WO2014050756A1 - Ultrasonic inspection device, method for generating ultrasonic image data, and program - Google Patents
Ultrasonic inspection device, method for generating ultrasonic image data, and program Download PDFInfo
- Publication number
- WO2014050756A1 WO2014050756A1 PCT/JP2013/075535 JP2013075535W WO2014050756A1 WO 2014050756 A1 WO2014050756 A1 WO 2014050756A1 JP 2013075535 W JP2013075535 W JP 2013075535W WO 2014050756 A1 WO2014050756 A1 WO 2014050756A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- element data
- focus
- transmission
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52046—Techniques for image enhancement involving transmitter or receiver
- G01S7/52047—Techniques for image enhancement involving transmitter or receiver for elimination of side lobes or of grating lobes; for increasing resolving power
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
- A61B8/4488—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
- G10K11/26—Sound-focusing or directing, e.g. scanning
- G10K11/34—Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
- G10K11/341—Circuits therefor
- G10K11/346—Circuits therefor using phase variation
Definitions
- the present invention relates to an ultrasonic inspection apparatus that performs imaging of an inspection target such as an organ in a living body by transmitting and receiving an ultrasonic beam, and generates an ultrasonic image used for inspection and diagnosis of the inspection target.
- the present invention relates to an ultrasonic image data generation method and program.
- an ultrasonic inspection apparatus such as an ultrasonic diagnostic imaging apparatus using an ultrasonic image
- this type of ultrasonic inspection apparatus has an ultrasonic probe (ultrasonic probe) including a plurality of elements (ultrasonic transducers), and an apparatus main body connected to the ultrasonic probe.
- the ultrasonic probe transmits the ultrasonic beam from the multiple elements of the ultrasonic probe toward the inspection object (subject), receives the ultrasonic echo from the subject, and receives the ultrasonic echo.
- An ultrasonic image is generated by electrically processing the ultrasonic echo signal thus processed in the apparatus main body.
- an ultrasonic wave is focused on a region to be inspected of a subject, for example, an organ in a living body or a lesion in the organ from a plurality of elements of the probe. Transmits a beam and receives ultrasonic echoes from the surface or interface of a reflector in the examination target area, for example, an organ or a lesion, via multiple elements, but is reflected by the same reflector. Are reflected by the reflector located at the focal position of the ultrasonic beam transmitted from the transmitting element, and reflected by the same reflector with respect to the ultrasonic echo signal received by the transmitting element.
- the ultrasonic echo signals received by other elements different from the transmitting element are delayed, the ultrasonic echo signals received by a plurality of elements are A / D (analog / digital) converted into element data. And then And reception focusing processing child data, i.e. the delay correction to have generated ultrasound image based on the generated sound ray signals by phasing and adding the combined phase, thus obtained sound ray signals.
- a virtual point sound source is formed by focusing transmission ultrasonic waves radiated from a plurality of vibration elements constituting a transmission vibration element group on a transmission focusing point.
- Received ultrasonic waves reflected from a plurality of continuous observation points by transmitted ultrasonic waves radiated from a sound source are received by a plurality of vibration elements constituting a reception vibration element group, and the received signals for the obtained channels are received.
- Receive phasing and addition is performed so that the observation point becomes the reception focus point.
- reception phasing addition is performed on the reception signal obtained using each of the reception vibration element group and the transmission vibration element group sequentially shifted in the arrangement direction of the vibration elements.
- an ultrasonic diagnostic apparatus that performs transmission phasing addition for correcting a transmission delay caused by a difference in propagation distance from each transmission focusing point to an observation point with respect to a reception signal after phase addition.
- the reception phasing addition and the transmission phasing addition are performed on reception signals obtained from a plurality of vibration elements, thereby having a substantially uniform thin beam width in the depth direction of the subject.
- the transmission beam and the reception beam can be formed with high accuracy and high sensitivity.
- Patent Document 3 discloses that image data can be generated and displayed with excellent spatial resolution, contrast resolution, and S / N.
- Patent Document 1 an image with higher image quality than that of the conventional technique can be obtained.
- the focal point is regarded as a virtual point sound source, but in reality, the focal point is not converged to the extent that it can be regarded as a point sound source, and the SN ratio and resolution decrease as the image is closer to the focal point. There was a problem.
- An object of the present invention is to solve the above-mentioned problems of the prior art, increase the SN ratio and increase the resolution even in a region where it is difficult to converge the focus, and a frame rate that is the same as the conventional frame rate. It is still another object of the present invention to provide an ultrasonic inspection apparatus, an ultrasonic image data generation method, and a program capable of obtaining a sharp ultrasonic image having an optimum spatial resolution with high resolution.
- the present invention is an ultrasonic diagnostic apparatus for inspecting an inspection object using an ultrasonic beam, wherein the ultrasonic wave is transmitted and reflected by the inspection object.
- a probe in which a plurality of elements are arranged to receive an echo and output an analog element signal corresponding to the received ultrasonic echo, and a focus setting unit that sets a plurality of transmission focal points in the inspection object
- a focus resetting unit that determines whether or not the position of the transmission focus set by the focus setting unit is within a predetermined range, and resets the position of the transmission focus within the predetermined range to a different position; For each of the transmission focal point determined to be out of the predetermined range by the setting unit and the reset transmission focal point, a transmission unit using a plurality of elements for the probe and transmitting an ultrasonic beam, and the transmission focal point Individual ultrasonic bee for each In response to the transmission, the analog element signal output from the plurality of elements is received, the receiving unit that performs predetermined processing, and the analog element signal processed by the receiving
- the focus resetting unit resets the transmission focus to a depth different from the transmission focus set by the focus setting unit. Moreover, it is preferable that the focus resetting unit resets the transmission focus at a different position on the same line as the line for transmitting the ultrasonic beam with respect to the transmission focus set by the focus setting unit.
- the focus resetting unit resets the position of the transmission focus to a position deeper than the position set by the focus setting unit when the depth of the transmission focus set by the focus setting unit is shallower than a predetermined depth. It is preferable to set.
- the focus resetting unit resets the position of the transmission focus to a position shallower than the position set by the focus setting unit when the depth of the transmission focus set by the focus setting unit is deeper than a predetermined depth. It is preferable to set.
- the transmission unit causes the probe to use a plurality of elements and transmits an ultrasonic beam to each transmission focal point by changing a central element.
- the element data processing unit uses first element data obtained by transmitting a plurality of ultrasonic beams having different central elements.
- the element data processing unit uses first element data obtained by transmitting a plurality of ultrasonic beams in which the transmission areas of the ultrasonic beams overlap.
- the element data processing unit superimposes a plurality of first element data according to the reception time when the element receives the ultrasonic echo and the position of the element, and second element data corresponding to the first element data Is preferably generated.
- the element data processing unit synthesizes a plurality of first element data obtained by transmitting the ultrasonic beam with the elements that are continuous in the element arrangement direction as the center elements, and generates second element data. Is preferably generated.
- the element data processing unit transmits a plurality of ultrasonic beams obtained by transmitting the ultrasonic beam using the same number of elements adjacent to the central element corresponding to the ultrasonic beam whose transmission focus is reset as the central element. It is preferable to combine the first element data to generate the second element data.
- the element data processing unit includes a delay time calculation unit that calculates a delay time of two or more first element data, a delay time calculated from two or more first element data, and a received probe. It is preferable to have a superimposition processing unit that superimposes based on the position of the element and generates second element data.
- the delay time calculation unit includes a probe acquired in advance, the sound speed of the inspection object, the position of the transmission focal point of the ultrasonic beam, the transmission opening of the probe by the transmission unit, and the probe of the probe by the reception unit. The delay time of two or more first element data is calculated based on at least one piece of information about the reception aperture, and the overlay processing unit superimposes among the preset two or more first element data.
- the second element data it is preferable to generate the second element data by superimposing two or more pieces of the first element data based on the number of element data of one and the overlay processing method.
- the element data processing unit preferably superimposes two or more pieces of first element data after multiplying each of the first element data by a weighting coefficient.
- the transmission unit causes the probe to transmit the ultrasonic beam to the transmission focal point before resetting determined to be within a predetermined range by the focus resetting unit.
- the present invention generates a plurality of components of an ultrasonic beam, receives ultrasonic echoes reflected in an inspection object, and outputs received analog signals.
- An ultrasonic image data generation method for generating an ultrasonic image data by generating an ultrasonic beam by using a probe including the element, and generating ultrasonic image data. It is determined whether the focus setting step for setting the focus and the position of the transmission focus set by the focus setting step are within a predetermined range, and reset the position of the transmission focus within the predetermined range to a different position.
- a plurality of elements are used for the probe, and an ultrasonic beam is applied.
- Sending to send In response to transmission of each ultrasonic beam to each transmission focal point, a reception step that receives analog element signals output from a plurality of elements and performs predetermined processing, and an analog element signal processed by the reception step A / D conversion is performed in the focus resetting step from the AD converting step to obtain the first element data which is a digital element signal and the first element data obtained by transmitting a plurality of ultrasonic beams.
- an element data processing step for generating second element data corresponding to the first element data obtained by transmitting the ultrasonic beam to the transmission focal point.
- the present invention generates a plurality of components of an ultrasonic beam, receives ultrasonic echoes reflected in an inspection object, and outputs received analog signals.
- An ultrasonic image data generation program for causing a computer to generate an ultrasonic beam by a probe including the element, inspect an inspection object, and generate ultrasonic image data.
- a focus setting step for setting a predetermined transmission focus, and whether or not the position of the transmission focus set by the focus setting step is within a predetermined range, and determines the position of the transmission focus within the predetermined range.
- a focus reset step for resetting to a different position, a transmission focus that is determined to be out of a predetermined range by the focus resetting unit, and a reset transmission focus, and a plurality of elements on the probe.
- a transmission step for transmitting an ultrasonic beam a reception step for receiving analog element signals output from a plurality of elements in response to transmission of individual ultrasonic beams for the respective transmission focal points, and performing predetermined processing;
- the A / D conversion of the analog element signal processed in the step to obtain the first element data which is a digital element signal, and the first element data obtained by transmitting a plurality of ultrasonic beams,
- the focal position when the set focal position is within a predetermined range, the focal position is reset, and the second element data is generated by synthesizing two or more different first element data.
- the SN ratio can be increased, the resolution can be increased, and the frame rate remains the same as before, with a high resolution. A sharp ultrasonic image with optimum spatial resolution can be obtained.
- FIG. 5 is an explanatory diagram showing element data obtained respectively.
- (A) And (c) is explanatory drawing in the case of transmitting an actual ultrasonic beam from the element directly above the reflection point of the subject and the element not directly above, respectively, (b) and (d) It is explanatory drawing which shows the element data obtained, respectively.
- (A) And (b) is explanatory drawing explaining the distance of the transmission path
- (A), (b) and (c) and (d), (e) and (f) are respectively the element data obtained by a plurality of elements in the case of a true signal and the case of a ghost, their delay time and It is explanatory drawing which shows the superimposition state of element data, (g) And (h) is explanatory drawing which shows the superimposition state of the element data corresponding to a some element, respectively, and its result.
- 3 is a flowchart for explaining the operation of the ultrasonic inspection apparatus shown in FIG. 1.
- (A) And (B) is a flowchart for demonstrating operation
- FIG. 1 is a block diagram conceptually showing an embodiment of the configuration of the ultrasonic inspection apparatus of the present invention.
- the ultrasonic inspection apparatus 10 includes an ultrasonic probe 12, a transmission unit 14 and a reception unit 16 connected to the ultrasonic probe 12, an A / D conversion unit 18, and an element data storage unit 20.
- the ultrasonic probe (ultrasonic probe) 12 has a transducer array 36 used in a normal ultrasonic inspection apparatus.
- the transducer array 36 includes a plurality of elements arranged in a one-dimensional or two-dimensional array, that is, ultrasonic transducers. These ultrasonic transducers transmit an ultrasonic beam to a subject in accordance with a drive signal supplied from the transmission unit 14 when an ultrasonic image of an object to be examined (hereinafter referred to as a subject) is captured. An ultrasonic echo from the specimen is received and a reception signal (analog element signal) is output.
- each of the predetermined number of ultrasonic transducers forming one set among the plurality of ultrasonic transducers of the transducer array 36 generates each component of one ultrasonic beam, and sets a predetermined number of ultrasonic transducers.
- the ultrasonic transducer generates one ultrasonic beam that is transmitted to the subject.
- Each ultrasonic transducer is, for example, a piezoelectric ceramic represented by PZT (lead zirconate titanate), a polymer piezoelectric element represented by PVDF (polyvinylidene fluoride), or PMN-PT (magnesium niobate / lead titanate). It is constituted by an element in which electrodes are formed at both ends of a piezoelectric body made of a piezoelectric single crystal or the like typified by a solid solution, that is, a vibrator.
- PZT lead zirconate titanate
- PVDF polymer piezoelectric element represented by PVDF (polyvinylidene fluoride)
- PMN-PT magnesium niobate / lead titanate
- each vibrator When a pulsed or continuous wave voltage is applied to the electrodes of such a vibrator, the piezoelectric material expands and contracts, and pulse or continuous wave ultrasonic waves are generated from the respective vibrators, and the synthesis of these ultrasonic waves. As a result, an ultrasonic beam is formed.
- each vibrator expands and contracts by receiving propagating ultrasonic waves to generate electric signals, and these electric signals are output as ultrasonic reception signals (analog element signals).
- the focus setting unit 96 transmits a plurality of transmission lines and each transmission when the transducer array 36 transmits an ultrasonic beam according to transmission focus information (focus position information) input from the operation unit 32. Set the focal position on the line. Specifically, like the conventional ultrasonic inspection apparatus, the focus setting unit 96 sets the display area (inspection range), the depth (depth), and the like input from the operation unit 32, and the transducer array 36. A plurality of transmission lines that transmit ultrasonic beams are set according to the arrangement interval of the transducers, and the position that becomes the focal point of the ultrasonic beams is automatically set on each transmission line. Note that the focus setting unit 96 may set the focus position from the focus position information directly input by the operator from the operation unit 32.
- FIGS. 2A to 2C show an example of the set focal position.
- one transmission line is set on the same line as each element corresponding to each element (ultrasonic transducer) of the transducer array 36.
- one focal position is set at the same depth on each transmission line. Information on the set focus position is supplied to the focus resetting unit 98.
- the focus resetting unit 98 determines whether or not each focus position set by the focus setting unit 96 is within a predetermined depth range. If the focus position is within the predetermined range, the focus position is set to a different depth. Reset it. Specifically, the focus resetting unit 98 is positioned deeper than the position set by the focus setting unit 96 when the focus position set by the focus setting unit 96 is shallower than the predetermined depth Za. If the focus position set by the focus setting unit 96 is deeper than the predetermined depth Zb, the focus position is set to a position shallower than the position set by the focus setting unit 96. Reset it.
- the focus resetting unit 98 resets the focus position when the focus position set by the focus setting unit 96 is not within the predetermined range, that is, when the focus position is at a depth between Za and Zb.
- the position set by the focus setting unit 96 is set as the focus position without setting.
- each focus position is set on the same transmission line.
- a deep position is reset to a position deeper than Zb in the illustrated example.
- FIG. 2B when the focus position set by the focus setting unit 96 is at a position deeper than the predetermined depth Zb, each focus position is set on the same transmission line. In the illustrated example, the position is reset to a position shallower than Za.
- FIG. 2C when the focus position set by the focus setting unit 96 is deeper than a predetermined depth Za and shallower than Zb (at a depth between Za and Zb). In the case), the focus position is not reset, and the position set by the focus setting unit 96 is set as the focus position.
- the predetermined depths Za and Zb for determining whether or not the focus resetting unit 98 resets the focal position are not particularly limited, but the predetermined depth Za is sufficient for the ultrasonic beam. It is preferable that the depth is shallower than the depth that can be converged to, for example, about 1 cm, and the predetermined depth Zb can sufficiently converge the ultrasonic beam when the transmission numerical aperture is maximum. It is preferable that the depth is deeper than the depth. That is, when the focal position is at a position where the ultrasonic beam can be sufficiently converged (between Za and Zb), the focal position is not reset and the ultrasonic beam is sufficiently converged. If it is at a position where no focus is possible, it is preferable to reset the focus position. Whether or not the convergence degree of the ultrasonic beam is sufficient may be determined according to the performance of the ultrasonic probe, the required SN ratio, resolution, and the like.
- the depth of focus when the focus resetting unit 98 resets the focus position is not particularly limited, but the focus position set by the focus setting unit 96 is shallower than the predetermined depth Za. In this case, it is preferable to reset to a position deeper than the predetermined depth Za, and it is more preferable to reset to a position as deep as possible within the range where the focus can be achieved. Similarly, when the focus position set by the focus setting unit 96 is deeper than the predetermined depth Zb, it is preferable to reset to a position shallower than the predetermined depth Zb, and as much as possible within the range where the focus can be achieved. It is more preferable to reset to a shallow position.
- the focus resetting unit 98 supplies information on the reset focus position to the transmission unit 14 and the control unit 30.
- the transmission unit 14 includes, for example, a plurality of pulsers, and based on the transmission delay pattern selected according to the control signal from the control unit 30 and the focus position information from the focus resetting unit 98, the transducer array
- An ultrasonic beam component transmitted from a set of a predetermined number of ultrasonic transducers (hereinafter referred to as ultrasonic elements) forms one ultrasonic beam and forms a focal point at the set / reset focal position.
- the delay amount of each drive signal is adjusted and supplied to a plurality of ultrasonic elements forming a set.
- the transmission unit 14 uses an ultrasonic element on the same line as the set transmission line as a central element, and the central element and a plurality of adjacent ultrasonic elements are combined into a set of transmission elements (transmission apertures). ), A drive signal is supplied so as to transmit an ultrasonic beam that forms a focal point at the set / reset focal position.
- the transmission unit 14 has at least the transmission focus determined to be outside the predetermined range by the focus resetting unit 98 and the transmission focus determined to be within the predetermined range by the focus resetting unit 98 and reset.
- the transmission unit 14 may transmit the ultrasonic beam to the transmission focal point before resetting, which is determined by the focus resetting unit 98 to be outside the predetermined range.
- the receiving unit 16 In response to a control signal from the control unit 30, the receiving unit 16 causes the transducer array 36 to transmit the ultrasonic echo generated by the interaction between the ultrasonic beam transmitted from the transducer array 36 and the subject. Received and output received signals, ie, analog element signals for each ultrasonic element are amplified and output. Specifically, the receiving unit 16 uses the central element when the corresponding ultrasonic beam is transmitted and a plurality of ultrasonic elements adjacent to the central element as a set of receiving elements (reception apertures). The ultrasonic echoes reflected within are received.
- the reception unit 16 includes a plurality of analog element signals received by a plurality of ultrasonic elements, corresponding to one transmission of the ultrasonic beam, and includes information on the received ultrasonic elements and information on reception times.
- One analog element data (first element data) is output. That is, the element data (first element data) is data representing the intensity of the received signal with respect to the position of the element and the reception time (see FIG. 4 and the like).
- the receiving unit 16 receives an ultrasonic echo and outputs analog element data every time the transmitting unit 14 transmits one ultrasonic beam. Therefore, the transmission unit 14 outputs a plurality of analog element data corresponding to each transmission by transmitting the ultrasonic beam a plurality of times in accordance with the set transmission line.
- the receiver 16 supplies analog element data to the A / D converter 18.
- the A / D converter 18 is connected to the receiver 16 and converts the analog element data supplied from the receiver 16 into digital element data (first element data).
- the A / D converter 18 supplies the A / D converted digital element data to the element data storage unit 20.
- the element data storage unit 20 sequentially stores digital element data output from the A / D conversion unit 18.
- the element data storage unit 20 stores information on the frame rate input from the control unit 30 (for example, parameters indicating the depth of the reflection position of the ultrasonic wave, the density of the scanning line, and the visual field width) in the digital element data ( Hereinafter, the data is stored in association with element data).
- the element data storage unit 20 is obtained by transmitting and receiving an ultrasonic beam through the transmission line whose focus position is reset.
- the stored element data and two or more element data obtained by transmitting the ultrasonic beam to different transmission lines are stored and held.
- the element data processing unit 22 is obtained by transmitting an ultrasonic beam to the transmission line whose focus position is reset when the focus position is reset by the focus resetting unit 98 based on the control by the control unit 30.
- the element data and two or more element data corresponding to transmission lines different from the element data (hereinafter also referred to as unprocessed element data) are read from the element data storage unit 20 and received.
- the time and position are corrected and overlapped, and the superimposed element data (second element data, hereinafter referred to as processed element data). ) Is generated.
- the element data processing unit 22 supplies the processed element data to the image generation unit 24 (phasing addition unit 38).
- an ultrasound image having a good image quality in the region of interest is generated by setting the focus in the vicinity of the region of interest and transmitting and receiving ultrasound.
- the present invention resets the focal position to a deeper position when the focal position of the ultrasonic beam is on the surface layer, and focuses on a shallower position when it is in the deep layer. Resetting the position, transmitting and receiving ultrasound, and combining the obtained multiple element data based on the element's geometrical arrangement and reception time information to generate new element data This makes it possible to increase the signal-to-noise ratio and increase the resolution even at the surface layer and deep layer where it is difficult to converge the focus, and achieve the optimum spatial resolution at a high resolution with the same frame rate as before. A sharp ultrasonic image can be obtained. Details of the element data processing unit 22 will be described later.
- the element data processing unit 22 may generate unprocessed element data by superimposing the unprocessed element data even when the focus position is not reset, or may superimpose the unprocessed element data. You may supply unprocessed element data to the image generation part 24 as processed element data, without performing a matching process.
- the image generation unit 24 generates a sound ray signal (reception data) from the processed element data supplied from the element data processing unit 22 under the control of the control unit 30, and generates an ultrasonic image from the sound ray signal. Is.
- the image generation unit 24 includes a phasing addition unit 38, a detection processing unit 40, a DSC 42, an image creation unit 44, and an image memory 46.
- the phasing addition unit 38 selects one reception delay pattern from a plurality of reception delay patterns stored in advance according to the reception direction set in the control unit 30, and based on the selected reception delay pattern Thus, the reception focus processing is performed by adding the respective delays to the signal of each element of the element data. By this reception focus processing, reception data (sound ray signal) in which the focus of the ultrasonic echo is narrowed is generated.
- the phasing addition unit 38 supplies the received data to the detection processing unit 40.
- the detection processing unit 40 corrects attenuation according to the distance according to the depth of the reflection position of the ultrasonic wave on the reception data generated by the phasing addition unit 38, and then performs envelope detection processing to perform detection.
- B-mode image data that is tomographic image information related to the tissue in the specimen is generated.
- a DSC (digital scan converter) 48 converts (raster conversion) the B-mode image data generated by the detection processing unit 40 into image data according to a normal television signal scanning method.
- the image creation unit 44 performs various necessary image processing such as gradation processing on the B-mode image data input from the DSC 42 to create B-mode image data for use in inspection and display, and then creates the created inspection. Or display B-mode image data is output to the display control unit 26 for display or stored in the image memory 46.
- the image memory 46 temporarily stores the inspection B-mode image data created by the image creation unit 44.
- the inspection B-mode image data stored in the image memory 46 is read to the display control unit 26 for display on the display unit 28 as necessary.
- the display control unit 26 causes the display unit 28 to display an ultrasonic image based on the inspection B-mode image signal subjected to the image processing by the image creation unit 44.
- the display unit 28 includes a display device such as an LCD, for example, and displays an ultrasonic image under the control of the display control unit 26.
- the control unit 30 controls each unit of the ultrasonic inspection apparatus 10 based on a command input from the operation unit 32 by the operator.
- the control unit 30 provides various information by the operator via the operation unit 32, particularly information necessary for setting the focus by the focus setting unit 96 and the focus resetting unit 98, and an element data processing unit.
- the information necessary for processing the element data is input at 22
- the above-described various information input from the operation unit 32 is transmitted as necessary to the transmission unit 14, the reception unit 16, and the element data.
- the data is supplied to each unit such as the storage unit 20, the element data processing unit 22, the image generation unit 24, the display control unit 26, the focus setting unit 96, and the focus resetting unit 98.
- the operation unit 32 is for an operator to perform an input operation, and can be formed from a keyboard, a mouse, a trackball, a touch panel, and the like.
- the operation unit 32 provides various information as required by the operator, particularly information on the display area (examination range), depth (depth), transducer array 36, focus position, and the like used for setting the above-described focus position.
- information regarding the sound speed of the examination region of the subject used for element data processing, information regarding the transmission aperture and reception aperture of the transducer array 36, and information regarding element data processing such as the number of overlapping element data and the overlapping processing method Etc. are provided for input operation.
- the storage unit 34 receives various information input from the operation unit 32, in particular, information related to the display area, depth, probe 12 (vibrator array 36), sound speed, focal position, transmission aperture, reception aperture, and the like.
- Information related to element data processing such as the number of element data and overlay processing method, etc., and control of the transmission unit 14, the reception unit 16, the element data storage unit 20, the element data processing unit 22, the image generation unit 24, the display control unit 26, etc.
- Hard disk, flexible disk, MO, MT, RAM Recording media such as CD-ROM and DVD-ROM can be used.
- the element data processing unit 22, the phasing addition unit 38, the detection processing unit 40, the DSC 42, the image creation unit 44, the focus setting unit 96, the focus resetting unit 98, and the display control unit 26 include a CPU and various types of CPUs.
- the program is composed of operation programs for performing processing, but may be configured by a digital circuit.
- the element data processing unit 22 includes a delay time calculation unit 48 and an overlay processing unit 50.
- the delay time calculation unit 48 examines the plurality of ultrasonic elements and the subject of the transducer array 36 of the probe 12 input from the operation unit 32 or input from the operation unit 32 and stored in the storage unit 34. Information regarding the sound velocity of the target region, information on the transmission aperture and reception aperture of the transducer array 36, and the focus position reset by the focus resetting unit 98 are acquired in advance, and an ultrasonic beam is formed and transmitted.
- the delay time of the element data received by each ultrasonic element is calculated.
- the overlay processing unit 50 relates to element data processing such as the number of element data to be superimposed and the overlay processing method, which are input from the operation unit 32 or input from the operation unit 32 and stored in the storage unit 34. Based on the information, two or more pieces of element data obtained by transmitting ultrasonic beams to different transmission lines stored and held by the element data storage unit 20 are read out, and a predetermined line to be subjected to overlay processing is determined. Focusing on this point (sampling point), two or more unprocessed element data are received on the reception time, that is, timed and received based on the delay times calculated by the delay time calculation unit 48 respectively. The processed element data is generated by superposing and aligning the absolute positions of the elements of the probe. By paying attention to a predetermined sampling point and superimposing a plurality of unprocessed element data, element data that focuses on this sampling point can be obtained.
- the processed element data generated by superimposing unprocessed element data using at least one point of the target line as a sampling point may be used as the element data of the target line, and the target line is divided into a plurality of regions. Then, sampling points may be set in each area, and processed element data may be generated by superimposing unprocessed element data, and may be used as element data in each area of the target line.
- the processed element data may be generated by using all pixel positions as sampling points corresponding to the pixel positions when the ultrasonic image is generated.
- the position (depth) at which the focus setting unit 96 sets the focus position is a region that the operator is paying attention to or a region that the operator wants to see. Therefore, by setting a sampling point at the focus position set by the focus setting unit 96 and superimposing unprocessed element data, element data that is focused on the region that the operator is interested in to obtain is obtained. be able to.
- an ultrasonic beam (hereinafter simply referred to as a transmission beam) is transmitted to an object from an ultrasonic element (hereinafter simply referred to as a transmission element) forming a transmission aperture of the transducer array 36 of the ultrasonic probe 12, and between the objects.
- element data unprocessed element data
- an ultrasonic element (hereinafter simply referred to as a receiving element) that forms a receiving aperture of the transducer array 36.
- transmission lines are set corresponding to each ultrasonic element in a direction orthogonal to the arrangement direction of the ultrasonic elements, and one focal position is set for each transmission line.
- three ultrasonic elements 52c to 52e and 52d to 52f are used as transmitting elements, respectively, and seven ultrasonic elements (hereinafter also simply referred to as elements) 52a to 52g are used.
- the transmission beam 56 to be transmitted to the inspection target area including the reflection point 54 is ideally narrowed to an element interval or less.
- the focal point 58 of the transmission beam 56 is 4d and is in a straight line connecting the reflection point 54, the transmitted beam 56, since it is transmitted to the reflection point 54, the ultrasonic echoes are generated to be reflected from the reflection point 54.
- the ultrasonic echoes from the reflection point 54 are received by the receiving elements 52a to 52g through the receiving path 60 spreading at a predetermined angle, and the element data 62 as shown in FIG. 4B is obtained by the receiving elements 52a to 52g. Will be.
- the transmission beam 56 is transmitted to the transmission line corresponding to the element 52e, and the ultrasonic echoes are received by the reception elements 52b to 52h.
- the reflection point 54 does not exist on the transmission direction of the transmission beam 56, that is, on the straight line connecting the transmission element 52 e and the focal point 58 (on the transmission line). Not sent. For this reason, the ultrasonic echo reflected from the reflection point 54 is not generated, and the receiving elements 52b to 52h do not receive the ultrasonic echo. Therefore, as shown in FIG. It becomes the data of.
- the actual transmission beam 64 is wider than the element spacing.
- the transmission beam 64 is transmitted to the transmission line corresponding to the element 52d, with the elements 52c to 52e having the element 52d immediately above the reflection point 54 as the central element.
- the transmission beam 56 is wide, its focal point 58 is on a straight line connecting the element 54d and the reflection point 54, and the transmission beam 64 is reflected. Reflected at point 54, an ultrasonic echo is generated.
- an ultrasonic echo is generated.
- the ultrasonic echo from the reflection point 54 is received by the receiving elements 52a to 52g through the receiving path 60 spreading to a predetermined angle, and is received by the receiving elements 52a to 52g.
- True element data 66 as shown in FIG. 5B is obtained.
- the center of the transmitting element is shifted by one element from the reflection point 54 in the element direction (right direction in the figure).
- the transmission beam 64 is transmitted to the transmission line corresponding to the element 52e, with the elements 52d to 52f having the element 52e adjacent to the element 52d immediately above the reflection point 54 as the central element as transmission elements.
- the transmission beam 64 is wide, so that the reflection point 54 does not exist on the transmission direction, that is, on the straight line connecting the transmitting element 52e and the focal point 58. However, the transmission beam 64 is transmitted to the reflection point 54.
- the ultrasonic echo reflected from the reflection point 54 is received by the receiving elements 52b to 52h through the receiving path 60 spread at a predetermined angle, and as shown in FIG. 5D by the receiving elements 52b to 52h.
- Element data 68 affected by the reflection point is obtained.
- an acoustic ray signal is generated from element data 68 (hereinafter also referred to as ghost element data) affected by a reflection point other than on the transmission line
- an ultrasonic image is generated, which corresponds to the element 52e.
- An image of a reflection point that does not actually exist is reproduced in the line image, so-called ghost is generated, and this causes a decrease in the accuracy of the ultrasonic image.
- the transmission beam 64 shown in FIG. 5C is transmitted from the transmission element 52e through the focal point 58 to the reflection point 54, and the ultrasonic echo from the reflection point 54 is received from the reception elements 52b to 52h.
- the sum (propagation distance) with the path is such that the transmission beam 64 shown in FIG. 5A reaches the reflection point 54 from the transmission element 52 d via the focal point 58 and the reflected ultrasonic echo from the reflection point 54. It becomes longer than the sum (propagation distance) with the reception path reaching each of the receiving elements 52a to 52g. Therefore, the ghost element data 68 as shown in FIG. 5D is delayed with respect to the true element data 66 as shown in FIG. 5B.
- the geometrical arrangement of the sampling point on the transmission line of interest and the central element corresponding to each transmission line causes the transmission line to exceed the transmission line of interest.
- Element data obtained by transmitting / receiving sound waves hereinafter also referred to as “target element data”
- element data obtained by transmitting / receiving ultrasonic waves to a transmission line different from the target transmission line hereinafter, “non-target element data”.
- the delay time calculation unit 48 acquires information on the focus position reset by the focus resetting unit 98 and the information input by the operation unit 32 or stored in the storage unit 34.
- the delay time is calculated from, for example, the transmission path and sampling point of the transmission beam from the transmission element to the sampling point through the focal point, which is calculated from the geometry of the transmission element, the focus of the ultrasonic beam, the sampling point, and the reception element. It can be calculated from the difference between the total length (propagation distance) of the reception path of the reflected signal reaching the reception element and the propagation time calculated by the sound speed.
- the lengths of the transmission path of the transmission beam and the reception path of the ultrasonic echo of each of the target element data and the non-target element data are set. Can be sought.
- FIG. 6A and FIG. 6B for the sake of explanation, it is assumed that there is a reflection point 54 at the sampling point on the target transmission line. As shown in FIG.
- the central elements of the transmission elements 52c to 52e, and the reception element coincide with each other, and a focal point 58 and a reflection point 54 are disposed directly below the central element.
- the position of the element 52d directly above the reflection point 54 is the coordinate (x0, 0) on the xy two-dimensional coordinate, the element interval is Le, the position of the focal point 58 is the coordinate (x0, df), and the position of the reflection point 54 is the coordinate ( x0, z), the position of the transmitting element 52d is also in the same coordinate (x0, 0) as the element 52d immediately above the reflecting point 54, and the transmission beam transmitted from the transmitting element 52d through the focal point 58 to the reflecting point 54 is transmitted.
- the positions of the central elements of the transmission elements 52d to 52f are The focal point 58 is arranged just below the element 52e, which is the central element, while being shifted by one element (x direction: right direction in the figure) with respect to the reflection point 54 (sampling point). It is arranged directly below 52d.
- the position of the receiving element 52d immediately above the reflection point 54 is set to the coordinates (x0, 0) on the xy two-dimensional coordinates, the element interval is Le, and the position of the reflection point 54 is the coordinates (x0).
- the position of the transmitting element 52e is the coordinate (x0 + Le, 0)
- the position of the focal point 58 is the coordinate (x0 + Le, df). Therefore, the transmission beam from the transmitting element 52e through the focal point 58 to the reflection point 54
- the value obtained by dividing the ultrasonic propagation distance Lua by the sum of the distance Lta of the transmission path 61 and the distance Lra of the reception path 60 obtained by the geometrical arrangement shown in FIG. This is the propagation time between the ultrasonic element and the sampling point when ultrasonic waves are transmitted and received for acquisition.
- the value obtained by dividing the ultrasonic propagation distance Lub which is the sum of the distance Ltb of the transmission path 61 and the distance Lrb of the reception path 60 obtained by the geometric arrangement shown in FIG. This is the propagation time between the ultrasonic element and the sampling point when ultrasonic waves are transmitted and received on the transmission line adjacent to the transmission line.
- the calculation of the delay time is based on the propagation time of the ultrasonic wave between the ultrasonic element and the sampling point when acquiring the element-of-interest data and between the ultrasonic element and the sampling point when acquiring the non-target element data.
- the delay time is obtained from the difference in ultrasonic propagation time.
- the transmission path 61 is a model that passes through the focal point 58, but the present invention is not limited to this, for example, it passes through the focal point 58. Alternatively, a route that directly reaches the reflection point 54 may be used.
- this delay time calculation method uses a delay time in the element 52 located immediately below the sampling point as a representative value in the transmission / reception of ultrasonic waves with a certain element as the central element, and this representative value is used as the total value in this transmission / reception. This is used as the delay time of the element.
- the present invention is not limited to this.
- the reception path distance Lrb of the element 52c, the element 52b, or the like whose position in the x direction is different from the sampling point, that is, the element 52d immediately below is the element directly below.
- Lrb ⁇ ⁇ (n ⁇ Le) 2 + z 2 ⁇ .
- the geometric model of Fig.6 (a) and FIG.6 (b) is a case of a linear probe, not only this but another probe can perform the same geometric calculation from the shape of a probe.
- a geometric model can be set from the radius of the probe and the angle between the elements, and the calculation can be performed in the same way.
- a geometric model (not shown) that considers information such as the transmission angle is used, and the attention element data and the surrounding non- attention element data are determined from the positional relationship between the transmission element and the sampling point. The delay time can be calculated.
- the delay time is not limited to the method of calculating the delay time using the geometric model, and the delay time is obtained for each measurement condition from the measurement result obtained by measuring the high-intensity reflection point according to the measurement condition of the apparatus in advance. By storing in the apparatus, the delay time of the same measurement condition may be read out.
- FIG. 6C shows true element data 66 which is element data when there is a reflection point on the transmission line in the center, and element data 68 of a ghost in which a ghost is generated due to the influence of the reflection point on both sides.
- FIG. 6D shows the ghost element data 68, which is the non-attention element data, when the central true element data 66 obtained from the above geometric calculation is set as the attention element data.
- An example of delay time is shown. It is shown that when the true element data 66 is the target element data, the ghost element data 68 is symmetrically delayed. In this way, the delay time calculated by the delay time calculation unit 48 of the element data processing unit 22 can also be used for delay correction in the phasing addition unit 38.
- the superposition processing unit 50 of the element data processing unit 22 of the present invention using the delay time thus calculated by the delay time calculating unit 48, the target element data of the target transmission line and the surrounding transmission lines are used.
- the non-attention element data that is the element data is overlaid.
- information on the number of superposition element data and the superposition processing method at the time of superposition is necessary, but these may be input in advance by the operation unit 32. Alternatively, it may be stored in the storage unit 34.
- FIGS. 7A to 7H show a specific example of overlay processing performed by the overlay processor 50 when the number of element data is 5 and the number of overlay element data is 3.
- FIG. FIG. 7 (a) shows five element data obtained by performing ultrasonic transmission / reception side by side in a transmission line having five adjacent elements as the central elements, and for each element data, It shows a state in which an ultrasonic beam is transmitted and a reflected signal is received.
- the horizontal axis of each element data represents a receiving element, and the respective element data are displayed with the center element at the time of transmission of the ultrasonic beam as the center.
- the vertical axis represents the reception time.
- the element data in the middle there is a reflection point immediately below the element at the center of the element data (element at the center of the receiving element), that is, the center element at the time of transmission (transmitting element).
- a reflection signal (ultrasonic echo) from the reflection point is received. That is, this reflected signal is a true signal, and the element data in the middle represents the true element data.
- the transmission element of the middle element data A reflected signal, i.e., a ghost, which is generated when an ultrasonic beam hits a reflection point existing directly below, is reflected. Since the propagation time of the ultrasonic wave to the reflection point becomes longer as the ghost is away from the true signal, the reception time is delayed as compared with the true element data.
- the position of the receiving element where the reflected signal from the reflection point is first received is the element immediately above the reflection point, but the horizontal axis of the element data is centered on the central element at the time of transmitting the ultrasonic beam.
- the center element is shifted by one element for each element data, that is, the transmission line is shifted by one line
- the absolute position of the element is shifted by one element in each element data. That is, in the middle element data, the receiving element from which the reflected signal from the reflection point is received first is the middle element, but the element data on both sides is shifted by one element from the middle element data.
- the element data is shifted one element to the left, and the left element data is shifted one element to the right.
- the element data at both ends are shifted by two elements from the middle element data, the leftmost element data is shifted by two elements to the left, and the leftmost element data is shifted by two elements to the right.
- the ghost signal is not only delayed in reception time with respect to the true signal, but also deviated from the direction of the receiving element.
- FIG. 7B shows an example of the delay time of the reception time when the middle element data of the five element data shown in FIG.
- the overlay processing unit 50 uses the delay time shown in FIG. 7B to set the element data in the middle as the element data of interest.
- the delay time correction is performed on the three element data, and the amount of deviation between the center element (target element) corresponding to the transmission line of the target element data and each center element, in the illustrated example, one element on both sides.
- the data is shifted in the direction, that is, the unprocessed element data corresponding to the three transmission lines is superposed with the phase being matched to obtain one overlap-processed element data corresponding to a predetermined sampling point of the target transmission line.
- FIG. 7C shows the superposed element data of the transmission line of interest obtained in this way. Since the element data of the target element shown in FIG. 7A is the element data of the true signal, the delay time correction and the lateral shift are performed on the unprocessed element data of the adjacent elements on both sides of the target element.
- the unprocessed element data of the adjacent element and the unprocessed element data of the target element overlap each other at the high luminance position because the phases match. Therefore, when these element data are added, for example, the element data value shows a large value (high luminance value), and for example, even if an average value is obtained by averaging, an emphasized value (high luminance value) is shown.
- FIG. 7D shows the same element data group as FIG. 7A, but an example in which element data on the left of the middle element data, that is, ghost element data is used as the element data of interest.
- FIG. 7E shows an example of the delay time of the reception time when the center left adjacent element is the target element. Since FIG. 7A and FIG. 7D are the same element data group, the delay time shown in FIG. 7E is the same as FIG. 7B except for the element of interest.
- the overlay processing unit 50 uses the delay time shown in FIG.
- FIG. 7 (f) shows the superposed element data of the target transmission line thus obtained. Since the element data of the target element shown in FIG. 7D is ghost element data, phase adjustment is performed by performing delay time correction and lateral shift on the unprocessed element data of adjacent elements on both sides of the target element. Even if it is performed, as shown in FIG. 7F, the unprocessed element data of the adjacent element and the unprocessed element data of the target element do not overlap each other because the phases do not match. For this reason, even if these three element data are added, for example, since the phases are not matched, signals that are inverted in phase cancel each other out, so the added value does not increase. When the average value is obtained, a small value is shown.
- FIG. 7 (h) shows the result of, for example, addition processing or average processing as superimposing processing shown in (g).
- FIG. 7 (h) shows the transmission line of interest when the coordinates of the central element and the reflection point of the transmission element shown in FIG. 7 (a) are coincident (when there is a reflection point on the transmission line).
- the element data of the true signal is obtained as superposed processed element data having a high luminance value, and the ghost element data is added to the element data whose phases are not in phase with each other in all four elements on both sides. Or, since they will cancel each other, the ghost superimposed element data is smaller than the superimposed element data having a high luminance value whose value is the element data of the true signal.
- the influence of the ghost element data on the element data of the true signal can be reduced, or the influence can be reduced to the extent that the influence can be ignored.
- an average value or a median value may be taken, or addition may be performed after multiplying coefficients.
- taking an average value or median value is thought to correspond to applying an averaging filter or median filter at the element data level, but is performed by normal image processing instead of the averaging filter or median filter.
- An inverse filter or the like may also be applied.
- the element data to be superimposed are compared, and if they are similar, the maximum value is taken, if not, the average value is taken, and if there is a distribution bias, the intermediate value is taken.
- the overlay process may be changed based on the feature amount of each element data to be superimposed.
- the number of element data to be superimposed is matched to the extent of the beam width of the ultrasonic beam. Therefore, when the beam width changes depending on the depth, the number of overlapping element data may be changed depending on the depth. Further, since the beam width depends on the transmission numerical aperture, the number of overlapping element data may be changed according to the transmission numerical aperture. Alternatively, the number of overlapping element data may be changed based on a feature quantity such as the luminance value of the image, or the optimum number of overlapping element data is selected from images created by changing the number of overlapping element data. May be. As a result of the superposition, as described above, the signal phase matches in the element data of the true signal, but the signal phase does not match in the ghost.
- the position of the focal point of the ultrasonic beam is within a predetermined range, the position of the focal point is reset, and ultrasonic waves are transmitted and received. Are overlapped, new element data is generated, and element data corresponding to the transmission line whose focus position is reset is obtained.
- ultrasonic waves with good image quality in the region of interest are obtained by setting the focal point of the ultrasound beam near the region of interest and transmitting and receiving ultrasound. An image was generated.
- the focal position of the ultrasonic beam when the focal position of the ultrasonic beam is within a predetermined range, the first element obtained by resetting the focal position and transmitting a plurality of ultrasonic beams is obtained.
- Second element data is generated from the data. Specifically, when the focal position of the ultrasonic beam is shallower than the predetermined depth Za (on the surface layer), the focal position is reset to a deeper position and deeper than the predetermined depth Zb ( In the deep layer), the focus position is reset to a shallower position, ultrasonic waves are transmitted / received to the reset focus position, and a plurality of unprocessed element data (first element data) obtained are obtained.
- new processed element data (second element data) is generated.
- the ultrasonic beam can be sufficiently converged to the set focal position and element data (first element data) can be obtained, so that the quality of the element data is improved. be able to.
- element data first element data
- the same element data (second element data) as that at which the focal point is formed at each sampling point on the transmission line can be obtained.
- the SN ratio can be increased, the resolution can be increased, and the optimum spatial resolution can be achieved with a high resolution at the same frame rate as before.
- a sharp ultrasonic image can be obtained.
- the optimum sound speed can be obtained with high accuracy even when the optimum sound speed for each region in the inspection target area is obtained using the element data.
- FIG. 8 is a flowchart for explaining the operation of the ultrasonic inspection apparatus shown in FIG.
- the focus setting unit 96 sets the focus position according to the information input from the operation unit 32, and supplies the set focus position information to the focus resetting unit 98.
- the focus resetting unit 98 determines whether or not the set focus position is within a predetermined depth range, and when the focus position is shallower than the predetermined depth Za, resets the focus position to a deeper position, When the depth is deeper than the predetermined depth Zb, the focus position is reset to a shallower position, and when the depth is between Za and Zb, the focus position information is not changed without changing the focus position. Is supplied to the transmitter 14. When the operator abuts the ultrasonic probe 12 on the surface of the subject and starts measurement, an ultrasonic beam is transmitted from the transducer array 36 according to the drive signal supplied from the transmission unit 14, and the ultrasonic wave from the subject is transmitted. The transducer array 36 receives the echo and outputs an analog element signal as a reception signal.
- the transmission unit 14 drives the transducer array 36 so as to transmit an ultrasonic beam that forms a focal point at the focal position supplied from the focus resetting unit 98.
- the receiving unit 16 outputs an analog element signal output from each element as one analog element data, and supplies it to the A / D converter 18.
- the A / D conversion unit 18 converts analog element data into digital element data, supplies the element data to the element data storage unit 20, and stores and holds the data.
- the element data processing unit 22 delays the unprocessed element data of the transmission line of interest and the unprocessed element data of peripheral transmission lines (for example, FIG. 7B).
- FIG. 7E is the same.
- FIG. 7E shows the geometric arrangement of the transmitting element, the focal point, the reflection point, and the receiving element, and the inspection target region of the subject that is set in advance. It is calculated from the speed of sound or the like (for example, calculated using the geometric model in FIG. 6).
- the element data processing unit 22 reads the unprocessed element data from the element data storage unit 20, sets the element data to be processed as the element data of interest, and in the overlay processing unit 50 (FIG. 3), the delay time calculation unit 48. Using the delay time calculated in (1), the element data of interest and the unprocessed element data (non-element of interest data) of the surrounding transmission lines are phase-matched to obtain processed element data. As a result, enhanced processed element data is obtained for unprocessed element data including a true signal, and attenuated processed element data is determined for ghost unprocessed element data.
- the element data processing unit 22 superimposes each transmission line at each sampling point on the transmission line when the focus resetting unit 98 resets the focus position and when the focus position is not reset. Processing is performed to obtain processed element data.
- the processed element data thus obtained is supplied to the phasing addition unit 38 of the image generation unit 24.
- the phasing addition unit 38 of the image generation unit 24 performs reception focus processing on the processed element data to generate reception data (sound ray signal), and supplies it to the detection processing unit 40.
- the detection processing unit 40 processes the sound ray signal and generates a B-mode image signal.
- the DSC 42 performs raster conversion on the B-mode image signal, and the image creation unit 44 performs image processing to generate an ultrasonic image.
- the generated ultrasonic image is stored in the image memory 46, and the ultrasonic image is displayed on the display unit 28 by the display control unit 26.
- the ultrasonic inspection apparatus 10 performs transmission / reception of ultrasonic waves by resetting the focal position when the focal position of the ultrasonic beam is within a predetermined range, and the obtained element
- the above-described element data superimposition process is performed on the data, new element data is generated, and element data corresponding to the transmission line whose focus position is reset is set.
- the ultrasonic beam can be sufficiently converged to the set focal position and element data (first element data) can be obtained, so that the quality of the element data is improved. be able to.
- the focal position by combining a plurality of first element data obtained by resetting the focal position, it is possible to reduce the influence of a ghost generated by the spread of the ultrasonic beam even at a position away from the focal point. It is possible to obtain the same element data (second element data) as the focal point is formed at each point on the transmission line. Therefore, even in the surface layer and deep layer where it is difficult to converge the focus, the SN ratio can be increased, the resolution can be increased, and the optimum spatial resolution can be achieved with a high resolution at the same frame rate as before. A sharp ultrasonic image can be obtained.
- the focus position is changed when the focal position is shallower than the predetermined depth Za or deeper than the predetermined depth Zb.
- the present invention is not limited to this. Instead, as shown in the flowchart of FIG. 9A, the focus position may be reset to a position deeper than Za when the depth is smaller than the predetermined depth Za.
- the focal position when the depth is deeper than the predetermined depth Zb, the focal position may be reset to a position shallower than Zb.
- the focus position set by the focus setting unit 96 is the same depth for all transmission lines.
- the present invention is not limited to this, and the focus setting unit 96 is different for each transmission line.
- the focal position may be set to the depth.
- the focus resetting unit 98 may determine the focus depth for each transmission line, and reset the focus position for the transmission line whose focus position is within a predetermined depth range.
- the element data processing unit performs the overlay process using the element data of the transmission line whose focus position is reset as the target element data
- the focus position of the non-target element data to be overlapped is reset.
- the transmission line element data may be the transmission line element data for which the focus position is not reset.
- the element data to be superimposed on the target element data is the element data of the transmission line adjacent to the transmission line of the target element data.
- the present invention is not limited to this, and the element data of the target element data Any transmission line different from the transmission line may be used.
- the element data to be superimposed on the element data of interest is preferably element data of an adjacent transmission line or a nearby transmission line.
- the element data to be superimposed on the target element data is preferably element data acquired with a transmission line that is symmetric about the transmission line of the target element data.
- the ultrasonic beam is transmitted in a direction orthogonal to the arrangement direction of the ultrasonic elements.
- the present invention is not limited to this, and is inclined with respect to the arrangement direction of the ultrasonic elements. It is good also as a structure which transmits an ultrasonic beam in the direction (steer) which is carrying out.
- the said Example although it was set as the structure with which 1 set of transmission elements (transmission opening) and transmission of one ultrasonic beam respond
- the ultrasonic inspection apparatus of the present embodiment is controlled by an ultrasonic image data generation program stored in a memory attached to a control unit (not shown). That is, the control unit reads out the ultrasound image data generation program from the memory, sets / resets the focus position according to the ultrasound image data generation program, and sets the focus position according to the set / reset focus. Transmits an ultrasonic beam toward the examiner, receives an ultrasonic echo reflected from the subject, synthesizes the first element data obtained by the reception, and generates second element data The function to perform is executed.
- the ultrasonic image data generation program is not limited to the one stored in the memory attached to the control unit in this way, and the ultrasonic image data generation program may be the present ultrasonic image processing such as a CD-ROM.
- the information may be recorded in a memory medium (removable medium) configured to be detachable from the apparatus, and read into the apparatus via an interface corresponding to the removable medium.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Health & Medical Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Acoustics & Sound (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Gynecology & Obstetrics (AREA)
- Multimedia (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Provided is an ultrasonic inspection device that can obtain a high-resolution ultrasonic image at a frame rate that is no different from conventional frame rates, and is able to increase resolution and increase the signal-to-noise ratio in even a region at which it is difficult to cause a focal point to converge. The ultrasonic inspection device is provided with: a focal point re-setting unit that determines whether or not the transmission focal point set by a focal point setting unit is in a predetermined range, and resets transmission focal points in the predetermined range to different positions; and an element data processing unit that generates second element data corresponding to a unit of first element data that is from first element data obtained from the transmission of a plurality of ultrasonic beams and was obtained by transmitting an ultrasonic beams to the transmission focal point reset by the focal point re-setting unit.
Description
本発明は、超音波ビームを送受信することにより生体内の臓器等の検査対象物の撮像を行って、検査対象物の検査や診断のために用いられる超音波画像を生成する超音波検査装置、超音波画像データ生成方法およびプログラムに関する。
The present invention relates to an ultrasonic inspection apparatus that performs imaging of an inspection target such as an organ in a living body by transmitting and receiving an ultrasonic beam, and generates an ultrasonic image used for inspection and diagnosis of the inspection target. The present invention relates to an ultrasonic image data generation method and program.
従来から、医療分野において、超音波画像を利用した超音波画像診断装置等の超音波検査装置が実用化されている。一般に、この種の超音波検査装置は、複数の素子(超音波トランスデューサ)を内蔵した超音波探触子(超音波プローブ)と、この超音波探触子に接続された装置本体とを有しており、超音波探触子の複数の素子から検査対象物(被検体)に向けて超音波ビームを送信し、被検体からの超音波エコーを超音波探触子で受信して、その受信した超音波エコー信号を装置本体で電気的に処理することにより超音波画像が生成される。
Conventionally, in the medical field, an ultrasonic inspection apparatus such as an ultrasonic diagnostic imaging apparatus using an ultrasonic image has been put into practical use. In general, this type of ultrasonic inspection apparatus has an ultrasonic probe (ultrasonic probe) including a plurality of elements (ultrasonic transducers), and an apparatus main body connected to the ultrasonic probe. The ultrasonic probe transmits the ultrasonic beam from the multiple elements of the ultrasonic probe toward the inspection object (subject), receives the ultrasonic echo from the subject, and receives the ultrasonic echo. An ultrasonic image is generated by electrically processing the ultrasonic echo signal thus processed in the apparatus main body.
超音波検査装置においては、超音波画像を生成するとき、被検体の検査対象領域、例えば、生体内の臓器やその臓器内の病巣等に探触子の複数の素子から焦点を合わせて超音波ビームを送信し、検査対象領域の反射体、例えば臓器や病巣等の表面や界面からの超音波エコーを複数の素子を介して受信しているが、同一の反射体で反射された超音波エコーを複数の素子で受信するので、送信素子から送信された超音波ビームの焦点位置に位置する反射体で反射され、送信素子で受信された超音波エコー信号に対して、同一の反射体で反射され、送信素子と異なるその他の素子で受信された超音波エコー信号は遅延することになるので、複数の素子で受信した超音波エコー信号をA/D(アナログ/デジタル)変換して素子データにとした後、素子データを受信フォーカス処理して、即ち遅延補正して位相を合わせ整相加算して音線信号を生成し、こうして得られた音線信号に基づいて超音波画像を生成している。
In an ultrasonic inspection apparatus, when generating an ultrasonic image, an ultrasonic wave is focused on a region to be inspected of a subject, for example, an organ in a living body or a lesion in the organ from a plurality of elements of the probe. Transmits a beam and receives ultrasonic echoes from the surface or interface of a reflector in the examination target area, for example, an organ or a lesion, via multiple elements, but is reflected by the same reflector. Are reflected by the reflector located at the focal position of the ultrasonic beam transmitted from the transmitting element, and reflected by the same reflector with respect to the ultrasonic echo signal received by the transmitting element. Since the ultrasonic echo signals received by other elements different from the transmitting element are delayed, the ultrasonic echo signals received by a plurality of elements are A / D (analog / digital) converted into element data. And then And reception focusing processing child data, i.e. the delay correction to have generated ultrasound image based on the generated sound ray signals by phasing and adding the combined phase, thus obtained sound ray signals.
このような超音波検査技術において、超音波画像の画質を向上させるために、複数の異なる焦点で送信した信号を足し合わせることで、従来よりも信号の質を改善することが行われている。
例えば、特許文献1には、送信用振動素子群を構成する複数個の振動素子から放射される送信超音波を送信集束点に集束させることにより仮想的な点音源を形成し、そして、この点音源から放射される送信超音波によって連続した複数の観測点から反射する受信超音波を、受信用振動素子群を構成する複数個の振動素子によって受信し、得られたチャンネル分の受信信号に対し観測点が受信集束点となるような受信整相加算を行う。更に、前記受信用振動素子群と振動素子の配列方向に順次シフトさせた送信用振動素子群の各々を用いて得られた受信信号に対しても同様の受信整相加算を行い、これら受信整相加算後の受信信号に対し各々の送信集束点から観測点までの伝搬距離の差異に起因した送信遅延を補正する送信整相加算を行う超音波診断装置が開示されている。
特許文献1では、複数の振動素子から得られた受信信号に対して受信整相加算と送信整相加算を行なうことにより被検体の深さ方向に対してほぼ一様な細いビーム幅を有した送信ビーム及び受信ビームを高精度かつ高感度で形成することができる。このため、特許文献3は、空間分解能、コントラスト分解能及びS/Nに優れた画像データの生成と表示が可能となることを開示している。 In such an ultrasonic inspection technique, in order to improve the image quality of an ultrasonic image, the signal quality is improved compared to the conventional technique by adding together signals transmitted at a plurality of different focal points.
For example, in Patent Document 1, a virtual point sound source is formed by focusing transmission ultrasonic waves radiated from a plurality of vibration elements constituting a transmission vibration element group on a transmission focusing point. Received ultrasonic waves reflected from a plurality of continuous observation points by transmitted ultrasonic waves radiated from a sound source are received by a plurality of vibration elements constituting a reception vibration element group, and the received signals for the obtained channels are received. Receive phasing and addition is performed so that the observation point becomes the reception focus point. Further, similar reception phasing addition is performed on the reception signal obtained using each of the reception vibration element group and the transmission vibration element group sequentially shifted in the arrangement direction of the vibration elements. There has been disclosed an ultrasonic diagnostic apparatus that performs transmission phasing addition for correcting a transmission delay caused by a difference in propagation distance from each transmission focusing point to an observation point with respect to a reception signal after phase addition.
In Patent Document 1, the reception phasing addition and the transmission phasing addition are performed on reception signals obtained from a plurality of vibration elements, thereby having a substantially uniform thin beam width in the depth direction of the subject. The transmission beam and the reception beam can be formed with high accuracy and high sensitivity. For this reason, Patent Document 3 discloses that image data can be generated and displayed with excellent spatial resolution, contrast resolution, and S / N.
例えば、特許文献1には、送信用振動素子群を構成する複数個の振動素子から放射される送信超音波を送信集束点に集束させることにより仮想的な点音源を形成し、そして、この点音源から放射される送信超音波によって連続した複数の観測点から反射する受信超音波を、受信用振動素子群を構成する複数個の振動素子によって受信し、得られたチャンネル分の受信信号に対し観測点が受信集束点となるような受信整相加算を行う。更に、前記受信用振動素子群と振動素子の配列方向に順次シフトさせた送信用振動素子群の各々を用いて得られた受信信号に対しても同様の受信整相加算を行い、これら受信整相加算後の受信信号に対し各々の送信集束点から観測点までの伝搬距離の差異に起因した送信遅延を補正する送信整相加算を行う超音波診断装置が開示されている。
特許文献1では、複数の振動素子から得られた受信信号に対して受信整相加算と送信整相加算を行なうことにより被検体の深さ方向に対してほぼ一様な細いビーム幅を有した送信ビーム及び受信ビームを高精度かつ高感度で形成することができる。このため、特許文献3は、空間分解能、コントラスト分解能及びS/Nに優れた画像データの生成と表示が可能となることを開示している。 In such an ultrasonic inspection technique, in order to improve the image quality of an ultrasonic image, the signal quality is improved compared to the conventional technique by adding together signals transmitted at a plurality of different focal points.
For example, in Patent Document 1, a virtual point sound source is formed by focusing transmission ultrasonic waves radiated from a plurality of vibration elements constituting a transmission vibration element group on a transmission focusing point. Received ultrasonic waves reflected from a plurality of continuous observation points by transmitted ultrasonic waves radiated from a sound source are received by a plurality of vibration elements constituting a reception vibration element group, and the received signals for the obtained channels are received. Receive phasing and addition is performed so that the observation point becomes the reception focus point. Further, similar reception phasing addition is performed on the reception signal obtained using each of the reception vibration element group and the transmission vibration element group sequentially shifted in the arrangement direction of the vibration elements. There has been disclosed an ultrasonic diagnostic apparatus that performs transmission phasing addition for correcting a transmission delay caused by a difference in propagation distance from each transmission focusing point to an observation point with respect to a reception signal after phase addition.
In Patent Document 1, the reception phasing addition and the transmission phasing addition are performed on reception signals obtained from a plurality of vibration elements, thereby having a substantially uniform thin beam width in the depth direction of the subject. The transmission beam and the reception beam can be formed with high accuracy and high sensitivity. For this reason, Patent Document 3 discloses that image data can be generated and displayed with excellent spatial resolution, contrast resolution, and S / N.
しかしながら、特許文献1に開示の技術では、従来技術よりも高画質な画像が得られるが、1ラインのデータを作るのに複数の送信ビームを、送信位置を変えて発生させる必要があり、従来技術よりも送信回数が増えるためフレームレートが低下し、リアルタイム性が悪くなるという問題があった。また、特許文献1では、焦点を仮想的な点音源とみなしているが、実際は、点音源とみなせるほど焦点は収束しておらず、焦点に近い領域の画像ほどSN比や解像度が低下するという問題があった。
また、通常、超音波画像を取得する際には、着目する領域の近傍に焦点を設定して超音波の送受信を行うことで、着目する領域の画質が良好な超音波画像を生成することができる。しかしながら、表層や深層では原理的に超音波ビームを焦点に収束させることが難しいため、表層や深層に着目する場合に、表層や深層の画質を向上させることは困難であった。 However, with the technique disclosed in Patent Document 1, an image with higher image quality than that of the conventional technique can be obtained. However, in order to create one line of data, it is necessary to generate a plurality of transmission beams by changing transmission positions. Since the number of transmissions is higher than that of the technology, there is a problem that the frame rate is lowered and the real-time property is deteriorated. In Patent Document 1, the focal point is regarded as a virtual point sound source, but in reality, the focal point is not converged to the extent that it can be regarded as a point sound source, and the SN ratio and resolution decrease as the image is closer to the focal point. There was a problem.
Also, usually, when acquiring an ultrasound image, it is possible to generate an ultrasound image with good image quality in the region of interest by setting the focal point in the vicinity of the region of interest and transmitting and receiving ultrasound. it can. However, in principle, it is difficult to focus the ultrasonic beam on the surface layer or the deep layer, and when focusing on the surface layer or the deep layer, it is difficult to improve the image quality of the surface layer or the deep layer.
また、通常、超音波画像を取得する際には、着目する領域の近傍に焦点を設定して超音波の送受信を行うことで、着目する領域の画質が良好な超音波画像を生成することができる。しかしながら、表層や深層では原理的に超音波ビームを焦点に収束させることが難しいため、表層や深層に着目する場合に、表層や深層の画質を向上させることは困難であった。 However, with the technique disclosed in Patent Document 1, an image with higher image quality than that of the conventional technique can be obtained. However, in order to create one line of data, it is necessary to generate a plurality of transmission beams by changing transmission positions. Since the number of transmissions is higher than that of the technology, there is a problem that the frame rate is lowered and the real-time property is deteriorated. In Patent Document 1, the focal point is regarded as a virtual point sound source, but in reality, the focal point is not converged to the extent that it can be regarded as a point sound source, and the SN ratio and resolution decrease as the image is closer to the focal point. There was a problem.
Also, usually, when acquiring an ultrasound image, it is possible to generate an ultrasound image with good image quality in the region of interest by setting the focal point in the vicinity of the region of interest and transmitting and receiving ultrasound. it can. However, in principle, it is difficult to focus the ultrasonic beam on the surface layer or the deep layer, and when focusing on the surface layer or the deep layer, it is difficult to improve the image quality of the surface layer or the deep layer.
本発明の目的は、上記従来技術の問題点を解消し、焦点を収束させることが困難な領域であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる超音波検査装置、超音波画像データ生成方法およびプログラムを提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, increase the SN ratio and increase the resolution even in a region where it is difficult to converge the focus, and a frame rate that is the same as the conventional frame rate. It is still another object of the present invention to provide an ultrasonic inspection apparatus, an ultrasonic image data generation method, and a program capable of obtaining a sharp ultrasonic image having an optimum spatial resolution with high resolution.
上記目的を達成するために、本発明は、超音波ビームを用いて検査対象物を検査する超音波診断装置であって、超音波ビームを送信し、かつ、検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、検査対象物内に、複数の送信焦点を設定する焦点設定部と、焦点設定部により設定された送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点の位置を異なる位置に再設定する焦点再設定部と、焦点再設定部で所定の範囲外と判断された送信焦点、および、再設定された送信焦点それぞれに対して、探触子に、複数の素子を用い、超音波ビームを送信させる送信部と、送信焦点それぞれに対する個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、複数の超音波ビームの送信で得られた第1の素子データから、焦点再設定部で再設定された送信焦点に超音波ビームを送信して得られた第1の素子データに対応する第2の素子データを生成する素子データ処理部と、を備えることを特徴とする超音波検査装置を提供する。
In order to achieve the above object, the present invention is an ultrasonic diagnostic apparatus for inspecting an inspection object using an ultrasonic beam, wherein the ultrasonic wave is transmitted and reflected by the inspection object. A probe in which a plurality of elements are arranged to receive an echo and output an analog element signal corresponding to the received ultrasonic echo, and a focus setting unit that sets a plurality of transmission focal points in the inspection object A focus resetting unit that determines whether or not the position of the transmission focus set by the focus setting unit is within a predetermined range, and resets the position of the transmission focus within the predetermined range to a different position; For each of the transmission focal point determined to be out of the predetermined range by the setting unit and the reset transmission focal point, a transmission unit using a plurality of elements for the probe and transmitting an ultrasonic beam, and the transmission focal point Individual ultrasonic bee for each In response to the transmission, the analog element signal output from the plurality of elements is received, the receiving unit that performs predetermined processing, and the analog element signal processed by the receiving unit is A / D converted to be a digital element signal Obtained by transmitting an ultrasonic beam to the transmission focus reset by the focus resetting unit from the AD conversion unit as one element data and the first element data obtained by transmitting a plurality of ultrasonic beams And an element data processing unit that generates second element data corresponding to the first element data.
ここで、焦点再設定部は、焦点設定部が設定した送信焦点とは異なる深さに送信焦点を再設定することが好ましい。
また、焦点再設定部は、焦点設定部が設定した送信焦点に対して超音波ビームを送信するラインと同一ライン上において異なる位置に送信焦点を再設定することが好ましい。 Here, it is preferable that the focus resetting unit resets the transmission focus to a depth different from the transmission focus set by the focus setting unit.
Moreover, it is preferable that the focus resetting unit resets the transmission focus at a different position on the same line as the line for transmitting the ultrasonic beam with respect to the transmission focus set by the focus setting unit.
また、焦点再設定部は、焦点設定部が設定した送信焦点に対して超音波ビームを送信するラインと同一ライン上において異なる位置に送信焦点を再設定することが好ましい。 Here, it is preferable that the focus resetting unit resets the transmission focus to a depth different from the transmission focus set by the focus setting unit.
Moreover, it is preferable that the focus resetting unit resets the transmission focus at a different position on the same line as the line for transmitting the ultrasonic beam with respect to the transmission focus set by the focus setting unit.
また、焦点再設定部は、焦点設定部により設定された送信焦点の深さが所定の深さよりも浅い場合に、該送信焦点の位置を焦点設定部により設定された位置よりも深い位置に再設定することが好ましい。
また、焦点再設定部は、焦点設定部により設定された送信焦点の深さが所定の深さよりも深い場合に、該送信焦点の位置を焦点設定部により設定された位置よりも浅い位置に再設定することが好ましい。 The focus resetting unit resets the position of the transmission focus to a position deeper than the position set by the focus setting unit when the depth of the transmission focus set by the focus setting unit is shallower than a predetermined depth. It is preferable to set.
The focus resetting unit resets the position of the transmission focus to a position shallower than the position set by the focus setting unit when the depth of the transmission focus set by the focus setting unit is deeper than a predetermined depth. It is preferable to set.
また、焦点再設定部は、焦点設定部により設定された送信焦点の深さが所定の深さよりも深い場合に、該送信焦点の位置を焦点設定部により設定された位置よりも浅い位置に再設定することが好ましい。 The focus resetting unit resets the position of the transmission focus to a position deeper than the position set by the focus setting unit when the depth of the transmission focus set by the focus setting unit is shallower than a predetermined depth. It is preferable to set.
The focus resetting unit resets the position of the transmission focus to a position shallower than the position set by the focus setting unit when the depth of the transmission focus set by the focus setting unit is deeper than a predetermined depth. It is preferable to set.
また、送信部は、送信焦点それぞれに対して、探触子に、複数の素子を用い、超音波ビームを送信させることを、中心となる素子を変更して行わせることが好ましい。
また、素子データ処理部は、中心となる素子が異なる、複数の超音波ビームの送信で得られた第1の素子データを用いることが好ましい。
また、素子データ処理部は、超音波ビームの送信領域が重なり合う、複数の超音波ビームの送信で得られた第1の素子データを用いることが好ましい。 In addition, it is preferable that the transmission unit causes the probe to use a plurality of elements and transmits an ultrasonic beam to each transmission focal point by changing a central element.
Moreover, it is preferable that the element data processing unit uses first element data obtained by transmitting a plurality of ultrasonic beams having different central elements.
Moreover, it is preferable that the element data processing unit uses first element data obtained by transmitting a plurality of ultrasonic beams in which the transmission areas of the ultrasonic beams overlap.
また、素子データ処理部は、中心となる素子が異なる、複数の超音波ビームの送信で得られた第1の素子データを用いることが好ましい。
また、素子データ処理部は、超音波ビームの送信領域が重なり合う、複数の超音波ビームの送信で得られた第1の素子データを用いることが好ましい。 In addition, it is preferable that the transmission unit causes the probe to use a plurality of elements and transmits an ultrasonic beam to each transmission focal point by changing a central element.
Moreover, it is preferable that the element data processing unit uses first element data obtained by transmitting a plurality of ultrasonic beams having different central elements.
Moreover, it is preferable that the element data processing unit uses first element data obtained by transmitting a plurality of ultrasonic beams in which the transmission areas of the ultrasonic beams overlap.
また、素子データ処理部は、素子が超音波エコーを受信した受信時間および素子の位置に応じて複数の第1の素子データを重ね合わせて、第1の素子データに対応する第2の素子データを生成することが好ましい。
また、素子データ処理部は、素子の配列方向に連続する素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の第1の素子データを合成して、第2の素子データを生成することが好ましい。
また、素子データ処理部は、送信焦点が再設定された超音波ビームに対応する中心となる素子の両隣の同数の素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の第1の素子データを合成して、第2の素子データを生成することが好ましい。 The element data processing unit superimposes a plurality of first element data according to the reception time when the element receives the ultrasonic echo and the position of the element, and second element data corresponding to the first element data Is preferably generated.
In addition, the element data processing unit synthesizes a plurality of first element data obtained by transmitting the ultrasonic beam with the elements that are continuous in the element arrangement direction as the center elements, and generates second element data. Is preferably generated.
The element data processing unit transmits a plurality of ultrasonic beams obtained by transmitting the ultrasonic beam using the same number of elements adjacent to the central element corresponding to the ultrasonic beam whose transmission focus is reset as the central element. It is preferable to combine the first element data to generate the second element data.
また、素子データ処理部は、素子の配列方向に連続する素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の第1の素子データを合成して、第2の素子データを生成することが好ましい。
また、素子データ処理部は、送信焦点が再設定された超音波ビームに対応する中心となる素子の両隣の同数の素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の第1の素子データを合成して、第2の素子データを生成することが好ましい。 The element data processing unit superimposes a plurality of first element data according to the reception time when the element receives the ultrasonic echo and the position of the element, and second element data corresponding to the first element data Is preferably generated.
In addition, the element data processing unit synthesizes a plurality of first element data obtained by transmitting the ultrasonic beam with the elements that are continuous in the element arrangement direction as the center elements, and generates second element data. Is preferably generated.
The element data processing unit transmits a plurality of ultrasonic beams obtained by transmitting the ultrasonic beam using the same number of elements adjacent to the central element corresponding to the ultrasonic beam whose transmission focus is reset as the central element. It is preferable to combine the first element data to generate the second element data.
また、素子データ処理部は、2以上の第1の素子データの遅延時間を算出する遅延時間算出部と、2以上の第1の素子データを算出された遅延時間及び受信された探触子の素子の位置に基づいて重ね合わせ、第2の素子データを生成する重ね合わせ処理部とを有することが好ましい。
さらに、遅延時間算出部は、事前に取得された探触子、検査対象物の音速、超音波ビームの送信焦点の位置、送信部による探触子の送信開口、及び受信部による探触子の受信開口に関する少なくとも1つの情報に基づいて、2以上の第1の素子データの遅延時間を算出し、重ね合わせ処理部は、予め設定された、2以上の第1の素子データのうち重ね合わせる第1の素子データの数、及び重ね合わせ処理方法に基づいて2以上の第1の素子データを重ね合わせ、第2の素子データを生成することが好ましい。
また、素子データ処理部は、2以上の第1の素子データを、その各々の第1の素子データに対して重み付け係数を掛けた後に、重ね合わせることが好ましい。
また、送信部は、探触子に対して、焦点再設定部で所定の範囲内と判断された再設定前の送信焦点にも超音波ビームを送信させることが好ましい。
また、受信部が出力した第1の素子データのすべてを保持する素子データ保持部を有することが好ましい。 In addition, the element data processing unit includes a delay time calculation unit that calculates a delay time of two or more first element data, a delay time calculated from two or more first element data, and a received probe. It is preferable to have a superimposition processing unit that superimposes based on the position of the element and generates second element data.
Further, the delay time calculation unit includes a probe acquired in advance, the sound speed of the inspection object, the position of the transmission focal point of the ultrasonic beam, the transmission opening of the probe by the transmission unit, and the probe of the probe by the reception unit. The delay time of two or more first element data is calculated based on at least one piece of information about the reception aperture, and the overlay processing unit superimposes among the preset two or more first element data. It is preferable to generate the second element data by superimposing two or more pieces of the first element data based on the number of element data of one and the overlay processing method.
The element data processing unit preferably superimposes two or more pieces of first element data after multiplying each of the first element data by a weighting coefficient.
In addition, it is preferable that the transmission unit causes the probe to transmit the ultrasonic beam to the transmission focal point before resetting determined to be within a predetermined range by the focus resetting unit.
Moreover, it is preferable to have an element data holding part which hold | maintains all the 1st element data which the receiving part output.
さらに、遅延時間算出部は、事前に取得された探触子、検査対象物の音速、超音波ビームの送信焦点の位置、送信部による探触子の送信開口、及び受信部による探触子の受信開口に関する少なくとも1つの情報に基づいて、2以上の第1の素子データの遅延時間を算出し、重ね合わせ処理部は、予め設定された、2以上の第1の素子データのうち重ね合わせる第1の素子データの数、及び重ね合わせ処理方法に基づいて2以上の第1の素子データを重ね合わせ、第2の素子データを生成することが好ましい。
また、素子データ処理部は、2以上の第1の素子データを、その各々の第1の素子データに対して重み付け係数を掛けた後に、重ね合わせることが好ましい。
また、送信部は、探触子に対して、焦点再設定部で所定の範囲内と判断された再設定前の送信焦点にも超音波ビームを送信させることが好ましい。
また、受信部が出力した第1の素子データのすべてを保持する素子データ保持部を有することが好ましい。 In addition, the element data processing unit includes a delay time calculation unit that calculates a delay time of two or more first element data, a delay time calculated from two or more first element data, and a received probe. It is preferable to have a superimposition processing unit that superimposes based on the position of the element and generates second element data.
Further, the delay time calculation unit includes a probe acquired in advance, the sound speed of the inspection object, the position of the transmission focal point of the ultrasonic beam, the transmission opening of the probe by the transmission unit, and the probe of the probe by the reception unit. The delay time of two or more first element data is calculated based on at least one piece of information about the reception aperture, and the overlay processing unit superimposes among the preset two or more first element data. It is preferable to generate the second element data by superimposing two or more pieces of the first element data based on the number of element data of one and the overlay processing method.
The element data processing unit preferably superimposes two or more pieces of first element data after multiplying each of the first element data by a weighting coefficient.
In addition, it is preferable that the transmission unit causes the probe to transmit the ultrasonic beam to the transmission focal point before resetting determined to be within a predetermined range by the focus resetting unit.
Moreover, it is preferable to have an element data holding part which hold | maintains all the 1st element data which the receiving part output.
また、上記目的を達成するため、本発明は、超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、超音波ビームを発生して、検査対象物を検査し、超音波画像データを生成する超音波画像データ生成方法であって、検査対象物内に、所定の送信焦点を設定する焦点設定ステップと、焦点設定ステップにより設定された送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点の位置を異なる位置に再設定する焦点再設定ステップと、焦点再設定部で所定の範囲外と判断された送信焦点、および、再設定された送信焦点それぞれに対して、探触子に、複数の素子を用い、超音波ビームを送信させる送信ステップと、送信焦点それぞれに対する個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信ステップと、受信ステップが処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、複数の超音波ビームの送信で得られた第1の素子データから、焦点再設定ステップで再設定された送信焦点に超音波ビームを送信して得られた第1の素子データに対応する第2の素子データを生成する素子データ処理ステップと、を有することを特徴とする超音波画像データ生成方法を提供する。
In order to achieve the above object, the present invention generates a plurality of components of an ultrasonic beam, receives ultrasonic echoes reflected in an inspection object, and outputs received analog signals. An ultrasonic image data generation method for generating an ultrasonic image data by generating an ultrasonic beam by using a probe including the element, and generating ultrasonic image data. It is determined whether the focus setting step for setting the focus and the position of the transmission focus set by the focus setting step are within a predetermined range, and reset the position of the transmission focus within the predetermined range to a different position. For each of the focus reset step, the transmission focus determined to be out of the predetermined range by the focus resetting unit, and the reset transmission focus, a plurality of elements are used for the probe, and an ultrasonic beam is applied. Sending to send In response to transmission of each ultrasonic beam to each transmission focal point, a reception step that receives analog element signals output from a plurality of elements and performs predetermined processing, and an analog element signal processed by the reception step A / D conversion is performed in the focus resetting step from the AD converting step to obtain the first element data which is a digital element signal and the first element data obtained by transmitting a plurality of ultrasonic beams. And an element data processing step for generating second element data corresponding to the first element data obtained by transmitting the ultrasonic beam to the transmission focal point. provide.
また、上記目的を達成するため、本発明は、超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、超音波ビームを発生して、検査対象物を検査し、超音波画像データを生成することをコンピュータに実行させる超音波画像データ生成プログラムであって、検査対象物内に、所定の送信焦点を設定する焦点設定ステップと、焦点設定ステップにより設定された送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点の位置を異なる位置に再設定する焦点再設定ステップと、焦点再設定部で所定の範囲外と判断された送信焦点、および、再設定された送信焦点それぞれに対して、探触子に、複数の素子を用い、超音波ビームを送信させる送信ステップと、送信焦点それぞれに対する個々の超音波ビームの送信に対応して、複数の素子が出力したアナログ素子信号を受け、所定の処理を施す受信ステップと、受信ステップが処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、複数の超音波ビームの送信で得られた第1の素子データから、焦点再設定ステップで再設定された送信焦点に超音波ビームを送信して得られた第1の素子データに対応する第2の素子データを生成する素子データ処理ステップと、をコンピュータに実行させることを特徴とする超音波画像データ生成プログラムを提供する。
In order to achieve the above object, the present invention generates a plurality of components of an ultrasonic beam, receives ultrasonic echoes reflected in an inspection object, and outputs received analog signals. An ultrasonic image data generation program for causing a computer to generate an ultrasonic beam by a probe including the element, inspect an inspection object, and generate ultrasonic image data. A focus setting step for setting a predetermined transmission focus, and whether or not the position of the transmission focus set by the focus setting step is within a predetermined range, and determines the position of the transmission focus within the predetermined range. A focus reset step for resetting to a different position, a transmission focus that is determined to be out of a predetermined range by the focus resetting unit, and a reset transmission focus, and a plurality of elements on the probe. A transmission step for transmitting an ultrasonic beam, a reception step for receiving analog element signals output from a plurality of elements in response to transmission of individual ultrasonic beams for the respective transmission focal points, and performing predetermined processing; The A / D conversion of the analog element signal processed in the step to obtain the first element data which is a digital element signal, and the first element data obtained by transmitting a plurality of ultrasonic beams, Causing the computer to execute an element data processing step of generating second element data corresponding to the first element data obtained by transmitting the ultrasonic beam to the transmission focus reset in the focus resetting step. An ultrasonic image data generation program characterized by the above is provided.
本発明によれば、設定された焦点位置が所定の範囲にある場合に、焦点の位置を再設定し、異なる2以上の第1の素子データを合成して第2の素子データ生成することで、表層や深層などの、超音波ビームの焦点収束させることが困難な領域であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
According to the present invention, when the set focal position is within a predetermined range, the focal position is reset, and the second element data is generated by synthesizing two or more different first element data. Even in areas where it is difficult to focus the focus of the ultrasonic beam, such as the surface layer or deep layer, the SN ratio can be increased, the resolution can be increased, and the frame rate remains the same as before, with a high resolution. A sharp ultrasonic image with optimum spatial resolution can be obtained.
本発明に係る超音波検査装置、超音波画像データ生成方法およびプログラムを添付の図面に示す好適実施形態に基づいて以下に詳細に説明する。
DETAILED DESCRIPTION OF THE INVENTION The ultrasonic inspection apparatus, ultrasonic image data generation method and program according to the present invention will be described below in detail based on preferred embodiments shown in the accompanying drawings.
図1は、本発明の超音波検査装置の構成の一実施例を概念的に示すブロック図である。
図1に示すように、超音波検査装置10は、超音波プローブ12と、超音波プローブ12に接続される送信部14及び受信部16と、A/D変換部18と、素子データ記憶部20と、素子データ処理部22と、画像生成部24と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34と、焦点設定部96と、焦点再設定部98とを有する。 FIG. 1 is a block diagram conceptually showing an embodiment of the configuration of the ultrasonic inspection apparatus of the present invention.
As shown in FIG. 1, theultrasonic inspection apparatus 10 includes an ultrasonic probe 12, a transmission unit 14 and a reception unit 16 connected to the ultrasonic probe 12, an A / D conversion unit 18, and an element data storage unit 20. The element data processing unit 22, the image generation unit 24, the display control unit 26, the display unit 28, the control unit 30, the operation unit 32, the storage unit 34, the focus setting unit 96, and the focus resetting. Part 98.
図1に示すように、超音波検査装置10は、超音波プローブ12と、超音波プローブ12に接続される送信部14及び受信部16と、A/D変換部18と、素子データ記憶部20と、素子データ処理部22と、画像生成部24と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34と、焦点設定部96と、焦点再設定部98とを有する。 FIG. 1 is a block diagram conceptually showing an embodiment of the configuration of the ultrasonic inspection apparatus of the present invention.
As shown in FIG. 1, the
超音波プローブ(超音波探触子)12は、通常の超音波検査装置に用いられる振動子アレイ36を有する。
振動子アレイ36は、1次元又は2次元アレイ状に配列された複数の素子、即ち超音波トランスデューサを有している。これらの超音波トランスデューサは、検査対象物(以下、被検体という)の超音波画像の撮像の際に、それぞれ送信部14から供給される駆動信号に従って超音波ビームを被検体に送信すると共に、被検体からの超音波エコーを受信して受信信号(アナログ素子信号)を出力する。本実施形態では、振動子アレイ36の複数の超音波トランスデューサの内の一組を成す所定数の超音波トランスデューサの各々は、1つの超音波ビームの各成分を発生し、一組の所定数の超音波トランスデューサは、被検体に送信する1つの超音波ビームを発生する。 The ultrasonic probe (ultrasonic probe) 12 has atransducer array 36 used in a normal ultrasonic inspection apparatus.
Thetransducer array 36 includes a plurality of elements arranged in a one-dimensional or two-dimensional array, that is, ultrasonic transducers. These ultrasonic transducers transmit an ultrasonic beam to a subject in accordance with a drive signal supplied from the transmission unit 14 when an ultrasonic image of an object to be examined (hereinafter referred to as a subject) is captured. An ultrasonic echo from the specimen is received and a reception signal (analog element signal) is output. In the present embodiment, each of the predetermined number of ultrasonic transducers forming one set among the plurality of ultrasonic transducers of the transducer array 36 generates each component of one ultrasonic beam, and sets a predetermined number of ultrasonic transducers. The ultrasonic transducer generates one ultrasonic beam that is transmitted to the subject.
振動子アレイ36は、1次元又は2次元アレイ状に配列された複数の素子、即ち超音波トランスデューサを有している。これらの超音波トランスデューサは、検査対象物(以下、被検体という)の超音波画像の撮像の際に、それぞれ送信部14から供給される駆動信号に従って超音波ビームを被検体に送信すると共に、被検体からの超音波エコーを受信して受信信号(アナログ素子信号)を出力する。本実施形態では、振動子アレイ36の複数の超音波トランスデューサの内の一組を成す所定数の超音波トランスデューサの各々は、1つの超音波ビームの各成分を発生し、一組の所定数の超音波トランスデューサは、被検体に送信する1つの超音波ビームを発生する。 The ultrasonic probe (ultrasonic probe) 12 has a
The
各超音波トランスデューサは、例えば、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックや、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電素子、PMN-PT(マグネシウムニオブ酸・チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成した素子、即ち振動子によって構成される。
Each ultrasonic transducer is, for example, a piezoelectric ceramic represented by PZT (lead zirconate titanate), a polymer piezoelectric element represented by PVDF (polyvinylidene fluoride), or PMN-PT (magnesium niobate / lead titanate). It is constituted by an element in which electrodes are formed at both ends of a piezoelectric body made of a piezoelectric single crystal or the like typified by a solid solution, that is, a vibrator.
このような振動子の電極に、パルス状又は連続波状の電圧を印加すると、圧電体が伸縮し、それぞれの振動子からパルス状又は連続波状の超音波が発生して、それらの超音波の合成により超音波ビームが形成される。また、それぞれの振動子は、伝搬する超音波を受信することにより伸縮して電気信号を発生し、それらの電気信号は、超音波の受信信号(アナログ素子信号)として出力される。
When a pulsed or continuous wave voltage is applied to the electrodes of such a vibrator, the piezoelectric material expands and contracts, and pulse or continuous wave ultrasonic waves are generated from the respective vibrators, and the synthesis of these ultrasonic waves. As a result, an ultrasonic beam is formed. In addition, each vibrator expands and contracts by receiving propagating ultrasonic waves to generate electric signals, and these electric signals are output as ultrasonic reception signals (analog element signals).
焦点設定部96は、操作部32から入力された送信焦点の情報(焦点の位置情報)に応じて、振動子アレイ36が超音波ビームを送信する際の、複数の送信ライン、および、各送信ライン上の焦点位置を設定する。
具体的には、従来の超音波検査装置と同様に、焦点設定部96は、操作部32から入力された表示領域(検査範囲)、深度(depth)等の設定、ならびに、振動子アレイ36の振動子の配置間隔等に応じて、超音波ビームを送信する複数の送信ラインを設定し、各送信ライン上に超音波ビームの焦点となる位置を自動的に設定する。
なお、焦点設定部96は、操作者が操作部32から直接、入力した焦点の位置情報から、焦点位置を設定するようにしてもよい。 Thefocus setting unit 96 transmits a plurality of transmission lines and each transmission when the transducer array 36 transmits an ultrasonic beam according to transmission focus information (focus position information) input from the operation unit 32. Set the focal position on the line.
Specifically, like the conventional ultrasonic inspection apparatus, thefocus setting unit 96 sets the display area (inspection range), the depth (depth), and the like input from the operation unit 32, and the transducer array 36. A plurality of transmission lines that transmit ultrasonic beams are set according to the arrangement interval of the transducers, and the position that becomes the focal point of the ultrasonic beams is automatically set on each transmission line.
Note that thefocus setting unit 96 may set the focus position from the focus position information directly input by the operator from the operation unit 32.
具体的には、従来の超音波検査装置と同様に、焦点設定部96は、操作部32から入力された表示領域(検査範囲)、深度(depth)等の設定、ならびに、振動子アレイ36の振動子の配置間隔等に応じて、超音波ビームを送信する複数の送信ラインを設定し、各送信ライン上に超音波ビームの焦点となる位置を自動的に設定する。
なお、焦点設定部96は、操作者が操作部32から直接、入力した焦点の位置情報から、焦点位置を設定するようにしてもよい。 The
Specifically, like the conventional ultrasonic inspection apparatus, the
Note that the
図2(A)~(C)に、設定された焦点位置の一例を示す。
図2(A)~(C)に示す例では、振動子アレイ36の各素子(超音波トランスデューサ)に対応して、各素子と同一ライン上に、それぞれ1つの送信ラインが設定されている。また、各送信ライン上には、同一の深さに、それぞれ1つの焦点位置が設定されている。
設定された焦点位置の情報は、焦点再設定部98に供給される。 2A to 2C show an example of the set focal position.
In the example shown in FIGS. 2A to 2C, one transmission line is set on the same line as each element corresponding to each element (ultrasonic transducer) of thetransducer array 36. In addition, one focal position is set at the same depth on each transmission line.
Information on the set focus position is supplied to thefocus resetting unit 98.
図2(A)~(C)に示す例では、振動子アレイ36の各素子(超音波トランスデューサ)に対応して、各素子と同一ライン上に、それぞれ1つの送信ラインが設定されている。また、各送信ライン上には、同一の深さに、それぞれ1つの焦点位置が設定されている。
設定された焦点位置の情報は、焦点再設定部98に供給される。 2A to 2C show an example of the set focal position.
In the example shown in FIGS. 2A to 2C, one transmission line is set on the same line as each element corresponding to each element (ultrasonic transducer) of the
Information on the set focus position is supplied to the
焦点再設定部98は、焦点設定部96で設定された各焦点位置が、所定の深さ範囲にあるか否かを判断し、所定の範囲にある場合には、焦点位置を異なる深さに再設定する。
具体的には、焦点再設定部98は、焦点設定部96で設定された焦点の位置が、所定の深さZaよりも浅い場合には、焦点設定部96で設定された位置よりも深い位置に焦点位置を再設定し、焦点設定部96で設定された焦点の位置が、所定の深さZbよりも深い場合には、焦点設定部96で設定された位置よりも浅い位置に焦点位置を再設定する。また、焦点再設定部98は、焦点設定部96で設定された焦点の位置が、所定の範囲にない場合、すなわち、ZaとZbとの間の深さにある場合には、焦点位置を再設定せず、焦点設定部96で設定された位置を焦点位置とする。 Thefocus resetting unit 98 determines whether or not each focus position set by the focus setting unit 96 is within a predetermined depth range. If the focus position is within the predetermined range, the focus position is set to a different depth. Reset it.
Specifically, thefocus resetting unit 98 is positioned deeper than the position set by the focus setting unit 96 when the focus position set by the focus setting unit 96 is shallower than the predetermined depth Za. If the focus position set by the focus setting unit 96 is deeper than the predetermined depth Zb, the focus position is set to a position shallower than the position set by the focus setting unit 96. Reset it. The focus resetting unit 98 resets the focus position when the focus position set by the focus setting unit 96 is not within the predetermined range, that is, when the focus position is at a depth between Za and Zb. The position set by the focus setting unit 96 is set as the focus position without setting.
具体的には、焦点再設定部98は、焦点設定部96で設定された焦点の位置が、所定の深さZaよりも浅い場合には、焦点設定部96で設定された位置よりも深い位置に焦点位置を再設定し、焦点設定部96で設定された焦点の位置が、所定の深さZbよりも深い場合には、焦点設定部96で設定された位置よりも浅い位置に焦点位置を再設定する。また、焦点再設定部98は、焦点設定部96で設定された焦点の位置が、所定の範囲にない場合、すなわち、ZaとZbとの間の深さにある場合には、焦点位置を再設定せず、焦点設定部96で設定された位置を焦点位置とする。 The
Specifically, the
図2(A)~(C)を用いて、焦点位置の再設定をより詳細に説明する。
図2(A)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZaよりも浅い位置にある場合には、各焦点位置を、それぞれ同一の送信ライン上でより深い位置に、図示例においては、Zbよりも深い位置に再設定する。
また、図2(B)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZbよりも深い位置にある場合には、各焦点位置を、それぞれ同一の送信ライン上でより浅い位置に、図示例においては、Zaよりも浅い位置に再設定する。
また、図2(C)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZaよりも深く、Zbよりも浅い場合(ZaとZbとの間の深さにある場合)には、焦点位置を再設定せず、焦点設定部96で設定された位置を焦点位置とする。 The resetting of the focal position will be described in more detail with reference to FIGS.
As shown in FIG. 2A, when the focus position set by thefocus setting unit 96 is at a position shallower than the predetermined depth Za, each focus position is set on the same transmission line. A deep position is reset to a position deeper than Zb in the illustrated example.
As shown in FIG. 2B, when the focus position set by thefocus setting unit 96 is at a position deeper than the predetermined depth Zb, each focus position is set on the same transmission line. In the illustrated example, the position is reset to a position shallower than Za.
As shown in FIG. 2C, when the focus position set by thefocus setting unit 96 is deeper than a predetermined depth Za and shallower than Zb (at a depth between Za and Zb). In the case), the focus position is not reset, and the position set by the focus setting unit 96 is set as the focus position.
図2(A)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZaよりも浅い位置にある場合には、各焦点位置を、それぞれ同一の送信ライン上でより深い位置に、図示例においては、Zbよりも深い位置に再設定する。
また、図2(B)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZbよりも深い位置にある場合には、各焦点位置を、それぞれ同一の送信ライン上でより浅い位置に、図示例においては、Zaよりも浅い位置に再設定する。
また、図2(C)に示すように、焦点設定部96で設定された焦点位置が、所定の深さZaよりも深く、Zbよりも浅い場合(ZaとZbとの間の深さにある場合)には、焦点位置を再設定せず、焦点設定部96で設定された位置を焦点位置とする。 The resetting of the focal position will be described in more detail with reference to FIGS.
As shown in FIG. 2A, when the focus position set by the
As shown in FIG. 2B, when the focus position set by the
As shown in FIG. 2C, when the focus position set by the
ここで、焦点再設定部98が、焦点位置を再設定するか否かを判断する所定の深さZaおよびZbには、特に限定はないが、所定の深さZaは、超音波ビームを十分に収束させることができる深さよりも浅い深さ、例えば、1cm程度とすることが好ましく、また、所定の深さZbは、送信開口数が最大時に、超音波ビームを十分に収束させることができる深さよりも深い深さとすることが好ましい。すなわち、焦点位置が、超音波ビームを十分に収束させることができる位置(ZaとZbとの間)にある場合には、焦点位置の再設定は行わず、超音波ビームを十分に収束させることができない位置にある場合には、焦点位置の再設定を行うことが好ましい。
超音波ビームの収束度合が十分か否かの判断は、超音波プローブの性能や、要求されるSN比、解像度等に応じて決定すればよい。 Here, the predetermined depths Za and Zb for determining whether or not thefocus resetting unit 98 resets the focal position are not particularly limited, but the predetermined depth Za is sufficient for the ultrasonic beam. It is preferable that the depth is shallower than the depth that can be converged to, for example, about 1 cm, and the predetermined depth Zb can sufficiently converge the ultrasonic beam when the transmission numerical aperture is maximum. It is preferable that the depth is deeper than the depth. That is, when the focal position is at a position where the ultrasonic beam can be sufficiently converged (between Za and Zb), the focal position is not reset and the ultrasonic beam is sufficiently converged. If it is at a position where no focus is possible, it is preferable to reset the focus position.
Whether or not the convergence degree of the ultrasonic beam is sufficient may be determined according to the performance of the ultrasonic probe, the required SN ratio, resolution, and the like.
超音波ビームの収束度合が十分か否かの判断は、超音波プローブの性能や、要求されるSN比、解像度等に応じて決定すればよい。 Here, the predetermined depths Za and Zb for determining whether or not the
Whether or not the convergence degree of the ultrasonic beam is sufficient may be determined according to the performance of the ultrasonic probe, the required SN ratio, resolution, and the like.
また、焦点再設定部98が、焦点位置を再設定する際の焦点の深さには、特に限定はないが、焦点設定部96で設定された焦点位置が、所定の深さZaよりも浅い場合には、所定の深さZaよりも深い位置に再設定するのが好ましく、焦点が結べる範囲でできるだけ深い位置に再設定するのがさらに好ましい。同様に、焦点設定部96で設定された焦点位置が、所定の深さZbよりも深い場合には、所定の深さZbよりも浅い位置に再設定するのが好ましく、焦点が結べる範囲でできるだけ浅い位置に再設定するのがさらに好ましい。
焦点再設定部98は、再設定した焦点位置の情報を送信部14および制御部30に供給する。 Further, the depth of focus when thefocus resetting unit 98 resets the focus position is not particularly limited, but the focus position set by the focus setting unit 96 is shallower than the predetermined depth Za. In this case, it is preferable to reset to a position deeper than the predetermined depth Za, and it is more preferable to reset to a position as deep as possible within the range where the focus can be achieved. Similarly, when the focus position set by the focus setting unit 96 is deeper than the predetermined depth Zb, it is preferable to reset to a position shallower than the predetermined depth Zb, and as much as possible within the range where the focus can be achieved. It is more preferable to reset to a shallow position.
Thefocus resetting unit 98 supplies information on the reset focus position to the transmission unit 14 and the control unit 30.
焦点再設定部98は、再設定した焦点位置の情報を送信部14および制御部30に供給する。 Further, the depth of focus when the
The
送信部14は、例えば、複数のパルサを含んでおり、制御部30からの制御信号および焦点再設定部98からの焦点位置の情報に応じて選択された送信遅延パターンに基づいて、振動子アレイ36の一組の所定数の超音波トランスデューサ(以下、超音波素子という)から送信される超音波ビーム成分が1つの超音波ビームを形成し、設定/再設定された焦点位置に焦点を形成するようにそれぞれの駆動信号の遅延量を調節して組を成す複数の超音波素子に供給する。
具体的には、送信部14は、設定された送信ラインと同一ライン上にある超音波素子を中心素子として、この中心素子と両隣の複数の超音波素子とを一組の送信素子(送信開口)として、設定/再設定された焦点位置に焦点を形成する超音波ビームを送信するように、駆動信号を供給する。 Thetransmission unit 14 includes, for example, a plurality of pulsers, and based on the transmission delay pattern selected according to the control signal from the control unit 30 and the focus position information from the focus resetting unit 98, the transducer array An ultrasonic beam component transmitted from a set of a predetermined number of ultrasonic transducers (hereinafter referred to as ultrasonic elements) forms one ultrasonic beam and forms a focal point at the set / reset focal position. As described above, the delay amount of each drive signal is adjusted and supplied to a plurality of ultrasonic elements forming a set.
Specifically, thetransmission unit 14 uses an ultrasonic element on the same line as the set transmission line as a central element, and the central element and a plurality of adjacent ultrasonic elements are combined into a set of transmission elements (transmission apertures). ), A drive signal is supplied so as to transmit an ultrasonic beam that forms a focal point at the set / reset focal position.
具体的には、送信部14は、設定された送信ラインと同一ライン上にある超音波素子を中心素子として、この中心素子と両隣の複数の超音波素子とを一組の送信素子(送信開口)として、設定/再設定された焦点位置に焦点を形成する超音波ビームを送信するように、駆動信号を供給する。 The
Specifically, the
ここで、送信部14は、少なくとも、焦点再設定部98で所定の範囲以外と判断された送信焦点、および、焦点再設定部98で所定の範囲内と判断され再設定された送信焦点に対して、超音波ビームを送信するように、振動子アレイ36に駆動信号を供給することが好ましい。
なお、送信部14は、焦点再設定部98で所定の範囲以外と判断された、再設定前の送信焦点にも、超音波ビームを送信するようにしてもよい。 Here, thetransmission unit 14 has at least the transmission focus determined to be outside the predetermined range by the focus resetting unit 98 and the transmission focus determined to be within the predetermined range by the focus resetting unit 98 and reset. Thus, it is preferable to supply a drive signal to the transducer array 36 so as to transmit an ultrasonic beam.
Thetransmission unit 14 may transmit the ultrasonic beam to the transmission focal point before resetting, which is determined by the focus resetting unit 98 to be outside the predetermined range.
なお、送信部14は、焦点再設定部98で所定の範囲以外と判断された、再設定前の送信焦点にも、超音波ビームを送信するようにしてもよい。 Here, the
The
受信部16は、制御部30からの制御信号に応じて、振動子アレイ36から送信された超音波ビームと被検体との間の相互作用によって発生された超音波エコーを、振動子アレイ36が受信して出力した、受信信号、即ち超音波素子毎のアナログ素子信号を増幅して出力する。
具体的には、受信部16は、対応する超音波ビームを送信した際の中心素子と、この中心素子の両隣の複数の超音波素子とを一組の受信素子(受信開口)として、被検体内で反射された超音波エコーを受信する。 In response to a control signal from thecontrol unit 30, the receiving unit 16 causes the transducer array 36 to transmit the ultrasonic echo generated by the interaction between the ultrasonic beam transmitted from the transducer array 36 and the subject. Received and output received signals, ie, analog element signals for each ultrasonic element are amplified and output.
Specifically, the receivingunit 16 uses the central element when the corresponding ultrasonic beam is transmitted and a plurality of ultrasonic elements adjacent to the central element as a set of receiving elements (reception apertures). The ultrasonic echoes reflected within are received.
具体的には、受信部16は、対応する超音波ビームを送信した際の中心素子と、この中心素子の両隣の複数の超音波素子とを一組の受信素子(受信開口)として、被検体内で反射された超音波エコーを受信する。 In response to a control signal from the
Specifically, the receiving
ここで、受信部16は、1回の超音波ビームの送信に対応して、複数の超音波素子が受信した複数のアナログ素子信号を、受信した超音波素子の情報および受信時間の情報を含む、1つのアナログの素子データ(第1の素子データ)として出力する。すなわち、素子データ(第1の素子データ)は、素子の位置と受信時間とに対する受信信号の強度を表すデータである(図4等参照)。
また、受信部16は、送信部14による1回の超音波ビームの送信ごとに、超音波エコーを受信してアナログの素子データを出力する。したがって、送信部14が、設定された送信ラインに応じて、複数回の超音波ビームの送信を行うことにより、各送信に対応した複数のアナログの素子データを出力する。
受信部16は、アナログの素子データをA/D変換部18に供給する。 Here, thereception unit 16 includes a plurality of analog element signals received by a plurality of ultrasonic elements, corresponding to one transmission of the ultrasonic beam, and includes information on the received ultrasonic elements and information on reception times. One analog element data (first element data) is output. That is, the element data (first element data) is data representing the intensity of the received signal with respect to the position of the element and the reception time (see FIG. 4 and the like).
The receivingunit 16 receives an ultrasonic echo and outputs analog element data every time the transmitting unit 14 transmits one ultrasonic beam. Therefore, the transmission unit 14 outputs a plurality of analog element data corresponding to each transmission by transmitting the ultrasonic beam a plurality of times in accordance with the set transmission line.
Thereceiver 16 supplies analog element data to the A / D converter 18.
また、受信部16は、送信部14による1回の超音波ビームの送信ごとに、超音波エコーを受信してアナログの素子データを出力する。したがって、送信部14が、設定された送信ラインに応じて、複数回の超音波ビームの送信を行うことにより、各送信に対応した複数のアナログの素子データを出力する。
受信部16は、アナログの素子データをA/D変換部18に供給する。 Here, the
The receiving
The
A/D変換部18は、受信部16に接続され、受信部16から供給されたアナログの素子データを、デジタルの素子データ(第1の素子データ)に変換する。A/D変換部18は、A/D変換されたデジタルの素子データを素子データ記憶部20に供給する。
The A / D converter 18 is connected to the receiver 16 and converts the analog element data supplied from the receiver 16 into digital element data (first element data). The A / D converter 18 supplies the A / D converted digital element data to the element data storage unit 20.
素子データ記憶部20は、A/D変換部18から出力されるデジタルの素子データを順次格納する。また、素子データ記憶部20は、制御部30から入力されるフレームレートに関する情報(例えば、超音波の反射位置の深度、走査線の密度、視野幅を示すパラメータ)を上記のデジタルの素子データ(以下、単に素子データという)に関連付けて格納する。
素子データ記憶部20は、制御部30による制御に基づいて、焦点再設定部98により焦点位置が再設定された際に、焦点位置が再設定された送信ラインで超音波ビームを送受信して得られた素子データ、および、この素子データを含み、互いに異なる送信ラインに超音波ビームを送信して得られた2以上の素子データを記憶保持する。 The elementdata storage unit 20 sequentially stores digital element data output from the A / D conversion unit 18. In addition, the element data storage unit 20 stores information on the frame rate input from the control unit 30 (for example, parameters indicating the depth of the reflection position of the ultrasonic wave, the density of the scanning line, and the visual field width) in the digital element data ( Hereinafter, the data is stored in association with element data).
When the focus position is reset by thefocus resetting unit 98 based on the control by the control unit 30, the element data storage unit 20 is obtained by transmitting and receiving an ultrasonic beam through the transmission line whose focus position is reset. The stored element data and two or more element data obtained by transmitting the ultrasonic beam to different transmission lines are stored and held.
素子データ記憶部20は、制御部30による制御に基づいて、焦点再設定部98により焦点位置が再設定された際に、焦点位置が再設定された送信ラインで超音波ビームを送受信して得られた素子データ、および、この素子データを含み、互いに異なる送信ラインに超音波ビームを送信して得られた2以上の素子データを記憶保持する。 The element
When the focus position is reset by the
素子データ処理部22は、制御部30による制御に基づいて、焦点再設定部98において焦点位置が再設定された際に、焦点位置が再設定された送信ラインに超音波ビームを送信して得られた素子データに対して、この素子データと、この素子データとは異なる送信ラインに対応する2以上の素子データ(以下、未処理素子データともいう)を素子データ記憶部20から読み出して、受信時間の情報および超音波素子の幾何学的な配置の情報に基づいて、時間および位置を補正して重ね合わせて、重ね合わせ処理後素子データ(第2の素子データ、以下、処理済素子データという)を生成する。
素子データ処理部22は、処理済素子データを画像生成部24(整相加算部38)に供給する。 The elementdata processing unit 22 is obtained by transmitting an ultrasonic beam to the transmission line whose focus position is reset when the focus position is reset by the focus resetting unit 98 based on the control by the control unit 30. In response to the received element data, the element data and two or more element data corresponding to transmission lines different from the element data (hereinafter also referred to as unprocessed element data) are read from the element data storage unit 20 and received. Based on the time information and the information on the geometrical arrangement of the ultrasonic elements, the time and position are corrected and overlapped, and the superimposed element data (second element data, hereinafter referred to as processed element data). ) Is generated.
The elementdata processing unit 22 supplies the processed element data to the image generation unit 24 (phasing addition unit 38).
素子データ処理部22は、処理済素子データを画像生成部24(整相加算部38)に供給する。 The element
The element
前述のとおり、通常、超音波画像を取得する際には、着目する領域の近傍に焦点を設定して超音波の送受信を行うことで、着目する領域の画質が良好な超音波画像を生成することできるが、浅い位置(表層)や深い位置(深層)では、原理的に超音波ビームを焦点に収束させることが難しい。そのため、表層や深層に着目する場合に、表層や深層の画質を向上させることは困難であった。
As described above, normally, when acquiring an ultrasound image, an ultrasound image having a good image quality in the region of interest is generated by setting the focus in the vicinity of the region of interest and transmitting and receiving ultrasound. However, it is difficult in principle to focus the ultrasonic beam on the focal point at a shallow position (surface layer) or a deep position (deep layer). Therefore, when paying attention to the surface layer and the deep layer, it is difficult to improve the image quality of the surface layer and the deep layer.
これに対して、本発明は、超音波ビームの焦点の位置が、表層にある場合には、より深い位置に焦点位置を再設定し、また、深層にある場合には、より浅い位置に焦点位置を再設定して、超音波の送受信を行い、得られた複数の素子データを、素子の幾何学的な配置および受信時間の情報に基づいて合成して、新たな素子データを生成することにより、焦点を収束させることが困難な表層や深層であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
素子データ処理部22の詳細については、後述する。 On the other hand, the present invention resets the focal position to a deeper position when the focal position of the ultrasonic beam is on the surface layer, and focuses on a shallower position when it is in the deep layer. Resetting the position, transmitting and receiving ultrasound, and combining the obtained multiple element data based on the element's geometrical arrangement and reception time information to generate new element data This makes it possible to increase the signal-to-noise ratio and increase the resolution even at the surface layer and deep layer where it is difficult to converge the focus, and achieve the optimum spatial resolution at a high resolution with the same frame rate as before. A sharp ultrasonic image can be obtained.
Details of the elementdata processing unit 22 will be described later.
素子データ処理部22の詳細については、後述する。 On the other hand, the present invention resets the focal position to a deeper position when the focal position of the ultrasonic beam is on the surface layer, and focuses on a shallower position when it is in the deep layer. Resetting the position, transmitting and receiving ultrasound, and combining the obtained multiple element data based on the element's geometrical arrangement and reception time information to generate new element data This makes it possible to increase the signal-to-noise ratio and increase the resolution even at the surface layer and deep layer where it is difficult to converge the focus, and achieve the optimum spatial resolution at a high resolution with the same frame rate as before. A sharp ultrasonic image can be obtained.
Details of the element
なお、素子データ処理部22は、焦点位置が再設定されなかった場合にも、未処理素子データの重ね合わせ処理を行い、処理済素子データを生成してもよいし、未処理素子データの重ね合わせ処理を行わずに、未処理素子データを処理済素子データとして画像生成部24に供給してもよい。
Note that the element data processing unit 22 may generate unprocessed element data by superimposing the unprocessed element data even when the focus position is not reset, or may superimpose the unprocessed element data. You may supply unprocessed element data to the image generation part 24 as processed element data, without performing a matching process.
画像生成部24は、制御部30による制御下で、素子データ処理部22から供給された処理済素子データから音線信号(受信データ)を生成し、この音線信号から超音波画像を生成するものである。
画像生成部24は、整相加算部38、検波処理部40、DSC42、画像作成部44、および、画像メモリ46を有する。 Theimage generation unit 24 generates a sound ray signal (reception data) from the processed element data supplied from the element data processing unit 22 under the control of the control unit 30, and generates an ultrasonic image from the sound ray signal. Is.
Theimage generation unit 24 includes a phasing addition unit 38, a detection processing unit 40, a DSC 42, an image creation unit 44, and an image memory 46.
画像生成部24は、整相加算部38、検波処理部40、DSC42、画像作成部44、および、画像メモリ46を有する。 The
The
整相加算部38は、制御部30において設定された受信方向に応じて、予め記憶されている複数の受信遅延パターンの中から1つの受信遅延パターンを選択し、選択された受信遅延パターンに基づいて、素子データの素子ごとの信号にそれぞれの遅延を与えて加算することにより、受信フォーカス処理を行う。この受信フォーカス処理により、超音波エコーの焦点が絞り込まれた受信データ(音線信号)が生成される。
整相加算部38は、受信データを検波処理部40に供給する。 Thephasing addition unit 38 selects one reception delay pattern from a plurality of reception delay patterns stored in advance according to the reception direction set in the control unit 30, and based on the selected reception delay pattern Thus, the reception focus processing is performed by adding the respective delays to the signal of each element of the element data. By this reception focus processing, reception data (sound ray signal) in which the focus of the ultrasonic echo is narrowed is generated.
Thephasing addition unit 38 supplies the received data to the detection processing unit 40.
整相加算部38は、受信データを検波処理部40に供給する。 The
The
検波処理部40は、整相加算部38で生成された受信データに対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像データを生成する。
DSC(digital scan converter)48は、検波処理部40で生成されたBモード画像データを通常のテレビジョン信号の走査方式に従う画像データに変換(ラスター変換)する。 Thedetection processing unit 40 corrects attenuation according to the distance according to the depth of the reflection position of the ultrasonic wave on the reception data generated by the phasing addition unit 38, and then performs envelope detection processing to perform detection. B-mode image data that is tomographic image information related to the tissue in the specimen is generated.
A DSC (digital scan converter) 48 converts (raster conversion) the B-mode image data generated by thedetection processing unit 40 into image data according to a normal television signal scanning method.
DSC(digital scan converter)48は、検波処理部40で生成されたBモード画像データを通常のテレビジョン信号の走査方式に従う画像データに変換(ラスター変換)する。 The
A DSC (digital scan converter) 48 converts (raster conversion) the B-mode image data generated by the
画像作成部44は、DSC42から入力されるBモード画像データに階調処理等の各種の必要な画像処理を施して検査や表示に供するためのBモード画像データを作成した後、作成された検査用又は表示用Bモード画像データを表示のために表示制御部26に出力する、或いは画像メモリ46に格納する。
画像メモリ46は、画像作成部44で作成された検査用Bモード画像データを一旦格納する。画像メモリ46に格納された検査用Bモード画像データは、必要に応じて、表示部28で表示するために表示制御部26に読み出される。 Theimage creation unit 44 performs various necessary image processing such as gradation processing on the B-mode image data input from the DSC 42 to create B-mode image data for use in inspection and display, and then creates the created inspection. Or display B-mode image data is output to the display control unit 26 for display or stored in the image memory 46.
Theimage memory 46 temporarily stores the inspection B-mode image data created by the image creation unit 44. The inspection B-mode image data stored in the image memory 46 is read to the display control unit 26 for display on the display unit 28 as necessary.
画像メモリ46は、画像作成部44で作成された検査用Bモード画像データを一旦格納する。画像メモリ46に格納された検査用Bモード画像データは、必要に応じて、表示部28で表示するために表示制御部26に読み出される。 The
The
表示制御部26は、画像作成部44によって画像処理が施された検査用Bモード画像信号に基づいて、表示部28に超音波画像を表示させる。
表示部28は、例えば、LCD等のディスプレイ装置を含んでおり、表示制御部26の制御の下で、超音波画像を表示する。 Thedisplay control unit 26 causes the display unit 28 to display an ultrasonic image based on the inspection B-mode image signal subjected to the image processing by the image creation unit 44.
Thedisplay unit 28 includes a display device such as an LCD, for example, and displays an ultrasonic image under the control of the display control unit 26.
表示部28は、例えば、LCD等のディスプレイ装置を含んでおり、表示制御部26の制御の下で、超音波画像を表示する。 The
The
制御部30は、操作者により操作部32から入力された指令に基づいて超音波検査装置10の各部の制御を行う。
ここで、制御部30は、操作者によって操作部32を介して種々の情報、特に、焦点設定部96および焦点再設定部98で焦点を設定するために必要な情報、および、素子データ処理部22で素子データを処理するために必要な情報の入力が行われた際に、操作部32から入力された上述の種々の情報を、必要に応じて、送信部14、受信部16、素子データ記憶部20、素子データ処理部22、画像生成部24、表示制御部26、焦点設定部96および焦点再設定部98等の各部に供給する。 Thecontrol unit 30 controls each unit of the ultrasonic inspection apparatus 10 based on a command input from the operation unit 32 by the operator.
Here, thecontrol unit 30 provides various information by the operator via the operation unit 32, particularly information necessary for setting the focus by the focus setting unit 96 and the focus resetting unit 98, and an element data processing unit. When the information necessary for processing the element data is input at 22, the above-described various information input from the operation unit 32 is transmitted as necessary to the transmission unit 14, the reception unit 16, and the element data. The data is supplied to each unit such as the storage unit 20, the element data processing unit 22, the image generation unit 24, the display control unit 26, the focus setting unit 96, and the focus resetting unit 98.
ここで、制御部30は、操作者によって操作部32を介して種々の情報、特に、焦点設定部96および焦点再設定部98で焦点を設定するために必要な情報、および、素子データ処理部22で素子データを処理するために必要な情報の入力が行われた際に、操作部32から入力された上述の種々の情報を、必要に応じて、送信部14、受信部16、素子データ記憶部20、素子データ処理部22、画像生成部24、表示制御部26、焦点設定部96および焦点再設定部98等の各部に供給する。 The
Here, the
操作部32は、操作者が入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパネル等から形成することができる。
また、操作部32は、操作者が必要に応じて各種の情報、特に上述の焦点位置の設定に用いられる表示領域(検査範囲)、深度(depth)、振動子アレイ36、焦点位置等に関する情報、ならびに、素子データ処理に用いられる被検体の検査対象領域の音速、振動子アレイ36の送信開口及び受信開口等に関する情報、並びに重ね合わせ素子データ数及び重ね合わせ処理方法等の素子データ処理に関する情報等を入力操作するための入力装置を備えている。 Theoperation unit 32 is for an operator to perform an input operation, and can be formed from a keyboard, a mouse, a trackball, a touch panel, and the like.
In addition, theoperation unit 32 provides various information as required by the operator, particularly information on the display area (examination range), depth (depth), transducer array 36, focus position, and the like used for setting the above-described focus position. And information regarding the sound speed of the examination region of the subject used for element data processing, information regarding the transmission aperture and reception aperture of the transducer array 36, and information regarding element data processing such as the number of overlapping element data and the overlapping processing method Etc. are provided for input operation.
また、操作部32は、操作者が必要に応じて各種の情報、特に上述の焦点位置の設定に用いられる表示領域(検査範囲)、深度(depth)、振動子アレイ36、焦点位置等に関する情報、ならびに、素子データ処理に用いられる被検体の検査対象領域の音速、振動子アレイ36の送信開口及び受信開口等に関する情報、並びに重ね合わせ素子データ数及び重ね合わせ処理方法等の素子データ処理に関する情報等を入力操作するための入力装置を備えている。 The
In addition, the
格納部34は、操作部32から入力された各種の情報、特に、上述の表示領域、深度、プローブ12(振動子アレイ36)、音速、焦点位置、送信開口及び受信開口等に関する情報、重ね合わせ素子データ数及び重ね合わせ処理方法等の素子データ処理に関する情報等や、送信部14、受信部16、素子データ記憶部20、素子データ処理部22、画像生成部24及び表示制御部26等の制御部30で制御される各部の処理や動作に必要な情報、並びに、各部の処理や動作を実行させるための動作プログラムや処理プログラム等を格納するもので、ハードディスク、フレキシブルディスク、MO、MT、RAM、CD-ROM、DVD-ROM等の記録媒体を用いることができる。
なお、素子データ処理部22、整相加算部38、検波処理部40、DSC42、画像作成部44、焦点設定部96、焦点再設定部98及び表示制御部26は、CPUと、CPUに各種の処理を行わせるための動作プログラムから構成されるが、それらをデジタル回路で構成してもよい。 Thestorage unit 34 receives various information input from the operation unit 32, in particular, information related to the display area, depth, probe 12 (vibrator array 36), sound speed, focal position, transmission aperture, reception aperture, and the like. Information related to element data processing such as the number of element data and overlay processing method, etc., and control of the transmission unit 14, the reception unit 16, the element data storage unit 20, the element data processing unit 22, the image generation unit 24, the display control unit 26, etc. Stores information necessary for processing and operation of each unit controlled by the unit 30 and operation programs and processing programs for executing the processing and operation of each unit. Hard disk, flexible disk, MO, MT, RAM Recording media such as CD-ROM and DVD-ROM can be used.
The elementdata processing unit 22, the phasing addition unit 38, the detection processing unit 40, the DSC 42, the image creation unit 44, the focus setting unit 96, the focus resetting unit 98, and the display control unit 26 include a CPU and various types of CPUs. The program is composed of operation programs for performing processing, but may be configured by a digital circuit.
なお、素子データ処理部22、整相加算部38、検波処理部40、DSC42、画像作成部44、焦点設定部96、焦点再設定部98及び表示制御部26は、CPUと、CPUに各種の処理を行わせるための動作プログラムから構成されるが、それらをデジタル回路で構成してもよい。 The
The element
ここで、素子データ処理部22を、図3に基づいて詳細に説明する。
同図に示すように、素子データ処理部22は、遅延時間算出部48と、重ね合わせ処理部50とを有する。
遅延時間算出部48は、操作部32から入力された、もしくは、操作部32から入力されて格納部34に格納されているプローブ12の振動子アレイ36の複数の超音波素子、被検体の検査対象領域の音速、振動子アレイ36の送信開口及び受信開口等に関する情報、ならびに、焦点再設定部98が再設定した焦点位置を事前に取得しておき、超音波ビームを形成し送信する、送信開口の超音波素子(送信素子)と、被検体からの、超音波ビームによる超音波エコーを受信する、受信開口の超音波素子(受信素子)との幾何学的配置に基づいて、受信開口の各超音波素子で受信される素子データの遅延時間を算出する。 Here, the elementdata processing unit 22 will be described in detail with reference to FIG.
As shown in the figure, the elementdata processing unit 22 includes a delay time calculation unit 48 and an overlay processing unit 50.
The delaytime calculation unit 48 examines the plurality of ultrasonic elements and the subject of the transducer array 36 of the probe 12 input from the operation unit 32 or input from the operation unit 32 and stored in the storage unit 34. Information regarding the sound velocity of the target region, information on the transmission aperture and reception aperture of the transducer array 36, and the focus position reset by the focus resetting unit 98 are acquired in advance, and an ultrasonic beam is formed and transmitted. Based on the geometric arrangement of the ultrasonic element (transmitting element) of the opening and the ultrasonic element (receiving element) of the receiving opening that receives an ultrasonic echo from the subject by the ultrasonic beam, The delay time of the element data received by each ultrasonic element is calculated.
同図に示すように、素子データ処理部22は、遅延時間算出部48と、重ね合わせ処理部50とを有する。
遅延時間算出部48は、操作部32から入力された、もしくは、操作部32から入力されて格納部34に格納されているプローブ12の振動子アレイ36の複数の超音波素子、被検体の検査対象領域の音速、振動子アレイ36の送信開口及び受信開口等に関する情報、ならびに、焦点再設定部98が再設定した焦点位置を事前に取得しておき、超音波ビームを形成し送信する、送信開口の超音波素子(送信素子)と、被検体からの、超音波ビームによる超音波エコーを受信する、受信開口の超音波素子(受信素子)との幾何学的配置に基づいて、受信開口の各超音波素子で受信される素子データの遅延時間を算出する。 Here, the element
As shown in the figure, the element
The delay
重ね合わせ処理部50は、操作部32から入力された、もしくは、操作部32から入力されて格納部34に格納されている、重ね合わせる素子データの数及び重ね合わせ処理方法等の素子データ処理に関する情報に基づいて、素子データ記憶部20によって記憶保持された、互いに異なる送信ラインに超音波ビームを送信して得られた2以上の素子データを読み出して、重ね合わせ処理を行うべき注目ラインの所定の点(サンプリング点)に注目して、遅延時間算出部48でそれぞれ算出された遅延時間に基づいて、2以上の未処理素子データを受信時間上で、即ち時間を合わせて、かつ、受信された探触子の素子の絶対的な位置を合わせて、重ね合わせて処理済素子データを生成する。
所定のサンプリング点に注目して、複数の未処理素子データを重ね合わせることで、このサンプリング点に焦点を合わせたような素子データが得られる。 Theoverlay processing unit 50 relates to element data processing such as the number of element data to be superimposed and the overlay processing method, which are input from the operation unit 32 or input from the operation unit 32 and stored in the storage unit 34. Based on the information, two or more pieces of element data obtained by transmitting ultrasonic beams to different transmission lines stored and held by the element data storage unit 20 are read out, and a predetermined line to be subjected to overlay processing is determined. Focusing on this point (sampling point), two or more unprocessed element data are received on the reception time, that is, timed and received based on the delay times calculated by the delay time calculation unit 48 respectively. The processed element data is generated by superposing and aligning the absolute positions of the elements of the probe.
By paying attention to a predetermined sampling point and superimposing a plurality of unprocessed element data, element data that focuses on this sampling point can be obtained.
所定のサンプリング点に注目して、複数の未処理素子データを重ね合わせることで、このサンプリング点に焦点を合わせたような素子データが得られる。 The
By paying attention to a predetermined sampling point and superimposing a plurality of unprocessed element data, element data that focuses on this sampling point can be obtained.
なお、注目ラインの少なくとも1つの点をサンプリング点として未処理素子データの重ね合わせを行って生成した処理済素子データを、この注目ラインの素子データとすればよく、注目ラインを複数の領域に分けて、各領域にサンプリング点を設定して、未処理素子データの重ね合わせを行って処理済素子データを生成し、注目ラインの各領域の素子データとしてもよい。あるいは、超音波画像を生成する際の画素位置に対応して、すべての画素位置をサンプリング点として処理済素子データの生成を行ってもよい。
特に、焦点設定部96が焦点位置を設定した位置、すなわち、再設定される前の焦点位置にサンプリング点を設定することが好ましい。焦点設定部96が焦点位置を設定した位置(深さ)は、操作者が着目している領域、見たい領域である可能性が高い。したがって、焦点設定部96が設定した焦点位置にサンプリング点を設定して、未処理素子データを重ね合わせることで、操作者が着目している見たい領域に焦点を合わせたような素子データを得ることができる。 The processed element data generated by superimposing unprocessed element data using at least one point of the target line as a sampling point may be used as the element data of the target line, and the target line is divided into a plurality of regions. Then, sampling points may be set in each area, and processed element data may be generated by superimposing unprocessed element data, and may be used as element data in each area of the target line. Alternatively, the processed element data may be generated by using all pixel positions as sampling points corresponding to the pixel positions when the ultrasonic image is generated.
In particular, it is preferable to set the sampling point at the position where thefocus setting unit 96 has set the focus position, that is, the focus position before being reset. There is a high possibility that the position (depth) at which the focus setting unit 96 sets the focus position is a region that the operator is paying attention to or a region that the operator wants to see. Therefore, by setting a sampling point at the focus position set by the focus setting unit 96 and superimposing unprocessed element data, element data that is focused on the region that the operator is interested in to obtain is obtained. be able to.
特に、焦点設定部96が焦点位置を設定した位置、すなわち、再設定される前の焦点位置にサンプリング点を設定することが好ましい。焦点設定部96が焦点位置を設定した位置(深さ)は、操作者が着目している領域、見たい領域である可能性が高い。したがって、焦点設定部96が設定した焦点位置にサンプリング点を設定して、未処理素子データを重ね合わせることで、操作者が着目している見たい領域に焦点を合わせたような素子データを得ることができる。 The processed element data generated by superimposing unprocessed element data using at least one point of the target line as a sampling point may be used as the element data of the target line, and the target line is divided into a plurality of regions. Then, sampling points may be set in each area, and processed element data may be generated by superimposing unprocessed element data, and may be used as element data in each area of the target line. Alternatively, the processed element data may be generated by using all pixel positions as sampling points corresponding to the pixel positions when the ultrasonic image is generated.
In particular, it is preferable to set the sampling point at the position where the
次に、素子データ処理部22で行う素子データ処理について詳細に説明する。
まず、超音波プローブ12の振動子アレイ36の送信開口をなす超音波素子(以下、単に送信素子という)から超音波ビーム(以下、送信ビームという)を被検体に送信し、被検体との間の相互作用によって発生された超音波エコーを振動子アレイ36の受信開口をなす超音波素子(以下、単に受信素子という)で受信して素子データ(未処理素子データ)を得る場合において、送信素子からの送信ビームと受信素子で得られる素子データとの関係について説明する。 Next, element data processing performed by the elementdata processing unit 22 will be described in detail.
First, an ultrasonic beam (hereinafter simply referred to as a transmission beam) is transmitted to an object from an ultrasonic element (hereinafter simply referred to as a transmission element) forming a transmission aperture of thetransducer array 36 of the ultrasonic probe 12, and between the objects. In the case where element data (unprocessed element data) is obtained by receiving an ultrasonic echo generated by the interaction of the ultrasonic echoes by an ultrasonic element (hereinafter simply referred to as a receiving element) that forms a receiving aperture of the transducer array 36, The relationship between the transmission beam from the element and element data obtained by the receiving element will be described.
まず、超音波プローブ12の振動子アレイ36の送信開口をなす超音波素子(以下、単に送信素子という)から超音波ビーム(以下、送信ビームという)を被検体に送信し、被検体との間の相互作用によって発生された超音波エコーを振動子アレイ36の受信開口をなす超音波素子(以下、単に受信素子という)で受信して素子データ(未処理素子データ)を得る場合において、送信素子からの送信ビームと受信素子で得られる素子データとの関係について説明する。 Next, element data processing performed by the element
First, an ultrasonic beam (hereinafter simply referred to as a transmission beam) is transmitted to an object from an ultrasonic element (hereinafter simply referred to as a transmission element) forming a transmission aperture of the
図4(a)及び(c)は、一例として、超音波素子の配列方向と直交する方向に、各超音波素子に対応して、送信ラインが設定され、各送信ラインに1つの焦点位置が設定(再設定)された場合の、各超音波素子、超音波ビーム、焦点位置および超音波エコーを模式的に示す図である。
図4(a)及び(c)に示すように、それぞれ3つの超音波素子52c~52e及び52d~52fを送信素子として、それぞれ7つの超音波素子(以下、単に、素子ともいう)52a~52g及び52b~52hを受信素子として超音波エコーを受信して素子データを取得する時、反射点54を含む検査対象領域に送信する送信ビーム56が理想的に素子間隔以下に絞れている理想的な場合には、図4(a)のように、検査対象領域内の反射点54の真上にある、素子52a~52gの中心の素子52dを中心素子とする素子52c~52eを送信素子として、素子52dに対応する送信ラインに送信ビーム56を送信し、受信素子52a~52gで超音波エコーを受信して素子データを取得する場合、送信ビーム56の焦点58は、素子54dと反射点54とを結ぶ一直線上にあり、送信ビーム56は、反射点54まで送信されるので、反射点54から反射される超音波エコーが生成される。反射点54からの超音波エコーは、所定角度に拡がる受信経路60を通って受信素子52a~52gに受信され、受信素子52a~52gによって、図4(b)に示すような素子データ62が得られることになる。 4A and 4C, as an example, transmission lines are set corresponding to each ultrasonic element in a direction orthogonal to the arrangement direction of the ultrasonic elements, and one focal position is set for each transmission line. It is a figure which shows typically each ultrasonic element at the time of setting (re-setting), an ultrasonic beam, a focus position, and an ultrasonic echo.
As shown in FIGS. 4A and 4C, threeultrasonic elements 52c to 52e and 52d to 52f are used as transmitting elements, respectively, and seven ultrasonic elements (hereinafter also simply referred to as elements) 52a to 52g are used. And 52b to 52h are used as receiving elements to receive elemental echoes and acquire element data, the transmission beam 56 to be transmitted to the inspection target area including the reflection point 54 is ideally narrowed to an element interval or less. In this case, as shown in FIG. 4A, the elements 52c to 52e having the central element 52d of the elements 52a to 52g, which are directly above the reflection point 54 in the inspection target area, as the transmission elements, When transmitting the transmission beam 56 to the transmission line corresponding to the element 52d and receiving the ultrasonic echoes by the receiving elements 52a to 52g to acquire element data, the focal point 58 of the transmission beam 56 is 4d and is in a straight line connecting the reflection point 54, the transmitted beam 56, since it is transmitted to the reflection point 54, the ultrasonic echoes are generated to be reflected from the reflection point 54. The ultrasonic echoes from the reflection point 54 are received by the receiving elements 52a to 52g through the receiving path 60 spreading at a predetermined angle, and the element data 62 as shown in FIG. 4B is obtained by the receiving elements 52a to 52g. Will be.
図4(a)及び(c)に示すように、それぞれ3つの超音波素子52c~52e及び52d~52fを送信素子として、それぞれ7つの超音波素子(以下、単に、素子ともいう)52a~52g及び52b~52hを受信素子として超音波エコーを受信して素子データを取得する時、反射点54を含む検査対象領域に送信する送信ビーム56が理想的に素子間隔以下に絞れている理想的な場合には、図4(a)のように、検査対象領域内の反射点54の真上にある、素子52a~52gの中心の素子52dを中心素子とする素子52c~52eを送信素子として、素子52dに対応する送信ラインに送信ビーム56を送信し、受信素子52a~52gで超音波エコーを受信して素子データを取得する場合、送信ビーム56の焦点58は、素子54dと反射点54とを結ぶ一直線上にあり、送信ビーム56は、反射点54まで送信されるので、反射点54から反射される超音波エコーが生成される。反射点54からの超音波エコーは、所定角度に拡がる受信経路60を通って受信素子52a~52gに受信され、受信素子52a~52gによって、図4(b)に示すような素子データ62が得られることになる。 4A and 4C, as an example, transmission lines are set corresponding to each ultrasonic element in a direction orthogonal to the arrangement direction of the ultrasonic elements, and one focal position is set for each transmission line. It is a figure which shows typically each ultrasonic element at the time of setting (re-setting), an ultrasonic beam, a focus position, and an ultrasonic echo.
As shown in FIGS. 4A and 4C, three
これに対し、図4(c)に示すように、送信素子の中心が、反射点54に対して1素子分、素子の方向(図中右方向)にずれている場合、すなわち、反射点54の真上にある素子52dに隣接する素子52eを中心素子とする素子52d~52fを送信素子として、素子52eに対応する送信ラインに送信ビーム56を送信し、受信素子52b~52hで超音波エコーを受信する場合には、送信ビーム56の送信方向、即ち、送信素子52eと焦点58とを結ぶ直線上(送信ライン上)に反射点54が存在しないため、送信ビーム56は、反射点54に送信されない。このため、反射点54から反射される超音波エコーは生成されず、受信素子52b~52hでは、超音波エコーを受信しないので、図4(d)に示すように、素子データは信号強度が0のデータになる。
On the other hand, as shown in FIG. 4C, when the center of the transmitting element is shifted by one element from the reflection point 54 in the element direction (right direction in the figure), that is, the reflection point 54. The element 52d to 52f having the element 52e adjacent to the element 52d immediately above the center element as the central element is used as the transmission element, the transmission beam 56 is transmitted to the transmission line corresponding to the element 52e, and the ultrasonic echoes are received by the reception elements 52b to 52h. , The reflection point 54 does not exist on the transmission direction of the transmission beam 56, that is, on the straight line connecting the transmission element 52 e and the focal point 58 (on the transmission line). Not sent. For this reason, the ultrasonic echo reflected from the reflection point 54 is not generated, and the receiving elements 52b to 52h do not receive the ultrasonic echo. Therefore, as shown in FIG. It becomes the data of.
しかしながら、図5(a)及び(c)に示すように、実際の送信ビーム64は、素子間隔より幅が広い。
ここで、図5(a)のように、反射点54の真上にある素子52dを中心素子とする素子52c~52eを送信素子として、素子52dに対応する送信ラインに送信ビーム64を送信した場合には、図4(a)の場合と同様に、送信ビーム56が幅広であっても、その焦点58は、素子54dと反射点54とを結ぶ一直線上にあり、送信ビーム64は、反射点54で反射され、超音波エコーが生成される。その結果、図4(a)の場合と同様に、反射点54からの超音波エコーは、所定角度に拡がる受信経路60を通って受信素子52a~52gに受信され、受信素子52a~52gによって、図5(b)に示すような真の素子データ66が得られることになる。 However, as shown in FIGS. 5A and 5C, theactual transmission beam 64 is wider than the element spacing.
Here, as shown in FIG. 5A, thetransmission beam 64 is transmitted to the transmission line corresponding to the element 52d, with the elements 52c to 52e having the element 52d immediately above the reflection point 54 as the central element. In this case, as in the case of FIG. 4A, even if the transmission beam 56 is wide, its focal point 58 is on a straight line connecting the element 54d and the reflection point 54, and the transmission beam 64 is reflected. Reflected at point 54, an ultrasonic echo is generated. As a result, similarly to the case of FIG. 4A, the ultrasonic echo from the reflection point 54 is received by the receiving elements 52a to 52g through the receiving path 60 spreading to a predetermined angle, and is received by the receiving elements 52a to 52g. True element data 66 as shown in FIG. 5B is obtained.
ここで、図5(a)のように、反射点54の真上にある素子52dを中心素子とする素子52c~52eを送信素子として、素子52dに対応する送信ラインに送信ビーム64を送信した場合には、図4(a)の場合と同様に、送信ビーム56が幅広であっても、その焦点58は、素子54dと反射点54とを結ぶ一直線上にあり、送信ビーム64は、反射点54で反射され、超音波エコーが生成される。その結果、図4(a)の場合と同様に、反射点54からの超音波エコーは、所定角度に拡がる受信経路60を通って受信素子52a~52gに受信され、受信素子52a~52gによって、図5(b)に示すような真の素子データ66が得られることになる。 However, as shown in FIGS. 5A and 5C, the
Here, as shown in FIG. 5A, the
一方、図5(c)に示すように、図4(c)の場合と同様に、送信素子の中心が、反射点54に対して1素子分、素子の方向(図中右方向)にずれている場合、すなわち、反射点54の真上にある素子52dに隣接する素子52eを中心素子とする素子52d~52fを送信素子として、素子52eに対応する送信ラインに送信ビーム64を送信し、受信素子52b~52hで超音波エコーを受信する場合、送信ビーム64は幅広であるため、その送信方向、即ち、送信素子52eと焦点58とを結ぶ直線上に反射点54が存在していなくても、送信ビーム64は、反射点54に送信されることになる。このため、反射点54から反射された超音波エコーは、所定角度に広がる受信経路60を通って受信素子52b~52hに受信され、受信素子52b~52hによって、図5(d)に示すような反射点の影響を受けた素子データ68が得られることになる。
このような送信ライン上以外の反射点の影響を受けた素子データ68(以下、ゴーストの素子データ、ともいう)から音線信号を生成して、超音波画像を生成すると、素子52eに対応するラインの画像に、実際には存在しない反射点の映像が再生され、所謂ゴーストが発生し、超音波画像の精度を低下させる原因となる。 On the other hand, as shown in FIG. 5C, as in the case of FIG. 4C, the center of the transmitting element is shifted by one element from thereflection point 54 in the element direction (right direction in the figure). In other words, the transmission beam 64 is transmitted to the transmission line corresponding to the element 52e, with the elements 52d to 52f having the element 52e adjacent to the element 52d immediately above the reflection point 54 as the central element as transmission elements. When receiving the ultrasonic echoes by the receiving elements 52b to 52h, the transmission beam 64 is wide, so that the reflection point 54 does not exist on the transmission direction, that is, on the straight line connecting the transmitting element 52e and the focal point 58. However, the transmission beam 64 is transmitted to the reflection point 54. Therefore, the ultrasonic echo reflected from the reflection point 54 is received by the receiving elements 52b to 52h through the receiving path 60 spread at a predetermined angle, and as shown in FIG. 5D by the receiving elements 52b to 52h. Element data 68 affected by the reflection point is obtained.
When an acoustic ray signal is generated from element data 68 (hereinafter also referred to as ghost element data) affected by a reflection point other than on the transmission line, an ultrasonic image is generated, which corresponds to theelement 52e. An image of a reflection point that does not actually exist is reproduced in the line image, so-called ghost is generated, and this causes a decrease in the accuracy of the ultrasonic image.
このような送信ライン上以外の反射点の影響を受けた素子データ68(以下、ゴーストの素子データ、ともいう)から音線信号を生成して、超音波画像を生成すると、素子52eに対応するラインの画像に、実際には存在しない反射点の映像が再生され、所謂ゴーストが発生し、超音波画像の精度を低下させる原因となる。 On the other hand, as shown in FIG. 5C, as in the case of FIG. 4C, the center of the transmitting element is shifted by one element from the
When an acoustic ray signal is generated from element data 68 (hereinafter also referred to as ghost element data) affected by a reflection point other than on the transmission line, an ultrasonic image is generated, which corresponds to the
ここで、図5(c)に示す送信ビーム64が送信素子52eから焦点58を経由して反射点54に至る送信経路と反射点54からの超音波エコーが各受信素子52b~52hに至る受信経路との和(伝播距離)は、それぞれ図5(a)に示す送信ビーム64が送信素子52dから焦点58を経由して反射点54に至る送信経路と反射した超音波エコーが反射点54から各受信素子52a~52gに至る受信経路との和(伝播距離)より長くなる。そのため、図5(d)に示すようなゴーストの素子データ68は、図5(b)に示すような真の素子データ66に対して遅延することになる。
Here, the transmission beam 64 shown in FIG. 5C is transmitted from the transmission element 52e through the focal point 58 to the reflection point 54, and the ultrasonic echo from the reflection point 54 is received from the reception elements 52b to 52h. The sum (propagation distance) with the path is such that the transmission beam 64 shown in FIG. 5A reaches the reflection point 54 from the transmission element 52 d via the focal point 58 and the reflected ultrasonic echo from the reflection point 54. It becomes longer than the sum (propagation distance) with the reception path reaching each of the receiving elements 52a to 52g. Therefore, the ghost element data 68 as shown in FIG. 5D is delayed with respect to the true element data 66 as shown in FIG. 5B.
本発明の素子データ処理部22の遅延時間算出部48においては、注目する送信ライン上のサンプリング点と、各送信ラインに対応する中心素子との幾何学的な配置から、注目する送信ラインに超音波を送受信して得られた素子データ(以下、注目素子データ、ともいう)と、注目する送信ラインとは異なる送信ラインに超音波を送受信して得られた素子データ(以下、非注目素子データ、ともいう)との時間差、即ち遅延時間を算出する。したがって、遅延時間の計算には、超音波プローブ12(振動子アレイ36)の形状(素子間隔、リニア、コンベックスなど)、被検体の検査対象領域の音速、焦点位置、送信開口、受信開口などの情報が必要であり、遅延時間算出部48では、焦点再設定部98で再設定された焦点位置の情報、操作部32によって入力された、若しくは格納部34に格納されたこれらの情報を取得して遅延時間の計算を行う。遅延時間は、例えば、送信素子、超音波ビームの焦点、サンプリング点、及び受信素子の幾何学的配置から算出される、送信素子から焦点を経てサンプリング点に至る送信ビームの送信経路及びサンプリング点から受信素子に至る反射信号の受信経路の合計長さ(伝播距離)とその音速によって算出される伝搬時間の差から算出することができる。
In the delay time calculation unit 48 of the element data processing unit 22 according to the present invention, the geometrical arrangement of the sampling point on the transmission line of interest and the central element corresponding to each transmission line causes the transmission line to exceed the transmission line of interest. Element data obtained by transmitting / receiving sound waves (hereinafter also referred to as “target element data”) and element data obtained by transmitting / receiving ultrasonic waves to a transmission line different from the target transmission line (hereinafter, “non-target element data”) ), That is, a delay time is calculated. Therefore, for calculating the delay time, the shape of the ultrasonic probe 12 (vibrator array 36) (element spacing, linear, convex, etc.), the sound velocity of the examination region of the subject, the focal position, the transmission aperture, the reception aperture, etc. Information is required, and the delay time calculation unit 48 acquires information on the focus position reset by the focus resetting unit 98 and the information input by the operation unit 32 or stored in the storage unit 34. To calculate the delay time. The delay time is calculated from, for example, the transmission path and sampling point of the transmission beam from the transmission element to the sampling point through the focal point, which is calculated from the geometry of the transmission element, the focus of the ultrasonic beam, the sampling point, and the reception element. It can be calculated from the difference between the total length (propagation distance) of the reception path of the reflected signal reaching the reception element and the propagation time calculated by the sound speed.
本発明では、例えば、図6(a)及び図6(b)に示すようにして、注目素子データと、非注目素子データそれぞれの送信ビームの送信経路及び超音波エコーの受信経路の長さを求めることができる。図6(a)及び図6(b)においては、説明のため、注目送信ライン上のサンプリング点に反射点54があるとしている。
図6(a)に示すように、注目素子データの場合、すなわち、注目する送信ラインと、超音波ビームを送信した送信ラインが一致する場合は、送信素子52c~52eの中心素子と、受信素子52a~52gの中心素子とが、一致し、その真下に、焦点58及び反射点54が配置されている。反射点54の真上の素子52dの位置をxy2次元座標上の座標(x0、0)とし、素子間隔をLe、焦点58の位置を座標(x0、df)、反射点54の位置を座標(x0、z)とする時、送信素子52dの位置も反射点54の真上の素子52dと同じく座標(x0、0)となり、送信素子52dから焦点58を経て反射点54に至る送信ビームの送信経路61の長さ(送信経路距離)Ltaは、及び、反射点54から受信素子52dに至る超音波エコーの受信経路60の長さ(受信経路距離)Lraは、Lta=Lra=zによって算出することができる。
したがって、注目素子データの場合の超音波の伝播距離Luaは、Lua=Lta+Lra=2zとなる。 In the present invention, for example, as shown in FIGS. 6 (a) and 6 (b), the lengths of the transmission path of the transmission beam and the reception path of the ultrasonic echo of each of the target element data and the non-target element data are set. Can be sought. In FIG. 6A and FIG. 6B, for the sake of explanation, it is assumed that there is areflection point 54 at the sampling point on the target transmission line.
As shown in FIG. 6A, in the case of element-of-interest data, that is, when the transmission line of interest coincides with the transmission line that transmitted the ultrasonic beam, the central elements of thetransmission elements 52c to 52e, and the reception element The central elements 52a to 52g coincide with each other, and a focal point 58 and a reflection point 54 are disposed directly below the central element. The position of the element 52d directly above the reflection point 54 is the coordinate (x0, 0) on the xy two-dimensional coordinate, the element interval is Le, the position of the focal point 58 is the coordinate (x0, df), and the position of the reflection point 54 is the coordinate ( x0, z), the position of the transmitting element 52d is also in the same coordinate (x0, 0) as the element 52d immediately above the reflecting point 54, and the transmission beam transmitted from the transmitting element 52d through the focal point 58 to the reflecting point 54 is transmitted. The length (transmission path distance) Lta of the path 61 and the length (reception path distance) Lra of the reception path 60 of the ultrasonic echo from the reflection point 54 to the receiving element 52d are calculated by Lta = Lra = z. be able to.
Accordingly, the ultrasonic propagation distance Lua in the case of the target element data is Lua = Lta + Lra = 2z.
図6(a)に示すように、注目素子データの場合、すなわち、注目する送信ラインと、超音波ビームを送信した送信ラインが一致する場合は、送信素子52c~52eの中心素子と、受信素子52a~52gの中心素子とが、一致し、その真下に、焦点58及び反射点54が配置されている。反射点54の真上の素子52dの位置をxy2次元座標上の座標(x0、0)とし、素子間隔をLe、焦点58の位置を座標(x0、df)、反射点54の位置を座標(x0、z)とする時、送信素子52dの位置も反射点54の真上の素子52dと同じく座標(x0、0)となり、送信素子52dから焦点58を経て反射点54に至る送信ビームの送信経路61の長さ(送信経路距離)Ltaは、及び、反射点54から受信素子52dに至る超音波エコーの受信経路60の長さ(受信経路距離)Lraは、Lta=Lra=zによって算出することができる。
したがって、注目素子データの場合の超音波の伝播距離Luaは、Lua=Lta+Lra=2zとなる。 In the present invention, for example, as shown in FIGS. 6 (a) and 6 (b), the lengths of the transmission path of the transmission beam and the reception path of the ultrasonic echo of each of the target element data and the non-target element data are set. Can be sought. In FIG. 6A and FIG. 6B, for the sake of explanation, it is assumed that there is a
As shown in FIG. 6A, in the case of element-of-interest data, that is, when the transmission line of interest coincides with the transmission line that transmitted the ultrasonic beam, the central elements of the
Accordingly, the ultrasonic propagation distance Lua in the case of the target element data is Lua = Lta + Lra = 2z.
一方、図(b)に示すように、非注目素子データの場合、すなわち、注目する送信ラインと隣接する送信ラインに超音波ビームを送信する場合は、送信素子52d~52fの中心素子の位置が反射点54(サンプリング点)に対して1素子分横(x方向:図中右方向)にずれて、焦点58は中心素子である素子52eの真下に配置されるが、反射点54は受信素子52dの真下に配置されている。反射点54の真上の受信素子52dの位置を、図6(a)の場合と同じくxy2次元座標上の座標(x0、0)とし、素子間隔をLe、反射点54の位置を座標(x0、z)とすると、送信素子52eの位置は座標(x0+Le、0)、焦点58の位置は座標(x0+Le、df)となるので、送信素子52eから焦点58を経て反射点54に至る送信ビームの送信経路61の長さ(送信経路距離)Ltbは、Ltb=df+√{(z-df)2+Le2}によって算出することができ、反射点54から受信素子52dに至る超音波エコーの受信経路60の長さ(受信経路距離)Lrbは、Lrb=zによって算出することができる。
したがって、非注目素子データの場合の超音波の伝播距離Lubは、Lub=Ltb+Lrb=df+√{(z-df)2+Le2}+zとなる。 On the other hand, as shown in FIG. 5B, in the case of non-target element data, that is, when an ultrasonic beam is transmitted to a transmission line adjacent to the target transmission line, the positions of the central elements of thetransmission elements 52d to 52f are The focal point 58 is arranged just below the element 52e, which is the central element, while being shifted by one element (x direction: right direction in the figure) with respect to the reflection point 54 (sampling point). It is arranged directly below 52d. As in the case of FIG. 6A, the position of the receiving element 52d immediately above the reflection point 54 is set to the coordinates (x0, 0) on the xy two-dimensional coordinates, the element interval is Le, and the position of the reflection point 54 is the coordinates (x0). , Z), the position of the transmitting element 52e is the coordinate (x0 + Le, 0), and the position of the focal point 58 is the coordinate (x0 + Le, df). Therefore, the transmission beam from the transmitting element 52e through the focal point 58 to the reflection point 54 The length (transmission path distance) Ltb of the transmission path 61 can be calculated by Ltb = df + √ {(z−df) 2 + Le 2 }, and the ultrasonic echo reception path from the reflection point 54 to the reception element 52d. The length 60 (reception path distance) Lrb of 60 can be calculated by Lrb = z.
Accordingly, the ultrasonic propagation distance Lub in the case of non-target element data is Lub = Ltb + Lrb = df + √ {(z−df) 2 + Le 2 } + z.
したがって、非注目素子データの場合の超音波の伝播距離Lubは、Lub=Ltb+Lrb=df+√{(z-df)2+Le2}+zとなる。 On the other hand, as shown in FIG. 5B, in the case of non-target element data, that is, when an ultrasonic beam is transmitted to a transmission line adjacent to the target transmission line, the positions of the central elements of the
Accordingly, the ultrasonic propagation distance Lub in the case of non-target element data is Lub = Ltb + Lrb = df + √ {(z−df) 2 + Le 2 } + z.
こうして、図6(a)に示す幾何学配置で求めた送信経路61の距離Ltaと受信経路60の距離Lraを合計した超音波の伝播距離Luaを音速で割った値が、注目する素子データを取得するために超音波を送受信した時の、超音波素子とサンプリング点との間の伝播時間となる。また、図6(b)に示す幾何学配置で求めた送信経路61の距離Ltbと受信経路60の距離Lrbを合計した超音波の伝播距離Lubを音速で割った値が、注目する素子データの送信ラインの隣の送信ラインで超音波を送受信した時の、超音波素子とサンプリング点との間の伝搬時間となる。
遅延時間の算出は、注目素子データを取得する際の超音波素子とサンプリング点との間の超音波の伝搬時間と、非注目素子データを取得する際の超音波素子とサンプリング点との間の超音波の伝搬時間の差から遅延時間を求める。
なお、図6(a)及び図6(b)の幾何学モデルでは、送信経路61が焦点58を経由したモデルになっているが、本発明はこれに限定されず、例えば、焦点58を経由せずに直接反射点54に至る経路であっても良い。 In this way, the value obtained by dividing the ultrasonic propagation distance Lua by the sum of the distance Lta of thetransmission path 61 and the distance Lra of the reception path 60 obtained by the geometrical arrangement shown in FIG. This is the propagation time between the ultrasonic element and the sampling point when ultrasonic waves are transmitted and received for acquisition. Also, the value obtained by dividing the ultrasonic propagation distance Lub, which is the sum of the distance Ltb of the transmission path 61 and the distance Lrb of the reception path 60 obtained by the geometric arrangement shown in FIG. This is the propagation time between the ultrasonic element and the sampling point when ultrasonic waves are transmitted and received on the transmission line adjacent to the transmission line.
The calculation of the delay time is based on the propagation time of the ultrasonic wave between the ultrasonic element and the sampling point when acquiring the element-of-interest data and between the ultrasonic element and the sampling point when acquiring the non-target element data. The delay time is obtained from the difference in ultrasonic propagation time.
6 (a) and 6 (b), thetransmission path 61 is a model that passes through the focal point 58, but the present invention is not limited to this, for example, it passes through the focal point 58. Alternatively, a route that directly reaches the reflection point 54 may be used.
遅延時間の算出は、注目素子データを取得する際の超音波素子とサンプリング点との間の超音波の伝搬時間と、非注目素子データを取得する際の超音波素子とサンプリング点との間の超音波の伝搬時間の差から遅延時間を求める。
なお、図6(a)及び図6(b)の幾何学モデルでは、送信経路61が焦点58を経由したモデルになっているが、本発明はこれに限定されず、例えば、焦点58を経由せずに直接反射点54に至る経路であっても良い。 In this way, the value obtained by dividing the ultrasonic propagation distance Lua by the sum of the distance Lta of the
The calculation of the delay time is based on the propagation time of the ultrasonic wave between the ultrasonic element and the sampling point when acquiring the element-of-interest data and between the ultrasonic element and the sampling point when acquiring the non-target element data. The delay time is obtained from the difference in ultrasonic propagation time.
6 (a) and 6 (b), the
なお、この遅延時間の計算方法は、或る素子を中心素子とする超音波の送受信において、サンプリング点の直下に位置する素子52における遅延時間を代表値として、この代表値を、この送受信における全素子の遅延時間として用いている。
しかしながら、本発明は、これに限定はされず、例えば、素子52cや素子52bなど、x方向の位置がサンプリング点、すなわち、直下の素子52dとは異なる素子の受信経路距離Lrbは、直下の素子52dからの素子数nに応じて、Lrb=√{(n×Le)2+z2}で算出してもよい。 Note that this delay time calculation method uses a delay time in the element 52 located immediately below the sampling point as a representative value in the transmission / reception of ultrasonic waves with a certain element as the central element, and this representative value is used as the total value in this transmission / reception. This is used as the delay time of the element.
However, the present invention is not limited to this. For example, the reception path distance Lrb of theelement 52c, the element 52b, or the like whose position in the x direction is different from the sampling point, that is, the element 52d immediately below is the element directly below. Depending on the number of elements n from 52d, it may be calculated as Lrb = √ {(n × Le) 2 + z 2 }.
しかしながら、本発明は、これに限定はされず、例えば、素子52cや素子52bなど、x方向の位置がサンプリング点、すなわち、直下の素子52dとは異なる素子の受信経路距離Lrbは、直下の素子52dからの素子数nに応じて、Lrb=√{(n×Le)2+z2}で算出してもよい。 Note that this delay time calculation method uses a delay time in the element 52 located immediately below the sampling point as a representative value in the transmission / reception of ultrasonic waves with a certain element as the central element, and this representative value is used as the total value in this transmission / reception. This is used as the delay time of the element.
However, the present invention is not limited to this. For example, the reception path distance Lrb of the
また、図6(a)及び図6(b)の幾何学モデルはリニアプローブの場合であるが、これに限らず他のプローブにおいても、プローブの形状から同様の幾何学計算を行うことができる。例えば、コンベックスプローブの場合、プローブの半径と素子間隔の角度から幾何学モデルを設定して同じように計算することができる。
また、ステア送信の場合には、送信角度などの情報を考慮した幾何学モデル(図示せず)を用い、送信素子とサンプリング点との位置関係から注目素子データ及びその周辺の非注目素子データの遅延時間を算出することができる。
さらに、幾何学モデルによって遅延時間を算出する方法に限らず、あらかじめ装置の計測条件に合わせて高輝度反射点を計測した計測結果から、計測条件毎に遅延時間を求めておき、その遅延時間を装置内に記憶しておくことで、同じ計測条件の遅延時間を読み出すようにしておいてもよい。 Moreover, although the geometric model of Fig.6 (a) and FIG.6 (b) is a case of a linear probe, not only this but another probe can perform the same geometric calculation from the shape of a probe. . For example, in the case of a convex probe, a geometric model can be set from the radius of the probe and the angle between the elements, and the calculation can be performed in the same way.
In the case of steer transmission, a geometric model (not shown) that considers information such as the transmission angle is used, and the attention element data and the surrounding non- attention element data are determined from the positional relationship between the transmission element and the sampling point. The delay time can be calculated.
Furthermore, the delay time is not limited to the method of calculating the delay time using the geometric model, and the delay time is obtained for each measurement condition from the measurement result obtained by measuring the high-intensity reflection point according to the measurement condition of the apparatus in advance. By storing in the apparatus, the delay time of the same measurement condition may be read out.
また、ステア送信の場合には、送信角度などの情報を考慮した幾何学モデル(図示せず)を用い、送信素子とサンプリング点との位置関係から注目素子データ及びその周辺の非注目素子データの遅延時間を算出することができる。
さらに、幾何学モデルによって遅延時間を算出する方法に限らず、あらかじめ装置の計測条件に合わせて高輝度反射点を計測した計測結果から、計測条件毎に遅延時間を求めておき、その遅延時間を装置内に記憶しておくことで、同じ計測条件の遅延時間を読み出すようにしておいてもよい。 Moreover, although the geometric model of Fig.6 (a) and FIG.6 (b) is a case of a linear probe, not only this but another probe can perform the same geometric calculation from the shape of a probe. . For example, in the case of a convex probe, a geometric model can be set from the radius of the probe and the angle between the elements, and the calculation can be performed in the same way.
In the case of steer transmission, a geometric model (not shown) that considers information such as the transmission angle is used, and the attention element data and the surrounding non- attention element data are determined from the positional relationship between the transmission element and the sampling point. The delay time can be calculated.
Furthermore, the delay time is not limited to the method of calculating the delay time using the geometric model, and the delay time is obtained for each measurement condition from the measurement result obtained by measuring the high-intensity reflection point according to the measurement condition of the apparatus in advance. By storing in the apparatus, the delay time of the same measurement condition may be read out.
図6(c)に、中央に、送信ライン上に反射点がある場合の素子データである真の素子データ66、両側に、この反射点の影響でゴーストが発生しているゴーストの素子データ68を示し、図6(d)に、上述の幾何学的な計算から得られた、中央の真の素子データ66を注目素子データとしたときの、非注目素子データであるゴーストの素子データ68の遅延時間の一例を示す。真の素子データ66を注目素子データとした場合に、ゴーストの素子データ68は、対称的に時間が遅れることが示されている。
なお、こうして、素子データ処理部22の遅延時間算出部48において算出された遅延時間を整相加算部38における遅延補正に用いることもできる。 FIG. 6C showstrue element data 66 which is element data when there is a reflection point on the transmission line in the center, and element data 68 of a ghost in which a ghost is generated due to the influence of the reflection point on both sides. FIG. 6D shows the ghost element data 68, which is the non-attention element data, when the central true element data 66 obtained from the above geometric calculation is set as the attention element data. An example of delay time is shown. It is shown that when the true element data 66 is the target element data, the ghost element data 68 is symmetrically delayed.
In this way, the delay time calculated by the delaytime calculation unit 48 of the element data processing unit 22 can also be used for delay correction in the phasing addition unit 38.
なお、こうして、素子データ処理部22の遅延時間算出部48において算出された遅延時間を整相加算部38における遅延補正に用いることもできる。 FIG. 6C shows
In this way, the delay time calculated by the delay
次に、本発明の素子データ処理部22の重ね合わせ処理部50においては、こうして遅延時間算出部48において算出された遅延時間を用いて、注目する送信ラインの注目素子データ及びその周辺の送信ラインの素子データである非注目素子データの重ね合わせ処理を行う。
重ね合わせ処理部50における重ね合わせ処理では、重ね合わせる時の重ね合わせ素子データ数と重ね合わせ処理方法の情報が必要になるが、これらは、予め、操作部32によって入力しておいても良いし、格納部34に格納しておいても良い。 Next, in thesuperposition processing unit 50 of the element data processing unit 22 of the present invention, using the delay time thus calculated by the delay time calculating unit 48, the target element data of the target transmission line and the surrounding transmission lines are used. The non-attention element data that is the element data is overlaid.
In the superposition processing in thesuperposition processing unit 50, information on the number of superposition element data and the superposition processing method at the time of superposition is necessary, but these may be input in advance by the operation unit 32. Alternatively, it may be stored in the storage unit 34.
重ね合わせ処理部50における重ね合わせ処理では、重ね合わせる時の重ね合わせ素子データ数と重ね合わせ処理方法の情報が必要になるが、これらは、予め、操作部32によって入力しておいても良いし、格納部34に格納しておいても良い。 Next, in the
In the superposition processing in the
図7(a)~(h)に、重ね合わせ処理部50で行われる、素子データ数が5つ、重ね合わせ素子データ数が3つの場合の重ね合わせ処理の一具体例を示す。
図7(a)は、隣接する5つの素子をそれぞれ中心素子とする送信ラインで、超音波の送受信を行って得られた5つの素子データを横に並べて表示しており、素子データ毎に、超音波ビームを送信し、反射信号を受信した様子を表している。各素子データの横軸は、受信素子を表しており、それぞれの素子データにおいて超音波ビームの送信時における中心の素子を中心にして表示している。縦軸は、受信時間を表す。
5つの素子データのうち、真中の素子データでは、素子データの中心の素子(受信素子の中心の素子)、即ち、送信時における中心素子(送信素子)の真下に反射点が存在しており、反射点からの反射信号(超音波エコー)が受信されている。つまり、この反射信号は真の信号であり、真中の素子データは、真の素子データを表す。 FIGS. 7A to 7H show a specific example of overlay processing performed by theoverlay processor 50 when the number of element data is 5 and the number of overlay element data is 3. FIG.
FIG. 7 (a) shows five element data obtained by performing ultrasonic transmission / reception side by side in a transmission line having five adjacent elements as the central elements, and for each element data, It shows a state in which an ultrasonic beam is transmitted and a reflected signal is received. The horizontal axis of each element data represents a receiving element, and the respective element data are displayed with the center element at the time of transmission of the ultrasonic beam as the center. The vertical axis represents the reception time.
Among the five element data, in the element data in the middle, there is a reflection point immediately below the element at the center of the element data (element at the center of the receiving element), that is, the center element at the time of transmission (transmitting element). A reflection signal (ultrasonic echo) from the reflection point is received. That is, this reflected signal is a true signal, and the element data in the middle represents the true element data.
図7(a)は、隣接する5つの素子をそれぞれ中心素子とする送信ラインで、超音波の送受信を行って得られた5つの素子データを横に並べて表示しており、素子データ毎に、超音波ビームを送信し、反射信号を受信した様子を表している。各素子データの横軸は、受信素子を表しており、それぞれの素子データにおいて超音波ビームの送信時における中心の素子を中心にして表示している。縦軸は、受信時間を表す。
5つの素子データのうち、真中の素子データでは、素子データの中心の素子(受信素子の中心の素子)、即ち、送信時における中心素子(送信素子)の真下に反射点が存在しており、反射点からの反射信号(超音波エコー)が受信されている。つまり、この反射信号は真の信号であり、真中の素子データは、真の素子データを表す。 FIGS. 7A to 7H show a specific example of overlay processing performed by the
FIG. 7 (a) shows five element data obtained by performing ultrasonic transmission / reception side by side in a transmission line having five adjacent elements as the central elements, and for each element data, It shows a state in which an ultrasonic beam is transmitted and a reflected signal is received. The horizontal axis of each element data represents a receiving element, and the respective element data are displayed with the center element at the time of transmission of the ultrasonic beam as the center. The vertical axis represents the reception time.
Among the five element data, in the element data in the middle, there is a reflection point immediately below the element at the center of the element data (element at the center of the receiving element), that is, the center element at the time of transmission (transmitting element). A reflection signal (ultrasonic echo) from the reflection point is received. That is, this reflected signal is a true signal, and the element data in the middle represents the true element data.
真中の素子データ以外の両側2つの素子データについては、送信時における中心の素子の真下には反射点は存在していないが、送信した超音波ビームの広がりによって、真中の素子データの送信素子の真下に存在する反射点に超音波ビームが当たることで生じた反射信号、即ちゴーストが写り込んでいる。ゴーストは、真の信号から離れるほど反射点までの超音波の伝播時間が長くなるため、真の素子データよりも受信時間が遅くなる。また、反射点からの反射信号が初めに受信される受信素子の位置は、反射点の真上の素子であるが、素子データの横軸は超音波ビームの送信時における中心素子を中心にしているため、素子データ毎にこの中心素子を1素子ずつずらして、すなわち、送信ラインを1ラインずつずらして送信していることから、各素子データにおいて素子の絶対位置は1素子ずつずれている。つまり、真中の素子データでは、反射点からの反射信号がはじめに受信される受信素子は真中の素子であるが、両隣の素子データにおいては、真中の素子データよりも1素子ずれており、右側の素子データでは左に1素子ずれ、左側の素子データでは右に1素子ずれている。更に、両端の素子データでは、真中の素子データよりも2素子ずれており、右端の素子データでは左に2素子ずれ、左端の素子データでは右に2素子ずれている。このように、ゴーストの信号は、真の信号に対して、受信時間が遅れるだけでなく、受信素子の方向に対してもずれを生じている。
For the two element data on both sides other than the middle element data, there is no reflection point directly below the central element at the time of transmission, but due to the spread of the transmitted ultrasonic beam, the transmission element of the middle element data A reflected signal, i.e., a ghost, which is generated when an ultrasonic beam hits a reflection point existing directly below, is reflected. Since the propagation time of the ultrasonic wave to the reflection point becomes longer as the ghost is away from the true signal, the reception time is delayed as compared with the true element data. The position of the receiving element where the reflected signal from the reflection point is first received is the element immediately above the reflection point, but the horizontal axis of the element data is centered on the central element at the time of transmitting the ultrasonic beam. Therefore, since the center element is shifted by one element for each element data, that is, the transmission line is shifted by one line, the absolute position of the element is shifted by one element in each element data. That is, in the middle element data, the receiving element from which the reflected signal from the reflection point is received first is the middle element, but the element data on both sides is shifted by one element from the middle element data. The element data is shifted one element to the left, and the left element data is shifted one element to the right. Further, the element data at both ends are shifted by two elements from the middle element data, the leftmost element data is shifted by two elements to the left, and the leftmost element data is shifted by two elements to the right. As described above, the ghost signal is not only delayed in reception time with respect to the true signal, but also deviated from the direction of the receiving element.
図7(b)に、図7(a)に示す5つの素子データのうちの真中の素子データを注目素子データとした場合に対する受信時間の遅延時間の一例を示す。
重ね合わせ処理部50では、図7(b)に示す遅延時間を用いて、真中の素子データを注目素子データとした場合に、注目素子データを中心に、重ね合わせ素子データ数分、図示例では3つの素子データに対して遅延時間補正を行うと共に、注目素子データの送信ラインに対応する中心素子(注目素子)と、各中心素子とのずれ量分、図示例では両側に1素子分だけ横方向にシフトさせて、即ち位相を合わせて3つの送信ライン分の未処理素子データを重ね合わせ、注目送信ラインの所定のサンプリング点に対応する1つの重ね合わせ処理済素子データとして求める。このような重ね合わせ処理を注目送信ライン上の各サンプリング点で行うことにより、送信ライン上の各サンプリング点で焦点が絞りこまれたような素子データを得ることができる。 FIG. 7B shows an example of the delay time of the reception time when the middle element data of the five element data shown in FIG.
Theoverlay processing unit 50 uses the delay time shown in FIG. 7B to set the element data in the middle as the element data of interest. In the example shown in FIG. The delay time correction is performed on the three element data, and the amount of deviation between the center element (target element) corresponding to the transmission line of the target element data and each center element, in the illustrated example, one element on both sides. The data is shifted in the direction, that is, the unprocessed element data corresponding to the three transmission lines is superposed with the phase being matched to obtain one overlap-processed element data corresponding to a predetermined sampling point of the target transmission line. By performing such superposition processing at each sampling point on the target transmission line, it is possible to obtain element data in which the focus is narrowed down at each sampling point on the transmission line.
重ね合わせ処理部50では、図7(b)に示す遅延時間を用いて、真中の素子データを注目素子データとした場合に、注目素子データを中心に、重ね合わせ素子データ数分、図示例では3つの素子データに対して遅延時間補正を行うと共に、注目素子データの送信ラインに対応する中心素子(注目素子)と、各中心素子とのずれ量分、図示例では両側に1素子分だけ横方向にシフトさせて、即ち位相を合わせて3つの送信ライン分の未処理素子データを重ね合わせ、注目送信ラインの所定のサンプリング点に対応する1つの重ね合わせ処理済素子データとして求める。このような重ね合わせ処理を注目送信ライン上の各サンプリング点で行うことにより、送信ライン上の各サンプリング点で焦点が絞りこまれたような素子データを得ることができる。 FIG. 7B shows an example of the delay time of the reception time when the middle element data of the five element data shown in FIG.
The
こうして得られた注目する送信ラインの重ね合わせ処理済素子データを図7(c)に示す。
図7(a)に示す注目素子の素子データは、真の信号の素子データであることから、注目素子の両側の隣接素子の未処理素子データに遅延時間補正及び横方向のシフトを行って位相合わせを行うと、図7(c)に示すように、隣接素子の未処理素子データと、注目素子の未処理素子データとは、位相が合うので高輝度位置で重なり合う。したがって、これらの素子データを、例えば加算すると素子データ値は大きな値(高輝度値)を示し、例えば、平均して平均値を求めても強調された値(高輝度値)を示す。 FIG. 7C shows the superposed element data of the transmission line of interest obtained in this way.
Since the element data of the target element shown in FIG. 7A is the element data of the true signal, the delay time correction and the lateral shift are performed on the unprocessed element data of the adjacent elements on both sides of the target element. When the matching is performed, as shown in FIG. 7C, the unprocessed element data of the adjacent element and the unprocessed element data of the target element overlap each other at the high luminance position because the phases match. Therefore, when these element data are added, for example, the element data value shows a large value (high luminance value), and for example, even if an average value is obtained by averaging, an emphasized value (high luminance value) is shown.
図7(a)に示す注目素子の素子データは、真の信号の素子データであることから、注目素子の両側の隣接素子の未処理素子データに遅延時間補正及び横方向のシフトを行って位相合わせを行うと、図7(c)に示すように、隣接素子の未処理素子データと、注目素子の未処理素子データとは、位相が合うので高輝度位置で重なり合う。したがって、これらの素子データを、例えば加算すると素子データ値は大きな値(高輝度値)を示し、例えば、平均して平均値を求めても強調された値(高輝度値)を示す。 FIG. 7C shows the superposed element data of the transmission line of interest obtained in this way.
Since the element data of the target element shown in FIG. 7A is the element data of the true signal, the delay time correction and the lateral shift are performed on the unprocessed element data of the adjacent elements on both sides of the target element. When the matching is performed, as shown in FIG. 7C, the unprocessed element data of the adjacent element and the unprocessed element data of the target element overlap each other at the high luminance position because the phases match. Therefore, when these element data are added, for example, the element data value shows a large value (high luminance value), and for example, even if an average value is obtained by averaging, an emphasized value (high luminance value) is shown.
これに対し、図7(d)は、図7(a)と同じ素子データ群であるが、真中の素子データの左隣の素子データ、つまりゴーストの素子データを注目素子データとした場合の一例を示す。
図7(e)は、真中の左隣を注目素子とした場合の受信時間の遅延時間の一例を示すものである。図7(a)と図7dは、同じ素子データ群であるので、図7(e)に示す遅延時間は、注目素子が異なるのみで、図7(b)と同様である。
重ね合わせ処理部50では、図7(e)に示す遅延時間を用いて、注目素子を中心に、重ね合わせ素子データ分、図示例では3つの素子データに対して遅延時間補正を行うと共に、注目素子と各中心素子とのずれ量分、図示例では両側に1素子分だけ横方向にシフトさせて、3つの送信ライン分の未処理素子データを重ね合わせ、注目送信ラインの所定のサンプリング点に対応する1つの重ね合わせ処理済素子データとして求める。このような重ね合わせ処理を注目送信ライン上の各サンプリング点で行うことにより、送信ライン上の各サンプリング点で焦点が絞りこまれたような素子データを得ることができる。 On the other hand, FIG. 7D shows the same element data group as FIG. 7A, but an example in which element data on the left of the middle element data, that is, ghost element data is used as the element data of interest. Indicates.
FIG. 7E shows an example of the delay time of the reception time when the center left adjacent element is the target element. Since FIG. 7A and FIG. 7D are the same element data group, the delay time shown in FIG. 7E is the same as FIG. 7B except for the element of interest.
Theoverlay processing unit 50 uses the delay time shown in FIG. 7E to correct the delay time for the overlap element data, in the illustrated example, for the overlap element data, centering on the element of interest, and The amount of shift between the element and each center element, in the example shown in the figure, is shifted laterally by one element on both sides, and the unprocessed element data for three transmission lines is overlaid, and a predetermined sampling point of the target transmission line is obtained. It is obtained as one corresponding superposed processed element data. By performing such superposition processing at each sampling point on the target transmission line, it is possible to obtain element data in which the focus is narrowed down at each sampling point on the transmission line.
図7(e)は、真中の左隣を注目素子とした場合の受信時間の遅延時間の一例を示すものである。図7(a)と図7dは、同じ素子データ群であるので、図7(e)に示す遅延時間は、注目素子が異なるのみで、図7(b)と同様である。
重ね合わせ処理部50では、図7(e)に示す遅延時間を用いて、注目素子を中心に、重ね合わせ素子データ分、図示例では3つの素子データに対して遅延時間補正を行うと共に、注目素子と各中心素子とのずれ量分、図示例では両側に1素子分だけ横方向にシフトさせて、3つの送信ライン分の未処理素子データを重ね合わせ、注目送信ラインの所定のサンプリング点に対応する1つの重ね合わせ処理済素子データとして求める。このような重ね合わせ処理を注目送信ライン上の各サンプリング点で行うことにより、送信ライン上の各サンプリング点で焦点が絞りこまれたような素子データを得ることができる。 On the other hand, FIG. 7D shows the same element data group as FIG. 7A, but an example in which element data on the left of the middle element data, that is, ghost element data is used as the element data of interest. Indicates.
FIG. 7E shows an example of the delay time of the reception time when the center left adjacent element is the target element. Since FIG. 7A and FIG. 7D are the same element data group, the delay time shown in FIG. 7E is the same as FIG. 7B except for the element of interest.
The
こうして得られた注目送信ラインの重ね合わせ処理済素子データを図7(f)に示す。
図7(d)に示す注目素子の素子データは、ゴーストの素子データであることから、注目素子の両側の隣接素子の未処理素子データに遅延時間補正及び横方向のシフトを行って位相合わせを行っても、図7(f)に示すように、隣接素子の各未処理素子データと注目素子の未処理素子データとは、それぞれ位相が合わないので重なり合わない。このため、これらの3つの素子データを、例えば加算しても、位相が合っていないために、位相が反転している信号などは信号が打ち消しあうため、加算値は大きくならず、例えば、平均して平均値を求めると小さな値を示すことになる。 FIG. 7 (f) shows the superposed element data of the target transmission line thus obtained.
Since the element data of the target element shown in FIG. 7D is ghost element data, phase adjustment is performed by performing delay time correction and lateral shift on the unprocessed element data of adjacent elements on both sides of the target element. Even if it is performed, as shown in FIG. 7F, the unprocessed element data of the adjacent element and the unprocessed element data of the target element do not overlap each other because the phases do not match. For this reason, even if these three element data are added, for example, since the phases are not matched, signals that are inverted in phase cancel each other out, so the added value does not increase. When the average value is obtained, a small value is shown.
図7(d)に示す注目素子の素子データは、ゴーストの素子データであることから、注目素子の両側の隣接素子の未処理素子データに遅延時間補正及び横方向のシフトを行って位相合わせを行っても、図7(f)に示すように、隣接素子の各未処理素子データと注目素子の未処理素子データとは、それぞれ位相が合わないので重なり合わない。このため、これらの3つの素子データを、例えば加算しても、位相が合っていないために、位相が反転している信号などは信号が打ち消しあうため、加算値は大きくならず、例えば、平均して平均値を求めると小さな値を示すことになる。 FIG. 7 (f) shows the superposed element data of the target transmission line thus obtained.
Since the element data of the target element shown in FIG. 7D is ghost element data, phase adjustment is performed by performing delay time correction and lateral shift on the unprocessed element data of adjacent elements on both sides of the target element. Even if it is performed, as shown in FIG. 7F, the unprocessed element data of the adjacent element and the unprocessed element data of the target element do not overlap each other because the phases do not match. For this reason, even if these three element data are added, for example, since the phases are not matched, signals that are inverted in phase cancel each other out, so the added value does not increase. When the average value is obtained, a small value is shown.
他の素子データに関しても、注目素子データとして同様の遅延時間補正及び横方向のシフトを行った結果、図示例の5つの素子データについての隣接する3つの送信ラインの素子データの重なり状態を図7(g)に示し、これらに対して、重ね合わせ処理として、例えば、加算処理、若しくは平均処理した結果を図7(h)に示す。
図7(h)に示すように、図7(a)に示す送信素子の中心素子と反射点との座標が一致している時(送信ライン上に反射点がある時)の注目送信ラインでは、真の信号の素子データが高輝度値を持つ重ね合わせ処理済素子データとして求められ、その両側の各2素子の全4素子では、ゴーストの素子データは互いに位相が合わない素子データを加算し、又は平均するので、互いに打ち消し合うことになるため、ゴーストの重ね合わせ処理済素子データは、その値が真の信号の素子データである高輝度値を持つ重ね合わせ処理済素子データに対して小さくなり、真の信号の素子データに対してゴーストの素子データの影響を低減させることができ、又は、その影響を無視できる程、小さくすることができる。 As for the other element data, the same delay time correction and lateral shift are performed as the element data of interest. As a result, the overlapping state of the element data of three adjacent transmission lines for the five element data in the illustrated example is shown in FIG. FIG. 7 (h) shows the result of, for example, addition processing or average processing as superimposing processing shown in (g).
As shown in FIG. 7 (h), in the transmission line of interest when the coordinates of the central element and the reflection point of the transmission element shown in FIG. 7 (a) are coincident (when there is a reflection point on the transmission line). The element data of the true signal is obtained as superposed processed element data having a high luminance value, and the ghost element data is added to the element data whose phases are not in phase with each other in all four elements on both sides. Or, since they will cancel each other, the ghost superimposed element data is smaller than the superimposed element data having a high luminance value whose value is the element data of the true signal. Thus, the influence of the ghost element data on the element data of the true signal can be reduced, or the influence can be reduced to the extent that the influence can be ignored.
図7(h)に示すように、図7(a)に示す送信素子の中心素子と反射点との座標が一致している時(送信ライン上に反射点がある時)の注目送信ラインでは、真の信号の素子データが高輝度値を持つ重ね合わせ処理済素子データとして求められ、その両側の各2素子の全4素子では、ゴーストの素子データは互いに位相が合わない素子データを加算し、又は平均するので、互いに打ち消し合うことになるため、ゴーストの重ね合わせ処理済素子データは、その値が真の信号の素子データである高輝度値を持つ重ね合わせ処理済素子データに対して小さくなり、真の信号の素子データに対してゴーストの素子データの影響を低減させることができ、又は、その影響を無視できる程、小さくすることができる。 As for the other element data, the same delay time correction and lateral shift are performed as the element data of interest. As a result, the overlapping state of the element data of three adjacent transmission lines for the five element data in the illustrated example is shown in FIG. FIG. 7 (h) shows the result of, for example, addition processing or average processing as superimposing processing shown in (g).
As shown in FIG. 7 (h), in the transmission line of interest when the coordinates of the central element and the reflection point of the transmission element shown in FIG. 7 (a) are coincident (when there is a reflection point on the transmission line). The element data of the true signal is obtained as superposed processed element data having a high luminance value, and the ghost element data is added to the element data whose phases are not in phase with each other in all four elements on both sides. Or, since they will cancel each other, the ghost superimposed element data is smaller than the superimposed element data having a high luminance value whose value is the element data of the true signal. Thus, the influence of the ghost element data on the element data of the true signal can be reduced, or the influence can be reduced to the extent that the influence can be ignored.
なお、重ね合わせ処理部50における重ね合わせ処理方法としては、単に、加算するだけでなく、平均値や中央値をとってもよいし、係数を掛け合わせた上で加算してもよい。なお、平均値や中央値を取ることは、素子データレベルでの平均化フィルタやメディアンフィルタを掛けることに相当すると考えられるが、平均化フィルタやメディアンフィルタの代わりに、通常の画像処理で行われる逆フィルタなども適用してもよい。或いは、重ね合わせる各素子データ同士を比較し、類似している場合には最大値、類似していない場合には平均値、分布の偏りがある場合には中間値をとるなど、これに限らず、重ね合わせる各素子データの特徴量に基づいて重ね合わせ処理を変えてもよい。
In addition, as a superimposition processing method in the superimposition processing unit 50, not only addition but also an average value or a median value may be taken, or addition may be performed after multiplying coefficients. Note that taking an average value or median value is thought to correspond to applying an averaging filter or median filter at the element data level, but is performed by normal image processing instead of the averaging filter or median filter. An inverse filter or the like may also be applied. Alternatively, the element data to be superimposed are compared, and if they are similar, the maximum value is taken, if not, the average value is taken, and if there is a distribution bias, the intermediate value is taken. The overlay process may be changed based on the feature amount of each element data to be superimposed.
また、重ね合わせる素子データ数は、超音波ビームのビーム幅の広がり程度に合わせた方が望ましい。従って、深さによってビーム幅が変わる場合には、重ね合わせ素子データ数も深さによって変更してもよい。また、ビーム幅は送信開口数に依存することから、送信開口数に応じて重ね合わせ素子データ数を変更してもよい。或いは、画像の輝度値などの特徴量に基づいて重ね合わせ素子データ数を変更してもよいし、重ね合わせ素子データ数を複数パターン変えて作成した画像から最適な重ね合わせ素子データ数を選択してもよい。
重ね合わせた結果、上述したように、真の信号の素子データでは信号の位相が合うが、ゴーストでは信号の位相が合わないため、加算などの重ね合わせ処理の結果、様々な位相の信号がお互いに打ち消し合い、信号が弱くなる。結果的に、真の信号は、有効な値を持つ、例えば高輝度の素子データとして残り、ゴーストの信号は、減弱した値を持つ、例えば低輝度の素子データとして得ることができる。 Further, it is desirable that the number of element data to be superimposed is matched to the extent of the beam width of the ultrasonic beam. Therefore, when the beam width changes depending on the depth, the number of overlapping element data may be changed depending on the depth. Further, since the beam width depends on the transmission numerical aperture, the number of overlapping element data may be changed according to the transmission numerical aperture. Alternatively, the number of overlapping element data may be changed based on a feature quantity such as the luminance value of the image, or the optimum number of overlapping element data is selected from images created by changing the number of overlapping element data. May be.
As a result of the superposition, as described above, the signal phase matches in the element data of the true signal, but the signal phase does not match in the ghost. As a result of superposition processing such as addition, signals of various phases are mutually connected. Cancel each other and the signal becomes weaker. As a result, the true signal remains as effective element data having a valid value, for example, high luminance, and the ghost signal can be obtained as element data having a reduced value, for example, low luminance.
重ね合わせた結果、上述したように、真の信号の素子データでは信号の位相が合うが、ゴーストでは信号の位相が合わないため、加算などの重ね合わせ処理の結果、様々な位相の信号がお互いに打ち消し合い、信号が弱くなる。結果的に、真の信号は、有効な値を持つ、例えば高輝度の素子データとして残り、ゴーストの信号は、減弱した値を持つ、例えば低輝度の素子データとして得ることができる。 Further, it is desirable that the number of element data to be superimposed is matched to the extent of the beam width of the ultrasonic beam. Therefore, when the beam width changes depending on the depth, the number of overlapping element data may be changed depending on the depth. Further, since the beam width depends on the transmission numerical aperture, the number of overlapping element data may be changed according to the transmission numerical aperture. Alternatively, the number of overlapping element data may be changed based on a feature quantity such as the luminance value of the image, or the optimum number of overlapping element data is selected from images created by changing the number of overlapping element data. May be.
As a result of the superposition, as described above, the signal phase matches in the element data of the true signal, but the signal phase does not match in the ghost. As a result of superposition processing such as addition, signals of various phases are mutually connected. Cancel each other and the signal becomes weaker. As a result, the true signal remains as effective element data having a valid value, for example, high luminance, and the ghost signal can be obtained as element data having a reduced value, for example, low luminance.
本発明は、超音波ビームの焦点の位置が、所定の範囲にある場合に、焦点の位置を再設定して、超音波の送受信を行い、得られた素子データに対して、上述した素子データの重ね合わせ処理を行い、新たな素子データを生成し、焦点位置を再設定した送信ラインに対応する素子データとする。
前述のとおり、従来、超音波画像を取得する際には、着目する領域の近傍に超音波ビームの焦点を設定して超音波の送受信を行うことで、着目する領域の画質が良好な超音波画像を生成していた。しかしながら、超音波プローブに近い位置(表層)や、超音波プローブから遠い位置(深層)では、原理的に超音波ビームを設定した焦点位置に収束させることが難しく、そのため、表層や深層に着目する場合に、表層や深層の画質を向上させることは困難であった。 In the present invention, when the position of the focal point of the ultrasonic beam is within a predetermined range, the position of the focal point is reset, and ultrasonic waves are transmitted and received. Are overlapped, new element data is generated, and element data corresponding to the transmission line whose focus position is reset is obtained.
As described above, conventionally, when acquiring an ultrasound image, ultrasonic waves with good image quality in the region of interest are obtained by setting the focal point of the ultrasound beam near the region of interest and transmitting and receiving ultrasound. An image was generated. However, at a position close to the ultrasonic probe (surface layer) or a position far from the ultrasonic probe (deep layer), it is difficult in principle to converge the ultrasonic beam to the set focal position, so focus on the surface layer or the deep layer. In some cases, it has been difficult to improve the image quality of the surface layer and the deep layer.
前述のとおり、従来、超音波画像を取得する際には、着目する領域の近傍に超音波ビームの焦点を設定して超音波の送受信を行うことで、着目する領域の画質が良好な超音波画像を生成していた。しかしながら、超音波プローブに近い位置(表層)や、超音波プローブから遠い位置(深層)では、原理的に超音波ビームを設定した焦点位置に収束させることが難しく、そのため、表層や深層に着目する場合に、表層や深層の画質を向上させることは困難であった。 In the present invention, when the position of the focal point of the ultrasonic beam is within a predetermined range, the position of the focal point is reset, and ultrasonic waves are transmitted and received. Are overlapped, new element data is generated, and element data corresponding to the transmission line whose focus position is reset is obtained.
As described above, conventionally, when acquiring an ultrasound image, ultrasonic waves with good image quality in the region of interest are obtained by setting the focal point of the ultrasound beam near the region of interest and transmitting and receiving ultrasound. An image was generated. However, at a position close to the ultrasonic probe (surface layer) or a position far from the ultrasonic probe (deep layer), it is difficult in principle to converge the ultrasonic beam to the set focal position, so focus on the surface layer or the deep layer. In some cases, it has been difficult to improve the image quality of the surface layer and the deep layer.
これに対して、本発明は、超音波ビームの焦点位置が、所定の範囲内にある場合に、焦点の位置を再設定して、複数の超音波ビームの送信で得られた第1の素子データから、第2の素子データを生成する。具体的には、超音波ビームの焦点位置が、所定の深さZaより浅い(表層にある)場合には、より深い位置に焦点位置を再設定し、また、所定の深さZbより深い(深層にある)場合には、より浅い位置に焦点位置を再設定して、再設定した焦点位置に超音波の送受信を行い、得られた複数の未処理素子データ(第1の素子データ)を、素子の幾何学的な配置および受信時間の情報に基づいて合成して、新たな処理済素子データ(第2の素子データ)を生成する。
これにより、焦点位置を再設定することにより、設定した焦点位置に超音波ビームを十分に収束させて、素子データ(第1の素子データ)を得ることができるので、素子データの質を改善することができる。さらに、焦点位置を再設定して得られた複数の第1の素子データを合成することにより、焦点から離れた位置であっても、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、送信ライン上の各サンプリング点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。したがって、焦点を収束させることが困難な表層や深層であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
また、質の高い素子データを得ることができるので、この素子データを用いて検査対象領域内の領域ごとの最適な音速を求める場合にも、高精度に最適な音速を求めることができる。 In contrast, according to the present invention, when the focal position of the ultrasonic beam is within a predetermined range, the first element obtained by resetting the focal position and transmitting a plurality of ultrasonic beams is obtained. Second element data is generated from the data. Specifically, when the focal position of the ultrasonic beam is shallower than the predetermined depth Za (on the surface layer), the focal position is reset to a deeper position and deeper than the predetermined depth Zb ( In the deep layer), the focus position is reset to a shallower position, ultrasonic waves are transmitted / received to the reset focus position, and a plurality of unprocessed element data (first element data) obtained are obtained. Then, based on the information on the geometrical arrangement of the elements and the reception time, new processed element data (second element data) is generated.
Thereby, by resetting the focal position, the ultrasonic beam can be sufficiently converged to the set focal position and element data (first element data) can be obtained, so that the quality of the element data is improved. be able to. Furthermore, by combining a plurality of first element data obtained by resetting the focal position, it is possible to reduce the influence of a ghost generated by the spread of the ultrasonic beam even at a position away from the focal point. Thus, the same element data (second element data) as that at which the focal point is formed at each sampling point on the transmission line can be obtained. Therefore, even in the surface layer and deep layer where it is difficult to converge the focus, the SN ratio can be increased, the resolution can be increased, and the optimum spatial resolution can be achieved with a high resolution at the same frame rate as before. A sharp ultrasonic image can be obtained.
In addition, since high-quality element data can be obtained, the optimum sound speed can be obtained with high accuracy even when the optimum sound speed for each region in the inspection target area is obtained using the element data.
これにより、焦点位置を再設定することにより、設定した焦点位置に超音波ビームを十分に収束させて、素子データ(第1の素子データ)を得ることができるので、素子データの質を改善することができる。さらに、焦点位置を再設定して得られた複数の第1の素子データを合成することにより、焦点から離れた位置であっても、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、送信ライン上の各サンプリング点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。したがって、焦点を収束させることが困難な表層や深層であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
また、質の高い素子データを得ることができるので、この素子データを用いて検査対象領域内の領域ごとの最適な音速を求める場合にも、高精度に最適な音速を求めることができる。 In contrast, according to the present invention, when the focal position of the ultrasonic beam is within a predetermined range, the first element obtained by resetting the focal position and transmitting a plurality of ultrasonic beams is obtained. Second element data is generated from the data. Specifically, when the focal position of the ultrasonic beam is shallower than the predetermined depth Za (on the surface layer), the focal position is reset to a deeper position and deeper than the predetermined depth Zb ( In the deep layer), the focus position is reset to a shallower position, ultrasonic waves are transmitted / received to the reset focus position, and a plurality of unprocessed element data (first element data) obtained are obtained. Then, based on the information on the geometrical arrangement of the elements and the reception time, new processed element data (second element data) is generated.
Thereby, by resetting the focal position, the ultrasonic beam can be sufficiently converged to the set focal position and element data (first element data) can be obtained, so that the quality of the element data is improved. be able to. Furthermore, by combining a plurality of first element data obtained by resetting the focal position, it is possible to reduce the influence of a ghost generated by the spread of the ultrasonic beam even at a position away from the focal point. Thus, the same element data (second element data) as that at which the focal point is formed at each sampling point on the transmission line can be obtained. Therefore, even in the surface layer and deep layer where it is difficult to converge the focus, the SN ratio can be increased, the resolution can be increased, and the optimum spatial resolution can be achieved with a high resolution at the same frame rate as before. A sharp ultrasonic image can be obtained.
In addition, since high-quality element data can be obtained, the optimum sound speed can be obtained with high accuracy even when the optimum sound speed for each region in the inspection target area is obtained using the element data.
本発明の超音波検査装置の動作、作用及び超音波画像の作成方法について説明する。
図8は、図1に示す超音波検査装置の動作を説明するためのフローチャートである。
まず、操作部32からの入力された情報に応じて、焦点設定部96が焦点の位置を設定し、設定した焦点位置の情報を焦点再設定部98に供給する。
焦点再設定部98は、設定された焦点位置が所定の深さ範囲にあるか否かを判断し、所定の深さZaよりも浅い場合には、より深い位置に焦点位置を再設定し、所定の深さZbよりも深い場合には、より浅い位置に焦点位置を再設定し、ZaとZbとの間の深さにある場合には、焦点位置を変更せずに、焦点位置の情報を送信部14に供給する。
操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って振動子アレイ36から超音波ビームが送信され、被検体からの超音波エコーを、振動子アレイ36が受信し、受信信号としてアナログ素子信号を出力する。このとき、送信部14は、焦点再設定部98から供給された焦点位置に焦点を形成する超音波ビームを送信するように、振動子アレイ36を駆動する。
受信部16は、各素子が出力するアナログ素子信号を1つのアナログの素子データとして出力し、A/D変換部18に供給する。A/D変換部18は、アナログの素子データをデジタルの素子データに変換して素子データ記憶部20に供給して、記憶保持させる。 The operation and action of the ultrasonic inspection apparatus of the present invention and the method for creating an ultrasonic image will be described.
FIG. 8 is a flowchart for explaining the operation of the ultrasonic inspection apparatus shown in FIG.
First, thefocus setting unit 96 sets the focus position according to the information input from the operation unit 32, and supplies the set focus position information to the focus resetting unit 98.
Thefocus resetting unit 98 determines whether or not the set focus position is within a predetermined depth range, and when the focus position is shallower than the predetermined depth Za, resets the focus position to a deeper position, When the depth is deeper than the predetermined depth Zb, the focus position is reset to a shallower position, and when the depth is between Za and Zb, the focus position information is not changed without changing the focus position. Is supplied to the transmitter 14.
When the operator abuts theultrasonic probe 12 on the surface of the subject and starts measurement, an ultrasonic beam is transmitted from the transducer array 36 according to the drive signal supplied from the transmission unit 14, and the ultrasonic wave from the subject is transmitted. The transducer array 36 receives the echo and outputs an analog element signal as a reception signal. At this time, the transmission unit 14 drives the transducer array 36 so as to transmit an ultrasonic beam that forms a focal point at the focal position supplied from the focus resetting unit 98.
The receivingunit 16 outputs an analog element signal output from each element as one analog element data, and supplies it to the A / D converter 18. The A / D conversion unit 18 converts analog element data into digital element data, supplies the element data to the element data storage unit 20, and stores and holds the data.
図8は、図1に示す超音波検査装置の動作を説明するためのフローチャートである。
まず、操作部32からの入力された情報に応じて、焦点設定部96が焦点の位置を設定し、設定した焦点位置の情報を焦点再設定部98に供給する。
焦点再設定部98は、設定された焦点位置が所定の深さ範囲にあるか否かを判断し、所定の深さZaよりも浅い場合には、より深い位置に焦点位置を再設定し、所定の深さZbよりも深い場合には、より浅い位置に焦点位置を再設定し、ZaとZbとの間の深さにある場合には、焦点位置を変更せずに、焦点位置の情報を送信部14に供給する。
操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って振動子アレイ36から超音波ビームが送信され、被検体からの超音波エコーを、振動子アレイ36が受信し、受信信号としてアナログ素子信号を出力する。このとき、送信部14は、焦点再設定部98から供給された焦点位置に焦点を形成する超音波ビームを送信するように、振動子アレイ36を駆動する。
受信部16は、各素子が出力するアナログ素子信号を1つのアナログの素子データとして出力し、A/D変換部18に供給する。A/D変換部18は、アナログの素子データをデジタルの素子データに変換して素子データ記憶部20に供給して、記憶保持させる。 The operation and action of the ultrasonic inspection apparatus of the present invention and the method for creating an ultrasonic image will be described.
FIG. 8 is a flowchart for explaining the operation of the ultrasonic inspection apparatus shown in FIG.
First, the
The
When the operator abuts the
The receiving
素子データ処理部22は、遅延時間算出部48(図3)において、注目する送信ラインの未処理素子データと、周辺の送信ラインの未処理素子データとの遅延時間(例えば、図7(b)、図7(e)、どちらも同じものである。)を、送信素子、焦点、反射点、及び受信素子の幾何学的配置、及び予め入力されて設定されている被検体の検査対象領域の音速等から算出する(例えば、図6の幾何学モデルを用いて算出する)。
In the delay time calculation unit 48 (FIG. 3), the element data processing unit 22 delays the unprocessed element data of the transmission line of interest and the unprocessed element data of peripheral transmission lines (for example, FIG. 7B). FIG. 7E is the same.) FIG. 7E shows the geometric arrangement of the transmitting element, the focal point, the reflection point, and the receiving element, and the inspection target region of the subject that is set in advance. It is calculated from the speed of sound or the like (for example, calculated using the geometric model in FIG. 6).
次に、素子データ処理部22は、未処理素子データを素子データ記憶部20から読み出し、処理を行う素子データを注目素子データとし、重ね合わせ処理部50(図3)において、遅延時間算出部48で算出された遅延時間を用いて、注目素子データとその周辺の送信ラインの未処理素子データ(非注目素子データ)とを位相合わせて重ね合わせて処理済素子データを求める。これにより、真の信号を含む未処理素子データであれば、強調された処理済素子データが求まると共に、ゴーストの未処理素子データであれば減弱した処理済素子データが求まる。
素子データ処理部22は、焦点再設定部98が焦点位置を再設定した場合、および、焦点位置を再設定しなかった場合に、各送信ラインについて、送信ライン上の各サンプリング点で、重ね合わせ処理を行い、処理済素子データを求める。こうして求めた処理済素子データを画像生成部24の整相加算部38に供給する。 Next, the elementdata processing unit 22 reads the unprocessed element data from the element data storage unit 20, sets the element data to be processed as the element data of interest, and in the overlay processing unit 50 (FIG. 3), the delay time calculation unit 48. Using the delay time calculated in (1), the element data of interest and the unprocessed element data (non-element of interest data) of the surrounding transmission lines are phase-matched to obtain processed element data. As a result, enhanced processed element data is obtained for unprocessed element data including a true signal, and attenuated processed element data is determined for ghost unprocessed element data.
The elementdata processing unit 22 superimposes each transmission line at each sampling point on the transmission line when the focus resetting unit 98 resets the focus position and when the focus position is not reset. Processing is performed to obtain processed element data. The processed element data thus obtained is supplied to the phasing addition unit 38 of the image generation unit 24.
素子データ処理部22は、焦点再設定部98が焦点位置を再設定した場合、および、焦点位置を再設定しなかった場合に、各送信ラインについて、送信ライン上の各サンプリング点で、重ね合わせ処理を行い、処理済素子データを求める。こうして求めた処理済素子データを画像生成部24の整相加算部38に供給する。 Next, the element
The element
画像生成部24の整相加算部38は、処理済素子データに受信フォーカス処理を施して受信データ(音線信号)を生成し、検波処理部40に供給する。検波処理部40は、音線信号を処理してBモード画像信号を生成する。Bモード画像信号を、DSC42がラスター変換し、画像作成部44が画像処理を施し、超音波画像が生成される。生成された超音波画像は、画像メモリ46に格納されると共に、表示制御部26により超音波画像が表示部28に表示される。
The phasing addition unit 38 of the image generation unit 24 performs reception focus processing on the processed element data to generate reception data (sound ray signal), and supplies it to the detection processing unit 40. The detection processing unit 40 processes the sound ray signal and generates a B-mode image signal. The DSC 42 performs raster conversion on the B-mode image signal, and the image creation unit 44 performs image processing to generate an ultrasonic image. The generated ultrasonic image is stored in the image memory 46, and the ultrasonic image is displayed on the display unit 28 by the display control unit 26.
このように本発明の超音波検査装置10は、超音波ビームの焦点の位置が、所定の範囲にある場合に、焦点の位置を再設定して、超音波の送受信を行い、得られた素子データに対して、上述した素子データの重ね合わせ処理を行い、新たな素子データを生成し、焦点位置を再設定した送信ラインに対応する素子データとする。これにより、焦点位置を再設定することにより、設定した焦点位置に超音波ビームを十分に収束させて、素子データ(第1の素子データ)を得ることができるので、素子データの質を改善することができる。さらに、焦点位置を再設定して得られた複数の第1の素子データを合成することにより、焦点から離れた位置であっても、超音波ビームの広がりによって発生するゴーストの影響を低減することができ、送信ライン上の各点において焦点を形成したのと同様の素子データ(第2の素子データ)を得ることができる。したがって、焦点を収束させることが困難な表層や深層であっても、SN比を上げ、解像度を上げることができ、かつ、従来と変わらないフレームレートのまま、高い解像度で、最適な空間分解能を持つシャープな超音波画像を得ることができる。
As described above, the ultrasonic inspection apparatus 10 according to the present invention performs transmission / reception of ultrasonic waves by resetting the focal position when the focal position of the ultrasonic beam is within a predetermined range, and the obtained element The above-described element data superimposition process is performed on the data, new element data is generated, and element data corresponding to the transmission line whose focus position is reset is set. Thereby, by resetting the focal position, the ultrasonic beam can be sufficiently converged to the set focal position and element data (first element data) can be obtained, so that the quality of the element data is improved. be able to. Furthermore, by combining a plurality of first element data obtained by resetting the focal position, it is possible to reduce the influence of a ghost generated by the spread of the ultrasonic beam even at a position away from the focal point. It is possible to obtain the same element data (second element data) as the focal point is formed at each point on the transmission line. Therefore, even in the surface layer and deep layer where it is difficult to converge the focus, the SN ratio can be increased, the resolution can be increased, and the optimum spatial resolution can be achieved with a high resolution at the same frame rate as before. A sharp ultrasonic image can be obtained.
なお、上記実施例においては、焦点位置が、所定の深さZaより浅い場合、あるいは、所定の深さZbより深い場合に、焦点の位置を変更する構成としたが、本発明はこれに限定はされず、図9(A)のフローチャートに示すように、所定の深さZaよりも浅い場合に、Zaよりも深い位置に焦点位置を再設定する構成としてもよい。あるいは、図9(B)のフローチャートに示すように、所定の深さZbよりも深い場合に、Zbよりも浅い位置に焦点位置を再設定する構成としてもよい。
In the above embodiment, the focus position is changed when the focal position is shallower than the predetermined depth Za or deeper than the predetermined depth Zb. However, the present invention is not limited to this. Instead, as shown in the flowchart of FIG. 9A, the focus position may be reset to a position deeper than Za when the depth is smaller than the predetermined depth Za. Alternatively, as shown in the flowchart of FIG. 9B, when the depth is deeper than the predetermined depth Zb, the focal position may be reset to a position shallower than Zb.
また、図示例においては、焦点設定部96が設定する焦点位置は、すべての送信ラインで同じ深さとしたが、本発明はこれに限定はされず、焦点設定部96は、送信ラインごとに異なる深さに焦点位置を設定してもよい。この場合には、焦点再設定部98は、送信ラインごとに焦点の深さを判断し、焦点位置が所定の深さ範囲にある送信ラインについて、焦点位置を再設定すればよい。また、このとき、素子データ処理部が、焦点位置を再設定した送信ラインの素子データを注目素子データとして、重ね合わせ処理を行う際には、重ね合わせる非注目素子データは、焦点位置を再設定した送信ラインの素子データであっても、焦点位置を再設定していない送信ラインの素子データであってもよい。
In the illustrated example, the focus position set by the focus setting unit 96 is the same depth for all transmission lines. However, the present invention is not limited to this, and the focus setting unit 96 is different for each transmission line. The focal position may be set to the depth. In this case, the focus resetting unit 98 may determine the focus depth for each transmission line, and reset the focus position for the transmission line whose focus position is within a predetermined depth range. At this time, when the element data processing unit performs the overlay process using the element data of the transmission line whose focus position is reset as the target element data, the focus position of the non-target element data to be overlapped is reset. The transmission line element data may be the transmission line element data for which the focus position is not reset.
また、上記実施例においては、注目素子データと重ね合わせる素子データは、注目素子データの送信ラインと隣接する送信ラインの素子データとしたが、本発明はこれに限定はされず、注目素子データの送信ラインとは異なる送信ラインであればよい。なお、素子データを重ね合わせる際には、各素子データを取得する時に送信した送信ビームの領域が、注目素子データを取得する時に送信した送信ビームの領域と重複していることが好ましい。したがって、注目素子データと重ね合わせる素子データは、隣接する送信ライン、あるいは、近傍の送信ラインの素子データであることが好ましい。
また、注目素子データと重ね合わせる素子データは、注目素子データの送信ラインを中心に対称な送信ラインで取得した素子データであることが好ましい。 In the above embodiment, the element data to be superimposed on the target element data is the element data of the transmission line adjacent to the transmission line of the target element data. However, the present invention is not limited to this, and the element data of the target element data Any transmission line different from the transmission line may be used. In addition, when superimposing element data, it is preferable that the area | region of the transmission beam transmitted when acquiring each element data overlaps the area | region of the transmission beam transmitted when acquiring element-of-interest data. Therefore, the element data to be superimposed on the element data of interest is preferably element data of an adjacent transmission line or a nearby transmission line.
The element data to be superimposed on the target element data is preferably element data acquired with a transmission line that is symmetric about the transmission line of the target element data.
また、注目素子データと重ね合わせる素子データは、注目素子データの送信ラインを中心に対称な送信ラインで取得した素子データであることが好ましい。 In the above embodiment, the element data to be superimposed on the target element data is the element data of the transmission line adjacent to the transmission line of the target element data. However, the present invention is not limited to this, and the element data of the target element data Any transmission line different from the transmission line may be used. In addition, when superimposing element data, it is preferable that the area | region of the transmission beam transmitted when acquiring each element data overlaps the area | region of the transmission beam transmitted when acquiring element-of-interest data. Therefore, the element data to be superimposed on the element data of interest is preferably element data of an adjacent transmission line or a nearby transmission line.
The element data to be superimposed on the target element data is preferably element data acquired with a transmission line that is symmetric about the transmission line of the target element data.
また、上記実施例においては、超音波素子の配列方向とは直交する方向に、超音波ビームを送信する構成としたが、これに限定はされず、超音波素子の配列方向に対して、傾斜している方向(ステア)に超音波ビームを送信する構成としてもよい。また、上記実施例においては、一組の送信素子(送信開口)と1回の超音波ビームの送信とが1対1で対応する構成としたが、これに限定はされず、同じ一組の送信素子を用いて、異なる方向に複数の超音波ビームを送信する構成としてもよい。
In the above embodiment, the ultrasonic beam is transmitted in a direction orthogonal to the arrangement direction of the ultrasonic elements. However, the present invention is not limited to this, and is inclined with respect to the arrangement direction of the ultrasonic elements. It is good also as a structure which transmits an ultrasonic beam in the direction (steer) which is carrying out. Moreover, in the said Example, although it was set as the structure with which 1 set of transmission elements (transmission opening) and transmission of one ultrasonic beam respond | correspond one-to-one, it is not limited to this, The same set of sets A configuration may be adopted in which a plurality of ultrasonic beams are transmitted in different directions using a transmitting element.
また、本実施形態の超音波検査装置は、図示を省略した制御部に付属したメモリに格納された超音波画像データ生成プログラムによって制御される。すなわち、制御部によってメモリから超音波画像データ生成プログラムが読み出され、該超音波画像データ生成プログラムに従って、焦点の位置を設定/再設定して、設定/再設定された焦点に応じて、被検者に向けて超音波ビームを送信するとともに、被検者から反射された超音波エコーを受信し、受信して得られた第1の素子データを合成して、第2の素子データを生成する機能が実行される。
Also, the ultrasonic inspection apparatus of the present embodiment is controlled by an ultrasonic image data generation program stored in a memory attached to a control unit (not shown). That is, the control unit reads out the ultrasound image data generation program from the memory, sets / resets the focus position according to the ultrasound image data generation program, and sets the focus position according to the set / reset focus. Transmits an ultrasonic beam toward the examiner, receives an ultrasonic echo reflected from the subject, synthesizes the first element data obtained by the reception, and generates second element data The function to perform is executed.
なお、超音波画像データ生成プログラムは、このように制御部に付属のメモリに格納されるものに限定されず、該超音波画像データ生成プログラムを、例えば、CD-ROMなど、本超音波画像処理装置に着脱可能に構成されるメモリ媒体(リムーバブル媒体)に記録しておき、リムーバブル媒体に対応するインターフェイスを介して本装置に読み込むように構成してもよい。
Note that the ultrasonic image data generation program is not limited to the one stored in the memory attached to the control unit in this way, and the ultrasonic image data generation program may be the present ultrasonic image processing such as a CD-ROM. The information may be recorded in a memory medium (removable medium) configured to be detachable from the apparatus, and read into the apparatus via an interface corresponding to the removable medium.
以上、本発明の超音波検査装置、超音波画像データ生成方法およびプログラムについて詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。
The ultrasonic inspection apparatus, the ultrasonic image data generation method, and the program according to the present invention have been described in detail above. However, the present invention is not limited to the above examples, and various types can be made without departing from the gist of the present invention. Of course, improvements and modifications may be made.
10 超音波検査装置
12 超音波プローブ
14 送信部
16 受信部
18 A/D変換部
20 素子データ記憶部
22 素子データ処理部
24 画像生成部
26 表示制御部
28 表示部
30 制御部
32 操作部
34 格納部
36 振動子アレイ
38 整相加算部
40 検波処理部
42 DSC
44 画像作成部
46 画像メモリ
48 遅延時間算出部
50 重ね合わせ処理部
52 素子
54 反射点
56 送信ビーム
58 焦点
60 受信経路
62 素子データ
64 送信ビーム
66 真の素子データ
68 ゴーストの素子データ
96 焦点設定部
98 焦点再設定部 DESCRIPTION OFSYMBOLS 10 Ultrasonic inspection apparatus 12 Ultrasonic probe 14 Transmission part 16 Reception part 18 A / D conversion part 20 Element data storage part 22 Element data processing part 24 Image generation part 26 Display control part 28 Display part 30 Control part 32 Operation part 34 Storage Unit 36 transducer array 38 phasing addition unit 40 detection processing unit 42 DSC
44Image creation unit 46 Image memory 48 Delay time calculation unit 50 Overlay processing unit 52 Element 54 Reflection point 56 Transmit beam 58 Focus 60 Receive path 62 Element data 64 Transmit beam 66 True element data 68 Ghost element data 96 Focus setting unit 98 Focus reset section
12 超音波プローブ
14 送信部
16 受信部
18 A/D変換部
20 素子データ記憶部
22 素子データ処理部
24 画像生成部
26 表示制御部
28 表示部
30 制御部
32 操作部
34 格納部
36 振動子アレイ
38 整相加算部
40 検波処理部
42 DSC
44 画像作成部
46 画像メモリ
48 遅延時間算出部
50 重ね合わせ処理部
52 素子
54 反射点
56 送信ビーム
58 焦点
60 受信経路
62 素子データ
64 送信ビーム
66 真の素子データ
68 ゴーストの素子データ
96 焦点設定部
98 焦点再設定部 DESCRIPTION OF
44
Claims (18)
- 超音波ビームを用いて検査対象物を検査する超音波診断装置であって、
前記超音波ビームを送信し、かつ、前記検査対象物によって反射された超音波エコーを受信して、受信した超音波エコーに応じたアナログ素子信号を出力する、複数の素子が配列された探触子と、
前記検査対象物内に、複数の送信焦点を設定する焦点設定部と、
前記焦点設定部により設定された送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある送信焦点の位置を異なる位置に再設定する焦点再設定部と、
前記焦点再設定部で所定の範囲外と判断された前記送信焦点、および、再設定された前記送信焦点それぞれに対して、前記探触子に、複数の前記素子を用い、前記超音波ビームを送信させる送信部と、
前記送信焦点それぞれに対する個々の前記超音波ビームの送信に対応して、複数の前記素子が出力したアナログ素子信号を受け、所定の処理を施す受信部と、
前記受信部が処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換部と、
複数の前記超音波ビームの送信で得られた前記第1の素子データから、前記焦点再設定部で再設定された前記送信焦点に前記超音波ビームを送信して得られた前記第1の素子データに対応する第2の素子データを生成する素子データ処理部と、を備えることを特徴とする超音波検査装置。 An ultrasonic diagnostic apparatus for inspecting an inspection object using an ultrasonic beam,
A probe in which a plurality of elements are arranged, which transmits the ultrasonic beam, receives an ultrasonic echo reflected by the inspection object, and outputs an analog element signal corresponding to the received ultrasonic echo With the child,
A focus setting unit for setting a plurality of transmission focal points in the inspection object;
A focus resetting unit that determines whether the position of the transmission focus set by the focus setting unit is within a predetermined range and resets the position of the transmission focus within the predetermined range to a different position;
For each of the transmission focus determined to be out of a predetermined range by the focus resetting unit and the reset transmission focus, a plurality of the elements are used in the probe, and the ultrasonic beam is A transmission unit for transmission;
In response to transmission of the individual ultrasonic beams for each of the transmission focal points, a receiving unit that receives analog element signals output from the plurality of elements and performs predetermined processing;
A / D conversion of the analog element signal processed by the reception unit to obtain first element data which is a digital element signal;
The first element obtained by transmitting the ultrasonic beam from the first element data obtained by transmitting a plurality of the ultrasonic beams to the transmission focus reset by the focus resetting unit. An ultrasonic inspection apparatus, comprising: an element data processing unit that generates second element data corresponding to the data. - 前記焦点再設定部は、前記焦点設定部が設定した送信焦点とは異なる深さに送信焦点を再設定する、請求項1に記載の超音波検査装置。 The ultrasonic inspection apparatus according to claim 1, wherein the focus resetting unit resets the transmission focus to a depth different from the transmission focus set by the focus setting unit.
- 前記焦点再設定部は、前記焦点設定部が設定した前記送信焦点に対して前記超音波ビームを送信するラインと同一ライン上において異なる位置に送信焦点を再設定する、請求項1または2に記載の超音波検査装置。 The focus resetting unit resets the transmission focus at a different position on the same line as the line for transmitting the ultrasonic beam with respect to the transmission focus set by the focus setting unit. Ultrasonic inspection equipment.
- 前記焦点再設定部は、前記焦点設定部により設定された前記送信焦点の深さが所定の深さよりも浅い場合に、該送信焦点の位置を前記焦点設定部により設定された位置よりも深い位置に再設定する請求項1~3のいずれかに記載の超音波検査装置。 When the depth of the transmission focus set by the focus setting unit is shallower than a predetermined depth, the focus resetting unit is a position deeper than the position set by the focus setting unit. The ultrasonic inspection apparatus according to any one of claims 1 to 3, wherein the ultrasonic inspection apparatus is reset to
- 前記焦点再設定部は、前記焦点設定部により設定された前記送信焦点の深さが所定の深さよりも深い場合に、該送信焦点の位置を前記焦点設定部により設定された位置よりも浅い位置に再設定する請求項1~4のいずれかに記載の超音波検査装置。 When the depth of the transmission focus set by the focus setting unit is deeper than a predetermined depth, the focus resetting unit is a position shallower than the position set by the focus setting unit. The ultrasonic inspection apparatus according to any one of claims 1 to 4, wherein the ultrasonic inspection apparatus is reset.
- 前記送信部は、前記送信焦点それぞれに対して、前記探触子に、複数の前記素子を用い、前記超音波ビームを送信させることを、中心となる素子を変更して行わせる請求項1~5のいずれかに記載の超音波検査装置。 The transmission unit causes the probe to use the plurality of elements and transmit the ultrasonic beam to each of the transmission focal points by changing a central element. The ultrasonic inspection apparatus according to any one of 5.
- 前記素子データ処理部は、中心となる素子が異なる、複数の前記超音波ビームの送信で得られた前記第1の素子データを用いる請求項1~6いずれかに記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to any one of claims 1 to 6, wherein the element data processing unit uses the first element data obtained by transmitting a plurality of the ultrasonic beams having different central elements.
- 前記素子データ処理部は、超音波ビームの送信領域が重なり合う、複数の前記超音波ビームの送信で得られた前記第1の素子データを用いる請求項1~7のいずれかに記載の超音波診断装置。 The ultrasonic diagnosis according to any one of claims 1 to 7, wherein the element data processing unit uses the first element data obtained by transmitting a plurality of the ultrasonic beams in which ultrasonic beam transmission areas overlap. apparatus.
- 前記素子データ処理部は、前記素子が超音波エコーを受信した受信時間および前記素子の位置に応じて複数の前記第1の素子データを重ね合わせて、前記第1の素子データに対応する第2の素子データを生成する請求項1~8のいずれかに記載の超音波診断装置。 The element data processing unit superimposes a plurality of the first element data according to a reception time when the element receives an ultrasonic echo and a position of the element, and corresponds to the first element data. The ultrasonic diagnostic apparatus according to any one of claims 1 to 8, wherein the device data is generated.
- 前記素子データ処理部は、前記素子の配列方向に連続する素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の前記第1の素子データを合成して、前記第2の素子データを生成する請求項1~9のいずれかに記載の超音波検査装置。 The element data processing unit synthesizes a plurality of the first element data obtained by transmitting an ultrasonic beam with an element continuous in the arrangement direction of the elements as a center element, and the second element data The ultrasonic inspection apparatus according to any one of claims 1 to 9, wherein element data is generated.
- 前記素子データ処理部は、前記送信焦点が再設定された超音波ビームに対応する中心となる素子の両隣の同数の素子をそれぞれ中心となる素子として超音波ビームを送信して得られた複数の前記第1の素子データを合成して、前記第2の素子データを生成する請求項1~10のいずれかに記載の超音波検査装置。 The element data processing unit is configured to transmit a plurality of ultrasonic beams obtained by transmitting the ultrasonic beam using the same number of elements adjacent to the central element corresponding to the ultrasonic beam whose transmission focus is reset as the central element. The ultrasonic inspection apparatus according to claim 1, wherein the second element data is generated by synthesizing the first element data.
- 前記素子データ処理部は、2以上の前記第1の素子データの遅延時間を算出する遅延時間算出部と、2以上の前記第1の素子データを算出された遅延時間及び受信された前記探触子の素子の位置に基づいて重ね合わせ、前記第2の素子データを生成する重ね合わせ処理部とを有する請求項1~11のいずれかに記載の超音波検査装置。 The element data processing unit includes: a delay time calculation unit that calculates a delay time of two or more first element data; a delay time that calculates two or more first element data; and the received probe The ultrasonic inspection apparatus according to any one of claims 1 to 11, further comprising: an overlapping processing unit that generates a second element data by superimposing based on a position of a child element.
- 前記遅延時間算出部は、事前に取得された前記探触子、前記検査対象物の音速、前記超音波ビームの送信焦点の位置、前記送信部による前記探触子の送信開口、及び前記受信部による前記探触子の受信開口に関する少なくとも1つの情報に基づいて、2以上の前記第1の素子データの遅延時間を算出し、
前記重ね合わせ処理部は、予め設定された、2以上の前記第1の素子データのうち重ね合わせる第1の素子データの数、及び重ね合わせ処理方法に基づいて2以上の前記第1の素子データを重ね合わせ、前記第2の素子データを生成する請求項12に記載の超音波検査装置。 The delay time calculation unit includes the probe acquired in advance, the speed of sound of the inspection object, the position of the transmission focal point of the ultrasonic beam, the transmission opening of the probe by the transmission unit, and the reception unit Calculating a delay time of the two or more first element data based on at least one piece of information regarding the receiving aperture of the probe according to
The superimposition processing unit sets two or more first element data based on a preset number of first element data to be superimposed among the two or more first element data and an overlay processing method. The ultrasonic inspection apparatus according to claim 12, wherein the second element data is generated by superimposing the data. - 前記素子データ処理部は、2以上の前記第1の素子データを、その各々の第1の素子データに対して重み付け係数を掛けた後に、重ね合わせる請求項1~13のいずれかに記載の超音波検査装置。 The super-element according to any one of claims 1 to 13, wherein the element data processing unit superimposes two or more first element data after multiplying each of the first element data by a weighting coefficient. Sonographic equipment.
- 前記送信部は、前記探触子に対して、前記焦点再設定部で所定の範囲内と判断された再設定前の前記送信焦点にも前記超音波ビームを送信させる請求項1~14のいずれかに記載の超音波検査装置。 15. The transmitter according to claim 1, wherein the transmitter causes the probe to transmit the ultrasonic beam to the transmission focal point before resetting that is determined to be within a predetermined range by the focus resetting unit. The ultrasonic inspection apparatus according to Crab.
- 前記受信部が出力した前記第1の素子データのすべてを保持する素子データ保持部を有する請求項1~15のいずれかに記載の超音波検査装置。 16. The ultrasonic inspection apparatus according to claim 1, further comprising an element data holding unit that holds all of the first element data output from the receiving unit.
- 超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、前記超音波ビームを発生して、前記検査対象物を検査し、超音波画像データを生成する超音波画像データ生成方法であって、
前記検査対象物内に、所定の送信焦点を設定する焦点設定ステップと、
前記焦点設定ステップにより設定された前記送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある前記送信焦点の位置を異なる位置に再設定する焦点再設定ステップと、
前記焦点再設定部で所定の範囲外と判断された前記送信焦点、および、再設定された前記送信焦点それぞれに対して、前記探触子に、複数の前記素子を用い、前記超音波ビームを送信させる送信ステップと、
前記送信焦点それぞれに対する個々の前記超音波ビームの送信に対応して、複数の前記素子が出力したアナログ素子信号を受け、所定の処理を施す受信ステップと、
前記受信ステップが処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、
複数の前記超音波ビームの送信で得られた前記第1の素子データから、前記焦点再設定ステップで再設定された前記送信焦点に前記超音波ビームを送信して得られた前記第1の素子データに対応する第2の素子データを生成する素子データ処理ステップと、を有することを特徴とする超音波画像データ生成方法。 The ultrasonic beam is generated by a probe having a plurality of elements that generates each component of the ultrasonic beam, receives an ultrasonic echo reflected in the inspection object, and outputs a received analog signal. An ultrasonic image data generation method for inspecting the inspection object and generating ultrasonic image data,
A focus setting step for setting a predetermined transmission focus in the inspection object;
A focus resetting step for determining whether or not the position of the transmission focus set by the focus setting step is within a predetermined range, and resetting the position of the transmission focus within the predetermined range to a different position;
For each of the transmission focus determined to be out of a predetermined range by the focus resetting unit and the reset transmission focus, a plurality of the elements are used in the probe, and the ultrasonic beam is A transmission step for transmission;
In response to transmission of the individual ultrasonic beams to each of the transmission focal points, a reception step of receiving analog element signals output from the plurality of elements and performing predetermined processing;
A / D conversion of the analog element signal processed in the reception step to obtain first element data that is a digital element signal;
The first element obtained by transmitting the ultrasonic beam from the first element data obtained by transmitting a plurality of the ultrasonic beams to the transmission focus reset by the focus resetting step. And an element data processing step of generating second element data corresponding to the data. - 超音波ビームの各成分を発生し、かつ、検査対象物内で反射された超音波エコーを受信して、受信したアナログ信号を出力する、複数の素子を備える探触子によって、前記超音波ビームを発生して、前記検査対象物を検査し、超音波画像データを生成することをコンピュータに実行させる超音波画像データ生成プログラムであって、
前記検査対象物内に、所定の送信焦点を設定する焦点設定ステップと、
前記焦点設定ステップにより設定された前記送信焦点の位置が、所定の範囲にあるか否かを判断し、所定の範囲にある前記送信焦点の位置を異なる位置に再設定する焦点再設定ステップと、
前記焦点再設定部で所定の範囲外と判断された前記送信焦点、および、再設定された前記送信焦点それぞれに対して、前記探触子に、複数の前記素子を用い、前記超音波ビームを送信させる送信ステップと、
前記送信焦点それぞれに対する個々の前記超音波ビームの送信に対応して、複数の前記素子が出力したアナログ素子信号を受け、所定の処理を施す受信ステップと、
前記受信ステップが処理したアナログ素子信号をA/D変換して、デジタル素子信号である第1の素子データとするAD変換ステップと、
複数の前記超音波ビームの送信で得られた前記第1の素子データから、前記焦点再設定ステップで再設定された前記送信焦点に前記超音波ビームを送信して得られた前記第1の素子データに対応する第2の素子データを生成する素子データ処理ステップと、をコンピュータに実行させることを特徴とする超音波画像データ生成プログラム。 The ultrasonic beam is generated by a probe having a plurality of elements that generates each component of the ultrasonic beam, receives an ultrasonic echo reflected in the inspection object, and outputs a received analog signal. An ultrasonic image data generation program for causing a computer to inspect the inspection object and generate ultrasonic image data,
A focus setting step for setting a predetermined transmission focus in the inspection object;
A focus resetting step for determining whether or not the position of the transmission focus set by the focus setting step is within a predetermined range, and resetting the position of the transmission focus within the predetermined range to a different position;
For each of the transmission focus determined to be out of a predetermined range by the focus resetting unit and the reset transmission focus, a plurality of the elements are used in the probe, and the ultrasonic beam is A transmission step for transmission;
In response to transmission of the individual ultrasonic beams to each of the transmission focal points, a reception step of receiving analog element signals output from the plurality of elements and performing predetermined processing;
A / D conversion of the analog element signal processed in the reception step to obtain first element data that is a digital element signal;
The first element obtained by transmitting the ultrasonic beam from the first element data obtained by transmitting a plurality of the ultrasonic beams to the transmission focus reset by the focus resetting step. An ultrasonic image data generation program causing a computer to execute an element data processing step of generating second element data corresponding to data.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012216215A JP2014068756A (en) | 2012-09-28 | 2012-09-28 | Ultrasonic inspection apparatus, ultrasonic image data generation method and program |
JP2012-216215 | 2012-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014050756A1 true WO2014050756A1 (en) | 2014-04-03 |
Family
ID=50388160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/075535 WO2014050756A1 (en) | 2012-09-28 | 2013-09-20 | Ultrasonic inspection device, method for generating ultrasonic image data, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014068756A (en) |
WO (1) | WO2014050756A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05277116A (en) * | 1992-03-31 | 1993-10-26 | Matsushita Electric Ind Co Ltd | Ultrasonic diagnostic device |
JPH07163569A (en) * | 1993-12-13 | 1995-06-27 | Fujitsu Ltd | Ultrasonic diagnostic system |
JP2002238896A (en) * | 2001-02-21 | 2002-08-27 | Hitachi Medical Corp | Ultrasonic diagnostic apparatus |
JP2003135460A (en) * | 2001-11-01 | 2003-05-13 | Fuji Photo Film Co Ltd | Ultrasonic wave transmission method, ultrasonic wave transmitter, ultrasonic imaging method and unit |
JP2009240700A (en) * | 2008-03-31 | 2009-10-22 | Toshiba Corp | Ultrasonic diagnostic device |
JP2011172611A (en) * | 2010-02-23 | 2011-09-08 | Canon Inc | Ultrasonic imaging device and delay control method |
-
2012
- 2012-09-28 JP JP2012216215A patent/JP2014068756A/en active Pending
-
2013
- 2013-09-20 WO PCT/JP2013/075535 patent/WO2014050756A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05277116A (en) * | 1992-03-31 | 1993-10-26 | Matsushita Electric Ind Co Ltd | Ultrasonic diagnostic device |
JPH07163569A (en) * | 1993-12-13 | 1995-06-27 | Fujitsu Ltd | Ultrasonic diagnostic system |
JP2002238896A (en) * | 2001-02-21 | 2002-08-27 | Hitachi Medical Corp | Ultrasonic diagnostic apparatus |
JP2003135460A (en) * | 2001-11-01 | 2003-05-13 | Fuji Photo Film Co Ltd | Ultrasonic wave transmission method, ultrasonic wave transmitter, ultrasonic imaging method and unit |
JP2009240700A (en) * | 2008-03-31 | 2009-10-22 | Toshiba Corp | Ultrasonic diagnostic device |
JP2011172611A (en) * | 2010-02-23 | 2011-09-08 | Canon Inc | Ultrasonic imaging device and delay control method |
Also Published As
Publication number | Publication date |
---|---|
JP2014068756A (en) | 2014-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5946427B2 (en) | Ultrasonic inspection apparatus, ultrasonic inspection method, program, and recording medium | |
JP5905856B2 (en) | Ultrasonic inspection equipment | |
JP6006249B2 (en) | Acoustic wave processing device, signal processing method and program for acoustic wave processing device | |
JP5905808B2 (en) | Ultrasonic inspection apparatus, ultrasonic image data generation method and program | |
JP6000197B2 (en) | Ultrasonic diagnostic apparatus, ultrasonic image generation method and program | |
US10231709B2 (en) | Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium | |
JP6000196B2 (en) | Ultrasonic diagnostic apparatus, sound speed determination method and program | |
JP6165089B2 (en) | Acoustic wave processing device, signal processing method and program for acoustic wave processing device | |
JP6285241B2 (en) | Acoustic wave processing device, signal processing method and program for acoustic wave processing device | |
JP5964774B2 (en) | Ultrasonic diagnostic apparatus, signal processing method and program for ultrasonic diagnostic apparatus | |
JP5873412B2 (en) | Ultrasonic diagnostic apparatus, sound speed determination method and program | |
US10383601B2 (en) | Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus | |
WO2014192466A1 (en) | Ultrasound diagnostic device, method for generating acoustic ray signal of ultrasound diagnostic device, and program for generating acoustic ray signal of ultrasound diagnostic device | |
WO2014050756A1 (en) | Ultrasonic inspection device, method for generating ultrasonic image data, and program | |
WO2014050847A1 (en) | Ultrasonic diagnosis device, method for generating ultrasonic image data, and program | |
JP6047041B2 (en) | Ultrasonic diagnostic apparatus, signal processing method and program for ultrasonic diagnostic apparatus | |
WO2014050897A1 (en) | Ultrasonic inspection device, method for generating ultrasonic image data, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13842416 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13842416 Country of ref document: EP Kind code of ref document: A1 |