[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014050468A1 - Blood treatment device - Google Patents

Blood treatment device Download PDF

Info

Publication number
WO2014050468A1
WO2014050468A1 PCT/JP2013/073798 JP2013073798W WO2014050468A1 WO 2014050468 A1 WO2014050468 A1 WO 2014050468A1 JP 2013073798 W JP2013073798 W JP 2013073798W WO 2014050468 A1 WO2014050468 A1 WO 2014050468A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
housing
dialysate
blood
11ode
Prior art date
Application number
PCT/JP2013/073798
Other languages
French (fr)
Japanese (ja)
Inventor
泰弘 御幡
純 樫原
Original Assignee
川澄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川澄化学工業株式会社 filed Critical 川澄化学工業株式会社
Priority to JP2014538329A priority Critical patent/JP6203186B2/en
Publication of WO2014050468A1 publication Critical patent/WO2014050468A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/16Specific vents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/21Specific headers, end caps

Definitions

  • the present invention relates to bleeding of a blood processing apparatus used for hemodialysis, blood filtration, hemodiafiltration, plasma separation, and the like. More specifically, the present invention relates to a dialysis solution and a hollow fiber bundle in the housing at the time of priming of the blood treatment apparatus in which the hollow fiber membrane bundle is loaded in the housing (also referred to as “casing”). This is related to the air mixed into the housing or generated air during treatment such as evacuation or dialysis, which is filled with physiological saline solution to expel the air in the housing and hollow fiber membrane bundle)
  • the present invention relates to a novel blood processing apparatus configured to easily perform an operation (air venting) for removing sucrose outside the system.
  • the present invention relates to a blood processing apparatus having a novel obstacle member formed in a housing.
  • a blood treatment device is a device that removes pathogenic substances in blood by utilizing the separation action of a hollow fiber membrane. For example, if a hemodialysis device is taken as an example, a bundle of thousands of hollow fiber membranes is bundled.
  • the blood to be treated blood collected from the patient's vein
  • the dialysate counter-flows outside the hollow fiber membrane (outside the lumen). It flows in (referred to as countercurrent operation).
  • countercurrent operation the concentration difference as a driving force.
  • the blood is permeated and excreted in the dialysate, and the purified blood is returned to the patient's vein.
  • Such a hemodialysis apparatus generally has a structure as shown in FIG. 1, and a hollow fiber membrane bundle 4 is accommodated in a long, tubular (cylindrical) housing 2.
  • a blood inlet 5.1 and outlet 5.2 are formed at both ends, and a dialysate port inlet 7.1 and outlet 7.2 are formed at the outer periphery of the tubular housing near both ends.
  • the main body of the cylindrical housing usually filled with a hollow fiber membrane, is gradually expanded from the small diameter portion 2.1 (which is the diameter of the housing) at both ends via the transition portion 2.3, and the maximum diameter expansion Part (large diameter part 2.2). Both ends of the maximum diameter-expanded portion 2.2 are sealed with cap members 8, and the treated blood inlet 5.1 and outlet 5.2 are formed through the cap members 8 at both ends.
  • the main body of the cylindrical housing usually filled with a hollow fiber membrane
  • the dialysate flowing from the dialysate port formed on the side of the tubular housing crosses the end of the hollow fiber membrane bundle arranged in the longitudinal direction of the housing (substantially at right angles (vertical)).
  • the hollow fiber membrane bundle is damaged by the collision, the arrangement is disturbed, and the treatment efficiency of the hemodialyzer is lowered. Further, blood leaks from the damaged part. The problem arises that driving cannot be continued smoothly.
  • the dialysate cannot be dispersed throughout the hollow fiber membrane bundle (induction of drift), there is also a problem that the efficiency of the dialyzer is significantly reduced.
  • an obstacle member also referred to as “baffle plate (or cylinder)”
  • the dialysate port inlet 7.1 so as to face the port, and the dialysate While the collision between the flow and the hollow fiber membrane bundle is eased, the dialysate is dispersed and rectified to counter-contact with the hollow fiber membrane bundle.
  • the basic purpose of the obstruction member is to improve the dialysis efficiency by improving the inflow state of the dialysis solution.
  • a tongue shape, a plate shape, a rod shape, and an annular shape also referred to as a cylindrical shape or a ring shape
  • the blood processing apparatus has a problem that air (also referred to as air) is mixed with the dialysate during dialysis. If air is mixed in the device, the space occupied by the air will not be a liquid / solid / liquid system, which is formed by dialysate / hollow fiber membrane / blood, which is the premise of dialysis. The diffusion and movement of the pathogenic substance in the blood through the membrane is not smoothly performed, and thus the blood purification efficiency is greatly reduced. Therefore, it is essential to perform priming in advance to remove air existing in the apparatus, and to remove air mixed and accumulated during the dialysis operation as needed.
  • air also referred to as air
  • the air is likely to be stored particularly at the end portion (the enlarged diameter portion or the large diameter portion) of the casing (hereinafter, the space of the large diameter portion where the air is easily stored is referred to as SP).
  • SP the space of the large diameter portion where the air is easily stored
  • These mixed air is air-operated by inclining the casing angle or applying vibration to a blood treatment device (usually operating with the blood inlet at the top and the blood outlet at the bottom).
  • a blood treatment device usually operating with the blood inlet at the top and the blood outlet at the bottom.
  • Patent Document 1 makes it possible to quickly perform a priming operation by enlarging a discharge port of air from the space SP and allowing air to easily escape to the dialysate port outlet direction without staying in the space SP.
  • an inclined portion that is inclined from a long portion toward a short portion is provided.
  • the dialysate shielding part is extended from the base end part of the obstacle member toward the tip part at a position facing the dialysate port inlet of the obstacle member.
  • the inclined part is formed from both ends of the shielding part, and the top end of the shielding part is arranged at substantially the same position as the end part of the opening of the dialysate port inlet on the longitudinal side of the housing.
  • the present applicant pays attention to a conventionally known annular (cylindrical) obstacle member, and based on detailed observations that have been rarely performed on blood treatment apparatuses having such an obstacle member having an entire circumference.
  • annular cylindrical
  • the problem of the present invention is that the function of improving the inflow state of the dialysate and improving the dialysis efficiency of the original obstructing member is not substantially impaired, and air is not rapidly retained in the space. It is providing the obstruction member comprised easily in the dialysate port exit direction, and the blood processing apparatus provided with the said obstruction member.
  • the present invention relates to a blood processing apparatus (1), and the blood processing apparatus is arranged inside a housing (2) along a longitudinal L direction of the housing (2) with a hollow fiber membrane bundle ( 4)
  • the distal DE side and the proximal end PE side of the hollow fiber membrane bundle (4) are fixed to the inner surface of the distal DE side and the proximal end PE side of the housing (2) by the fixing material (3), respectively.
  • a dialysate port inlet (7.1) is mounted on the terminal DE side of the housing (2) and in the direction of the first side S1
  • a dialysate port outlet (7.2) is mounted on the base end PE side of the housing (2) and in the direction of the first side portion S1
  • a blood port outlet (5.2) is mounted on the terminal DE side of the housing (2)
  • a blood port inlet (5.1) is mounted on the proximal end PE side of the housing (2)
  • the obstruction member (11) has a substantially cylindrical shape
  • the obstruction member (11) of the dialysate port inlet (7.1) has a proximal end PE side fixed in the housing (2) and / or
  • the obstruction member (11) of the dialysate port outlet (7.2) has the terminal DE side fixed in the housing (2)
  • the obstacle member (11) forms an opening (11OP) in at least one place in the side S direction
  • the opening (11O) is formed along the longitudinal L direction
  • the opening (11O) has a proximal opening (11OPE) and a distal opening (11ODE)
  • the obstruction member (11) of the dialysate port inlet (7.1) is rounded in the direction of both sides S of the end side opening (11ODE), that is, both the third side S3 side and the fourth side S4 side.
  • Forming part (R) and / or The obstruction member (11) of the dialysate port outlet (7.2) is in the direction of both sides S of the proximal end side opening (11OPE), that is, on both the third side S3 side and the fourth side S4 side.
  • a blood processing device (1) having a rounded portion (R) is provided.
  • the obstruction member (11) of the dialysate port inlet (7.1)
  • the size (WDE) of the terminal side opening (11ODE) Forming larger than the size (WPE) of the proximal opening (11 OPE) and / or
  • the obstruction member (11) at the dialysate port outlet (7.2)
  • the size (WO) of the opening 11O is 0.1 to 49 mm
  • the obstruction member (11) at the dialysate port inlet (7.1) The size (WDE) of the terminal side opening (11ODE) is 0.3 to 55 mm
  • the size (WPE) of the base end side opening (11 OPE) is 0.1 to 45 mm
  • the obstruction member (11) at the dialysate port outlet (7.2) The size (WDE) of the end opening (11ODE) is 0.1 to 45 mm
  • the blood processing device (1) according to [1] or [2] is provided, wherein the size (WPE) of the proximal end side opening (11OPE) is 0.3 to 55 mm.
  • the blood treatment device according to any one of [1] to [3], wherein the curvature radius r of the rounded portion (R) of the opening (11O) is 1 to 60 mm. )I will provide a.
  • the present invention provides the blood processing apparatus (1) according to any one of [1] to [4], wherein the angle ⁇ of the rounded portion (R) is 0 ° to 60 °. .
  • the blood processing apparatus according to any one of [1] to [5], wherein the obstacle member (11) has the openings (11OP) formed at two or more locations in the side S direction.
  • the obstacle member (11) has the openings (11OP) formed at least in the second side S direction. 1) is provided.
  • the function of the original obstacle member 11, which improves the inflow state of the dialysate and substantially improves the dialysis efficiency, is substantially impaired. Without any stagnation and without the air staying in the space SP of the large-diameter portion 2.2 of the housing 2 that is particularly liable to be stored due to the action of the obstruction member, the direction of the proximal end PE of the housing 2 (dialysate port outlet) 7.2 direction) so that the air can be easily removed.
  • FIG. 1 is an overall side view of the blood processing apparatus of the present invention.
  • FIG. 2 is a sectional view in the longitudinal L direction of the blood processing apparatus of the present invention.
  • FIG. 3 is a partially enlarged view of the housing 2 in FIG. 2 on the terminal DE side.
  • FIG. 4 is a side view of FIG. 3 as viewed from the terminal DE side, and S1-S4 indicate positions corresponding to the time position of the timepiece.
  • FIG. 5 is a partially enlarged view seen from the second side S2 direction on the terminal DE side in FIG.
  • FIG. 6 is an enlarged view of the obstacle member as seen from the direction of the second side portion S2 in the slightly proximal direction PE.
  • FIG. 7 is a partially enlarged view of the vicinity of the rounded portion R of the obstacle member.
  • FIG. 1 is an overall side view of the blood processing apparatus of the present invention.
  • FIG. 2 is a sectional view in the longitudinal L direction of the blood processing apparatus of the present invention.
  • FIG. 3 is
  • FIG. 8 is an enlarged view of the obstruction member, where (A) is an enlarged view seen from the base end PE side, and (B) is an enlarged view seen from the terminal DE side.
  • FIG. 9 is a partially enlarged view of the vicinity of the rounded portion R of the obstacle member.
  • FIG. 10 is a partially enlarged view of the vicinity of the rounded portion R of the obstacle member. (In the figure, see the definitions below for the significance of the terminal, proximal, side, etc.)
  • proximal PE side or direction
  • proximal PE side or direction
  • Terminal DE side or direction
  • proximal PE side or direction
  • It means the 2 side (end part).
  • Center axis or center CL center or direction
  • “Longitudinal L (side or direction)” means the longitudinal direction of the housing 2 as shown in FIGS.
  • the “side portion S (side or direction)” means a direction that intersects the longitudinal L direction substantially perpendicularly as shown in FIG.
  • “First side portion S1 (side or direction)” means an end portion on the dialysate port inlet 7.1 side as shown in FIG. Referring to FIG. 4, it means the 9 o'clock direction in terms of the timepiece hand position.
  • “Second side portion S2 (side or direction)” means an end portion on the opposite side to the end portion on the dialysate port inlet 7.1 side, as shown in FIG. Referring to FIG.
  • the position of the timepiece means the 3 o'clock direction.
  • “Third side portion S3 (side or direction)” means “first side portion S1 (side or direction)” and “second side portion S2 (side or direction)” as shown in FIG. (Upper U side) position between.
  • the position of the timepiece means the 12 o'clock direction.
  • “Fourth side portion S4 (side or direction)” means “first side portion S1 (side or direction)” and “second side portion S2 (side or direction)” as shown in FIG. (On the lower D side) between. Referring to FIG. 4, the position of the timepiece means the 6 o'clock direction. (Definition 9) When simply described as “dialysate port 7”, it means both dialysate port inlet 7.1 and dialysate port outlet 7.2.
  • the configuration of the blood processing apparatus 1 of the present invention is as shown in the entire side view of FIG. 1 and the cross-sectional view in the longitudinal L direction of FIG. 2, and more specifically, for example, shown in a partially enlarged view of FIG. It is as follows. That is, the hollow fiber membrane bundle 4 is disposed inside the housing 2 along the longitudinal L direction of the housing 2, and the proximal end PE side and the terminal DE side of the hollow fiber membrane bundle 4 are connected to the housing 2 by the fixing material 3. It is fixed inside. More specifically, the housing 2 has an end DE side (blood outlet side) whose small diameter portion 2... 2 is directed toward the end DE side as illustrated in FIGS. 1, 2, 3, and 5. 1.
  • a dialysate port inlet 7.1 is attached to the first side S1 of the large diameter portion 2.2. Further, the proximal end PE side (blood inlet side) of the housing 2 has a large diameter portion 2.2 via a small diameter portion 2.1 and a transition portion 2.3 toward the proximal end PE side.
  • a dialysate port outlet 7.2 is mounted on the first side S1 of the large diameter portion 2.2.
  • a blood port inlet 5.1 is attached through the proximal end PE side (cap member 8) of the housing 2, and the blood port is placed on the distal DE side (cap member 8) of the housing 2. Passes through outlet 5.2.
  • the dialysate port inlet 7.1 is mounted on the terminal DE side (blood outlet port side) of the housing 2 in the first side S1 direction (clockwise 9 o'clock direction).
  • a dialysate port outlet 7.2 is mounted on the proximal end PE side (blood inlet port side) of the housing 2 in the direction of the first side portion S1.
  • the obstruction member 11 When viewed in the longitudinal direction L of the housing 2, the obstruction member 11 (on the terminal DE side is shielded at the position where the dialysate port inlet 7.1 is formed, as shown in FIG.
  • the terminal DE side obstruction member 11 is provided so as to oppose.
  • the obstruction member 11 proximal end PE side obstruction member 11, not shown
  • the obstruction member 11 is also formed at the position where the dialysate port outlet 7.2 is formed (proximal end PE side). Can be provided.
  • the material forming the housing 2 is not particularly limited.
  • a polycarbonate resin, a polypropylene resin, a polybutylene resin, a polystyrene resin, a polymethyl methacrylate resin, or the like is used, and the fixing material 3 is usually a polyurethane resin. Etc. are used.
  • the hollow fiber membrane is not particularly limited, but a commonly used polysulfone resin, polyether sulfone resin, polyaryl sulfone resin, ethylene-vinyl alcohol copolymer, polyvinyl alcohol resin, Cellulose acetate resin, polyamide resin, polyimide resin, polyacrylonitrile resin and the like are used.
  • the obstacle member 11 on the base PE side on the side where the dialysate port outlet 7.2 is formed is connected to the terminal DE side (on the dialysate port inlet 7.1 side).
  • the “proximal side PE side” of the obstruction member 11 is “terminal side DE side”, “terminal side DE side” is “base side PE side”, and “third side part”. It will be obvious to those skilled in the art that if the “fourth side portion” is replaced with the “fourth side portion”, the “third side portion” is replaced with the “third side portion”, and the same function is obtained. I think that the.
  • the obstacle member 11 has a so-called “substantially cylindrical shape” as illustrated in FIGS. 2, 4, 6, and the like.
  • the substantially cylindrical obstacle member 11 has a base PE side outer peripheral wall (circumferential end surface of the cylindrical body) and an inner peripheral wall (small diameter portion to transition portion) of the housing 2. It is fixed to the wall. More specifically, the obstruction member 11 arranged on the dialysate port inlet 7.1 side has the proximal end PE side fixed in the housing 2, and the obstruction member 11 arranged on the dialysate port outlet 7.2 side is connected to the terminal DE side. Is fixed in the housing 2.
  • the obstruction member 11 may be formed at either the dialysate port inlet 7.1 or the dialysate port outlet 7.2, or may be formed at both. However, it is preferable to form at least the dialysate port inlet 7.1.
  • the obstruction member 11 faces the lower part of the dialysate port at the position from the transition part 2.3 of the housing 2 to the middle of the large diameter part 2.2, that is, the inflow, as shown in FIG.
  • the incoming dialysate is shielded and the influent is dispersed.
  • the substantially cylindrical obstacle member 11 is disposed so as to cover the periphery of the hollow fiber membrane bundle, so that the entire circumference can be protected from the direct hit of the inflowing dialysate.
  • the housing 2 in the blood processing apparatus of the present invention has the large diameter portion 2.2 through the small diameter portion 2.1 and the transition portion 2.3 toward the terminal DE side.
  • the dialysate port inlet 7.1 is attached to the first side S1 of the large diameter portion 2.2.
  • the proximal end PE side has a large diameter portion 2.2 through a small diameter portion 2.1 and a transition portion 2.3 toward the proximal end PE side.
  • a dialysate port outlet 7.2 is attached to one side S1.
  • the obstacle member 11 is formed at a position from the transition portion 2.3 of the housing 2 to the middle of the large diameter portion 2.2.
  • the obstruction member 11 has an opening portion 110 formed on the second side portion S2 side as exemplified in FIGS.
  • the opening 11O having a specific shape is formed in at least one place in the side S direction of the substantially cylindrical obstacle member 11 as described above.
  • the opening 110 may be formed in at least one place in the side S direction.
  • the opening should be formed. Otherwise, it can be formed at any position.
  • the most preferable formation position of the opening portion 110 is the second side portion S2 direction in which air tends to stay as will be described later.
  • There are two or more openings 110 in each direction between S1, S2, S3, S4, S1-S2, between S2-S3, between S3-S4, and between S4-S1). You may arrange in combination.
  • 2 to 6 locations, 2 to 5 locations, 2 to 4 locations, or 2 to 3 locations, etc. are employed.
  • they are (S2 and S3), (S2 and S4), (between S2 and S2-S3), (between S2 and S2-S4), etc. (S2 and S3 and S4), (between S2 and S3 and S2-S3), (between S2 and S3 and S2-S4), (between S2 and S4 and S2-S3), (Between S2, S4, and S2-S4).
  • the number of openings 11O is too large, there is a concern that the function as an original obstacle member (that is, the function of improving the inflow state of dialysate and improving the dialysis efficiency) may be impaired.
  • the dialysate flowing from the dialysate port inlet S1 collides with the cylindrical obstruction member 11 at its 9 o'clock position (NN), and then clockwise along the outer periphery of the cylinder. It flows through a route of (NN ⁇ EE ⁇ SS) and / or counterclockwise (NN ⁇ WW ⁇ SS), and finally reaches a portion SS where an opening is formed. Thereby, the entrained air of the inflowing dialysate also reaches this opening.
  • the opening portion 110 is formed along the longitudinal L direction of the substantially cylindrical obstacle member 11, and the opening portion 110 is formed on the terminal DE side (blood outlet side). ) To the base end PE side (blood inlet side) continuously, that is, penetrating (communicating). As will be described later, mixed bubbles move (rise) from the distal end side to the proximal end side along the flow path, with the opening as a flow path. Therefore, in order for air venting to be performed smoothly, it is necessary for the opening 110 to form a through (communication) flow path.
  • the opening portion 11O penetrating in this way has a terminal side opening portion 11ODE and a base end side opening portion 11OPE to be more accurate.
  • the opening 110 is formed to penetrate.
  • the dialysate port inlet 7.1 is used in this way.
  • the obstructive member 11 disposed opposite to the first is, as a basic idea, the size WDE of the distal side (blood outlet side) opening 11ODE is larger than the size WPE of the proximal side (blood inlet side) opening 11OPE. It is a large formation.
  • the blood processing apparatus is erected and operated, with the large opening 11ODE on the distal side (blood outlet side) being the lower part and the small opening 11OPE on the proximal side (blood inlet side) being the upper part. Installed.
  • the large opening 11ODE which is greatly expanded downward, spreads in a so-called funnel shape, and as shown in FIG. The effect to collect will be played. And, as shown in FIG. 7, the collected small air bubbles Ab collide and coalesce in close proximity to each other while moving along a flow path that gradually narrows upward. Larger bubbles are formed. The large bubbles formed in this manner quickly rise along the hollow fiber membrane bundle and are removed from the system from the dialysate port outlet formed in the upper part of the housing. This is the basic idea of the present invention and has never existed in the past.
  • the transition from the large opening to the small opening is defined as a smooth curve defined by R.
  • the present invention is characterized in that the rounded portions R are formed on both sides of the end opening 11ODE, that is, on both the third side S3 side and the fourth side S4 side. More precisely, the obstruction member 11 at the dialysate port inlet 7.1 is in the direction of both sides S of the end opening 11ODE, that is, both the third side S3 side and the fourth side S4 side. A round portion R is formed.
  • the rounded portion R means that the opening is expressed by a curve as a part of a circular arc.
  • the obstacle member 11 is installed at the dialysate port outlet 7.2 for the sake of safety.
  • the rounded portion R is formed in both sides S direction of the proximal end side opening 11OPE, that is, both the third side S3 side and the fourth side S4 side.
  • RI indicates the starting point of the round portion R (the rounding start point RI, that is, the starting point of the large opening), and RE is the end point of the round portion R (the round end point RE). That is, it is the end point of the large opening and the start point of the small opening).
  • the openings 110 are basically formed at substantially equal intervals (substantially linear) so that the small openings are along the longitudinal direction from the rounded end point RE toward the base end PE direction.
  • the opening 110 is slightly (or slightly) narrower from the rounded end RE toward the base PE so that the small opening is along the longitudinal direction. You may form in what is called a taper taper shape.
  • the size (width) of the opening 11O varies depending on the position, and is defined as follows.
  • the size WO of the opening 11O basically means a linear distance between the third side S3 side and the fourth side S4 side of the equally spaced (substantially linear) portion.
  • the opening portion 110 is formed in a tapered shape, it means a distance between the third side portion S3 side and the fourth side portion S4 side of the rounded end point RE.
  • size WDE of the terminal side opening part 11ODE is the radius start point RI / S3 on the 3rd side part S3 side, and the radius start point on the 4th side part side.
  • the size WPE of the base end side opening 11OPE means the distance between the R end point RE / S3 on the third side S3 side and the R end point RE / S4 on the fourth side S4 side. More precisely, the sizes WDE and WPE, as illustrated in FIG. 8A showing the WPE and FIG. 8B showing the WDE, the third side S3 side end and the fourth side S4 side This means the linear distance (m, m ′) between the ends. Similarly, the size WO means a linear distance.
  • the obstruction member 11 of the dialysate port inlet 7.1 is formed such that the size WDE of the distal side opening 11ODE is larger than the size WPE of the proximal side opening 11OPE.
  • the obstruction member 11 at the dialysate port outlet 7.2 is formed such that the size WPE of the proximal end opening 11OPE is larger than the size WDE of the distal opening 11ODE. It is as follows. (I) The size WO of the opening 11O is 0.1 to 49 mm, preferably 1.5 to 5 mm. (Ii) The obstruction member 11 at the dialysate port inlet 7.1 is formed so that the size WDE of the terminal opening 11ODE is 0.3 to 55 mm, preferably 5 to 20 mm.
  • the size WPE of the base end side opening 11OPE is 0.1 to 45 mm, preferably 1 to 4 mm.
  • the obstruction member 11 at the dialysate port outlet 7.2 is formed so that the size WDE of the terminal opening 11ODE is 0.1 to 45 mm, preferably 1 to 4 mm.
  • the size WPE of the base end side opening 11OPE is 0.3 to 55 mm, preferably 7 to 20 mm.
  • the original obstacle member also referred to as “baffle plate (cylinder)”.
  • the original obstacle member also referred to as “baffle plate (cylinder)”.
  • the size of the opening is formed in the above numerical range, the original function as an obstructing member can be maintained and the air escape effect can be sufficiently achieved.
  • the radius of curvature r of the rounded portion R (which is a part of the arc) is preferably 1 to 60 mm, and more preferably 1.5 to 10 mm.
  • the size WDE of the terminal opening 11ODE can be increased. If the radius of curvature r is too large, for example, exceeding 60 mm, the size WDE of the terminal opening 11ODE becomes too large, and the original obstacle member (also referred to as “baffle plate (cylinder)”) is used.
  • the radius of curvature r is too small, such as less than 1 mm, the size WDE of the terminal opening 11ODE becomes too small, and an air escape effect cannot be expected.
  • the explanation of the radius of curvature r of the obstruction member 11 at the dialysate port outlet 7.2 is “the proximal end opening 11 OPE” is replaced with “the proximal end opening 11 OPE”. Since it is good, detailed description is abbreviate
  • the angle ⁇ of the rounded portion R is defined in order to evaluate the case where the opening 110 is formed in a tapered shape. That is, ⁇ is an inclined line RS and an extension line LL (parallel to the central axis CL) in the vicinity of the end point RE of the rounded portion R, as illustrated in FIG. 10 [an enlarged view further exaggerating a part of the base PE direction in FIG. 9].
  • the angle ⁇ of the R portion defined in this way is a so-called connection angle from the curve of the round portion R to a straight line, and in the present invention, it is formed at 0 ° to 60 °, preferably 1 ° to 5 °. Is good. If the angle ⁇ is too large, for example, exceeding 5 °, the size WDE of the terminal opening 11ODE becomes too large, and the inflow state of the dialysate, which is the original function as an obstacle member, is improved. In addition, the function of improving dialysis efficiency is impaired, which is not preferable. On the other hand, if ⁇ is a very small value such as less than 1 °, the size WDE of the terminal opening 11ODE becomes too small, and an air escape effect cannot be expected.
  • the angle ⁇ is 0 °.
  • the opening portion 110 can be formed in a tapered shape.
  • the explanation of the angle ⁇ of the rounded portion R is as follows. , “Base PE side” is “terminal DE side”, “terminal DE side” is “base PE side” and “terminal side opening 11ODE” is “base side opening” 11OPE ”, and detailed description thereof will be omitted.
  • the dialysate flows from the dialysate port inlet 7.1 (in the first side portion S1 direction) to the terminal DE side (blood outlet side) of the housing 2.
  • the dialysate collides with the wall surface NN on the first side S1 side of the obstacle member 11, and detours along the wall surface EE of the third side portion S3 and / or the wall surface WW of the fourth side portion S4. It moves to the wall surface SS on the second side S2 side.
  • the dialysate flows along the wall surface of the obstacle member 11 in the order of NN ⁇ EE ⁇ SS and / or NN ⁇ WW ⁇ SS. Note that an opening 110 is formed in the SS as shown in the figure.
  • the dialysate flows into the cylinder beyond the circumferential end surface ( ⁇ ) of the substantially cylindrical obstacle member, the flow direction is inevitably in the longitudinal direction of the housing (that is, the hollow fiber membrane). Direction parallel to the bundle). That is, it flows in the direction of the proximal end PE of the housing 2 along the hollow fiber membrane bundle.
  • the air entrained by the dialysate in the large-diameter portion 2.2 of the housing 2 (the transition portion 2.3 to), or generated here, or previously stored in this portion is the dialysate described above.
  • the position of the wall surface on the second side portion S2 side moves to position SS.
  • the air (bubble) Ab that has reached the SS portion moves toward the proximal end opening (11 OPE side) along the rounded portion R of the distal opening 11ODE shown in FIG.
  • the air (bubbles) Ab moves along the flow path formed so as to become gradually narrower upward, and collides with each other to merge and unite. Bubbles Ab are formed. (Or, from the coarse dispersion state of the bubbles, the state becomes a denser bubble group Ab.)
  • the large air bubbles (or close bubble groups) formed in this way are further along the hollow fiber membrane bundle.
  • the inside of the housing quickly rises, and is finally removed from the dialysate port outlet formed at the top of the housing.
  • the obstacle member of the present invention is formed so as to be gradually narrowed from the wide opening as defined by the distal opening 11ODE and the rounded portion R. Quick removal to the PE side is promoted.
  • Example 1 (Test equipment) (1) The test which confirms the air bleeding effect of the obstruction member 11 (cylindrical shape in which a single opening portion 110 is formed) in the blood processing apparatus 1 of the present invention was conducted.
  • the blood processing apparatus 1 used was the one shown in FIGS. 1 and 2 and subjected to high-pressure steam sterilization.
  • the hollow fiber membrane bundle 4 is made of polysulfone resin and has a membrane area of 2.0 m 2
  • the fixing material 3 is a polyurethane resin (manufactured by Nippon Polyurethane Industry Co., Ltd.). However, (i) the end portion of the fixing material 3 (polyurethane resin) was cut, and (ii) the blood ports (5.1, 5.2) were welded to the housing 2.
  • the opening part 110 has a shape as shown in FIG. 6 and has a size WO: 2.7 mm and a size WDE of the opening part 11 ODE on the terminal side (blood outlet side): 10.8 mm, the size WPE of the proximal end (blood inlet side) opening 11OPE: 2.4 mm, and the radius R, the radius of curvature r of the radius R shown in FIG. 9 is 4 mm, as shown in FIG. An angle ⁇ of the rounded portion R was formed at 2 °.
  • a liquid feed pump was disposed in the middle of the silicone tube connected to the dialysate port inlet 7.1 side.
  • a silicone tube filled with pure water (distilled water) in advance is clamped with a clamp, and pure water (distilled) from the clamped position to the connector opening. Connection was made after removing (water). If the inner volume of the tube from which this water was removed is Va, the tube will contain air of volume Va.)
  • Example 1 the blood processing apparatus of the present invention (Example) has less air remaining than the blood processing apparatus of the comparative example, and air leakage during dialysis fluid priming is reduced. It was confirmed that there is an effect that makes it very easy.
  • Example 2 Comparative Example 2 (Test equipment)
  • the test was performed by changing the size WO of the opening portion 110.
  • the blood processing apparatus is basically the same as that of the first embodiment except that the end of the fixing material 3 (polyurethane resin) is not cut and the blood port (5.1, 5.2) is a housing. It differs only in that it is not welded to 2.
  • Test results The results of evaluation items (1) and (2) are summarized in Table 2. From Table 2, the blood treatment apparatus for the obstacle member in which the opening of the present invention (Example 2) is formed is more air priming than the blood treatment apparatus for the obstacle member in which the opening of Comparative Example 2 is not formed. It was confirmed that the removal effect was remarkably improved. It has been confirmed that the time until the air escapes can be shortened by increasing the size of the opening 11O.
  • the flow around the inlet of the dialysate was confirmed in detail by visual inspection (photographing) using this obstructing member, but the supplied dialysate did not directly collide with the hollow fiber membrane bundle as in the initial purpose. It was confirmed that the flow was favorably distributed as a flow from the circumferential end of the end of the obstructive member toward the center.
  • the function of the obstacle member is not substantially impaired, and air introduced into the apparatus that lowers the efficiency of the apparatus can be promptly retained without remaining in the apparatus space. Since a blood processing device with an obstacle member that can easily be pulled out of the device is provided, the industrial applicability in the medical field where blood processing devices such as hemodialysis, blood filtration, hemodiafiltration, and plasma separation are used. Is big.

Landscapes

  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is a blood treatment device configured, without impairing the original function of obstruction members, in such a manner that air can easily and quickly flows in the direction of the dialysis solution outlet port of a housing (2) without staying in the space of the housing (2). In a view in the longitudinal direction of the housing (2), obstruction members (11) having a substantially circular cylindrical shape are disposed at the position where a dialysis solution inlet port (7.1) is formed and/or at the position where a dialysis solution outlet port (7.2) is formed. The obstruction members (11) each have an opening (11OP) which is formed in at least one place facing the direction of a side section (S) and which extends in the longitudinal (L) direction. Each of the openings (11O) has a proximal end opening (11OPE) having a smaller width and also has a distal end opening (11ODE) having a larger width. The distal end opening (11ODE) and/or the proximal end opening (11OPE) is configured so that the distal end opening (11ODE) and/or the proximal end opening (11OPE) has rounded sections (R) formed so as to face the directions of both side sections (S), and so that the opening degree of the opening(11OPE, 11ODE) changes gradually.

Description

血液処理装置Blood treatment equipment
 本発明は、血液透析、血液ろ過、血液透析ろ過、及び血漿分離等に用いる血液処理装置のエアー抜きに関する。より詳しくは、本発明は、中空糸膜束をハウジング(「ケーシング」ともいう)の内部に装填した血液処理装置のプライミング時(透析治療の開始直前に、当該ハウジング内に透析液、中空糸束内部に生理食塩水溶液を充填して、ハウジング内及び中空糸膜束内のエアーを追い出す作業)のエアー抜きや、透析等の治療中において、ハウジング内に混入するエアー、又は発生するエアーに関し、それを系外に除去する操作(エアー抜き)を容易に行えるように構成した新規な血液処理装置に関する。
 本発明は特に、ハウジング内に形成した、新規な障害部材を備えた血液処理装置に関する。
The present invention relates to bleeding of a blood processing apparatus used for hemodialysis, blood filtration, hemodiafiltration, plasma separation, and the like. More specifically, the present invention relates to a dialysis solution and a hollow fiber bundle in the housing at the time of priming of the blood treatment apparatus in which the hollow fiber membrane bundle is loaded in the housing (also referred to as “casing”). This is related to the air mixed into the housing or generated air during treatment such as evacuation or dialysis, which is filled with physiological saline solution to expel the air in the housing and hollow fiber membrane bundle) The present invention relates to a novel blood processing apparatus configured to easily perform an operation (air venting) for removing sucrose outside the system.
In particular, the present invention relates to a blood processing apparatus having a novel obstacle member formed in a housing.
 血液処理装置とは、中空糸膜の分離作用を利用して、血液中の病因物質を除去する装置であって、例えば血液透析装置を例に取れば、中空糸膜を通常数千本束ねた中空糸膜束内(管腔内)を、処理対象の血液(患者の静脈より採取される血液)が流れ、これに対して透析液が中空糸膜外(管腔外)をこれと向流で流れる(向流操作という。)。かくして、処理血液と透析液が膜を介して間接的に接触する当該向流操作中に、血液中の病因物質、過剰イオン、水等が、その濃度差を推進力として、膜内を拡散して透過し、透析液中に排泄され、浄化された血液が患者の静脈中に戻される操作を行う装置である。 A blood treatment device is a device that removes pathogenic substances in blood by utilizing the separation action of a hollow fiber membrane. For example, if a hemodialysis device is taken as an example, a bundle of thousands of hollow fiber membranes is bundled. The blood to be treated (blood collected from the patient's vein) flows inside the hollow fiber membrane bundle (inside the lumen), while the dialysate counter-flows outside the hollow fiber membrane (outside the lumen). It flows in (referred to as countercurrent operation). Thus, during the counter-current operation in which the treated blood and dialysate contact indirectly through the membrane, pathogenic substances, excess ions, water, etc. in the blood diffuse within the membrane using the concentration difference as a driving force. The blood is permeated and excreted in the dialysate, and the purified blood is returned to the patient's vein.
 このような血液透析装置は、一般的に図1に示したような構造を有するもので、長尺で管状(筒状)のハウジング2内に、中空糸膜束4が収容され、当該ハウジングの両端部には処理血液の入口5.1、出口5.2が、また両端部近傍の管状ハウジングの外周には、透析液ポート入口7.1、出口7.2が形成されている。通常中空糸膜が充填された、筒状のハウジングの本体は、その両端において(ハウジングの直径である)小径部2.1から、移行部2.3を経て徐々に拡径され、最大拡径部(大径部2.2)に至る。この最大拡径部2.2の両端部は、キャップ部材8を装着されて封止されており、上記処理血液入口5.1、出口5.2はこの両端のキャップ部材8を貫通して形成されている。 Such a hemodialysis apparatus generally has a structure as shown in FIG. 1, and a hollow fiber membrane bundle 4 is accommodated in a long, tubular (cylindrical) housing 2. A blood inlet 5.1 and outlet 5.2 are formed at both ends, and a dialysate port inlet 7.1 and outlet 7.2 are formed at the outer periphery of the tubular housing near both ends. The main body of the cylindrical housing, usually filled with a hollow fiber membrane, is gradually expanded from the small diameter portion 2.1 (which is the diameter of the housing) at both ends via the transition portion 2.3, and the maximum diameter expansion Part (large diameter part 2.2). Both ends of the maximum diameter-expanded portion 2.2 are sealed with cap members 8, and the treated blood inlet 5.1 and outlet 5.2 are formed through the cap members 8 at both ends. Has been.
 この場合、管状ハウジングの側部に形成された透析液ポートから流入する透析液は、ハウジングの長手方向に配列された中空糸膜束の端部に対して交差するように(略直角(垂直)方向から)直接衝突することになるので、当該衝突により中空糸膜束は破損したり、配置が乱され、ひいては血液透析装置の処理効率が低下したり、さらには血液が破損部から漏出して運転がスムースに継続できないという問題が生ずる。また、透析液が中空糸膜束全体に分散させることができなくなるので(偏流の惹起)、この点からも透析装置の効率が著しく低下するという問題がある。
 かかる問題に対処するため、従来、透析液ポート入口7.1の下部に、当該ポートに対向するように障害部材(「バッフル板(又は円筒)などともいう。」)を設置して、透析液流と中空糸膜束との衝突を和らげるとともに、透析液を分散、かつ、整流して中空糸膜束との向流接触を図るようにしている。すなわち、障害部材の基本的な目的は、包括的に言えば、透析液の流入状態を改善し、透析効率を向上させるものである。かかる障害部材の形状としては、従来、舌状、板状、棒状、さらには環状(円筒状、リング状ともいう)のものが提案され、実施されている。
In this case, the dialysate flowing from the dialysate port formed on the side of the tubular housing crosses the end of the hollow fiber membrane bundle arranged in the longitudinal direction of the housing (substantially at right angles (vertical)). The hollow fiber membrane bundle is damaged by the collision, the arrangement is disturbed, and the treatment efficiency of the hemodialyzer is lowered. Further, blood leaks from the damaged part. The problem arises that driving cannot be continued smoothly. In addition, since the dialysate cannot be dispersed throughout the hollow fiber membrane bundle (induction of drift), there is also a problem that the efficiency of the dialyzer is significantly reduced.
In order to cope with such a problem, conventionally, an obstacle member (also referred to as “baffle plate (or cylinder)”) is installed below the dialysate port inlet 7.1 so as to face the port, and the dialysate While the collision between the flow and the hollow fiber membrane bundle is eased, the dialysate is dispersed and rectified to counter-contact with the hollow fiber membrane bundle. That is, the basic purpose of the obstruction member is to improve the dialysis efficiency by improving the inflow state of the dialysis solution. As the shape of the obstruction member, conventionally, a tongue shape, a plate shape, a rod shape, and an annular shape (also referred to as a cylindrical shape or a ring shape) have been proposed and implemented.
 一方、血液処理装置には、透析操作中に透析液と共に空気(エアーともいう。)が混入するという問題がある。装置内に空気が混入すると、その空気が占める空間は、透析が進行する前提となる、透析液/中空糸膜/血液で形成される、液/固/液系の構成が成立しなくなるので、血液中の病因物質等の膜を通しての拡散移動が円滑に行われず、そのため血液浄化効率が大幅に低下する。その為に、あらかじめプライミングを行い、装置内に存在する空気を除去し、また、透析操作中に混入、蓄積してくる空気を随時除去することが必須である。当該空気は、特にケーシングの端部(拡径部又は大径部)において貯留しやすい(以下、空気の貯留し易い大径部の空間をSPとする。)。これら混入空気は、血液処理装置(通常血液入口を上部に、血液出口を下部にして立設して操作する。)を、当該ケーシング角度を傾けたり、振動を与えて、透析液出口側に空気泡を移動させてエアー抜きを行っているが、この操作は非常に煩雑であり、また、装置を振動させたりすることはその管理上危険である。
 特に障害部材を設置している場合は、当該障害部材の形状により、空気が当該障害部材によりスムースなエアー抜き操作が妨害されるという問題もあった。
On the other hand, the blood processing apparatus has a problem that air (also referred to as air) is mixed with the dialysate during dialysis. If air is mixed in the device, the space occupied by the air will not be a liquid / solid / liquid system, which is formed by dialysate / hollow fiber membrane / blood, which is the premise of dialysis. The diffusion and movement of the pathogenic substance in the blood through the membrane is not smoothly performed, and thus the blood purification efficiency is greatly reduced. Therefore, it is essential to perform priming in advance to remove air existing in the apparatus, and to remove air mixed and accumulated during the dialysis operation as needed. The air is likely to be stored particularly at the end portion (the enlarged diameter portion or the large diameter portion) of the casing (hereinafter, the space of the large diameter portion where the air is easily stored is referred to as SP). These mixed air is air-operated by inclining the casing angle or applying vibration to a blood treatment device (usually operating with the blood inlet at the top and the blood outlet at the bottom). Although air removal is performed by moving bubbles, this operation is very complicated, and it is dangerous in terms of management to vibrate the apparatus.
In particular, when an obstacle member is installed, there is a problem in that the obstructing member obstructs a smooth air venting operation due to the shape of the obstacle member.
 本出願人は、先に、特許文献1において、上記した課題を解決するための障害部材を備えた血液処理装置の発明を提案した。
 特許文献1は、空間SPからのエアーの排出口を大きくし、エアーが当該空間SPに滞留することなく速やかに透析液ポート出口方向へ抜けやすくなることで、プライミング作業を速やかに行うことができる血液処理装置であって、その障害部材の形状として、透析液ポート入口近傍から透析液ポート入口と反対側に向かうに従って、基端部から先端部までの長さが短くなるように形成し、かつ、長い部分から短い部分に向けて傾斜する傾斜部を備えるように構成している。そして、当該障害部材の透析液ポート入口と対向する位置には、障害部材の基端部から先端部に向けて、透析液の遮蔽部を延設している。
 このように遮蔽部の両端から傾斜部を形成し、遮蔽部の先端頂部は、透析液ポート入口の開口部のハウジングの長さ方向側の端部の位置と実質的に同位置に配置している。
The present applicant has previously proposed an invention of a blood processing apparatus including an obstacle member for solving the above-described problem in Patent Document 1.
Patent Document 1 makes it possible to quickly perform a priming operation by enlarging a discharge port of air from the space SP and allowing air to easily escape to the dialysate port outlet direction without staying in the space SP. A blood treatment device, wherein the obstructing member is formed such that the length from the proximal end portion to the distal end portion becomes shorter from the vicinity of the dialysate port inlet toward the opposite side of the dialysate port inlet, and In addition, an inclined portion that is inclined from a long portion toward a short portion is provided. And the dialysate shielding part is extended from the base end part of the obstacle member toward the tip part at a position facing the dialysate port inlet of the obstacle member.
In this way, the inclined part is formed from both ends of the shielding part, and the top end of the shielding part is arranged at substantially the same position as the end part of the opening of the dialysate port inlet on the longitudinal side of the housing. Yes.
特開2010-162171号公報JP 2010-162171 A
 本出願人が特許文献1において提案した血液処理装にかかる発明においては、障害部材の基端部から先端部までの長さが短くなるように形成することにより、透析液ポート入口と反対側の障害部材の面積を削減しているので、透析液と共に流入するエアーが当該空間に滞留することなく速やかに透析液ポート出口方向へ抜けやすくなるという利点がある。しかしながら、その反面、障害部材の面積を必要以上に過度に削減し過ぎることになり、本来の障害部材としての機能である、透析液の流入状態を改善し、透析効率を向上させるという機能、を損なうという大きな懸念があることを認識した。 In the invention relating to the blood treatment device proposed by the present applicant in Patent Document 1, by forming the obstacle member so that the length from the proximal end portion to the distal end portion is shortened, the opposite side of the dialysate port inlet is formed. Since the area of the obstruction member is reduced, there is an advantage that the air that flows in together with the dialysate can easily escape to the dialysate port outlet direction without staying in the space. However, on the other hand, the area of the obstacle member is excessively reduced more than necessary, and the function as an original obstacle member, which is to improve the dialysis fluid inflow state and improve the dialysis efficiency, Recognized that there was a great concern of damaging.
 さらに本出願人は、従来公知の環状(円筒状)の障害部材に着目し、このような全周を有する障害部材を形成した血液処理装置について、従来ほとんど行われていなかった詳細な観察を元にした検討を行ったところ、透析液ポート入口と反対側位置において、透析液等と共に流入してきたエアーの滞留が起こりやすいという事実があることを見いだした。
 本発明の課題はかくして、本来の障害部材の、透析液の流入状態を改善し、透析効率を向上させるという機能を実質的に損なうことが無く、しかも、エアーが当該空間に滞留することなく速やかに透析液ポート出口方向へ抜けやすく構成した障害部材及び当該障害部材を備えた血液処理装置を提供することである。
Further, the present applicant pays attention to a conventionally known annular (cylindrical) obstacle member, and based on detailed observations that have been rarely performed on blood treatment apparatuses having such an obstacle member having an entire circumference. As a result of the investigation, it was found that there is a tendency that the air flowing in together with the dialysate or the like tends to stay at a position opposite to the dialysate port inlet.
Thus, the problem of the present invention is that the function of improving the inflow state of the dialysate and improving the dialysis efficiency of the original obstructing member is not substantially impaired, and air is not rapidly retained in the space. It is providing the obstruction member comprised easily in the dialysate port exit direction, and the blood processing apparatus provided with the said obstruction member.
 本出願人はかかる観点から、鋭意検討を重ねた結果、上記した課題を達成した障害部材を備えた以下の血液処理装置の発明に到達した。 As a result of intensive studies from this point of view, the present applicant has arrived at the invention of the following blood treatment apparatus provided with the obstacle member that has achieved the above-described problems.
[1] 本発明は、血液処理装置(1)に関するものであって、当該血液処理装置は、ハウジング(2)の内部に、当該ハウジング(2)の長手L方向に沿って中空糸膜束(4)を配置し、
 当該中空糸膜束(4)の末端DE側と基端PE側を、それぞれ固定材(3)により前記ハウジング(2)の末端DE側と基端PE側内面に固定し、
 前記ハウジング(2)の末端DE側で、かつ第1側部S1方向に、透析液ポート入口(7.1)を装着し、
 前記ハウジング(2)の基端PE側で、かつ第1側部S1方向に、透析液ポート出口(7.2)を装着し、
 前記ハウジング(2)の末端DE側に、血液ポート出口(5.2)を装着し、
 前記ハウジング(2)の基端PE側に、血液ポート入口(5.1)を装着し、
 前記ハウジング(2)の長手L方向に見て、前記透析液ポート入口(7.1)及び/又は前記透析液ポート出口(7.2)を形成した位置に対応する位置に、障害部材(11)を配置し、
 前記障害部材(11)は、略円筒状の形態を有し、
 前記透析液ポート入口(7.1)の障害部材(11)は、基端PE側を、前記ハウジング(2)内に固定し、及び/又は、
 前記透析液ポート出口(7.2)の障害部材(11)は、末端DE側を、前記ハウジング(2)内に固定し、
 当該障害部材(11)は、側部S方向の少なくとも一箇所に開口部(11OP)を形成し、
 当該開口部(11O)は、長手L方向に沿うように形成し、
 当該開口部(11O)は、基端側開口部(11OPE)と末端側開口部(11ODE)とを有し、
 前記透析液ポート入口(7.1)の障害部材(11)は、当該末端側開口部(11ODE)の両側部S方向、すなわち第3側部S3側と第4側部S4側の両方にアール部(R)を形成し、及び/又は、
 前記透析液ポート出口(7.2)の障害部材(11)は、当該基端側開口部(11OPE)の両側部S方向、すなわち第3側部S3側と第4側部S4側の両方にアール部(R)を形成した血液処理装置(1)を提供する。
[1] The present invention relates to a blood processing apparatus (1), and the blood processing apparatus is arranged inside a housing (2) along a longitudinal L direction of the housing (2) with a hollow fiber membrane bundle ( 4)
The distal DE side and the proximal end PE side of the hollow fiber membrane bundle (4) are fixed to the inner surface of the distal DE side and the proximal end PE side of the housing (2) by the fixing material (3), respectively.
A dialysate port inlet (7.1) is mounted on the terminal DE side of the housing (2) and in the direction of the first side S1,
A dialysate port outlet (7.2) is mounted on the base end PE side of the housing (2) and in the direction of the first side portion S1,
A blood port outlet (5.2) is mounted on the terminal DE side of the housing (2);
A blood port inlet (5.1) is mounted on the proximal end PE side of the housing (2),
When viewed in the longitudinal direction L of the housing (2), the obstruction member (11) is located at a position corresponding to the position where the dialysate port inlet (7.1) and / or the dialysate port outlet (7.2) is formed. )
The obstruction member (11) has a substantially cylindrical shape,
The obstruction member (11) of the dialysate port inlet (7.1) has a proximal end PE side fixed in the housing (2) and / or
The obstruction member (11) of the dialysate port outlet (7.2) has the terminal DE side fixed in the housing (2),
The obstacle member (11) forms an opening (11OP) in at least one place in the side S direction,
The opening (11O) is formed along the longitudinal L direction,
The opening (11O) has a proximal opening (11OPE) and a distal opening (11ODE),
The obstruction member (11) of the dialysate port inlet (7.1) is rounded in the direction of both sides S of the end side opening (11ODE), that is, both the third side S3 side and the fourth side S4 side. Forming part (R) and / or
The obstruction member (11) of the dialysate port outlet (7.2) is in the direction of both sides S of the proximal end side opening (11OPE), that is, on both the third side S3 side and the fourth side S4 side. A blood processing device (1) having a rounded portion (R) is provided.
[2] 本発明は、前記透析液ポート入口(7.1)の障害部材(11)は、
 前記末端側開口部(11ODE)の大きさ(WDE)を、
 前記基端側開口部(11OPE)の大きさ(WPE)よりも大きく形成し、及び/又は、
 前記透析液ポート出口(7.2)の障害部材(11)は、
 前記基端側開口部(11OPE)の大きさ(WPE)を
 前記末端側開口部(11ODE)の大きさ(WDE)よりも大きく形成した[1]に記載の血液処理装置(1)を提供する。
[3] 本発明は、開口部11Oの大きさ(WO)は、0.1~49mm、
 前記透析液ポート入口(7.1)の障害部材(11)は、
 末端側開口部(11ODE)の大きさ(WDE)は、0.3~55mm、
 基端側開口部(11OPE)の大きさ(WPE)は、0.1~45mmに形成し、及び/又は、
 前記透析液ポート出口(7.2)の障害部材(11)は、
 末端側開口部(11ODE)の大きさ(WDE)は、0.1~45mm、
 基端側開口部(11OPE)の大きさ(WPE)は、0.3~55mmに形成した[1]または[2]に記載の血液処理装置(1)を提供する。
[2] In the present invention, the obstruction member (11) of the dialysate port inlet (7.1)
The size (WDE) of the terminal side opening (11ODE)
Forming larger than the size (WPE) of the proximal opening (11 OPE) and / or
The obstruction member (11) at the dialysate port outlet (7.2)
The blood processing apparatus (1) according to [1], wherein the size (WPE) of the proximal end opening (11OPE) is larger than the size (WDE) of the distal opening (11ODE). .
[3] In the present invention, the size (WO) of the opening 11O is 0.1 to 49 mm,
The obstruction member (11) at the dialysate port inlet (7.1)
The size (WDE) of the terminal side opening (11ODE) is 0.3 to 55 mm,
The size (WPE) of the base end side opening (11 OPE) is 0.1 to 45 mm, and / or
The obstruction member (11) at the dialysate port outlet (7.2)
The size (WDE) of the end opening (11ODE) is 0.1 to 45 mm,
The blood processing device (1) according to [1] or [2] is provided, wherein the size (WPE) of the proximal end side opening (11OPE) is 0.3 to 55 mm.
[4] 本発明は、開口部(11O)のアール部(R)の曲率半径rは、1~60mmに形成した[1]から[3]のいずれか1項に記載の血液処理装置(1)を提供する。
[5] 本発明は、前記アール部(R)の角度θは、0°~60°に形成した[1]から[4]のいずれか1項に記載の血液処理装置(1)を提供する。
[6]  本発明は、障害部材(11)は、側部S方向の二箇所以上に前記開口部(11OP)を形成した[1]から[5]のいずれか1項に記載の血液処理装置(1)を提供する。
[7] 本発明は、障害部材(11)は、少なくとも第2側部S方向に前記開口部(11OP)を形成した[1]から[6]のいずれか1項に記載の血液処理装置(1)を提供する。
[4] The blood treatment device according to any one of [1] to [3], wherein the curvature radius r of the rounded portion (R) of the opening (11O) is 1 to 60 mm. )I will provide a.
[5] The present invention provides the blood processing apparatus (1) according to any one of [1] to [4], wherein the angle θ of the rounded portion (R) is 0 ° to 60 °. .
[6] The blood processing apparatus according to any one of [1] to [5], wherein the obstacle member (11) has the openings (11OP) formed at two or more locations in the side S direction. Provide (1).
[7] The blood processing apparatus according to any one of [1] to [6], wherein the obstacle member (11) has the opening (11OP) formed at least in the second side S direction. 1) is provided.
 本発明で規定する特定の障害部材11を備えた血液処理装置によれば、本来の障害部材11の機能である、透析液の流入状態を改善し、透析効率を向上させる機能を実質的に損なうことなく、かつ、当該障害部材の作用によりエアーが、特に貯留し易いハウジング2の大径部2.2の空間SPに滞留することなく速やかにハウジング2の基端部PE方向(透析液ポート出口7.2方向)へ抜けやすいので、容易にエアー抜き操作を行うことができる。 According to the blood processing apparatus provided with the specific obstacle member 11 defined in the present invention, the function of the original obstacle member 11, which improves the inflow state of the dialysate and substantially improves the dialysis efficiency, is substantially impaired. Without any stagnation and without the air staying in the space SP of the large-diameter portion 2.2 of the housing 2 that is particularly liable to be stored due to the action of the obstruction member, the direction of the proximal end PE of the housing 2 (dialysate port outlet) 7.2 direction) so that the air can be easily removed.
図1は、本発明の血液処理装置の全体側面図である。FIG. 1 is an overall side view of the blood processing apparatus of the present invention. 図2は、本発明の血液処理装置の長手L方向の断面図である。FIG. 2 is a sectional view in the longitudinal L direction of the blood processing apparatus of the present invention. 図3は、図2のハウジング2の末端DE側の一部拡大図である。FIG. 3 is a partially enlarged view of the housing 2 in FIG. 2 on the terminal DE side. 図4は、図3を末端DE側からみた側面図であり、S1-S4は時計の時刻の位置に対応した位置を示す。FIG. 4 is a side view of FIG. 3 as viewed from the terminal DE side, and S1-S4 indicate positions corresponding to the time position of the timepiece. 図5は、図1の末端DE側で、第2側部S2方向から見た一部拡大図である。FIG. 5 is a partially enlarged view seen from the second side S2 direction on the terminal DE side in FIG. 図6は、障害部材のやや基端PE方向で、かつ第2側部S2方向から見た拡大図である。FIG. 6 is an enlarged view of the obstacle member as seen from the direction of the second side portion S2 in the slightly proximal direction PE. 図7は、障害部材のアール部R付近の一部拡大図である。FIG. 7 is a partially enlarged view of the vicinity of the rounded portion R of the obstacle member. 図8は、障害部材の拡大図であり、(A)は基端PE側から見た拡大図、(B)は末端DE側からみた拡大図である。FIG. 8 is an enlarged view of the obstruction member, where (A) is an enlarged view seen from the base end PE side, and (B) is an enlarged view seen from the terminal DE side. 図9は、障害部材のアール部R付近の一部拡大図である。FIG. 9 is a partially enlarged view of the vicinity of the rounded portion R of the obstacle member. 図10は、障害部材のアール部R付近の一部拡大図である。(図において、末端、基端、側部等の意義については、以下の定義を参照のこと。)FIG. 10 is a partially enlarged view of the vicinity of the rounded portion R of the obstacle member. (In the figure, see the definitions below for the significance of the terminal, proximal, side, etc.)
 以下、図面を参照しながら本発明を詳細に説明する。
(定義)
 なお、本発明を明確に説明し、その技術内容を正確に理解していただくため、図面の記載を基礎として次の定義をおく。
(定義1)本発明で、「基端PE(側または方向)」とは、血液ポートの位置、すなわち血液の入口、出口を基準とした概念であって、図1、図2に示すように、血液ポート入口5.1側(の端部)を意味する。
(定義2)「末端DE(側または方向)」とは、図1、図2に示すように、「基端PE(側または方向)」と反対側の端部、すなわち、血液ポート出口5.2側(の端部)を意味する。
(定義3)「中心軸線ないし中心CL(側または方向)」とは、図1、図2に示すように、ハウジング2の長手L方向の中心(図の破線参照)を意味する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
(Definition)
In order to clearly explain the present invention and to understand its technical contents accurately, the following definitions are made based on the description of the drawings.
(Definition 1) In the present invention, “proximal PE (side or direction)” is a concept based on the position of the blood port, that is, the blood inlet and outlet, as shown in FIGS. , Means the blood port inlet 5.1 side (end).
(Definition 2) “Terminal DE (side or direction)” means an end opposite to “proximal PE (side or direction)”, that is, blood port outlet 5. It means the 2 side (end part).
(Definition 3) “Center axis or center CL (side or direction)” means the center in the longitudinal L direction of the housing 2 (see the broken line in the figure), as shown in FIGS.
(定義4)「長手L(側または方向)」とは、図1、図2に示すように、ハウジング2の長尺方向を意味する。
「側部S(側または方向)」とは、図1に示すように、長手L方向と略垂直に交わる方向を意味する。
(定義5)「第1側部S1(側または方向)」とは、図1に示すように、透析液ポート入口7.1側の端部を意味する。図4を参考にして、時計の針の位置で言えば9時方向を意味する。
(定義6)「第2側部S2(側または方向)」とは、図1に示すように、透析液ポート入口7.1側の端部と反対側の端部を意味する。図4を参考にして、時計の針の位置で言えば3時方向を意味する。
(定義7)「第3側部S3(側または方向)」とは、図4に示すように、第1側部S1(側または方向)」と「第2側部S2(側または方向)」との間の(上部U側の)位置を意味する。図4を参考にして、時計の針の位置で言えば12時方向を意味する。
(Definition 4) “Longitudinal L (side or direction)” means the longitudinal direction of the housing 2 as shown in FIGS.
The “side portion S (side or direction)” means a direction that intersects the longitudinal L direction substantially perpendicularly as shown in FIG.
(Definition 5) “First side portion S1 (side or direction)” means an end portion on the dialysate port inlet 7.1 side as shown in FIG. Referring to FIG. 4, it means the 9 o'clock direction in terms of the timepiece hand position.
(Definition 6) “Second side portion S2 (side or direction)” means an end portion on the opposite side to the end portion on the dialysate port inlet 7.1 side, as shown in FIG. Referring to FIG. 4, the position of the timepiece means the 3 o'clock direction.
(Definition 7) “Third side portion S3 (side or direction)” means “first side portion S1 (side or direction)” and “second side portion S2 (side or direction)” as shown in FIG. (Upper U side) position between. Referring to FIG. 4, the position of the timepiece means the 12 o'clock direction.
(定義8)「第4側部S4(側または方向)」とは、図4に示すように、第1側部S1(側または方向)」と「第2側部S2(側または方向)」との間の(下部D側の)位置を意味する。図4を参考にして、時計の針の位置で言えば6時方向を意味する。
(定義9)単に「透析液ポート7」と記載する場合は、透析液ポート入口7.1と透析液ポート出口7.2の両方を意味する。
(Definition 8) “Fourth side portion S4 (side or direction)” means “first side portion S1 (side or direction)” and “second side portion S2 (side or direction)” as shown in FIG. (On the lower D side) between. Referring to FIG. 4, the position of the timepiece means the 6 o'clock direction.
(Definition 9) When simply described as “dialysate port 7”, it means both dialysate port inlet 7.1 and dialysate port outlet 7.2.
(各部の名称の位置・配置等の方向性を示す符号の記載について)
 本発明の図面及び発明の説明の中で、例えば図6に例示するように、アール開始点RIの符号で表し、第3側部S3側のアール開始点を「RI/S3」と記載した。
 なおこれらのアール開始点RI並びにこれら以外の各部の名称で、「第3側部S3側」等の位置・配置等の方向性を示す符号は、発明の理解ができ、必要と認められる範囲内で、図面及び発明の説明の中で一部のみについて記載した。
(Regarding the description of the signs indicating the direction of the position and arrangement of the names of each part)
In the drawings of the present invention and the description of the invention, for example, as illustrated in FIG. 6, the R start point RI is represented by the symbol, and the R start point on the third side portion S3 side is described as “RI / S3”.
It should be noted that the sign indicating the direction of the position / arrangement, such as “the third side S3 side”, in the names of these R starting points RI and other parts, is within the range where the invention can be understood and recognized as necessary. In the drawings and description of the invention, only a part has been described.
(血液処理装置の概要)     
 本発明の血液処理装置1の構成は、図1の全体側面図や、図2の長手L方向の断面図に示したとおりであり、より詳しくは、例えば図5の一部拡大図に示したとおりである。すなわち、ハウジング2の内部に、ハウジング2の長手L方向に沿って中空糸膜束4を配置し、中空糸膜束4の基端PE側と、末端DE側とを、固定材3によりハウジング2内に固定している。
 さらに詳述すれば、ハウジング2は、その末端DE側(血液出口側)は、図1、図2、図3、図5に例示するように、当該末端DE側に向けて、小径部2.1、移行部2.3を介して、大径部2.2を有する。大径部2.2の第1側部S1に透析液ポート入口7.1を装着している。
 またハウジング2の基端PE側(血液入口側)は、基端PE側に向けて小径部2.1、移行部2.3を介して、大径部2.2を有する。大径部2.2の第1側部S1に透析液ポート出口7.2を装着している。
(Outline of blood treatment equipment)
The configuration of the blood processing apparatus 1 of the present invention is as shown in the entire side view of FIG. 1 and the cross-sectional view in the longitudinal L direction of FIG. 2, and more specifically, for example, shown in a partially enlarged view of FIG. It is as follows. That is, the hollow fiber membrane bundle 4 is disposed inside the housing 2 along the longitudinal L direction of the housing 2, and the proximal end PE side and the terminal DE side of the hollow fiber membrane bundle 4 are connected to the housing 2 by the fixing material 3. It is fixed inside.
More specifically, the housing 2 has an end DE side (blood outlet side) whose small diameter portion 2... 2 is directed toward the end DE side as illustrated in FIGS. 1, 2, 3, and 5. 1. It has a large diameter part 2.2 via a transition part 2.3. A dialysate port inlet 7.1 is attached to the first side S1 of the large diameter portion 2.2.
Further, the proximal end PE side (blood inlet side) of the housing 2 has a large diameter portion 2.2 via a small diameter portion 2.1 and a transition portion 2.3 toward the proximal end PE side. A dialysate port outlet 7.2 is mounted on the first side S1 of the large diameter portion 2.2.
 図1に示すように、ハウジング2の基端PE側(のキャップ部材8)に貫通して、血液ポート入口5.1を装着し、ハウジング2の末端DE側(のキャップ部材8)に血液ポート出口5.2を貫通、装着している。
 そして、図4に示すように、ハウジング2の末端DE側(血液出口ポート側)で、第1側部S1方向(時計の9時方向)に、透析液ポート入口7.1を装着し、図1に示すように、ハウジング2の基端PE側(血液入口ポート側)で、第1側部S1方向に、透析液ポート出口7.2を装着している。
 ハウジング2の長手L方向に見て、透析液ポート入口7.1を形成した位置に、図2-3に示すように、流入する透析液を遮蔽するように、末端DE側に障害部材11(末端DE側障害部材11)を対向させて設けている。
 同様に、装置を反転して使用する場合を考慮して、透析液ポート出口7.2を形成した位置(基端PE側)にも、障害部材11(基端PE側障害部材11、図示せず)を設けることができる。
As shown in FIG. 1, a blood port inlet 5.1 is attached through the proximal end PE side (cap member 8) of the housing 2, and the blood port is placed on the distal DE side (cap member 8) of the housing 2. Passes through outlet 5.2.
Then, as shown in FIG. 4, the dialysate port inlet 7.1 is mounted on the terminal DE side (blood outlet port side) of the housing 2 in the first side S1 direction (clockwise 9 o'clock direction). As shown in FIG. 1, a dialysate port outlet 7.2 is mounted on the proximal end PE side (blood inlet port side) of the housing 2 in the direction of the first side portion S1.
When viewed in the longitudinal direction L of the housing 2, the obstruction member 11 (on the terminal DE side is shielded at the position where the dialysate port inlet 7.1 is formed, as shown in FIG. The terminal DE side obstruction member 11) is provided so as to oppose.
Similarly, in consideration of the case where the apparatus is used by being reversed, the obstruction member 11 (proximal end PE side obstruction member 11, not shown) is also formed at the position where the dialysate port outlet 7.2 is formed (proximal end PE side). Can be provided.
 ここでハウジング2を形成する材料として、特に限定するものではないが例えば、ポリカーボネート樹脂、ポリプロピレン樹脂、ポリブチレン樹脂、ポリスチレン樹脂、ポリメチルメタクリレート樹脂等が使用され、固定材3としては、通常ポリウレタン系樹脂などが使用される。
 また、本発明において、中空糸膜としては、特に限定するものではないが、通常使用されるポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリアリールスルフォン樹脂、エチレン-ビニルアルコール共重合体、ポリビニルアルコール樹脂、セルロースアセテート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアクリロニトリル樹脂等が使用される。
Here, the material forming the housing 2 is not particularly limited. For example, a polycarbonate resin, a polypropylene resin, a polybutylene resin, a polystyrene resin, a polymethyl methacrylate resin, or the like is used, and the fixing material 3 is usually a polyurethane resin. Etc. are used.
Further, in the present invention, the hollow fiber membrane is not particularly limited, but a commonly used polysulfone resin, polyether sulfone resin, polyaryl sulfone resin, ethylene-vinyl alcohol copolymer, polyvinyl alcohol resin, Cellulose acetate resin, polyamide resin, polyimide resin, polyacrylonitrile resin and the like are used.
(障害部材)
 以下、説明の便宜上、末端DE側(血液出口ポート側)の障害部材11の例について説明する。
 これは、図1、図2のような血液処理装置1においては、末端DE側と基端PE側との位置を単に反転して(ハウジングの上下を逆さまにし、血液入口ポートと出口ポートを入れ替えれば)そのまま使用できることは、当業者において自明であるため、基端PE側の障害部材11については、あえて説明する必要は無いと考えられるからである。
 ここで血液処理装置を反転して使用する場合において、透析液ポート出口7.2を形成した側の基端PE側の障害部材11は、(透析液ポート入口7.1側の)末端DE側の障害部材11の「基端側PE側」とあるのを『末端側DE側』と、「末端側DE側」とあるのを『基端側PE側』と、「第3側部」とあるのを『第4側部』と、「第4側部」とあるのを『第3側部』と、それぞれ読み替えれば、同様の機能を有することは、当業者であれば自明であると思われる。
(Obstacle member)
Hereinafter, for convenience of explanation, an example of the obstruction member 11 on the terminal DE side (blood outlet port side) will be described.
In the blood treatment apparatus 1 as shown in FIGS. 1 and 2, the positions of the terminal DE side and the base end PE side are simply reversed (the housing is turned upside down, and the blood inlet port and the outlet port can be switched. This is because, since it is obvious to those skilled in the art that it can be used as it is, it is considered that there is no need to explain the obstacle member 11 on the base end PE side.
Here, when the blood processing apparatus is inverted and used, the obstacle member 11 on the base PE side on the side where the dialysate port outlet 7.2 is formed is connected to the terminal DE side (on the dialysate port inlet 7.1 side). The “proximal side PE side” of the obstruction member 11 is “terminal side DE side”, “terminal side DE side” is “base side PE side”, and “third side part”. It will be obvious to those skilled in the art that if the “fourth side portion” is replaced with the “fourth side portion”, the “third side portion” is replaced with the “third side portion”, and the same function is obtained. I think that the.
 本発明において、障害部材11は、図2、図4、図6等に例示するようにいわゆる「略円筒状」を有している。
 またこの略円筒状の障害部材11は、図2、図3に例示するように基端PE側外周壁(円筒状体の円周端面)を、ハウジング2の内周壁(小径部乃至移行部の壁面)に固定している。
 さらにいえば、透析液ポート入口7.1側に配置した障害部材11は、基端PE側をハウジング2内に固定し、透析液ポート出口7.2側に配置した障害部材11は末端DE側を、ハウジング2内に固定している。(先に定義したように、血液ポート入口側が基端側、血液ポート出口側が末端側である。)
 すでに述べたように、障害部材11は、透析液ポート入口7.1または透析液ポート出口7.2のどちらか一方に形成すればよく、両方に形成してもよい。ただし、少なくとも透析液ポート入口7.1に形成することが好ましい。
 障害部材11は、ハウジング2の移行部2.3から大径部2.2の途中にいたるまでの位置において、図2-3に示すように、透析液ポートの下部に対向して、すなわち流入してくる透析液を遮蔽し、流入液を分散させるような態様で形成している。
 より詳しくは、この略円筒状の障害部材11は、これを中空糸膜束の周囲を覆うように配設することにより、その全周を、流入する透析液の直撃より保護することができる。
In the present invention, the obstacle member 11 has a so-called “substantially cylindrical shape” as illustrated in FIGS. 2, 4, 6, and the like.
In addition, as shown in FIGS. 2 and 3, the substantially cylindrical obstacle member 11 has a base PE side outer peripheral wall (circumferential end surface of the cylindrical body) and an inner peripheral wall (small diameter portion to transition portion) of the housing 2. It is fixed to the wall.
More specifically, the obstruction member 11 arranged on the dialysate port inlet 7.1 side has the proximal end PE side fixed in the housing 2, and the obstruction member 11 arranged on the dialysate port outlet 7.2 side is connected to the terminal DE side. Is fixed in the housing 2. (As defined above, the blood port inlet side is the proximal side, and the blood port outlet side is the distal side.)
As already described, the obstruction member 11 may be formed at either the dialysate port inlet 7.1 or the dialysate port outlet 7.2, or may be formed at both. However, it is preferable to form at least the dialysate port inlet 7.1.
The obstruction member 11 faces the lower part of the dialysate port at the position from the transition part 2.3 of the housing 2 to the middle of the large diameter part 2.2, that is, the inflow, as shown in FIG. The incoming dialysate is shielded and the influent is dispersed.
More specifically, the substantially cylindrical obstacle member 11 is disposed so as to cover the periphery of the hollow fiber membrane bundle, so that the entire circumference can be protected from the direct hit of the inflowing dialysate.
(障害部材の開口部)
 すでに述べたように、本発明の血液処理装置におけるハウジング2は、末端DE側に向けて、小径部2.1、移行部2.3を介して、大径部2.2を有するものであり、その大径部2.2の第1側部S1に透析液ポート入口7.1を装着している。
 また基端PE側は、基端PE側に向けて小径部2.1、移行部2.3を介して、大径部2.2を有するものであるが、大径部2.2の第1側部S1に透析液ポート出口7.2を装着している。
 そして、いずれの場合においても、障害部材11は、ハウジング2の移行部2.3から大径部2.2の途中にいたるまでの位置において形成している。
(Opening of obstacle member)
As described above, the housing 2 in the blood processing apparatus of the present invention has the large diameter portion 2.2 through the small diameter portion 2.1 and the transition portion 2.3 toward the terminal DE side. The dialysate port inlet 7.1 is attached to the first side S1 of the large diameter portion 2.2.
Further, the proximal end PE side has a large diameter portion 2.2 through a small diameter portion 2.1 and a transition portion 2.3 toward the proximal end PE side. A dialysate port outlet 7.2 is attached to one side S1.
In any case, the obstacle member 11 is formed at a position from the transition portion 2.3 of the housing 2 to the middle of the large diameter portion 2.2.
 本発明において、障害部材11は、例えば図5、図6に例示するように第2側部S2側に、開口部11Oを形成している。
 本発明の血液処理装置1の特徴の一つは、このように、略円筒状の障害部材11の側部S方向の少なくとも一箇所に、特定の形状の開口部11Oを形成した点である。
 開口部11Oは、図4に示すように、側部S方向の少なくとも一箇所に形成すればよい。ただし、障害部材の本来の機能である流入する透析液を遮蔽し、これが直接に中空糸膜束に衝突することを防止する観点からは、少なくとも、第1側部S1方向ないし第1側部S1方向近傍を除いて、開口部を形成すべきであり、これ以外であれば、任意の位置に形成可能である。
In the present invention, the obstruction member 11 has an opening portion 110 formed on the second side portion S2 side as exemplified in FIGS.
One of the features of the blood processing apparatus 1 of the present invention is that the opening 11O having a specific shape is formed in at least one place in the side S direction of the substantially cylindrical obstacle member 11 as described above.
As shown in FIG. 4, the opening 110 may be formed in at least one place in the side S direction. However, from the viewpoint of shielding the inflowing dialysate, which is the original function of the obstacle member, and preventing this from directly colliding with the hollow fiber membrane bundle, at least the direction from the first side S1 to the first side S1. Except for the vicinity of the direction, the opening should be formed. Otherwise, it can be formed at any position.
 例えば、図4を参照して、第2側部S2方向、第3側部S3方向、第4側部S4方向、第1側部S1方向と第2側部S2方向との間、第2側部S2方向と第3側部S3方向との間、第3側部S3方向と第4側部S4方向との間、第4側部S4方向と第1側部S1方向との間等である。
 開口部11Oの最も好ましい形成位置は、後記するようにエアーが滞留しやすい第2側部S2方向である。
 開口部11Oは、前記各方向(S1、S2、S3、S4、S1-S2との間、S2-S3との間、S3-S4との間、S4-S1との間)に、二箇所以上組み合わせて配置してもよい。例えば二箇所~六箇所、二箇所~五箇所、二箇所~四箇所、又は二箇所~三箇所等が採用される。
 例えば、二箇所配置する場合は、(S2とS3)、(S2とS4)、(S2とS2-S3との間)、(S2とS2-S4との間)等であり、三箇所配置する場合は、(S2とS3とS4)、(S2とS3とS2-S3との間)、(S2とS3とS2-S4との間)、(S2とS4とS2-S3との間)、(S2とS4とS2-S4との間)等である。
 開口部11Oの配置数は、あまり多くすると、本来の障害部材としての機能(すなわち、透析液の流入状態を改善し、透析効率を向上させる機能)を損なうという懸念があるので好ましくない。
For example, referring to FIG. 4, the second side S2 direction, the third side S3 direction, the fourth side S4 direction, the first side S1 direction and the second side S2 direction, the second side Between the part S2 direction and the third side part S3 direction, between the third side part S3 direction and the fourth side part S4 direction, between the fourth side part S4 direction and the first side part S1 direction, etc. .
The most preferable formation position of the opening portion 110 is the second side portion S2 direction in which air tends to stay as will be described later.
There are two or more openings 110 in each direction (between S1, S2, S3, S4, S1-S2, between S2-S3, between S3-S4, and between S4-S1). You may arrange in combination. For example, 2 to 6 locations, 2 to 5 locations, 2 to 4 locations, or 2 to 3 locations, etc. are employed.
For example, when two places are arranged, they are (S2 and S3), (S2 and S4), (between S2 and S2-S3), (between S2 and S2-S4), etc. (S2 and S3 and S4), (between S2 and S3 and S2-S3), (between S2 and S3 and S2-S4), (between S2 and S4 and S2-S3), (Between S2, S4, and S2-S4).
If the number of openings 11O is too large, there is a concern that the function as an original obstacle member (that is, the function of improving the inflow state of dialysate and improving the dialysis efficiency) may be impaired.
(開口部の機能)
 以下開口部11Oを、最も基本的な第2側部S2方向に一箇所形成した場合の機能(作用)について説明する。
 図4を参照するに、透析液ポート入口S1から流入した透析液は、円筒状障害部材11と、その9時の位置(NN)において衝突し、次に当該円筒の外周に沿って、時計回り(NN→EE→SS)及び/又は反時計回り(NN→WW→SS)の経路を流れ、最終的に開口部が形成されている部位SSに到達する。これにより、流入透析液の同伴空気もこの開口部に到達することになる。(なお、透析液の一部はこの流路の途中で、円筒状障害部材の端面をオーバーフローし、当該オーバーフローした透析液は、(障害部材内に回り込むことにより)長手方向Lの流れとなり、中空糸膜束の端面から、中空糸膜束に沿って流入し、望ましい向流操作が実現される。)
(Function of opening)
Hereinafter, the function (action) when the opening 110 is formed in one place in the most basic second side S2 direction will be described.
Referring to FIG. 4, the dialysate flowing from the dialysate port inlet S1 collides with the cylindrical obstruction member 11 at its 9 o'clock position (NN), and then clockwise along the outer periphery of the cylinder. It flows through a route of (NN → EE → SS) and / or counterclockwise (NN → WW → SS), and finally reaches a portion SS where an opening is formed. Thereby, the entrained air of the inflowing dialysate also reaches this opening. (Note that a part of the dialysate overflows the end face of the cylindrical obstruction member in the middle of this flow path, and the overflowed dialysate becomes a flow in the longitudinal direction L (by entering the obstruction member) and is hollow (From the end face of the yarn membrane bundle, it flows along the hollow fiber membrane bundle, and a desirable countercurrent operation is realized.)
 開口部11Oは、最も代表的な図6に例示するように、略円筒状の障害部材11の長手L方向に沿うように形成しており、当該開口部11Oは、末端DE側(血液出口側)から基端部PE側(血液入口側)に、連続して、すなわち貫通(連通)して形成している。これは、後述するように、混入する気泡は、この開口部を流路として、当該流路にそって末端側から基端側へと移動(上昇)する。したがって、エアー抜きがスムースに行われるためには、当該開口部11Oは貫通(連通)した流路を形成していることが必要なのである。
 このように貫通している開口部11Oは、より正確に述べれば、末端側開口部11ODEと基端側開口部11OPEとを有する。
As illustrated in the most typical example of FIG. 6, the opening portion 110 is formed along the longitudinal L direction of the substantially cylindrical obstacle member 11, and the opening portion 110 is formed on the terminal DE side (blood outlet side). ) To the base end PE side (blood inlet side) continuously, that is, penetrating (communicating). As will be described later, mixed bubbles move (rise) from the distal end side to the proximal end side along the flow path, with the opening as a flow path. Therefore, in order for air venting to be performed smoothly, it is necessary for the opening 110 to form a through (communication) flow path.
The opening portion 11O penetrating in this way has a terminal side opening portion 11ODE and a base end side opening portion 11OPE to be more accurate.
 本発明においては、例えば末端DE側(血液出口側)の障害部材11において、貫通する開口部11Oを形成するものであるが、ここで注意すべきは、このように透析液ポート入口7.1に対向して配置される障害部材11は、まず基本的な発想として、末端側(血液出口側)開口部11ODEのサイズWDEを、基端側(血液入口側)開口部11OPEのサイズWPEよりも大きく形成したことである。通常、血液処理装置は、立設されて操作されるものであり、末端側(血液出口側)の大開口部11ODEが下部、基端側(血液入口側)の小開口部11OPEが上部となるように設置される。 In the present invention, for example, in the obstruction member 11 on the terminal DE side (blood outlet side), the opening 110 is formed to penetrate. However, it should be noted here that the dialysate port inlet 7.1 is used in this way. The obstructive member 11 disposed opposite to the first is, as a basic idea, the size WDE of the distal side (blood outlet side) opening 11ODE is larger than the size WPE of the proximal side (blood inlet side) opening 11OPE. It is a large formation. Normally, the blood processing apparatus is erected and operated, with the large opening 11ODE on the distal side (blood outlet side) being the lower part and the small opening 11OPE on the proximal side (blood inlet side) being the upper part. Installed.
 このような状況であるから、下方を向いて大きく拡張している大開口部11ODEは、いわば漏斗状に広がっており、図7に示したように、混入し、上昇してくる空気泡Abを捕集する作用を奏することになる。そして、捕集された小空気泡Abは、図7に示すように、上方に向けて徐々に細くなる流路に沿って移動する内に、互いに近接して衝突・合一(coalescence)し、より大きな気泡が形成される。このようにして形成された大きな気泡は、中空糸膜束に沿って速やかに上昇し、ハウジング上部に形成された透析液ポート出口から系外に除かれる。これが本発明の基本的な発想であり、従来には全く存在しなかったものである。(なお、小空気泡が仮に合一しない場合でも、広い範囲に分散していた気泡が、流路が狭くなるにつれてより狭い範囲に高い密度で集まり一群の空気泡となるため、エアー抜け操作ははるかに容易、確実に行われる。) Because of this situation, the large opening 11ODE, which is greatly expanded downward, spreads in a so-called funnel shape, and as shown in FIG. The effect to collect will be played. And, as shown in FIG. 7, the collected small air bubbles Ab collide and coalesce in close proximity to each other while moving along a flow path that gradually narrows upward. Larger bubbles are formed. The large bubbles formed in this manner quickly rise along the hollow fiber membrane bundle and are removed from the system from the dialysate port outlet formed in the upper part of the housing. This is the basic idea of the present invention and has never existed in the past. (Note that even if the small air bubbles do not coalesce, the air bubbles dispersed in a wide range gather in a narrower range with a higher density as the flow path becomes narrower, forming a group of air bubbles. Much easier and more reliable.)
 かかる基本的な発想にもとづき、本発明においては、さらに当該気泡の捕集機能をより完全に行うため、当該大開口部から小開口部への遷移を、Rで規定されるなめらかな曲線として規定することにより最も効果的な気泡の捕集を実現することができる。
 以上の状況において、本発明においては、末端側開口部11ODEの両側、すなわち、第3側部S3側と第4側部S4側の両方にアール部Rを形成することを特徴としている。
 この点について、さらに正確に述べれば、透析液ポート入口7.1の障害部材11は、末端側開口部11ODEの両側部S方向、すなわち第3側部S3側と第4側部S4側の両方にアール部Rを形成する。(ここでアール部Rとは、この開口部が円弧の一部としての曲線で表現されることをいう。)(なお、念のため、透析液ポート出口7.2に障害部材11を設置する場合は、基端側開口部11OPEの両側部S方向、すなわち第3側部S3側と第4側部S4側の両方にアール部Rを形成する。)
Based on this basic idea, in the present invention, in order to perform the bubble collection function more completely, the transition from the large opening to the small opening is defined as a smooth curve defined by R. By doing so, the most effective bubble collection can be realized.
In the above situation, the present invention is characterized in that the rounded portions R are formed on both sides of the end opening 11ODE, that is, on both the third side S3 side and the fourth side S4 side.
More precisely, the obstruction member 11 at the dialysate port inlet 7.1 is in the direction of both sides S of the end opening 11ODE, that is, both the third side S3 side and the fourth side S4 side. A round portion R is formed. (Here, the rounded portion R means that the opening is expressed by a curve as a part of a circular arc.) (Note that the obstacle member 11 is installed at the dialysate port outlet 7.2 for the sake of safety. In the case, the rounded portion R is formed in both sides S direction of the proximal end side opening 11OPE, that is, both the third side S3 side and the fourth side S4 side.)
 ここで、アール部についてさらに詳しくは、図6中、RIはアール部Rの開始点(アール開始点RI、すなわち大開口部の開始点)を示し、REはアール部Rの終点(アール終点RE、すなわち大開口部の終点であり、小開口部の開始点)を示している。
(A)開口部11Oは、アール終点REから基端PE方向に向けて、小開口部が長手方向に沿うように、実質的に等間隔(略直線状)に形成することが基本であるが、場合によっては、(B)開口部11Oは、アール終点REから基端PE方向に向けて、当該小開口部が長手方向に沿うように、若干(または僅かに)間隔が狭くなるように、いわゆる先細りテーパー状に形成してもよい。
Here, in more detail about the round portion, in FIG. 6, RI indicates the starting point of the round portion R (the rounding start point RI, that is, the starting point of the large opening), and RE is the end point of the round portion R (the round end point RE). That is, it is the end point of the large opening and the start point of the small opening).
(A) The openings 110 are basically formed at substantially equal intervals (substantially linear) so that the small openings are along the longitudinal direction from the rounded end point RE toward the base end PE direction. In some cases, (B) the opening 110 is slightly (or slightly) narrower from the rounded end RE toward the base PE so that the small opening is along the longitudinal direction. You may form in what is called a taper taper shape.
 開口部11Oの大きさ(幅)については図6に示したように、位置によって異なるものであり、以下のとおり規定される。
 開口部11Oの大きさWOとは、基本的には、等間隔(略直線状)部分の第3側部S3側と、第4側部S4側との間の直線距離を意味する。
 開口部11Oを先細りテーパー状に形成した場合は、アール終点REの第3側部S3側と、第4側部S4側との間の距離を意味する。
 そして開口部11Oの両端部における大きさ(幅)については、末端側開口部11ODEの大きさWDEは、第3側部S3側のアール開始点RI/S3と第4側部側のアール開始点RI/S4との間の距離を意味する。
 また、基端側開口部11OPEの大きさWPEは、第3側部S3側のアール終点RE/S3と第4側部S4側のアール終点RE/S4との間の距離を意味する。
 大きさWDE、WPEについてより正確には、WPEを示す図8(A)、WDEを示す図8(B)に例示するように、第3側部S3側端部と、第4側部S4側端部との間の直線距離(m、m´)を意味する。大きさWOも同様に直線距離を意味する。
As shown in FIG. 6, the size (width) of the opening 11O varies depending on the position, and is defined as follows.
The size WO of the opening 11O basically means a linear distance between the third side S3 side and the fourth side S4 side of the equally spaced (substantially linear) portion.
When the opening portion 110 is formed in a tapered shape, it means a distance between the third side portion S3 side and the fourth side portion S4 side of the rounded end point RE.
And about the magnitude | size (width | variety) in the both ends of the opening part 11O, the magnitude | size WDE of the terminal side opening part 11ODE is the radius start point RI / S3 on the 3rd side part S3 side, and the radius start point on the 4th side part side. This means the distance to RI / S4.
The size WPE of the base end side opening 11OPE means the distance between the R end point RE / S3 on the third side S3 side and the R end point RE / S4 on the fourth side S4 side.
More precisely, the sizes WDE and WPE, as illustrated in FIG. 8A showing the WPE and FIG. 8B showing the WDE, the third side S3 side end and the fourth side S4 side This means the linear distance (m, m ′) between the ends. Similarly, the size WO means a linear distance.
 上記したように、本発明においては、透析液ポート入口7.1の障害部材11は、末端側開口部11ODEの大きさWDEを、基端側開口部11OPEの大きさWPEよりも大きく形成し、透析液ポート出口7.2の障害部材11は、基端側開口部11OPEの大きさWPEを末端側開口部11ODEの大きさWDEよりも大きく形成しているが、具体的な好ましい数値は以下のとおりである。
(i)開口部11Oの大きさWOは、0.1~49mm、好ましくは、1.5~5mmに形成するのが良い。
(ii)透析液ポート入口7.1の障害部材11は、末端側開口部11ODEの大きさWDEは、0.3~55mm、好ましくは、5~20mmに形成するのが良い。
 基端側開口部11OPEの大きさWPEは、0.1~45mm、好ましくは、1~4mmに形成するのが良い。
(iii)透析液ポート出口7.2の障害部材11は、末端側開口部11ODEの大きさWDEは、0.1~45mm、好ましくは、1~4mmに形成するのが良い。
 基端側開口部11OPEの大きさWPEは、0.3~55mm、好ましくは、7~20mmに形成するのが良い。
As described above, in the present invention, the obstruction member 11 of the dialysate port inlet 7.1 is formed such that the size WDE of the distal side opening 11ODE is larger than the size WPE of the proximal side opening 11OPE. The obstruction member 11 at the dialysate port outlet 7.2 is formed such that the size WPE of the proximal end opening 11OPE is larger than the size WDE of the distal opening 11ODE. It is as follows.
(I) The size WO of the opening 11O is 0.1 to 49 mm, preferably 1.5 to 5 mm.
(Ii) The obstruction member 11 at the dialysate port inlet 7.1 is formed so that the size WDE of the terminal opening 11ODE is 0.3 to 55 mm, preferably 5 to 20 mm.
The size WPE of the base end side opening 11OPE is 0.1 to 45 mm, preferably 1 to 4 mm.
(Iii) The obstruction member 11 at the dialysate port outlet 7.2 is formed so that the size WDE of the terminal opening 11ODE is 0.1 to 45 mm, preferably 1 to 4 mm.
The size WPE of the base end side opening 11OPE is 0.3 to 55 mm, preferably 7 to 20 mm.
 開口部11Oの大きさWO、末端側開口部11ODEの大きさWDE、及び基端側開口部11OPEの大きさWPEは、あまり大きく形成すると、本来の障害部材(「バッフル板(筒)ともいう」)としての機能(すなわち、透析液の流入状態を改善し、透析効率を向上させるという機能)を損なうという懸念があるので好ましくなく、一方、あまり小さく形成すると、エアー抜け効果が妨害されることになり、好ましくない。上記数値範囲に開口部の大きさを形成すると、障害部材としての本来の機能を維持しつつ、しかも、エアー抜け効果も十分に奏することが可能となる。 If the size WO of the opening 11O, the size WDE of the distal opening 11ODE, and the size WPE of the proximal opening 11OPE are formed too large, the original obstacle member (also referred to as “baffle plate (cylinder)”). ) (I.e., the function of improving the inflow state of dialysis fluid and improving the dialysis efficiency), which is unfavorable. It is not preferable. If the size of the opening is formed in the above numerical range, the original function as an obstructing member can be maintained and the air escape effect can be sufficiently achieved.
(アール部Rの曲率半径r/透析液ポート入口7.1の障害部材11)
 図9に例示するように、(円弧の一部である)アール部Rの曲率半径rは、1~60mm、好ましくは、1.5~10mmに形成するのが良い。
 曲率半径rは、この数値を増加させると末端側開口部11ODEの大きさWDEを大きくすることができる。
 曲率半径rは、例えば60mmをこえるような、あまり大きな値とすると、末端側開口部11ODEの大きさWDEが大きくなりすぎて、本来の障害部材(「バッフル板(筒)ともいう」)としての機能である、透析液の流入状態を改善し、透析効率を向上させる機能、を損なうことになるので好ましくない。
 一方、曲率半径rは、1mm未満のように、あまり小さく形成すると、末端側開口部11ODEの大きさWDEが小さくなりすぎて、エアー抜け効果が期待できないので好ましくない。
 なお、すでに述べたように、透析液ポート出口7.2の障害部材11の曲率半径rの説明は、「末端側開口部11ODE」とあるのを『基端側開口部11OPE』と読み替えればよいので、詳細な説明は省略する。
(Curvature radius r of rounded portion R / obstruction member 11 at dialysate port inlet 7.1)
As illustrated in FIG. 9, the radius of curvature r of the rounded portion R (which is a part of the arc) is preferably 1 to 60 mm, and more preferably 1.5 to 10 mm.
As the radius of curvature r is increased, the size WDE of the terminal opening 11ODE can be increased.
If the radius of curvature r is too large, for example, exceeding 60 mm, the size WDE of the terminal opening 11ODE becomes too large, and the original obstacle member (also referred to as “baffle plate (cylinder)”) is used. This is unfavorable because it impairs the function of improving the dialysis efficiency and improving the dialysis fluid inflow state.
On the other hand, if the radius of curvature r is too small, such as less than 1 mm, the size WDE of the terminal opening 11ODE becomes too small, and an air escape effect cannot be expected.
As already described, the explanation of the radius of curvature r of the obstruction member 11 at the dialysate port outlet 7.2 is “the proximal end opening 11 OPE” is replaced with “the proximal end opening 11 OPE”. Since it is good, detailed description is abbreviate | omitted.
(アール部Rの角度θ/透析液ポート入口7.1の障害部材11)
 前記段落[0033](B)に記載のように、開口部11Oを、先細りテーパー状に形成した場合を、評価するため、アール部Rの角度θを定義する。すなわちθは 図10[図9の基端PE方向の一部をさらに誇張した拡大図]に例示するように、アール部Rの終点RE近傍の傾斜線RSと延長線LL(中心軸線CLと平行で、基端PE側から末端DE側へ伸びる線)がなす角度と定義する。
 このように定義したR部の角度θは、いわばアール部Rの曲線から直線への接続角度であって、本発明においては、0°~60°、好ましくは、1°~5°に形成するのが良い。
 角度θは、例えば5°を超えるようなあまり大きい値であると、末端側開口部11ODEの大きさWDEが大きくなりすぎて、本来の障害部材としての機能である、透析液の流入状態を改善し、透析効率を向上させる機能、を損なうことになるので好ましくない。
 一方、θが、1°未満のような、あまり小さい値であると、末端側開口部11ODEの大きさWDEが小さくなりすぎて、エアー抜け効果が期待できないので好ましくない。
 なお、念のため、前記段落[0033](A)のように、開口部11Oを、実質的に等間隔(略直線状)に形成した場合、当該角度θは0°となる。
 本発明においては、透析液ポート出口7.2の障害部材11についても、同様に、開口部11Oを、先細りテーパー状に形成することができるが、その場合のアール部Rの角度θの説明は、「基端PE側」とあるのを『末端DE側』、「末端DE側」とあるのを『基端PE側』、「末端側開口部11ODE」とあるのを『基端側開口部11OPE』とそれぞれ読み替えればよいので、詳細な説明は省略する。
(Round portion angle θ / dialysis fluid port inlet 7.1 obstruction member 11)
As described in the paragraph [0033] (B), the angle θ of the rounded portion R is defined in order to evaluate the case where the opening 110 is formed in a tapered shape. That is, θ is an inclined line RS and an extension line LL (parallel to the central axis CL) in the vicinity of the end point RE of the rounded portion R, as illustrated in FIG. 10 [an enlarged view further exaggerating a part of the base PE direction in FIG. 9]. The angle formed by a line extending from the base end PE side to the terminal DE side).
The angle θ of the R portion defined in this way is a so-called connection angle from the curve of the round portion R to a straight line, and in the present invention, it is formed at 0 ° to 60 °, preferably 1 ° to 5 °. Is good.
If the angle θ is too large, for example, exceeding 5 °, the size WDE of the terminal opening 11ODE becomes too large, and the inflow state of the dialysate, which is the original function as an obstacle member, is improved. In addition, the function of improving dialysis efficiency is impaired, which is not preferable.
On the other hand, if θ is a very small value such as less than 1 °, the size WDE of the terminal opening 11ODE becomes too small, and an air escape effect cannot be expected.
As a precaution, when the openings 11O are formed at substantially equal intervals (substantially linear) as in paragraph [0033] (A), the angle θ is 0 °.
In the present invention, similarly to the obstruction member 11 at the dialysate port outlet 7.2, the opening portion 110 can be formed in a tapered shape. In this case, the explanation of the angle θ of the rounded portion R is as follows. , “Base PE side” is “terminal DE side”, “terminal DE side” is “base PE side” and “terminal side opening 11ODE” is “base side opening” 11OPE ”, and detailed description thereof will be omitted.
(障害部材11の機能:末端DE側)
 以上のように構成した、障害部材11を末端DE側に形成した場合についてその機能を説明する。
(1) 透析液は、例えば図4に示したように、透析液ポート入口7.1(第1側部S1方向)から、ハウジング2の末端DE側(血液出口側)に流入する。
(2) 透析液は、障害部材11の第1側部S1側の壁面NNに衝突し、第3側部S3の壁面EE及び/又は第4側部S4の壁面WWに沿って、迂回しながら流れ、第2側部S2側の壁面SSに移動する。すなわち、透析液は、障害部材11の壁面に沿って、NN→EE→SS及び/又はNN→WW→SSと流れる。なお、SSには、図に示したように開口部11Oが形成されている。
(3) 一方、透析液は、略円筒状の障害部材の円周端面(淵)を超えて、円筒内部に流入するので、必然的にその流れ方向は、ハウジングの長手方向(すなわち中空糸膜束に平行な方向)である。すなわち、中空糸膜束に沿って、ハウジング2の基端PE方向へ流れる。
(4) ハウジング2の(移行部2.3ないし)大径部2.2内に透析液に同伴され、またはここで発生し、又は予めこの部位に貯溜されていたエアーは、上記した透析液の流れに同伴し、S1の壁面位置NNから、障害部材11の第3側部S3の壁面EE及び/又は第4側部S4の壁面の位置WW方向から、第2側部S2側の壁面の位置SSに移動する。
(5) SS部に到達したエアー(気泡)Abは、図7に示す末端側開口部11ODEのアール部Rに沿って、基端側開口部(11OPE側)に向かって移動する。ここで、エアー(気泡)Abは、図に示すように、上方に向けて次第に細くなるように形成された流路に沿って移動する内に、衝突して融合、合一し、より大きなエアー気泡Abが形成される。(又は、気泡同士が粗な分散状態から、より密な気泡群Abの状態となる。)このようにして形成された大きなエアー泡(又は密接した気泡群)は、さらに中空糸膜束に沿ってハウジング内を速やかに上昇し、最終的にはハウジング上部に形成された透析液ポート出口から系外に除かれる。
 このように、本発明の障害部材は、末端側開口部11ODEとアール部Rにて規定するように、広い開口から次第になだらかに狭くなるように形成したので、エアーが末端DE側から、基端PE側に速やかに抜けるのが促進される。
(Function of obstruction member 11: terminal DE side)
The function of the obstacle member 11 configured as described above when formed on the terminal DE side will be described.
(1) As shown in FIG. 4, for example, the dialysate flows from the dialysate port inlet 7.1 (in the first side portion S1 direction) to the terminal DE side (blood outlet side) of the housing 2.
(2) The dialysate collides with the wall surface NN on the first side S1 side of the obstacle member 11, and detours along the wall surface EE of the third side portion S3 and / or the wall surface WW of the fourth side portion S4. It moves to the wall surface SS on the second side S2 side. That is, the dialysate flows along the wall surface of the obstacle member 11 in the order of NN → EE → SS and / or NN → WW → SS. Note that an opening 110 is formed in the SS as shown in the figure.
(3) On the other hand, since the dialysate flows into the cylinder beyond the circumferential end surface (淵) of the substantially cylindrical obstacle member, the flow direction is inevitably in the longitudinal direction of the housing (that is, the hollow fiber membrane). Direction parallel to the bundle). That is, it flows in the direction of the proximal end PE of the housing 2 along the hollow fiber membrane bundle.
(4) The air entrained by the dialysate in the large-diameter portion 2.2 of the housing 2 (the transition portion 2.3 to), or generated here, or previously stored in this portion is the dialysate described above. From the wall surface position NN of S1 to the wall surface EE of the third side portion S3 and / or the wall surface position of the fourth side portion S4 of the obstacle member 11, the position of the wall surface on the second side portion S2 side. Move to position SS.
(5) The air (bubble) Ab that has reached the SS portion moves toward the proximal end opening (11 OPE side) along the rounded portion R of the distal opening 11ODE shown in FIG. Here, as shown in the figure, the air (bubbles) Ab moves along the flow path formed so as to become gradually narrower upward, and collides with each other to merge and unite. Bubbles Ab are formed. (Or, from the coarse dispersion state of the bubbles, the state becomes a denser bubble group Ab.) The large air bubbles (or close bubble groups) formed in this way are further along the hollow fiber membrane bundle. As a result, the inside of the housing quickly rises, and is finally removed from the dialysate port outlet formed at the top of the housing.
As described above, the obstacle member of the present invention is formed so as to be gradually narrowed from the wide opening as defined by the distal opening 11ODE and the rounded portion R. Quick removal to the PE side is promoted.
(実施例1)
(試験装置)
(1)本発明の血液処理装置1における障害部材11(円筒状で、これに単一の開口部11Oを形成したもの)のエアー抜き効果を確認する試験を行った。
 血液処理装置1は、図1、図2に記載の形態で、高圧蒸気滅菌処理したものを使用した。中空糸膜束4は、ポリスルフォン樹脂製で膜面積:2.0m2であり、固定材3はポリウレタン樹脂(日本ポリウレタン工業社製)を使用した。ただし、(i)固定材3(ポリウレタン樹脂)の端部は切断し、(ii)血液ポート(5.1、5.2)はハウジング2に溶着した。
(2)開口部のサイズ
 開口部11Oは、図6に示したような形状のものであって、大きさWO:2.7mm、末端側(血液出口側)の開口部11ODEの大きさWDE:10.8mmであり、基端側(血液入口側)開口部11OPEの大きさWPE:2.4mm、アール部Rについては、図9に示すアール部Rの曲率半径r:4mm、図10に示すアール部Rの角度θ:2°に形成した。
(Example 1)
(Test equipment)
(1) The test which confirms the air bleeding effect of the obstruction member 11 (cylindrical shape in which a single opening portion 110 is formed) in the blood processing apparatus 1 of the present invention was conducted.
The blood processing apparatus 1 used was the one shown in FIGS. 1 and 2 and subjected to high-pressure steam sterilization. The hollow fiber membrane bundle 4 is made of polysulfone resin and has a membrane area of 2.0 m 2 , and the fixing material 3 is a polyurethane resin (manufactured by Nippon Polyurethane Industry Co., Ltd.). However, (i) the end portion of the fixing material 3 (polyurethane resin) was cut, and (ii) the blood ports (5.1, 5.2) were welded to the housing 2.
(2) Size of Opening Part The opening part 110 has a shape as shown in FIG. 6 and has a size WO: 2.7 mm and a size WDE of the opening part 11 ODE on the terminal side (blood outlet side): 10.8 mm, the size WPE of the proximal end (blood inlet side) opening 11OPE: 2.4 mm, and the radius R, the radius of curvature r of the radius R shown in FIG. 9 is 4 mm, as shown in FIG. An angle θ of the rounded portion R was formed at 2 °.
(試験方法)
 以下の手順で、エアー抜けを評価した。
(1)まず、血液処理装置において透析液側(すなわち中空糸膜束の外側の空間で両端が透析液ポート入口と出口に接続している)に透析液に模した純水を充填し、そのエアーを可能な限り追い出した後、サンプル(純水を満たした血液処理装置)の重量=試験前重量を電子天秤で測定した。
(2)(試験回路の作製)
 透析液ポート入口7.1と透析液ポート出口7.2にそれぞれシリコーンチューブ(φ6×12mm)を接続し、当該シリコーンチューブの端部を純水(蒸留水)の入った容器(ビーカー)に接続した。
 透析液ポート入口7.1側に接続したシリコーンチューブの途中に、送液ポンプを配置した。
(3)透析液ポート入口7.1側にコネクターを接続する際に、予め純水(蒸留水)を充填したシリコーンチューブをかん子でクランプし、クランプした位置からコネクター開口部まで、純水(蒸留水)を取り除いてから接続した(この水を取り除いた部分のチューブの内容積をVaとすれば、当該チューブ内には、容積Vaの空気が含有されていることになる。)。
(4)かん子を外してから、透析液側流量QD=400mL/minで純水(蒸留水)を1分間流した。この場合において、まず、純水が流入するとともに、当該ハウジング2内に、一定量(Va)のエアーが最初に送り込まれる。そして、引き続き純水が1分間流入するとともに、当該混入した空気Vaは、本発明で規定する障害部材11の特定の開口の作用により捕集され・合一した空気泡、又は一群の空気泡として、引き続き流入する純水とともにハウジング内を上昇し透析液ポート出口から排出される。
(5)純水の送液ポンプを停止後、エアー残量を確認するため、障害部材11の第2側部S2側を撮影した。映像から目視により残留しているエアーは確認されなかった。
(6)サンプル(透析液を模した純水を満たした血液処理装置)を立てた状態のまま、試験回路を取り外し、再度天秤に寝かせて(横にして)重量(試験後重量)を測定した。
(7)エアー残量=試験前重量-試験後重量として算出し、エアー抜け性を比較した。
(8)以上の試験を3回繰り返した(サンプル数n=3)結果を表1に記載した。
(Test method)
Air leakage was evaluated by the following procedure.
(1) First, in the blood treatment apparatus, the dialysate side (that is, both ends connected to the dialysate port inlet and outlet in the space outside the hollow fiber membrane bundle) is filled with pure water imitating dialysate, After expelling air as much as possible, the weight of the sample (blood processing apparatus filled with pure water) = the weight before the test was measured with an electronic balance.
(2) (Production of test circuit)
Connect silicone tubing (φ6 × 12mm) to dialysate port inlet 7.1 and dialysate port outlet 7.2 respectively, and connect the end of the silicone tube to a container (beaker) containing pure water (distilled water) did.
A liquid feed pump was disposed in the middle of the silicone tube connected to the dialysate port inlet 7.1 side.
(3) When connecting the connector to the dialysate port inlet 7.1 side, a silicone tube filled with pure water (distilled water) in advance is clamped with a clamp, and pure water (distilled) from the clamped position to the connector opening. Connection was made after removing (water). If the inner volume of the tube from which this water was removed is Va, the tube will contain air of volume Va.)
(4) After removing the kettle, pure water (distilled water) was allowed to flow for 1 minute at a dialysate side flow rate Q D = 400 mL / min. In this case, first, pure water flows in, and a certain amount (Va) of air is first fed into the housing 2. And while pure water flows in for 1 minute continuously, the mixed-in air Va is collected as an air bubble collected by the action of the specific opening of the obstruction member 11 prescribed by the present invention, or as a group of air bubbles. Then, the inside of the housing rises with the pure water that continues to flow and is discharged from the dialysate port outlet.
(5) After stopping the pure water feed pump, the second side S2 side of the obstacle member 11 was photographed in order to check the remaining amount of air. No residual air was visually confirmed from the image.
(6) With the sample (a blood processing apparatus filled with pure water simulating dialysate) standing up, the test circuit was removed, and the sample was placed on the balance again (sideways) and the weight (post-test weight) was measured. .
(7) Air remaining amount = weight before test−weight after test, and the air release properties were compared.
(8) The above test was repeated three times (number of samples n = 3).
(比較例1)
 実施例1において、障害部材11を従来の全周(円筒状)の障害部材であって、開口部を全く設けないものに代えた他は、全く同様の試験を行った(サンプル数n=3)。結果を表1に示した。
(Comparative Example 1)
In Example 1, the same test was performed except that the obstruction member 11 was replaced with a conventional all-round (cylindrical) obstruction member having no opening at all (number of samples n = 3). ). The results are shown in Table 1.
(考察)
 表1において、実施例1と比較例1を比較すると、本発明(実施例)の血液処理装置は、比較例の血液処理装置よりも、エアー残量が少なく、透析液プライミング時のエアー抜けを非常に容易にする効果があることが確認できた。
(Discussion)
In Table 1, when Example 1 and Comparative Example 1 are compared, the blood processing apparatus of the present invention (Example) has less air remaining than the blood processing apparatus of the comparative example, and air leakage during dialysis fluid priming is reduced. It was confirmed that there is an effect that makes it very easy.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)(比較例2)
(試験装置)
 本発明の血液処理装置1の障害部材11(開口部11Oを形成)のエアー抜き効果を確認するため、開口部11Oの大きさWOを変化させて、試験を行った。
 なお、血液処理装置は、実施例1と基本的に同じものであるが、ただし、固定材3(ポリウレタン樹脂)の端部を切断せず、血液ポート(5.1、5.2)をハウジング2に溶着していない点でのみ異なる。
(Example 2) (Comparative Example 2)
(Test equipment)
In order to confirm the air bleeding effect of the obstacle member 11 (formation of the opening portion 110) of the blood processing apparatus 1 of the present invention, the test was performed by changing the size WO of the opening portion 110.
The blood processing apparatus is basically the same as that of the first embodiment except that the end of the fixing material 3 (polyurethane resin) is not cut and the blood port (5.1, 5.2) is a housing. It differs only in that it is not welded to 2.
(試験サンプルの開口部のサイズ等)
(a)開口部11Oの大きさWOとしては、(i)WO=0mm(開口部なし)、(ii)WO=1.0mm、(iii)WO=2.5mmの各サンプルをそれぞれn=2コ用意し、同様の試験を2回づつ行った(サンプル数n=2)。なお、(i)は比較例2、(ii)(iii)は実施例2である。
(b)また開口部の大きさWO=1.0mm、2.5mmの場合について、双方ともアール部Rは、曲率半径r=2mm、アール部Rの接続角度θ=1°に形成した。
(c)末端側(血液出口側)開口部11ODEの大きさWDEは、それぞれ(ii)WDE=5.3mm、(iii)WDE=6.6mmに形成した。
(d)基端側(血液入口側)開口部11OPEの大きさWPEは、それぞれ(ii)WPE=1.3mm、(iii)WPE=2.6mmに形成した。
(Test sample opening size, etc.)
(A) As the size WO of the opening 110, (i) WO = 0 mm (no opening), (ii) WO = 1.0 mm, (iii) WO = 2.5 mm, each sample is n = 2. The same test was performed twice (number of samples n = 2). (I) is Comparative Example 2, and (ii) and (iii) are Example 2.
(B) In the case where the size of the opening is WO = 1.0 mm and 2.5 mm, the rounded portion R is formed with a radius of curvature r = 2 mm and a connecting angle θ = 1 ° of the rounded portion R.
(C) The size WDE of the terminal side (blood outlet side) opening 11ODE was (ii) WDE = 5.3 mm and (iii) WDE = 6.6 mm, respectively.
(D) The size WPE of the proximal end (blood inlet side) opening 11OPE was (ii) WPE = 1.3 mm and (iii) WPE = 2.6 mm, respectively.
(試験方法)
(1)作製したサンプルに水を充填し、透析液ポート入口7.1を下にした時のエアー抜け状態をカメラで撮影した。
(2)透析液側に太径(内径×外径=4.6mm×6.85mm)のチューブを接続し、400mL/minで1分間プライミングした。
(3)プライミング後の透析液ポート入口7.1のエアー抜け状態をカメラで撮影した。
(Test method)
(1) The prepared sample was filled with water, and the state of air leakage when the dialysate port inlet 7.1 was lowered was photographed with a camera.
(2) A large-diameter tube (inner diameter × outer diameter = 4.6 mm × 6.85 mm) was connected to the dialysate side, and priming was performed at 400 mL / min for 1 minute.
(3) The air outflow state of the dialysate port inlet 7.1 after priming was photographed with a camera.
(試験項目)
(1)(エアー抜け性の評価)
 撮影した映像について以下のようにして目視により判断、評価した。
 ○;1分間のプライミング中にエアーが全て抜けた場合を○とする。
 ×;1分間のプライミング後にエアーが残った場合を×とする。
(2)(エアー除去時間)
 なお、(1)において、プライミング中にエアーが抜け、○と判断された場合については、プライミング開始からエアーが全て抜けるまでの時間を記録した。
(Test items)
(1) (Evaluation of air release)
The photographed images were judged and evaluated visually as follows.
○: ○ when all the air has escaped during priming for 1 minute.
X: When air remains after priming for 1 minute, it is set as x.
(2) (Air removal time)
Note that in (1), when air escaped during priming and it was judged as ◯, the time from the start of priming until all the air escaped was recorded.
(試験結果)
 評価項目(1)及び(2)の結果を表2にまとめた。
 表2より、本発明(実施例2)の開口部を形成した障害部材の血液処理装置は、比較例2の開口部を形成していない障害部材の血液処理装置よりも、プライミング中のエアーは抜け効果が著しく改善されることを確認できた。
 なお、開口部11Oのサイズを大きくすることにより、エアーが抜けるまでの時間はより短くできることが確認できた。
(Test results)
The results of evaluation items (1) and (2) are summarized in Table 2.
From Table 2, the blood treatment apparatus for the obstacle member in which the opening of the present invention (Example 2) is formed is more air priming than the blood treatment apparatus for the obstacle member in which the opening of Comparative Example 2 is not formed. It was confirmed that the removal effect was remarkably improved.
It has been confirmed that the time until the air escapes can be shortened by increasing the size of the opening 11O.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例においてこの障害部材により透析液の入口近傍の流れを詳細に目視(写真撮影)により確認したが、初期の目的どおり、供給された透析液は直接中空糸膜束には衝突せず、円筒状障害部材の末端部の円周端部から中心に向かう流れとして良好に分配されることを確認した。 In this example, the flow around the inlet of the dialysate was confirmed in detail by visual inspection (photographing) using this obstructing member, but the supplied dialysate did not directly collide with the hollow fiber membrane bundle as in the initial purpose. It was confirmed that the flow was favorably distributed as a flow from the circumferential end of the end of the obstructive member toward the center.
 以上のように、本発明によれば、障害部材の機能を実質的に損なうことが無く、しかも、装置の効率を低下させる装置内に導入されるエアーが当該装置空間内に滞留することなく速やかに装置外に抜けやすい障害部材を備えた血液処理装置が提供されるので、血液透析、血液ろ過、血液透析ろ過、血漿分離等の血液処理装置を使用する医療現場においてその産業状の利用可能性は大きい。 As described above, according to the present invention, the function of the obstacle member is not substantially impaired, and air introduced into the apparatus that lowers the efficiency of the apparatus can be promptly retained without remaining in the apparatus space. Since a blood processing device with an obstacle member that can easily be pulled out of the device is provided, the industrial applicability in the medical field where blood processing devices such as hemodialysis, blood filtration, hemodiafiltration, and plasma separation are used. Is big.
 1 血液処理装置
 2 ハウジング
 2.1 小径部
 2.2 大径部
 2.3 移行部
 3 固定材
 4 中空糸膜束
 5.1 血液ポート入口
 5.2 血液ポート出口
 7  透析液ポート
 7.1 透析液ポート入口
 7.2 透析液ポート出口
 8 キャップ部材
 11 障害部材(バッフル板(筒))
 11O   開口部
 11ODE 末端側開口部
 11OPE 基端側開口部
 CL 中心軸線
 LL 延長線(中心軸線CLと平行で基端PE側から末端DE側へ伸びる線)
 NN 障害部材において、S1(9時)に対応する壁(表面)の位置
 EE 障害部材において、S3(12時)に対応する壁(表面)の位置
 SS 障害部材において、S2(3時)に対応する壁(表面)の位置
 WW 障害部材において、S4(6時)に対応する壁(表面)の位置
 Ab エアーまたは気泡
 R アール部
 RI アール開始部
 PE アール終点
 θ アール部Rの角度(アール部の曲線から直線への接続角度)
DESCRIPTION OF SYMBOLS 1 Blood processing apparatus 2 Housing 2.1 Small diameter part 2.2 Large diameter part 2.3 Transition part 3 Fixing material 4 Hollow fiber membrane bundle 5.1 Blood port inlet 5.2 Blood port outlet 7 Dialysate port 7.1 Dialysis Fluid port inlet 7.2 Dialysate port outlet 8 Cap member 11 Obstacle member (baffle plate (cylinder))
11O opening 11ODE terminal side opening 11OPE base end side opening CL center axis LL extension line (a line extending from the base PE side to the terminal DE side parallel to the center axis CL)
NN Position of wall (surface) corresponding to S1 (9 o'clock) in obstacle member EE Position of wall (surface) corresponding to S3 (12 o'clock) in obstacle member SS Corresponding to S2 (3 o'clock) in obstacle member Wall (surface) position WW In the obstacle member, the position of the wall (surface) corresponding to S4 (6 o'clock) Ab Air or bubble R R portion RI R start portion PE R end point θ The angle of the R portion R (of the R portion) Connection angle from curve to straight line)

Claims (7)

  1.  ハウジング(2)の内部に、当該ハウジング(2)の長手L方向に沿って中空糸膜束(4)を配置し、
     当該中空糸膜束(4)の末端DE側と基端PE側を、それぞれ固定材(3)により前記ハウジング(2)の末端DE側と基端PE側内面に固定し、
     前記ハウジング(2)の末端DE側で、かつ第1側部S1方向に、透析液ポート入口(7.1)を装着し、
     前記ハウジング(2)の基端PE側で、かつ第1側部S1方向に、透析液ポート出口(7.2)を装着し、
     前記ハウジング(2)の末端DE側に、血液ポート出口(5.2)を装着し、
     前記ハウジング(2)の基端PE側に、血液ポート入口(5.1)を装着し、
     前記ハウジング(2)の長手L方向に見て、前記透析液ポート入口(7.1)及び/又は前記透析液ポート出口(7.2)を形成した位置に対応する位置に、障害部材(11)を配置し、
     前記障害部材(11)は、略円筒状の形態を有し、
     前記透析液ポート入口(7.1)の障害部材(11)は、基端PE側を、前記ハウジング(2)内に固定し、及び/又は、
     前記透析液ポート出口(7.2)の障害部材(11)は、末端DE側を、前記ハウジング(2)内に固定し、
     当該障害部材(11)は、側部S方向の少なくとも一箇所に開口部(11OP)を形成し、
     当該開口部(11O)は、長手L方向に沿うように形成し、
     当該開口部(11O)は、基端側開口部(11OPE)と末端側開口部(11ODE)とを有し、
     前記透析液ポート入口(7.1)の障害部材(11)は、当該末端側開口部(11ODE)の両側部S方向、すなわち第3側部S3側と第4側部S4側の両方にアール部(R)を形成し、及び/又は、
     前記透析液ポート出口(7.2)の障害部材(11)は、当該基端側開口部(11OPE)の両側部S方向、すなわち第3側部S3側と第4側部S4側の両方にアール部(R)を形成した、ことを特徴とする血液処理装置(1)。
    Inside the housing (2), the hollow fiber membrane bundle (4) is disposed along the longitudinal L direction of the housing (2),
    The distal DE side and the proximal end PE side of the hollow fiber membrane bundle (4) are fixed to the inner surface of the distal DE side and the proximal end PE side of the housing (2) by the fixing material (3), respectively.
    A dialysate port inlet (7.1) is mounted on the terminal DE side of the housing (2) and in the direction of the first side S1,
    A dialysate port outlet (7.2) is mounted on the base end PE side of the housing (2) and in the direction of the first side portion S1,
    A blood port outlet (5.2) is mounted on the terminal DE side of the housing (2);
    A blood port inlet (5.1) is mounted on the proximal end PE side of the housing (2),
    When viewed in the longitudinal direction L of the housing (2), the obstruction member (11) is located at a position corresponding to the position where the dialysate port inlet (7.1) and / or the dialysate port outlet (7.2) is formed. )
    The obstruction member (11) has a substantially cylindrical shape,
    The obstruction member (11) of the dialysate port inlet (7.1) has a proximal end PE side fixed in the housing (2) and / or
    The obstruction member (11) of the dialysate port outlet (7.2) has the terminal DE side fixed in the housing (2),
    The obstacle member (11) forms an opening (11OP) in at least one place in the side S direction,
    The opening (11O) is formed along the longitudinal L direction,
    The opening (11O) has a proximal opening (11OPE) and a distal opening (11ODE),
    The obstruction member (11) of the dialysate port inlet (7.1) is rounded in the direction of both sides S of the end side opening (11ODE), that is, both the third side S3 side and the fourth side S4 side. Forming part (R) and / or
    The obstruction member (11) of the dialysate port outlet (7.2) is in the direction of both sides S of the proximal end side opening (11OPE), that is, on both the third side S3 side and the fourth side S4 side. A blood treatment apparatus (1) characterized by forming a rounded portion (R).
  2.  前記透析液ポート入口(7.1)の障害部材(11)は、
     前記末端側開口部(11ODE)の大きさ(WDE)を、
     前記基端側開口部(11OPE)の大きさ(WPE)よりも大きく形成し、及び/又は、
     前記透析液ポート出口(7.2)の障害部材(11)は、
     前記基端側開口部(11OPE)の大きさ(WPE)を
     前記末端側開口部(11ODE)の大きさ(WDE)よりも大きく形成した、ことを特徴とする請求項1に記載の血液処理装置(1)。
    The obstruction member (11) at the dialysate port inlet (7.1)
    The size (WDE) of the terminal side opening (11ODE)
    Forming larger than the size (WPE) of the proximal opening (11 OPE) and / or
    The obstruction member (11) at the dialysate port outlet (7.2)
    The blood processing apparatus according to claim 1, wherein a size (WPE) of the proximal end opening (11OPE) is formed larger than a size (WDE) of the distal opening (11ODE). (1).
  3.  前記開口部11Oの大きさ(WO)は、0.1~49mm、
     前記透析液ポート入口(7.1)の障害部材(11)は、
     末端側開口部(11ODE)の大きさ(WDE)は、0.3~55mm、
     基端側開口部(11OPE)の大きさ(WPE)は、0.1~45mmに形成し、及び/又は、
     前記透析液ポート出口(7.2)の障害部材(11)は、
     末端側開口部(11ODE)の大きさ(WDE)は、0.1~45mm、
     基端側開口部(11OPE)の大きさ(WPE)は、0.3~55mmに形成した、ことを特徴とする請求項1または請求項2に記載の血液処理装置(1)。
    The size (WO) of the opening 11O is 0.1 to 49 mm,
    The obstruction member (11) at the dialysate port inlet (7.1)
    The size (WDE) of the terminal side opening (11ODE) is 0.3 to 55 mm,
    The size (WPE) of the base end side opening (11 OPE) is 0.1 to 45 mm, and / or
    The obstruction member (11) at the dialysate port outlet (7.2)
    The size (WDE) of the end opening (11ODE) is 0.1 to 45 mm,
    The blood processing apparatus (1) according to claim 1 or 2, wherein the size (WPE) of the proximal end side opening (11OPE) is 0.3 to 55 mm.
  4.  前記開口部(11O)のアール部(R)の曲率半径rは、1~60mmに形成した、ことを特徴とする請求項1から請求項3のいずれか1項に記載の血液処理装置(1)。 The blood processing apparatus (1) according to any one of claims 1 to 3, wherein the radius of curvature (r) of the rounded portion (R) of the opening (11O) is 1 to 60 mm. ).
  5.  前記アール部(R)の角度θは、0°~60°に形成した、ことを特徴とする請求項1から請求項4のいずれか1項に記載の血液処理装置(1)。 The blood processing apparatus (1) according to any one of claims 1 to 4, wherein an angle θ of the rounded portion (R) is 0 ° to 60 °.
  6.  前記障害部材(11)は、側部S方向の二箇所以上に前記開口部(11OP)を形成した、ことを特徴とする請求項1から請求項5のいずれか1項に記載の血液処理装置(1)。 The blood processing apparatus according to any one of claims 1 to 5, wherein the obstruction member (11) has the openings (11OP) formed at two or more locations in the side S direction. (1).
  7.  前記障害部材(11)は、少なくとも第2側部S方向に前記開口部(11OP)を形成した、ことを特徴とする請求項1から請求項6のいずれか1項に記載の血液処理装置(1)。 The blood processing apparatus (1) according to any one of claims 1 to 6, wherein the obstruction member (11) has the opening (11OP) formed in at least the second side S direction. 1).
PCT/JP2013/073798 2012-09-27 2013-09-04 Blood treatment device WO2014050468A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538329A JP6203186B2 (en) 2012-09-27 2013-09-04 Blood treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-213544 2012-09-27
JP2012213544 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050468A1 true WO2014050468A1 (en) 2014-04-03

Family

ID=50387877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073798 WO2014050468A1 (en) 2012-09-27 2013-09-04 Blood treatment device

Country Status (3)

Country Link
JP (1) JP6203186B2 (en)
TW (1) TWI556843B (en)
WO (1) WO2014050468A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022484B2 (en) 2013-02-06 2018-07-17 Nxstage Medical, Inc. Fluid circuit priming methods, devices, and systems
US10279098B2 (en) 2015-04-07 2019-05-07 Nxstage Medical, Inc. Blood treatment device priming devices, methods, and systems
JPWO2018062073A1 (en) * 2016-09-30 2019-07-11 東レ株式会社 Cultured platelet concentration module and method for producing platelet preparation using the same
JP2019122770A (en) * 2018-01-11 2019-07-25 ベー・ブラウン・アヴィトゥム・アー・ゲーB. Braun Avitum Ag Blood processing apparatus having hollow fiber filter module for horizontal arrangement and hollow fiber filter module as well as its usage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138071A (en) * 1976-03-19 1977-11-17 Organon Teknika Bv Separation apparatus
JPS6035704U (en) * 1983-08-11 1985-03-12 日機装株式会社 Hollow fiber dialyzer
JP2010148654A (en) * 2008-12-25 2010-07-08 Kawasumi Lab Inc Blood treatment device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4726045B2 (en) * 2005-04-08 2011-07-20 日機装株式会社 Hemodialysis machine
JP5443005B2 (en) * 2009-01-15 2014-03-19 川澄化学工業株式会社 Blood processing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138071A (en) * 1976-03-19 1977-11-17 Organon Teknika Bv Separation apparatus
JPS6035704U (en) * 1983-08-11 1985-03-12 日機装株式会社 Hollow fiber dialyzer
JP2010148654A (en) * 2008-12-25 2010-07-08 Kawasumi Lab Inc Blood treatment device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022484B2 (en) 2013-02-06 2018-07-17 Nxstage Medical, Inc. Fluid circuit priming methods, devices, and systems
US10835662B2 (en) 2013-02-06 2020-11-17 Nxstage Medical, Inc. Fluid circuit priming methods, devices, and systems
US11344658B2 (en) 2013-02-06 2022-05-31 Nxstage Medical, Inc. Fluid circuit priming methods, devices, and systems
US12083259B2 (en) 2013-02-06 2024-09-10 Nxstage Medical, Inc. Fluid circuit priming methods, devices, and systems
US10279098B2 (en) 2015-04-07 2019-05-07 Nxstage Medical, Inc. Blood treatment device priming devices, methods, and systems
US10987461B2 (en) 2015-04-07 2021-04-27 Nxstage Medical, Inc. Blood treatment device priming devices, methods, and systems
US11679190B2 (en) 2015-04-07 2023-06-20 Nxstage Medical, Inc. Blood treatment device priming devices, methods, and systems
US11969534B2 (en) 2015-04-07 2024-04-30 Nxstage Medical, Inc. Blood treatment device priming devices, methods, and systems
JPWO2018062073A1 (en) * 2016-09-30 2019-07-11 東レ株式会社 Cultured platelet concentration module and method for producing platelet preparation using the same
JP7139604B2 (en) 2016-09-30 2022-09-21 東レ株式会社 Cultured platelet concentration module and method for producing platelet preparation using same
JP2019122770A (en) * 2018-01-11 2019-07-25 ベー・ブラウン・アヴィトゥム・アー・ゲーB. Braun Avitum Ag Blood processing apparatus having hollow fiber filter module for horizontal arrangement and hollow fiber filter module as well as its usage
JP7319781B2 (en) 2018-01-11 2023-08-02 ベー・ブラウン・アヴィトゥム・アー・ゲー Blood processing apparatus having hollow fiber filter module for horizontal placement, hollow fiber filter module and method of use thereof

Also Published As

Publication number Publication date
JP6203186B2 (en) 2017-09-27
JPWO2014050468A1 (en) 2016-08-22
TW201417849A (en) 2014-05-16
TWI556843B (en) 2016-11-11

Similar Documents

Publication Publication Date Title
JP5141004B2 (en) Condition detection device
US5674199A (en) Top flow bubble trap method
CN100586494C (en) Integrated blood treatment module
JP6203186B2 (en) Blood treatment equipment
WO2008065950A1 (en) State detecting device
CN101668555B (en) Pressure sensing device and use of the same in a connecting structure
US11931499B2 (en) Pressure detector
EP3782673B1 (en) Pressure detector
JP7319781B2 (en) Blood processing apparatus having hollow fiber filter module for horizontal placement, hollow fiber filter module and method of use thereof
JP6577626B1 (en) Air trap chamber and extracorporeal circuit
JP5390578B2 (en) Air trap chamber
CN112020373B (en) Air trap chamber and extracorporeal circulation circuit
JP5443005B2 (en) Blood processing equipment
JP2006116134A (en) Hollow fiber module
JP6571833B1 (en) Air trap chamber and extracorporeal circuit
JP6416661B2 (en) Air trap chamber
JP2008132196A (en) Blood purifier
JP2012232190A (en) Status detecting device
WO2006070890A1 (en) Hollow fibter type apparatus for blood purification
JP2010125207A (en) Extracorporeal circulation system
JP2008200174A (en) Chamber for extracorporeal circulation circuit
JP2006006673A (en) Filter for infusion
JP2008136678A (en) State detecting device
JP2017185231A (en) Blood purifier, blood purification kit, and blood purification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842216

Country of ref document: EP

Kind code of ref document: A1