window 1035 is a wide angle (for example, 130 °) as shown in FIG.
  • the wavelength of the soft X-ray irradiated from the irradiation window 1035 to the inside of the branch pipe 1016 is, for example, 0.13 to 0.4 nm.
  • the entire outer surface of the window member 1071 (wall surface on the side where the treatment liquid flows in the closed window) 1071B is covered with a hydrophilic film (film) 1038.
  • the hydrophilic film 1038 is, for example, a polyimide resin film.
  • the reason why the outer surface 1071B of the window member 1071 is covered with the hydrophilic film 1038 is to protect the beryllium-made window member 1071 having poor acid resistance from acid contained in the treatment liquid such as water.
  • the film thickness of the hydrophilic film 1038 is 50 ⁇ m or less, and preferably about 10 ⁇ m. Since the hydrophilic film 1038 has hydrophilicity, it is possible to suppress or prevent air bubbles from being mixed between the film 1038 and the treatment liquid. Thereby, the soft X-rays from the irradiation window 1035 can be satisfactorily irradiated to the processing liquid flowing through the branch pipe 1016.
  • the discharge port of the gas nozzle 1027 opens in the upper wall of the cover 1026.
  • Gas from a gas supply source (not shown) is supplied to the gas nozzle 1027 via a gas valve (gas supply means) 1037.
  • the gas discharged from the gas nozzle 1027 include CDA (clean air with low humidity) and an inert gas such as nitrogen gas.
  • the gas discharged from the gas nozzle 1027 is supplied into the cover 1026.
  • the soft X-ray generator 1025 may be heated by driving the soft X-ray generator 1025, supplying the gas into the cover 1026 cools the soft X-ray generator 1025 and generates soft X-rays. The temperature increase in the ambient atmosphere of the vessel 1025 can be suppressed.
  • the control device 1006 has a configuration including a microcomputer, and controls operations of the elevating mechanism 1022 and the circulation pump 1014 according to a predetermined program. Further, the control device 1006 controls opening / closing operations of the processing liquid valve 1009, the drain valve 1020, and the like.
  • FIG. 45B is a process diagram illustrating a processing example of substrate processing executed in the substrate processing apparatus 1001. An example of substrate processing will be described with reference to FIGS. 44, 45A, and 45B.
  • the circulation of the processing liquid is continuously performed in the circulation mechanism 1005. That is, except for specific situations such as replacement of processing liquid and apparatus maintenance, the processing liquid is always stored in the processing tank 1002, and the processing liquid does not stay in the processing tank 1002 and passes through the circulation pipe 1012. It is circulating. During such circulation, the circulation valve 1021 is opened. As a result, the processing liquid flowing out from the outer tank 1008 passes through the circulation pipe 1012 and is supplied from the circulation nozzle 1013 to the inside of the inner tank 1007.
  • the processing liquid When the processing liquid is further supplied from the circulation nozzle 1013 while the inside of the inner tank 1007 is filled with the processing liquid, the surplus processing liquid overflows from the upper end of the inner tank 1007 and flows into the outer tank 1008. . Then, the processing liquid that has flowed out of the outer tank 1008 passes through the circulation pipe 1012 and is supplied from the circulation nozzle 1013 to the inside of the inner tank 1007.
  • the circulation valve 1021 is closed and the circulation pump 1014 is stopped, and the drain valve 1020 is opened, so that the treatment liquid stored in the inner tank 1007 is rapidly drained. Liquid is applied (step S1001).
  • the control device 1006 controls the lifter 1004 to receive the plurality of substrates W received at the delivery position into the inner tank 1007. To the processing position inside. As a result, the substrate W is put into the processing bath 1002 (step S1002). The substrate W is held inside an empty inner tank 1007.
  • the control device 1006 opens the processing liquid valve 1009 and discharges the processing liquid from the processing liquid nozzle 1003 in a shower shape. (Step S1003). At this time, the drainage valve 1020 remains open and the drainage port (not shown) is opened, so that the treatment liquid containing the contaminant cannot be stored.
  • the control device 1006 closes the drain valve 1020. At this time, since the discharge of the processing liquid from the processing liquid nozzle 1003 is continued, the processing liquid is stored in the inner tank 1007. Thereby, the board
  • the control device 1006 closes the processing liquid valve 1009 and stops the discharge of the processing liquid from the processing liquid nozzle 1003.
  • the control device 1006 starts driving the circulation pump 1014 and opens the circulation valve 1021.
  • the treatment liquid does not stay in the treatment tank 1002 and circulates through the circulation pipe 1012 (step S1004).
  • the processing liquid flowing out from the outer tank 1008 is supplied to the inside of the inner tank 1007 from the circulation nozzle 1013 through the circulation pipe 1012.
  • the surplus processing liquid overflows from the upper end of the inner tank 1007 and flows into the outer tank 1008. .
  • the processing liquid that has flowed out of the outer tank 1008 passes through the circulation pipe 1012 and is supplied from the circulation nozzle 1013 to the inside of the inner tank 1007.
  • Contaminants such as particles are removed when the circulating processing liquid passes through the filter 1015.
  • a clean processing liquid from which contaminants have been removed is discharged from the circulation nozzle 1013 toward the inner tank 1007.
  • the processing liquid is in a liquid-tight state in the nozzle pipe and the branch pipe 1016 of the circulation nozzle 1013.
  • control device 1006 controls the high voltage unit 1031 (see FIG. 45A) to generate soft X-rays in the soft X-ray generator 1025 (see FIG. 45A) of the soft X-ray irradiation unit 1017.
  • X-rays are irradiated from the irradiation window 1035 (see FIG. 45A) through the window member 1071 toward the inside of the branch pipe 1016 (step S1005). Thereby, soft X-rays are irradiated to the processing liquid flowing through the branch pipe 1016.
  • FIG. 46 is an illustrative view showing a state of irradiation of soft X-rays into the branch pipe 1016 shown in FIG.
  • processing liquid flowing through the branch pipe 1016 is irradiated with soft X-rays.
  • the part irradiated with soft X-rays (the part facing the first opening 1052 in the branch pipe 1016.
  • the shaded part shown in FIG. 46 (hereinafter referred to as “processing liquid irradiation part 1054”).
  • electrons are emitted from the water molecules by excitation of the water molecules.
  • a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the irradiated portion 1054 of the processing liquid.
  • the processing liquid is liquid-tight in the nozzle pipe and the branch pipe 1016 of the circulation nozzle 1013 as described above, the substrate W and the processing liquid immersed in the processing liquid stored in the inner tank 1007 are used.
  • the irradiation portion 1054 is connected to the processing liquid stored in the inner tank 1007 and the processing liquid in the branch pipe 1016.
  • electrons from the irradiation portion 1054 of the processing liquid are directed toward the substrate W due to a potential difference between the irradiation portion 1054 of the processing liquid and the positively charged substrate W. It moves through the processing liquid stored in the inner tank 1007 and the processing liquid in the branch pipe 1016. Thereby, as a result of supplying a large amount of electrons to the substrate W, the positively charged substrate W is neutralized.
  • the substrate W is positively charged before being immersed in the processing liquid, the substrate W is transferred via the processing liquid in the inner tank 1007 or the processing liquid in the branch pipe 1016 according to the same principle. Static neutralization is possible.
  • the control device 1006 stops the soft X-ray irradiation from the soft X-ray irradiation unit 1017 (step S1006).
  • the processed substrate W is unloaded from the inner tank 1007 (step S1007).
  • the unloading of the substrates W is performed by lifting the lifter 1004 that collectively holds the plurality of substrates W from the processing position inside the inner tank 1007 to the upper delivery position. A lot consisting of a plurality of substrates W raised to the delivery position is transferred to the processing tank of the next process.
  • step S1001 If there is a subsequent substrate W to be processed subsequently, the process returns to step S1001 and the above-described series of processing is repeatedly executed.
  • the substrate W can be prevented from being charged during the immersion treatment of the treatment liquid. Further, even if the substrate W is charged before the immersion treatment, the charge on the substrate W can be removed (that is, static elimination). As a result, device destruction due to charging of the substrate W can be prevented.
  • FIG. 47 is a diagram showing a configuration of a substrate processing apparatus 1201 to which the processing liquid processing apparatus according to the twentieth embodiment of the present invention is applied.
  • the substrate processing apparatus 1201 according to the twentieth embodiment is different from the substrate processing apparatus 1001 according to the nineteenth embodiment in that the soft X-ray irradiation unit (X-ray irradiation means) 1217 is more than the circulation pump 1014 in the return pipe 1019. Is also located upstream.
  • the soft X-ray irradiation unit 1217 is attached to the return pipe 1019.
  • the return pipe 1019 has a round tubular shape (cylindrical shape), such as polyvinyl-chloride, PTFE (polytetrafluoroethylene), PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer), etc. These resin materials are used.
  • PTFE polytetrafluoroethylene
  • PFA perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer
  • the soft X-ray irradiation unit 1217 adopts the same configuration as the soft X-ray irradiation unit 1017 (see FIG. 45A) according to the nineteenth embodiment.
  • the soft X-ray irradiation unit 1217 is attached to the return pipe 1019 so as to close the opening of the return pipe 1019.
  • the opening of the cover of the soft X-ray irradiation unit 1217 matches the opening of the return pipe 1019.
  • the wall surface of the cover of the soft X-ray irradiation unit 1217 (corresponding to the lateral wall 1026A of the cover 1026 of the soft X-ray irradiation unit 1017 (see FIG. 45A)) is in close contact with the outer periphery of the return pipe 1019.
  • a high voltage unit of the soft X-ray irradiation unit 1217 (corresponding to the high voltage unit 1031 (see FIG. 45A) of the soft X-ray irradiation unit 1017 according to the nineteenth embodiment) is connected to the control device 1006.
  • the same processing as in the processing example shown in FIG. 45B is performed.
  • the processing liquid does not stay in the processing tank 1002 and circulates through the circulation pipe 1012.
  • the processing liquid is further supplied from the circulation nozzle 1013 while the inside of the inner tank 1007 is filled with the processing liquid, the excess processing liquid overflows (overflows) from the upper end of the inner tank 1007. Flows into 1008.
  • FIG. 48 is a schematic cross-sectional view showing a state where the processing liquid has overflowed from the upper end of the inner tank 1007.
  • the outer tank 1008 has an annular plate-shaped bottom wall 1081 that surrounds the outer periphery of the inner tank 1007, and a rising wall 1082 that rises vertically upward from the outer peripheral edge of the bottom wall 1081.
  • An overflow port 1083 formed of a through-hole penetrating the bottom wall 1081 in the thickness direction is formed at, for example, one place in the circumferential direction of the bottom wall 1081.
  • the upstream end of the return pipe 1019 is connected to the overflow port 1083.
  • the supply of the processing liquid from the circulation nozzle 1013 is intermittently continued, so that the inside of the return pipe 1019 is made liquid-tight with the processing liquid. Further, as shown in FIG. 48, the state where the liquid mass 1080 of the processing liquid gets over the upper end of the inner tank 1007 always continues, so that the processing liquid stored in the inner tank 1007 and the processing stored in the outer tank 1008 are performed. The liquid is always connected by such a liquid mass 1080 of the processing liquid.
  • the soft X-ray is irradiated from the soft X-ray irradiation unit 1217 to the processing liquid circulating in the return pipe 1019 (step S1005 in FIG. 45B).
  • the portion irradiated with soft X-rays (treatment liquid irradiation portion.
  • the portion equivalent to the treatment liquid irradiation portion 1054 according to the nineteenth embodiment shown in FIG. 46) is a water molecule. Electrons are emitted from the water molecules by excitation of. As a result, a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the irradiated portion of the treatment liquid.
  • the processing liquid is liquid-tight in the return pipe 1019, and the processing liquid stored in the inner tank 1007 and the processing liquid stored in the outer tank 1008 are a liquid mass of the processing liquid. Since it is always connected by 1080, the substrate W immersed in the processing liquid stored in the inner tank 1007 and the irradiated portion of the processing liquid are stored in the processing liquid stored in the inner tank 1007 and the outer tank 1008. And the processing liquid in the return pipe 1019.
  • the substrate W is positively charged, electrons from the irradiation portion of the processing liquid are directed toward the substrate W due to a potential difference between the irradiation portion of the processing liquid and the positively charged substrate W, and the inner tank It moves through the processing liquid stored in 1007 and the processing liquid in the return pipe 1019. Thereby, as a result of supplying a large amount of electrons to the substrate W, the positively charged substrate W is neutralized.
  • FIG. 49 is a diagram showing a configuration of a substrate processing apparatus 1301 to which the processing liquid processing apparatus according to the twenty-first embodiment of the present invention is applied.
  • the substrate processing apparatus 1301 according to the twenty-first embodiment is different from the substrate processing apparatus 1001 according to the nineteenth embodiment in that an inner tank 1307 having a substantially box-shaped first bulging portion 1318 instead of the inner tank 1007. And a soft X-ray irradiation unit (X-ray irradiation means) 1317 is attached to the wall of the first bulging portion 1318.
  • X-ray irradiation means X-ray irradiation means
  • the first bulging portion 1318 bulges outward from the cylindrical peripheral wall 1307A of the inner tank 1307 along the horizontal direction, and is formed integrally with the peripheral wall 1307A of the inner tank 1307.
  • An opening 1321 is formed in the upper wall or lower wall (upper surface in FIG. 49) of the first bulging portion 1318.
  • the soft X-ray irradiation unit 1317 employs a configuration equivalent to that of the soft X-ray irradiation unit 1017 (see FIG. 45A) according to the nineteenth embodiment.
  • the soft X-ray irradiation unit 1317 is attached so as to close the opening 1321 of the first bulging portion 1318.
  • the opening of the cover of the soft X-ray irradiation unit 1317 (the opening corresponding to the second opening 1028 of the cover 1026 of the soft X-ray irradiation unit 1017 (see FIG. 45A)) is the opening 1321 of the first bulging portion 1318.
  • a high voltage unit of the soft X-ray irradiation unit 1317 (corresponding to the high voltage unit 1031 (see FIG. 45A) of the soft X-ray irradiation unit 1017 according to the nineteenth embodiment) is connected to the control device 1006.
  • the same processing as in the processing example shown in FIG. 45B is performed.
  • the processing liquid is stored in the inner tank 1307, and thereby the inside of the first bulging portion 1318 becomes liquid-tight with the processing liquid.
  • the soft X-ray is irradiated from the soft X-ray irradiation unit 1317 to the processing liquid in the first bulging portion 1318 (step S1005 in FIG. 45B).
  • the portion irradiated with soft X-rays (the processing liquid irradiation portion; a portion equivalent to the processing liquid irradiation portion 1054 according to the nineteenth embodiment shown in FIG. 46). Electrons are emitted from the water molecules by excitation of the water molecules. As a result, a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the irradiated portion of the treatment liquid.
  • the substrate W immersed in the processing liquid stored in the inner tank 1307 and the irradiated portion of the processing liquid are connected via the processing liquid stored in the inner tank 1307.
  • the substrate W is positively charged, electrons from the irradiation portion of the processing liquid are directed toward the substrate W due to a potential difference between the irradiation portion of the processing liquid and the positively charged substrate W, and the inner tank It moves through the processing liquid stored in 1307.
  • the positively charged substrate W is neutralized.
  • FIG. 50 is a diagram showing a configuration of a substrate processing apparatus 1401 to which the processing liquid processing apparatus according to the twenty-second embodiment of the present invention is applied.
  • the substrate processing apparatus 1401 according to the twenty-second embodiment differs from the substrate processing apparatus 1001 according to the nineteenth embodiment in that it has a substantially box-shaped second bulging portion 1418 at the bottom instead of the inner tank 1007.
  • the substrate processing apparatus 1401 includes a circulation mechanism having the same configuration as the circulation mechanism 1005 (see FIG. 44), but the illustration thereof is omitted.
  • the second bulging portion 1418 bulges outward from the bottom wall 1407A of the inner tank 1407 along the horizontal, and is formed integrally with the bottom wall 1407A of the inner tank 1407.
  • a drainage valve 1420 is interposed at a predetermined position on the lower wall of the second bulging portion 1418.
  • the drainage valve 1420 has the same configuration as the drainage valve 1020 (see FIG. 44). That is, the second bulging portion 1418 is a portion for installing a QDR (Quick Dump Rinse).
  • QDR Quality Dump Rinse
  • One end of a pipe 1423 is connected to the upper wall of the second bulging portion 1418, for example.
  • the inside of the pipe 1423 communicates with the inside of the second bulging portion 1418.
  • the connection position of the pipe 1423 in the second bulging portion 1418 is desirably a position different from the arrangement position of the drainage valve 1420 in the second bulging portion 1418 in plan view.
  • the pipe 1423 has a round tubular shape (cylindrical shape), such as polyvinyl-chloride, PTFE (polytetrafluoroethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer). It is formed using a resin material. An opening 1421 is formed in the middle of the pipe 1423.
  • the soft X-ray irradiation unit 1417 employs a configuration equivalent to that of the soft X-ray irradiation unit 1017 (see FIG. 45A) according to the nineteenth embodiment.
  • the soft X-ray irradiation unit 1417 is attached to the pipe 1423 so as to close the opening 1421 of the pipe 1423.
  • the opening of the cover of the soft X-ray irradiation unit 1417 (the opening corresponding to the second opening 1028 of the cover 1026 of the soft X-ray irradiation unit 1017 (see FIG.
  • the wall surface of the cover of the soft X-ray irradiation unit 1417 (corresponding to the lateral wall 1026A of the cover 1026 of the soft X-ray irradiation unit 1017 (see FIG. 45A)) is in close contact with the outer periphery of the pipe 1423.
  • the high voltage unit of the soft X-ray irradiation unit 1417 (corresponding to the high voltage unit 1031 (see FIG. 45A) of the soft X-ray irradiation unit 1017 according to the nineteenth embodiment) is connected to the control device 1006.
  • the same processing as in the processing example shown in FIG. 45B is performed.
  • the processing liquid is stored in the inner tank 1407, and the second bulging portion 1418 and the pipe 1423 are also made liquid-tight by the processing liquid.
  • the soft X-ray is irradiated from the soft X-ray irradiation unit 1417 to the processing liquid circulating in the pipe 1423 (step S1005 in FIG. 45B).
  • the portion irradiated with soft X-rays contains water molecules. Electrons are emitted from the water molecules by excitation. As a result, a plasma state in which a large amount of electrons and a large amount of positive ions of water molecules are mixed is formed in the irradiated portion of the treatment liquid.
  • the processing liquid is in a liquid-tight state in the pipe 1423 and the second bulging portion 1418 is also liquid-tight with the processing liquid, so that the processing liquid stored in the inner tank 1407 is stored.
  • the substrate W immersed in the substrate and the irradiated portion of the processing liquid are connected via the processing liquid stored in the inner tank 1407 (including the second bulging portion 1418) and the processing liquid in the pipe 1423.
  • the electrons from the irradiation portion of the processing liquid are directed toward the substrate W due to a potential difference between the irradiation portion of the processing liquid and the positively charged substrate W, and the pipe 1423. It moves through the inner processing liquid and the processing liquid stored in the inner tank 1407. Thereby, as a result of supplying a large amount of electrons to the substrate W, the positively charged substrate W is neutralized.
  • FIG. 51 is a diagram showing a configuration of a substrate processing apparatus 1501 to which the processing liquid processing apparatus according to the twenty-third embodiment of the present invention is applied.
  • the substrate processing apparatus 1501 according to the twenty-third embodiment is different from the substrate processing apparatus 1001 according to the nineteenth embodiment in that the processing liquid flowing out from the outer tank 1008 is not provided with the circulation mechanism 1005 (see FIG. 44). In other words, waste liquid is collected or collected through the drain pipe 1519, and a treatment liquid nozzle 1561 is provided instead of the treatment liquid nozzle 1003 (see FIG. 44).
  • a soft X-ray irradiation unit 1562 for irradiating the processing liquid flowing through the processing liquid nozzle 1561 with soft X-rays is attached to the processing liquid nozzle 1561.
  • the treatment liquid nozzle 1561 is, for example, a straight nozzle that discharges liquid in a continuous flow state, and is disposed with the discharge port 1553 facing the inside of the inner tank 1007.
  • a processing liquid pipe 1513 to which a processing liquid from a processing liquid supply source is supplied is connected to the processing liquid nozzle 1561.
  • a processing liquid valve 1514 for switching supply / stop of processing liquid from the processing liquid nozzle 1561 is interposed in the middle of the processing liquid pipe 1513.
  • the treatment liquid nozzle 1561 has a round tubular (cylindrical) nozzle pipe 1551 extending in the vertical direction.
  • the nozzle pipe 1551 is formed using a resin material such as polyvinyl-chloride, PTFE (poly-tetra-fluoro-ethylene), or PFA (perfluoro-alkyl vinyl-ether-tetrafluoro-ethlene-copolymer).
  • a round discharge port 1553 is opened at the front end (lower end) of the nozzle pipe 1551.
  • a circular opening 1552 is formed in the middle pipe wall.
  • the soft X-ray irradiation unit 1562 adopts the same configuration as the soft X-ray irradiation unit 1017 (see FIG. 45A) according to the nineteenth embodiment.
  • the soft X-ray irradiation unit 1562 is attached to the nozzle pipe 1551 so as to close the opening 1552 of the nozzle pipe 1551.
  • the opening of the cover of the soft X-ray irradiation unit 1562 (the opening corresponding to the second opening 1028 of the cover 1026 of the soft X-ray irradiation unit 1017 (see FIG.
  • the wall surface of the cover of the X-ray irradiation unit 1562 (corresponding to the lateral wall 1026A (see FIG. 45A) of the cover 1026 of the soft X-ray irradiation unit 1017) is in close contact with the outer periphery of the nozzle pipe 1551.
  • the high voltage unit of the soft X-ray irradiation unit 1562 (corresponding to the high voltage unit 1031 (see FIG. 45A) of the soft X-ray irradiation unit 1017 according to the nineteenth embodiment) is connected to the control device 1006.
  • the substrate processing apparatus 1501 After the processing liquid is stored in the processing tank 1502, the substrates W are collectively put into the processing tank 1502 by the lifter 1004. Thereafter, substrate immersion processing (steps S1004 to S1006 in FIG. 45B) is performed.
  • the substrate processing apparatus 1501 since the substrate processing apparatus 1501 is not provided with the circulation mechanism 1005 (see FIG. 44), the processing liquid stored in the processing tank 1502 is not circulated in the substrate immersion processing. Instead, the supply of the processing liquid from the processing liquid nozzle 1561 is continued intermittently during the substrate immersion process.
  • the mode of the processing liquid discharged from the discharge port 1553 of the processing liquid nozzle 1561 is a continuous flow mode that leads to both the discharge port 1553 and the liquid level of the processing liquid stored in the inner tank 1007.
  • the processing liquid in the nozzle pipe 1551 of the processing liquid nozzle 1561, the processing liquid is in a liquid-tight state.
  • the soft X-ray is irradiated from the soft X-ray irradiation unit 1562 to the processing liquid circulating in the nozzle pipe 1551 (step S1005 in FIG. 45B).
  • the processing liquid is in a liquid-tight state in the nozzle pipe 1551, and the processing liquid discharged from the discharge port 1553 is the processing liquid stored in the discharge port 1553 and the inner tank 1007. Therefore, the substrate W immersed in the processing liquid stored in the inner tank 1007 and the irradiated portion of the processing liquid are stored in the inner tank 1007. Are connected through the processing liquid in the continuous flow state and the processing liquid in the nozzle pipe 1551. At this time, if the substrate W is positively charged, electrons from the irradiation portion of the processing liquid are directed toward the substrate W due to a potential difference between the irradiation portion of the processing liquid and the positively charged substrate W. It moves through the processing liquid in 1551, the above-described continuous flow processing liquid, and the processing liquid stored in the inner tank 1007. Thereby, as a result of supplying a large amount of electrons to the substrate W, the positively charged substrate W is neutralized.
  • a soft X-ray irradiation unit 1562 may be provided in a pipe that communicates, and the processing liquid flowing through the pipe may be irradiated with soft X-rays from the soft X-ray irradiation unit 1562.
  • FIG. 52 is a diagram showing a configuration of a substrate processing apparatus 1601 to which the processing liquid processing apparatus according to the twenty-fourth embodiment of the present invention is applied.
  • the substrate processing apparatus 1601 according to the twenty-fourth embodiment is different from the substrate processing apparatus 1001 according to the nineteenth embodiment in that the processing liquid flowing out from the outer tank 1008 is not provided with the circulation mechanism 1005 (see FIG. 44). This is a point where waste liquid is collected or collected through the drain pipe 1519 and a processing liquid nozzle 1561 for discharging the processing liquid toward the outer tank 1008 is provided.
  • the treatment liquid nozzle 1561 is, for example, a straight nozzle that discharges liquid in a continuous flow state, and is disposed with its discharge port 1553 facing the inside of the outer tank 1008.
  • a soft X-ray irradiation unit 1562 for irradiating the processing liquid flowing through the processing liquid nozzle 1561 with soft X-rays is attached to the processing liquid nozzle 1561. Since a series of configurations related to the treatment liquid nozzle 1561 and the soft X-ray irradiation unit 1562 are the same as those in the twenty-third embodiment, the same reference numerals as those in the twenty-third embodiment are attached and description thereof is omitted.
  • the same processing as in the processing example shown in FIG. 45B is performed.
  • the substrate processing apparatus 1601 since the substrate processing apparatus 1601 is not provided with the circulation mechanism 1005 (see FIG. 44), the processing liquid stored in the processing tank 1502 is circulated during the substrate immersion processing (steps S1004 to S1006 in FIG. 45B). Not. Instead, the supply of the processing liquid from the processing liquid nozzle 1003 is intermittently continued during the substrate immersion process.
  • the processing liquid is further supplied from the processing liquid nozzle 1003 while the inside of the inner tank 1007 is filled with the processing liquid, the surplus processing liquid overflows (overflows) from the upper end of the inner tank 1007. It flows into the tank 1008.
  • the processing liquid valve 1514 is opened, and the processing liquid is discharged from the discharge port 1553 of the processing liquid nozzle 1561 toward the inside of the outer tank 1008.
  • the mode of the processing liquid discharged from the discharge port 1553 of the processing liquid nozzle 1561 has a continuous flow mode connected to both the discharge port 1553 and the liquid level of the processing liquid stored in the outer tank 1008. At this time, the processing liquid is in a liquid-tight state in the nozzle pipe 1551 of the processing liquid nozzle 1561.
  • the soft X-ray is irradiated from the soft X-ray irradiation unit 1562 to the processing liquid circulating in the nozzle pipe 1551 (step S1005 in FIG. 45B).
  • the processing liquid is in a liquid-tight state in the nozzle pipe 1551, and the mode of the processing liquid discharged from the discharge port 1553 is both the discharge port 1553 and the liquid level of the processing liquid stored in the outer tank 1008. Since the processing liquid stored in the inner tank 1007 and the processing liquid stored in the outer tank 1008 are always connected by the liquid mass of the processing liquid, the inner tank The substrate W immersed in the processing liquid stored in 1007 and the irradiated portion of the processing liquid are the processing liquid stored in the inner tank 1007, the processing liquid stored in the outer tank 1008, and the continuous flow Are connected to each other via a treatment liquid in the nozzle pipe 1551.
  • the substrate W is positively charged, electrons from the irradiation portion of the processing liquid are directed toward the substrate W due to a potential difference between the irradiation portion of the processing liquid and the positively charged substrate W. It moves through the processing liquid in 1551, the above-described continuous flow processing liquid, the processing liquid stored in the outer tank 1008, and the processing liquid stored in the inner tank 1007. Thereby, as a result of supplying a large amount of electrons to the substrate W, the positively charged substrate W is neutralized.
  • the hydrophilic film (corresponding to the hydrophilic film 1038 (refer to FIG. 45)) is peeled off from the outer surface of the window member of the soft X-ray irradiation unit 1562 (corresponding to the outer surface 71B (refer to FIG. 45A) of the window member 1071).
  • the beryllium contained in the window member may be dissolved in the treatment liquid. Even in such a case, since the processing liquid containing beryllium is drained through the drain pipe 1519, this reliably prevents the processing liquid containing beryllium from being supplied to the substrate W. it can.
  • FIG. 53 is a diagram showing a configuration of a substrate processing apparatus 1701 to which the processing liquid processing apparatus according to the twenty-fifth embodiment of the present invention is applied.
  • the substrate processing apparatus 1701 according to the twenty-fifth embodiment is different from the substrate processing apparatus 1501 according to the twenty-third embodiment in that a plurality of substrates W are handled together with a cassette 1702 that holds a plurality of substrates W collectively. This is a point immersed in 1502.
  • the substrate processing apparatus 1701 is provided with configurations such as a lifter 1004 and an elevating mechanism 1022 of the twenty-third embodiment. The lifter 1004 holds and raises the cassette 1702 in which a plurality of substrates W are held together.
  • the cassette 1702 is formed using a resin material such as polyvinyl-chloride, PTFE (polytetrafluoroethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • a resin material such as polyvinyl-chloride, PTFE (polytetrafluoroethylene), or PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer).
  • substrate processing apparatus 1701 After the processing liquid is stored in the processing tank 1502, a plurality of substrates W and cassettes 1702 are put into the processing tank 1502. Thereafter, substrate immersion processing (steps S1004 to S1006 in FIG. 45B) is performed.
  • the supply of the processing liquid from the processing liquid nozzle 1561 is continued intermittently as in the case of the twenty-third embodiment.
  • the mode of the processing liquid discharged from the discharge port 1553 of the processing liquid nozzle 1561 is a continuous flow mode that leads to both the discharge port 1553 and the liquid level of the processing liquid stored in the inner tank 1007.
  • the processing liquid is in a liquid-tight state.
  • the soft X-ray is irradiated from the soft X-ray irradiation unit 1562 to the processing liquid circulating in the nozzle pipe 1551 (step S1005 in FIG. 45B).
  • the portion irradiated with soft X-rays (the processing liquid irradiation portion.
  • the portion equivalent to the processing liquid irradiation portion 1054 according to the nineteenth embodiment shown in FIG. 46) is described above.
  • a plasma state is formed in the irradiated portion of the processing liquid.
  • the processing liquid is in a liquid-tight state in the nozzle pipe 1551, and the processing liquid discharged from the discharge port 1553 is the processing liquid stored in the discharge port 1553 and the inner tank 1007.
  • the substrate W immersed in the processing liquid stored in the inner tank 1007 and the cassette 1702 and the irradiation portion of the processing liquid are included in the inner surface 1007.
  • the processing liquid stored in the tank 1007, the continuous flow processing liquid, and the processing liquid in the nozzle pipe 1551 are connected.
  • the cassette 1702 may be negatively charged.
  • electrons from the cassette 1702 are treated with the treatment liquid stored in the inner tank 1007, and the continuous flow treatment described above. It moves toward the positive ions at the irradiated portion of the processing liquid via the processing liquid in the nozzle pipe 1551. As a result, electrons are removed from the cassette 1702, and as a result, the negatively charged cassette 1702 is discharged.
  • the present invention is applied to the substrate processing apparatuses 1001, 1201, 1301, 1401, 1501, 1601 in which the processing object is the substrate W has been described.
  • the present invention can also be applied to a processing liquid processing apparatus (article cleaning apparatus) that treats as a processing object.
  • FIG. 54 is a diagram showing a configuration of an article cleaning apparatus 1801 to which the processing liquid processing apparatus according to the twenty-sixth embodiment of the present invention is applied.
  • the article cleaning apparatus 1801 is an apparatus for cleaning an optical component using a processing liquid (cleaning liquid), for example, using an optical component such as a lens L as a processing target.
  • the article cleaning apparatus 1801 cleans the lens L by immersing the lens L in the treatment tank 1502.
  • a plurality of lenses L are immersed in the processing tank 1502 in a state where they are collectively accommodated in the cassette 1802.
  • the article cleaning apparatus 1801 is provided with an ultrasonic generator (not shown) that generates ultrasonic vibrations in the processing liquid stored in the processing tank 1502.
  • the general configuration of the article cleaning apparatus 1801 is the same as that of the substrate processing apparatus 1701 according to the 25th embodiment except that an ultrasonic generator (not shown) is provided. Portions common to the embodiment are denoted by the same reference numerals as in FIG. 53, and description thereof is omitted.
  • the processing liquid is stored in the processing tank 1502. Accordingly, the lens L and the cassette 1802 are immersed in the processing liquid, and the lens L is cleaned by continuing such immersion processing for a predetermined period.
  • the supply of the processing liquid from the processing liquid nozzle 1561 is continued intermittently as in the case of the twenty-third embodiment.
  • the mode of the processing liquid discharged from the discharge port 1553 of the processing liquid nozzle 1561 is a continuous flow mode that leads to both the discharge port 1553 and the liquid level of the processing liquid stored in the inner tank 1007.
  • the processing liquid is in a liquid-tight state in the nozzle pipe 1551 of the processing liquid nozzle 1561.
  • the soft X-ray is irradiated from the soft X-ray irradiation unit 1562 to the processing liquid circulating in the nozzle pipe 1551 (step S1005 in FIG. 45B).
  • the portion irradiated with soft X-rays (the processing liquid irradiation portion.
  • the portion equivalent to the processing liquid irradiation portion 1054 according to the nineteenth embodiment shown in FIG. 46) is described above.
  • a plasma state is formed in the irradiated portion of the processing liquid.
  • the processing liquid is in a liquid-tight state in the nozzle pipe 1551, and the processing liquid discharged from the discharge port 1553 is the processing liquid stored in the discharge port 1553 and the inner tank 1007.
  • the lens L and the cassette 1802 immersed in the processing liquid stored in the inner tank 1007 and the irradiation portion of the processing liquid are included.
  • the processing liquid stored in the tank 1007, the continuous flow processing liquid, and the processing liquid in the nozzle pipe 1551 are connected.
  • the lens L or the cassette 1802 is positively charged, the electrons from the irradiation portion of the processing liquid are converted into the lens L by the potential difference between the irradiation portion of the processing liquid and the positively charged lens L or the cassette 1802. And move toward the cassette 1802 through the processing liquid in the nozzle pipe 1551, the above-described continuous flow processing liquid, and the processing liquid stored in the inner tank 1007. Thereby, as a result of supplying a large amount of electrons to the substrate W, the positively charged lens L is neutralized.
  • the cassette 1802 may be negatively charged depending on the material of the cassette 1802, the cassette 1802 may be negatively charged.
  • electrons from the cassette 1802 are treated with the treatment liquid stored in the inner tank 1007 and the continuous flow treatment. It moves toward the positive ions at the irradiated portion of the processing liquid via the processing liquid in the nozzle pipe 1551.
  • electrons are removed from the cassette 1802, and as a result, the negatively charged cassette 1802 is discharged.
  • the lens L can be prevented from being charged during the immersion treatment of the treatment liquid. Further, even if the lens L is charged before the immersion treatment, the charge on the lens L can be removed (that is, static elimination).
  • lens L has been described as an example of the optical component
  • a component container that accommodates an optical component such as a mirror or a diffraction grating can be processed.
  • Parts other than the optical parts can also be set as objects to be cleaned (processing objects).
  • the same configuration as that of the 19th to 22nd and 24th embodiments may be adopted.
  • processing similar to that described in the nineteenth to twenty-second and twenty-fourth embodiments is performed. That is, parts such as an optical component (lens L) are immersed in the processing liquid stored in the processing tank 1502, and in parallel therewith, the processing liquid stored in the processing tank 1502 or the inside is stored in the processing tank 1502.
  • Soft X-rays from the soft X-ray units 1017, 1217, 1317, and 1417 are irradiated to the processing liquid existing in the pipes 1016, 1019, and 1423 that communicate with each other.
  • FIG. 55 is a diagram showing a configuration of an article cleaning apparatus 1901 to which the processing liquid processing apparatus according to the twenty-seventh embodiment of the present invention is applied.
  • the article cleaning apparatus 1901 is an apparatus for cleaning the substrate container 1602 using a processing liquid (cleaning liquid), for example, using the substrate container (container) 1602 as an object to be processed.
  • the article cleaning apparatus 1901 cleans the substrate container 1602 by immersing the substrate container 1602 in the treatment tank 1502.
  • FIG. 56 is a perspective view showing the configuration of the substrate container 1602.
  • the substrate container 1602 is a container that accommodates the substrate W in a sealed state.
  • An example of the substrate container 1602 is FOSB (Front Opening Shipping Shipping Box).
  • the FOSB is exclusively used to deliver the substrate W from the semiconductor wafer manufacturer to the semiconductor device manufacturer.
  • the FOSB accommodates a plurality of unprocessed substrates W and prevents damage to the substrates W while maintaining the cleanliness of these substrates W.
  • the substrate container 1602 is attached to a bottomed box-shaped container body 1603 having an opening 1603A on the side, a lid 1604 for opening and closing the opening 1603A of the container body 1603, and an inner wall of the container body 1603.
  • a multi-stage container support shelf 1606 and a multi-stage lid support shelf 1605 attached to the lid 1604 are included.
  • the substrate W is taken in and out of the container main body 1603 through the opening 1603A.
  • Container body 1603 and lid 1604 are each formed using a resin material such as polyvinyl-chloride.
  • the schematic configuration of the article cleaning apparatus 1901 is the same as the configuration of the substrate processing apparatus 1701 according to the 25th embodiment. Therefore, in the 27th embodiment, the parts common to the 25th embodiment include The same reference numerals as those in FIG.
  • the substrate processing apparatus 1901 After the substrate container 1602 (container body 1603) is put into the processing tank 1502, the processing liquid is stored in the processing tank 1502. Accordingly, the substrate container 1602 is immersed in the processing liquid, and the substrate container 1602 is cleaned by continuing such immersion processing for a predetermined period.
  • the supply of the treatment liquid from the treatment liquid nozzle 1561 is continued intermittently as in the case of the twenty-fifth embodiment.
  • the mode of the processing liquid discharged from the discharge port 1553 of the processing liquid nozzle 1561 is a continuous flow mode that leads to both the discharge port 1553 and the liquid level of the processing liquid stored in the inner tank 1007.
  • the processing liquid is in a liquid-tight state in the nozzle pipe 1551 of the processing liquid nozzle 1561.
  • soft X-rays are irradiated from the soft X-ray irradiation unit 1562 to the processing liquid flowing in the nozzle pipe 1551 (step S5 in FIG. 45B).
  • the portion irradiated with soft X-rays (the processing liquid irradiation portion.
  • the portion equivalent to the processing liquid irradiation portion 1054 according to the nineteenth embodiment shown in FIG. 46) is described above.
  • a plasma state is formed in the irradiated portion of the processing liquid.
  • the processing liquid is in a liquid-tight state in the nozzle pipe 1551, and the processing liquid discharged from the discharge port 1553 is the processing liquid stored in the discharge port 1553 and the inner tank 1007.
  • the substrate container 1602 immersed in the processing liquid stored in the inner tank 1007 and the irradiated portion of the processing liquid are in the inner tank.
  • the processing liquid stored in 1007, the above-described continuous flow processing liquid, and the processing liquid in the nozzle pipe 1551 are connected.
  • the substrate container 1602 is positively charged, electrons from the irradiated part of the processing liquid are transferred to the substrate container 1602 due to a potential difference between the irradiation part of the processing liquid and the positively charged substrate container 1602.
  • the processing liquid in the nozzle pipe 1551, the processing liquid in the continuous flow state, and the processing liquid stored in the inner tank 1007 are moved. Thereby, as a result of supplying a large amount of electrons to the substrate W, the positively charged substrate container 1602 (container body 1603) is neutralized.
  • the substrate container 1602 may be negatively charged.
  • electrons from the substrate container 1602 are stored in the inner tank 1007, It moves toward the positive ions at the irradiated portion of the processing liquid through the continuous flow processing liquid and the processing liquid in the nozzle pipe 1551.
  • the electrons are removed from the substrate container 1602, and as a result, the negatively charged substrate container 1602 is neutralized.
  • the substrate container 1602 can be prevented from being charged during the immersion treatment of the processing liquid. Further, even if the substrate container 1602 is charged before the immersion treatment, the charge on the substrate container 1602 can be removed (that is, static elimination).
  • the lid 1604 and the support shelves 1605 and 1606 can be subjected to a cleaning process while removing electricity from the lid 1604 and the support shelves 1605 and 1606.
  • the FOSB has been described as an example of the substrate container 1602
  • the FOUP Front-Opening-Unified
  • the substrate container 1602 include other types of substrate containers such as a SMIF (Standard Mechanical Interface) pod and OC (Open Cassette).
  • the container is not limited to the one that accommodates the substrate W, but a medium container that accommodates a disk-shaped medium such as a CD, a DVD, or a blue disk, a lens L (see FIG. 54), a mirror, a diffraction grating, or the like.
  • a component container that accommodates an optical component can be a processing target.
  • the same configuration as in the 19th to 22nd and 24th embodiments may be adopted.
  • processing similar to that described in the nineteenth to twenty-second and twenty-fourth embodiments is performed. That is, a container such as the substrate container 1602 is immersed in the processing liquid stored in the processing tank 1002, and the processing liquid stored in the processing tank 1002 or the inside communicates with the inside of the processing tank 1002 in parallel therewith.
  • the soft X-rays from the soft X-ray units 1017, 1217, 1317, and 1417 are irradiated to the processing liquid existing in the pipes 1016, 1019, and 1423.
  • electrodes 56 (FIGS. 1, 8, 10 (a), 11, 12, 14, 15 (a), FIG. 16, FIG. 24, and FIG. 28) are described as being provided, but a configuration in which the electrode 56 is not provided in the nozzle pipe may be employed. In this case, the power source 57 (see FIG. 3) is also omitted.
  • an electrode 56 is provided at the tip of the water nozzle 409 of the twelfth embodiment and the tips of the cup nozzles 224 and 313 of the sixth and eleventh embodiments, and the electrode 56 is powered by a power source 57 (see FIG. 3). A voltage with respect to the device ground may be applied.
  • the water supply pipes 204, 307, and 410 of the fourth, tenth, twelfth, and thirteenth embodiments are used.
  • 533 and the branch pipes 222 and 312 of the sixth and eleventh embodiments may be provided with a liquid detection sensor (treatment liquid detection means) 101.
  • the liquid detection sensor 101 is a sensor for detecting the presence or absence of DIW at a predetermined water detection position 102 in the water supply pipes 204, 307, 410, 533 and the branch pipes 222, 312.
  • the water detection position 102 is set at the same position as or close to the opening (opening to which soft X-rays are irradiated) formed in the water supply pipes 204, 307, 410, 533 and the branch pipes 222, 312. Yes.
  • a process equivalent to the process of FIG. 7 can also be executed.
  • the discharge ports 202A, 216, 409A and 531A of the water nozzles 202, 212, 409 and 531 and the cup nozzle 224 of the sixth and eleventh embodiments are used.
  • the fibrous substances according to the third embodiment can be provided in the discharge ports 224A and 313A of 313, respectively.
  • the cup 17 is neutralized using DIW from the nozzles 224 and 313 provided at the ends of the branch pipes 222 and 312.
  • the DIW of the second nozzle pipe 232 may be used for static elimination.
  • the soft X-ray irradiation units 223 and 319 are disposed in the branch pipes 222 and 312. However, the soft X-ray irradiation units 223 and 319 are provided in the water supply pipes 204 and 307, respectively. It may be arranged.
  • water supply units 230, 250, and 600 according to the seventh, eighth, and fourteenth embodiments have been described as adopting the same configuration as the water supply unit 100 according to the first embodiment, but the fourth embodiment.
  • the structure equivalent to the water supply unit 200 (refer FIG. 1) which concerns on, and the water supply unit 220 which concerns on 5th Embodiment is also employable.
  • the water supply unit 100 according to the first to third embodiments ( 1), a water supply unit 200 according to the fourth embodiment (see FIG. 11), and a water supply unit 220 according to the fifth embodiment may be employed.
  • the case where the substrate W is rinsed on both sides has been described as an example.
  • only the lower surface of the substrate W may be rinsed. Good.
  • the soft X-ray irradiation apparatus 314 can be arranged in the processing chamber 3 in the first to tenth and twelfth embodiments.
  • soft X-rays from the soft X-ray irradiation device 314 may be irradiated to the cup upper portion 19.
  • DIW water
  • a processing object substrate W, substrate container 602, second nozzle pipe 2302.
  • the DIW is supplied from a plurality of nozzles.
  • the upstream ends of a plurality of water supply pipes for supplying DIW to the nozzles 61, 202, 212, 306, 409 are connected to the water collecting pipe.
  • the DIW existing in the water collecting pipe is irradiated with soft X-rays from the soft X-ray irradiation unit.
  • a hydrophilic film 38 covering the outer surface 71B of the window member 71 for example, a hydrophilic DLC (Diamond Like Carbon) film, a hydrophilic fluororesin film, carbonized A hydrogen resin film or the like can be used.
  • a hydrophilic DLC (Diamond Like Carbon) film for example, a hydrophilic fluororesin film, carbonized A hydrogen resin film or the like can be used.
  • the window member 71 can be formed using polyimide resin. In this case, soft X-rays can be transmitted through the window member 71. Moreover, since the polyimide resin is excellent in chemical stability, the window member 71 can be continuously used for a long time. In this case, it is not necessary to cover the outer surface 71B with the hydrophilic film 38.
  • DIW has been exemplified as an example of water that is irradiated with soft X-rays and discharged from the discharge port.
  • the present invention is not limited to DIW, but carbonated water, electrolytic ionic water, hydrogen-dissolved water.
  • ozone-dissolved water and dilute concentration for example, about 10 ppm to 100 ppm
  • hydrochloric acid water can also be employed.
  • a chemical solution (diluted chemical solution) can be adopted as a processing solution irradiated with soft X-rays and discharged from the discharge port.
  • a chemical solution hydrofluoric acid diluted to a predetermined concentration, BHF (Bufferd HF), APM (ammonia-hydrogen peroxide mixture), TMAH (tetramethylammonium hydroxide aqueous solution), ammonia Water, HPM (hydrochloric acid / hydrogen-peroxide mixture), etc.
  • BHF Bufferd HF
  • APM ammonia-hydrogen peroxide mixture
  • TMAH tetramethylammonium hydroxide aqueous solution
  • HPM hydrochloric acid / hydrogen-peroxide mixture
  • the inside of the first pipe is performed in parallel with the supply of the processing liquid. It is also possible to irradiate soft X-rays to the processing solution that is distributed.
  • other films can be used as the water-repellent film formed on the outer surface 735B of the irradiation window 735 and covering the outer surface 735B.
  • a water-repellent DLC (Diamond-Like Carbon) film 851 (diamond-like carbon film) can be employed.
  • the film thickness of the DLC film 851 is 10 ⁇ m or less, and preferably about 1 to 2 ⁇ m.
  • silicon (Si) ions are implanted into the outer surface 735B of the irradiation window 735 by ion implantation or the like, and then carbon (C) is implanted into the outer surface 735B of the irradiation window 735 by sputtering or the like.
  • Ions are implanted.
  • the outer surface 735B of the irradiation window 735 is modified.
  • a deposited film of DLC is formed on the outer surface 735B of the irradiation window 735 by plasma CVD or the like, whereby a DLC film 851 is formed.
  • Silicon (Si) ion implantation, carbon (C) ion implantation, and DLC deposition are performed in a low temperature environment of room temperature to 150 ° C.
  • DLC film 851 formed by such a method has water repellency.
  • plasma ion assist method has water repellency.
  • water-repellent DLC film 851 is formed on the outer surface 735B of the irradiation window 735, water droplets can be prevented from adhering to the outer surface 735B of the irradiation window 735. As a result, clouding of the irradiation window 735 can be suppressed or prevented.
  • the DLC film 851 has high adhesion even under a high temperature environment. Therefore, it is possible to reliably prevent the peeled DLC from contaminating the irradiation window 735.
  • the DLC is deposited in a low temperature environment, the temperature drop after the deposition is small, and the stress hardly remains in the DLC film 851. Thereby, it is possible to form a film that is difficult to break (high durability).
  • an amorphous fluororesin film 861 having water repellency can be adopted as the water repellent film.
  • the amorphous fluororesin film 861 is made of amorphous fluorine made of, for example, Cytop resin (trade name).
  • the film thickness of the amorphous fluororesin film 861 is 50 ⁇ m or less, and preferably about 5 to 10 ⁇ m.
  • the coating In the fifteenth to eighteenth embodiments, embodiments of DLC and amorphous fluororesin were described as the coating.
  • the present coating is easy to transmit soft X-rays and has heat resistance of about several hundred degrees Celsius.
  • the shielding member may be provided integrally with the soft X-ray irradiation head 841.
  • the shielding member may be provided separately from the irradiation head 841. In this case, it may be attached to an arm that can be swung in a horizontal plane above the spin chuck 704 so as to be movable on the spin chuck 704 by the swing of this arm.
  • the X-ray irradiation from the soft X-ray irradiation heads 706 and 841 and the X-ray irradiation unit 834 is stopped. It may be.
  • the gas nozzle 727 has been described as ejecting a gas having a temperature higher than normal temperature, but normal temperature gas may be ejected from the gas nozzle 727.
  • the configuration in which the sheet-like heater 744 as the heat generating member is arranged is adopted, but another heat source may be provided as the heat generating member.
  • the irradiation window 735 may be provided without being limited to the periphery of the opening 728 such as the lower wall 726 ⁇ / b> A of the cover 726.
  • the structure provided in both the lower wall 726A of the cover 726 and the irradiation window 735 may be sufficient.
  • a configuration in which a heating member such as the heater 744 is not provided around the irradiation window 735 may be employed.
  • the movable soft X-ray irradiation heads 706 and 841 and the movable X-ray irradiation unit 834 are provided as X-ray irradiation means.
  • the X-ray irradiation means may be disposed so as to be fixedly opposed to the substrate W held by the spin chuck 704. In this case, it is necessary that the soft X-rays irradiated from the fixed X-ray irradiation unit are irradiated to the entire area of the substrate W.
  • DIW is given as an example of water supplied to the substrate W in parallel with the soft X-ray irradiation.
  • the water is not limited to DIW, but carbonated water, electrolytic ionic water, hydrogen dissolved. Any of water, ozone-dissolved water and hydrochloric acid water having a diluted concentration (for example, about 10 ppm to 100 ppm) can also be employed.
  • the case where soft X-rays are applied to the surface of the substrate W in parallel with the supply of water for the rinsing process has been described as an example.
  • the supply of a chemical solution diluted chemical solution
  • soft X-ray irradiation can be performed.
  • the chemical solution hydrofluoric acid diluted to a predetermined concentration, BHF (BufferdAHF), APM (ammonia-hydrogen peroxide mixture), TMAH (tetramethylammonium hydroxide aqueous solution) ), Ammonia water, HPM (hydrochloric acid / hydrogen peroxide mixture).
  • the inside of the first pipe is performed in parallel with the supply of the processing liquid. It is also possible to irradiate soft X-rays to the processing solution that is distributed.
  • the soft X-rays are applied to the surface of the substrate W in parallel with the supply of water. Can also be irradiated.
  • the case where the processing is performed on the substrate W on which the oxide film is formed is taken as an example. ) May be performed on the substrate W on which is formed.
  • all the processing liquid in the processing tank 1002 may be discharged after the substrate immersion processing, and the post-processing shower rinsing may be performed from the processing liquid nozzle 1003 to the substrate W.
  • the contaminants that remain attached to the substrate W even after the immersion treatment can be washed away, and are prevented from reattaching to the substrate W.
  • the heater 25 for heating may be interposed.
  • the circulation mechanism 1005 (see FIG. 44) may be omitted.
  • the processing liquid stored in the processing tanks 1002 and 1502 is not circulated, and the processing liquid recovered in the outer tank 1008 is waste liquid or recovered.
  • a configuration in which a circulation mechanism 1005 (see FIG. 44) is provided may be employed.
  • the processing liquid stored in the processing tank 1502 is circulated, and the processing liquid recovered in the outer tank 1008 is supplied again into the processing tank 1502.
  • the process of rubbing and cleaning the processing object immersed in the processing liquid with a brush can be executed in parallel.
  • the outer tub 1008 is not essential.
  • the configuration of the outer tank 1008 can be omitted.
  • hydrophilic film 1038 covering the outer surface 71B of the window member 1071 for example, a hydrophilic DLC (Diamond Like Carbon) film, a hydrophilic fluororesin film, or carbonized A hydrogen resin film or the like can be used.
  • a hydrophilic DLC (Diamond Like Carbon) film for example, a hydrophilic fluororesin film, or carbonized A hydrogen resin film or the like can be used.
  • the window member 1071 can also be formed using a polyimide resin. In this case, soft X-rays can be transmitted through the window member 1071. In addition, since the polyimide resin is excellent in chemical stability, the window member 1071 can be used for a long time. In this case, it is not necessary to cover the outer surface 71B with the hydrophilic film 1038.
  • a voltage may be applied from the power source 1557 to the electrode 1556 in conjunction with the soft X-ray irradiation by the soft X-ray irradiation unit 1562.
  • the electrode 1556 is preferably charged to a positive charge.
  • the electrons generated in the irradiated portion of the treatment liquid by the soft X-ray irradiation due to the positive charge of the electrode 1556 are pulled toward the electrode 1556 and moved to the tip of the nozzle pipe 1551 where the electrode 1556 is provided. Become. That is, a large amount of electrons can be pulled toward the discharge port 1553 of the processing liquid nozzle 1561. Thereby, the movement of the electrons to the substrate W side can be promoted.
  • X-rays that emit “soft X-rays” having a relatively long wavelength are used as the X-ray irradiating means.
  • Short “hard X-rays” (0.001 nm to 0.1 nm) can also be used.
  • a surface of the apparatus operator side is covered with a lead plate having a considerable thickness, for example, a shielding structure for shielding leakage of X-rays to the outside of the apparatus is provided, Alternatively, it is desirable to take measures such as prohibiting an operator from entering the periphery of the apparatus during X-ray irradiation.
  • the substrate W has been described by taking a semiconductor wafer or a glass substrate for a liquid crystal display device as an example.
  • the substrate W can also be a plasma display substrate, a FED (Field Emission Display) substrate, an OLED (organic electroluminescence).
  • SiC, quartz, sapphire, a plastic, a ceramic, etc. other than silicon and glass can be illustrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

処理液供給装置(100)は、吐出口(53)から処理液を吐出して、この処理液を処理対象物(W)に供給するための処理液供給装置(100)であって、処理液が内部を流通可能な第1配管(51)であって、当該内部が前記吐出口(53)に連通する第1配管(51)と、前記第1配管(51)内に存在する処理液に、X線を照射するX線照射手段(62)とを含む。前記第1配管(53)は、その管壁に開口(52)を有し、前記開口(52)は、X線が透過可能な材料を用いて形成された窓部材(71)にて閉塞されており、前記X線照射手段(62)は、前記第1配管(51)内に存在している処理液に、前記窓部材(71)を介してX線を照射する。

Description

処理液供給装置、基板処理装置、処理液供給方法、基板処理方法、処理液処理装置および処理液処理方法
 この発明は、処理液供給装置、基板処理装置、処理液供給方法、基板処理方法、処理液処理装置および処理液処理方法に関する。処理液を用いた処理の処理対象物には、基板や収容器、光学部品等が含まれる。処理対象物として用いられる基板には、たとえば、半導体ウエハ、液晶表示装置用ガラス基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、OLED(有機エレクトロルミネッセンス)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などの基板が含まれる。
 半導体装置や液晶表示装置の製造工程では、半導体ウエハや液晶表示パネル用ガラス基板などの基板の表面に処理液を供給して、その基板の表面を処理液で洗浄する処理などが行われる。
 たとえば、基板を1枚ずつ処理する枚葉式の洗浄処理を実施する基板処理装置は、複数本のチャックピンで基板をほぼ水平に保持しつつ、その基板を回転させるスピンチャックと、このスピンチャックによって回転される基板の表面に処理液を供給するための処理液ノズルとを備えている。
 基板の処理に際しては、スピンチャックによって基板が回転される。そして、ノズルから回転中の基板の表面に薬液が供給される。基板の表面上に供給された薬液は、基板の回転による遠心力を受けて、基板の表面上を周縁に向けて流れる。これによって、基板の表面の全域に薬液が行き渡り、基板の表面に対する薬液による処理が達成される。そして、この薬液による処理後には、基板に付着した薬液を純水で洗い流すためのリンス処理が行われる。すなわち、処理液ノズルからスピンチャックによって回転されている基板の表面に純水が供給されて、その純水が基板の回転による遠心力を受けて拡がることにより、基板の表面に付着している薬液が洗い流される。このリンス処理後は、スピンチャックによる基板の回転速度が上昇されて、基板に付着している純水を振り切って乾燥させるスピンドライ処理が行われる(下記特許文献1参照)。
特開2005-191511号公報
 ところが、このような従来の基板処理装置では、リンス処理時に、回転状態の基板の表面と純水との間に接触分離が生じ、基板が流動帯電することがあった。基板がガラス基板やシリコンウエハである場合には、基板が正に帯電する。基板が電荷を帯びると、その電荷の放電が生じたときに、基板の表面に形成されるデバイスの破壊を生じるおそれがある。
 また、半導体装置や液晶表示装置などの製造工程では、複数枚の基板に対して一括して処理を施すバッチ式の基板処理装置も用いられる。バッチ型の基板処理装置は、たとえば、薬液が貯留された薬液処理槽および水が貯留されたリンス処理槽を含む複数の処理槽を備えている。複数枚の基板に対して一括して処理が行われる場合には、薬液処理槽およびリンス処理槽に基板が順次浸漬されていく。
 リンス処理槽におけるリンス処理において基板に帯電が生じるおそれがある。基板がシリコンウエハやガラス基板である場合には、基板が正に帯電する。一連の処理後の基板が電荷を帯びていると、その電荷の放電が生じたときに、基板の表面に形成されるデバイスの破壊を生じるおそれがある。また、処理槽への搬入前から処理対象物が帯電している場合にも、同様の問題が生じるおそれがある。したがって、基板の帯電防止および除電を図りつつリンス処理(処理液を用いた処理)を行うことが求められている。
 処理液を用いた処理における帯電防止および除電は、処理対象物が基板である場合に限られず、処理対象が収容器や他の光学部品等である場合にも共通する課題である。
 
 そこで、この発明の目的は、処理対象物の帯電防止または除電を図りつつ、当該処理対象物に処理液を供給できる処理液供給装置および処理液供給方法を提供することである。
 また、この発明の他の目的は、基板の帯電防止または除電を図りつつ、当該基板に、処理液を用いた処理を施すことができる基板処理装置および基板処理方法を提供することである。
 この発明の他の目的は、処理対象物の帯電防止または除電を図りつつ、当該処理対象物に、処理液を用いた処理を施すことができる処理液処理装置および処理液処理方法を提供することである。
 この発明の第1の局面は、吐出口から処理液を吐出して、この処理液を処理対象物に供給するための処理液供給装置であって、処理液が内部を流通可能な第1配管であって、当該内部が前記吐出口に連通する第1配管と、前記第1配管内に存在する処理液に、X線を照射するX線照射手段とを含む、処理液供給装置を提供する。
 この構成によれば、第1配管内に存在している処理液にX線が照射される。また、第1配管の内部に連通する吐出口から吐出された処理液が処理対象物に供給される。処理液のうちX線が照射される部分(以下、「処理液の照射部分」という。)では、水分子の励起により当該水分子から電子が放出され、その結果、水分子の正イオンと電子とが混在するプラズマ状態が形成される。
 吐出口から吐出された処理液は、処理対象物に供給され、当該処理対象物に接液する。以下、吐出口から吐出される処理液が、吐出口と処理対象物との間で液状に繋がっている場合について考える。この場合、処理対象物と処理液の照射部分とが、処理液を介して繋がっている。
 このとき、処理対象物が正に帯電すると、処理液の照射部分と、正に帯電している処理対象物との間の電位差で、処理液の照射部分からの電子が、処理対象物に接液している処理液に向けて、液状に繋がっている処理液を伝って移動する。これにより、処理対象物に接液している処理液が多量の電子を有するようになるので、正に帯電している処理対象物が除電される。
 一方、処理対象物が負に帯電すると、処理対象物からの電子が、処理液の照射部分の正イオンに向けて、液状に繋がっている処理液を伝って移動する。これにより、負に帯電している処理対象物が除電される。
 したがって、処理液の供給時における処理対象物の帯電の発生を防止できる。
 また、処理液の供給前から処理対象物が正または負に帯電している場合にも、前述した原理により、液状に繋がっている処理液を介して、当該処理対象物を除電できる。
 以上により、処理対象物の帯電防止または除電を図りつつ、当該処理対象物に処理液を供給することができる。
 なお、本明細書および請求の範囲において「X線」とは0.001nm~10nm程度の波長を有する電磁波をいい、波長が比較的長い「軟X線」(0.1nm~10nm程度)と、波長が比較的短い「硬X線」(0.001nm~0.1nm程度)とを含む趣旨である。
 また、本明細書および請求の範囲において「処理対象物」には、基板、収容器、光学部品等が含まれる。
 この発明の一実施形態では、前記第1配管は、その管壁に開口を有し、前記開口は、X線が透過可能な材料を用いて形成された窓部材にて閉塞されており、前記X線照射手段は、前記第1配管内に存在している処理液に、前記窓部材を介してX線を照射する。
 この構成によれば、X線が透過可能な材料を用いて、窓部材が形成されている。そして、X線照射手段から照射されたX線は、窓部材を介して、前記第1配管内に存在する処理液に照射される。これにより、処理液の照射部分において、水分子の正イオンと電子とが混在するプラズマ状態を、良好に形成できる。
 この場合、前記窓部材は、ベリリウムまたはポリイミド樹脂を用いて形成されていてもよい。
 ベリリウムのような原子量の小さい物質であれば、透過力の弱いX線でも透過できる。したがって、ベリリウムを用いて窓部材を形成することにより、X線が窓部材を透過することが可能である。
 また、窓部材がポリイミド樹脂を用いて形成される場合、X線が窓部材を透過することが可能である。また、ポリイミド樹脂は化学安定性に優れているので、窓部材の長期にわたる使用が可能である。
 また、窓部材における処理液が存在する側の壁面は、親水性であることが好ましい。この場合、当該壁面と処理液との間に気泡が混入するのを、抑制または防止することができる。これにより、第1配管に存在する処理液に対してX線を良好に照射することができる。
 前記窓部材における処理液が存在する側の壁面は、皮膜によりコーティングされていてもよい。これにより、照射窓を保護することができる。とくに、窓部材が耐酸性の劣るベリリウムを用いて形成されている場合、窓部材を酸性の処理液から良好に守ることができる。
 この皮膜は、親水性材料を用いて形成されていることが好ましい。この場合、当該皮膜と処理液との間に気泡が混入するのを、抑制または防止することができる。これにより、第1配管に存在する処理液に対してX線を良好に照射することができる。
 この場合、前記皮膜は、ポリイミド樹脂、ダイヤモンドライクカーボン、フッ素樹脂および炭化水素樹脂のうちの1つ以上の材質を含む皮膜であってもよい。
 前記X線照射手段は、前記窓部材に対向して配置される照射窓を有し、X線を発生するとともに、発生したX線を前記照射窓から照射するX線発生器を含んでいてもよい。
 この構成によれば、X線発生器によって発生されたX線が、X線発生器の照射窓から第1配管内を流通している処理液に照射される。
 前記X線照射手段は、前記X線発生器の周囲を、当該X線発生器と間隔を空けて取り囲むカバーと、前記カバーの内部に気体を供給する気体供給手段とをさらに含んでいてもよい。
 この構成によれば、X線発生器の駆動により当該X線発生器が発熱するおそれがある。カバー内に気体を供給することにより、X線発生器を冷却し、X線発生器の周囲雰囲気の昇温を抑制することができる。
 この発明の一実施形態では前記第1配管は、前記吐出口に向けて処理液が内部を流通する処理液配管を含み、前記X線照射手段は、前記第1配管内を流通している処理液に前記X線を照射していてもよい。
 また、この発明の別の実施形態では、前記吐出口に向けて処理液が内部を流通する処理液配管をさらに含み、前記第1配管は、前記処理液配管から分岐する分岐配管を含んでいてもよい。この場合、分岐配管に存在する処理液に前記X線が照射される。
 前記吐出口に配置され、当該吐出口から吐出される処理液が伝って流れることが可能な繊維状物質をさらに含むことが好ましい。
 この構成によれば、吐出口から吐出される処理液が繊維状物質を伝って流れるので、吐出口からの処理液の吐出流量が少流量である場合でも、吐出口から吐出される処理液の態様を、当該吐出口と前記処理対象物との双方に繋がる連続流状とすることができる。したがって、簡単な構成で、処理対象物と処理液の照射部分とを処理液を介して繋げることができる。
 吐出口からの処理液の吐出により、処理対象物に処理液の液膜が形成される場合、繊維状物質の先端は、当該処理液の液膜または処理対象物に接触していてもよい。この場合、吐出口から吐出される処理液の態様を、前記のような連続流状に維持し易い。
 前記第1配管における前記X線の照射位置よりも、処理液流通方向の下流側に配置された電極と、前記電極に対して電圧を印加する電源とをさらに含んでいてもよい。
 この構成によれば、第1配管内に存在している処理液に対するX線の照射に併せて、電源が電極に対し電圧を印加する。電極への電圧の印加により、電極に、正電荷や負電荷を発生させることができる。
 電極に正電荷を発生させることにより、処理液の照射部分(プラズマ状態)に存在する電子が、電極の正電荷に引っ張られて電極に向けて移動する。これにより、基板側に向かう電子の移動を促進させることができる。
 前記電極は、前記第1配管の先端部に配置されていてもよい。この構成によれば、電極が第1配管の先端部に配置されている。そのため、処理液の照射部分(プラズマ状態)に存在する電子が、電極の正電荷に引っ張られて、第1配管の先端部まで移動する。すなわち、多量の電子を、第1配管の先端部まで引っ張ることができる。これにより、基板側に向かう電子の移動をより一層促進させることができる。
 前記処理液供給装置は、前記第1配管において、前記X線の前記照射位置における処理液の有無を検出するための処理液検出手段と、前記照射位置に処理液が存在するときには、前記X線照射手段によるX線の照射を実行するとともに、前記照射位置に処理液が存在しないときには、前記X線照射手段によるX線の照射を行わないX線照射制御手段とをさらに含んでいてもよい。
 第1配管におけるX線の照射位置に処理液が存在しない状態でX線が照射されると、当該X線が第1配管外に漏れるおそれがある。
 この構成によれば、第1配管におけるX線の照射位置に処理液が存在しないときには、当該X線の照射位置に対するX線の照射が禁止される。これにより、第1配管外へのX線の漏れを抑制または防止できる。
 この発明の第1局面は、基板を保持する基板保持手段と、前記処理液供給装置とを含み、前記吐出口から吐出された処理液を前記基板の主面に供給する、基板処理装置を提供する。
 この構成によれば、処理液供給装置の第1配管内に存在している処理液にX線が照射される。また、第1配管の内部に連通する吐出口から吐出された処理液が基板の主面に供給される。処理液の照射部分では、水分子の励起により当該水分子から電子が放出され、その結果、水分子の正イオンと電子とが混在するプラズマ状態が形成される。
 吐出口から吐出された処理液は、基板の主面に供給され、当該基板の主面に接液する。以下、吐出口から吐出される処理液が、吐出口と基板の主面との間で液状に繋がっている場合について考える。この場合、基板の主面と処理液の照射部分とが、処理液を介して繋がっている。
 このとき、基板が正に帯電すると、処理液の照射部分と、正に帯電している基板との間の電位差で、処理液の照射部分からの電子が、基板に接液している処理液に向けて、液状に繋がっている処理液を伝って移動する。これにより、基板に接液している処理液が多量の電子を有するようになるので、正に帯電している基板が除電される。
 これにより、処理液との接触分離による基板の帯電を生じない。したがって、処理液の供給時における基板の帯電の発生を防止できる。
 また、処理液の供給前から基板が正に帯電している場合にも、前述した原理により、液状に繋がっている処理液を介して、当該処理対象物を除電できる。その結果、基板の帯電に起因するデバイス破壊を防止できる。
 以上により、基板の帯電防止または除電を図りつつ、当該基板に、処理液を用いた処理を施すことができる。
 この発明の一実施形態では、前記基板保持手段は、基板を水平姿勢に保持しつつ、鉛直な所定の回転軸線周りに回転させる基板保持回転手段を含み、前記基板処理装置は、前記基板保持回転手段の周囲を包囲する筒状の液受け部材をさらに含み、前記処理液供給装置は、前記吐出口に向けて処理液が内部を流通する処理液配管をさらに含み、前記処理液供給装置の前記第1配管は、前記処理液配管から分岐する分岐配管を含み、前記分岐配管は、前記液受け部材に向けて処理液を吐出するための液受け用吐出口を有する。
 この構成によれば、液受け用吐出口から液受け部材に向けて処理液を吐出させながら、分岐配管内を流通している処理液に対し、X線照射手段からX線を照射させる。分岐配管内における処理液の照射部分では、水分子の正イオンと電子とが混在するプラズマ状態が形成される。
 液受け用吐出口から吐出された処理液は、液受け部材に供給され、当該液受け部材に接液する。液受け用吐出口から吐出される処理液が、液受け用吐出口と液受け部材との間で液状に繋がっている場合には、液受け部材と処理液の照射部分とが、処理液を介して繋がっている。
 このとき、液受け部材が正に帯電していると、処理液の照射部分と、正に帯電している液受け部材との間の電位差で、処理液の照射部分からの電子が、液受け部材に接液している処理液に向けて、液状に繋がっている処理液を伝って移動する。これにより、液受け部材に接液している処理液が多量の電子を有するようになるので、正に帯電している液受け部材が除電される。
 一方、液受け部材が負に帯電していると、液受け部材からの電子が、処理液の照射部分の正イオンに向けて、液状に繋がっている処理液を伝って移動する。これにより、負に帯電している液受け部材が除電される。
 したがって、基板の帯電防止や除電だけではなく、液受け部材の帯電の発生防止を図ることができる。
 この発明の別の実施形態では、前記基板保持手段は、基板を水平姿勢に保持しつつ、鉛直な所定の回転軸線周りに回転させる基板保持回転手段を含み、前記基板保持回転手段は、前記基板の下面の少なくとも一部と接触して、当該基板を水平姿勢に支持する支持部材を有し、前記支持部材は多孔質材料を用いて形成されており、前記吐出口から吐出された処理液が前記支持部材に供給される。
 この構成によれば、支持部材に供給された処理液は、当該支持部材の内部に含浸される。支持部材の内部に含浸されている処理液が、支持部材から染み出して、支持部材上に処理液の液膜を形成する。この処理液の液膜が基板の下面に接液することにより、基板の下面が処理される。
 このとき、吐出口から吐出される処理液が、当該吐出口と支持部材との双方に繋がる連続流状をなしている場合、支持部材の内部に含浸されている処理液を介して吐出口と基板の下面とが液状に繋がっており、そのため、基板の下面と処理液の照射部分とが、処理液を介して繋がっている。
 これにより、基板の帯電防止や除電を図りつつ、当該基板の下面に処理液を用いた処理を施すことができる。
 また、前記基板保持手段は、前記基板を保持しながら、当該基板を所定の搬送方向に向けて搬送する基板保持搬送手段を含んでいてもよい。この構成によれば、吐出口から吐出された処理液が、基板保持搬送手段によって搬送される基板の主面(上面)に供給され、当該基板の主面(上面)に接液する。
 吐出口から吐出される処理液が、吐出口と基板の主面との間で液状に繋がっている場合について考える。この場合、基板の主面と処理液の照射部分とが、処理液を介して繋がっている。
 このとき、基板が正に帯電すると、処理液の照射部分と、正に帯電している基板との間の電位差で、処理液の照射部分からの電子が、基板に接液している処理液に向けて、液状に繋がっている処理液を伝って移動する。これにより、基板に接液している処理液が多量の電子を有するようになるので、正に帯電している基板が除電される。
 この場合、前記基板保持搬送手段は、前記基板を、前記搬送方向に沿い、かつ水平面に対し傾斜する姿勢に保持しつつ搬送されていることが好ましい。
 この構成によれば、基板が傾斜姿勢に保持されているので、吐出口から吐出された処理液は基板上を傾斜面に沿って流れる。そのため、処理液が基板上に滞留することがないから、処理液の重量によって、基板の所定の一箇所に荷重が集中するのを防止または抑制できる。また、処理液は基板上をスムーズに流れるから、広範囲に広がる処理液の液膜を基板の上面に形成することができる。これにより、基板の広範囲において、帯電防止や除電を図ることができる。
 この発明の第1の局面は、処理液供給装置の吐出口から処理液を吐出させ、この処理液を処理対象物に供給する処理液供給方法であって、前記吐出口を、前記処理対象物に対向して配置する対向配置工程と、前記吐出口に連通する第1配管の内部に存在する処理液にX線を照射するX線照射工程と、前記X線照射工程と並行して、前記吐出口から処理液を吐出させる処理液吐出工程とを含み、前記処理液吐出工程では、前記吐出口と前記処理対象物との間で処理液が液状に繋がっている、処理液供給方法を提供する。
 この方法によれば、第1配管内に存在している処理液にX線が照射される。また、第1配管の内部に連通する吐出口から吐出された処理液が処理対象物に供給される。処理液のうちX線が照射される部分では、水分子の励起により当該水分子から電子が放出され、その結果、水分子の正イオンと電子とが混在するプラズマ状態が形成される。
 吐出口から吐出される処理液は、吐出口と処理対象物との間で液状に繋がっている。この場合、処理対象物と処理液の照射部分とが、処理液を介して繋がっている。
 このとき、処理対象物が正に帯電すると、処理液の照射部分と、正に帯電している処理対象物との間の電位差で、処理液の照射部分からの電子が、処理対象物に接液している処理液に向けて、液状に繋がっている処理液を伝って移動する。これにより、処理対象物に接液している処理液が多量の電子を有するようになるので、正に帯電している処理対象物が除電される。
 一方、処理対象物が負に帯電すると、処理対象物からの電子が、処理液の照射部分の正イオンに向けて、液状に繋がっている処理液を伝って移動する。これにより、負に帯電している処理対象物が除電される。
 したがって、処理液の供給時における処理対象物の帯電の発生を防止できる。
 また、処理液の供給前から処理対象物が正または負に帯電している場合にも、前述した原理により、液状に繋がっている処理液を介して、当該処理対象物を除電できる。
 以上により、処理対象物の帯電防止または除電を図りつつ、当該処理対象物に処理液を供給することができる。
 この場合、前記処理液吐出工程では、前記吐出口から吐出される処理液が、当該吐出口と前記処理対象物との双方に繋がる連続流状をなしていることが好ましい。この場合、処理対象物と処理液の照射部分とを処理液を介して、簡単に繋げることができる。
 前記処理対象物は、内部を液が流通する第2配管であってもよいし、物品を収容するための収容器であってもよい。
 この発明の第1の局面は、処理液供給装置の吐出口から吐出される処理液を用いて基板を処理する基板処理方法であって、前記吐出口を、基板保持手段に保持されている基板の主面に対向して配置する対向配置工程と、前記吐出口に連通する第1配管の内部に存在する処理液にX線を照射するX線照射工程と、前記X線照射工程と並行して、前記吐出口から処理液を吐出させる処理液吐出工程とを含み、前記処理液吐出工程では、前記吐出口と前記基板の主面との間で処理液が液状に繋がっている、基板処理方法を提供する。
 この方法によれば、第1配管内に存在している処理液にX線が照射される。また、第1配管の内部に連通する吐出口から吐出された処理液が基板の主面に供給される。処理液のうちX線が照射される部分では、水分子の励起により当該水分子から電子が放出され、その結果、水分子の正イオンと電子とが混在するプラズマ状態が形成される。
 吐出口から吐出された処理液は、基板の上面に供給され、当該基板の上面に接液する。吐出口から吐出される処理液は、吐出口と基板の主面との間で液状に繋がっている。この場合、基板の主面と処理液の照射部分とが、処理液を介して繋がっている。
 このとき、基板が正に帯電すると、処理液の照射部分と、正に帯電している基板との間の電位差で、処理液の照射部分からの電子が、基板に接液している処理液に向けて、液状に繋がっている処理液を伝って移動する。これにより、基板に接液している処理液が多量の電子を有するようになるので、正に帯電している基板が除電される。
 これにより、処理液との接触分離による基板の帯電を生じない。したがって、処理液の供給時における基板の帯電の発生を防止できる。
 また、処理液の供給前から基板が正に帯電している場合にも、前述した原理により、液状に繋がっている処理液を介して、当該処理対象物を除電できる。その結果、基板の帯電に起因するデバイス破壊を防止できる。
 以上により、基板の帯電防止または除電を図りつつ、当該基板に、処理液を用いた処理を施すことができる。
 この場合、前記処理液吐出工程では、前記吐出口から吐出される処理液が、当該吐出口と前記基板の主面との双方に繋がる連続流状をなしていることが好ましい。これにより、基板の主面と処理液の照射部分とを処理液を介して、簡単に繋げることができる。
 この発明の一実施形態では、前記基板は、前記基板保持手段によって水平姿勢に保持されており、前記対向配置工程は、前記吐出口を、前記基板保持手段に保持されている基板の上面に対向するように配置する工程を含む
 この方法によれば、吐出口から吐出された処理液は、基板の上面に供給され、当該基板の上面に接液する。吐出口から吐出される処理液が、吐出口と基板上面との間で液状に繋がっており、処理対象物と処理液の照射部分とが、処理液を介して繋がっている。そのため、基板の上面が正に帯電すると、処理液の照射部分と、正に帯電している基板の上面との間の電位差で、処理液の照射部分からの電子が、基板の上面に接液している処理液に向けて、液状に繋がっている処理液を伝って移動する。これにより、基板の上面に接液している処理液が多量の電子を有するようになるので、正に帯電している基板の上面を除電できる。
 この発明の別の実施形態では、前記基板は、前記基板保持手段によって水平姿勢に保持されており、前記対向配置工程は、前記吐出口を、前記基板保持手段に保持されている基板の下面に対向するように配置する工程を含み、前記基板処理方法は、前記処理液吐出工程に並行して実行され、前記基板を、鉛直な所定の回転軸線まわりに回転させる基板回転工程と、前記処理液吐出工程および前記基板回転工程に並行して、前記基板の上面に処理液を供給する上面処理液供給工程とをさらに含む。
 この方法によれば、吐出口から吐出された処理液は、基板の下面に供給され、当該基板の下面に接液する。基板の下面に接液した処理液は、基板の下面を伝って周縁部へと拡がり、基板の下面の全域に処理液の液膜が形成される。基板の下面の周縁部に至った処理液は、基板の周端面を回り込んで基板の上面の周縁部に至る。
 また、基板の上面に処理液が供給される。基板に供給された処理液は、基板の回転による遠心力を受けて、基板の上面を周縁部に向けて拡がり、これにより、基板の上面の全域に処理液の液膜が形成される。そして、基板下面側から回り込んできた処理液が、基板上面側の処理液の液膜に合流し、その結果、基板上面側の処理液の液膜と、基板下面側の処理液の液膜とが繋がるようになる。
 これにより、基板の上面と基板の下面の双方が、処理液の照射部分を処理液を介して繋がるようになる。ゆえに、基板の上下両面の帯電防止や除電を図ることができる。
 前記処理液吐出工程の終了後に実行される液切り処理または乾燥処理に並行して実行され、前記基板の主面にX線を照射する第2X線照射工程をさらに含んでいてもよい。
 この方法によれば、液切り処理または乾燥処理により、基板の主面から処理液が除去される。処理液が除去された直後の基板の主面にX線が照射される。これにより、基板の帯電防止および除電を、より一層確実に達成できる。
 この発明の第2の局面は、基板を保持する基板保持手段と、前記基板保持手段に保持されている基板の表面にX線を照射するX線照射手段と、前記基板保持手段に保持されている基板の表面に処理液を供給する処理液供給手段と、基板の表面に対する処理液の供給とX線の照射とが並行して行われるように、前記X線照射手段および前記処理液供給手段を制御する制御手段とを含む、基板処理装置を提供する。
 この構成によれば、基板の表面には、当該表面に接液する処理液の液膜が形成される。処理液の液膜にX線が照射される。処理液の液膜のうちX線が照射される部分では、水分子の励起により当該水分子から電子が放出される結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が形成される。これにより、処理液との接触分離により基板に正電荷が生じた場合であっても、X線の照射により処理液中に発生した電子が、処理液の液膜を介して、基板に発生した正電荷に引っ張られて移動し、当該電荷を打ち消すように作用する。これにより、基板の帯電を抑制することができる。また、リンス処理前から基板が帯電していても、基板の表面に接液する処理液の液膜によって、その帯電した基板を除電することができる。その結果、基板の帯電に起因するデバイス破壊を防止することができる。
 また、X線の照射によって処理液の液性は変化しないので、炭酸水等の酸性の処理液を用いて基板を処理する場合とは異なり、デバイスに悪影響を与えるおそれがない。
 この発明の一実施形態では、前記X線照射手段は、照射窓を有し、X線を発生させるとともに、発生したX線を前記照射窓から照射するX線発生器を備えている。
 この構成によれば、X線発生器によって発生されたX線が、X線発生器の照射窓から基板の表面に照射される。
 前記基板処理装置は、前記X線発生器の周囲を、間隔を空けて取り囲むカバーをさらに含み、前記カバーには、前記照射窓に対向する部分に開口が形成されている。
 この構成によれば、X線発生器の周囲の雰囲気に水分が多く含まれていると、X線を発生させる際に高電圧がリークするおそれがある。そのため、X線発生器の周囲に水分が侵入するのを防止するために、X線発生器の周囲をカバーで覆っている。この場合、カバーにおける照射窓と対向する部分に開口を有し、照射窓からのX線を、開口を介して基板の表面に導いている。これにより、X線発生器からのX線の照射を阻害することなく、X線発生器の周囲の雰囲気に水分が進入するのを抑制することができる。
 この場合、前記基板処理装置は、前記カバーの内部に気体を供給する気体供給手段をさらに含むことが好ましい。カバーに開口が形成されていると、水分を多く含む、カバー外の雰囲気が、開口を介してカバー内に進入するおそれがある。
 この構成によれば、カバー内に気体が供給されることにより、X線発生器とカバーとの間の空間に、開口に至る気流が形成される。そのため、カバー外の雰囲気が、開口を介してカバー内に進入するのを抑制または防止することができる。気体供給手段からカバーの内部に供給される気体は、たとえばCDA(低湿度の清浄空気)や窒素ガスがある。
 前記気体供給手段は、常温よりも高温の気体を供給してもよい。
 この構成によれば、カバー内に供給される高温の気体は、X線発生器とカバーとの間の空間を通って照射窓の外表面に達する。高温の気体により、照射窓の外表面に付着する水滴を蒸発により除去することができ、これにより、照射窓が曇るのを抑制または防止することができる。
 前記照射窓の外表面は、皮膜によりコーティングされていてもよい。これにより、照射窓を保護することができる。とくに、耐酸性の劣るベリリウムを用いて照射窓が形成されている場合、この照射窓を酸性の処理液から良好に守ることができる。
 この皮膜は、撥水性材料を用いて形成されていることが好ましい。この場合、照射窓全面に水分が膜状に析出するのを防止して水分を微細な水滴にする。照射窓の外表面に付着する水滴は、当該外表面を移動し易い状態である。そのため、照射窓の外表面から水滴を容易に排除させることができ、これにより、照射窓が曇るのを抑制または防止することができる。
 とくに、前記基板処理装置は、前記照射窓の外表面による前記皮膜によるコーティングと、前記気体供給手段との双方を含むことが好ましい。照射窓の外表面に付着する水滴は当該外表面を移動し易い状態であるので、照射窓の外表面に付着している水滴は、当該空間に形成された気流を受けて移動する。これにより、照射窓の外表面から良好に水滴を排除することができ、照射窓が曇るのを確実に防止することができる。
 前記皮膜は、ポリイミド樹脂の皮膜であってもよい。
 また、前記皮膜は、ダイヤモンドライクカーボンの皮膜であってもよい。
 さらに、前記皮膜は、アモルファスフッ素樹脂の皮膜であってもよい。
 前記カバーにおける前記開口の周囲および前記照射窓の少なくとも一方に、発熱部材が配設されていることが好ましい。
 この構成によれば、発熱部材により、X線発生器の照射窓の周囲が加熱される。そのため、照射窓の外表面に付着する水滴を蒸発により除去することができ、これにより、照射窓が曇るのを抑制または防止することができる。
 前記基板処理装置は、前記基板保持手段に保持される基板の表面に対向配置され、当該基板の表面上の空間をその周囲から遮蔽するための遮蔽部材をさらに含んでいてもよい。前記遮蔽部材は、前記照射窓から照射されたX線を当該基板の表面上の空間に留めておくためのものである。
 この構成によれば、照射窓から照射されたX線が、基板の表面上の空間に留められる。そのため、照射窓から照射されたX線が基板の周囲に散乱するのを抑制または防止することができる。これにより、基板処理装置の安全性を高めることができる。
 前記遮蔽部材は、前記カバーと一体移動可能に設けられていてもよい。
 前記基板処理装置は、前記X線照射手段を、前記基板保持手段によって保持された基板の表面に沿って移動させる移動手段をさらに含む。
 この構成によれば、X線照射手段を基板の表面に対向させつつ、X線照射手段からX線を照射するとともに、X線照射手段を基板の表面に沿って移動させる。これにより、電離された処理液を基板の表面の全域に供給することができる。これにより、基板の全域で、基板を除電することができる。
 また、前記処理液は水であってもよい。
 この発明の第2の局面は、基板保持手段に保持された基板の表面に処理液を供給する処理液供給工程と、前記処理液供給工程と並行して、前記基板保持手段に保持された基板の表面にX線を照射するX線照射工程とを含む、基板処理方法を提供する。
 この発明の方法によれば、基板の表面には、当該表面に接液する処理液の液膜が形成される。処理液の液膜にX線が照射される。処理液の液膜のうちX線が照射される部分では、水分子の励起により当該水分子から電子が放出される結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が形成される。これにより、処理液との接触分離により基板に正電荷が生じた場合であっても、X線の照射により処理液中に発生した電子が、処理液の液膜を介して、基板に発生した正電荷に引っ張られて移動し、当該電荷を打ち消すように作用する。これにより、基板の帯電を抑制することができる。また、リンス処理前から基板が帯電していても、基板の表面に接液する処理液の液膜によって、その帯電した基板を除電することができる。その結果、基板の帯電に起因するデバイス破壊を防止することができる。
 この発明の第3の局面は、処理液中に処理対象物を浸漬して処理を行う処理液処理装置であって、処理液を貯留し、その処理液中に処理対象物を浸漬させる処理槽と、前記処理槽に貯留された処理液、または処理液が内部を流通可能な配管であって、当該内部が前記処理槽内に連通する配管内に存在する処理液に、X線を照射するX線照射手段とを含む、処理液処理装置である。
 この構成によれば、処理槽に貯留されている処理液、または内部が前記処理槽内に連通する配管内に存在している処理液にX線が照射される。当該処理液のうちX線が照射される部分(処理液の照射部分)では、水分子の励起により当該水分子から電子が放出され、その結果、水分子の正イオンと電子とが混在するプラズマ状態が形成される。
 処理槽に貯留されている処理液にX線が照射される場合、処理槽に貯留されている処理液に浸漬されている処理対象物と処理液の照射部分とが、処理槽に貯留されている処理液を介して繋がっている。このとき、処理対象物が正に帯電すると、処理液の照射部分と、正に帯電している処理対象物との間の電位差で、処理液の照射部分からの電子が処理対象物に向けて、処理槽に貯留されている処理液を介して移動する。これにより、処理対象物に多量の電子が供給される結果、正に帯電している処理対象物が除電される。一方、処理対象物が負に帯電すると、処理対象物からの電子が、処理液の照射部分の正イオンに向けて、処理槽に貯留されている処理液を介して移動する。これにより、処理対象物から電子が除去される結果、負に帯電している処理対象物が除電される。
 また、配管内に存在している処理液にX線が照射される場合、処理槽に貯留されている処理液に浸漬されている処理対象物と処理液の照射部分とが、処理槽に貯留されている処理液および配管内の処理液を介して繋がっている。このとき、処理対象物が正に帯電すると、処理液の照射部分と、正に帯電している処理対象物との間の電位差で、処理液の照射部分からの電子が処理対象物に向けて、処理槽に貯留されている処理液および配管内の処理液を介して移動する。これにより、処理対象物に多量の電子が供給される結果、正に帯電している処理対象物が除電される。一方、処理対象物が負に帯電すると、処理対象物からの電子が、処理液の照射部分の正イオンに向けて、処理槽に貯留されている処理液および配管内の処理液を介して移動する。これにより、処理対象物から電子が除去される結果、負に帯電している処理対象物が除電される。
 また、処理液への浸漬の前から処理対象物が正または負に帯電している場合にも、前述した原理により、処理槽内の処理液や配管内の処理液を介して、当該処理対象物を除電できる。
 この発明の一実施形態では、前記配管の管壁または前記処理槽の壁は、開口を有し、前記開口は、X線が透過可能な材料を用いて形成された窓部材にて閉塞されており、前記X線照射手段は、前記窓部材を介してX線を照射する。
 この構成によれば、X線が透過可能な材料を用いて、窓部材が形成されている。そして、X線照射手段から照射されたX線は、窓部材を介して、前記配管内に存在する処理液に照射される。これにより、処理液の照射部分において、水分子の正イオンと電子とが混在するプラズマ状態を、良好に形成できる。
 この場合、前記窓部材は、ベリリウムまたはポリイミド樹脂を用いて形成されていてもよい。
 ベリリウムのような原子量の小さい物質であれば、透過力の弱いX線でも透過できる。したがって、ベリリウムを用いて窓部材を形成することにより、X線が窓部材を透過することが可能である。
 また、窓部材がポリイミド樹脂を用いて形成される場合、窓部材にX線を透過させることができる。また、ポリイミド樹脂は化学安定性に優れているので、窓部材の長期にわたる使用が可能である。
 また、窓部材における処理液が存在する側の壁面は、親水性であることが好ましい。この場合、当該壁面と処理液との間に気泡が混入するのを、抑制または防止することができる。これにより、配管に存在する処理液に対してX線を良好に照射することができる。
 前記窓部材における処理液が存在する側の壁面は、皮膜によりコーティングされていてもよい。これにより、照射窓を保護することができる。とくに、窓部材が耐酸性の劣るベリリウムを用いて形成されている場合、窓部材を酸性の処理液から良好に守ることができる。
 この皮膜は、親水性材料を用いて形成されていることが好ましい。この場合、当該皮膜と処理液との間に気泡が混入するのを、抑制または防止することができる。これにより、配管に存在する処理液に対してX線を良好に照射することができる。
 この場合、前記皮膜は、ポリイミド樹脂、ダイヤモンドライクカーボン、フッ素樹脂および炭化水素樹脂のうちの1つ以上の材質を含む皮膜であってもよい。
 前記X線照射手段は、前記窓部材に対向して配置される照射窓を有し、X線を発生するとともに、発生したX線を前記照射窓から照射するX線発生器を含んでいてもよい。
 この構成によれば、X線発生器によって発生されたX線が、X線発生器の照射窓から配管内を流通している処理液に照射される。
 前記X線照射手段は、前記X線発生器の周囲を、当該X線発生器と間隔を空けて取り囲むカバーと、前記カバーの内部に気体を供給する気体供給手段とをさらに含んでいてもよい。
 この構成によれば、X線発生器の駆動により当該X線発生器が発熱するおそれがある。カバー内に気体を供給することにより、X線発生器を冷却し、X線発生器の周囲雰囲気の昇温を抑制することができる。
 この発明の一実施形態では、前記配管は、前記処理槽内と連通し、前記処理槽内に処理液を供給するための処理液供給配管を含み、前記X線照射手段は、前記処理液供給配管を流通している処理液に前記X線を照射してもよい。
 また、この発明の別の実施形態では、前記処理槽は、処理液を貯留し、その処理液中に処理対象物を浸漬させる内槽と、前記内槽から溢れる処理液を回収する外槽とを含み、前記配管は、前記外槽に回収された処理液が流通するオーバーフロー配管を含み、前記X線照射手段は、前記オーバーフロー配管内を流通している処理液に前記X線を照射してもよい。
 この発明のさらに別の実施形態では、前記処理槽は、処理液を貯留し、その処理液中に処理対象物を浸漬させる内槽と、前記内槽から溢れる処理液を回収する外槽とを含み、前記X線照射手段は、前記内槽に貯留されている処理液に前記X線を照射してもよい。
 この発明のさらに別の実施形態では、前記処理槽は、処理液を貯留し、その処理液中に処理対象物を浸漬させる内槽と、前記内槽から溢れる処理液を回収する外槽とを含み、前記配管は、前記内槽内に内部が連通する配管を含んでいてもよい。
 この発明の第3の局面は、処理槽に貯留された処理液中に処理対象物を浸漬させる処理対象物浸漬工程と、前記処理対象物浸漬工程に並行して、前記処理槽に貯留された処理液、または処理液が内部を流通可能な配管であって、当該内部が前記処理槽内に連通する配管内に存在する処理液に、X線を照射するX線照射工程とを含む、処理液処理方法である。
 この方法によれば、処理槽に貯留されている処理液、または内部が前記処理槽内に連通する配管内に存在している処理液にX線が照射される。当該処理液のうちX線が照射される部分(処理液の照射部分)では、水分子の励起により当該水分子から電子が放出され、その結果、水分子の正イオンと電子とが混在するプラズマ状態が形成される。
 処理槽に貯留されている処理液にX線が照射される場合、処理槽に貯留されている処理液に浸漬されている処理対象物と処理液の照射部分とが、処理槽に貯留されている処理液を介して繋がっている。このとき、処理対象物が正に帯電すると、処理液の照射部分と、正に帯電している処理対象物との間の電位差で、処理液の照射部分からの電子が処理対象物に向けて、処理槽に貯留されている処理液を介して移動する。これにより、処理対象物に多量の電子が供給される結果、正に帯電している処理対象物が除電される。一方、処理対象物が負に帯電すると、処理対象物からの電子が、処理液の照射部分の正イオンに向けて、処理槽に貯留されている処理液を介して移動する。これにより、処理対象物から電子が除去される結果、負に帯電している処理対象物が除電される。
 また、配管内に存在している処理液にX線が照射される場合、処理槽に貯留されている処理液に浸漬されている処理対象物と処理液の照射部分とが、処理槽に貯留されている処理液および配管内の処理液を介して繋がっている。このとき、処理対象物が正に帯電すると、処理液の照射部分と、正に帯電している処理対象物との間の電位差で、処理液の照射部分からの電子が処理対象物に向けて、処理槽に貯留されている処理液および配管内の処理液を介して移動する。これにより、処理対象物に多量の電子が供給される結果、正に帯電している処理対象物が除電される。一方、処理対象物が負に帯電すると、処理対象物からの電子が、処理液の照射部分の正イオンに向けて、処理槽に貯留されている処理液および配管内の処理液を介して移動する。これにより、処理対象物から電子が除去される結果、負に帯電している処理対象物が除電される。
 また、処理液への浸漬の前から処理対象物が正または負に帯電している場合にも、前述した原理により、処理槽内の処理液や配管内の処理液を介して、当該処理対象物を除電できる。
 この発明の第4の局面は、処理槽に貯留された処理液中に処理対象物を浸漬して処理を行うための処理液処理方法であって、前記処理槽に貯留された処理液中に処理対象物を浸漬させる処理対象物浸漬工程と、前記処理対象物浸漬工程に並行して、前記処理槽内に向けて吐出口から処理液を吐出させる処理液吐出工程と、前記処理液吐出工程に並行して、前記吐出口に連通する配管の内部に存在する処理液にX線を照射するX線照射工程とを含み、前記処理液吐出工程では、前記吐出口と前記処理槽に溜められている処理液の液面との間で処理液が液状に繋がっている、処理液処理方法である。
 この方法によれば、配管内に存在している処理液にX線が照射される。また、配管の内部に連通する吐出口から吐出された処理液が処理対象物に供給される。処理液のうちX線が照射される部分では、水分子の励起により当該水分子から電子が放出され、その結果、水分子の正イオンと電子とが混在するプラズマ状態が形成される。
 吐出口から吐出される処理液は、処理液の液面との間で液状に繋がっている。この場合、処理対象物と処理液の照射部分とが、処理液を介して繋がるようになる。
 このとき、処理対象物が正に帯電すると、処理液の照射部分と、正に帯電している処理対象物との間の電位差で、処理液の照射部分からの電子が処理対象物に向けて、液状に繋がっている処理液および処理槽に貯留されている処理液を介して移動する。これにより、処理対象物に多量の電子が供給される結果、正に帯電している処理対象物が除電される。一方、処理対象物が負に帯電すると、処理対象物からの電子が、処理液の照射部分の正イオンに向けて、液状に繋がっている処理液および処理槽に貯留されている処理液を介して移動する。これにより、処理対象物から電子が除去される結果、負に帯電している処理対象物が除電される。
 以上により、処理対象物の帯電防止または除電を図りつつ、当該処理対象物に、処理液を用いた処理を施すことができる。
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
本発明の第1実施形態に係る基板処理装置の構成を示す図である。 図1に示す一体型ヘッドの図解的な縦断面図である。 図1に示す基板処理装置の電気的構成を示すブロック図である。 図1に示す基板処理装置において実行される処理例を示す工程図である。 水ノズル内への軟X線の照射状態を示す図解的な断面図である。 基板にリンス処理を施している状態を示す図である。 図4に示す処理例の変形例を説明するためのフローチャートである。 本発明の第2実施形態に係る一体型ヘッドの構成を模式的に示す図である。 図8の切断面線IX-IXから見た断面図である。 本発明の第3実施形態に係る一体型ヘッドの構成を説明するための図である。 本発明の第4実施形態に係る基板処理装置の構成を示す図である。 本発明の第5実施形態に係る基板処理装置の構成を示す図である。 本発明の第5実施形態における処理液の吐出について説明する図である。 本発明の第6実施形態に係る基板処理装置の構成を示す図である。 本発明の第7実施形態に係る基板処理装置の構成を示す図である。 本発明の第8実施形態に係る基板処理装置の構成を示す図である。 本発明の第9実施形態に係る基板処理装置の構成を示す図である。 本発明の第10実施形態に係る基板処理装置の構成を示す図である。 図18に示す基板処理装置において、リンス処理時のDIWの流れを示す図である。 本発明の第11実施形態に係る基板処理装置の構成を示す図である。 図20に示す水供給ユニットがカップ上部の傾斜部にDIWを供給している状態を示す図である。 本発明の第12実施形態に係る基板処理装置の構成を示す図である。 図22に示す水供給ユニットが外筒部にDIWを供給している状態を示す図である。 本発明の第13実施形態に係る基板処理装置の構成を示す図解的な斜視図である。 図24に示すコロ搬送ユニットの構成を示す斜視図である。 図24に示す水供給ユニットが基板にDIWを供給している状態を示す断面図である。 図24に示す軟X線照射装置が、基板の上面に軟X線を照射している状態を示す断面図である。 本発明の第14実施形態に係る基板処理装置の構成を示す図である。 図28に示す基板収容器の構成を示す斜視図である。 除電試験に用いられる試験装置を説明するための図である。 本発明の第15実施形態に係る基板処理装置の構成を示す図である。 図31に示す軟X線照射ヘッドの図解的な縦断面図である。 図31に示す軟X線照射ヘッドの移動を示す平面図である。 図31に示す基板処理装置の電気的構成を示すブロック図である。 図31に示す基板処理装置において実行される処理例を示す工程図である。 リンス処理を説明するための図解的な図である。 リンス処理における基板の表面近傍の状態を示す図解的な図である。 試験に用いられる試験装置を説明するための図である。 本発明の第16実施形態に係る基板処理装置の構成を模式的に示す図である。 本発明の第17実施形態に係る基板処理装置の構成を模式的に示す図である。 本発明の第18実施形態に係る基板処理装置の構成を模式的に示す図である。 本発明の変形例を示す図である(その1)。 本発明の変形例を示す図である(その2)。 本発明の第19実施形態に係る処理液処理装置が適用された基板処理装置の構成を示す図である。 図44に示す分岐配管および軟X線照射ユニットの構成をそれぞれ示す図解的な断面図である。 図44に示す基板処理装置において実行される基板処理の処理例を示す工程図である。 図44に示す分岐配管内への軟X線の照射状態を示す図解図である。 本発明の第20実施形態に係る処理液処理装置が適用された基板処理装置の構成を示す図である。 処理液が内槽の上端部からオーバーフローしている状態を示す模式的な断面図である。 本発明の第21実施形態に係る処理液処理装置が適用された基板処理装置の構成を示す図である。 本発明の第22実施形態に係る処理液処理装置が適用された基板処理装置の構成を示す図である。 本発明の第23実施形態に係る処理液処理装置が適用された基板処理装置の構成を示す図である。 本発明の第24実施形態に係る処理液処理装置が適用された基板処理装置の構成を示す図である。 本発明の第25実施形態に係る処理液処理装置が適用された基板処理装置の構成を示す図である。 本発明の第26実施形態に係る処理液処理装置が適用された物品洗浄装置の構成を示す図である。 本発明の第27実施形態に係る処理液処理装置が適用された物品洗浄装置の構成を示す図である。 図55に示す基板収容器の構成を示す斜視図である。
 図1は、本発明の第1実施形態に係る基板処理装置1の構成を示す図である。
 基板処理装置1は、基板(処理対象物)Wの一例としての円形の半導体ウエハ(シリコンウエハ)の表面(処理対象面)に処理液(薬液および水)による処理を施すために用いられる枚葉式の装置である。この実施形態では、薬液処理後に行われる基板Wのリンスのために水が用いられる。
 基板処理装置1は、隔壁(図示しない)により区画された処理室3内に、基板Wを水平姿勢に保持して回転させるスピンチャック(基板保持回転手段)4と、基板Wの上面(上側の主面。表面)に、水の一例としてのDIW(脱イオン水:deionized water)を供給し、かつ基板Wに供給する前のDIWに軟X線を照射するための水供給ユニット(処理液供給装置)100と、スピンチャック4に保持されている基板Wの上面に薬液を供給するための薬液ノズル7とを備えている。
 スピンチャック4として、たとえば挟持式のものが採用されている。具体的には、スピンチャック4は、スピンモータ8と、このスピンモータ8の駆動軸と一体化されたスピン軸9と、スピン軸9の上端にほぼ水平に取り付けられた円板状のスピンベース10と、スピンベース10の周縁部の複数箇所にほぼ等間隔で設けられた複数個の挟持部材11とを備えている。これにより、スピンチャック4は、複数個の挟持部材11によって基板Wを挟持した状態で、スピンモータ8の回転駆動力によってスピンベース10を回転させることにより、その基板Wを、ほぼ水平な姿勢を保った状態で、スピンベース10とともに鉛直な回転軸線Cまわりに回転させることができる。
 なお、スピンチャック4としては、挟持式のものに限らず、たとえば基板Wの裏面を真空吸着することにより、基板Wを水平な姿勢で保持し、さらにその状態で鉛直な回転軸線まわりに回転することにより、その保持した基板Wを回転させることができる真空吸着式のもの(バキュームチャック)が採用されてもよい。
 スピンチャック4は、カップ(液受け部材)17内に収容されている。カップ17は、カップ下部18と、カップ下部18の上方に昇降可能に設けられたカップ上部19とを備えている。
 カップ下部18は、中心軸線が回転軸線Cと一致する有底円筒状をなしている。カップ下部18の底面には、排気口(図示しない)が形成されており、基板処理装置1の稼働中は、常時、カップ17内の雰囲気が排気口から排気されている。
 カップ上部19は、カップ下部18と中心軸線を共通とする円筒状の円筒部20と、この円筒部20の上端から円筒部20の中心軸線に近づくほど高くなるように傾斜する傾斜部21とを一体的に備えている。カップ上部19には、カップ上部19を昇降(上下動)させるためのカップ昇降ユニット22が結合されている。カップ昇降ユニット22により、カップ上部19は、円筒部20がスピンベース10の側方に配置される位置と、傾斜部21の上端がスピンベース10の下方に配置される位置とに移動される。
 カップ上部19およびカップ下部18は、それぞれ、樹脂材料(たとえばPTFE(poly tetra-fluoro ethylene))を用いて形成されている。
 薬液ノズル7は、たとえば、連続流の状態で薬液を吐出するストレートノズルであり、スピンチャック4の上方で、その吐出口を基板Wの回転中心付近に向けて固定的に配置されている。薬液ノズル7には、薬液供給源からの薬液が供給される薬液供給管15が接続されている。薬液供給管15の途中部には、薬液ノズル7からの薬液の供給/供給停止を切り換えるための薬液バルブ16が介装されている。
 また、薬液ノズル7は、スピンチャック4に対して固定的に配置されている必要はなく、たとえば、カップ17上方において水平面内で揺動可能なアームに取り付けられて、このアームの揺動により基板Wの表面における薬液の着液位置がスキャンされる、いわゆるスキャンノズルの形態が採用されてもよい。
 なお、薬液としては、基板Wの表面に対する処理の内容に応じたものが用いられる。たとえば、基板Wの表面からパーティクルを除去するための洗浄処理を行うときは、APM(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水混合液)などが用いられる。また、基板Wの表面から酸化膜などをエッチングするための洗浄処理を行うときは、フッ酸やBHF(Bufferd HF)、TMAH(水酸化テトラメチルアンモニウム水溶液)などが用いられ、基板Wの表面に形成されたレジスト膜を剥離するレジスト剥離処理や、レジスト剥離後の基板Wの表面にポリマーとなって残留しているレジスト残渣を除去するためのポリマー除去処理を行うときは、SPM(sulfuric acid/hydrogen peroxide mixture:硫酸過酸化水素水混合液)やAPM(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水混合液)などのレジスト剥離液やポリマー除去液が用いられる。金属汚染物を除去する洗浄処理には、フッ酸やHPM(hydrochloric acid/hydrogen peroxide mixture:塩酸過酸化水素水混合液)やSPM(sulfuric acid/hydrogen peroxide mixture:硫酸過酸化水素水混合液)などが用いられる。
 水供給ユニット100は、スピンチャック4の上方に対向して配置された一体型ヘッド6を有している。一体型ヘッド6は、水の一例としてのDIWを吐出するための水ノズル(処理液ノズル)61と、水ノズル61内を流通する水に軟X線を照射するための軟X線照射ユニット(X線照射手段)62とを一体的に備えた構成である。軟X線照射ユニット62は、水ノズル61に取り付けられている。水ノズル61は、たとえば、連続流の状態で薬液を吐出するストレートノズルであり、その吐出口53を下方に向けた状態で配置されている。水ノズル61には、DIW供給源からのDIWが供給される水供給配管13が接続されている。水供給配管13の途中部には、水ノズル61からのDIWの供給/供給停止を切り換えるための水バルブ14が介装されている。軟X線照射ユニット62については後述する。
 図2は、一体型ヘッド6の図解的な縦断面図である。
 一体型ヘッド6の水ノズル61は、鉛直方向に延びる丸管状(円筒状)の第1ノズル配管51を有している。第1ノズル配管51は、たとえば塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。第1ノズル配管51の先端部(下端部)には、丸型の吐出口53が開口している。第1ノズル配管51には、途中部の管壁に、たとえば円形の第1開口52が形成されている。第1ノズル配管51には、第1開口52を塞ぐように軟X線照射ユニット62が取り付けられている。一体型ヘッド6は、スピンチャック4による基板Wの回転軸線Cの上方で、その吐出口53を下方(基板Wの回転中心付近)に向けて固定的に配置されている。
 第1ノズル配管51の先端部には、円環状の電極56が外嵌固定されている。この電極56には、電源57(図3参照)によって装置グラウンドに対する電圧が印加され、これによって電極56付近を通過する処理液に対して電界が印加されるようになっている。
 軟X線照射ユニット62は、軟X線発生器(X線発生器)25と、軟X線発生器25の周囲を取り囲むように覆うたとえば塩ビ(poly-vinyl-chloride)製のカバー26と、カバー26の内部に気体を供給するための気体ノズル(気体供給手段)27とを備え、横向きに軟X線を照射する。カバー26は、軟X線発生器25の周囲を、軟X線発生器25と間隔を空けて取り囲む横長の矩形箱状のものであり、鉛直板状の横壁26Aにおいて、軟X線発生器25の次に述べる照射窓35に対向する部分に、第1開口52と同径を有するたとえば円形の第2開口28を形成している。軟X線照射ユニット62は、カバー26の第2開口28が、第1ノズル配管51の第1開口52に一致し、かつ横壁26Aが第1ノズル配管51の外周に密着するように、ノズル配管51に取り付けられる。
 第2開口28は、円板状の窓部材71によって閉塞されている。窓部材71は、カバー26の内側から第2開口28を閉塞する。窓部材71により、第2開口28だけでなく、第1開口52も閉塞される。窓部材71の材料として、透過力の弱い軟X線が透過し易いように原子量の小さい物質が使用され、たとえばベリリウム(Be)が採用されている。窓部材71の厚みは、たとえば0.3mm程度に設定されている。
 軟X線発生器25は、第1ノズル配管51を通る処理液を電離させるために用いられる軟X線を射出(放射)する。軟X線発生器25は、ケース体29と、軟X線を発生させるための左右に長い軟X線管30と、軟X線管30に高電圧を供給する高電圧ユニット31とを備えている。ケース体29は、その内部に、軟X線管30および高電圧ユニット31を収容する横長の矩形筒状のものであり、導電性および熱伝導性を有する材料(たとえばアルミニウム等の金属材料)を用いて形成されている。
 高電圧ユニット31は、たとえば-9.5kVという高電位の駆動電圧を軟X線管30に入力する。高電圧ユニット31には、カバー26に形成された貫通孔42を通してカバー26外に引き出された給電線43を介して電源(図示しない)からの電圧が供給されている。
 軟X線管30は、ガラス製または金属製の円筒形状の真空管からなり、管方向が水平となるように配置されている。軟X線管30の一端部(開口端部。図2に示す左端部)は円形開口41を形成している。軟X線管30の他端部(図2に示す右端部)は閉じており、ステム32となっている。軟X線管30内には、陰極であるフィラメント33と、陽極であるターゲット36とが対向するように配置されている。軟X線管30は、フィラメント33およびフォーカス34を収容している。具体的には、ステム32に、カソードとしてのフィラメント33が配置されている。フィラメント33は、高電圧ユニット31と電気的に接続されている。フィラメント33は円筒状のフォーカス34によって取り囲まれている。
 軟X線管30の開口端部は、鉛直姿勢をなす板状の照射窓35によって閉塞されている。照射窓35はたとえば円板状をなし、銀ロウ付けによって軟X線管30の開口端部の壁面に固定されている。照射窓35の材料として、透過力の弱い軟X線が透過し易いように原子量の小さい物質が使用され、たとえばベリリウム(Be)が採用されている。照射窓35の厚みは、たとえば0.3mm程度に設定されている。照射窓35は、窓部材71の内面71Aに対向して、当該窓部材71と微小の間隔を空けて配置されている。
 照射窓35の内面35Aには、金属製のターゲット36が蒸着によって形成されている。ターゲット36には、タングステン(W)やタンタル(Ta)等の原子量の大きく融点の高い金属が用いられる。
 高電圧ユニット31からの駆動電圧が陰極であるフィラメント33に印加されることにより、フィラメント33が電子を放出する。フィラメント33から放出された電子は、フォーカス34で収束されて電子ビームとなり、ターゲット36に衝突することによって軟X線が発生する。発生した軟X線は照射窓35から横方向(図2に示す左方)に向けて射出(放射)され、窓部材71および第1開口52を通して第1ノズル配管51の内部を照射する。照射窓35からの軟X線の照射角(照射範囲)は、図5に示すように広角(たとえば130°)である。照射窓35から第1ノズル配管51の内部に照射される軟X線は、その波長がたとえば0.13~0.4nmである。
 窓部材71の外表面(閉塞窓における処理液が流通する側の壁面)71Bの全域は、親水性皮膜(皮膜)38によって被覆されている。親水性皮膜38は、たとえばポリイミド樹脂皮膜である。窓部材71の外表面71Bを親水性皮膜38で覆ったのは、耐酸性の劣るベリリウム製の窓部材71を、水等の処理液に含まれる酸から守るためのものである。親水性皮膜38の膜厚は、50μm以下であり、とくに10μm程度であることが好ましい。親水性皮膜38が親水性を有しているので、皮膜38とDIWとの間に気泡が混入するのを、抑制または防止することができる。これにより、照射窓35からの軟X線を、第1ノズル配管51を流通しているDIWに対して良好に照射できる。
 気体ノズル27の吐出口は、カバー26の横壁に開口している。気体ノズル27には気体バルブ(気体供給手段)37を介して気体供給源(図示しない)からの気体が供給されている。気体ノズル27が吐出する気体として、CDA(低湿度の清浄空気)や窒素ガス等の不活性ガスを例示できる。気体ノズル27から吐出された気体は、カバー26の内部に供給される。軟X線発生器25の駆動により当該軟X線発生器25が発熱するおそれがあるが、カバー26の内部に気体を供給することにより、軟X線発生器25を冷却し、軟X線発生器25の周囲雰囲気の昇温を抑制できる。
 図3は、基板処理装置1の電気的構成を示すブロック図である。基板処理装置1は、さらに、マイクロコンピュータを含む構成の制御装置(X線照射制御手段)40を備えている。制御装置40には、カップ昇降ユニット22、スピンモータ8、高電圧ユニット31、薬液バルブ16、水バルブ14、電源57 、気体バルブ37等が制御対象として接続されている。
 なお、カバー26内の熱を逃がすために、基板処理装置1に電源が投入されている間、気体バルブ37は常に開放されている。
 図4は、基板処理装置1において実行される基板Wの処理例を示す工程図である。この処理例では、薬液処理の実行後、リンス処理が実行される。図1、図3および図4を参照しながら、基板処理装置1における基板Wの処理について説明する。
 基板Wの処理に際して、搬送ロボット(図示しない)によって、未処理の基板Wが処理室3内に搬入されて(ステップS1)、その表面を上方に向けた状態でスピンチャック4に受け渡される。
 スピンチャック4に基板Wが保持された後、制御装置40はスピンモータ8を制御して、スピンチャック4による基板Wの回転を開始させる(ステップS2)。基板Wの回転速度が所定の液処理速度(たとえば500rpm)まで上げられ、その後、その液処理速度に維持される。
 基板Wの回転速度が液処理速度に達すると、制御装置40は薬液バルブ16を開いて、薬液ノズル7から基板Wの上面の回転中心に向けて薬液を吐出する。基板上面Wの上面に供給された薬液は、基板Wの回転による遠心力を受けて、基板Wの周縁に向けて流れる(基板Wの全域へと拡がる)。これにより、基板Wの表面の全域に薬液による処理が施される(S3:薬液処理)。
 薬液の供給開始から所定の薬液処理時間が経過すると、制御装置40は薬液バルブ16が閉じ、薬液ノズル7からの薬液の供給を停止する。
 また、制御装置40は水バルブ14を開いて、回転状態にある基板Wの上面の回転中心に向けて、一体型ヘッド6の水ノズル61からDIWを吐出する(ステップS4)。
 水バルブ14を開成してから所定時間(たとえば2秒間)経過すると、軟X線照射タイミングになる。この所定時間は、第1ノズル配管51の内部に十分にDIWが充たされてから、軟X線の照射が開始されるように設けられている。軟X線照射タイミングになると、制御装置40は高電圧ユニット31を制御して、軟X線照射ユニット62の軟X線発生器25に軟X線を発生させて、この軟X線を、照射窓35から窓部材71を介して、第1ノズル配管51の内部に向けて照射させる(ステップS5)。これにより、第1ノズル配管51内を流通しているDIWに、軟X線が照射される。
 図5は、水ノズル61内への軟X線の照射状態を示す図解的な断面図である。
 リンス処理中は、水ノズル61の第1ノズル配管51内を流通しているDIWに軟X線が照射される。また、吐出口53から吐出された処理液が基板Wの上面に供給される。第1ノズル配管51内のDIWのうち軟X線が照射される部分(第1ノズル配管51内の第1開口52に対向する部分。図5に示す網掛け部分。以下、「DIWの照射部分54」という。)では、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、DIWの照射部分54に形成される。
 図6は、基板Wにリンス処理を施している状態を示す図である。
 基板Wの上面に供給されたDIWは、基板Wの回転による遠心力を受けて、基板Wの周縁部に向けて流れる(基板Wの全域へと拡がる)。これにより、基板Wの上面の全域に、当該上面に接液するDIWの液膜63が形成される。DIWの液膜63によって、基板Wの上面に付着している薬液が洗い流される。
 リンス処理中における、水ノズル61に対するDIWの供給流量は、比較的大流量(たとえば0.5~2.0L/min)に設定されている。そのため、水ノズル61の吐出口53から吐出されるDIWの態様が、吐出口53と基板Wの上面のDIWの液膜63との双方に繋がる連続流状をなしており、また、第1ノズル配管51内では、DIWが液密状態にある。このとき、DIWの液膜63とDIWの照射部分54とが、DIWを介して繋がっている。
 図5および図6に示すように、基板Wが正に帯電すると、DIWの照射部分54と、正に帯電している基板Wとの間の電位差で、DIWの照射部分54からの電子が、基板Wの上面のDIWの液膜63に向けて、連続流状のDIWを伝って移動する。これにより、基板Wの上面のDIWの液膜63が多量の電子を有するようになるので、正に帯電している基板Wが除電される。
 これにより、回転状態の基板WにDIWが供給されても、処理液との接触分離による基板の帯電を生じない。したがって、リンス処理時における基板Wの帯電を防止できる。また、リンス処理前から基板Wが帯電していても、その基板Wに帯びた電荷を除去(すなわち、除電)できる。その結果、基板Wの帯電に起因するデバイス破壊を防止できる。
 以上により、基板Wの帯電防止または除電を図りつつ、当該基板Wにリンス処理を施すことができる。
 また、軟X線の照射によってDIWの液性は変化しないので、炭酸水等の酸性の処理液を用いて基板Wを処理する場合とは異なり、基板W上のデバイスに悪影響を与えるおそれがない。
 また、軟X線照射ユニット62による軟X線の照射に併せて、電源57の電極56に対し印加する。この場合、電極56は正電荷に帯電されることが好ましい。この場合、電極56の正電荷によって、軟X線の照射によりDIWの照射部分54中に発生した電子は、電極56側に引っ張られ、電極56のある第1ノズル配管51(水ノズル61)の先端部まで移動するようになる。すなわち、多量の電子を、水ノズル61の吐出口53に向けて引っ張ることができる。これにより、基板W側への電子の移動を促進させることができる。
 図1、図3および図4に示すように、DIWの供給開始から所定のリンス時間が経過すると、制御装置40は、水バルブ14を閉じてDIWを供給停止し(ステップS6)、かつ高電圧ユニット31を制御して、軟X線照射ユニット62の照射窓35からの軟X線の照射を停止させる(ステップS7)。また、制御装置40は、軟X線照射ユニット62からの軟X線の照射停止に併せて、電極56への電界の印加も停止する。
 その後、制御装置40は、スピンモータ8を制御して、基板Wの回転速度をスピンドライ回転速度(たとえば2500rpm)に上昇させる。これにより、リンス処理後の基板Wの上面に付着しているDIWが遠心力で振り切られて乾燥される(S8:スピンドライ(乾燥処理))。
 スピンドライが所定の乾燥時間にわたって行われると、スピンチャック4の回転が停止される。その後、処理済の基板Wが搬送ロボット(図示しない)によって処理室3から搬出される(ステップS9)。
 以上により第1実施形態によれば、水ノズル61の第1ノズル配管51内を流通しているDIWに軟X線が照射される。これにより、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、DIWの照射部分54に形成される。これらの電子が、連続流状のDIWを伝ってDIWの液膜63に移動し、その結果、当該DIWの液膜63が多量の電子を有するようになる。そのため、回転状態の基板WにDIWが供給されても、DIWとの接触分離による基板Wの帯電を生じない。したがって、リンス処理時における基板Wの帯電を防止できる。また、リンス処理前から基板Wが帯電していても、その基板Wに帯びた電荷を除去(すなわち、除電)できる。その結果、基板Wの帯電に起因するデバイス破壊を防止できる。
 また、軟X線の照射によってDIWの液性は変化しないので、炭酸水等の酸性の処理液を用いて基板Wを処理する場合とは異なり、基板W上のデバイスに悪影響を与えるおそれがない。
 図7は、図4に示す処理例の変形例を説明するためのフローチャートである。
 図7に示す変形例では、前述の軟X線照射タイミングになったとき、第1ノズル配管51の第1開口52付近にDIWが存在するときには、軟X線照射ユニット62による軟X線の照射を実行し、第1ノズル配管51の第1開口52付近にDIWが存在しないときには、軟X線照射ユニット62による軟X線の照射を行わない。以下、具体的に説明する。
 図1に二点鎖線で示すように、水供給ユニット100では、水ノズル61の第1ノズル配管51に、第1ノズル配管51内のDIWの存否を所定の水検出位置102で検出するための液検出センサ(処理液検出手段)101が配置されている。水検出位置102は、第1ノズル配管51の流通方向に関し、第1開口(開口、軟X線の照射位置)52(図2参照)と同じ位置かあるいは第1開口52に近い位置に設定されている。
 液検出センサ101は、たとえば静電容量型のセンサによって構成されており、第1ノズル配管51の外周壁(図示しない)に直付け配置または近接配置されている。液検出センサ101は、水検出位置102の周囲の第1ノズル配管51内のDIWの存否を検出し、その検出結果に応じた信号を出力するものである。第1ノズル配管51の第1開口52付近にDIWが存在するとき、DIWが検出され、一方、第1ノズル配管51の第1開口52付近にDIWが存在しないとき、DIWが検出されないことになる。
 また、液検出センサ101として、光学式(例えば発光ダイオードと受光素子を組み合わせ、気体と液体の屈折率差を利用した)センサや導電率センサが採用されても良い。
 前述の軟X線照射タイミングになったとき(ステップS11でYES)、制御装置40は、液検出センサ101の検出出力を参照して、第1開口52付近にDIWがあるか否か(液ありか液なしか)を調べる(ステップS12)。第1開口52付近にDIWがある場合には(ステップS12でYES)、制御装置40は、軟X線照射ユニット62によるX線照射を開始する(ステップS13)。一方、第1開口52付近にDIWが存在しない場合(ステップS12でNO)や、軟X線照射タイミングになっていない場合(ステップS11でNO)には、軟X線照射ユニット62によるX線照射が開始されないまま、その後図7の処理がリターンされる。
 この場合、第1開口52付近にDIWが存在しないときには、第1開口52に対する軟X線の照射が禁止される。これにより、第1ノズル配管51外への軟X線の漏れを抑制または防止できる。
 なお、液検出センサ101は、水供給ユニット100と同等の構成が採用される水供給ユニット230,250,600(図15(a),15(b)、図16、図28参照)においても採用可能である。この場合、図7に示す処理を実行できる。
 図8は、本発明の第2実施形態に係る一体型ヘッド6Aの構成を模式的に示す図である。図9は、図8の切断面線IX-IXから見た断面図である。
 一体型ヘッド6Aが、第1実施形態に係る一体型ヘッド6と共通する部分には、図1~図6の場合と同一の参照符号を付し説明を省略する。一体型ヘッド6Aが一体型ヘッド6と相違する主たる点は、水ノズル61に、先端部が扁平状をなす第1ノズル配管51Aを用いた点である。先端部を除く領域の第1ノズル配管51Aは、第1ノズル配管51と同様、丸管状(円筒状)を有している。また、第1ノズル配管51Aは第1ノズル配管51と同様、鉛直方向に延び、また塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。
 第1ノズル配管51Aの先端部には、その断面略長方形の扁平部151が形成されている。扁平部151は、丸管を熱成形により変形させたものである。一対の平坦壁部152,153間の幅W1はたとえば5~10mm程度に設定されている。一方の平坦壁部152には、第1ノズル配管51Aの途中部には、たとえば円形の第3開口(開口、X線の照射位置)52Aが形成されている。第1ノズル配管51Aには、第3開口52Aを塞ぐように軟X線照射ユニット62が取り付けられている。具体的には、軟X線照射ユニット62は、カバー26Aの第2開口28が、第1ノズル配管51Aの第3開口52Aに一致し、かつ横壁26Aが第1ノズル配管51Aの外周に密着するように、第1ノズル配管51Aに取り付けられている。
 扁平部151の幅W1は、扁平部151にDIWが満たされている状態で、軟X線照射ユニット62の照射窓35から照射される軟X線が、他方の平坦壁部153まで届く程度の幅に設定されている。そのため、軟X線照射ユニット62からの軟X線が、第1ノズル配管51Aの扁平部151を流通するDIWの全てに照射される。これにより、DIWの照射部分54を広範囲に保つことができるから、基板Wの上面のDIWの液膜63に含まれる電子の量を、より一層増やすことができる。これにより、DIWとの接触分離による基板Wの帯電の発生をより確実に抑制することができ、また、リンス処理前から基板Wが帯電していても、その基板Wをより確実に除電できる。
 図10(a),10(b)は、本発明の第3実施形態に係る一体型ヘッド6Bの構成を説明するための図である。図10(a)は、リンス処理中における一体型ヘッド6Bの要部の断面図を示し、図10(b)は、図10(a)を下方から見た図である。
 一体型ヘッド6Bでは、水ノズル61の第1ノズル配管51の吐出口53に
、多数本の紐状繊維を束ねて構成した繊維束(繊維状物質)65が取り付けられている。繊維束65は、第1ノズル配管51の長手方向に沿う中心軸線を有する円柱状をなしている。第1ノズル配管51の吐出口53からの繊維束65の突出長さは、スピンチャック4に保持された基板Wと吐出口53との間の間隔と同程度に設定されている。
 リンス処理時には、第1ノズル配管51の吐出口53から吐出されるDIWは、繊維束65に含まれる多数本の繊維を伝って下方に向けて流れる。繊維束65の先端は、基板Wの上面に形成されるDIWの液膜63に接触し、当該液膜63中を漂っている。繊維束65が、吐出口53からDIWの液膜63までDIWを良好に導くので、吐出口53から吐出されるDIWの態様を、吐出口53とDIWの液膜63との双方に繋がる連続流状に維持し易い。
 そして、吐出口53からのDIWの吐出流量が少流量である場合でも、吐出口53から吐出されるDIWの態様を、前記の連続流状に維持できる。これにより、DIWの消費量を低減しつつ、基板Wの帯電防止や基板Wの除電を図ることができる。なお、リンス処理時において、繊維束65の先端が、液膜63だけでなく、基板Wの上面に接触していてもよい。
 なお、第1ノズル配管51A(図8参照)の先端部に、繊維束65を設けることも可能である。また、水供給ユニット100と同等の構成が採用される水供給ユニット230,250,600(図15(a),15(b)、図16、図28参照)において、第1ノズル配管51の先端部に、繊維束65を設けることも可能である。
 また、第3実施形態において、水ノズル61の第1ノズル配管51の吐出口53に取り付けられる繊維状物質として、多数本の紐状繊維を束ねて構成した繊維束65を例に挙げて説明したが、繊維状物質は、多数本の紐状繊維を束ねて構成するものに限られるものではなく、たとえば1本の太い紐状繊維から構成されていてもよいし、紐状ではなく布状の繊維によって構成されていてもよい。
 図11は、本発明の第4実施形態に係る基板処理装置201の構成を示す図である。
 第4実施形態において、第1実施形態と共通する部分には、図1~図6の場合と同一の参照符号を付し説明を省略する。基板処理装置201では、第1実施形態に係る水供給ユニット100(図1参照)に代えて、ノズルと軟X線照射ユニットとが別個に設けられた水供給ユニット(処理液供給装置)200が設けられている。
 水供給ユニット200は、水ノズル202と、水ノズル202に対し、DIW供給源からのDIW(水の一例)を供給する水供給配管(処理液配管)204と、水供給配管204内に存在しているDIWに軟X線を照射するための軟X線照射ユニット(X線照射手段)203とを含む。軟X線照射ユニット203は、水供給配管204に取り付けられている。
 水ノズル202は、丸管状(円筒状)のノズル配管を有しており、水供給配管204の先端に取り付けられている。水ノズル202は、連続流の状態で液を吐出するストレートノズルによって構成されていて、その吐出口202Aを、基板Wの上面中央部に向けた状態で、処理室3内に固定的に配置されている。水ノズル202は、第1開口52(図2参照)が形成されていない点を除いて、第1実施形態の水ノズル61(図2参照)と同等の構成を採用している。すなわち、水ノズル202のノズル配管の先端部には、円環状の電極56が外嵌固定されており、かつ電極56には、電源57(図3参照)によって装置グラウンドに対する電圧が印加されるようになっている。
 水供給配管204は、丸管状(円筒状)をなしている。水供給配管204は、塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。水供給配管204の途中部の管壁には、開口(図示しない)が形成されている。
 軟X線照射ユニット203は、第1実施形態に係る軟X線照射ユニット62(図2参照)と同等の構成を採用している。軟X線照射ユニット203は、水供給配管204の開口を塞ぐように水供給配管204に取り付けられている。具体的には、軟X線照射ユニット203のカバーの開口(軟X線照射ユニット62のカバー26の第2開口28(図2参照)に相当する開口)が水供給配管204の前記の開口に一致し、かつ軟X線照射ユニット203のカバーの壁面(軟X線照射ユニット62のカバー26の横壁26A(図2参照)に相当)が水供給配管204の外周に密着している。軟X線照射ユニット203の高電圧ユニット(第1実施形態に係る軟X線照射ユニット62の高電圧ユニット31(図2参照)に相当)は、制御装置40(図3参照)に接続されている。
 水供給配管204には、水供給配管204を開閉するための水バルブ205が介装されている。水バルブ205が開かれると、水供給配管204から水ノズル202にDIWが供給され、また、水バルブ205が閉じられると、水供給配管204から水ノズル202へのDIWの供給が停止される。水バルブ205は、制御装置40(図3参照)に接続されている。
 基板処理装置201では、図4に示す処理例の場合と同様の処理が実施される。リンス処理(図4のステップS4~S6)では、制御装置40(図3参照)は、水バルブ205を開く。これにより、水供給配管204を流通するDIWが水ノズル202に供給される。水ノズル202の吐出口202Aから、回転状態にある基板Wの上面の回転中心に向けて、DIWが吐出される。
 また、水バルブ205の開成後所定時間経過して軟X線照射タイミングになると、制御装置40は、軟X線照射ユニット203の高電圧ユニットを制御して、軟X線照射ユニット203の軟X線発生器(第1実施形態に係る軟X線照射ユニット62の軟X線発生器25(図2参照)に相当)に軟X線を発生させて、この軟X線を、水供給配管204の内部に向けて照射させる。これにより、水供給配管204内を流通しているDIWに、軟X線が照射される。
 基板Wの上面に供給されたDIWは、基板Wの回転による遠心力を受けて、基板Wの周縁に向けて流れる(基板Wの全域へと拡がる)。これにより、基板Wの上面の全域にDIWの液膜が形成される。DIWの液膜によって、基板Wの上面に付着している薬液が洗い流される。
 リンス処理中における、水ノズル202に対するDIWの供給流量は、比較的大流量(たとえば0.5~2.0L/min)に設定されている。そのため、水ノズル202の吐出口202Aから吐出されるDIWの態様が、吐出口202Aと基板Wの上面のDIWの液膜との双方に繋がる連続流状の態様をなしている。また、水ノズル202のノズル配管内および水供給配管204内では、DIWが液密状態にある。
 リンス処理中に、水供給配管204内を流通しているDIWに軟X線が照射されると、水供給配管204内におけるDIWの照射部分(図5に示す、第1実施形態に係るDIWの照射部分54と同等の部分)において、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、水供給配管204内におけるDIWの照射部分に形成される。DIWの照射部分は、基板Wの上面に形成されたDIWの液膜と、DIWを介して繋がっている。
 基板Wが正に帯電すると、水供給配管204内におけるDIWの照射部分と、正に帯電している基板Wとの間の電位差で、水供給配管204内におけるDIWの照射部分からの電子が、基板Wの上面のDIWの液膜に向けて、連続流状のDIWを伝って移動する。これにより、基板Wの上面のDIWの液膜が多量の電子を有するようになる。
 以上により、第4実施形態においても、第1実施形態で述べた作用効果と同等の作用効果を奏する。
 図12は、本発明の第5実施形態に係る基板処理装置211の構成を示す図である。
 基板処理装置211が、第4実施形態に係る基板処理装置201と共通する部分には、図11の場合と同一の参照符号を付し説明を省略する。基板処理装置211が基板処理装置201と相違する点は、水ノズル202(図11参照)に代えて、複数の吐出口216を有する水ノズル212を設けた点である。
 水ノズル212は、丸管状(円筒状)のノズル配管からなる本体部213と、本体部213の先端部に、水平方向に並んで配置された複数(図12ではたとえば3つ)の吐出口部215と、本体部213の内部空間と個々の吐出口部215の内部空間とを連通する連通部214とを含む。個々の吐出口部215は、吐出口216を有している。個々の吐出口部215は、連続流の状態で液を吐出するストレートノズルによって構成されている。各吐出口部215には、電極56が外嵌固定されている。水ノズル212は、複数の吐出口216を、基板Wの上面中央部に向けた状態で、処理室3内に固定的に配置されている。水ノズル212の本体部213に、水供給配管204が接続されている。
 リンス処理中は、水ノズル212にDIW(水の一例)が供給され、水ノズル212の各吐出口216から、DIWが吐出される。リンス処理中には、基板Wの上面の全域にDIWの液膜が形成される。また、リンス処理中には、図12に示すように、個々の吐出口216から吐出されるDIWの態様が、吐出口216と基板Wの上面のDIWの液膜との双方に繋がる連続流状の態様をなしている。また、水ノズル212のノズル配管内および水供給配管204内では、DIWが液密状態にある。
 ところで、基板処理装置211では、少なくとも1つの吐出口216から吐出されるDIWの態様が、当該吐出口216と基板Wの上面のDIWの液膜との双方に繋がる連続流状をなしていればよい。換言すると、水ノズル212のノズル配管内と、基板Wの上面のDIWの液膜とが、少なくとも1本の連続流64A(図13参照)によって繋がっていればよい。
 具体的には、図13に示すように、複数の吐出口216のうち1つの吐出口216Aにおいて、当該吐出口216と基板Wの上面のDIWの液膜との双方に繋がる連続流状をなしているが、その他の吐出口216B,216Cでは連続流状をなしていない場合を考える。このとき、吐出口216Bや吐出口216Cからは、DIWが液滴の態様で吐出されているか、あるいはDIWが吐出されていない。
 図13に示すような場合であっても、水ノズル212のノズル配管内と、基板Wの上面のDIWの液膜とが、少なくとも1本の連続流64Aによって繋がっている。そのため、基板Wが正に帯電すると、水供給配管204内におけるDIWの照射部分からの電子が、基板Wの上面のDIWの液膜63に向けて、この1本の連続流64Aを伝って移動する。これにより、基板Wの帯電防止や基板Wの除電を図ることができる。
 図14は、本発明の第6実施形態に係る基板処理装置221の構成を示す図である。
 基板処理装置221が、第4実施形態に係る基板処理装置201と共通する部分には、図11の場合と同一の参照符号を付し説明を省略する。基板処理装置221では、水供給ユニット200に代えて、水供給ユニット(処理液供給装置)220が設けられている。
 水供給ユニット220は、水ノズル202と、水供給配管204と、水供給配管204の途中部から分岐する第1分岐配管(分岐配管)222と、第1分岐配管222内に存在しているDIW(水の一例)に軟X線を照射するための軟X線照射ユニット(X線照射手段)223とを含む。軟X線照射ユニット223は、第1分岐配管222に取り付けられている。すなわち、水供給ユニット220では、水供給配管204ではなく第1分岐配管222に、軟X線照射ユニット223が取り付けられている。
 第1分岐配管222は、水供給配管204において水バルブ205よりも上流側の部分から分岐している。第1分岐配管222は、丸管状(円筒状)をなし、塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。第1分岐配管222の途中部には、第1分岐配管222を開閉するための分岐バルブ225が介装されている。分岐バルブ225は、制御装置40(図3参照)に接続されている。第1分岐配管222には、分岐バルブ225よりも上流側の所定部分の管壁に開口(図示しない)が形成されている。
 第1分岐配管222の下流端には、第1カップ用ノズル224が取り付けられている。第1カップ用ノズル224は、連続流の状態で液を吐出するストレートノズルによって構成されていて、その吐出口(液受け用吐出口)224Aを、カップ上部19の外壁(たとえば傾斜部21の上面)に向けた状態で、処理室3内におけるカップ上部19の上方に、固定的に配置されている。
 軟X線照射ユニット223は、第1実施形態に係る軟X線照射ユニット62(図2参照)と同等の構成を採用している。軟X線照射ユニット223は、第1分岐配管222の開口を塞ぐように第1分岐配管222に取り付けられている。具体的には、軟X線照射ユニット223のカバーの開口(軟X線照射ユニット62のカバー26の第2開口28(図2参照)に相当)が第1分岐配管222の前記の開口に一致し、かつ軟X線照射ユニット223のカバーの壁面(軟X線照射ユニット62のカバー26の横壁26A(図2参照)に相当)が第1分岐配管222の外周に密着している。軟X線照射ユニット223の高電圧ユニット(第1実施形態に係る軟X線照射ユニット62の高電圧ユニット31(図2参照)に相当)は、制御装置40(図3参照)に接続されている。
 分岐バルブ225が閉じられた状態で水バルブ205を開くと、水供給配管204から水ノズル202にDIWが供給されて、水ノズル202の吐出口202AからDIWが吐出される。水バルブ205が閉じられた状態で分岐バルブ225を開くと、第1分岐配管222から第1カップ用ノズル224にDIWが供給されて、第1カップ用ノズル224の吐出口224AからDIWが吐出される。
 ところで、カップ昇降ユニット22によりカップ上部19が昇降するため、カップ17(とくにカップ上部19)が帯電していることが考えられる。そのため、基板Wに対する処理の実行に先立って、カップ上部19を除電する必要がある。
 基板処理装置221では、図4に示す処理例の場合と同様の処理が実施されるが、図4のステップS1の基板Wの搬入に先立って、カップ17に対して除電が行われる。具体的には、制御装置40は、軟X線照射ユニット223の高電圧ユニットを制御して、軟X線照射ユニット223の軟X線発生器(第1実施形態に係る軟X線照射ユニット62の軟X線発生器25(図2参照)に相当)に軟X線を発生させて、この軟X線を、第1分岐配管222の内部に向けて照射させる。これにより、第1分岐配管222に存在しているDIWに、軟X線が照射される。
 また、制御装置40は、水バルブ205を閉じながら分岐バルブ225を開く。これにより、第1分岐配管222を流通するDIWは第1カップ用ノズル224に供給される。第1カップ用ノズル224の吐出口224Aから、カップ上部19の傾斜部21の上面に向けてDIWが吐出される。供給されたDIWは、傾斜部21の上面を伝って下方に向けて流れる。そのため、傾斜部21の上面には、DIWの液膜が形成される。このとき、第1カップ用ノズル224に対するDIWの供給流量は、比較的大流量(たとえば0.5~2.0L/min)に設定されている。そのため、第1カップ用ノズル224の吐出口224Aから吐出されるDIWの態様が、吐出口224Aと傾斜部21の上面のDIWの液膜との双方に繋がる連続流状の態様をなしている。また、第1カップ用ノズル224のノズル配管内および第1分岐配管222内では、DIWが液密状態にある。
 カップ上部19が正に帯電しているときには、第1分岐配管222内におけるDIWの照射部分と、正に帯電しているカップ上部19との間の電位差で、第1分岐配管222内におけるDIWの照射部分からの電子が、傾斜部21の上面のDIWの液膜に向けて、連続流状のDIWを伝って移動する。これにより、傾斜部21の上面のDIWの液膜が多量の電子を有するようになるので、正に帯電しているカップ上部19のうち、DIWの液膜に接する部分が除電される。
 一方、カップ上部19が負に帯電しているときには、カップ上部19からの電子が、第1分岐配管222内におけるDIWの照射部分の正イオンに向けて、連続流状のDIWを伝って移動する。そのため、負に帯電しているカップ上部19のうち、DIWの液膜に接する部分が除電される。
 カップ上部19に対する除電が行われた後、未処理の基板Wが処理室3に搬入され、スピンチャック4に受け渡される。
 スピンチャック4に基板Wが保持された後、制御装置40はスピンモータ8を制御して、スピンチャック4による基板Wの回転を開始させる(図4のステップS2)。基板Wの回転速度が所定の液処理速度(たとえば500rpm)まで上げられ、その後、その液処理速度に維持される。
 リンス処理(図4のステップS4~S6)では、制御装置40(図3参照)は、分岐バルブ225を閉じつつ水バルブ205を開く。
 また、水バルブ205の開成後所定時間経過して軟X線照射タイミングになると、制御装置40は、軟X線照射ユニット223の高電圧ユニットを制御して、軟X線照射ユニット223の軟X線発生器に軟X線を発生させて、この軟X線を、第1分岐配管222の内部に向けて照射させる。これにより、第1分岐配管222内を流通しているDIWに、軟X線が照射される。
 水ノズル202の吐出口202Aから、回転状態にある基板Wの上面の回転中心に向けて、DIWが吐出される。リンス処理中には、基板Wの上面の全域にDIWの液膜が形成される。水ノズル202の吐出口202Aから吐出されるDIWの態様が、吐出口202Aと基板Wの上面のDIWの液膜との双方に繋がる連続流状の態様をなしている。また、水ノズル202のノズル配管内、水供給配管204内および第1分岐配管222内では、DIWが液密状態にある。
 リンス処理中に、第1分岐配管222内に存在しているDIWに軟X線が照射されると、第1分岐配管222内におけるDIWの照射部分(図5に示す、第1実施形態に係るDIWの照射部分54と同等)において、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、第1分岐配管222内におけるDIWの照射部分に形成される。DIWの照射部分は、基板Wの上面に形成されたDIWの液膜と、DIWを介して繋がっている。
 基板Wが正に帯電すると、第1分岐配管222内におけるDIWの照射部分と、正に帯電している基板Wとの間の電位差で、第1分岐配管222内におけるDIWの照射部分からの電子が、基板Wの上面のDIWの液膜に向けて、水供給配管204および連続流状のDIWの双方を伝って移動する。これにより、基板Wの上面のDIWの液膜が多量の電子を有するようになる。
 以上により、第6実施形態では、第1実施形態で述べた作用効果と同等の作用効果に加えて、カップ上部19の除電を良好に行える作用効果を奏することができる。
 また、X線照射ユニット223の窓部材の外表面(窓部材71の外表面71B(図2参照)に相当)から親水性皮膜(親水性皮膜38(図2参照)に相当)が剥がれると、当該窓部材に含まれるベリリウムがDIW等の処理液に溶け出すおそれがある。このような場合であっても、X線照射ユニット223が第1分岐配管222に設けられているので、そのようなベリリウムを含むDIWは、水ノズル202ではなく第1カップ用ノズル224に供給される。これにより、ベリリウムを含むDIWが基板Wに供給されるのを、確実に防止できる。
 第1~第6実施形態では、水ノズル61,202から吐出されるDIW(水の一例)を用いて、リンス処理時における基板Wの帯電防止や除電を図る場合を説明したが、水ノズル61,202から吐出されるDIW(水の一例)を用いて、内部を処理液が流通する第2ノズル配管(第2配管)232,262の除電を図る場合を、次に述べる第7~第9実施形態に係る基板処理装置231,251,261において説明する。
 図15(a),15(b)は、本発明の第7実施形態に係る基板処理装置231の構成を示す図である。
 基板処理装置231が、第1実施形態に係る基板処理装置1と相違する点は、スピンチャック4に保持されている基板Wに処理液を供給するための第2ノズル配管232を備える点、および水供給ユニット230によって第2ノズル配管232に水の一例としてのDIWを供給する点である。水供給ユニット230は、水供給ユニット100(図1参照)と同等の構成を採用しているので、水供給ユニット100の場合と同一の参照符号を付して説明を省略している。図15(a),15(b)には、水供給ユニット230に関連する構成のみを記載し、その他の部分の図示は省略する。図15(a)は、第2ノズル配管232が、次に述べる待機ポッド237に収容された状態を示す断面図であり、図15(b)は、図15(a)の切断面線B-Bから見た断面図である。
 第2ノズル配管232は、水平方向に延びる円筒状の水平部233と、この水平部233の先端から垂下する円筒状の垂下部234とを一体的に備えている。第2ノズル配管232は、塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料によって形成されている。
 第2ノズル配管232の内部には処理液流通路235が形成されている。処理液流通路235は、垂下部234の下端において、吐出口236として円形状に開口している。第2ノズル配管232には、処理液供給源からの処理液(薬液や水)が、処理液バルブ(図示しない)を介して供給されている。この処理液バルブが開かれると、第2ノズル配管232の水平部233の上流端に処理液が供給される。第2ノズル配管232に導入された処理液は、処理液流通路235を流通した後、吐出口236から吐出される。
 第2ノズル配管232は、カップ17(図1参照)の側方でほぼ鉛直に延びた支持軸(図示しない)によって支持されており、この支持軸に回転力を入力して当該支持軸を回動させることにより、スピンチャック4(図1参照)の上方で第2ノズル配管232を揺動させることができる。すなわち、第2ノズル配管232は、スキャンノズルとしての形態を有している。基板W(図1参照)に対する処理液の供給が行われないときには、第2ノズル配管232は、カップ17(図1参照)の側方に設置されたホームポジションに退避している。基板W(図1参照)に対する処理液の供給時には、第2ノズル配管232は、基板Wの上方へと移動させられる。
 図15(a),15(b)に示すように、基板処理装置231は、ホームポジションにある第2ノズル配管232を収容するための樋状の待機ポッド237を含む。待機ポッド237は、第2ノズル配管232の長手方向に沿う断面略矩形のポッド本体238を有している。ポッド本体238の上面には、第2ノズル配管232の長手方向に沿って延びる液溜め溝239が形成されている。液溜め溝239は、長手方向の両端を除く、長手方向の全域に亘って形成されている。液溜め溝239は、断面略U字状をなしている。液溜め溝239の幅および深さは、第2ノズル配管232を収容可能なサイズに設定されている。
 ポッド本体238の長手方向の両端には、それぞれ端壁240が設けられている。各端壁240には、第2ノズル配管232とほぼ整合する丸孔からなる挿通孔241が形成されている。液溜め溝239の底部には、廃液配管242が接続されている。廃液配管242の途中部には、廃液配管242を開閉するための廃液バルブ243が介装されている。第2ノズル配管232がホームポジションにあるときには、第2ノズル配管232が液溜め溝239に収容配置される。このとき、第2ノズル配管232は、両方の端壁240の挿通孔241を挿通している。
 水供給ユニット230の水ノズル61は、その吐出口53を液溜め溝239に向けた状態で、待機ポッド237の上方に固定的に配置されている
 第2ノズル配管232がホームポジションに配置された状態で、廃液バルブ243が閉じられた状態で、水供給ユニット230の水ノズル61からDIWが吐出される。これにより、待機ポッド237の液溜め溝239にDIWが溜められる。そして、液溜め溝239に溜められたDIWによって、第2ノズル配管232(の水平部233)の周方向の全域が浸漬される。
 第2ノズル配管232がホームポジションにある期間(待機時)中は、水ノズル61から吐出されるDIWの吐出は続行される。このときにおける、水ノズル61に対するDIWの供給流量は、比較的大流量(たとえば0.5~2.0L/min)に設定されている。そのため、水ノズル61の吐出口53から吐出されるDIWの態様が、吐出口53と液溜め溝239に溜められたDIWとの双方に繋がる連続流状の態様をなしている。すなわち、吐出口53から吐出されるDIWが、吐出口53と第2ノズル配管232の外周壁との間で液状に繋がっている。第1ノズル配管51内では、DIWが液密状態にある。
 また、第2ノズル配管232がホームポジションにある期間(待機時)中は、水ノズル61(第1ノズル配管51)の内部に、軟X線照射ユニット62からの軟X線が照射される。第1ノズル配管51内に存在しているDIWに軟X線が照射される結果、DIWの照射部分54(図5参照)において、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が形成される。このとき、DIWの照射部分54と、第2ノズル配管232の外周壁に接液しているDIWとが、DIWを介して繋がっている。
 ところで、第2ノズル配管232に対する処理液の供給停止中には、第2ノズル配管232の内部(とくに水平部233)に処理液が残留している。このとき、第2ノズル配管232の外周壁が正または負に帯電すると、誘導帯電により、第2ノズル配管232内の残留処理液までもが、正または負に帯電するおそれがある。このような帯電状態にある処理液が基板Wに供給されると、基板Wまでもが電荷を帯びてしまい、その電荷の放電が生じたときに、基板Wの上面に形成されるデバイスの破壊を生じるおそれがある。
 第2ノズル配管232が正に帯電しているときには、DIWの照射部分54(図5参照)と、正に帯電している第2ノズル配管232の外周壁との間の電位差で、DIWの照射部分54(図5参照)からの電子が第2ノズル配管232の外周壁に向けて、連続流状のDIW、および液溜め溝239に溜められたDIWを伝って移動する。これにより、正に帯電している第2ノズル配管232の外周壁が除電される。
 一方、第2ノズル配管232が負に帯電しているときには、第2ノズル配管232の外周壁からの電子が、DIWの照射部分54(図5参照)の正イオンに向けて、連続流状のDIWを伝って移動する。これにより、負に帯電している第2ノズル配管232が除電される。
 図16は、本発明の第8実施形態に係る基板処理装置251の構成を示す図である。
 基板処理装置251が、第7実施形態に係る基板処理装置231(図15(a),15(b)参照)と相違する点は、液溜め溝239に溜められたDIWに第2ノズル配管232を浸漬するのではなく、水供給ユニット(処理液供給装置)250の水ノズル61の吐出口53からのDIWを、第2ノズル配管232の外周壁に直接供給することにより、第2ノズル配管232を除電するようにした点である。水供給ユニット250は、次に述べる移動ユニット252の構成を除き、水供給ユニット100(図1参照)と同等の構成を採用している。そのため、水供給ユニット100の場合と同一の参照符号を付して説明を省略している。水供給ユニット250では、一体型ヘッド6に、当該一体型ヘッド6を水平方向に移動させるための移動ユニット252が結合されている。移動ユニット252はボールナットやモータを用いて構成されており、制御装置40(図3参照)に制御対象として接続されている。
 第2ノズル配管232がホームポジションにある期間(待機時)中は、制御装置40は、水ノズル61(第1ノズル配管51)にDIW(水の一例)を供給するとともに、水ノズル61(第1ノズル配管51)の内部に軟X線照射ユニット62からの軟X線を照射する。一体型ヘッド6の水ノズル61から吐出されるDIWは、第2ノズル配管232の外周壁に供給され、第2ノズル配管232の外周壁を伝って下方に流れ落ちる。
 このときにおける、水ノズル61に対するDIWの供給流量は、比較的大流量(たとえば0.5~2.0L/min)に設定されている。そのため、水ノズル61の吐出口53から吐出されるDIWの態様が、吐出口53と第2ノズル配管232の外周壁との双方に繋がる連続流状の態様をなしている。第1ノズル配管51内では、DIWが液密状態にある。
 また、第2ノズル配管232がホームポジションにある期間(待機時)中は、水ノズル61(第1ノズル配管51)の内部に、軟X線照射ユニット62からの軟X線が照射される。第1ノズル配管51内に存在しているDIWに軟X線が照射される結果、DIWの照射部分54(図5参照)において、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が形成される。このとき、DIWの照射部分54と、第2ノズル配管232の外周壁に接液しているDIWとが、DIWを介して繋がっている。
 第2ノズル配管232が正に帯電しているときには、DIWの照射部分54(図5参照)と、正に帯電している第2ノズル配管232との間の電位差で、DIWの照射部分54(図5参照)からの電子が、第2ノズル配管232におけるDIWの接液位置に向けて、連続流状のDIWを伝って移動する。これにより、第2ノズル配管232におけるDIWの着液部位が除電される。
 一方、第2ノズル配管232が負に帯電しているときには、第2ノズル配管232からの電子が、DIWの照射部分54(図5参照)の正イオンに向けて、連続流状のDIWを伝って移動する。これにより、第2ノズル配管232におけるDIWの着液部位が除電される。
 そして、制御装置40は、移動ユニット252を制御して、第2ノズル配管232(水平部233)の外周壁におけるDIWの着液部位を、第2ノズル配管232の長手方向に沿って一方向移動または往復移動させる。これにより、除電される第2ノズル配管232の位置を、第2ノズル配管232(水平部233)の長手方向に沿って移動させることができ、ゆえに、第2ノズル配管232(水平部233)の外周壁の略全域を良好に除電できる。
 図17(a),17(b)は、本発明の第9実施形態に係る基板処理装置261の構成を示す図である。
 基板処理装置261は、第1実施形態に係る水供給ユニット100(図1参照)に代えて水供給ユニット(処理液供給装置)260を備える点で、第1実施形態に係る基板処理装置1(図1参照)と相違しており、その他の構成は、基板処理装置1と共通している。図17(a),17(b)には、水供給ユニット260に関連する構成のみを記載し、その他の部分の図示は省略する。図17(a)は、次に述べる第2ノズル配管262および第3ノズル配管272の縦断面図であり、図17(b)は、図17(a)の切断面線B1-B1から見た断面図である。
 水供給ユニット260は、第2ノズル配管262と、第3ノズル配管272とを備えている。第2ノズル配管262および第3ノズル配管272は、第3ノズル配管272内に第2ノズル配管262が挿通されることにより二重配管構造を形成している。
 第2ノズル配管262は、水平方向に延びる円筒状の水平部263と、この水平部263の先端から垂下する円筒状の垂下部264とを一体的に備えている。第2ノズル配管262は、塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料によって形成されている。
 第2ノズル配管262の内部には処理液流通路265が形成されている。処理液流通路265は、垂下部264の下端において、吐出口266として円形状に開口している。第2ノズル配管262には、処理液供給源からの処理液(薬液または水)が、処理液バルブ(図示しない)を介して供給されている。
 水供給ユニット260は、第4実施形態に係る水供給ユニット200(図11参照)の構成の一部を含む。すなわち、水供給ユニット260は、水供給配管204と、軟X線照射ユニット203と、水バルブ205を含む。水供給配管204が第3ノズル配管272に対し、DIW供給源からのDIW(水の一例)を供給する点を除き、軟X線照射ユニット203および水供給配管204は、第4実施形態で説明した通りの構成であるので、詳細な説明は省略する。
 第3ノズル配管272は、水平方向に延びる円筒状の水平部273と、この水平部273の先端から垂下する円筒状の垂下部274とを一体的に備えている。第3ノズル配管272は、塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料によって形成されている。第3ノズル配管272の水平部273内を、第2ノズル配管262の水平部263が挿通し、第3ノズル配管272の垂下部274の管壁を貫通して、その下流端が第2ノズル配管262の垂下部264に接続されている。第3ノズル配管272の内壁と第2ノズル配管262の外壁との間の空間には、水流通路275が形成されている。水流通路275は、垂下部274の下端において、吐出口276として円環状に開口している。
 基板Wに対して処理液を用いた処理液処理を施す際には、前記の処理液バルブが開かれる。処理液バルブが開かれると、第2ノズル配管262の水平部263の上流端に、処理液が供給される。第2ノズル配管262に導入された処理液は、処理液流通路265を流通した後、吐出口266から吐出される。処理液の供給停止タイミングになると、前記の処理液バルブが閉じられるが、その後、第2ノズル配管262の内部(とくに水平部263)に処理液が残留する。
 基板Wに対してDIWを供給する際には、水バルブ205が開かれる。第3ノズル配管272の水流通路275の上流端に、DIWが供給される。第3ノズル配管272に導入されたDIWは、水流通路275を流通した後、吐出口276から吐出される。DIWの供給停止タイミングになると、水バルブ205が閉じられるが、その後も、第3ノズル配管272の内壁と第2ノズル配管262の外壁との間の空間にDIWが残留する。
 ところで、第2ノズル配管262の外周壁が正または負に帯電すると、誘導帯電により、第2ノズル配管262内の残留処理液までもが、正または負に帯電するおそれがある。このような帯電状態にある処理液が基板Wに供給されると、基板Wまでもが電荷を帯びてしまい、その電荷の放電が生じたときに、基板Wの上面に形成されるデバイスの破壊を生じるおそれがある。
 このような第2ノズル配管262の外周壁の帯電メカニズムとしては、まず、第3ノズル配管272の外周壁が先に帯電し、次いで、第2ノズル配管262の外壁と第3ノズル配管272の内壁との間の残留DIWを介して第2ノズル配管262の外周壁が帯電することが考えられる。
 基板処理装置261では、第3ノズル配管272により基板WにDIWを供給しないとき(つまり、リンス処理時以外)であっても、軟X線照射ユニット203による、水供給配管204の内部への軟X線の照射を続行している。
 このとき、第2ノズル配管262の外壁と第3ノズル配管272の内壁との間に残留するDIWと、水供給配管204内に存在しているDIWとが液密状態で(連続流の形で)繋がっている。
 第3ノズル配管272が正に帯電しているときには、水供給配管204内におけるDIWの照射部分と、正に帯電している第3ノズル配管272との間の電位差で、水供給配管204内におけるDIWの照射部分からの電子が、水供給配管204内のDIWおよび第2ノズル配管262の外壁と第3ノズル配管272の内壁との間に残留するDIWを伝って、第3ノズル配管272に向けて移動する。これにより、正に帯電している第3ノズル配管272が除電される。
 一方、第3ノズル配管272が負に帯電しているときには、第3ノズル配管272からの電子が、水供給配管204内におけるDIWの照射部分の正イオンに向けて、水供給配管204内のDIWおよび第2ノズル配管262の外壁と第3ノズル配管272の内壁との間に残留するDIWを伝って移動する。これにより、第3ノズル配管272が除電される。
 すなわち、第3ノズル配管272の除電が達成されるので、第2ノズル配管262が帯電することがない。
 また、仮に、第2ノズル配管262が正に帯電しているときには、水供給配管204内におけるDIWの照射部分からの電子が、水供給配管204内のDIWおよび第2ノズル配管262の外壁と第3ノズル配管272の内壁との間に残留するDIWを伝って、第2ノズル配管262に向けて移動する。仮に、第2ノズル配管262が負に帯電しているときには、第2ノズル配管262からの電子が、水供給配管204内におけるDIWの照射部分の正イオンに向けて、水供給配管204内のDIWおよび第2ノズル配管262の外壁と第3ノズル配管272の内壁との間に残留するDIWを伝って移動する。つまり、仮に、第2ノズル配管262が帯電したとしても、このように、第2ノズル配管262の除電を達成できる。
 図18は、本発明の第10実施形態に係る基板処理装置301の構成を示す図である。
 第10実施形態において、第1実施形態と共通する部分には、図1~図6の場合と同一の参照符号を付し説明を省略する。基板処理装置301は、基板Wの下面に対してDIW(水の一例)を供給するための水供給ユニット(処理液供給装置)300を備える点、および基板Wの上面に対し、水供給ユニット100(図1参照)に代えて水ノズル302でDIW(水の一例)を供給する点の主に2点において、第1実施形態に係る基板処理装置1(図1参照)と相違している。
 水ノズル302は、連続流の状態で液を吐出するストレートノズルによって構成されていて、その吐出口を、基板Wの上面中央部に向けた状態で、処理室3内に固定的に配置されている。水ノズル302には、DIW供給源からDIWが供給される水供給配管303が接続されている。水供給配管303には、水供給配管303を開閉するための水バルブ304が介装されている。
 基板処理装置301では、スピン軸9は中空軸とされている。スピン軸9の内部には、下側処理液供給管305が非接触状態で挿通されている。
 水供給ユニット300は、下側処理液供給管305と、下側処理液供給管305の上端に取り付けられた下面ノズル306と、下側処理液供給管305に対し、DIW供給源からのDIWを供給する水供給配管(処理液配管)307と、水供給配管307内に存在しているDIWに軟X線を照射するための軟X線照射ユニット(X線照射手段)309とを含む。軟X線照射ユニット309は、水供給配管307に取り付けられている。下面ノズル306は、その吐出口306A(図19参照)が、挟持部材11により支持された基板Wの下面中央部に近接するように配置されている。
 下側処理液供給配管305に、水供給配管307が接続されている。これにより、下側処理液供給配管305から下面ノズル306にDIWを供給して、下面ノズル306の吐出口306A(図19参照)から基板Wの下面中央部に向けてDIWを吐出させることができる。
 水供給配管307は、丸管状(円筒状)をなしている。水供給配管307は、塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。水供給配管307の途中部の管壁には、開口(図示しない)が形成されている。
 軟X線照射ユニット309は、第1実施形態に係る軟X線照射ユニット62(図2参照)と同等の構成を採用している。軟X線照射ユニット309は、水供給配管307の開口を塞ぐように水供給配管307に取り付けられている。具体的には、軟X線照射ユニット309のカバーの開口(軟X線照射ユニット62のカバー26の第2開口28(図2参照)に相当)が水供給配管307の前記の開口に一致し、かつ軟X線照射ユニット309のカバーの壁面(軟X線照射ユニット62のカバー26の横壁26A(図2参照)に相当)が水供給配管307の外周に密着している。軟X線照射ユニット309の高電圧ユニット(第1実施形態に係る軟X線照射ユニット62の高電圧ユニット31(図2参照)に相当)は、制御装置40(図3参照)に接続されている。
 水供給配管307には、水供給配管307を開閉するための水バルブ308が介装されている。水バルブ308は、制御装置40(図3参照)に接続されている。
 基板処理装置301では、図4に示す処理例の場合と同様の処理が実施される。
 リンス処理(図4のステップS4~S6)では、制御装置40(図3参照)は、水バルブ304を開く。これにより、水ノズル302から、基板Wの上面中央部に向けてDIWが吐出される。また、制御装置40(図3参照)は、水バルブ308を開く。これにより、水供給配管307を流通するDIWが下面ノズル306に供給される。下面ノズル306の吐出口306Aから、基板Wの下面中央部に向けて上向きにDIWが吐出される。
 水バルブ308の開成後所定時間経過して軟X線照射タイミングになると、制御装置40は、軟X線照射ユニット309の高電圧ユニットを制御して、軟X線照射ユニット309の軟X線発生器(第1実施形態に係る軟X線照射ユニット62の軟X線発生器25(図2参照)に相当)に軟X線を発生させて、この軟X線を、水供給配管307の内部に向けて照射させる。これにより、水供給配管307内を流通しているDIWに、軟X線が照射される。
 図19は、基板処理装置301におけるリンス処理のDIWの流れを示す図である。
 基板Wの上面中央部に供給されたDIWは、基板Wの回転による遠心力を受けて、基板Wの上面上を、中央部から周縁部に向けて拡がる。これにより、基板Wの上面の全域にDIWの液膜が形成される。DIWの液膜によって、基板Wの上面に付着している薬液が洗い流される。
 一方、基板Wの下面中央部に供給されたDIWは、基板Wの回転による遠心力を受けて、基板Wの下面を伝って回転半径外方側へと拡がり、基板Wの下面周縁部321に至る。そのため、基板Wの下面の全域にDIWの液膜が形成される。このとき、下面周縁部321に達したDIWは、基板Wの周端面322を回り込んで基板Wの上面周縁部323に至る。そして、基板Wの上面を伝ってきたDIWと、基板Wの周端面322から回り込んだDIWとが、図19に示すように、基板Wの上面周縁部323において合流するようになる。そのため、基板Wの上面に形成されるDIWの液膜と、基板Wの下面に形成されるDIWの液膜とが互いに繋がった状態になる。
 リンス処理時における、下面ノズル306に対するDIWの供給流量は、比較的大流量(たとえば0.5~2.0L/min)に設定されている。そのため、下面ノズル306の吐出口306Aから吐出されるDIWの態様が、吐出口306Aと基板Wの下面に形成されるDIWの液膜との双方に繋がる連続流状の態様をなしている。前述のように基板Wの上面に形成されるDIWの液膜と、基板Wの下面に形成されるDIWの液膜が互いに繋がっているので、吐出口306Aから吐出されるDIWが、基板Wの下面に形成されるDIWの液膜だけでなく、基板Wの上面に形成されるDIWの液膜とも液状に繋がっている。また、下面ノズル306のノズル配管内、下側処理液供給管305内、水供給配管307内で、DIWが液密状態にある。
 リンス処理中に、水供給配管307内に存在しているDIWに軟X線が照射されると、水供給配管307内におけるDIWの照射部分(図5に示す、第1実施形態に係るDIWの照射部分54と同等)において、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、水供給配管307内におけるDIWの照射部分に形成される。DIWの照射部分は、基板Wの下面に形成されたDIWの液膜および基板Wの上面に形成されたDIWの液膜と、それぞれ、DIWを介して繋がっている。
 基板Wの下面が正に帯電とすると、水供給配管307内におけるDIWの照射部分と、正に帯電している基板Wとの間の電位差で、水供給配管307内におけるDIWの照射部分からの電子が、基板Wの上面および下面のDIWの液膜に向けて、下側処理液供給管305、水供給配管307および連続流状のDIWを伝って移動する。これにより、基板Wの下面および上面に形成されているDIWの液膜が、それぞれ多量の電子を有するようになる。
 以上により、基板Wの上下両面に同時リンス処理を施す場合において、回転状態の基板Wの上下面にDIWが供給されても、DIWとの接触分離による基板Wの帯電を生じないから、リンス処理時における基板Wの帯電を防止できる。また、リンス処理前から基板Wが帯電していても、その基板Wに帯びた電荷を除去(すなわち、除電)できる。その結果、基板Wの帯電に起因するデバイス破壊を防止できる。
 図20は、本発明の第11実施形態に係る基板処理装置311の構成を示す図である。
 基板処理装置311が、第10実施形態に係る基板処理装置301と共通する部分には、図18の場合と同一の参照符号を付し説明を省略する。基板処理装置311では、水供給ユニット300(図18参照)に代えて、水供給ユニット(処理液供給装置)310が設けられている。また、軟X線照射装置314が、処理室3内に配置されている。第11実施形態では、これらの点が第10実施形態と相違している。
 水供給ユニット310は、下側処理液供給管305と、下面ノズル306と、水供給配管307と、水供給配管307の途中部から分岐する第2分岐配管(分岐配管)312と、第2分岐配管312内に存在しているDIW(水の一例)に軟X線を照射するための軟X線照射ユニット(X線照射手段)319とを含む。軟X線照射ユニット319は、第2分岐配管312に取り付けられている。
 第2分岐配管312は、水供給配管307における水バルブ308よりも上流側の部分から分岐している。第2分岐配管312は、丸管状(円筒状)をなし、塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。第2分岐配管312の途中部には、第2分岐配管312を開閉するための分岐バルブ318が介装されている。分岐バルブ318は、制御装置40(図3参照)に接続されている。第2分岐配管312には、分岐バルブ318よりも上流側の所定部分の管壁に開口(図示しない)が形成されている。
 第2分岐配管312の下流端には、第2カップ用ノズル313が取り付けられている。第2カップ用ノズル313は、連続流の状態で液を吐出するストレートノズルによって構成されていて、その吐出口313A(図21参照。液受け用吐出口)を、カップ上部19の内壁(たとえば傾斜部21の下面)に向けた状態で、たとえばスピンチャック4の外壁に、固定的に配置されている。
 軟X線照射ユニット319は、第1実施形態に係る軟X線照射ユニット62(図2参照)と同等の構成を採用している。軟X線照射ユニット319は、第2分岐配管312の開口を塞ぐように第2分岐配管312に取り付けられている。具体的には、軟X線照射ユニット319のカバーの開口(軟X線照射ユニット62のカバー26の第2開口28(図2参照)に相当)が第2分岐配管312の前記の開口に一致し、かつ軟X線照射ユニット319のカバーの壁面(軟X線照射ユニット62のカバー26の横壁26A(図2参照)に相当)が第2分岐配管312の外周に密着している。軟X線照射ユニット319の高電圧ユニット(第1実施形態に係る軟X線照射ユニット62の高電圧ユニット31(図2参照)に相当)は、制御装置40(図3参照)に接続されている。
 分岐バルブ318が閉じられた状態で水バルブ308を開くと、水供給配管307から、下側処理液供給管305を介して下面ノズル306にDIWが供給されて、下面ノズル306の吐出口306AからDIWが吐出される。水バルブ308が閉じられた状態で分岐バルブ318を開くと、第2分岐配管312から第2カップ用ノズル313にDIWが供給されて、第2カップ用ノズル313の吐出口313AからDIWが吐出される。
 軟X線照射装置314は、照射窓316を有する軟X線発生器315を内蔵している。照射窓316で発生する軟X線が、軟X線照射装置314の外部に射出(放射)されるようになっている。照射窓316からの軟X線の照射角(照射範囲)はたとえば130°であり、照射窓316から照射される軟X線は、その波長がたとえば0.13~0.41nmである。軟X線発生器315は、軟X線照射ユニット309に含まれる軟X線発生器25(図2参照)と同等の構成を採用しており、照射窓316が照射窓35(図2参照)に相当する。軟X線照射装置314は、照射窓316がカップ上部19の傾斜部21の上面に対向するように、カップ上部19の上方に配置されている。
 基板処理装置311では、図4に示す処理例の場合と同様の処理が実施されるが、図4のステップS1の基板Wの搬入に先立って、カップ17に対して除電が行われる。
 第11実施形態は、カップ17に対して除電を行う点で第6実施形態の場合と共通しているが、カップ上部19へのDIWの供給だけでなく、このDIWの供給に並行して軟X線照射装置314から軟X線を照射してカップ17を除電している点で第6実施形態の場合と相違している。
 具体的には、制御装置40は、軟X線照射ユニット319の高電圧ユニットを制御して、軟X線照射ユニット319の軟X線発生器(第1実施形態に係る軟X線照射ユニット62の軟X線発生器25(図2参照)に相当)に軟X線を発生させて、この軟X線を、第2分岐配管312の内部に向けて照射させる。また、制御装置40は、水バルブ308を閉じながら分岐バルブ318を開く。これにより、第2分岐配管312を流通したDIWが第2カップ用ノズル313の吐出口313A(図21参照)から吐出される。
 図21は、図20に示す水供給ユニット310がカップ上部19の傾斜部21にDIWを供給している状態を示す図である。
 図21に示すように、吐出口313Aから吐出されたDIWは、カップ上部19の傾斜部21の下面に供給され、傾斜部21の下面を伝って下方に向けて流れる。そのため、傾斜部21の下面には、DIWの液膜が形成される。
 このとき、第2カップ用ノズル313に対するDIWの供給流量は、比較的大流量(たとえば0.5~2.0L/min)に設定されている。そのため、第2カップ用ノズル313の吐出口313Aから吐出されるDIWの態様が、吐出口313Aと傾斜部21の下面のDIWの液膜との双方に繋がる連続流状の態様をなしている。また、第2カップ用ノズル313のノズル配管内および第2分岐配管312内では、DIWが液密状態にある。
 カップ上部19が正に帯電しているときには、第2分岐配管312内におけるDIWの照射部分と、正に帯電しているカップ上部19との間の電位差で、第2分岐配管312内におけるDIWの照射部分からの電子が、傾斜部21の下面のDIWの液膜に向けて、連続流状のDIWを伝って移動する。これにより、傾斜部21の下面のDIWの液膜が多量の電子を有するようになるので、正に帯電しているカップ上部19のうち、DIWの液膜に接する部分が除電される。
 一方、カップ上部19が負に帯電しているときには、カップ上部19からの電子が、第2分岐配管312内におけるDIWの照射部分の正イオンに向けて、連続流状の処理液を伝って移動する。そのため、負に帯電しているカップ上部19のうち、DIWの液膜に接する部分が除電される。
 また、制御装置40は、軟X線照射装置314の高電圧ユニットを制御して、軟X線照射装置314の軟X線発生器315に軟X線を発生させて、この軟X線を、カップ上部19の傾斜部21の上面に照射させる。カップ上部19の傾斜部21は処理中に基板Wの周囲に配置される部材であるが、軟X線照射装置314からの軟X線の照射により、傾斜部21の帯電防止および除電を達成できる。
 カップ上部19に対する除電が行われた後、未処理の基板Wが処理室3に搬入され、スピンチャック4に受け渡される。
 スピンチャック4に基板Wが保持された後、制御装置40はスピンモータ8を制御して、スピンチャック4による基板Wの回転を開始させる(図4のステップS2)。基板Wの回転速度が所定の液処理速度(たとえば500rpm)まで上げられ、その後、その液処理速度に維持される。
 リンス処理(図4のステップS4~S6)では、制御装置40(図3参照)は、分岐バルブ318を閉じつつ水バルブ308を開く。また、水バルブ308の開成後所定時間経過して軟X線照射タイミングになると、制御装置40は、軟X線照射ユニット319の高電圧ユニットを制御して、軟X線照射ユニット319の軟X線発生器に軟X線を発生させて、この軟X線を、第2分岐配管312の内部に向けて照射させる。これにより、下面ノズル306から、基板Wの下面中央部に向けてDIWが吐出される。
 基板Wの下面中央部に供給されたDIWは、第10実施形態の場合と同様、基板Wの下面を伝って回転半径外方側へと拡がり、基板Wの周端面322(図19参照)を回り込んで基板Wの上面周縁部に至る。そして、基板Wの上面を伝ってきたDIWと、基板Wの周端面322から回り込んだDIWとが、基板Wの上面周縁部において合流し、その結果、基板Wの上面全域に形成されるDIWの液膜と、基板Wの下面全域に形成されるDIWの液膜とが互いに繋がった状態になる。
 また下面ノズル306の吐出口306Aから吐出されるDIWの態様が、吐出口306Aと基板Wの下面に形成されるDIWの液膜との双方に繋がる連続流状の態様をなしている。基板Wの上面に形成されるDIWの液膜と、基板Wの下面に形成されるDIWの液膜が互いに繋がっているので、吐出口306Aから吐出されるDIWが、基板Wの下面に形成されるDIWの液膜だけでなく、基板Wの上面に形成されるDIWの液膜とも液状に繋がっている。また、下面ノズル306のノズル配管内、下側処理液供給管305内、水供給配管307内および第2分岐配管312内で、DIWが液密状態にある。
 リンス処理中に、第2分岐配管312内に存在しているDIWに軟X線が照射されると、第2分岐配管312内におけるDIWの照射部分(図5に示す、第1実施形態に係るDIWの照射部分54と同等)において、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、第2分岐配管312内におけるDIWの照射部分に形成される。DIWの照射部分は、基板Wの下面に形成されたDIWの液膜および基板Wの上面に形成されたDIWの液膜と、それぞれ、DIWを介して繋がっている。
 基板Wが正に帯電すると、第2分岐配管312内におけるDIWの照射部分と、正に帯電している基板Wとの間の電位差で、第2分岐配管312内におけるDIWの照射部分からの電子が、基板Wの上面および下面のDIWの液膜に向けて、下側処理液供給管305、水供給配管307、第2分岐配管312および連続流状のDIWを伝って移動する。これにより、基板Wの上面および下面のDIWの液膜が多量の電子を有するようになる。
 以上により、第11実施形態においても、第10実施形態で述べた作用効果と同等の作用効果に加えて、カップ上部19の除電を良好に行えるという作用効果を奏することができる。
 軟X線照射ユニット319の窓部材の外表面(窓部材71の外表面71B(図2参照)に相当)から親水性皮膜(親水性皮膜38(図2参照)に相当)が剥がれると、当該窓部材に含まれるベリリウムが処理液(たとえば、DIW等の水)に溶け出すおそれがある。このような場合であっても、軟X線照射ユニット319が第2分岐配管312に設けられているので、そのようなベリリウムを含むDIWは、下面ノズル306ではなく第2カップ用ノズル313に供給される。これにより、ベリリウムを含むDIWが基板Wに供給されるのを、確実に防止できる。
 なお、前述の説明では、軟X線照射装置314による軟X線の照射を、基板Wの搬入に先立って実行するものと説明したが、基板Wの搬入前だけでなく、スピンドライ(図4のステップS8)時にも軟X線照射装置314による軟X線の照射を行うようにしてもよい。この場合、基板Wの表面(上面)に軟X線を照射することが好ましく、これにより、処理液が振り切られた直後の基板Wの表面に軟X線が照射されるから、基板Wの帯電防止および除電を、より一層確実に達成できる。
 なお、第11実施形態の構成として、第10実施形態の構成と比較して、第2カップ用ノズル313を含む構成の水供給ユニット310と軟X線照射装置314との2つを設けたが、第10実施形態の構成に加え、水供給ユニット310および軟X線照射装置314の一方のみが設けられた構成であってもよい。
 図22は、本発明の第12実施形態に係る基板処理装置401の構成を示す図である。
 第12実施形態において、第10実施形態と共通する部分には、図18および図19の場合と同一の参照符号を付し説明を省略する。基板処理装置401は、スピンチャック4に代えてスピンチャック(基板保持回転手段)402を備える点、およびスピンチャック402を介して基板Wの下面にDIW(水の一例)を供給する点の主に2点において、第10実施形態に係る基板処理装置301(図18参照)と相違している。基板処理装置401は、水供給ユニット(処理液供給装置)400を備えている。
 スピンチャック402は、挟持式のものである。具体的には、スピンチャック402は、スピンモータ403と、このスピンモータ403の駆動軸と一体化されたスピン軸(支持部材)404と、スピン軸404の上端にほぼ水平に取り付けられた円板状のスピンベース(支持部材)405と、スピンベース405の周縁部の複数箇所にほぼ等間隔で設けられた複数個の挟持部材406とを備えている。
 スピン軸404は、樹脂や鋼材等を用いて形成された内軸部407と、多孔質材料を用いて形成された外筒部408とを含み、内軸部407を外筒部408に挿通した状態で一体化している。すなわち、内軸部407の外周が外筒部408に密着状態で包囲されている。
 スピンベース405は、多孔質材料を用いて形成されている。スピンベース405の下面405Bには、外筒部408の上端面が密着状態で接続されている。
 挟持部材406は鋼材等を用いて形成されている。複数の挟持部材406により基板Wを挟持した状態で、基板Wの下面の全域がスピンベース405の上面に接触するように、挟持部材406の諸元や、スピンベース405の高さ方向の厚みが、それぞれ設定されている。
 スピン軸404の外筒部408やスピンベース405の材質である多孔質材料は、たとえばPVA(polyvinyl alcohol)製のスポンジであり、多数の空孔を有している。多孔質材料の空孔は、DIW(水の一例)が通過可能な大きさ(たとえば、0.05~100μmの径)を有している。そのため、多孔質材料の空孔を介してDIWを通過させることが可能であり、ゆえに、外筒部408の内部やスピンベース405の内部を、DIWを移動させることが可能である。
 なお、多孔質材料の原材料としては、PVAの他に、ウレタン樹脂、フッ素系樹脂(PTFE(poly tetra-fluoro ethylene))、PEEK(polyether-ether-ketone)、PVC(poly-vinyl chloride)、およびPFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)を例示できる。
 水供給ユニット400は、水ノズル409と、水ノズル409に対し、DIW供給源からのDIW(水の一例)を供給する水供給配管(処理液配管)410と、水供給配管410内に存在しているDIWに軟X線を照射するための軟X線照射ユニット(X線照射手段)412とを含む。軟X線照射ユニット412は、水供給配管410に取り付けられている。
 水ノズル409は、丸管状(円筒状)のノズル配管を有しており、水供給配管410の先端に取り付けられている。水ノズル409は、連続流の状態で液を吐出するストレートノズルによって構成されていて、その吐出口409Aを、スピン軸404の外筒部408に向けた状態で、処理室3内に固定的に配置されている。
 水供給配管410は、丸管状(円筒状)をなしている。水供給配管410は、塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。水供給配管410の途中部の管壁には、開口(図示しない)が形成されている。
 軟X線照射ユニット412は、第1実施形態に係る軟X線照射ユニット62(図2参照)と同等の構成を採用している。軟X線照射ユニット412は、水供給配管410の開口を塞ぐように水供給配管410に取り付けられている。具体的には、軟X線照射ユニット412のカバーの開口(軟X線照射ユニット62のカバー26の第2開口28(図2参照)に相当)が水供給配管410の前記の開口に一致し、かつ軟X線照射ユニット412のカバーの壁面(軟X線照射ユニット62のカバー26の横壁26A(図2参照)に相当)が水供給配管410の外周に密着している。軟X線照射ユニット412の高電圧ユニット(第1実施形態に係る軟X線照射ユニット62の高電圧ユニット31(図2参照)に相当)は、制御装置40(図3参照)に接続されている。
 水供給配管410には、水供給配管410を開閉するための水バルブ411が介装されている。水バルブ411は、制御装置40(図3参照)に接続されている。水バルブ411が開かれると、水供給配管410から水ノズル409にDIWが供給され、水バルブ411が閉じられると、水ノズル409へのDIWの供給が停止される。
 図23は、水供給ユニット400が外筒部408にDIWを供給している状態を示す図である。
 基板処理装置401では、図4に示す処理例の場合と同様の処理が実施される。
 リンス処理(図4のステップS4~S6)では、制御装置40(図3参照)は、水バルブ304を開く。これにより、水ノズル302の吐出口302Aから、基板Wの上面中央部に向けてDIWが吐出される。基板Wの上面中央部に供給されたDIWは、基板Wの回転による遠心力を受けて、基板Wの上面上を、中央部から周縁部に向けて拡がる。これにより、基板Wの上面の全域にDIWの液膜が形成される。DIWの液膜によって、基板Wの上面に付着している薬液が洗い流される。
 リンス処理(図4のステップS4~S6)では、制御装置40(図3参照)は、水バルブ304の開成に併せて、水バルブ411を開く。これにより、水供給配管410を流通するDIWが水ノズル409に供給される。水ノズル409の吐出口409Aから、スピン軸404の外筒部408に向けて横向きにDIWが吐出される。
 外筒部408の外周面に供給されたDIWは、外筒部408の内部に浸透し、外筒部408の内部を通って、スピンベース405の下面405Bに供給される。スピンベース405の下面405Bに供給されたDIWは、スピンベース405の内部に浸透し、外筒部408の内部を通って、スピンベース405の上面405Aに供給される。スピンベース405の内部に含浸されているDIWが上面405Aから染み出し、図23に示すように、上面405AにDIWの液膜が形成される。このDIWの液膜が基板Wの下面に接液されることにより、基板Wの下面に付着している薬液がDIWによって洗い流されていく。これにより、基板Wの下面の全域にリンス処理を施すことができる。
 水ノズル409は、その吐出口409Aが、外筒部408の外周面と微小な間隔S1を隔てて配置されている。また、リンス処理中における、水ノズル61に対するDIWの供給流量は、比較的大流量(たとえば0.5~2.0L/min)に設定されている。そのため、水ノズル409の吐出口409Aから吐出されるDIWの態様が、吐出口409Aとスピン軸404の外筒部408の外周面との双方に繋がる連続流状をなしている。そのため、吐出口409Aから吐出されるDIWが、基板Wの下面に形成されるDIWの液膜に液状に繋がっている。また、水ノズル409のノズル配管内および水供給配管410内で、DIWが液密状態にある。
 水バルブ411の開成後所定時間経過して軟X線照射タイミングになると、制御装置40は、軟X線照射ユニット412の高電圧ユニットを制御して、軟X線照射ユニット412の軟X線発生器(第1実施形態に係る軟X線照射ユニット62の軟X線発生器25(図2参照)に相当)に軟X線を発生させて、この軟X線を、水供給配管410の内部に向けて照射させる。これにより、水供給配管410内を流通しているDIWに、軟X線が照射される。
 リンス処理中に、水供給配管410内を流通しているDIWに軟X線が照射されると、水供給配管410内におけるDIWの照射部分(図5に示す、第1実施形態に係るDIWの照射部分54と同等)において、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、水供給配管410内におけるDIWの照射部分に形成される。DIWの照射部分は、基板Wの下面に形成されたDIWの液膜と、DIWを介して繋がっている。
 基板Wの下面が正に帯電しているとすると、水供給配管410内におけるDIWの照射部分と、正に帯電している基板Wの下面との間の電位差で、水供給配管410内におけるDIWの照射部分からの電子が、基板Wの下面に接液しているDIWの液膜に向けて、連続流状のDIWを伝って移動する。これにより、基板Wの下面に接液しているDIWの液膜が多量の電子を有するようになる。
 以上により、第12実施形態においても、第10実施形態で述べた作用効果と同等の作用効果を奏する。
 以上、第1~第12実施形態では、本発明を、円形の基板Wを処理するための枚葉型の基板処理装置1,201,211,221,231,251,261,301,311,401に適用する場合を例に挙げて説明したが、本発明は、角形(シート状)の基板を処理するための基板搬送型の基板処理装置に本発明を適用することもできる。
 図24は、本発明の第13実施形態に係る基板処理装置501の構成を示す図解的な斜視図である。基板処理装置501は、基板Wの一例としての角形の液晶表示装置用ガラス基板の表面(処理対象面)を、水等の処理液を用いて洗浄するために用いられる装置である。処理対象となる角形の基板Wの一辺の長さは、例えば数十cm~2m程度の範囲であり、その板厚は0.5~1.2mm程度である。
 以下、次に述べる、基板Wの搬送方向に沿う水平方向をX方向とし、X方向に直交する水平方向をY方向とし、上下方向をZ方向とする。
 基板処理装置501は、基板WをX方向に沿って搬送するためのコロ搬送ユニット504(基板保持搬送手段)と、コロ搬送ユニット504によって搬送されている基板Wの表面に処理液としてのDIW(水の一例)を供給する水供給ユニット(処理液供給装置)500と、コロ搬送ユニット504によって搬送されている基板Wの表面に不活性ガスの一例としての窒素ガスを吹き付けるガスナイフノズル519と、コロ搬送ユニット504によって搬送されている基板Wの表面に軟X線を照射する軟X線照射装置512とを含む。
 基板処理装置501は、基板Wの表面にDIWを供給して、基板Wの表面に洗浄処理を施すための洗浄処理室502と、基板Wの表面に付着したDIWを液切りする液切り処理を施すための液切り室503とを含む。洗浄処理室502および液切り室503は、互いに隣接して配置されている。洗浄処理室502内には、コロ搬送ユニット504の上方に、供給ユニット500が配置されている。液切り室503内には、コロ搬送ユニット504の上方に、ガスナイフノズル519および軟X線照射装置512が搬送方向にこの順で配置されている。
 コロ搬送ユニット504は、洗浄処理室502の内部空間と、液切り室503の内部空間との間を跨るように、左右方向に延びた状態で配置されている。洗浄処理室502の上流側の側壁に形成された基板搬入口523から搬入された基板Wは、コロ搬送ユニット504により搬送させられ、洗浄処理室502と液切り室503とを仕切る仕切り壁521に形成された基板通過口522を介して、液切り室503に移される。そして、コロ搬送ユニット504により液切り室503内を搬送させられ、液切り室503の下流側の側壁に形成された基板搬出口524から搬出させられる。
 基板Wは、その表面を上方に向けてコロ搬送ユニット504上に載置される。基板WをX方向に沿って搬送することにより、基板Wの表面が、水供給位置P1および不活性ガス噴射位置P2によって順次走査される。これにより、基板Wの表面において、まずDIWが供給され、その後所定の時間だけ遅れて窒素ガスが噴射される。
 図25は、コロ搬送ユニット504の構成を示す斜視図である。
 コロ搬送ユニット504は、搬送コロ505が、X方向にほぼ等ピッチで並設されている。各搬送コロ505は、駆動ユニット(図示しない)の駆動により同一方向に同期回転されるようになっている。
 各搬送コロ505は、X方向に直交する面(Y-Z面)内で、水平面に対し傾斜したコロ軸515を備える。そのため、コロ搬送ユニット504により実現される搬送路は、水平面に対して全体的にY方向に傾斜している。基板Wは、傾斜姿勢を保ちながら搬送される。なお、基板Wの水平面に対する傾斜角度α(図26参照)は、たとえば約5°に設定されている。
 各搬送コロ505は、たとえば、コロ軸515の左右両側部にコロ軸515と同伴回転可能に外嵌された左右一対の側部ローラ516と、コロ軸515の中央部に設けられた中央ローラ517とを含む、いわゆる部分支持型搬送コロである。
 個々の各側部ローラ516は、外方側部に、側部ローラ516と一体的に設けられた鍔部516Aを有している。鍔部516Aは、搬送される基板Wの横ずれを防止するとともに、下側の鍔部516Aによって基板Wが傾斜面に沿って滑落するのを防止している。また、各ローラ516,517には、ゴム等からなるOリング(図示しない)が外嵌されており、このOリングの滑り止め作用により、基板Wの滑落をより確実に防止している。
 図24に示すように、水供給ユニット500は、洗浄処理室502内に配置された複数(図24では、たとえば3つ)の水ノズル531と、個々の水ノズル531にDIWを供給するための水供給配管(処理液配管)533と、個々の水供給配管533の上流端が接続される水集合配管532とを含む。複数の水ノズル531は、X方向に沿ってたとえば等間隔を隔てて配置されている。各水ノズル531は、その吐出口531Aを、コロ搬送ユニット504によって搬送される基板Wの上部に対向する位置で下に向けた状態で、固定的に配置されている。水集合配管532は、DIW供給源からのDIW(水の一例)を、複数の水供給配管533にDIWを供給するための配管である。各水ノズル531の先端部には、円環状の電極56が外嵌固定されており、かつ電極56には、電源57(図3参照)によって装置グラウンドに対する電圧が印加されるようになっている。
 図24に示すように、水供給ユニット500は、さらに、水集合配管532内に存在しているDIWに軟X線を照射するための軟X線照射ユニット(X線照射手段)534を含む。軟X線照射ユニット534は、水集合配管532に取り付けられている。
 水集合配管532は、丸管状(円筒状)をなし、たとえば塩ビ(poly-vinyl-chloride)を用いて形成されている。水集合配管532の途中部には、水集合配管532を開閉するための集合バルブ535が介装されている。水集合配管532には、集合よりも下流側の所定部分の管壁に開口(図示しない)が形成されている。
 図24に示すように、軟X線照射ユニット534は、第1実施形態に係る軟X線照射ユニット62(図2参照)と同等の構成を採用している。軟X線照射ユニット534は、水集合配管532の開口を塞ぐように水集合配管532に取り付けられている。具体的には、軟X線照射ユニット534のカバーの開口(軟X線照射ユニット62のカバー26の第2開口28(図2参照)に相当)が水集合配管532の前記の開口に一致し、かつ軟X線照射ユニット534のカバーの壁面(軟X線照射ユニット62のカバー26の横壁26A(図2参照)に相当)が水集合配管532の外周に密着している。軟X線照射ユニット534の高電圧ユニット(第1実施形態に係る軟X線照射ユニット62の高電圧ユニット31(図2参照)に相当)は、制御装置40(図3参照)に接続されている。集合バルブ535が開かれると、水集合配管532から個々の水供給配管533にDIWが供給されて、各水ノズル531の吐出口531AからDIWが吐出される。
 図24に示すように、ガスナイフノズル519は、基板Wの上面に付着しているDIWを吹き飛ばすために、コロ搬送ユニット504によって搬送される基板Wの上面に不活性ガスの一例としての窒素ガスを噴射するためのノズルである。不活性ガスの他の例として、CDA(低湿度の清浄空気)を挙げることができる。ガスナイフノズル519は、Y方向に長いスリット噴射口519Aを先端に有し、コロ搬送ユニット504によって搬送される基板WのY方向全幅にわたる範囲に窒素ガスを供給できるものである。ガスナイフノズル519は、スリット噴射口519Aが基板Wの上面に微小間隔を隔てて対向するように、液切り室503内に固定的に配置されている。
 ガスナイフノズル519には、窒素ガス供給源からの窒素ガスが、不活性ガスバルブ511を介して供給されている。ガスナイフノズル519は、窒素ガスをY方向に沿う帯状に噴射する。
 基板Wの上面に対する、ガスナイフノズル519のスリット噴射口519Aからの不活性ガスの吹付け方向は、鉛直方向に対し、基板Wの搬送方向と逆方向(図24に示す左側)に傾斜している。その傾斜角度θ(図27参照)は、たとえば20°~70°の範囲内である。 
 図24に示すように、軟X線照射装置512は、照射窓514を有する軟X線発生器513を内蔵している。照射窓514で発生する軟X線が、軟X線照射装置512の外部に射出(放射)されるようになっている。照射窓514からの軟X線の照射角(照射範囲)はたとえば130°であり、照射窓514から照射される軟X線は、その波長がたとえば0.13~0.41nmである。軟X線発生器513は、軟X線照射ユニット534に含まれる軟X線発生器25(図2参照)と同等の構成を採用しており、照射窓514が照射窓35(図2参照)に相当する。軟X線照射装置512は、コロ搬送ユニット504によって搬送される基板Wの上方において、ガスナイフノズル519よりも下流側に配置されている。具体的には、軟X線照射装置512は、不活性ガス噴射位置P2に照射窓514が対向するように配置されている。
 図26は、水供給ユニット500が基板WにDIWを供給している状態を示す断面図である。図27は、軟X線照射装置512が、基板Wの上面に軟X線を照射している状態を示す断面図である。
 図26および図27に示すように、各吐出口531Aから吐出されたDIWは、基板Wの上面の水供給位置P1に供給され、基板Wの上面を傾斜面に沿って流れる。これにより、基板Wの上面にDIWの液膜が形成される。また、各水ノズル531に対するDIWの供給流量は、比較的大流量(ガラス基板の大きさや洗浄程度に応じて例えば1~数十L/min)に設定されている。そのため、各吐出口531Aから吐出されるDIWが、水ノズル531の吐出口531Aと、基板Wの上面のDIWの液膜との双方に繋がる連続流の態様をなしている。また、水ノズル531のノズル配管内、水集合配管532内および水供給配管533内では、DIWが液密状態にある。
 一連の処理中は、水集合配管532の内部に、軟X線照射ユニット534からの軟X線が照射される。水集合配管532内に存在しているDIWに軟X線が照射されると、水集合配管532内におけるDIWの照射部分(図5に示す、第1実施形態に係るDIWの照射部分54と同等)において、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、水集合配管532内におけるDIWの照射部分に形成される。DIWの照射部分は、基板Wの上面に形成されたDIWの液膜と、DIWを介して繋がっている。
 基板Wが正に帯電すると水集合配管532内におけるDIWの照射部分と、正に帯電している基板Wとの間の電位差で、水集合配管532内におけるDIWの照射部分からの電子が、基板Wの上面のDIWの液膜に向けて、連続流状のDIWを伝って移動する。これにより、基板Wの上面のDIWの液膜が多量の電子を有するようになる。
 これにより、DIWを用いた処理によって、基板Wの帯電を防止できる。また、洗浄処理前から基板Wが帯電していても、その基板Wに帯びた電荷を除去(すなわち、除電)できる。その結果、基板Wの帯電に起因するデバイス破壊を防止できる。
 また、不活性ガス噴射位置P2では、ガスナイフノズル519のスリット噴射口519Aからの窒素ガスが、基板Wの上面に形成されるDIWの液膜(DIWの連続流を介して吐出口531Aと繋がっている液膜)に吹き付けられる。また、不活性ガス噴射位置P2において、基板Wの上面には、軟X線照射装置512の軟X線発生器513で発生された軟X線が照射される。
 窒素ガスの吹付けにより、基板Wの上面からDIWが吹き飛ばされ、基板Wの上面に付着したDIWが除去される。そして、不活性ガス噴射位置P2において、軟X線が照射される。基板Wの上面におけるDIWが切れた(吹き飛ばされた)直後の部分に軟X線が照射されるので、基板Wの帯電防止および除電を、より一層確実に達成できる。
 第13実施形態において、洗浄処理室502内で水(たとえばDIW)を用いて基板Wを処理する場合を例に挙げて説明したが、洗浄処理室502内で薬液および水を用いた処理を用いて基板Wを処理することもできる。この場合、図24に二点鎖線で示すように、水供給ユニット500よりも上流側に、薬液ノズル506が配置される。薬液ノズル506には、薬液バルブ508を介して薬液供給源からの薬液が供給されるようになっている。つまり、水供給位置P1よりも上流側に、薬液供給位置P0が設定される。
 第13実施形態において、基板Wを傾斜姿勢で搬送するコロ搬送ユニット504を例に挙げて説明したが、コロ搬送ユニット504は、基板Wを水平姿勢に保ちつつ搬送するものであってもよい。
 また、第13実施形態の基板処理装置501は、基板Wの上面(上側の主面)を洗浄するものを例に挙げて説明したが、基板の両面に洗浄処理を施すタイプの基板処理装置にも本願発明を適用できる。この場合、洗浄処理室502および液切り室503において、コロ搬送ユニット504の下方側にも、水供給ユニット500およびガスナイフノズル519をそれぞれ配置し、水供給位置P1において、下方側の水供給ユニット500によって基板Wの下面にDIWを供給するとともに、不活性ガス噴射位置P2において、下方側のガスナイフノズル519によって、基板Wの下面に窒素ガスを噴射する。
 第1~第13実施形態では、処理対象物が基板Wとする基板処理装置1,201,211,221,231,251,261,301,311,401,501に搭載される処理液供給ユニット100,200,220,230,250,260,300,310,400,500を例に挙げて説明したが、本発明は、基板W以外を処理対象物とする処理ユニットにも適用できる。以下、処理対象物を基板収容器(収容器)602とし、処理対象物を洗浄液(処理液)を用いて洗浄するための収容器洗浄装置601を例に挙げて説明する。
 図28は、本発明の第14実施形態に係る物品洗浄装置601の構成を示す図である。図29は、基板収容器602の構成を示す斜視図である。
 図29に示すように、基板収容器602は、基板Wを密閉した状態で収容する容器である。基板収容器602の一例として、FOSB(Front Opening Shipping Box)を挙げることができる。FOSBは、専ら、半導体ウエハメーカから半導体装置メーカに、基板Wを納入するために用いられる。FOSBは、未処理の複数枚の基板Wを収容し、これらの基板Wの清浄度を維持しつつ、基板Wへの損傷を防止する。
 図28に示すように、物品洗浄装置601は、基板収容器602の収容器本体603を載置するための載置台607と、基板収容器602に対して洗浄液の一例としてのDIWを供給する水供給ユニット(処理液供給装置)600を備えている。水供給ユニット600は、第1実施形態に係る水供給ユニット100(図1参照)と同等の構成を採用している。そのため、図28には同一の参照符号を付し、説明を省略する。水供給ユニット600の水ノズル61は、載置台607に載置された収容器本体603の上方で、その吐出口53を下方に向けて配置されている。
 基板収容器602は、側方に開口603Aを有する有底箱状の収容器本体603と、収容器本体603の開口603Aを開閉するための蓋604(図28では、蓋604の閉状態を示している)と、収容器本体603の内壁に取り付けられた多段の収容器支持棚606と、蓋604に取り付けられた多段の蓋支持棚605とを含む。開口603Aを介して収容器本体603の内部に対し、基板Wの出し入れが行われる。収容器本体603および蓋604は、それぞれ、たとえば塩ビ(poly-vinyl-chloride)等の樹脂材料を用いて形成されている。収容器本体603は、略立方形状の外郭形状を有し、図28に示すように、開口側が底部側に比べてやや大径を有していてもよい。この場合、収容器本体603の上面は傾斜面を有している。
 洗浄処理では、水供給ユニット600から基板収容器602の収容器本体603の外壁に対してDIWが供給される。具体的には、水バルブ14が開かれ、水供給配管13を流通するDIWが水ノズル61に供給される。これにより、水ノズル61の吐出口53から、収容器本体603の外壁の上面に向けて下向きにDIWが吐出される。また、制御装置40は、軟X線発生器25(図2参照)に軟X線を発生させて、この軟X線を、水ノズル61の第1ノズル配管51の内部に向けて照射させる。これにより、第1ノズル配管51内を流通しているDIWに、軟X線が照射される。
 収容器本体603の外壁の上方の側面に供給されたDIWは、傾斜面からなる当該上方の側面および底面を伝って流下する。これにより、収容器本体603の外壁にDIWの液膜が形成される。この液膜によって、収容器本体603の外壁に付着している汚れやゴミなどが洗い流される。
 洗浄処理中に、第1ノズル配管51内に存在しているDIWに軟X線が照射されると、第1ノズル配管51内におけるDIWの照射部分54(図5参照)において、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、DIWの照射部分54に形成される。
 洗浄処理中における、水ノズル61に対するDIWの供給流量は、比較的大流量(基板収容器602の大きさ等に応じてたとえば1~10L/min)に設定されている。そのため、水ノズル61の吐出口53から吐出されるDIWの態様が、吐出口53と収容器本体603の外壁との双方に繋がる連続流状の態様をなしている。そのため、収容器本体603の外壁にDIWの液膜が形成される。この液膜によって、収容器本体603の外壁に形成された液膜63とDIWの照射部分54とが、DIWを介して繋がっている。また、水ノズル61のノズル配管内では、DIWが液密状態にある。
 収容器本体603の外壁が正に帯電しているとすると、DIWの照射部分54と、正に帯電している収容器本体603の外壁との間の電位差で、DIWの照射部分54からの電子が、収容器本体603の外壁に接液しているDIWの液膜に向けて、連続流状のDIWを伝って移動する。これにより、収容器本体603の外壁に接液しているDIWの液膜が多量の電子を有するようになる。
このとき、DIWの液膜63とDIWの照射部分54とが、DIWを介して繋がっている。
 以上により、第14実施形態によれば、洗浄処理時における収容器本体603の帯電を防止できる。また、洗浄処理前から収容器本体603が帯電していても、その収容器本体603に帯びた電荷を除去(すなわち、除電)できる。
 なお、第14実施形態では、収容器本体603を洗浄する場合を例に挙げて説明したが、蓋604や、支持棚605,606を洗浄する場合にも、同様に洗浄方法を採用することにより、蓋604や支持棚605,606の除電を図りつつ、蓋604や支持棚605,606に洗浄処理を施すことができる。
 また、基板収容器602として、FOSBを例に挙げて説明したが、専ら、半導体ウエハメーカの工場内で基板Wを搬送するために用いられ、基板Wを密閉した状態で収容するFOUP(Front Opening Unified Pod)を挙げることもできる。その他、基板収容器602として、FOUP(Front Opening Unified Pod)や、SMIF(Standard Mechanical Interface)ポッド、OC(Open Cassette)等の他の形態の基板収容器を例示することもできる。
 また、収容器は、基板Wを収容するものに限られず、収容器として、CD、DVD、ブルーディスク等の円盤状のメディアを収容するメディア収容器や、レンズ、ミラー、回折格子等の光学部品を収容する部品収容器を、処理対象物とすることができる。
 次に、軟X線照射ユニットを内蔵する水供給ユニットからのDIW(水の一例)の供給によって、シリコンウエハ、ガラス基板、収容器等の処理対象物を除電できることを確認するための除電試験を行った。この除電試験の内容および結果について、以下説明する。
 図30は、除電試験に用いられる試験装置651を説明するための図である。
 試験装置651は、樹脂製の有底状の容器652と、容器652内で、帯電体Eを保持する帯電体保持台653と、帯電体保持台653に保持されている帯電体Eに対して、処理液を供給するための水供給ユニット654と、帯電体保持台653に保持されている帯電体Eを帯電させつつ、当該帯電体Eの帯電量を計測するための帯電プレートモニタ655と、帯電プレートモニタ655にて計測された帯電量を記録するためのレコーダ656とを含む。帯電プレートモニタ655は、帯電体Eと導通する金属プレート671を有している。帯電プレートモニタ655の一例として米国イオンシステムズ社製CPM210を例示でき、また、レコーダ656の一例として日置電機株式会社製HIOKI8841を例示できる。
 水供給ユニット654は、水ノズル661と、水ノズル661内を流通するDIW(水の一例)に軟X線を照射するための軟X線照射ユニット662と、水ノズル661に対し、DIWタンク670からのDIWを供給する水供給配管663とを含む。軟X線照射ユニット662は、水供給配管663に取り付けられている。水供給配管663には、水供給配管663の開閉および開度を調節するためのバルブ664が介装されている。
 水ノズル661は、電離チャンバ665と、電離チャンバ665内にDIWを流入させるための入口666Aを有する流入口部666と、電離チャンバ665内を流通したDIWの出口667Aを有する流出口部667とを有する。電離チャンバ665は矩形扁平状に形成されており、電離チャンバ665の内部空間は、流通方向の長さ約100mm×流通方向の幅約5mm×流通方向の奥行約60mm の矩形空間に設定されている。
 軟X線照射ユニット662は、第1実施形態に係る軟X線照射ユニット62と同等の構成を採用している。軟X線照射ユニット662は、第1実施形態に係る軟X線発生器25(図2参照)に相当する軟X線発生器を有している。この軟X線発生器として軟X線イオナイザー(L9490。浜松ホトニクス(株)製)を例示できる。軟X線照射ユニット662において、第2開口28(図2参照)に相当する丸型開口の直径はたとえば17mmである。
 この除電試験では、計測対象の帯電体Eとして、角形の金属板(130mm×93 mm×厚み1mm)が用いられる。基板保持台653は、帯電体Eを、水平面に対し所定角度傾斜する傾斜姿勢に保持する。帯電体Eが基板保持台653によって保持された状態では、基板保持台653に含まれるPTFE(poly tetra-fluoro ethylene)製のブロック668により、帯電体Eが容器652と絶縁されている。帯電体Eの上端部と、出口667Aとの間の間隔は、たとえば55mmである。
 この試験装置651において、以下の手順で実験を行う。
第1工程:バルブ664を調節して、水ノズル661の出口667AからDIW(この場合、導電率:1μS/cm以下)を、液滴状(非連続流状)で滴下させる。液滴状とは、液滴と次の液滴とが繋がらない状態をいう。
第2工程:帯電プレートモニタ655の金属プレート671を介して帯電体Eを帯電させ、軟X線照射ユニット662の軟X線発生器をオン/オフさせて、そのときに帯電体Eの電位が+/-4.5kV →+/-3.5kVまで減衰する時間(除電時間)を、帯電プレートモニタ655と、レコーダ656とを用いて計測した。
第3工程:次いで、バルブ664を調節して、水ノズル661の出口667AからDIWを一定流量(0.77L/minまたは0.08L/min)で連続流状(液柱状に流れている状態)で流下させる。このとき、水ノズル661の高さを可変とし、水ノズル661の出口667Aから帯電体Eの上端までの距離が、55mm、1000mmおよび3000mmである場合をそれぞれ計測した。距離が1000mmおよび3000mmの場合は、コイル状に巻回されたφ6×4mmの塩化ビニールチューブを水ノズル661の先端に取り付けた。
第4工程:帯電プレートモニタ655の金属プレート671を介して容器652内の帯電体Eを帯電させ、軟X線発生器をオン/オフさせて、そのときに帯電体Eの電位がが+/-1kV →+/-0.1kVまで減衰する時間(除電時間)を、帯電プレートモニタ655と、レコーダ656とを用いて計測した。この実験結果を、表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
 DIWを液滴状に滴下した場合の実験結果を表1に示す。表1に示すように、軟X線発生器のオン/オフに拘らず、帯電体Eの電位が+/-4.5kV → +/-3.0kVまで減衰する時間(除電時間)がほぼ一定であった。表1に示す実験結果から、DIWを液滴状に滴下した場合は、帯電体Eがほとんど除電されていないことがわかる。
Figure JPOXMLDOC01-appb-T000002
 DIWを連続流状に流下させた場合の実験結果を表2に示す。表2に示すように、DIWの流量が0.774L/minのときおよび0.08L/minのときの双方において、軟X線発生器のオンにより帯電体Eの電位が+/-1kV → +/-0.1kVまで減衰する時間(除電時間)が短くなった。この場合の除電時間は1秒間強である。表2に示す実験結果から、DIWを連続流状に流下させた場合には、除電性能が向上することがわかる。
Figure JPOXMLDOC01-appb-T000003
 DIWを連続流状に流下させさせながら、水ノズル661の出口から帯電体Eまでの距離を変化させた場合の実験結果を表3に示す。表3に示すように、水ノズル661の出口から帯電体Eまでの距離が長くなるに従って、帯電体Eの電位が+/-1kV → +/-0.1kVまで減衰する時間(除電時間)が僅かに長くなるが、この距離が3000mmの場合であっても1~2秒間で除電できる。このことから、水ノズル661の出口から帯電体Eまでの距離は、除電性能に大きな影響を及ぼさないことがわかる。
 これらの実験結果から、軟X線照射ユニットを内蔵する水供給ユニットからのDIWの供給によって処理対象物を除電する除電原理は以下のように推定される。すなわち、軟X線照射により励起された水分子から電子が放出され、この照射部分は、軟X線により励起された水分子の正イオンと電子が混在したプラズマ状態になっている。
 処理対象物が正に帯電しているときは、DIWの照射部分と帯電している処理対象物との間の電位差で、DIWの照射部分の電子が正に帯電している処理対象物に向かって移動し、正に帯電している処理対象物は除電される。また、処理対象物が負に帯電しているときは、帯電している処理対象物からDIWの照射部分の正イオンに向かって電子が移動し、負に帯電している処理対象物は除電される。
 図31は、本発明の第15実施形態に係る基板処理装置701の構成を示す図である。
 基板処理装置701は、基板Wの一例としての円形の半導体ウエハ(シリコンウエハ)の表面(処理対象面)に処理液(薬液および水)による処理を施すために用いられる枚葉式の装置である。この実施形態では、薬液処理後に行われる基板Wのリンスのために水が用いられる。処理対象の基板Wの表面には、たとえば酸化膜等が形成されている。
 基板処理装置701は、隔壁702により区画された処理室703内に、基板Wを水平姿勢に保持して回転させるスピンチャック(基板保持手段)704と、スピンチャック704に保持されている基板Wの表面(上面)に水の一例としてのDIW(脱イオン水。純水)を吐出するための水ノズル(水供給手段)705と、スピンチャック704に保持されている基板Wの表面に軟X線を照射するための軟X線照射ヘッド(X線照射手段)706と、スピンチャック704に保持されている基板Wの表面に薬液を吐出するための薬液ノズル7とを備えている。
 スピンチャック704として、たとえば挟持式のものが採用されている。具体的には、スピンチャック704は、スピンモータ708と、このスピンモータ708の駆動軸と一体化されたスピン軸709と、スピン軸709の上端にほぼ水平に取り付けられた円板状のスピンベース710と、スピンベース710の周縁部の複数箇所にほぼ等間隔で設けられた複数個の挟持部材711とを備えている。これにより、スピンチャック704は、複数個の挟持部材711によって基板Wを挟持した状態で、スピンモータ708の回転駆動力によってスピンベース710を回転させることにより、その基板Wを、ほぼ水平な姿勢を保った状態で、スピンベース710とともに回転軸線Cまわりに回転させることができる。
 なお、スピンチャック704としては、挟持式のものに限らず、たとえば基板Wの裏面を真空吸着することにより、基板Wを水平な姿勢で保持し、さらにその状態で鉛直な回転軸線Cまわりに回転することにより、その保持した基板Wを回転させることができる真空吸着式のもの(バキュームチャック)が採用されてもよい。
 水ノズル705は、たとえば、連続流の状態でDIWを吐出するストレートノズルであり、スピンチャック704の上方で、その吐出口を基板Wの回転中心付近に向けて固定的に配置されている。水ノズル705には、DIW供給源からのDIWが供給される水供給管713が接続されている。水供給管713の途中部には、水ノズル705からのDIWの供給/供給停止を切り換えるための水バルブ(水供給手段)714が介装されている。
 薬液ノズル707は、たとえば、連続流の状態で薬液を吐出するストレートノズルであり、スピンチャック704の上方で、その吐出口を基板Wの回転中心付近に向けて固定的に配置されている。薬液ノズル707には、薬液供給源からの薬液が供給される薬液供給管715が接続されている。薬液供給管715の途中部には、薬液ノズル707からの薬液の供給/供給停止を切り換えるための薬液バルブ716が介装されている。
 また、薬液ノズル707は、スピンチャック704に対して固定的に配置されている必要はなく、たとえば、スピンチャック704上方において水平面内で揺動可能なアームに取り付けられて、このアームの揺動により基板Wの表面における薬液の着液位置がスキャンされる、いわゆるスキャンノズルの形態が採用されてもよい。
 スピンチャック704の側方には、鉛直方向に延びる支持軸717が配置されている。支持軸717の上端部には、水平方向に延びるアーム718が結合されており、アーム718の先端に軟X線照射ヘッド706が取り付けられている。また、支持軸717には、支持軸717を軸まわりに回動させるための揺動駆動機構(移動手段)719と、支持軸717をその軸方向に沿って上下動させるための昇降駆動機構(移動手段)720とが結合されている。
 揺動駆動機構719から支持軸717に駆動力を入力して、支持軸717を所定の角度範囲内で回動させることにより、スピンチャック704に保持された基板Wの上方で、アーム718を、支持軸717を支点として揺動させる。アーム718の揺動により、軟X線照射ヘッド706を、基板Wの回転軸線C上を含む位置(基板Wの回転中心に対向する位置)と、スピンチャック704の側方に設定されたホームポジションとの間で移動させることができる。また、昇降駆動機構720から支持軸717に駆動力を入力して、支持軸717を昇降させることにより、軟X線照射ヘッド706を、スピンチャック704に保持された基板Wの表面に近接する近接位置(図31に二点鎖線で示す位置)と、その基板Wの上方に退避する退避位置(図31に実線で示す位置)との間で昇降させる。この実施形態では、近接位置は、スピンチャック704に保持された基板Wの表面と軟X線照射ヘッド706の下面(下壁726Aの下面)との間隔が1~30mmの範囲の所定間隔(たとえば10mm程度)になる位置に設定されている。
 隔壁702の側壁(複数の側壁のうちの1つ)には、処理室703内に対し基板Wを搬出入するための開口721が形成されている。基板Wの搬出入の際には、処理室703外で開口721に対向する搬送ロボット(図示しない)が、開口721を通して処理室703内にハンドをアクセスさせる。これにより、スピンチャック704上に未処理の基板Wを載置したり、スピンチャック704上から処理済の基板Wを取り除いたりすることができる。開口721はシャッタ722によって開閉される。シャッタ722は、当該シャッタ722に結合されたシャッタ昇降機構(図示しない)によって、開口721を覆う閉位置(図31に実線で示す)と、開口721を開放する開位置(図31に二点鎖線で示す)との間で昇降される。
 図32は、軟X線照射ヘッド706の図解的な断面図である。
 軟X線照射ヘッド706は、X線発生器725と、X線発生器725の周囲を取り囲むように覆うたとえば塩ビ(PVC)製のカバー726と、カバー726の内部に気体を供給するための気体ノズル(気体供給手段)727とを備えている。カバー726は、X線発生器725の周囲を、X線発生器725と間隔を空けて取り囲む縦長の矩形箱状のものであり、水平板状の下壁726Aにおいて、X線発生器725の次に述べる照射窓735に対向する部分にたとえば円形の開口728を形成している。
 X線発生器725は、基板W上のDIWを電離させるために用いられる軟X線を射出(放射)する。X線発生器725は、ケース体729と、X線を発生させるための上下に長いX線管730と、X線管730に高電圧を供給する高電圧ユニット731とを備えている。ケース体729は、その内部に、X線管730および高電圧ユニット731を収容する縦長の矩形筒状のものであり、導電性および熱伝導性を有する材料(たとえばアルミニウム等の金属材料)を用いて形成されている。
 高電圧ユニット731は、たとえば-9.5kVという高電位の駆動電圧をX線管730に入力する。高電圧ユニット731には、カバー726に形成された貫通孔742を通してカバー726外に引き出されたる給電線743を介して電源(図示しない)からの電圧が供給されている。
 X線管730は、ガラス製または金属製の円筒形状の真空管からなり、管方向が鉛直となるように配置されている。X線管730の下端部(開口端部)は開いて円形の開口741を形成している。X線管730の上端部は閉じており、ステム732となっている。X線管730内には、陰極であるフィラメント733と、陽極であるターゲット736とが対向するように配置されている。X線管730は、フィラメント733およびフォーカス734を収容している。具体的には、ステム732に、カソードとしてのフィラメント733が配置されている。フィラメント733は、高電圧ユニット731と電気的に接続されている。フィラメント733は円筒状のフォーカス734によって取り囲まれている。
 X線管730の開口端部は、鉛直姿勢をなす板状の照射窓735によって閉塞されている。照射窓735はたとえば円板状をなし、銀ロウ付けによってX線管730の開口端部の壁面に固定されている。照射窓735の材料として、透過力の弱い軟X線が透過しやすい原子量の小さい物質が使用され、本実施形態ではベリリウム(Be)が採用されている。照射窓735の厚みは、たとえば0.3mm程度に設定されている。
 照射窓735の内面735Aには、金属製のターゲット736が蒸着によって形成されている。ターゲット736には、タングステン(W)やタンタル(Ta)等の原子量の大きく融点の高い金属が用いられる。
 高電圧ユニット731からの駆動電圧が陰極であるフィラメント733に印加されることにより、フィラメント733が電子を放出する。フィラメント733から放出された電子は、フォーカス734で収束されて電子ビームとなり、ターゲット736に衝突することによって軟X線が発生する。発生した軟X線は照射窓735から下方に向けて射出(放射)される。照射窓735からの軟X線の照射角(照射範囲)は、図37に示すように広角(たとえば130°)である。照射窓735から軟X線照射ヘッド706外に照射される軟X線は、その波長がたとえば0.13~0.41nmである。
 照射窓735は、軟X線を発生する発生源である。そのため、外表面735Bへの水滴の付着等により、当該照射窓735が曇っていると、照射窓735からの軟X線の照射を阻害するおそれがあり、好ましくない。
 照射窓735の外表面735Bの全域は、撥水性を有するポリイミド樹脂皮膜738によって被覆されている。照射窓735の外表面735Bを皮膜738で覆ったのは、耐酸性の劣るベリリウム製の照射窓735を、水等の処理液に含まれる酸から守るためのものである。ポリイミド樹脂皮膜738は、ポリアミック酸タイプのポリイミド樹脂を有している。ポリイミド樹脂皮膜738の膜厚は、50μm以下であり、とくに10μm程度であることが好ましい。皮膜738が撥水性を有しているので、照射窓735の外表面735Bから水分を排除することができる。これにより、照射窓735が曇るのを抑制または防止することができる。また、ポリイミド樹脂皮膜738は化学安定性が高いので、照射窓735の外表面735Bを長期にわたって保護し続けることができる。
 ところで、X線発生器725の周囲をカバー726で覆っているのは、X線発生器725を水分から守るためである。前述のようにX線発生器725が高電圧ユニット731を備えているので、X線発生器725の周囲の雰囲気が多くの水分を含んでいると、軟X線の発生の際に、高電圧がリークするおそれがある。したがって、X線発生器725に水分が侵入するのを抑制するために、X線発生器725の周囲をカバー726で覆っている。
 気体ノズル727の吐出口は、カバー726の上壁に開口している。気体ノズル727には気体バルブ(気体供給手段)737を介して気体供給源(図示しない)からの気体が供給されている。また、気体ノズル727には、常温(たとえば25℃)よりも高温(たとえば60℃)の気体が供給されており、そのため、気体ノズル727は高温(たとえば60℃)の気体を吐出する。気体ノズル727が吐出する気体として、CDA(低湿度の清浄空気)や窒素ガス等の不活性ガスを例示することができる。気体ノズル727から吐出された気体は、カバー726の内部に供給される。
 前述のように、カバー726の下壁726Aには、照射窓735からの軟X線を透過させるための開口728が形成されている。そのため、カバー726の内部に気体が供給されるのと相俟って、すなわちカバー726とX線発生器725の外壁との間の空間に、開口728に向かう気流が形成される。そのため、カバー726外の雰囲気が、開口728を介してカバー726内に進入するのを抑制または防止することができ、X線発生器725の周囲の雰囲気に水分が進入するのをより一層抑制することができる。
 また、前述のように、照射窓735の外表面735Bには撥水性の皮膜738が形成されている。そのため、照射窓735前面に水分が膜状に析出するのではなく微細な水滴となる。照射窓735の外表面735Bに付着するその水滴が、高い接触角で外表面735Bに接しているので、当該水滴は、外表面735Bを移動し易い状態であるといえる。カバー726内に供給される気体は、X線発生器725とカバー726との間の空間739を通って照射窓735の外表面に達する。照射窓735の外表面735Bに付着している水滴は、空間739に形成された気流を受けて移動する。これにより、照射窓735の外表面735Bから良好に水滴を排除することができ、照射窓735が曇るのを確実に防止することができる。さらに、カバー726内に供給される気体が高温であるために、照射窓735の外表面735Bに付着する水滴を蒸発により除去することもでき、これにより、照射窓735が曇るのを、より一層確実に防止することができる。
 カバー726の下壁726Aには、開口728の周囲付近に、シート状のヒータ(発熱部材)744が配置されている。ヒータ744は、抵抗体をシートにプリントすることにより形成されている。ヒータ744への通電によりヒータ744が昇温し、その周囲の部材が温められて、照射窓735も温められる。そのため、照射窓735の外表面735Bに付着する水滴を蒸発により除去することもでき、これにより、照射窓735が曇るのを、さらに一層確実に防止することができる。
 図33は、軟X線照射ヘッド706の配置位置を示す平面図である。
 揺動駆動機構719が制御されることにより、スピンチャック704に保持された基板Wの表面上を、軟X線照射ヘッド706が、基板Wの回転方向と交差する円弧状の軌跡を描くように移動可能に設けられている。軟X線照射ヘッド706により、基板Wの表面に軟X線を照射する場合、軟X線照射ヘッド706は近接位置に配置される。そして、軟X線の照射中は、その近接位置に配置されたままである。図33に実線で示す軟X線照射ヘッド706の配置位置はセンター近接位置であり、基板Wの表面の回転中心(回転軸線C上)を、軟X線照射ヘッド706の照射窓735からの照射領域に含む近接位置である。図33に二点鎖線で示す軟X線照射ヘッド706の配置位置はエッジ近接位置であり、基板Wの表面の周縁を、軟X線照射ヘッド706の照射窓735からの照射領域に含む近接位置である。
 図34は、基板処理装置701の電気的構成を示すブロック図である。基板処理装置701は、さらに、マイクロコンピュータを含む構成の制御装置(制御手段)740を備えている。制御装置740には、スピンモータ708、高電圧ユニット731、揺動駆動機構719、昇降駆動機構720、薬液バルブ716、水バルブ714、気体バルブ737、ヒータ744等が制御対象として接続されている。
 なお、照射窓735を曇りがない状態に保つため、基板処理装置701に電源が投入されている間、気体バルブ737は常に開放されているとともに、ヒータ744は駆動されている。ヒータ744は加熱されて、たとえば100℃程度まで昇温している。
 図35は、基板処理装置701において実行される基板Wの処理例を示す工程図である。この処理例では、薬液処理の実行後、リンス処理が実行される。このリンス処理において、基板Wの表面に、軟X線照射ヘッド706からの軟X線が照射される。図31、図33、図34および図35を参照して、基板処理装置701における基板Wの処理について説明する。
 基板Wの処理に際して、シャッタ722が閉状態から開状態にされる。これにより、開口721が開放される。その後、搬送ロボット(図示しない)によって、未処理の基板Wが開口721を通って処理室703内に搬入されて(ステップS701)、その表面を上方に向けた状態でスピンチャック704に受け渡される。このとき、基板Wの搬入の妨げにならないように、軟X線照射ヘッド706はホームポジションに配置されている。搬送ロボットのハンドが処理室703外に退避した後、シャッタ722が閉状態にされる。
 スピンチャック704に基板Wが保持された後、制御装置740はスピンモータ708を制御して、スピンチャック704による基板Wの回転を開始させる(ステップS702)。基板Wの回転速度が所定の液処理速度(たとえば500rpm)まで上げられ、その後、その液処理速度に維持される。
 基板Wの回転速度が液処理速度に達すると、制御装置740は薬液バルブ716を開いて、薬液ノズル707から基板Wの表面の回転中心に向けて薬液を吐出する(S703:薬液供給)。基板Wの表面に供給された薬液は、基板Wの回転による遠心力を受けて、基板Wの周縁に向けて流れる(基板Wの全域へと拡がる)。これにより、基板Wの表面の全域に薬液による処理が施される。
 薬液の供給開始から所定の薬液処理時間が経過すると、制御装置740は薬液バルブ716が閉じ、薬液ノズル707からの薬液の供給を停止する。
 また、制御装置740は水バルブ714を開いて、回転状態にある基板Wの表面の回転中心に向けて水ノズル705からDIWを吐出する(ステップS704)。また、制御装置740は揺動駆動機構719を制御して、軟X線照射ヘッド706を、スピンチャック704の側方に設定されたホームポジションから、スピンチャック704の上方に移動させ、その後昇降駆動機構720を制御して、軟X線照射ヘッド706を、基板Wの表面に近接する近接位置に配置する。そして、制御装置740は高電圧ユニット731を制御して、軟X線照射ヘッド706のX線発生器725に軟X線を発生させて、照射窓735から下方に向けて照射させる(ステップS704)。
 基板Wの表面に供給されたDIWは、基板Wの回転による遠心力によって、基板Wの周縁に向けて流れる(基板Wの全域へと拡がる)。これにより、基板Wの表面に付着している薬液がDIWによって洗い流される(リンス処理)。
 図36は、リンス処理を説明するための図解的な図である。
 図35および図36に示すように、基板WへのDIWの供給に並行して、軟X線照射ヘッド706による軟X線の照射が継続実行される。また、軟X線照射ヘッド706が、センター近接位置とエッジ近接位置との間で往復移動される。換言すると、軟X線照射ヘッド706からの軟X線が導かれる基板Wの表面の照射位置は、基板Wの回転中心から基板Wの周縁部に至る範囲内を、基板Wの回転方向と交差する円弧状の軌跡を描きつつ往復移動する。これにより、基板Wの表面の全域にわたって軟X線を照射することができる。
 図37は、リンス処理における基板Wの表面近傍の状態を示す図解的な図である。
 リンス処理中は、前述のように、基板Wの表面にDIWが供給されつつ、その基板Wの表面に軟X線が照射される。このとき、基板Wの表面を周縁に向けて流れるDIWに、軟X線が照射される。具体的には、基板Wの表面を流れるDIWによって、基板Wに表面に、当該表面に接液するDIWの液膜が形成されるが、この液膜の表面部分(図37に網掛け示す部分)に軟X線が照射される。軟X線の照射により、DIWの液膜のうち軟X線が照射される部分では、水分子の励起により当該水分子から電子が放出される結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が形成される。そして、回転状態の基板WへのDIWの供給により、DIWとの接触分離により基板Wに正電荷が生じた場合であっても、軟X線の照射によりDIW中に発生した電子が、基板Wに発生した負電荷に引っ張られて移動し、当該電荷を打ち消すように作用する。これにより基板Wの帯電を抑制することができる。
 図31、図34および図35に示すようにDIWの供給開始から所定のリンス時間が経過すると、制御装置740は水バルブ714を閉じてDIWを供給停止する(ステップS705)。これにより、リンス処理が終了する。
 DIWの供給停止から所定の時間が経過した後、制御装置740は高電圧ユニット731を制御して、軟X線照射ヘッド706の照射窓735からの軟X線の照射を停止させる(ステップS706)。また、制御装置740は、揺動駆動機構719および昇降駆動機構720を制御して、軟X線照射ヘッド706をホームポジションに戻す。なお、軟X線照射ヘッド706による基板Wの表面へのX線の照射は、次に述べるスピンドライの開始の直前まで実行される。
 所定のスピンドライ開始タイミングになると、制御装置740はスピンモータ708を制御して、基板Wの回転速度をスピンドライ回転速度(たとえば2500rpm)に上昇する。これにより、リンス処理後の基板Wの表面に付着しているDIWが遠心力で振り切られて乾燥される(S707:スピンドライ)。
 スピンドライが所定の乾燥時間にわたって行われると、スピンチャック704の回転が停止される。その後、シャッタ722が閉状態から開状態にされ、開口721が開放される。そして、処理済の基板Wが開口721を通して搬送ロボット(図示しない)によって搬出される(ステップS708)。
 以上により、この実施形態によれば、基板Wの表面に形成されるDIWの液膜に軟X線X線が照射される。DIWの液膜のうち軟X線が照射される部分では、水分子の励起により当該水分子から電子が放出される結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が形成される。これにより、DIWとの接触分離により基板Wに正電荷が生じた場合であっても、軟X線の照射によりDIW中に発生した電子が、DIWの液膜を介して、基板Wに発生した負電荷に引っ張られて移動し、当該電荷を打ち消すように作用する。これにより基板Wの帯電を抑制することができる。また、リンス処理前から基板Wが帯電していても、基板Wの表面に接液するDIWの液膜によって、その帯電した基板Wを除電することができる。その結果、基板Wの帯電に起因するデバイス破壊を防止することができる。
 
 次に、X線照射ヘッドからの軟X線の照射によって、シリコンウエハやガラス基板等の基板を除電できることを確認するために、除電試験および電離試験という2つの試験を行った。この試験の内容および結果について以下説明する。
 図38は、これらの試験に用いられる試験装置902を説明するための断面図である。
 試験装置902は、DIWを貯留しておくための矩形箱状の水槽903と、水槽903に上方から取り付けられ、水槽903に溜められたDIWに対して軟X線を照射するためのX線照射ヘッド904とを備えている。
 水槽903は、幅100mm、奥行き100mm、高さ100 mmに形成されている。水槽903の底壁、4つの側壁および天壁は、それぞれ厚さ5mmの塩ビ板によって構成されている。X線照射ヘッド904は、図32等に示すX線発生器725と同等の構成を有する軟X線イオナイザー(浜松ホトニクス(株)製)であり、照射窓735を下方に向けて配置されている。水槽903の上壁には開口905が形成されており、この開口905を介して、照射窓735を含む軟X線照射ヘッド904の下端部が水槽内に入り込んでいる。軟X線照射ヘッド904を水槽903に装着した状態で、軟X線照射ヘッド904は、照射窓の下面が、水槽903の上壁の下面よりも5mm下方に位置している。水槽903の上壁における開口905の側端辺と、軟X線照射ヘッド904の下端部との間の隙間にはシリコンゴム製のパッキン906が嵌め込まれており、これにより、軟X線照射ヘッド904が水槽903の上壁に固定されている。
 この試験では、シリコンウエハやガラス基板等の基板に代えて、ステンレス製の方形(80cm×80cm)のメッシュ911,912(格子状を有し全体として板状をなす)が、計測対象として用いられる。水槽903には、2枚のメッシュ911,912が、上下に間隔を空けつつそれぞれ水平姿勢で取り付けられる。上メッシュ911と、軟X線照射ヘッド904の照射窓735の外表面735Bとの間隔はたとえば10mmである。下メッシュ912と、軟X線照射ヘッド904の照射窓735の外表面735Bとの間隔はたとえば25mmである。
 水槽903の側壁には、排水用ニップル907と、注水用ニップル908とが取り付けられている。各ニップル907,908は、水槽903の側壁の内外をそれぞれ貫通している。排水用ニップル907は、水槽903の上壁の下面から20mmの位置(すなわち、上メッシュ911の5mm下方で下メッシュ912の10mm上方の位置)に配置されている。注水用ニップル908は、下メッシュ912に対し、大きく間隔の空いた下方に配置されている。注水用ニップル908には注水用ホース(図示しない)が接続されており、排水用ニップル907には排水用ホース(図示しない)が接続されている。注水用ホースを介して水槽903に水が供給されるとともに、排水用ニップル907および排水用ホースを介して排出されるようになっている。
 下メッシュ912は、帯電プレートモニタCPM(米国イオンシステムズ社製 CPM210)の金属プレート(図示しない)と高電圧ケーブルで接続されている。
 そして、注水用ホースを介して水槽903に水が供給される。このとき、水槽903への給水が続けられても、水槽903に溜められたDIWの水位が排水用ニップル907の高さよりも上位に達することはない。排水用ニップル907の高さまで水槽903にDIWが溜められた状態では、排水用ニップル907よりも下方にある下メッシュ912はDIW中に浸漬され、その一方で、排水用ニップル907よりも上方にある上メッシュ911はDIWには浸漬されない。
(1)除電試験
 水槽903への水の供給と並行して、帯電プレートモニタCPMにより、液中の下メッシュ912を+/-1kVまたは+/-5kVに帯電させた。そして、軟X線照射ヘッド904をオンさせて水槽903に溜められたDIWに軟X線を照射し、その照射開始から、下メッシュ912の電位が+/-100kVになるまでの時間(除電時間)を計測した。
 その結果、+/-1kVに帯電させた場合の除電時間は1秒間以内であり、+/-5kVに帯電させた場合の除電時間は2秒程度であった。
 この除電試験により、DIWへの軟X線の照射により、DIW中の帯電体(下メッシュ912)を良好に除電できることがわかる。
(2)電離試験
 上および下メッシュ911,912間に、超絶縁抵抗計(横河ヒューレット・パッカード(株)製 Model 4329A)を接続し、軟X線照射の有無による2枚のメッシュ911,912間の電気抵抗の変化を計測した。
 先ず、排水用ニップル907の高さまで水槽903にDIWを溜める。そして、軟X線照射ヘッド904をオフのまま、下メッシュ912に10Vの電圧を印加して、2枚のメッシュ911,912間の電気抵抗を計測した。次いで、下メッシュ912に10Vの電圧を印加したまま、軟X線照射ヘッド904をオンさせて水槽903に溜められたDIWに軟X線を照射した状態で、2枚のメッシュ911,912間の電気抵抗を計測した。
 その結果、軟X線照射時の電気抵抗は、軟X線照前の1×1011(Ω)から1×10(Ω)に低下した。
 この電離試験により、DIWへの軟X線の照射により、DIWを電離させることができることがわかる。
 以上により、DIWへの軟X線の照射により、DIWを電離させることができ、このD
IWの電離に起因して、DIWに接液する帯電体を良好に除電できることがわかる。
 図39は、本発明の第16実施形態に係る基板処理装置820の構成を模式的に示す図である。基板処理装置820が、第15実施形態に係る基板処理装置701と共通する部分には、図31~図37と同一の参照符号を付し説明を省略する。基板処理装置820が基板処理装置701と相違する主たる点は、固定的な水ノズル705に代えて、スキャンノズルの形態が採用された水ノズル(水供給手段)821を設けた点である。
 水ノズル821は、たとえば、連続流の状態でDIWを吐出するストレートノズルである。水ノズル821は、その吐出口を下方に向けた状態で、ほぼ水平に延びる水アーム823の先端に取り付けられている。水ノズル821には水供給管713が接続されている。水アーム823は、鉛直方向に延びる所定の揺動軸線まわりに旋回可能に設けられている。水アーム823には、水アーム823を所定角度範囲内で揺動させるための水アーム揺動駆動機構822が結合されている。水アーム823の揺動により、水ノズル821は、基板Wの回転軸線C上の位置(基板Wの回転中心に対向する位置)と、スピンチャック704の側方に設定されたホームポジションとの間で移動される。
 リンス処理時には、水アーム揺動駆動機構822が制御されて、水ノズル821が、基板Wの回転中心上と周縁部上との間で往復移動させられる。これによって、水ノズル821からのDIWが導かれる基板Wの表面上の供給位置は、基板Wの回転中心から基板Wの周縁部に至る範囲内を、基板Wの回転方向と交差する円弧状の軌跡を描きつつ往復移動する。このとき、水ノズル821と軟X線照射ヘッド706とが干渉しないように、水ノズル821および軟X線照射ヘッド706の揺動位置がそれぞれ制御されている。
 図40は、本発明の第17実施形態に係る基板処理装置830の構成を模式的に示す図である。基板処理装置830が、第15実施形態に係る基板処理装置701と共通する部分には、図31~図37と同一の参照符号を付し説明を省略する。基板処理装置830が基板処理装置701と相違する主たる点は、水ノズルと軟X線照射ヘッドとを一体的に有する一体型ヘッド831を備えた点である。一体型ヘッド831は、第2実施形態の水ノズル821と同等の構成を有する水ノズル(水供給手段)833と、第1実施形態の軟X線照射ヘッド706と同等の構成を有する軟X線照射ユニット(X線照射手段)834と、水ノズル833と軟X線照射ユニット834とを保持するホルダ835とを備えている。一体型ヘッド831は、ほぼ水平に延びるアーム832の先端に取り付けられている。アーム832は、鉛直方向に延びる所定の揺動軸線まわりに旋回可能に設けられている。アーム832の揺動により、一体型ヘッド831は、基板Wの回転軸線C上の位置(基板Wの回転中心に対向する位置)と、スピンチャック704の側方に設定されたホームポジションとの間で移動される。リンス処理時には、一体型ヘッド831が、基板Wの回転中心上と周縁部上との間で往復移動させられる。これによって、水ノズル833からのDIWが導かれる基板Wの表面上の供給位置、および軟X線照射ユニット834からの軟X線が導かれる基板Wの表面の照射位置が、基板Wの回転中心から基板Wの周縁部に至る範囲内を、基板Wの回転方向と交差する円弧状の軌跡を描きつつ往復移動する。
 図41は、本発明の第18実施形態に係る基板処理装置840の構成を模式的に示す図である。基板処理装置840は、第1実施形態の軟X線照射ヘッド706に代えて、軟X線照射ヘッド(X線照射手段)841を備えている。軟X線照射ヘッド841が軟X線照射ヘッド706と相違する主たる点は、カバー726の側壁下縁から、水平方向に沿って外方に向けて張り出す(カバー726から側方に向けて突出する)遮蔽板部(遮蔽部材)842を備えた点である。遮蔽板部842は四角環板状をなし、その下面がカバー726の下壁726Aと連続する水平面を有している。リンス処理時において、遮蔽板部842は、スピンチャック704に保持されている基板Wの表面に対向して配置される。遮蔽板部842によって、照射窓735から照射された軟X線が、基板Wと遮蔽板部842との間の空間内に留めて置かれる。したがって、照射窓735から照射された軟X線が基板Wの周囲に散乱するのを抑制または防止することができ、これにより、基板処理装置840の安全性を高めることができる。
 図44は、本発明の第19実施形態に係る処理液処理装置が適用された基板処理装置1001の構成を示す図である。
 基板処理装置1001は、たとえば、複数枚の基板Wに対し、一括して処理液処理(洗浄処理)を施すバッチ式の基板処理装置である。基板処理装置1001は、処理液を貯留する処理槽1002と、処理槽1002に処理液を供給する処理液ノズル1003と、処理槽1002に貯留されている処理液に基板Wを浸漬させるリフター1004と、処理槽1002に貯留されている処理液を循環させる循環機構1005と、基板処理装置1001に備えられた各機器やバルブを制御する制御装置1006とを含む。
 処理槽1002は、上向きに開いた上部開口を有する内槽1007および外槽1008を含む二重槽構造を有している。内槽1007は、処理液を貯留し、複数枚の基板Wを収容可能に構成されている。外槽1008は、内槽1007の上部開口の外側面に設けられており、その上縁の高さが内槽1007の上縁の高さよりも高く設定されている。
 内槽1007の底壁には排液バルブ1020が介装されている。排液バルブ1020は、ピストン(図示しない)が進退移動を行うことによって内槽1007の底壁の一部を開閉するいわゆるピストンバルブによって構成されている。ピストン(図示しない)の後退により、内槽1007の底面の一部が離脱して内槽1007の底面に排液口が形成され、これにより、処理液が急速に排液されるようになっている。すなわち、処理槽1002はQDR(クイック・ダンプ・リンス)機能を備えている。内槽1007の底部から排出された処理液は、廃液装置へと送られ、処理されるようになっている。
 処理液ノズル1003は、処理液バルブ1009が介装された処理液配管1010に接続されている。処理液ノズル1003は、多数の微細な吐出口(図示しない)を有し、たとえば液を液滴の態様で吐出するシャワーノズルによって構成されている。制御装置1006が処理液バルブ1009を開くと、処理液ノズル1003からシャワー状に吐出された処理液が、内槽1007内に供給される。そして、内槽1007の上縁から処理液が溢れると、溢れた処理液は、外槽1008によって受け止められ、回収される。
 処理液として、水や希釈薬液が採用される。水としては、DIW(脱イオン水)、炭酸水、電解イオン水、水素水、オゾン水および希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水のいずれかを採用することもできる。希釈薬液としては、所定濃度に希釈されたフッ酸、BHF(Bufferd HF)、APM(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水混合液)、TMAH(水酸化テトラメチルアンモニウム水溶液)、アンモニア水、HPM(hydrochloric acid/hydrogen peroxide mixture:塩酸過酸化水素水混合液)等を用いることができる。この実施形態(第19実施形態)だけでなく、第19~第27実施形態において同様である。
 リフター1004によって保持されている基板Wは、内槽1007に貯留されている処理液に浸漬される。
 リフター1004は、水平に延びる複数の保持棒1011を含む。複数枚の基板Wは、紙面の奥手前方向に複数枚の基板Wを整列した状態で、複数の保持棒1011によって各基板Wの下縁が当接されて起立姿勢(鉛直姿勢)で保持される。
 リフター1004は、昇降機構1022を含む。昇降機構1022は、リフター1004に保持されている基板Wが内槽1007内に位置する処理位置(図44に示す位置)と、リフター1004に保持されている基板Wが内槽1007の上方に位置する退避位置(図示しない)との間でリフター1004を昇降させる。したがって、昇降機構1022によってリフター1004が処理位置に移動させられることにより、リフター1004に保持されている複数枚の基板Wが処理液に浸漬される。これにより、基板Wに対する処理液を用いた処理が施される。
 循環機構1005は、処理槽1002から排出された処理液を再び処理槽1002に導く循環配管1012と、循環配管1012の下流側の端部にそれぞれ接続された複数の循環ノズル1013と、循環配管1012から循環ノズル1013に処理液を送る循環ポンプ1014とを含む。循環配管1012は、上流側の端部が外槽1008の底部に接続された帰還配管(オーバーフロー配管)1019と、帰還配管1019の下流側の端部から複数に分岐する分岐配管(処理液供給配管)1016とを含む。各分岐配管1016の先端に、循環ノズル1013が取り付けられている。各循環ノズル1013は、一または複数の吐出口を有し、内槽1007内に向けて処理液を吐出する。帰還配管1019には、上流側から順に、循環ポンプ1014、フィルタ1015、循環バルブ1021が介装されている。フィルタ1015は、循環配管1012を流れる処理液をろ過するフィルタ1015であり、循環バルブ1021は帰還配管1019を開閉するためのバルブである。
 複数の分岐配管1016のうちの少なくとも1つ(この実施形態では1つ)には、軟X線照射ユニット(X線照射手段)1017が取り付けられている。軟X線照射ユニット1017は、分岐配管1016内に存在している処理液に軟X線を照射するためのユニットである。
 図45Aは、分岐配管1016および軟X線照射ユニット1017の構成をそれぞれ示す図解的な断面図である。
 分岐配管1016は、たとえば塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。分岐配管1016には、途中部の管壁に、たとえば円形の第1開口1052が形成されている。分岐配管1016には、第1開口1052を塞ぐように軟X線照射ユニット1017が取り付けられている。
 軟X線照射ユニット1017は、軟X線発生器(X線発生器)1025と、軟X線発生器1025の周囲を取り囲むように覆うたとえば塩ビ(poly-vinyl-chloride)製のカバー1026と、カバー1026の内部に気体を供給するための気体ノズル(気体供給手段)1027とを備え、横向きに軟X線を照射する。カバー1026は、軟X線発生器1025の周囲を、軟X線発生器1025と間隔を空けて取り囲む横長の矩形箱状のものであり、鉛直板状の横壁1026Aにおいて、軟X線発生器1025の次に述べる照射窓1035に対向する部分に、第1開口1052と同径を有するたとえば円形の第2開口1028を形成している。軟X線照射ユニット1017は、カバー1026の第2開口1028が、分岐配管1016の第1開口1052に一致し、かつ横壁1026Aが分岐配管1016の外周に密着するように、分岐配管1016に取り付けられる。
 第2開口1028は、円板状の窓部材1071によって閉塞されている。窓部材1071は、カバー1026の内側から第2開口1028を閉塞する。窓部材1071により、第2開口1028だけでなく、第1開口1052も閉塞される。窓部材1071の材料として、透過力の弱い軟X線が透過し易いように原子量の小さい物質が使用され、たとえばベリリウム(Be)が採用されている。窓部材1071の厚みは、たとえば0.3mm程度に設定されている。
 軟X線発生器1025は、分岐配管1016を通る処理液を電離させるために用いられる軟X線を射出(放射)する。軟X線発生器1025は、ケース体1029と、軟X線を発生させるための左右に長い軟X線管1030と、軟X線管1030に高電圧を供給する高電圧ユニット1031とを備えている。ケース体1029は、その内部に、軟X線管1030および高電圧ユニット1031を収容する横長の矩形筒状のものであり、導電性および熱伝導性を有する材料(たとえばアルミニウム等の金属材料)を用いて形成されている。
 高電圧ユニット1031は、たとえば-9.5kVという高電位の駆動電圧を軟X線管1030に入力する。高電圧ユニット1031には、カバー1026に形成された貫通孔1042を通してカバー1026外に引き出された給電線1043を介して電源(図示しない)からの電圧が供給されている。
 軟X線管1030は、ガラス製または金属製の円筒形状の真空管からなり、管方向が水平となるように配置されている。軟X線管1030の一端部(開口端部。図45Aに示す左端部)は円形開口1041を形成している。軟X線管1030の他端部(図45Aに示す右端部)は閉じており、ステム1032となっている。軟X線管1030内には、陰極であるフィラメント1033と、陽極であるターゲット1036とが対向するように配置されている。軟X線管1030は、フィラメント1033およびフォーカス1034を収容している。具体的には、ステム1032に、カソードとしてのフィラメント1033が配置されている。フィラメント1033は、高電圧ユニット1031と電気的に接続されている。フィラメント1033は円筒状のフォーカス1034によって取り囲まれている。
 軟X線管1030の開口端部は、鉛直姿勢をなす板状の照射窓1035によって閉塞されている。照射窓1035はたとえば円板状をなし、銀ロウ付けによって軟X線管1030の開口端部の壁面に固定されている。照射窓1035の材料として、透過力の弱い軟X線が透過し易いように原子量の小さい物質が使用され、たとえばベリリウム(Be)が採用されている。照射窓1035の厚みは、たとえば0.3mm程度に設定されている。照射窓1035は、窓部材1071の内面1071Aに対向して、当該窓部材1071と微小の間隔を空けて配置されている。
 照射窓1035の内面1035Aには、金属製のターゲット1036が蒸着によって形成されている。ターゲット1036には、タングステン(W)やタンタル(Ta)等の原子量の大きく融点の高い金属が用いられる。
 高電圧ユニット1031からの駆動電圧が陰極であるフィラメント1033に印加されることにより、フィラメント1033が電子を放出する。フィラメント1033から放出された電子は、フォーカス1034で収束されて電子ビームとなり、ターゲット1036に衝突することによって軟X線が発生する。発生した軟X線は照射窓1035から横方向(図45Aに示す左方)に向けて射出(放射)され、窓部材1071および第1開口1052を通して分岐配管1016の内部を照射する。照射窓1035からの軟X線の照射角(照射範囲)は、図46に示すように広角(たとえば130°)である。照射窓1035から分岐配管1016の内部に照射される軟X線は、その波長がたとえば0.13~0.4nmである。
 窓部材1071の外表面(閉塞窓における処理液が流通する側の壁面)1071Bの全域は、親水性皮膜(皮膜)1038によって被覆されている。親水性皮膜1038は、たとえばポリイミド樹脂皮膜である。窓部材1071の外表面1071Bを親水性皮膜1038で覆ったのは、耐酸性の劣るベリリウム製の窓部材1071を、水等の処理液に含まれる酸から守るためのものである。親水性皮膜1038の膜厚は、50μm以下であり、とくに10μm程度であることが好ましい。親水性皮膜1038が親水性を有しているので、皮膜1038と処理液との間に気泡が混入するのを、抑制または防止することができる。これにより、照射窓1035からの軟X線を、分岐配管1016を流通している処理液に対して良好に照射できる。
 気体ノズル1027の吐出口は、カバー1026の上壁に開口している。気体ノズル1027には気体バルブ(気体供給手段)1037を介して気体供給源(図示しない)からの気体が供給されている。気体ノズル1027が吐出する気体として、CDA(低湿度の清浄空気)や窒素ガスの不活性ガスを例示できる。気体ノズル1027から吐出された気体は、カバー1026の内部に供給される。軟X線発生器1025の駆動により当該軟X線発生器1025が発熱するおそれがあるが、カバー1026の内部に気体を供給することにより、軟X線発生器1025を冷却し、軟X線発生器1025の周囲雰囲気の昇温を抑制できる。
 図44に示すように、制御装置1006はマイクロコンピュータを含む構成を有し、予め定められたプログラムに従って、昇降機構1022および循環ポンプ1014等の動作を制御する。さらに、制御装置1006は、処理液バルブ1009、排液バルブ1020等の開閉動作を制御する。
 図45Bは、基板処理装置1001において実行される基板処理の処理例を示す工程図である。図44、図45Aおよび図45Bを参照しながら、基板処理の処理例について説明する。
 処理槽1002にて基板Wの処理を行っていないときであっても、循環機構1005において、処理液の循環が継続して行われている。すなわち、処理液の交換や装置メンテナンス等の特定の状況を除き、処理槽1002内には常時処理液が貯留されており、処理液は処理槽1002内で滞留せずに循環配管1012を通って循環している。このような循環の際には、循環バルブ1021が開放されている。その結果、外槽1008から流出した処理液が循環配管1012を通って、循環ノズル1013から内槽1007の内部に供給される。内槽1007の内部が処理液で満たされている状態にて循環ノズル1013からさらに処理液が供給されることにより、余った処理液が内槽1007の上端部からオーバーフローして外槽1008に流れ込む。そして、外槽1008から流出した処理液が循環配管1012を通って循環ノズル1013から内槽1007の内部に供給される。
 基板浸漬処理の開始に伴って、循環バルブ1021が閉じられかつ循環ポンプ1014の駆動が停止させられるとともに、排液バルブ1020が開かれて、内槽1007に貯留されていた処理液が急速に排液される(ステップS1001)。
 内槽1007から処理液を排液して、内槽1007内が空になった後、制御装置1006は、リフター1004を制御して、受渡位置にて受け取った複数枚の基板Wを内槽1007の内部の処理位置にまで降下させる。これにより、基板Wが処理槽1002内に投入される(ステップS1002)。基板Wは、空となっている内槽1007の内部に保持される。
 未処理の基板Wが空の処理槽1002に投入されて処理位置に保持された後、制御装置1006は、処理液バルブ1009を開放して、処理液ノズル1003から処理液をシャワー状に吐出する(ステップS1003)。このとき、排液バルブ1020は開かれたままであり、排液口(図示しない)が開放されているため、汚染物質を含んだ処理液は溜められない。
 その後、予め定めるシャワー洗浄時間が過ぎると、制御装置1006は、排液バルブ1020を閉じる。このとき、処理液ノズル1003からの処理液の吐出は継続されているので、内槽1007に処理液が溜められる。これにより、基板Wが処理液に浸漬される基板浸漬処理が実行される。
 内槽1007に処理液が満タンに溜められると、制御装置1006は処理液バルブ1009を閉じて、処理液ノズル1003からの処理液の吐出を停止する。また、制御装置1006は、循環ポンプ1014の駆動を開始させるとともに、循環バルブ1021を開く。これにより、処理液は処理槽1002内で滞留せずに循環配管1012を通って循環する(ステップS1004)。具体的には、外槽1008から流出した処理液が循環配管1012を通って循環ノズル1013から内槽1007の内部に供給される。内槽1007の内部が処理液で満たされている状態にて循環ノズル1013からさらに処理液が供給されることにより、余った処理液が内槽1007の上端部からオーバーフローして外槽1008に流れ込む。そして、外槽1008から流出した処理液が循環配管1012を通って循環ノズル1013から内槽1007の内部に供給される。循環する処理液がフィルタ1015を通過するときにパーティクル等の汚染物質は除去される。このため、循環ノズル1013からは汚染物質が取り除かれた清浄な処理液が内槽1007内に向けて吐出される。この状態で、循環ノズル1013のノズル配管内および分岐配管1016内では、処理液が液密状態にある。
 また、制御装置1006は、高電圧ユニット1031(図45A参照)を制御して、軟X線照射ユニット1017の軟X線発生器1025(図45A参照)に軟X線を発生させて、この軟X線を、照射窓1035(図45A参照)から窓部材1071を介して、分岐配管1016の内部に向けて照射させる(ステップS1005)。これにより、分岐配管1016内を流通している処理液に、軟X線が照射される。
 図46は、図44に示す分岐配管1016内への軟X線の照射状態を示す図解図である。
 基板浸漬処理に並行して、分岐配管1016内を流通している処理液に軟X線が照射される。分岐配管1016内の処理液のうち軟X線が照射される部分(分岐配管1016内の第1開口1052に対向する部分。図46に示す網掛け部分(以下、「処理液の照射部分1054」という。))では、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、処理液の照射部分1054に形成される。
 この場合、前述のように循環ノズル1013のノズル配管内および分岐配管1016内で処理液が液密状態であるので、内槽1007に貯留されている処理液に浸漬されている基板Wと処理液の照射部分1054とが、内槽1007に貯留されている処理液および分岐配管1016内の処理液を介して繋がっている。このとき、基板Wが正に帯電すると、処理液の照射部分1054と、正に帯電している基板Wとの間の電位差で、処理液の照射部分1054からの電子が基板Wに向けて、内槽1007に貯留されている処理液および分岐配管1016内の処理液を介して移動する。これにより、基板Wに多量の電子が供給される結果、正に帯電している基板Wが除電される。
 また、処理液への浸漬の前から基板Wが正に帯電している場合にも、同様の原理により、内槽1007内の処理液や分岐配管1016内の処理液を介して当該基板Wを除電できる。
 図45Bに示すように、浸漬処理の開始から予め定める浸漬処理時間が経過すると、制御装置1006は、軟X線照射ユニット1017からの軟X線の照射を停止させる(ステップS1006)。
 その後、処理済みの基板Wが内槽1007から搬出される(ステップS1007)。基板Wの搬出は、複数の基板Wを一括保持するリフター1004が内槽1007の内部の処理位置から上方の受渡位置にまで上昇されることによって行われる。受渡位置に上昇した複数の基板Wからなるロットは次工程の処理槽へと搬送される。
 そして、引き続いて処理を行う後続の基板Wが存在している場合、ステップS1001に戻って前述の一連の処理が繰り返し実行される。
 以上により、第19実施形態によれば、処理液の浸漬処理時における基板Wの帯電を防止できる。また、浸漬処理前から基板Wが帯電していても、その基板Wに帯びた電荷を除去(すなわち、除電)できる。その結果、基板Wの帯電に起因するデバイス破壊を防止できる。
 図47は、本発明の第20実施形態に係る処理液処理装置が適用された基板処理装置1201の構成を示す図である。
 第20実施形態において、第19実施形態と共通する部分には、図44~図46の場合と同一の参照符号を付し説明を省略する。第20実施形態に係る基板処理装置1201が、第19実施形態に係る基板処理装置1001と相違する点は、軟X線照射ユニット(X線照射手段)1217が、帰還配管1019における循環ポンプ1014よりも上流側に介装されている点である。軟X線照射ユニット1217は、帰還配管1019に取り付けられている。
 帰還配管1019は、丸管状(円筒状)をなしており、塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。帰還配管1019の途中部には、循環ポンプ1014よりも上流側の管壁に、開口(図示しない)が形成されている。
 軟X線照射ユニット1217は、第19実施形態に係る軟X線照射ユニット1017(図45A参照)と同等の構成を採用している。軟X線照射ユニット1217は、帰還配管1019の開口を塞ぐように帰還配管1019に取り付けられている。具体的には、軟X線照射ユニット1217のカバーの開口(軟X線照射ユニット1017のカバー1026の第2開口1028(図45A参照)に相当する開口)が帰還配管1019の前記の開口に一致し、かつ軟X線照射ユニット1217のカバーの壁面(軟X線照射ユニット1017のカバー1026の横壁1026A(図45A参照)に相当)が帰還配管1019の外周に密着している。軟X線照射ユニット1217の高電圧ユニット(第19実施形態に係る軟X線照射ユニット1017の高電圧ユニット1031(図45A参照)に相当)は、制御装置1006に接続されている。
 基板処理装置1201では、図45Bに示す処理例の場合と同様の処理が実施される。基板浸漬処理(図45BのステップS1004~S1006)では、処理液は処理槽1002内で滞留せずに循環配管1012を通って循環している。内槽1007の内部が処理液で満たされている状態で循環ノズル1013からさらに処理液が供給されることにより、余った処理液が内槽1007の上端部からオーバーフローして(溢れて)外槽1008に流れ込む。
 図48は、処理液が内槽1007の上端部からオーバーフローしている状態を示す模式的な断面図である。
 外槽1008は、内槽1007の外周を取り囲む円環板状の底壁1081と、底壁1081の外周縁から鉛直上方に向けて立ち上がる立上壁1082とを有している。底壁1081の周方向のたとえば一箇所には、底壁1081を厚み方向に貫通する貫通孔より構成されるオーバーフロー口1083が形成されている。オーバーフロー口1083に、帰還配管1019の上流側端部が接続されている。
 基板浸漬処理(図45BのステップS1004~S1006)において、循環ノズル1013からの処理液の供給が断続的に続行されるから、帰還配管1019内が処理液で液密状態にされる。また、図48に示すように、処理液の液塊1080が内槽1007の上端部を乗り越える状態が常時続くから、内槽1007に貯留されている処理液と外槽1008に貯留されている処理液とが、このような処理液の液塊1080によって常時繋がっている。
 基板浸漬処理に並行して、帰還配管1019内を流通している処理液に、軟X線照射ユニット1217から軟X線が照射される(図45BのステップS1005)。
 帰還配管1019内の処理液のうち軟X線が照射される部分(処理液の照射部分。図46に示す、第19実施形態に係る処理液の照射部分1054と同等の部分)では、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、処理液の照射部分に形成される。
 この場合、前述のように帰還配管1019内で処理液が液密状態であり、かつ内槽1007に貯留されている処理液と外槽1008に貯留されている処理液とが処理液の液塊1080によって常時繋がっているので、内槽1007に貯留されている処理液に浸漬されている基板Wと処理液の照射部分とが、内槽1007に貯留されている処理液、外槽1008に貯留されている処理液、および帰還配管1019内の処理液を介して繋がっている。このとき、基板Wが正に帯電すると、処理液の照射部分と、正に帯電している基板Wとの間の電位差で、処理液の照射部分からの電子が基板Wに向けて、内槽1007に貯留されている処理液および帰還配管1019内の処理液を介して移動する。これにより、基板Wに多量の電子が供給される結果、正に帯電している基板Wが除電される。
 以上により、第20実施形態においても、第19実施形態で述べた作用効果と同等の作用効果を奏する。
 図49は、本発明の第21実施形態に係る処理液処理装置が適用された基板処理装置1301の構成を示す図である。
 第21実施形態において、第19実施形態と共通する部分には、図44~図46の場合と同一の参照符号を付し説明を省略する。第21実施形態に係る基板処理装置1301が、第19実施形態に係る基板処理装置1001と相違する点は、内槽1007に代えて、略箱状の第1膨出部分1318を有する内槽1307を備えた点、および軟X線照射ユニット(X線照射手段)1317が第1膨出部分1318の壁に取り付けられている点である。
 第1膨出部分1318は、内槽1307の円筒状の周壁1307Aから、水平に沿って外方に向けて膨出しており、内槽1307の周壁1307Aと一体的に形成されている。第1膨出部分1318の上壁または下壁(図49では上面)には、開口1321が形成されている。
 軟X線照射ユニット1317は、第19実施形態に係る軟X線照射ユニット1017(図45A参照)と同等の構成を採用している。軟X線照射ユニット1317は、第1膨出部分1318の開口1321を塞ぐように取り付けられている。具体的には、軟X線照射ユニット1317のカバーの開口(軟X線照射ユニット1017のカバー1026の第2開口1028(図45A参照)に相当する開口)が第1膨出部分1318の開口1321に一致し、かつ軟X線照射ユニット1317のカバーの壁面(軟X線照射ユニット1017のカバー1026の横壁1026A(図45A参照)に相当)が第1膨出部分1318の上壁に密着している。軟X線照射ユニット1317の高電圧ユニット(第19実施形態に係る軟X線照射ユニット1017の高電圧ユニット1031(図45A参照)に相当)は、制御装置1006に接続されている。
 基板処理装置1301では、図45Bに示す処理例の場合と同様の処理が実施される。基板浸漬処理(図45BのステップS1004~S1006)では、内槽1307内に処理液が溜められ、これにより、第1膨出部分1318内が処理液により液密状態になる。
 基板浸漬処理に並行して、第1膨出部分1318内の処理液に、軟X線照射ユニット1317から軟X線が照射される(図45BのステップS1005)。
 第1膨出部分1318内の処理液のうち軟X線が照射される部分(処理液の照射部分。図46に示す、第19実施形態に係る処理液の照射部分1054と同等の部分)では、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、処理液の照射部分に形成される。
 この場合、内槽1307に貯留されている処理液に浸漬されている基板Wと処理液の照射部分とが、内槽1307に貯留されている処理液を介して繋がっている。このとき、基板Wが正に帯電すると、処理液の照射部分と、正に帯電している基板Wとの間の電位差で、処理液の照射部分からの電子が基板Wに向けて、内槽1307に貯留されている処理液を介して移動する。これにより、基板Wに多量の電子が供給される結果、正に帯電している基板Wが除電される。
 以上により、第21実施形態においても、第19実施形態で述べた作用効果と同等の作用効果を奏する。
 図50は、本発明の第22実施形態に係る処理液処理装置が適用された基板処理装置1401の構成を示す図である。
 第22実施形態において、第19実施形態と共通する部分には、図44~図46の場合と同一の参照符号を付し説明を省略する。第22実施形態に係る基板処理装置1401が、第19実施形態に係る基板処理装置1001と相違する点は、内槽1007に代えて、底部に略箱状の第2膨出部分1418を有する内槽1407を備えた点、および第2膨出部分1418に接続された配管1423に、軟X線照射ユニット(X線照射手段)1417が取り付けられている点である。
 なお、図50では、基板処理装置1401は、循環機構1005(図44参照)と同等の構成の循環機構を備えているが、その図示を省略している。
 第2膨出部分1418は、内槽1407の底壁1407Aから、水平に沿って外方に向けて膨出しており、内槽1407の底壁1407Aと一体的に形成されている。第2膨出部分1418の下壁の所定位置には、排液バルブ1420が介装されている。排液バルブ1420は排液バルブ1020(図44参照)と同等の構成を有する。すなわち、第2膨出部分1418はQDR(クイック・ダンプ・リンス)設置用の部分である。内槽1407の底部から排出された処理液は、廃液装置または回収装置へと送られ、処理されるようになっている。
 第2膨出部分1418のたとえば上壁には、配管1423の一端が接続されている。配管1423の内部は、第2膨出部分1418の内部と連通している。第2膨出部分1418における配管1423の接続位置は、第2膨出部分1418における排液バルブ1420の配設位置と平面視において異なる位置であることが望ましい。
 配管1423は、丸管状(円筒状)をなしており、塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。配管1423の途中部には、開口1421が形成されている。
 軟X線照射ユニット1417は、第19実施形態に係る軟X線照射ユニット1017(図45A参照)と同等の構成を採用している。軟X線照射ユニット1417は、配管1423の開口1421を塞ぐように配管1423に取り付けられている。具体的には、軟X線照射ユニット1417のカバーの開口(軟X線照射ユニット1017のカバー1026の第2開口1028(図45A参照)に相当する開口)が配管1423の開口1421に一致し、かつ軟X線照射ユニット1417のカバーの壁面(軟X線照射ユニット1017のカバー1026の横壁1026A(図45A参照)に相当)が配管1423の外周に密着している。軟X線照射ユニット1417の高電圧ユニット(第19実施形態に係る軟X線照射ユニット1017の高電圧ユニット1031(図45A参照)に相当)は、制御装置1006に接続されている。
 基板処理装置1401では、図45Bに示す処理例の場合と同様の処理が実施される。基板浸漬処理(図45BのステップS1004~S1006)では、内槽1407内に処理液が溜められ、これにより、第2膨出部分1418内や配管1423内も、処理液により液密状態になる。
 基板浸漬処理に並行して、配管1423内を流通している処理液に、軟X線照射ユニット1417から軟X線が照射される(図45BのステップS1005)。
 配管1423内の処理液のうち軟X線が照射される部分(処理液の照射部分。図46に示す、第19実施形態に係る処理液の照射部分1054と同等の部分)では、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、処理液の照射部分に形成される。
 この場合、前述のように配管1423内で処理液が液密状態であり、また第2膨出部分1418内も処理液により液密とされているので、内槽1407に貯留されている処理液に浸漬されている基板Wと処理液の照射部分とが、内槽1407(第2膨出部分1418を含む)に貯留されている処理液および配管1423内の処理液を介して繋がっている。このとき、基板Wが正に帯電すると、処理液の照射部分と、正に帯電している基板Wとの間の電位差で、処理液の照射部分からの電子が基板Wに向けて、配管1423内の処理液および内槽1407に貯留されている処理液を介して移動する。これにより、基板Wに多量の電子が供給される結果、正に帯電している基板Wが除電される。
 以上により、第22実施形態においても、第19実施形態で述べた作用効果と同等の作用効果を奏する。
 図51は、本発明の第23実施形態に係る処理液処理装置が適用された基板処理装置1501の構成を示す図である。
 第23実施形態において、第19実施形態と共通する部分には、図44~図46の場合と同一の参照符号を付し説明を省略する。第23実施形態に係る基板処理装置1501が、第19実施形態に係る基板処理装置1001と相違する点は、循環機構1005(図44参照)を設けずに、外槽1008から流出した処理液がドレイン配管1519を通って廃液または回収される点、および処理液ノズル1003(図44参照)に代えて、処理液ノズル1561を設けた点である。処理液ノズル1561には、処理液ノズル1561内を流通する処理液に軟X線を照射するための軟X線照射ユニット1562が取り付けられている。処理液ノズル1561は、たとえば、連続流の状態で液を吐出するストレートノズルであり、その吐出口1553を内槽1007の内部に向けた状態で配置されている。処理液ノズル1561には、処理液供給源からの処理液が供給される処理液配管1513が接続されている。処理液配管1513の途中部には、処理液ノズル1561からの処理液の供給/供給停止を切り換えるための処理液バルブ1514が介装されている。
 処理液ノズル1561は、鉛直方向に延びる丸管状(円筒状)のノズル配管1551を有している。ノズル配管1551は、たとえば塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。ノズル配管1551の先端部(下端部)には、丸型の吐出口1553が開口している。ノズル配管1551には、途中部の管壁に、たとえば円形の開口1552が形成されている。
 軟X線照射ユニット1562は、第19実施形態に係る軟X線照射ユニット1017(図45A参照)と同等の構成を採用している。軟X線照射ユニット1562は、ノズル配管1551の開口1552を塞ぐようにノズル配管1551に取り付けられている。具体的には、軟X線照射ユニット1562のカバーの開口(軟X線照射ユニット1017のカバー1026の第2開口1028(図45A参照)に相当する開口)が開口1552に一致し、かつ軟X線照射ユニット1562のカバーの壁面(軟X線照射ユニット1017のカバー1026の横壁1026A(図45A参照)に相当)がノズル配管1551の外周に密着している。軟X線照射ユニット1562の高電圧ユニット(第19実施形態に係る軟X線照射ユニット1017の高電圧ユニット1031(図45A参照)に相当)は、制御装置1006に接続されている。
 基板処理装置1501では、処理槽1502に処理液が溜められた後、リフター1004により基板Wが一括して処理槽1502内に投入される。その後、基板浸漬処理(図45BのステップS1004~S1006)が実行される。但し、基板処理装置1501には循環機構1005(図44参照)が設けられていないので、基板浸漬処理では、処理槽1502に貯留されている処理液は循環されない。その代わりに、基板浸漬処理中において、処理液ノズル1561からの処理液の供給が断続的に続行される。基板浸漬処理では、処理液ノズル1561の吐出口1553から吐出される処理液の態様が、吐出口1553と内槽1007に貯留されている処理液の液面との双方に繋がる連続流状の態様をなしており、また、処理液ノズル1561のノズル配管1551内では、処理液が液密状態にある。
 基板浸漬処理に並行して、ノズル配管1551内を流通している処理液に、軟X線照射ユニット1562から軟X線が照射される(図45BのステップS1005)。
 ノズル配管1551内の処理液のうち軟X線が照射される部分(処理液の照射部分。図46に示す、第19実施形態に係る処理液の照射部分1054と同等の部分)では、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、処理液の照射部分に形成される。
 この場合、前述のように、ノズル配管1551内で処理液が液密状態であり、かつ吐出口1553から吐出される処理液の態様が、吐出口1553と内槽1007に貯留されている処理液の液面との双方に繋がる連続流状の態様をなしているので、内槽1007に貯留されている処理液に浸漬されている基板Wと処理液の照射部分とが、内槽1007に貯留されている処理液、前記の連続流状の処理液およびノズル配管1551内の処理液を介して繋がっている。このとき、基板Wが正に帯電すると、処理液の照射部分と、正に帯電している基板Wとの間の電位差で、処理液の照射部分からの電子が基板Wに向けて、ノズル配管1551内の処理液、前記の連続流状の処理液および内槽1007に貯留されている処理液を介して移動する。これにより、基板Wに多量の電子が供給される結果、正に帯電している基板Wが除電される。
 以上により、第23実施形態においても、第19実施形態で述べた作用効果と同等の作用効果を奏する。
 なお、第23実施形態では、ノズル配管1551内を流通している処理液に軟X線照射ユニット1562から軟X線を照射する場合を例に挙げて説明したが、ノズル配管1551内に内部が連通する配管に軟X線照射ユニット1562を設け、当該配管内を流通している処理液に軟X線照射ユニット1562からの軟X線を照射させるようにしてもよい。
 図52は、本発明の第24実施形態に係る処理液処理装置が適用された基板処理装置1601の構成を示す図である。
 第24実施形態において、第19実施形態と共通する部分には、図44~図46の場合と同一の参照符号を付し説明を省略する。第24実施形態に係る基板処理装置1601が、第19実施形態に係る基板処理装置1001と相違する点は、循環機構1005(図44参照)を設けずに、外槽1008から流出した処理液がドレイン配管1519を通って廃液または回収される点、および外槽1008に向けて処理液を吐出する処理液ノズル1561を設けた点である。
 処理液ノズル1561は、たとえば、連続流の状態で液を吐出するストレートノズルであり、その吐出口1553を外槽1008の内部に向けた状態で配置されている。処理液ノズル1561には、処理液ノズル1561内を流通する処理液に軟X線を照射するための軟X線照射ユニット1562が取り付けられている。処理液ノズル1561および軟X線照射ユニット1562に関する一連の構成は第23実施形態の場合と同一であるので、第23実施形態の場合と同一参照符号を付して説明を省略する。
 基板処理装置1601では、図45Bに示す処理例の場合と同様の処理が実施される。但し、基板処理装置1601には循環機構1005(図44参照)が設けられていないので、基板浸漬処理(図45BのステップS1004~S1006)中に、処理槽1502に貯留されている処理液が循環されない。その代わりに、基板浸漬処理中において、処理液ノズル1003からの処理液の供給が断続的に続行される。内槽1007の内部が処理液で満たされている状態で処理液ノズル1003からさらに処理液が供給されることにより、余った処理液が内槽1007の上端部からオーバーフローして(溢れて)外槽1008に流れ込む。このとき、処理液の液塊(図48の処理液の液塊1080と同様の液塊)が内槽1007の上端部を乗り越える状態が常時続くから、内槽1007に貯留されている処理液と外槽1008に貯留されている処理液とが、処理液の液塊によって常時繋がっている。
 基板浸漬処理に並行して、処理液バルブ1514が開かれて、処理液ノズル1561の吐出口1553から処理液が外槽1008の内部に向けて吐出される。処理液ノズル1561の吐出口1553から吐出される処理液の態様は、吐出口1553と外槽1008に貯留されている処理液の液面との双方に繋がる連続流状の態様をなしている。このとき、処理液ノズル1561のノズル配管1551内では、処理液が液密状態にある。
 また、基板浸漬処理に並行して、ノズル配管1551内を流通している処理液に、軟X線照射ユニット1562から軟X線が照射される(図45BのステップS1005)。
 ノズル配管1551内の処理液のうち軟X線が照射される部分(処理液の照射部分。図46に示す、第19実施形態に係る処理液の照射部分1054と同等の部分)では、水分子の励起により当該水分子から電子が放出される。その結果、多量の電子と、水分子の多量の正イオンとが混在するプラズマ状態が、処理液の照射部分に形成される。
 この場合、ノズル配管1551内で処理液が液密状態であり、吐出口1553から吐出される処理液の態様が、吐出口1553と外槽1008に貯留されている処理液の液面との双方に繋がる連続流状の態様をなしており、かつ内槽1007に貯留されている処理液と外槽1008に貯留されている処理液とが処理液の液塊によって常時繋がっているので、内槽1007に貯留されている処理液に浸漬されている基板Wと処理液の照射部分とが、内槽1007に貯留されている処理液、外槽1008に貯留されている処理液、前記の連続流状の処理液およびノズル配管1551内の処理液を介して繋がっている。このとき、基板Wが正に帯電すると、処理液の照射部分と、正に帯電している基板Wとの間の電位差で、処理液の照射部分からの電子が基板Wに向けて、ノズル配管1551内の処理液、前記の連続流状の処理液、外槽1008に貯留されている処理液および内槽1007に貯留されている処理液を介して移動する。これにより、基板Wに多量の電子が供給される結果、正に帯電している基板Wが除電される。
 以上により、第24実施形態においても、第19実施形態で述べた作用効果と同等の作用効果を奏する。
 また、軟X線照射ユニット1562の窓部材の外表面(窓部材1071の外表面71B(図45A参照)に相当)から親水性皮膜(親水性皮膜1038(図45参照)に相当)が剥がれると、当該窓部材に含まれるベリリウムが処理液に溶け出すおそれがある。このような場合であっても、ベリリウムを含む処理液がドレイン配管1519を介して排液されるので、これにより、ベリリウムを含む処理液が基板Wに供給されるのを確実に回避することができる。
 図53は、本発明の第25実施形態に係る処理液処理装置が適用された基板処理装置1701の構成を示す図である。
 第25実施形態において、第23実施形態と共通する部分には、図51の場合と同一の参照符号を付し説明を省略する。第25実施形態に係る基板処理装置1701が、第23実施形態に係る基板処理装置1501と相違する点は、複数枚の基板Wを一括して保持するカセット1702ごと複数枚の基板Wを処理槽1502内に浸漬させた点である。図53では図示していないが、基板処理装置1701には、第23実施形態のリフター1004や昇降機構1022などの構成が設けられている。このリフター1004によって、複数枚の基板Wが一括して保持されたカセット1702が保持され、昇降される。
 カセット1702は、たとえば塩ビ(poly-vinyl-chloride)や、PTFE(poly tetra-fluoro ethylene)、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene-copolymer)などの樹脂材料を用いて形成されている。
 基板処理装置1701では、処理槽1502に処理液が溜められた後、複数枚の基板Wおよびカセット1702が処理槽1502内に投入される。その後、基板浸漬処理(図45BのステップS1004~S1006)が実行される。
 基板浸漬処理中には、第23実施形態の場合と同様、処理液ノズル1561からの処理液の供給が断続的に続行される。基板浸漬処理では、処理液ノズル1561の吐出口1553から吐出される処理液の態様が、吐出口1553と内槽1007に貯留されている処理液の液面との双方に繋がる連続流状の態様をなしており、また、処理液ノズル1561のノズル配管1551内では、処理液が液密状態にある。
 また、基板浸漬処理に並行して、ノズル配管1551内を流通している処理液に、軟X線照射ユニット1562から軟X線が照射される(図45BのステップS1005)。ノズル配管1551内の処理液のうち軟X線が照射される部分(処理液の照射部分。図46に示す、第19実施形態に係る処理液の照射部分1054と同等の部分)に、前述のプラズマ状態が、処理液の照射部分に形成される。
 この場合、前述のように、ノズル配管1551内で処理液が液密状態であり、かつ吐出口1553から吐出される処理液の態様が、吐出口1553と内槽1007に貯留されている処理液の液面との双方に繋がる連続流状の態様をなしているので、内槽1007に貯留されている処理液に浸漬されている基板Wやカセット1702と、処理液の照射部分とが、内槽1007に貯留されている処理液、前記の連続流状の処理液およびノズル配管1551内の処理液を介して繋がっている。このとき、基板Wやカセット1702が正に帯電すると、処理液の照射部分と、正に帯電している基板Wやカセット1702との間の電位差で、処理液の照射部分からの電子が基板Wやカセット1702に向けて、ノズル配管1551内の処理液、前記の連続流状の処理液および内槽1007に貯留されている処理液を介して移動する。これにより、基板Wに多量の電子が供給される結果、正に帯電している基板Wが除電される。
 また、カセット1702の材質によっては、カセット1702が負に帯電することも考えられるが、この場合、カセット1702からの電子が、内槽1007に貯留されている処理液、前記の連続流状の処理液およびノズル配管1551内の処理液を介して、処理液の照射部分の正イオンに向けて移動する。これにより、カセット1702から電子が除去される結果、負に帯電しているカセット1702が除電される。
 以上により、第25実施形態においても、第19実施形態で述べた作用効果と同等の作用効果を奏する。
 また、処理液の浸漬処理時におけるカセット1702の帯電をも防止できる。また、浸漬処理前からカセット1702が帯電していても、その基板Wに帯びた電荷を除去(すなわち、除電)できる。
 第19~第25実施形態では、処理対象物を基板Wとする基板処理装置1001,1201,1301,1401,1501,1601に本発明を適用した場合について説明したが、本発明は、基板W以外を処理対象物とする処理液処理装置(物品洗浄装置)にも適用できる。
 図54は、本発明の第26実施形態に係る処理液処理装置が適用された物品洗浄装置1801の構成を示す図である。
 物品洗浄装置1801は、たとえばレンズLなどの光学部品を処理対象物とし、光学部品を、処理液(洗浄液)を用いて洗浄するための装置である。物品洗浄装置1801は、処理槽1502にレンズLを浸漬させることにより、当該レンズLを洗浄する。複数個のレンズLがカセット1802に一括して収容された状態で、処理槽1502内に浸漬される。物品洗浄装置1801には、処理槽1502に貯留されている処理液に超音波振動を発生させる超音波発生装置(図示しない)が設けられている。
 超音波発生装置(図示しない)を設ける点を除いて、物品洗浄装置1801の概略構成は、第25実施形態に係る基板処理装置1701の構成と同等であるので、第26実施形態において、第25実施形態と共通する部分には、図53の場合と同一の参照符号を付し説明を省略する。
 物品洗浄装置1801では、レンズLおよびカセット1802が処理槽1502内に投入された後、処理槽1502に処理液が溜められる。これにより、レンズLおよびカセット1802が処理液に浸漬され、このような浸漬処理が予め定める期間の間続行されることによりレンズLが洗浄される。
 浸漬処理中には、第23実施形態の場合と同様、処理液ノズル1561からの処理液の供給が断続的に続行される。浸漬処理では、処理液ノズル1561の吐出口1553から吐出される処理液の態様が、吐出口1553と内槽1007に貯留されている処理液の液面との双方に繋がる連続流状の態様をなしており、また、処理液ノズル1561のノズル配管1551内では、処理液が液密状態にある。
 また、浸漬処理に並行して、ノズル配管1551内を流通している処理液に、軟X線照射ユニット1562から軟X線が照射される(図45BのステップS1005)。ノズル配管1551内の処理液のうち軟X線が照射される部分(処理液の照射部分。図46に示す、第19実施形態に係る処理液の照射部分1054と同等の部分)に、前述のプラズマ状態が、処理液の照射部分に形成される。
 この場合、前述のように、ノズル配管1551内で処理液が液密状態であり、かつ吐出口1553から吐出される処理液の態様が、吐出口1553と内槽1007に貯留されている処理液の液面との双方に繋がる連続流状の態様をなしているので、内槽1007に貯留されている処理液に浸漬されているレンズLやカセット1802と、処理液の照射部分とが、内槽1007に貯留されている処理液、前記の連続流状の処理液およびノズル配管1551内の処理液を介して繋がっている。このとき、レンズLやカセット1802が正に帯電すると、処理液の照射部分と、正に帯電しているレンズLやカセット1802との間の電位差で、処理液の照射部分からの電子がレンズLやカセット1802に向けて、ノズル配管1551内の処理液、前記の連続流状の処理液および内槽1007に貯留されている処理液を介して移動する。これにより、基板Wに多量の電子が供給される結果、正に帯電しているレンズLが除電される。
 また、カセット1802の材質によっては、カセット1802が負に帯電することも考えられるが、この場合、カセット1802からの電子が、内槽1007に貯留されている処理液、前記の連続流状の処理液およびノズル配管1551内の処理液を介して、処理液の照射部分の正イオンに向けて移動する。これにより、カセット1802から電子が除去される結果、負に帯電しているカセット1802が除電される。
 以上により、第26実施形態によれば、処理液の浸漬処理時におけるレンズLの帯電を防止できる。また、浸漬処理前からレンズLが帯電していても、そのレンズLに帯びた電荷を除去(すなわち、除電)できる。
 なお、前述の説明では複数個のレンズLがカセット1802に収容された状態で処理液に浸漬されるとして説明したが、レンズLが直接(カセット1802に収容されずに)処理液に浸漬されるようになっていてもよい。
 また、光学部品としてレンズL(図54参照)を例に挙げて説明したが、ミラー、回折格子等の光学部品を収容する部品収容器を処理対象とすることができる。光学部品以外の部品を洗浄対象(処理対象)とすることもできる。
 また、第26実施形態に係る物品洗浄装置1801において、第19~第22および第24実施形態の場合と同様の構成が採用されていてもよい。この場合、第19~第22および第24実施形態で説明したものと同様の処理が施される。すなわち、処理槽1502に貯留されている処理液に光学部品(レンズL)等の部品が浸漬され、それと並行して、当該処理槽1502に貯留された処理液、または内部が処理槽1502内に連通する配管1016,1019,1423内に存在する処理液に、軟X線ユニット1017,1217,1317,1417からの軟X線が照射される。
 図55は、本発明の第27実施形態に係る処理液処理装置が適用された物品洗浄装置1901の構成を示す図である。
 物品洗浄装置1901は、たとえば基板収容器(収容器)1602を処理対象物とし、基板収容器1602を、処理液(洗浄液)を用いて洗浄するための装置である。物品洗浄装置1901は、処理槽1502に基板収容器1602を浸漬させることにより、当該基板収容器1602を洗浄する。
 図56は、基板収容器1602の構成を示す斜視図である。
 図56に示すように、基板収容器1602は、基板Wを密閉した状態で収容する容器である。基板収容器1602の一例として、FOSB(Front Opening Shipping Box)を挙げることができる。FOSBは、専ら、半導体ウエハメーカから半導体装置メーカに、基板Wを納入するために用いられる。FOSBは、未処理の複数枚の基板Wを収容し、これらの基板Wの清浄度を維持しつつ、基板Wへの損傷を防止する。
 基板収容器1602は、側方に開口1603Aを有する有底箱状の収容器本体1603と、収容器本体1603の開口1603Aを開閉するための蓋1604と、収容器本体1603の内壁に取り付けられた多段の収容器支持棚1606と、蓋1604に取り付けられた多段の蓋支持棚1605とを含む。開口1603Aを介して収容器本体1603の内部に対し、基板Wの出し入れが行われる。収容器本体1603および蓋1604は、それぞれ、たとえば塩ビ(poly-vinyl-chloride)等の樹脂材料を用いて形成されている。
 図55に示すように物品洗浄装置1901の概略構成は、第25実施形態に係る基板処理装置1701の構成と同等であるので、第27実施形態において、第25実施形態と共通する部分には、図53の場合と同一の参照符号を付し説明を省略する。
 基板処理装置1901では、基板収容器1602(収容器本体1603)が処理槽1502内に投入された後、処理槽1502に処理液が溜められる。これにより、基板収容器1602が処理液に浸漬され、このような浸漬処理が予め定める期間の間続行されることにより基板収容器1602が洗浄される。
 浸漬処理中には、第25実施形態の場合と同様、処理液ノズル1561からの処理液の供給が断続的に続行される。浸漬処理では、処理液ノズル1561の吐出口1553から吐出される処理液の態様が、吐出口1553と内槽1007に貯留されている処理液の液面との双方に繋がる連続流状の態様をなしており、また、処理液ノズル1561のノズル配管1551内では、処理液が液密状態にある。
 また、浸漬処理に並行して、ノズル配管1551内を流通している処理液に、軟X線照射ユニット1562から軟X線が照射される(図45BのステップS5)。ノズル配管1551内の処理液のうち軟X線が照射される部分(処理液の照射部分。図46に示す、第19実施形態に係る処理液の照射部分1054と同等の部分)に、前述のプラズマ状態が、処理液の照射部分に形成される。
 この場合、前述のように、ノズル配管1551内で処理液が液密状態であり、かつ吐出口1553から吐出される処理液の態様が、吐出口1553と内槽1007に貯留されている処理液の液面との双方に繋がる連続流状の態様をなしているので、内槽1007に貯留されている処理液に浸漬されている基板収容器1602と、処理液の照射部分とが、内槽1007に貯留されている処理液、前記の連続流状の処理液およびノズル配管1551内の処理液を介して繋がっている。このとき、基板収容器1602が正に帯電すると、処理液の照射部分と、正に帯電している基板収容器1602との間の電位差で、処理液の照射部分からの電子が基板収容器1602に向けて、ノズル配管1551内の処理液、前記の連続流状の処理液および内槽1007に貯留されている処理液を介して移動する。これにより、基板Wに多量の電子が供給される結果、正に帯電している基板収容器1602(収容器本体1603)が除電される。
 また、基板収容器1602の材質によっては、基板収容器1602が負に帯電することも考えられるが、この場合、基板収容器1602からの電子が、内槽1007に貯留されている処理液、前記の連続流状の処理液およびノズル配管1551内の処理液を介して、処理液の照射部分の正イオンに向けて移動する。これにより、基板収容器1602から電子が除去される結果、負に帯電している基板収容器1602が除電される。
 以上により、第27実施形態によれば、処理液の浸漬処理時における基板収容器1602の帯電を防止できる。また、浸漬処理前から基板収容器1602が帯電していても、その基板収容器1602に帯びた電荷を除去(すなわち、除電)できる。
 なお、図55では、基板収容器1602のうち収容器本体1603を洗浄する場合を例に挙げて説明したが、蓋1604や、支持棚1605,1606を洗浄する場合にも、同様に洗浄方法を採用することにより、蓋1604や支持棚1605,1606の除電を図りつつ、蓋1604や支持棚1605,1606に洗浄処理を施すことができる。
 また、基板収容器1602として、FOSBを例に挙げて説明したが、専ら、半導体ウエハメーカの工場内で基板Wを搬送するために用いられ、基板Wを密閉した状態で収容するFOUP(Front Opening Unified Pod)を挙げることもできる。その他、基板収容器1602として、SMIF(Standard Mechanical Interface)ポッドや、OC(Open Cassette)等の他の形態の基板収容器を例示することもできる。
 また、収容器は、基板Wを収容するものに限られず、CD、DVD、ブルーディスク等の円盤状のメディアを収容するメディア収容器や、レンズL(図54参照)、ミラー、回折格子等の光学部品を収容する部品収容器を処理対象とすることができる。
 また、第27実施形態に係る物品洗浄装置1901において、第19~第22および第24実施形態の場合と同様の構成が採用されていてもよい。この場合、第19~第22および第24実施形態で説明したものと同様の処理が施される。すなわち、処理槽1002に貯留されている処理液に基板収容器1602等の収容器が浸漬され、それと並行して、当該処理槽1002に貯留された処理液、または内部が処理槽1002内に連通する配管1016,1019,1423内に存在する処理液に、軟X線ユニット1017,1217,1317,1417からの軟X線が照射される。
 以上、この発明の実施形態について説明したが、この発明は他の形態で実施することもできる。
 第1~第8、第13および第14実施形態において、水ノズル61,202,212,531のノズル配管の先端部にそれぞれ電極56(図1、図8、図10(a)、図11、図12、図14、図15(a)、図16、図24および図28参照)が設けられているとして説明したが、この電極56をノズル配管に設けない構成であってもよい。この場合、電源57(図3参照)も省略される。
 逆に、第12実施形態の水ノズル409の先端部や第6および第11実施形態のカップ用ノズル224,313の先端部に電極56を設け、電極56に、電源57(図3参照)によって装置グラウンドに対する電圧が印加されるようになってもよい。
 また、図4、図18、図22、図24、図14、図20に二点鎖線で示すように、第4、第10、第12および第13実施形態の水供給配管204,307,410,533や第6および第11実施形態の分岐配管222,312に、液検出センサ(処理液検出手段)101が配置されていてもよい。液検出センサ101は、水供給配管204,307,410,533や分岐配管222,312内の所定の水検出位置102でのDIWの存否を検出するためのセンサである。この場合、水検出位置102は、水供給配管204,307,410,533や分岐配管222,312に形成される開口(軟X線が照射される開口)と同じ位置あるいは近い位置に設定されている。また、この場合には、図7の処理と同等の処理を実行することもできる。
 また、第4、第5、第12および第13実施形態において、水ノズル202,212,409,531の吐出口202A,216,409A,531Aならびに第6および第11実施形態のカップ用ノズル224,313の吐出口224A,313Aに、第3実施形態に係る繊維状物質をそれぞれ設けることもできる。
 また、第6および第11実施形態では、分岐配管222,312の先端に設けられたノズル224,313からのDIWを用いてカップ17の除電を行うとしたが、このようなノズル224,313からのDIWを用いて、第2ノズル配管232(図15(a),15(b)参照)の除電を行うようにしてもよい。
 また、第6および第11実施形態において、分岐配管222,312に軟X線照射ユニット223,319を配置するとして説明したが、軟X線照射ユニット223,319が水供給配管204,307にそれぞれ配置されていてもよい。
 また、第7、第8および第14実施形態に係る水供給ユニット230,250,600   では、第1実施形態に係る水供給ユニット100と同等の構成を採用するとして説明したが、第4実施形態に係る水供給ユニット200(図1参照)、第5実施形態に係る水供給ユニット220と同等の構成を採用することもできる。
 また、第10~第12実施形態において、水ノズル302から基板Wの上面に水を供給するとして説明したが、水ノズル302に代えて、第1~第3実施形態に係る水供給ユニット100(図1参照)や、第4実施形態に係る水供給ユニット200(図11参照)、第5実施形態に係る水供給ユニット220を採用することもできる。
 また、第10~第12実施形態において、基板Wに両面リンスを施す場合を例に挙げて説明したが、第10~第12実施形態において、基板Wの下面のみをリンス処理するようにしてもよい。この場合、図18、図20および図22に示す構成から、水ノズル302、水供給配管303および水バルブ304をそれぞれ取り除いた構成を採用することが可能である。
 また、第11実施形態に係る軟X線照射装置314を、第1~第10および第12実施形態において、処理室3内に配置することもできる。この場合、軟X線照射装置314からの軟X線がカップ上部19に照射されるようになっていてもよい。
 また、第1~第12および第14実施形態において、1つのノズル61,202,212,306,409から処理対象物(基板Wや基板収容器602、第2ノズル配管232)に、DIW(水の一例)を供給する場合を例に挙げて説明したが、複数のノズルからDIWを供給するようにしてもよい。この場合、第13実施形態の水供給ユニット500のように、ノズル61,202,212,306,409にDIWを供給するための複数の水供給配管の上流端が水集合配管に接続されており、かつ当該水集合配管内に存在しているDIWに、軟X線照射ユニットからの軟X線が照射されるようになっていることが好ましい。
 また、第1~第14実施形態では、たとえば、窓部材71の外表面71Bを覆う親水性皮膜38として、親水性を有するDLC(Diamond Like Carbon)皮膜や、親水性を有するフッ素樹脂皮膜、炭化水素樹脂皮膜などを用いることができる。
 また、窓部材71を、ポリイミド樹脂を用いて形成することもできる。この場合、窓部材71に軟X線を透過させることができる。また、ポリイミド樹脂は化学安定性に優れているので、窓部材71を長期にわたって使用し続けることができる。この場合、外表面71Bを親水性皮膜38で覆う必要はない。
 前述の第1~第14実施形態では、軟X線が照射され、かつ吐出口から吐出される水の一例としてDIWを挙げたが、DIWに限らず、炭酸水、電解イオン水、水素溶存水、オゾン溶存水および希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水のいずれか水として採用することもできる。
 また、第1~第14実施形態において、軟X線が照射され、かつ吐出口から吐出される処理液として、薬液(希釈薬液)を採用することもできる。この場合、薬液としては、所定濃度に希釈されたフッ酸、BHF(Bufferd HF)、APM(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水混合液)、TMAH(水酸化テトラメチルアンモニウム水溶液)、アンモニア水、HPM(hydrochloric acid/hydrogen peroxide mixture:塩酸過酸化水素水混合液)等を用いることができる。
 さらには、第1~第14実施形態において、処理液を供給しつつ、基板Wの表面や周縁部をブラシやスクラバで洗浄する処理において、処理液の供給と並行して、第1配管内を流通する処理液に軟X線を照射することもできる。
 また、第15~第18実施形態において、照射窓735の外表面735Bに形成され、当該外表面735Bを覆う撥水性皮膜として、他の皮膜を用いることができる。
 この撥水性皮膜として、図42に示すように、撥水性を有するDLC(Diamond Like Carbon)皮膜851(ダイヤモンドライクカーボンの皮膜)を採用することができる。DLC皮膜851は、微小の水素原子を含有している(原子数の比で、C:H=99:1~96:4)。DLC皮膜851の膜厚は、10μm以下であり、とくに1~2μm程度であることが好ましい。
 第15~第18実施形態において、イオン注入法等により、照射窓735の外表面735Bにケイ素(Si)イオンが注入され、次いで、スパッタリング法等により、照射窓735の外表面735Bに炭素(C)イオンが注入される。これにより、照射窓735の外表面735Bが改質される。その後、プラズマCVD法等により、照射窓735の外表面735BにDLCの堆積膜が形成され、これにより、DLC皮膜851が形成される。ケイ素(Si)イオンの注入、炭素(C)イオンの注入、およびDLCの堆積は、室温~150℃の低温環境下で行われる。
 このような方法(プラズマイオンアシスト方式)により形成したDLC皮膜851は、撥水性を有している。照射窓735の外表面735Bに撥水性のDLC皮膜851が形成されていると、照射窓735の外表面735Bに水滴が付着するのを防止することができる。その結果、照射窓735が曇るのを抑制または防止することができる。
 また、DLC皮膜851は、高温環境下でも高い密着性を有している。そのため、剥がれたDLCが照射窓735を汚染するのを確実に防止することができる。
 さらに、DLCの堆積を低温環境下で行うために、堆積後の降下温度が少なく、DLC皮膜851中に応力が残留し難い。これにより、割れにくい(耐久性の高い)皮膜を形成することができる。
 また、第15~第18実施形態において、撥水性皮膜として、図43に示すように、撥水性を有するアモルファスフッ素樹脂皮膜861を採用することができる。アモルファスフッ素樹脂皮膜861は、たとえばサイトップ樹脂(商品名)からなるアモルファスフッ素によって形成されている。アモルファスフッ素樹脂皮膜861の膜厚は、50μm以下であり、とくに5~10μm程度であることが好ましい。照射窓735の外表面735Bに撥水性のアモルファスフッ素樹脂皮膜861が形成されていると、照射窓735の外表面735Bに水滴が付着するのを防止することができる。その結果、照射窓735が曇るのを抑制または防止することができる。
 なお、第15~第18実施形態において、皮膜としてDLC、アモルファスフッ素樹脂の実施形態について説明したが、本皮膜としては、軟X線が透過し易く、百数十℃程度の耐熱性を有し、ベリリウムとの密着性に優れ、耐水性を有し、薬品や薬品蒸気に対する耐腐食性を有し、純水中への溶出イオンが少なく、剥がれたりクラックが入りにくい材料の皮膜であれば他の材料であっても、適用することができる。
 また、第18実施形態において、遮蔽部材を軟X線照射ヘッド841と一体に設けた構成について説明したが、遮蔽部材は照射ヘッド841と個別に設けられていてもよい。この場合、スピンチャック704上方において水平面内で揺動可能なアームに取り付けられて、このアームの揺動によりスピンチャック704上を移動可能に設けられていてもよい。
 また、第18実施形態において、前述の各実施形態において、シャッタ721が開状態になったときには、軟X線照射ヘッド706,841やX線照射ユニット834からのX線の照射が停止されるようになっていてもよい。
 また、第15~第18実施形態において、気体ノズル727は、常温よりも高温の気体を吐出するとして説明したが、気体ノズル727から常温の気体が吐出されてもよい。
 また、第15~第18実施形態では、発熱部材としてのシート状のヒータ744を配置する構成を採用したが、他の熱源を発熱部材として設ける構成であってもよい。また、カバー726の下壁726Aのような開口728の周囲に限られず、照射窓735に設けられていてもよい。また、カバー726の下壁726Aと照射窓735との双方に設けられる構成であってもよい。また、ヒータ744等の加熱部材を照射窓735の周囲に設けない構成であってもよい。
 また、第15~第18実施形態では、移動型の軟X線照射ヘッド706,841や、同じく移動型のX線照射ユニット834を、X線照射手段として設ける構成を例示したが、固定式のX線照射手段を、スピンチャック704に保持された基板Wに対して上方に固定的に対向配置させてもよい。この場合、固定式のX線照射手段から照射された軟X線が、当該基板Wの全域に照射されるようになっている必要がある。
 また、第15~第18実施形態では、軟X線の照射と並行して基板Wに供給される水の一例としてDIWを挙げたが、DIWに限らず、炭酸水、電解イオン水、水素溶存水、オゾン溶存水および希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水のいずれか水として採用することもできる。
 また、第15~第18実施形態では、リンス処理のための水の供給と並行して、基板Wの表面に軟X線を照射する場合を例にとって説明したが、薬液(希釈薬液)の供給と並行して軟X線の照射を実行することもできる。この場合、この場合、薬液としては、所定濃度に希釈されたフッ酸、BHF(Bufferd HF)、APM(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水混合液)、TMAH(水酸化テトラメチルアンモニウム水溶液)、アンモニア水、HPM(hydrochloric acid/hydrogen peroxide mixture:塩酸過酸化水素水混合液)等を用いることができる。 さらには、第1~第14実施形態において、処理液を供給しつつ、基板Wの表面や周縁部をブラシやスクラバで洗浄する処理において、処理液の供給と並行して、第1配管内を流通する処理液に軟X線を照射することもできる。
 また、第15~第18実施形態において、水を供給しつつ、基板Wの表面や周縁部をブラシやスクラバで洗浄する処理において、水の供給と並行して、基板Wの表面に軟X線を照射することもできる。
 また、第15~第18実施形態では、表面に酸化膜が形成された基板Wに対する処理を行う場合を例に挙げたが、表面に銅膜やTi(チタン)膜等の金属膜(配線膜)が形成された基板Wに対する処理を行うものであってもよい。
 第19~第25実施形態において、基板浸漬処理の後に処理槽1002内の全ての処理液を排出し、処理液ノズル1003から基板Wに処理後のシャワーリンスを行うようにしてもよい。この場合、浸漬処理後もなお基板Wに付着したままとなっている汚染物質を洗い流すことができ、基板Wに再付着することが防止される。
 また、第19~第23実施形態において、図44、図47および図49に破線で示すように、循環機構1005の循環配管1012(帰還配管1019)の途中部に、循環配管1012を流れる処理液を加熱するためのヒータ25が介装されていてもよい。
 また、第20~第23実施形態において、循環機構1005(図44参照)を設けない構成とすることもできる。この場合、処理槽1002,1502に貯留されている処理液は循環されず、外槽1008に回収された処理液は、廃液または回収される。
 また、第24~第27実施形態において、循環機構1005(図44参照)を設けた構成とすることもできる。この場合、処理槽1502に貯留されている処理液が循環され、外槽1008に回収された処理液は、再び処理槽1502内へと供給される。
 また、第26および第27実施形態では、浸漬処理に並行して、処理液に浸漬されている処理対象物をブラシで擦って洗浄する処理を並行して実行することもできる。
 また、第19および第21~第27実施形態において、外槽1008は必須のものではない。とくに、処理槽1002,1502に貯留されている処理液を循環させない場合には、外槽1008の構成を省くこともできる。
 また、第19~第27実施形態では、たとえば、窓部材1071の外表面71Bを覆う親水性皮膜1038として、親水性を有するDLC(Diamond Like Carbon)皮膜や、親水性を有するフッ素樹脂皮膜、炭化水素樹脂皮膜などを用いることができる。
 また、窓部材1071を、ポリイミド樹脂を用いて形成することもできる。この場合、窓部材1071に軟X線を透過させることができる。また、ポリイミド樹脂は化学安定性に優れているので、窓部材1071を長期にわたって使用し続けることができる。この場合、外表面71Bを親水性皮膜1038で覆う必要はない。
 また、第23~第27実施形態において、軟X線照射ユニット1562による軟X線の照射に併せて、電源1557から電極1556に対し電圧を印加するようにしてもよい。この場合、たとえば電極1556は正電荷に帯電されることが好ましい。この場合、電極1556の正電荷によって、軟X線の照射により処理液の照射部分中に発生した電子は、電極1556側に引っ張られ、電極1556のあるノズル配管1551の先端部まで移動するようになる。すなわち、多量の電子を、処理液ノズル1561の吐出口1553に向けて引っ張ることができる。これにより、基板W側への電子の移動を促進させることができる。
 また、第1~第27実施形態においては、X線のなかでも比較的波長が長い「軟X線」を照射するものをX線照射手段として用いたが、これに限らず、比較的波長が短い「硬X線」(0.001nm~0.1nm)を用いることもできる。この場合、装置のオペレータ等の人体に対する安全のため、例えば装置のオペレータ側の面を相当の厚みを有する鉛板で覆うなど、X線の装置外への漏洩を遮蔽する遮蔽構造を設けるか、あるいはX線照射時におけるオペレータの装置周辺への立ち入りを禁止するなどの対応をとることが望ましい。なお、各実施形態にある軟X線を照射するものを用いれば、硬X線を照射するものとくらべ、装置が小型で安価ですみ、また人体等に対する遮蔽も比較的容易である。
 なお、基板Wとして、半導体ウエハや液晶表示装置用ガラス基板を例に挙げて説明したが、基板Wにはその他に、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、OLED(有機エレクトロルミネッセンス)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などの基板が含まれる。また、基板の材質としては、シリコンやガラスの他、SiC、石英、サファイヤ、プラスチック、セラミック等を例示することができる。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
この出願は、2012年9月27日に日本国特許庁に提出された特願2012-215293号、2012年9月27日に日本国特許庁に提出された特願2012-215294号、2013年9月19日に日本国特許庁に提出された特願2013-194293号および2013年9月19日に日本国特許庁に提出された特願2013-194294号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
  1   基板処理装置
  4   スピンチャック(基板保持回転手段)
  6   一体型ヘッド
  6A  一体型ヘッド
  6B  一体型ヘッド
 17   カップ(液受け部材)
 25   軟X線発生器(X線発生器)
 26   カバー
 27   気体ノズル(気体供給手段)
 35   照射窓
 37   気体バルブ(気体供給手段)
 38   親水性皮膜(皮膜)
 40   制御装置(X線照射制御手段)
 51   第1ノズル配管(処理液配管)
 51A  第1ノズル配管(処理液配管)
 52   第1開口(開口、X線の照射位置)
 52A  第3開口(開口、X線の照射位置)
 53   吐出口
 56   電極
 57   電源
 61   水ノズル(処理液ノズル)
 62   軟X線照射ユニット(X線照射手段)
 65   繊維束(繊維状物質)
 71   窓部材
 71B  外表面(閉塞窓における処理液が流通する側の壁面)
100   水供給ユニット(処理液供給装置)
101   液検出センサ(処理液検出手段)
200   水供給ユニット(処理液供給装置)
201   基板処理装置
202A  吐出口
203   軟X線照射ユニット(X線照射手段)
204   水供給配管(処理液配管)
211   基板処理装置
216   吐出口
220   水供給ユニット(処理液供給装置)
221   基板処理装置
222   第1分岐配管(分岐配管)
224A  吐出口(液受け用吐出口)
230   水供給ユニット(処理液供給装置)
231   基板処理装置
232   第2ノズル配管(第2配管)
250   水供給ユニット(処理液供給装置)
251   基板処理装置
260   水供給ユニット(処理液供給装置)
261   基板処理装置
262   第2ノズル配管(第2配管)
276   吐出口
300   水供給ユニット(処理液供給装置)
301   基板処理装置
306A  吐出口
307   水供給配管(処理液配管)
309   軟X線照射ユニット(X線照射手段)
310   水供給ユニット(処理液供給装置)
311   基板処理装置
312   第2分岐配管(分岐配管)
313A  吐出口(液受け用吐出口)
400   水供給ユニット(処理液供給装置)
401   基板処理装置
402   スピンチャック(基板保持回転手段)
404   スピン軸(支持部材)
405   スピンベース(支持部材)
409A  吐出口
410   水供給配管(処理液配管)
412   軟X線照射ユニット(X線照射手段)
500   水供給ユニット(処理液供給装置)
501   基板処理装置
504   コロ搬送ユニット(基板保持搬送手段)
531A  吐出口
533   水供給配管(処理液配管)
534   軟X線照射ユニット(X線照射手段)
600   水供給ユニット(処理液供給装置)
602   基板収容器(収容器)
701   基板処理装置
704   スピンチャック(基板保持手段)
705   水ノズル(水供給手段)
706   軟X線照射ヘッド(X線照射手段)
714   水バルブ(水供給手段)
719   揺動駆動機構(移動手段)
720   昇降駆動機構(移動手段)
725   X線発生器
726   カバー
727   気体ノズル(気体供給手段)
728   開口
735   照射窓
737   気体バルブ(気体供給手段)
738   ポリイミド樹脂皮膜
740   制御装置(制御手段)
744   ヒータ(発熱部材)
820   基板処理装置
821   水ノズル(水供給手段)
830   基板処理装置
833   水ノズル(水供給手段)
834   軟X線照射ユニット(X線照射手段)
840   基板処理装置
841   軟X線照射ヘッド(X線照射手段)
842   遮蔽部材(遮蔽板部)
851   DLC皮膜(ダイヤモンドライクカーボンの皮膜)
861   アモルファスフッ素樹脂皮膜
1001  基板処理装置(処理液処理装置)
1002  処理槽
1007  内槽
1008  外槽
1016  分岐配管(処理液供給配管)
1017  軟X線照射ユニット(X線照射手段)
1019  帰還配管(オーバーフロー配管)
1025  軟X線発生器(X線発生器)
1026  カバー
1027  気体ノズル(気体供給手段)
1035  照射窓
1037  気体バルブ(気体供給手段)
1038  親水性皮膜(皮膜)
1052  開口
1071  窓部材
1071B 外表面(壁面)
1201  基板処理装置(処理液処理装置)
1217  軟X線照射ユニット(X線照射手段)
1301  基板処理装置(処理液処理装置)
1307  内槽
1317  軟X線照射ユニット(X線照射手段)
1321  開口
1401  基板処理装置(処理液処理装置)
1407  内槽
1417  軟X線照射ユニット(X線照射手段)
1421  開口
1423  配管
1602  基板収容器(処理対象物)
   C   回転軸線
   L   レンズ
   W   基板(処理対象物)

Claims (55)

  1.  吐出口から処理液を吐出して、この処理液を処理対象物に供給するための処理液供給装置であって、
     処理液が内部を流通可能な第1配管であって、当該内部が前記吐出口に連通する第1配管と、
     前記第1配管内に存在する処理液に、X線を照射するX線照射手段とを含む、処理液供給装置。
  2.  前記第1配管は、その管壁に開口を有し、
     前記開口は、X線が透過可能な材料を用いて形成された窓部材にて閉塞されており、
     前記X線照射手段は、前記第1配管内に存在している処理液に、前記窓部材を介してX線を照射する、請求項1に記載の処理液供給装置。
  3.  前記窓部材は、ベリリウムまたはポリイミド樹脂を用いて形成されている、請求項2記載の処理液供給装置。
  4.  前記窓部材における処理液が存在する側の壁面は、皮膜によりコーティングされている、請求項2または3に記載の処理液供給装置。
  5.  前記皮膜は、ポリイミド樹脂、ダイヤモンドライクカーボン、フッ素樹脂および炭化水素樹脂のうちの1つ以上の材質を含む皮膜である、請求項4に記載の処理液供給装置。
  6.  前記X線照射手段は、前記窓部材に対向して配置される照射窓を有し、X線を発生するとともに、発生したX線を前記照射窓から照射するX線発生器を含む、請求項2~5のいずれか一項に記載の処理液供給装置。
  7.  前記X線照射手段は、
     前記X線発生器の周囲を、当該X線発生器と間隔を空けて取り囲むカバーと、
     前記カバーの内部に気体を供給する気体供給手段とをさらに含む、請求項6に記載の処理液供給装置。
  8.  前記第1配管は、前記吐出口に向けて処理液が内部を流通する処理液配管を含み、
     前記X線照射手段は、前記第1配管内を流通している処理液に前記X線を照射する、請求項1~7のいずれか一項に記載の処理液供給装置。
  9.  前記処理液供給装置は、前記吐出口に向けて処理液が内部を流通する処理液配管をさらに含み、
     前記第1配管は、前記処理液配管から分岐する分岐配管を含む、請求項1~7のいずれか一項に記載の処理液供給装置。
  10.  前記吐出口に配置され、当該吐出口から吐出される処理液が伝って流れる繊維状物質をさらに含む、請求項1~9のいずれか一項に記載の処理液供給装置。
  11.  前記第1配管における前記X線の照射位置よりも、処理液流通方向の下流側に配置された電極と、
     前記電極に対して電圧を印加する電源とをさらに含む、請求項1~10のいずれか一項に記載の処理液供給装置。
  12.  前記電極は、前記第1配管の先端部に配置されている、請求項11に記載の処理液供給装置。
  13.  前記第1配管において、前記X線の前記照射位置における処理液の有無を検出するための処理液検出手段と、
     前記照射位置に処理液が存在するときには、前記X線照射手段によるX線の照射を実行するとともに、前記照射位置に処理液が存在しないときには、前記X線照射手段によるX線の照射を行わないX線照射制御手段とをさらに含む、請求項1~12のいずれか一項に記載の処理液供給装置。
  14.  基板を保持する基板保持手段と、
     請求項1~13のいずれか一項に記載の処理液供給装置とを含み、
     前記吐出口から吐出された処理液を前記基板の主面に供給する、基板処理装置。
  15.  前記基板保持手段は、基板を水平姿勢に保持しつつ、鉛直な所定の回転軸線周りに回転させる基板保持回転手段を含み、
     前記基板処理装置は、前記基板保持回転手段の周囲を包囲する筒状の液受け部材をさらに含み、
     前記処理液供給装置は、前記吐出口に向けて処理液が内部を流通する処理液配管をさらに含み、
     前記処理液供給装置の前記第1配管は、前記処理液配管から分岐する分岐配管を含み、
     前記分岐配管は、前記液受け部材に向けて処理液を吐出するための液受け用吐出口を有する、請求項14に記載の基板処理装置。
  16.  前記基板保持手段は、基板を水平姿勢に保持しつつ、鉛直な所定の回転軸線周りに回転させる基板保持回転手段を含み、
     前記基板保持回転手段は、前記基板の下面の少なくとも一部と接触して、当該基板を水平姿勢に支持する支持部材を有し、
     前記支持部材は多孔質材料を用いて形成されており、
     前記吐出口から吐出された処理液が前記支持部材に供給される、請求項14または15に記載の基板処理装置。
  17.  前記基板保持手段は、前記基板を保持しながら、当該基板を所定の搬送方向に向けて搬送する基板保持搬送手段を含む、請求項14に記載の基板処理装置。
  18.  前記基板保持搬送手段は、前記基板を、前記搬送方向に沿い、かつ水平面に対し傾斜する姿勢に保持しつつ搬送する、請求項17に記載の基板処理装置。
  19.  処理液供給装置の吐出口から処理液を吐出させ、この処理液を処理対象物に供給する処理液供給方法であって、
     前記吐出口を、前記処理対象物に対向して配置する対向配置工程と、
     前記吐出口に連通する第1配管の内部に存在する処理液にX線を照射する第1X線照射工程と、
     前記第1X線照射工程と並行して、前記吐出口から処理液を吐出させる処理液吐出工程とを含み、
     前記処理液吐出工程では、前記吐出口と前記処理対象物との間で処理液が液状に繋がっている、処理液供給方法。
  20.  前記処理液吐出工程では、前記吐出口から吐出される処理液が、当該吐出口と前記処理対象物との双方に繋がる連続流状をなしている、請求項19に記載の処理液供給方法。
  21.  前記処理対象物は、内部を液が流通する第2配管である、請求項19または20に記載の処理液供給方法。
  22.  前記処理対象物は、物品を収容するための収容器である、請求項19または20に記載の処理液供給方法。
  23.  処理液供給装置の吐出口から吐出される処理液を用いて基板を処理する基板処理方法であって、
     前記吐出口を、基板保持手段に保持されている基板の主面に対向して配置する対向配置工程と、
     前記吐出口に連通する第1配管の内部に存在する処理液にX線を照射する第1X線照射工程と、
     前記第1X線照射工程と並行して、前記吐出口から処理液を吐出させる処理液吐出工程とを含み、
     前記処理液吐出工程では、前記吐出口と前記基板の主面との間で処理液が液状に繋がっている、基板処理方法。
  24.  前記処理液吐出工程では、前記吐出口から吐出される処理液が、当該吐出口と前記基板の主面との双方に繋がる連続流状をなしている、請求項23に記載の基板処理方法。
  25.  前記基板は、前記基板保持手段によって水平姿勢に保持されており、
     前記対向配置工程は、前記吐出口を、前記基板保持手段に保持されている基板の上面に対向するように配置する工程を含む、請求項23または24に記載の基板処理方法。
  26.  前記基板は、前記基板保持手段によって水平姿勢に保持されており、
     前記対向配置工程は、前記吐出口を、前記基板保持手段に保持されている基板の下面に対向するように配置する工程を含み、
     前記基板処理方法は、
     前記処理液吐出工程に並行して実行され、前記基板を、鉛直な所定の回転軸線まわりに回転させる基板回転工程と、
     前記処理液吐出工程および前記基板回転工程に並行して、前記基板の上面に処理液を供給する上面処理液供給工程とをさらに含む、請求項23または24に記載の基板処理方法。
  27.  前記処理液吐出工程の終了後に実行される液切り処理または乾燥処理に並行して実行され、前記基板の主面にX線を照射する第2X線照射工程をさらに含む、請求項23~26のいずれか一項に記載の基板処理方法。
  28.  基板を保持する基板保持手段と、
     前記基板保持手段に保持されている基板の表面にX線を照射するX線照射手段と、
     前記基板保持手段に保持されている基板の表面に処理液を供給する処理液供給手段と、
     基板の表面に対する処理液の供給とX線の照射とが並行して行われるように、前記X線
    照射手段および前記処理液供給手段を制御する制御手段とを含む、基板処理装置。
  29.  前記X線照射手段は、照射窓を有し、X線を発生させるとともに、発生したX線を前記
    照射窓から照射するX線発生器を備えている、請求項28に記載の基板処理装置。
  30.  前記X線発生器の周囲を、間隔を空けて取り囲むカバーをさらに含み、
     前記カバーには、前記照射窓に対向する部分に開口が形成されている、請求項29に記載の基板処理装置。
  31.  前記カバーの内部に気体を供給する気体供給手段をさらに含む、請求項30に記載の基板
    処理装置。
  32.  前記気体供給手段は、常温よりも高温の気体を供給する、請求項31に記載の基板処理装置。
  33.  前記照射窓の外表面は、皮膜によりコーティングされている、請求項29~32のいずれか一項に記載の基板処理装置。
  34.  前記皮膜は、ポリイミド樹脂の皮膜である、請求項33に記載の基板処理装置。
  35.  前記皮膜は、ダイヤモンドライクカーボンの皮膜である、請求項33に記載の基板処理装置。
  36.  前記皮膜は、アモルファスフッ素樹脂の皮膜である、請求項33に記載の基板処理装置。
  37.  前記カバーにおける前記開口の周囲および前記照射窓の少なくとも一方に、発熱部材が
    配設されている、請求項30~36のいずれか一項に記載の基板処理装置。
  38.  前記基板保持手段に保持される基板の表面に対向配置され、当該基板の表面上の空間を
    その周囲から遮蔽するための遮蔽部材をさらに含み、
     前記遮蔽部材は、前記照射窓から照射されたX線を当該基板の表面上の空間に留めてお
    くためのものである、請求項29~37のいずれか一項に記載の基板処理装置。
  39.  前記遮蔽部材は、前記カバーと一体移動可能に設けられている、請求項38に記載の基板処理装置。
  40.  前記X線照射手段を、前記基板保持手段によって保持された基板の表面に沿って移動さ
    せる移動手段をさらに含む、請求項28~39のいずれか一項に記載の基板処理装置。
  41.  前記処理液は水である、請求項28~40のいずれか一項に記載の基板処理装置。
  42.  基板保持手段に保持された基板の表面に処理液を供給する処理液供給工程と、
     前記処理液供給工程と並行して、前記基板保持手段に保持された基板の表面にX線を照
    射するX線照射工程とを含む、基板処理方法。
  43.  処理液中に処理対象物を浸漬して処理を行う処理液処理装置であって、
     処理液を貯留し、その処理液中に処理対象物を浸漬させる処理槽と、
     前記処理槽に貯留された処理液、または処理液が内部を流通可能な配管であって、当該内部が前記処理槽内に連通する配管内に存在する処理液に、X線を照射するX線照射手段とを含む、処理液処理装置。
  44.  前記配管の管壁または前記処理槽の壁は、開口を有し、
     前記開口は、X線が透過可能な材料を用いて形成された窓部材にて閉塞されており、
     前記X線照射手段は、前記窓部材を介してX線を照射する、請求項43に記載の処理液処理装置。
  45.  前記窓部材は、ベリリウムまたはポリイミド樹脂を用いて形成されている、請求項44記載の処理液処理装置。
  46.  前記窓部材における処理液が存在する側の壁面は、皮膜によりコーティングされている、請求項44または45に記載の処理液処理装置。
  47.  前記皮膜は、ポリイミド樹脂、ダイヤモンドライクカーボン、フッ素樹脂および炭化水素樹脂のうちの1つ以上の材質を含む皮膜である、請求項46に記載の処理液処理装置。
  48.  前記X線照射手段は、前記窓部材に対向して配置される照射窓を有し、X線を発生するとともに、発生したX線を前記照射窓から照射するX線発生器を含む、請求項44~47のいずれか一項に記載の処理液処理装置。
  49.  前記X線照射手段は、
     前記X線発生器の周囲を、当該X線発生器と間隔を空けて取り囲むカバーと、
     前記カバーの内部に気体を供給する気体供給手段とをさらに含む、請求項48に記載の処理液処理装置。
  50.  前記配管は、前記処理槽内と連通し、前記処理槽内に処理液を供給するための処理液供給配管を含み、
     前記X線照射手段は、前記処理液供給配管を流通している処理液に前記X線を照射する、請求項43~49のいずれか一項に記載の処理液処理装置。
  51.  前記処理槽は、処理液を貯留し、その処理液中に処理対象物を浸漬させる内槽と、 前記内槽から溢れる処理液を回収する外槽とを含み、
     前記配管は、前記外槽に回収された処理液が流通するオーバーフロー配管を含み、
     前記X線照射手段は、前記オーバーフロー配管内を流通している処理液に前記X線を照射する、請求項43~49のいずれか一項に記載の処理液処理装置。
  52.  前記処理槽は、処理液を貯留し、その処理液中に処理対象物を浸漬させる内槽と、 前記内槽から溢れる処理液を回収する外槽とを含み、
     前記X線照射手段は、前記内槽に貯留されている処理液に前記X線を照射する、請求項43~49のいずれか一項に記載の処理液処理装置。
  53.  前記処理槽は、処理液を貯留し、その処理液中に処理対象物を浸漬させる内槽と、 前記内槽から溢れる処理液を回収する外槽とを含み、
     前記配管は、前記内槽内に内部が連通する配管を含む、請求項43~49のいずれか一項に記載の処理液処理装置。
  54.  処理槽に貯留された処理液中に処理対象物を浸漬させる処理対象物浸漬工程と、
     前記処理対象物浸漬工程に並行して、前記処理槽に貯留された処理液、または処理液が内部を流通可能な配管であって、当該内部が前記処理槽内に連通する配管内に存在する処理液に、X線を照射するX線照射工程とを含む、処理液処理方法。
  55.  処理槽に貯留された処理液中に処理対象物を浸漬させる処理対象物浸漬工程と、
     前記処理対象物浸漬工程に並行して、前記処理槽内に向けて吐出口から処理液を吐出させる処理液吐出工程と、
     前記処理液吐出工程に並行して、前記吐出口に連通する配管の内部に存在する処理液にX線を照射するX線照射工程とを含み、
     前記処理液吐出工程では、前記吐出口と前記処理槽に溜められている処理液の液面との間で処理液が液状に繋がっている、処理液処理方法。
PCT/JP2013/076006 2012-09-27 2013-09-26 処理液供給装置、基板処理装置、処理液供給方法、基板処理方法、処理液処理装置および処理液処理方法 WO2014050941A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157006772A KR20150046148A (ko) 2012-09-27 2013-09-26 처리액 공급 장치, 기판 처리 장치, 처리액 공급 방법, 기판 처리 방법, 처리액 처리 장치 및 처리액 처리 방법
CN201380047457.1A CN104662644B (zh) 2012-09-27 2013-09-26 处理液供给装置及方法、处理液及基板处理装置及方法
US14/431,992 US10133173B2 (en) 2012-09-27 2013-09-26 Processing fluid supply device, substrate processing device, processing fluid supply method, substrate processing method, processing fluid processing device, and processing fluid processing method
US16/008,710 US10761422B2 (en) 2012-09-27 2018-06-14 Processing fluid supply device, substrate processing device, processing fluid supply method, substrate processing method, processing fluid processing device, and processing fluid processing method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-215293 2012-09-27
JP2012215294A JP6044951B2 (ja) 2012-09-27 2012-09-27 基板処理装置および基板処理方法
JP2012-215294 2012-09-27
JP2012215293 2012-09-27
JP2013194293A JP6212818B2 (ja) 2012-09-27 2013-09-19 処理液供給装置、基板処理装置、処理液供給方法および基板処理方法
JP2013-194293 2013-09-19
JP2013-194294 2013-09-19
JP2013194294A JP6212819B2 (ja) 2012-09-27 2013-09-19 処理液処理装置および処理液処理方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/431,992 A-371-Of-International US10133173B2 (en) 2012-09-27 2013-09-26 Processing fluid supply device, substrate processing device, processing fluid supply method, substrate processing method, processing fluid processing device, and processing fluid processing method
US16/008,710 Division US10761422B2 (en) 2012-09-27 2018-06-14 Processing fluid supply device, substrate processing device, processing fluid supply method, substrate processing method, processing fluid processing device, and processing fluid processing method

Publications (1)

Publication Number Publication Date
WO2014050941A1 true WO2014050941A1 (ja) 2014-04-03

Family

ID=50388336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076006 WO2014050941A1 (ja) 2012-09-27 2013-09-26 処理液供給装置、基板処理装置、処理液供給方法、基板処理方法、処理液処理装置および処理液処理方法

Country Status (1)

Country Link
WO (1) WO2014050941A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201468A (ja) * 2014-04-04 2015-11-12 豊田合成株式会社 基板洗浄装置および基板洗浄方法および半導体素子の製造方法
JP2015204384A (ja) * 2014-04-14 2015-11-16 株式会社Screenホールディングス 処理液供給装置、基板処理装置、処理液供給方法および基板処理方法
TWI603165B (zh) * 2015-03-30 2017-10-21 思可林集團股份有限公司 基板處理方法及基板處理裝置
TWI665019B (zh) * 2017-02-15 2019-07-11 辛耘企業股份有限公司 基板處理裝置
US20200402818A1 (en) * 2019-06-24 2020-12-24 Semes Co., Ltd. Unit for supplying liquid, apparatus and method for treating substrate having the unit
CN112676226A (zh) * 2019-10-17 2021-04-20 夏泰鑫半导体(青岛)有限公司 晶圆清洗装置
TWI822385B (zh) * 2022-10-11 2023-11-11 鴻揚半導體股份有限公司 晶圓清洗設備及其洩漏偵測方法
TWI857404B (zh) 2022-02-10 2024-10-01 日商斯庫林集團股份有限公司 處理液供給方法及基板處理裝置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047400A (ja) * 1983-08-24 1985-03-14 日本電気株式会社 溶液帯電除去装置
JPH06313800A (ja) * 1993-04-28 1994-11-08 Ricoh Co Ltd X線透過用フィルム
JPH10254146A (ja) * 1997-03-07 1998-09-25 Tokyo Electron Ltd 処理装置
JPH1190302A (ja) * 1997-09-16 1999-04-06 Tadaoki Mitani レジスト現像装置における現像液吐出ノズル
JPH11214341A (ja) * 1998-01-28 1999-08-06 Kaijo Corp 被洗浄体のすすぎ方法
JP2000277476A (ja) * 1999-03-24 2000-10-06 Shimada Phys & Chem Ind Co Ltd 半導体ウェーハ洗浄装置
JP2001332398A (ja) * 2000-05-22 2001-11-30 Techno Ryowa Ltd 静電霧化式イオン化装置および方法並びに荷電粒子搬送式イオン化装置および方法
JP2001334219A (ja) * 2000-05-30 2001-12-04 Shibaura Mechatronics Corp スピン処理装置及びスピン処理方法
JP2002184660A (ja) * 2000-12-13 2002-06-28 Dainippon Screen Mfg Co Ltd ノズルおよびそれを用いた基板処理装置
JP2002203783A (ja) * 2001-10-18 2002-07-19 Tokyo Electron Ltd 処理方法及び処理装置
JP2006162535A (ja) * 2004-12-10 2006-06-22 Ushio Inc 電子ビーム管
JP2007018769A (ja) * 2005-07-05 2007-01-25 Toshiba Corp 紫外光源装置
JP2011181795A (ja) * 2010-03-03 2011-09-15 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2012084437A (ja) * 2010-10-13 2012-04-26 Toshiba Corp X線発生装置及びx線発生装置の製造方法
JP2012094659A (ja) * 2010-10-26 2012-05-17 Disco Abrasive Syst Ltd スピンナ洗浄装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047400A (ja) * 1983-08-24 1985-03-14 日本電気株式会社 溶液帯電除去装置
JPH06313800A (ja) * 1993-04-28 1994-11-08 Ricoh Co Ltd X線透過用フィルム
JPH10254146A (ja) * 1997-03-07 1998-09-25 Tokyo Electron Ltd 処理装置
JPH1190302A (ja) * 1997-09-16 1999-04-06 Tadaoki Mitani レジスト現像装置における現像液吐出ノズル
JPH11214341A (ja) * 1998-01-28 1999-08-06 Kaijo Corp 被洗浄体のすすぎ方法
JP2000277476A (ja) * 1999-03-24 2000-10-06 Shimada Phys & Chem Ind Co Ltd 半導体ウェーハ洗浄装置
JP2001332398A (ja) * 2000-05-22 2001-11-30 Techno Ryowa Ltd 静電霧化式イオン化装置および方法並びに荷電粒子搬送式イオン化装置および方法
JP2001334219A (ja) * 2000-05-30 2001-12-04 Shibaura Mechatronics Corp スピン処理装置及びスピン処理方法
JP2002184660A (ja) * 2000-12-13 2002-06-28 Dainippon Screen Mfg Co Ltd ノズルおよびそれを用いた基板処理装置
JP2002203783A (ja) * 2001-10-18 2002-07-19 Tokyo Electron Ltd 処理方法及び処理装置
JP2006162535A (ja) * 2004-12-10 2006-06-22 Ushio Inc 電子ビーム管
JP2007018769A (ja) * 2005-07-05 2007-01-25 Toshiba Corp 紫外光源装置
JP2011181795A (ja) * 2010-03-03 2011-09-15 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2012084437A (ja) * 2010-10-13 2012-04-26 Toshiba Corp X線発生装置及びx線発生装置の製造方法
JP2012094659A (ja) * 2010-10-26 2012-05-17 Disco Abrasive Syst Ltd スピンナ洗浄装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201468A (ja) * 2014-04-04 2015-11-12 豊田合成株式会社 基板洗浄装置および基板洗浄方法および半導体素子の製造方法
JP2015204384A (ja) * 2014-04-14 2015-11-16 株式会社Screenホールディングス 処理液供給装置、基板処理装置、処理液供給方法および基板処理方法
TWI603165B (zh) * 2015-03-30 2017-10-21 思可林集團股份有限公司 基板處理方法及基板處理裝置
TWI665019B (zh) * 2017-02-15 2019-07-11 辛耘企業股份有限公司 基板處理裝置
US20200402818A1 (en) * 2019-06-24 2020-12-24 Semes Co., Ltd. Unit for supplying liquid, apparatus and method for treating substrate having the unit
US11658048B2 (en) * 2019-06-24 2023-05-23 Semes Co., Ltd. Unit for supplying liquid, apparatus and method for treating substrate having the unit
CN112676226A (zh) * 2019-10-17 2021-04-20 夏泰鑫半导体(青岛)有限公司 晶圆清洗装置
TWI857404B (zh) 2022-02-10 2024-10-01 日商斯庫林集團股份有限公司 處理液供給方法及基板處理裝置
TWI822385B (zh) * 2022-10-11 2023-11-11 鴻揚半導體股份有限公司 晶圓清洗設備及其洩漏偵測方法

Similar Documents

Publication Publication Date Title
TWI523097B (zh) Processing liquid supply device, substrate processing device, treatment liquid supply method, substrate processing method, treatment liquid treatment device, and treatment liquid treatment method
WO2014050941A1 (ja) 処理液供給装置、基板処理装置、処理液供給方法、基板処理方法、処理液処理装置および処理液処理方法
KR100939596B1 (ko) 단일 웨이퍼 건조기 및 건조 방법
TWI441246B (zh) 基板處理裝置
JP5371854B2 (ja) 基板処理装置および基板処理方法
JP6438649B2 (ja) 基板処理方法および基板処理装置
KR19980070821A (ko) 세정장치 및 세정방법
JP2003257926A (ja) 洗浄物の乾燥装置及び乾燥方法
US10651058B2 (en) Substrate processing method and substrate processing apparatus
TW201911400A (zh) 處理液除電方法、基板處理方法以及基板處理系統
JP6212818B2 (ja) 処理液供給装置、基板処理装置、処理液供給方法および基板処理方法
JP2017175166A (ja) 基板処理方法および基板処理装置
US20170018423A1 (en) Apparatus and Method for Processing the Surface of a Workpiece Comprised of Sensitive Materials with an Ozone and Carbon Dioxide Treating Fluid
CN108701602B (zh) 基板处理装置
US20080000495A1 (en) Apparatus and method for single substrate processing
JP2008147303A (ja) 基板処理装置
US20080163900A1 (en) Ipa delivery system for drying
JP6315452B2 (ja) 処理液供給装置、基板処理装置、処理液供給方法および基板処理方法
JP7540923B2 (ja) 処理液供給装置、基板処理装置および処理液供給方法
JP2014072255A (ja) 基板処理装置および基板処理方法
KR102374872B1 (ko) 개선된 기판 구획부 세정
JP4860950B2 (ja) 基板処理方法および基板処理装置
US20230390809A1 (en) Substrate treating apparatus and substrate treating method
KR20230133231A (ko) 기판 처리 방법 및 기판 처리 시스템
JP2013201236A (ja) 基板処理装置およびヒータ洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006772

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14431992

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13841745

Country of ref document: EP

Kind code of ref document: A1