[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014050358A1 - 漏洩検査装置、漏洩検査方法、及び漏洩検査プログラム - Google Patents

漏洩検査装置、漏洩検査方法、及び漏洩検査プログラム Download PDF

Info

Publication number
WO2014050358A1
WO2014050358A1 PCT/JP2013/072100 JP2013072100W WO2014050358A1 WO 2014050358 A1 WO2014050358 A1 WO 2014050358A1 JP 2013072100 W JP2013072100 W JP 2013072100W WO 2014050358 A1 WO2014050358 A1 WO 2014050358A1
Authority
WO
WIPO (PCT)
Prior art keywords
leakage
value
feature value
determination
determination index
Prior art date
Application number
PCT/JP2013/072100
Other languages
English (en)
French (fr)
Inventor
茂樹 篠田
佐々木 康弘
尚武 高橋
純一郎 又賀
宗一朗 高田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP13841540.1A priority Critical patent/EP2902765A4/en
Priority to US14/430,258 priority patent/US9970840B2/en
Priority to JP2014538278A priority patent/JP6248933B2/ja
Publication of WO2014050358A1 publication Critical patent/WO2014050358A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means

Definitions

  • the present invention relates to a leakage inspection apparatus, a leakage inspection method, and a leakage inspection program.
  • leakage inspection As social infrastructure, facilities such as water and sewage networks, high-pressure chemical pipelines such as gas and oil, high-speed railways, long bridges, skyscrapers, large passenger planes, and automobiles are built.
  • One of the important members in these facilities is piping for passing fluids such as gas and water. Piping may fail due to deterioration or natural disasters. When a pipe breaks down and fluid leaks out, it is necessary to repair the failed part. Therefore, it is necessary to detect fluid leakage in the piping.
  • inspecting the presence or absence of fluid leakage in the piping is referred to as leakage inspection.
  • a general leak test is an auditory sensory test in which leak sounds are heard manually.
  • manual inspection involves danger and great labor. Therefore, an apparatus for performing a leakage inspection has been proposed.
  • the leak detection device described in Patent Document 1 detects a leak by converting sound detected around a pipe into an electric signal and analyzing the electric signal.
  • This apparatus decomposes each electric signal obtained from the acquired sound into different frequencies using a plurality of bandpass filters. And the magnitude
  • the device described in Patent Document 2 determines the presence or absence of water leakage from the ratio of the number of counts when the vibration level of the pipe due to water leakage exceeds the determination level to the number of counts less than the determination level.
  • the device described in Patent Document 3 detects the presence or absence of water leakage using detection signals acquired by underwater microphones installed at both ends of the inspection section.
  • the presence or absence of water leakage is determined by adding a waveform having a high correlation function of a signal detected based on the set temporary sound source position to create a composite waveform.
  • Patent Document 4 uses a synchronization signal as a measurement start reference to acquire vibrations at a plurality of locations for a predetermined time to determine the presence or absence of water leakage.
  • An object of the present invention is to provide a leakage inspection apparatus with low energy consumption, and a leakage inspection program and a leakage inspection method for controlling the leakage inspection apparatus.
  • the leakage inspection apparatus extracts vibration acquisition means for acquiring a signal indicating vibration of a pipe or vibration propagating from the pipe, and filtering means for extracting a signal of one frequency band from the signal.
  • the signal is divided at predetermined time intervals, and for each divided signal, an absolute value is calculated for each of a plurality of extreme values of the signal magnitude, and statistical processing is performed on the calculated plurality of absolute values for each divided signal.
  • a feature value extraction means for extracting a value calculated by the statistical processing as a feature value, and a leak that causes a test result to be leaked when a determination index value determined using the feature value is greater than a predetermined threshold Determining means.
  • the leakage inspection program provided by the present invention causes a computer to have a function of operating as a leakage inspection apparatus provided by the present invention.
  • the program causes the computer to have the functions of the functional components included in the leakage inspection apparatus provided by the present invention.
  • the leakage inspection method provided by the present invention is a piping leakage inspection method executed by a computer.
  • the leakage inspection method includes a vibration acquisition step of acquiring a signal indicating vibration of a pipe or vibration propagating from the pipe, a filtering step of extracting a signal of one frequency band from the signal, and the extracted signal for a predetermined time.
  • the present invention it is possible to provide a leakage inspection apparatus with low energy consumption, a leakage inspection program and a leakage inspection method for controlling the leakage inspection apparatus.
  • FIG. 1 is a block diagram illustrating a leak inspection apparatus according to Embodiment 1.
  • FIG. It is a figure which shows notionally the method by which the leakage inspection apparatus which concerns on Embodiment 1 extracts a feature value.
  • 5 is a flowchart illustrating an example of a flow of a leakage inspection process performed by the leakage inspection apparatus according to the first embodiment.
  • It is a block diagram showing the leak inspection apparatus concerning modification 1.
  • It is a block diagram showing the leakage inspection apparatus which concerns on Embodiment 2.
  • FIG. It is a graph showing the calibration curve which is an example of the information which leak amount information shows.
  • 10 is a flowchart illustrating an example of a flow of leakage amount calculation processing performed by a leakage inspection apparatus according to the second embodiment. It is a block diagram showing the leak inspection apparatus concerning modification 2. It is a block diagram showing the leak inspection apparatus concerning Embodiment 3. It is a graph showing the calibration curve which is an example of the information which deterioration rate information shows. 10 is a flowchart illustrating an example of a flow of deterioration rate calculation processing performed by a leakage inspection apparatus according to the third embodiment. It is a block diagram showing the leak inspection apparatus concerning modification 3. It is a block diagram showing the leak inspection apparatus concerning Embodiment 4.
  • FIG. 10 is a flowchart illustrating an example of a flow of an inspection result determination process performed by a leakage inspection apparatus according to the fourth embodiment. It is a block diagram showing the leak inspection apparatus concerning modification 4.
  • FIG. 10 is a block diagram illustrating a leakage inspection apparatus according to a fifth embodiment. It is a figure which shows notionally the method by which the leak inspection apparatus which concerns on Embodiment 5 specifies a leak position.
  • 10 is a flowchart illustrating an example of a flow of a leakage position specifying process performed by a leakage inspection apparatus according to a fifth embodiment. It is a block diagram showing the leak inspection apparatus concerning modification 5.
  • each component of each device indicates a functional unit block, not a hardware unit configuration.
  • Each component of each device includes a CPU, memory, a program that realizes the components shown in the figure loaded in the memory, a storage medium such as a hard disk for storing the program, and a network connection interface. It is realized by any combination of software and software. There are various modifications of the implementation method and apparatus.
  • FIG. 1 is a block diagram illustrating a leakage inspection apparatus 2000 according to the first embodiment.
  • arrows indicate the flow of information.
  • Leakage inspection apparatus 2000 has a vibration acquisition unit 2020.
  • the vibration acquisition unit 2020 acquires a signal indicating the vibration of the pipe or the vibration propagated from the pipe.
  • Leakage inspection apparatus 2000 has a filtering unit 2040.
  • the filtering unit 2040 extracts a signal in a predetermined frequency band from the signal acquired by the vibration acquisition unit 2020.
  • the former is referred to as a source signal and the latter is referred to as an extraction signal.
  • Leakage inspection apparatus 2000 has a feature value extraction unit 2060.
  • the feature value extraction unit 2060 divides the extraction signal at a predetermined time interval, and extracts a feature value from each of the divided extraction signals.
  • the feature value is a value obtained by performing statistical processing on the absolute value of the extreme value of the signal indicated by the divided extracted signal.
  • the leakage inspection apparatus 2000 has a leakage determination unit 2080.
  • Leakage determination unit 2080 determines the presence or absence of pipe leakage using a determination index value determined based on the feature value. Specifically, the leakage determination unit 2080 determines that the inspection result has leakage when the determination index value is greater than a predetermined threshold value.
  • the leakage inspection apparatus 2000 determines the determination index value based on the feature value extracted from each of the extracted signals divided in a predetermined period. Then, when the determination index value is larger than a predetermined threshold value, the inspection result is assumed to be leaked. Therefore, the leakage inspection apparatus 2000 can determine the presence or absence of leakage with less processing than when all values representing the extracted signal are compared with a predetermined threshold. Therefore, the leakage inspection apparatus 2000 can operate with less energy consumption.
  • the vibration acquisition unit 2020 acquires a signal indicating the vibration of the pipe or the vibration propagating from the pipe as a source signal.
  • the source signal represents, for example, the magnitude of vibration of the pipe or the magnitude of vibration propagated from the pipe in time series.
  • the source signal may be an analog signal or a digital signal.
  • the vibration of the pipe or the vibration propagated from the pipe is measured by, for example, a vibration sensor.
  • a vibration sensor for example, a piezoelectric vibration sensor can be suitably used.
  • a device that performs the above measurement is referred to as a vibration measurement device.
  • the vibration measuring device may be installed directly on the pipe, or may be installed in the ground around the pipe or on the ground.
  • the vibration digital signal acquisition unit 2020 acquires an analog signal that is a result of measurement by the vibration measurement device described above from the vibration measurement device.
  • the vibration measuring device may be outside or inside the leakage inspection device 2000.
  • the vibration measuring apparatus is outside the leak inspection apparatus 2000, the leak inspection apparatus 2000 and the vibration measuring apparatus are connected so as to communicate with each other.
  • the leak inspection apparatus 2000 has a vibration measurement device inside, it is preferable to limit the measurement band of the vibration measurement device to 1 Hz to 10 kHz. By limiting the measurement range of the measurement device, it is possible to shorten the time required for the vibration measurement device to measure an amount of analog signal necessary for the inspection. Therefore, the energy of the leak inspection apparatus 2000 is reduced.
  • the leakage inspection apparatus 2000 When acquiring the source signal as an analog signal, the leakage inspection apparatus 2000 includes an AD conversion unit that converts the analog signal into a digital signal.
  • the AD conversion unit is, for example, an analog / digital converter (AD converter).
  • the filtering unit 2040 includes a high-pass filter, a low-pass filter, a band-pass filter, or a combination of these filters.
  • the filtering unit 2040 includes an AD conversion unit.
  • the filtering unit 2040 extracts an analog signal in a predetermined frequency band from the analog signal acquired from the vibration acquisition unit 2020, and then converts the analog signal in the predetermined frequency band into a digital signal by the AD conversion unit.
  • the above-described high-pass filter or the like is an analog filter.
  • the filtering unit 2040 may extract a digital signal having a predetermined frequency from the digital signal after the analog signal acquired from the vibration acquisition unit 2020 is converted into a digital signal by the AD conversion unit.
  • the above-described filter such as a high-pass filter is a digital filter.
  • the filtering unit 2040 extracts a signal of a predetermined frequency band from the source signal. There are various methods by which the filtering unit 2040 obtains information indicating the predetermined frequency band.
  • the information indicating the predetermined frequency band is, for example, an upper limit value and a lower limit value of the predetermined frequency band.
  • the filtering unit 2040 acquires information indicating a predetermined frequency band that is manually input to the leakage inspection apparatus 2000, for example.
  • the filtering unit 2040 acquires information indicating a predetermined frequency band input from an external device that is communicably connected to the leakage inspection device 2000.
  • the filtering unit 2040 may acquire information indicating a predetermined frequency band that is fixedly set with respect to the filtering unit 2040 when the filtering unit 2040 is manufactured.
  • the feature value extraction unit 2060 extracts a feature value by performing statistical processing on the absolute value of the extreme value of the signal indicated by the divided extracted signal.
  • the statistical processing performed by the feature value extraction unit 2060 is various.
  • the statistical processing is processing for calculating a minimum value or an average value from absolute values of extreme values of a plurality of signal magnitudes.
  • FIG. 2 is a diagram conceptually showing a state in which a process for calculating a minimum value is used as a statistical process.
  • the feature value extraction unit 2060 extracts the smallest one of the absolute values of the signal magnitudes as the feature value from each of the extracted signals divided every predetermined period.
  • the minimum value as the statistical value, when the magnitude of the signal acquired by the vibration acquisition unit 2020 is temporarily increased due to a sudden disturbance, the leakage inspection apparatus 2000 causes the temporary large signal due to the disturbance. Therefore, it is possible to prevent erroneous detection that leakage has occurred in the piping. Therefore, the accuracy of the inspection for the presence or absence of leakage performed by the leakage inspection apparatus 2000 is increased.
  • Leakage determination unit 2080 determines a determination index value based on the feature value acquired from feature value extraction unit 2060. For example, the leakage determination unit 2080 determines the feature value acquired from the feature value extraction unit 2060 as a determination index value.
  • the leakage determination unit 2080 represents the increase degree of the current feature value calculated based on the feature value acquired from the feature value extraction unit 2060 and the feature value extracted in the past by the feature value extraction unit 2060.
  • the value is set as a judgment index value.
  • a value representing the degree of increase of the feature value is referred to as feature value acceleration.
  • the leakage inspection apparatus 2000 includes a feature value history storage unit 2090 as shown in FIG.
  • the feature value history storage unit 2090 associates the feature value extracted by the feature value extraction unit 2060 with information indicating the time point when the feature value is extracted, and stores it as a feature value history.
  • Leakage determination unit 2080 can use, for example, feature value acceleration calculated by the following method as a determination index value.
  • the leakage determination unit 2080 calculates the following formula 1.
  • si is a feature value extracted from an extraction signal that represents the magnitude of vibration in the i-th period (hereinafter referred to as period pi) in a period obtained by dividing the time from the reference time point of the leakage inspection into a predetermined period.
  • ai is the feature value acceleration in the period pi.
  • the leakage determination unit 2080 may use bi calculated by the following formula 2 as the feature value acceleration.
  • bi is a value obtained by normalizing ai with an initial value a0.
  • the leakage determination unit 2080 may use ci calculated by the following Equation 3 as the feature value acceleration.
  • ci is a value indicating how much ai in the period pi has increased with respect to ai-1 in the period pi-1 immediately before the period pi.
  • ⁇ ti is a value representing a time interval between the period pi and the period pi ⁇ 1. For example, ⁇ ti is a value obtained by subtracting a value representing the start time of the period pi ⁇ 1 from a value representing the start time of the period pi.
  • the leakage determination unit 2080 may use, as the determination index value, a value obtained by adding the feature value acceleration indicating the current feature value increase degree and the feature value acceleration indicating the past feature value increase degree. it can. In this case, for example, the leakage determination unit 2080 calculates a determination index value using the following Equation 4.
  • di is a determination index value in the period pi.
  • the leakage determination unit 2080 compares the determination index value with a predetermined threshold value. There are various methods by which the leakage determination unit 2080 obtains the predetermined threshold.
  • the leakage determination unit 2080 acquires a predetermined threshold value manually input to the leakage inspection apparatus 2000, for example.
  • the leakage determination unit 2080 acquires a predetermined threshold value input from an external device that is connected to the leakage inspection device 2000 so as to be communicable.
  • the leakage determination unit 2080 may acquire a predetermined threshold that is fixedly set for the leakage determination unit 2080 when the leakage determination unit 2080 is manufactured.
  • the leakage inspection apparatus 2000 notifies the inspection result of the leakage determination unit 2080 to the outside.
  • the notification destination of the inspection result is, for example, an external device such as a server that is communicably connected to the leakage inspection device 2000.
  • the connection method may be wired connection, wireless connection, or a connection method in which they are mixed.
  • FIG. 4 is a flowchart showing an example of the flow of leak inspection processing by the leak inspection apparatus 2000 of the present embodiment.
  • step S102 the vibration acquisition unit 2020 acquires a source signal.
  • the source signal is a signal that represents the magnitude of vibration of the pipe or the magnitude of vibration propagated from the pipe in time series.
  • step S104 the filtering unit 2040 extracts an extraction signal from the source signal.
  • the extracted signal is a signal in a predetermined frequency band extracted from the source signal.
  • step S106 the feature value extraction unit 2060 extracts a feature value from the extracted signal.
  • step S108 the leakage determination unit 2080 determines a determination index value based on the feature value.
  • step S110 the leakage determination unit 2080 determines whether or not the determination index value is greater than a predetermined threshold value. If the determination index value is greater than the predetermined threshold value, the process proceeds to step S112. On the other hand, if the determination index value is less than or equal to the predetermined threshold value, the process proceeds to step S114.
  • step S112 the leakage determination unit 2080 determines that leakage has occurred in the piping.
  • step S114 the leakage determination unit 2080 determines that there is no leakage in the piping.
  • the leakage inspection apparatus 2000 may include a plurality of filtering units 2040 having different predetermined frequency bands, and a plurality of feature value extracting units 2060 corresponding to the respective filtering units 2040.
  • the configuration of the leakage inspection apparatus 2000 in this case is, for example, the configuration shown in the block diagram of FIG.
  • the leakage inspection apparatus 2000 in this form is referred to as a leakage inspection apparatus 2000 according to the first modification.
  • Leakage inspection apparatus 2000 of Modification 1 extracts a plurality of extraction signals having different frequency bands from one source signal by a plurality of filtering units 2040.
  • the feature value extraction unit 2060 extracts a feature value from the extracted signal extracted by the corresponding filtering unit 2040.
  • the leakage determination unit 2080 of the leakage inspection apparatus 2000 of Modification 1 acquires feature values from each of the plurality of feature value extraction units 2060. Then, the leakage determination unit 2080 determines a determination index value based on each feature value. Then, the leakage determination unit 2080 determines the presence or absence of leakage by comparing each determination index value with a predetermined threshold value. For example, the leakage determination unit 2080 determines that the inspection result has leakage when any of the determination index values is greater than a predetermined threshold value. In addition, for example, when the leakage determination unit 2080 determines that there is a possibility of leakage when a predetermined number or more of determination index values are present, the leakage determination unit 2080 determines that there is leakage.
  • the predetermined threshold value may be a common value for each determination index value, or may be a different value corresponding to the feature value extraction unit 2060 that extracts each feature value.
  • the vibration acquisition unit 2020 acquires a signal (source signal) that represents the magnitude of vibration of the pipe or the magnitude of vibration propagated from the pipe in time series.
  • the filtering unit 2040 extracts a signal (extracted signal) in a predetermined frequency band from the acquired source signal.
  • the feature value extraction unit 2060 divides the extraction signal at a predetermined time interval, and extracts a feature value from each of the divided extraction signals.
  • the leakage determination unit 2080 determines that the inspection result is leakage when the determination index value determined based on the feature value is larger than a predetermined threshold value. Therefore, the leakage inspection apparatus 2000 can determine the presence or absence of leakage with less processing than when all values representing the extracted signal are compared with a predetermined threshold. Therefore, the leakage inspection apparatus 2000 can operate with less energy consumption.
  • the leakage inspection apparatus 2000 extracts extracted signals in a plurality of different frequency bands from the source signal. Then, the leakage inspection apparatus 2000 determines the presence or absence of leakage based on a plurality of determination index values based on the respective extracted signals. Leakage inspection apparatus 2000 can narrow the frequency band of each extracted signal by extracting extracted signals of a plurality of different frequency bands from the source signal.
  • the leakage inspection apparatus 2000 can limit the extracted signals affected by the disturbance to a part of the extracted signals by setting the frequency bands of the extracted signals extracted from the source signal to different narrow ranges. Therefore, the leakage inspection apparatus 2000 according to the first modification can calculate many determination index values with high accuracy. Therefore, the leakage inspection apparatus 2000 according to the first modification can inspect for leakage with high accuracy.
  • FIG. 6 is a block diagram illustrating a leakage inspection apparatus 2000 according to the second embodiment.
  • the functional blocks shown in FIG. 6 those having the same reference numerals in FIG. 1 have the same functions as the functional blocks in FIG. 1 unless otherwise specified. Therefore, description of those functional blocks is omitted as appropriate.
  • the leakage inspection apparatus 2000 of the present embodiment further includes a leakage amount information acquisition unit 2100 and a leakage amount calculation unit 2120.
  • the leakage amount information acquisition unit 2100 acquires leakage amount information that is information indicating the correspondence between the above-described determination index value and the leakage amount.
  • the leakage amount information is information representing a calibration curve indicating the relationship between the determination index value and the leakage amount, for example, as shown in FIG.
  • the leakage amount information may be a value indicating the degree of leakage.
  • the leakage amount calculation unit 2120 acquires the flow rate of the fluid flowing through the pipe at the normal time, and calculates the leakage amount based on the acquired normal flow rate and a value indicating the degree of leakage.
  • the flow rate of the fluid flowing through the pipe at normal time can be acquired from, for example, a pipe manager.
  • the leakage amount calculation unit 2120 uses the determination index value acquired from the leakage determination unit 2080, and calculates the leakage amount corresponding to the determination index value from the leakage amount information acquired by the leakage amount information acquisition unit 2100.
  • FIG. 8 is a flowchart showing an example of the flow of leakage amount calculation processing by the leakage inspection apparatus 2000 of the present embodiment.
  • steps S102 to S108 are the same processes as steps S102 to S108 of FIG. 4 described in the first embodiment. Therefore, the description of steps S102 to S108 is omitted.
  • step S202 the leakage amount information acquisition unit 2100 acquires leakage amount information.
  • step S204 the leakage amount calculation unit 2120 uses the determination index value acquired from the leakage determination unit 2080, and calculates the leakage amount corresponding to the determination index value from the leakage amount information acquired by the leakage amount information acquisition unit 2100. .
  • the leakage inspection apparatus 2000 may include a plurality of filtering units 2040 and a feature value extracting unit 2060 (see FIG. 9).
  • the leakage amount calculation unit 2120 acquires a plurality of determination index values from the leakage determination unit 2080. Then, the leakage amount calculation unit 2120 calculates a leakage amount corresponding to each determination index value from the leakage amount information using each of the plurality of determination index values. Then, the leakage amount calculation unit 2120 determines a leakage amount as a final calculation result based on the calculated plurality of leakage amounts. For example, the leakage amount calculation unit 2120 sets a result of statistical processing of the calculated plurality of leakage amounts as a final calculation result.
  • the statistical processing is processing for calculating an average value, a maximum value, a minimum value, and the like, for example.
  • the leakage amount calculation unit 2120 may calculate the leakage amount using a part of the determination index values among the plurality of determination index values. For example, the leakage amount calculation unit 2120 calculates the leakage amount using only a determination index value larger than a predetermined threshold used by the leakage determination unit 2080 among the plurality of determination indexes. In this way, the leakage amount is calculated using only the judgment index value indicating that there is leakage. Accordingly, it is possible to exclude the determination index value based on the signal in the frequency band that does not indicate leakage from the calculation of the leakage amount, and to calculate the leakage amount with higher accuracy.
  • the leakage inspection apparatus 2000 has the amount of fluid leaking from the pipe based on the signal indicating the magnitude of vibration of the pipe or the magnitude of vibration propagating from the pipe. Can be calculated. Thereby, the leak inspection apparatus 2000 can provide information indicating the necessity of treatment for the pipe such as pipe repair.
  • the leak inspection apparatus 2000 calculates a leak amount for each of a plurality of determination index values based on extracted signals in a plurality of different frequency bands. Then, based on the leakage amount calculated from each determination index value, the leakage amount as a final calculation result is calculated.
  • Leakage inspection apparatus 2000 uses a plurality of judgment index values based on extracted signals in a plurality of different frequency bands, thereby limiting judgment index values affected by disturbances such as domestic wastewater to some judgment index values. be able to. Therefore, the leakage inspection apparatus 2000 according to Modification 2 can calculate many determination index values with high accuracy. Therefore, the leakage inspection apparatus 2000 can calculate the leakage amount with high accuracy.
  • FIG. 10 is a block diagram illustrating a leakage inspection apparatus 2000 according to the second embodiment.
  • those having the same reference numerals in FIG. 1 have the same functions as the functional blocks in FIG. 1 unless otherwise specified. Therefore, description of those functional blocks is omitted as appropriate.
  • the leakage inspection apparatus 2000 further includes a deterioration rate information acquisition unit 2140 and a deterioration rate calculation unit 2160.
  • the deterioration rate information acquisition unit 2140 acquires deterioration rate information that is information indicating the association between the above-described determination index value and the deterioration rate of the pipe.
  • the deterioration rate information is information representing a calibration curve indicating the relationship between the determination index value and the deterioration rate of piping, for example, as shown in FIG.
  • the deterioration rate calculation unit 2160 uses the determination index value acquired from the leakage determination unit 2080, and calculates the deterioration rate of the pipe corresponding to the determination index value from the deterioration rate information acquired by the deterioration rate information acquisition unit 2140.
  • FIG. 12 is a flowchart showing an example of the flow of leakage amount calculation processing by the leakage inspection apparatus 2000 of this embodiment.
  • steps S102 to S108 are the same processes as steps S102 to S108 of FIG. 4 described in the first embodiment. Therefore, the description of steps S102 to S108 is omitted.
  • step S302 the deterioration rate information acquisition unit 2140 acquires deterioration rate information.
  • step S304 the deterioration rate calculation unit 2160 uses the determination index value and calculates a deterioration rate corresponding to the determination index value from the deterioration rate information.
  • the leakage inspection apparatus 2000 may include a plurality of filtering units 2040 and a feature value extracting unit 2060 (see FIG. 13).
  • the deterioration rate calculation unit 2160 acquires a plurality of determination index values from the leakage determination unit 2080. Then, using each of the acquired determination index values, a deterioration rate corresponding to each determination index value is calculated from the deterioration rate information. The deterioration rate calculation unit 2160 determines a deterioration rate as a final calculation result based on the plurality of calculated deterioration rates.
  • the deterioration rate calculation unit 2160 sets a result of statistical processing of the calculated plurality of leakage amounts as a final calculation result.
  • the statistical processing is processing for calculating an average value, a maximum value, a minimum value, and the like, for example.
  • the deterioration rate calculation unit 2160 may calculate the deterioration rate using a part of the determination index values among the plurality of determination index values. For example, the deterioration rate calculation unit 2160 calculates the deterioration rate using only a determination index value larger than a predetermined threshold used by the leakage determination unit 2080 among a plurality of determination indexes. In this way, the deterioration rate is calculated using only the judgment index value indicating that there is leakage. As a result, it is possible to exclude the determination index value based on the signal in the frequency band that does not indicate leakage from the calculation of the deterioration rate, and to calculate the deterioration rate with higher accuracy.
  • the leakage inspection apparatus 2000 can calculate the deterioration rate of the pipe based on the signal indicating the magnitude of the vibration of the pipe or the magnitude of the vibration propagating from the pipe. Thereby, the leak inspection apparatus 2000 can provide information indicating the necessity of treatment for the pipe such as pipe repair.
  • the leakage inspection apparatus 2000 calculates a deterioration rate for each of a plurality of determination index values based on extracted signals of a plurality of different frequency bands. Then, based on the deterioration rate calculated from each judgment index value, the deterioration rate as the final calculation result is calculated.
  • Leakage inspection apparatus 2000 uses a plurality of judgment index values based on extracted signals in a plurality of different frequency bands, thereby limiting judgment index values affected by disturbances such as domestic wastewater to some judgment index values. be able to. Therefore, the leakage inspection apparatus 2000 according to the modified example 3 can calculate many determination index values with high accuracy. Therefore, the leakage inspection apparatus 2000 can calculate the deterioration rate with high accuracy.
  • FIG. 14 is a block diagram illustrating a leakage inspection apparatus 2000 according to the third embodiment.
  • those having the same reference numerals in FIG. 1 have the same functions as the functional blocks in FIG. 1 unless otherwise specified. Therefore, description of these functional blocks will be omitted as appropriate.
  • the leak test apparatus 2000 of this embodiment is used together with other leak test apparatuses 2000.
  • the leakage inspection apparatus 2000 according to the present embodiment further includes a determination result acquisition unit 2180 and a comprehensive determination unit 2200.
  • the determination result acquisition unit 2180 acquires the determination result of the presence / absence of leakage by the leakage determination unit 2080 of another leakage inspection apparatus 2000.
  • the comprehensive judgment unit 2200 performs the inspection based on the judgment result of the leakage presence / absence by the leakage judgment unit 2080 of the leakage inspection device 2000 and the judgment result of the leakage presence / absence acquired by the judgment result acquisition unit 2180 from the other leakage inspection device 2000. Determine the resulting leak.
  • the comprehensive judgment unit 2200 uses as an inspection result. For example, the overall judgment unit 2200 determines that the test result is leaked when the leak determination unit 2080 of any of the leak test apparatuses 2000 has a leak determination result. In addition, for example, the overall determination unit 2200 determines that the inspection result is leaked when the leakage determination unit 2080 of the leakage inspection apparatus 2000 of a predetermined number or more leaks.
  • FIG. 15 is a flowchart illustrating an example of a flow of processing in which the leakage inspection apparatus 2000 according to the present embodiment determines an inspection result.
  • steps S102 to S114 are the same processes as steps S102 to S114 of FIG. 4 described in the first embodiment. Therefore, description of steps S102 to S114 is omitted.
  • step S ⁇ b> 402 the determination result acquisition unit 2180 acquires the determination result of the presence / absence of leakage by the leakage determination unit 2080 of the other leakage inspection apparatus 2000 from the other leakage inspection apparatus 2000.
  • step S ⁇ b> 404 the overall determination unit 2200 is based on the determination result of the leakage presence / absence by the leakage determination unit 2080 of the leakage inspection apparatus 2000 and the determination result of the leakage presence / absence acquired by the determination result acquisition unit 2180 from the other leakage inspection apparatus 2000. Then, the presence or absence of leakage as an inspection result is determined.
  • the leakage inspection apparatus 2000 may include a plurality of filtering units 2040 and a feature value extracting unit 2060 (see FIG. 16).
  • the leakage inspection apparatus 2000 includes a determination index value acquisition unit 2220.
  • the determination index value acquisition unit 2220 acquires a plurality of determination index values from the leakage determination unit 2080 of another leakage inspection apparatus 2000.
  • the comprehensive determination unit 2200 determines the presence or absence of leakage. Specifically, the overall determination unit 2200 determines that there is a leak when a plurality of determination index values based on signals in any frequency band are greater than a predetermined threshold value. To do.
  • the leakage inspection apparatus 2000 acquires the determination result of the presence or absence of leakage by the leakage determination unit 2080 of another leakage inspection apparatus 2000. Then, the leakage inspection apparatus 2000 is based on the determination result of the leakage presence / absence by the leakage determination unit 2080 of the leakage inspection apparatus 2000 and the determination result of the leakage presence / absence acquired by the determination result acquisition unit 2180 from the other leakage inspection apparatus 2000. The presence or absence of leakage as an inspection result is determined. Thereby, the leak test
  • the leakage inspection apparatus 2000 is based on a plurality of determination index values acquired from other leakage inspection apparatuses 2000 and a plurality of determination index values acquired from the leakage determination unit 2080 of the leakage inspection apparatus 2000.
  • the presence or absence of leakage as an inspection result is determined.
  • the overall determination unit 2200 determines that there is a leak when a plurality of determination index values based on signals in any frequency band are greater than a predetermined threshold value.
  • Leakage inspection apparatus 2000 uses a plurality of judgment index values based on extracted signals in a plurality of different frequency bands, thereby limiting judgment index values affected by disturbances such as domestic wastewater to some judgment index values. be able to. Therefore, the leakage inspection apparatus 2000 according to the modified example 4 can calculate many determination index values with high accuracy. Therefore, the leakage inspection apparatus 2000 can determine the presence or absence of leakage with high accuracy.
  • FIG. 17 is a block diagram illustrating a leakage inspection apparatus 2000 according to the fifth embodiment.
  • those having functional blocks with the same reference numerals in FIG. 1 have the same functions as the functional blocks in FIG. 1 unless otherwise specified. Therefore, description of these functional blocks will be omitted as appropriate.
  • the leak test apparatus 2000 of this embodiment is used together with other leak test apparatuses 2000.
  • the leakage inspection apparatus 2000 includes a determination index value acquisition unit 2220 and a leakage position specification unit 2240.
  • the determination index value acquisition unit 2220 acquires the determination index value determined by the leakage determination unit 2080 from another leakage inspection apparatus 2000.
  • the leak position specifying unit 2240 detects leaks in the piping based on the magnitude of the judgment index value acquired from the other leak testing apparatus 2000 and the magnitude of the judgment index value determined by the leak judgment section 2080 of the leak testing apparatus 2000. Identify the location.
  • the leakage position specifying unit 2240 may leak between the installation position of the leakage inspection apparatus 2000 that indicates the maximum determination index value and the installation position of the leakage inspection apparatus 2000 that indicates the second largest determination index value. Identify the location.
  • FIG. 18 is a diagram conceptually showing a method by which the leakage inspection apparatus 2000 determines the leakage position.
  • the leakage in the pipe 10 is inspected by five leakage inspection apparatuses 2000 (leakage inspection apparatuses A to E).
  • the leakage inspection apparatus C shows the maximum determination index value
  • the leakage inspection apparatus B shows the second largest determination index value. Therefore, the leakage inspection apparatus 2000 of the present embodiment specifies that the leakage inspection apparatus B and C is a leakage position.
  • the leakage inspection apparatus 2000 for specifying the leakage position may be any of the leakage inspection apparatuses A to E.
  • the installation position of the leakage inspection apparatus 2000 is represented by the X coordinate of the leakage inspection apparatus 2000 when the extending direction of the piping is the X-axis direction, for example.
  • the installation positions of leakage inspection apparatuses A to E in FIG. 18 are Xa to Xe, respectively.
  • FIG. 19 is a flowchart illustrating an example of a flow of processing in which the leakage inspection apparatus 2000 according to the present embodiment specifies a leakage position.
  • steps S102 to S114 are the same processes as steps S102 to S114 of FIG. 4 described in the first embodiment. Therefore, description of steps S102 to S114 is omitted.
  • step S502 the determination index value acquisition unit 2220 acquires the determination index value determined by the leakage inspection apparatus 2000 from another leakage inspection apparatus 2000.
  • step S504 the leakage position specifying unit 2240 determines the magnitude of the determination index value determined by the leakage inspection apparatus 2000 and the determination index value determined by another leakage inspection apparatus 2000 acquired by the determination index value acquisition unit 2220. Based on this, the leakage position is specified.
  • the leakage inspection apparatus 2000 of the present embodiment may include a plurality of filtering units 2040 and feature value extraction units 2060 as in the first modification (see FIG. 20).
  • the determination index value acquisition unit 2220 acquires a plurality of determination index values from another leakage inspection apparatus 2000.
  • the leak position specifying unit 2240 specifies the leak position based on the plurality of judgment index values determined by the leak judgment unit 2080 of the leak testing apparatus 2000 and the plurality of judgment index values acquired from the other leak testing apparatuses 2000. To do.
  • the leakage position specifying unit 2240 specifies the maximum determination index value and the second largest determination index value among the plurality of determination index values calculated from the extracted signal of any frequency band. Then, the leakage position specifying unit 2240 has a leakage position between the installation position of the leakage inspection apparatus 2000 that has calculated the maximum determination index value and the installation position of the leakage inspection apparatus 2000 that has calculated the second largest determination index value. Identifies it.
  • the leak position specifying unit 2240 specifies the leak position using each determination index value based on the extracted signal of any frequency band.
  • Leakage position specifying unit 2240 determines which frequency band is used to specify the leak position using the determination index value based on the extracted signal as follows. First, the leakage position specifying unit 2240 specifies the maximum determination index value from all the determination index values. Next, it is specified which frequency band the calculated index value is calculated based on the extracted signal. And leak position specific
  • the leakage inspection apparatus 2000 compares the magnitudes of the determination index values determined by the leakage inspection apparatus 2000 and other leakage inspection apparatuses 2000, thereby leaking pipes.
  • the position can be specified.
  • inspection apparatus 2000 can provide the information which shows the leak position of piping. For example, this allows the user of the leak inspection apparatus 2000 to quickly repair the pipe by acquiring information indicating the leak position of the pipe to be repaired.
  • the leak inspection apparatus 2000 specifies the leak position based on the determination index values determined based on the extracted signals of a plurality of different frequency bands.
  • Leakage inspection apparatus 2000 uses a plurality of judgment index values based on extracted signals in a plurality of different frequency bands, thereby limiting judgment index values that are affected by disturbances such as domestic wastewater to some judgment index values. be able to. Therefore, the leakage inspection apparatus 2000 according to the modified example 5 can calculate many determination index values with high accuracy. Therefore, the leakage inspection apparatus 2000 according to the modified example 5 can specify the leakage position with high accuracy.
  • Vibration acquisition means for acquiring a signal indicating in time series the magnitude of vibration of the pipe or the magnitude of vibration propagating from the pipe;
  • Filtering means for extracting a signal of one frequency band from the signal; The extracted signal is divided at a predetermined time interval, and for each divided signal, an absolute value of each of a plurality of extreme values of the magnitude of vibration is calculated, and for each of the divided signals, the calculated plurality of absolute values is calculated.
  • a feature value extracting means for performing statistical processing and extracting a value calculated by the statistical processing as a feature value;
  • a leakage determination means for determining that the inspection result is leaked when a determination index value determined using the feature value is greater than a predetermined threshold;
  • Leakage inspection device having 2.
  • the feature value extraction unit performs a process of calculating a minimum value of a plurality of the absolute values as the statistical process.
  • the leakage determination means uses the feature value as the determination index value. Or 2. Leakage inspection device described in 1. 4).
  • a feature value history storage means for storing the feature value history;
  • the leakage determination means uses the feature value extracted by the feature value extraction means and the past feature value stored in the feature value history storage means to show a feature value acceleration indicating a degree of increase of the feature value. And calculating the calculated feature value acceleration as the determination index value, Characterized by Or 2. Leakage inspection device described in 1. 5.
  • a feature value history storage means for storing the feature value history;
  • the leakage determination means is Using the feature value extracted by the feature value extraction unit and the past feature value stored in the feature value history storage unit, a feature value acceleration indicating a degree of increase of the feature value is calculated, Using the past feature value stored in the feature value history storage unit and the feature value stored in the feature value history storage unit before the past feature value, the past of the feature value Calculate past feature value acceleration indicating the degree of increase of Determining the determination index value based on a value obtained by adding the feature value acceleration and the past feature value acceleration; Characterized by Or 2. Leakage inspection device described in 1. 6).
  • Leakage amount information acquisition means for acquiring leak amount information indicating a correspondence between the judgment index value and the leak amount of piping;
  • Leakage amount calculation means for referring to the leak amount information using the determination index value acquired from the leak determination means, and calculating the leak amount of the pipe based on the reference result; 1.
  • the leakage inspection apparatus according to any one of the above. 7).
  • Deterioration rate information acquisition means for acquiring deterioration rate information, which is information indicating correspondence between the determination index value and the deterioration rate of piping;
  • a deterioration rate calculating means for referring to the deterioration rate information using a determination index value acquired from the leakage determining means, and calculating a deterioration rate of the pipe based on the reference result; 1.
  • Deterioration rate information acquisition means for acquiring deterioration rate information, which is information indicating correspondence between the determination index value and the deterioration rate of piping;
  • a deterioration rate calculating means for referring to the deterioration rate
  • a determination result acquisition means for acquiring a determination result by a leakage determination means of another leakage inspection device for acquiring a determination result by a leakage determination means of another leakage inspection device; Among the leakage inspection devices and other leakage inspection devices, when it is determined that there is leakage in a predetermined number or more of leakage inspection devices, comprehensive determination means that the inspection result is leakage, 1. To 7.
  • the determination index value is acquired from each of a plurality of other leakage inspection apparatuses, and the installation position of the leakage inspection apparatus indicating the maximum determination index value among the leakage inspection apparatus and the plurality of leakage inspection apparatuses, and the second 1.
  • the leakage inspection apparatus it further has a leak position specifying means for specifying that the leak position is between the installation position of the leak inspection apparatus showing a large determination index value.
  • a leakage inspection apparatus according to any one of the above. 10.
  • a plurality of the filtering means for extracting signals of different frequency bands;
  • a plurality of feature value extraction means for extracting the feature values from signals extracted by different filtering means;
  • the leakage determination unit acquires the feature values from the plurality of feature value extraction units, determines the determination index value for each of the feature values, compares each of the determination index values with a predetermined threshold value, and If the determination index value of is greater than the predetermined threshold, the inspection result is assumed to be leaked, Features 1.
  • the leakage inspection apparatus according to any one of the above. 11.
  • a feature value history storage means for storing a history of the feature values extracted by each of the feature value extraction means;
  • the leakage determination means includes, for each of the feature values, the feature value, a feature value stored in the feature value history storage means, and a feature value extracted in the past by the feature value extraction means that extracted the feature value. Respectively, to calculate the feature value acceleration indicating the degree of increase of the feature value, each of the feature value acceleration as the judgment index value, 10 characterized by Leakage inspection device described in 1. 12
  • the leakage determination means is For each of the feature values, the feature value extracting unit that has extracted the feature value stores the past feature value stored in the feature value storing unit, and the feature value extracting unit prior to the past feature value.
  • the leakage inspection apparatus according to any one of the above. 14
  • Deterioration rate information acquisition means for acquiring deterioration rate information indicating the correspondence between the determination index value and the deterioration rate of the pipe;
  • a deterioration rate calculating means for acquiring deterioration rates based on the respective determination index values from the deterioration rate information, using each of the determination index values, and using the acquired statistical values of the plurality of deterioration rates as pipe deterioration rates; Comprising 10. Thru 13.
  • the leakage inspection apparatus according to any one of the above. 15.
  • Determination index value acquisition means for acquiring the determination index value from a plurality of other leakage inspection devices, When a predetermined number or more of the determination index values among a plurality of the determination index values based on a signal in any frequency band are larger than the predetermined threshold, the inspection result by the leakage inspection apparatus is considered to be leaked Judgment means, 10. To 14. The leakage inspection apparatus according to any one of the above. 16.
  • Determination index value acquisition means for acquiring the determination index value from a plurality of other leakage inspection devices, The largest judgment index value is identified from the judgment index value determined by the leakage inspection apparatus and the judgment index value acquired from another leakage inspection apparatus, and is set as the first judgment index value, which is the same as the first judgment index value Among the other determination index values determined based on the signal in the frequency band, the leak determination apparatus that identifies the maximum determination index value as the second determination index value and sets the first determination index value Leakage position specifying means for specifying that the position between the installation position and the installation position of the leakage inspection apparatus that determines the second determination index value is a leakage position; 10. To 14. The leakage inspection apparatus according to any one of the above. 17.
  • the maximum determination index value is identified from among the determination index values acquired by the determination index value acquisition means and is set as a first determination index value, which is determined based on a signal in the same frequency band as the first determination index value.
  • the largest determination index value is specified as the second determination index value, and the installation position of the leakage inspection apparatus that defines the first determination index value, and the second determination index value 15. It further has a leak position specifying means for specifying that it is a leak position between the installation position of the leak inspection apparatus for which the value is determined.
  • Leakage inspection device described in 1. 18 A leakage inspection program for causing a computer to have a function of operating as a leakage inspection device for performing a leakage inspection of pipes.
  • a vibration acquisition function for acquiring a signal indicating the magnitude of vibration of the pipe or the magnitude of vibration propagating from the pipe in time series;
  • a filtering function for extracting a signal of one frequency band from the signal; The extracted signal is divided at a predetermined time interval, and for each divided signal, an absolute value of each of a plurality of extreme values of the magnitude of vibration is calculated, and for each of the divided signals, the calculated plurality of absolute values is calculated.
  • a feature value extraction function for performing statistical processing and extracting a value calculated by the statistical processing as a feature value;
  • a leakage determination function in which an inspection result is leaked when a determination index value determined using the feature value is larger than a predetermined threshold; Leak inspection program. 19.
  • the feature value extraction function performs a process of calculating a minimum value of a plurality of the absolute values as the statistical process.
  • Leakage inspection program described in 20 The leak determination function uses the feature value as the determination index value. Or 19.
  • Leakage inspection program described in 21 The computer further has a feature value history storage function for storing the feature value history, The leakage judgment function uses the feature value extracted by the feature value extraction function and the past feature value stored by the feature value history storage function to indicate a feature value acceleration indicating a degree of increase of the feature value. And calculating the calculated feature value acceleration as the determination index value, 18 characterized by Or 19. Leakage inspection program described in 22.
  • the computer further has a feature value history storage function for storing the feature value history
  • the leakage judgment function is Using the feature value extracted by the feature value extraction function and the past feature value stored by the feature value history storage function, a feature value acceleration indicating a degree of increase of the feature value is calculated, Using the past feature value stored by the feature value history storage function and the feature value stored in the feature value history storage means before the past feature value, the past of the feature value Calculate past feature value acceleration indicating the degree of increase of Determining the determination index value based on a value obtained by adding the feature value acceleration and the past feature value acceleration; 18 characterized by Or 19. Leakage inspection program described in 23.
  • a leakage amount information acquisition function for acquiring leakage amount information indicating a correspondence between the judgment index value and the leakage amount of piping;
  • a leakage amount calculation function for referring to the leakage amount information using a determination index value acquired from the leakage determination function, and calculating a leakage amount of piping based on the reference result;
  • Thru 22 The leakage inspection program according to any one of the above. 24.
  • a deterioration rate information acquisition function for acquiring deterioration rate information, which is information indicating a correspondence between the determination index value and the deterioration rate of the pipe;
  • a deterioration rate calculation function that refers to the deterioration rate information using the determination index value acquired from the leakage determination function, and calculates the deterioration rate of the pipe based on the reference result; To have more.
  • Thru 23 The leakage inspection program according to any one of the above. 25.
  • a determination result acquisition function for acquiring a determination result by a leakage determination function of another leakage inspection apparatus for acquiring a determination result by a leakage determination function of another leakage inspection apparatus; Among the leakage inspection apparatus and other leakage inspection apparatuses, when it is determined that there is leakage in a predetermined number or more of leakage inspection apparatuses, a comprehensive determination function that the inspection result is leakage, To have more.
  • the leakage inspection program according to any one of the above. 26.
  • the determination index value is obtained from each of a plurality of other leakage inspection apparatuses, and the installation position of the leakage inspection apparatus showing the maximum determination index value among the leakage inspection apparatus and the plurality of leakage inspection apparatuses And a leak position specifying function for specifying that the leak position is between the installation position of the leak inspection apparatus showing the second largest determination index value.
  • a leak position specifying function for specifying that the leak position is between the installation position of the leak inspection apparatus showing the second largest determination index value.
  • the leakage inspection program according to any one of the above. 28.
  • the computer further has a feature value history storage function for storing a history of the feature values extracted by each of the feature value extraction functions
  • the leakage determination function includes, for each feature value, the feature value, the feature value stored in the feature value history storage function, the feature value extracted in the past by the feature value extraction function that extracted the feature value, and Respectively, to calculate the feature value acceleration indicating the degree of increase of the feature value, each of the feature value acceleration as the judgment index value, 27. Leakage inspection program described in 29.
  • the leakage judgment function is For each of the feature values, the feature value extracted by the feature value extraction function is the past feature value stored by the feature value storage function, and the feature value is extracted before the past feature value by the feature value extraction function.
  • the feature value stored by the value history storage function is used to calculate past feature value acceleration indicating the past increase degree of the feature value, respectively. Determining an additional feature value acceleration based on a value obtained by adding the feature value acceleration and the past feature value acceleration, and setting each of the added feature value accelerations as the determination index value; 28. Leakage inspection program described in 30.
  • a leakage amount information acquisition function for acquiring leakage amount information indicating a correspondence between the judgment index value and the leakage amount of piping;
  • a leakage amount calculation function that uses each of the determination index values to acquire a leakage amount based on each of the determination index values from the leakage amount information, and uses the acquired statistical values of the plurality of leakage amounts as pipe leakage amounts; 27. Thru 29.
  • a deterioration rate information acquisition function for acquiring deterioration rate information indicating the correspondence between the determination index value and the deterioration rate of the pipe; Using each of the determination index values, a deterioration rate based on each of the determination index values is acquired from the deterioration rate information, respectively, and a deterioration rate calculation function that uses a statistical value of the acquired plurality of deterioration rates as a pipe deterioration rate, 27. Thru 30.
  • the leakage inspection program according to any one of the above. 32.
  • a determination index value acquisition function for acquiring the determination index value from a plurality of other leakage inspection devices;
  • the inspection result by the leakage inspection apparatus is considered to be leaked Judgment function, 27. Thru 31.
  • the leakage inspection apparatus according to any one of the above. 33.
  • a determination index value acquisition function for acquiring the determination index value from a plurality of other leakage inspection devices;
  • the largest judgment index value is identified from the judgment index value determined by the leakage inspection apparatus and the judgment index value acquired from another leakage inspection apparatus, and is set as the first judgment index value, which is the same as the first judgment index value Among the other determination index values determined based on the signal in the frequency band, the leak determination apparatus that identifies the maximum determination index value as the second determination index value and sets the first determination index value
  • a leakage position specifying function that specifies that the position between the installation position of the leakage detection apparatus and the installation position of the leakage inspection apparatus that determines the second determination index value is a leakage position; 27. Thru 31.
  • the leakage inspection program according to any one of the above. 34.
  • the computer determines the largest determination index value from among the determination index values acquired by the determination index value acquisition function as a first determination index value, and generates a signal in the same frequency band as the first determination index value.
  • the largest determination index value is specified as the second determination index value, the installation position of the leakage inspection apparatus that defines the first determination index value, 32.
  • a leakage position specifying function for specifying that the position between the installation position of the leakage inspection apparatus that determines the determination index value of 2 is a leakage position is further provided. Leakage inspection program described in 35.
  • a pipe leakage inspection method executed by a computer A vibration acquisition step of acquiring a signal indicating in time series the magnitude of vibration of the pipe or the magnitude of vibration propagating from the pipe; A filtering step of extracting a signal of one frequency band from the signal; The extracted signal is divided at a predetermined time interval, and for each divided signal, an absolute value of each of a plurality of extreme values of the magnitude of vibration is calculated, and for each of the divided signals, the calculated plurality of absolute values is calculated.
  • a leakage determination step in which the inspection result is leaked when a determination index value determined using the feature value is greater than a predetermined threshold; Leakage inspection method having 36.
  • the feature value extracting step performs a process of calculating a minimum value of a plurality of the absolute values as the statistical process.
  • the feature value is used as the determination index value.
  • a feature value acceleration indicating a degree of increase in the feature value is calculated using the feature value extracted in the feature value extraction step and the past feature value stored in the feature value history storage step. And using the calculated feature value acceleration as the determination index value, 35. Or 36.
  • the leakage determination step includes Using the feature value extracted in the feature value extraction step and the past feature value stored in the feature value history storage step, a feature value acceleration indicating a degree of increase of the feature value is calculated, Using the past feature value stored in the feature value history storage step and the feature value stored in the feature value history storage step before the past feature value, the past increase degree of the feature value Calculate past feature value acceleration indicating Determining the determination index value based on a value obtained by adding the feature value acceleration and the past feature value acceleration; 35. Or 36.
  • a determination result acquisition step of acquiring a determination result by a leakage determination step of another leakage inspection apparatus Among the leakage inspection apparatus and other leakage inspection apparatuses, when it is determined that there is a leakage in a predetermined number or more of leakage inspection apparatuses, a comprehensive determination step that the inspection result is leakage, and 35. Thru 41.
  • the leakage inspection method according to any one of the above. 43.
  • the determination index value is acquired from each of a plurality of other leakage inspection apparatuses, and the installation position of the leakage inspection apparatus indicating the maximum determination index value among the leakage inspection apparatus and the plurality of leakage inspection apparatuses, and the second A leak position specifying step for specifying that the leak position is between the installation position of the leak inspection apparatus showing a large determination index value in the step 35; Thru 42.
  • the leakage inspection method according to any one of the above. 44.
  • the leakage determination step acquires the feature values from the plurality of feature value extraction steps, determines the determination index value for each of the feature values, compares each of the determination index values with a predetermined threshold value, and If the determination index value of is greater than the predetermined threshold, the inspection result is assumed to be leaked, 35. Thru 37.
  • the leakage inspection method according to any one of the above. 45.
  • a feature value history storage step for storing a history of the feature values extracted by each of the feature value extraction steps;
  • the leakage determination step uses, for each of the feature values, the feature value and the feature value extracted in the past by the feature value extraction step of extracting the feature value stored in the feature value history storage step. Calculating feature value acceleration indicating the degree of increase of the feature value, and making each of the feature value accelerations the determination index value, 44.
  • the leakage determination step includes For each feature value, the feature value extracted in the feature value extraction step is stored in the feature value storage step, and the feature value is extracted before the feature value is extracted in the feature value extraction step.
  • a leakage amount information acquisition step for acquiring leakage amount information indicating correspondence between the determination index value and the leakage amount of piping; Using each of the determination index values, a leakage amount based on each of the determination index values is acquired from the leakage amount information, and a leakage amount calculating step using the acquired statistical values of the plurality of leakage amounts as a leakage amount of piping; 44. To 46.
  • the largest judgment index value is identified from the judgment index value determined by the leakage inspection apparatus and the judgment index value acquired from another leakage inspection apparatus, and is set as the first judgment index value, which is the same as the first judgment index value Among the other determination index values determined based on the signal in the frequency band, the leak determination apparatus that identifies the maximum determination index value as the second determination index value and sets the first determination index value
  • a leakage position specifying step for specifying that the position between the installation position and the installation position of the leakage inspection apparatus that defines the second determination index value is a leakage position; 44.
  • the leakage inspection method according to any one of the above. 51.
  • a maximum determination index value is identified from among the determination index values acquired in the determination index value acquisition step, and is set as a first determination index value, which is determined based on a signal in the same frequency band as the first determination index value.
  • the largest determination index value is specified as the second determination index value, and the installation position of the leakage inspection apparatus that defines the first determination index value, and the second determination index value 49.
  • the method further comprises a leak position specifying step for specifying that the leak position is between the installation position of the leak inspection apparatus for which the value is determined. The leakage inspection method described in 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

 漏洩検査装置(2000)が有する各機能構成部は次のように動作する。振動取得部(2020)は、配管の振動、又は配管から伝播する振動を示す信号を取得する。フィルタリング部(2040)は、振動取得部(2020)が取得した信号から所定の周波数帯域の信号を抽出する。特徴値抽出部(2060)は、フィルタリング部(2040)が抽出した信号を所定時間間隔で分割し、分割した信号ごとに、信号の大きさの複数の極値それぞれについて絶対値を算出し、分割した信号ごとに、算出した複数の前記絶対値に対して統計処理を行い、この統計処理によって算出した値を特徴値とする。そして、漏洩判断部(2080)は、上記特徴値を用いて定める判断指標値が、所定の閾値より大きい場合に、検査結果を漏洩有りとする。

Description

漏洩検査装置、漏洩検査方法、及び漏洩検査プログラム
 本発明は、漏洩検査装置、漏洩検査方法、及び漏洩検査プログラムに関する。
 社会基盤として、上下水道網や、ガスや石油などの高圧化学パイプライン、高速鉄道、長大橋、超高層建築、大型旅客機、自動車などの設備が建造されている。これらの設備において重要な部材の一つに、ガスや水などの流体を通す配管がある。配管は、劣化や自然災害によって故障する場合がある。配管が故障して流体が漏れ出した場合、故障した箇所を修復する必要がある。そのため、配管における流体の漏洩を検知する必要がある。以下、配管における流体の漏洩の有無について検査することを、漏洩検査と呼ぶ。
 一般的な漏洩検査は、人手により漏洩音を聴き取る聴感官能検査である。しかし、配管は地中や高所に設置されている場合が多いため、人手による検査は危険と多大な労力を伴う。そこで、漏洩検査を行う装置が提案されている。
 特許文献1記載の漏洩検出装置は、配管周辺で検知した音を電気信号に変換し、その電気信号を解析することで漏洩を検出する。この装置は、取得した音から得た電気信号を、複数のバンドパスフィルタを利用して異なる周波数にそれぞれ分解する。そして、各周波数の電気信号の振幅の大きさを閾値と比較する。そして、上記複数の信号全てにおいて、電気信号の振幅の大きさが閾値を超えた場合に、漏洩であると判定する。
 特許文献2記載の装置は、漏水による配管の振動レベルが判定レベルを超えたカウント回数と判定レベル未満のカウント回数の比率から、漏水の有無を判定する。
 特許文献3記載の装置は、検査区間の両端に設置した水中マイクで取得した検知信号を利用して漏水の有無を検知する。この手法では、設定した仮音源位置により検出された信号の相関関数の高い波形を加算して合成波形を作成することで漏水の有無を判別する。
 特許文献4記載の装置は、同期信号を計測開始基準として、複数個所で所定時間の間、振動を取得し漏水の有無を判別する。
特開昭62-055540号公報 特開2012-37492号公報 特開平11-72409号公報 特開2006-317172号公報
 漏洩検査装置のメンテナンスには多くの労力を要する。その理由の1つは、配管は地中や高所に設置される場合が多いために、漏洩検査装置も地中や高所に設置される場合が多いことである。また、配管には多くの漏洩検査装置が設置されることも理由の1つである。そこで本発明者は、漏洩検査装置のメンテナンスを行う頻度を低くするために、漏洩検査装置の消費エネルギーを小さくし、漏洩検査装置の動作寿命を長くすることを検討した。
 本発明の目的は、消費エネルギーが小さい漏洩検査装置、及びその漏洩検査装置を制御する漏洩検査プログラムと漏洩検査方法を提供することである。
 本発明が提供する漏洩検査装置は、配管の振動、又は配管から伝播する振動を示す信号を取得する振動取得手段と、前記信号から、1つの周波数帯域の信号を抽出するフィルタリング手段と、抽出した信号を所定時間間隔で分割し、分割した信号ごとに、信号の大きさの複数の極値それぞれについて絶対値を算出し、分割した信号ごとに、算出した複数の前記絶対値に対して統計処理を行い、前記統計処理によって算出した値を特徴値として抽出する特徴値抽出手段と、前記特徴値を用いて定める判断指標値が、所定の閾値より大きい場合に、検査結果を漏洩有りとする漏洩判断手段と、を有する。
 本発明が提供する漏洩検査プログラムは、コンピュータに、本発明が提供する漏洩検査装置として動作する機能を持たせる。当該プログラムは、このコンピュータに、本発明が提供する漏洩検査装置が有する各機能構成部の機能を持たせる。
 本発明が提供する漏洩検査方法は、コンピュータによって実行される配管の漏洩検査方法である。当該漏洩検査方法は、配管の振動、又は配管から伝播する振動を示す信号を取得する振動取得ステップと、前記信号から、1つの周波数帯域の信号を抽出するフィルタリングステップと、抽出した信号を所定時間間隔で分割し、分割した信号ごとに、信号の大きさの複数の極値それぞれについて絶対値を算出し、分割した信号ごとに、算出した複数の前記絶対値に対して統計処理を行い、前記統計処理によって算出した値を特徴値として抽出する特徴値抽出ステップと、前記特徴値を用いて定める判断指標値が、所定の閾値より大きい場合に、検査結果を漏洩有りとする漏洩判断ステップと、を有する。
 本発明によれば、消費エネルギーが小さい漏洩検査装置、及びその漏洩検査装置を制御する漏洩検査プログラムと漏洩検査方法を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態1に係る漏洩検査装置を表すブロック図である。 実施形態1に係る漏洩検査装置が特徴値を抽出する方法を概念的に示す図である。 特徴値加速度を算出する実施形態1の漏洩検査装置を表すブロック図である。 実施形態1に係る漏洩検査装置が行う漏洩検査処理の流れの一例を示すフローチャートである。 変形例1に係る漏洩検査装置を表すブロック図である。 実施形態2に係る漏洩検査装置を表すブロック図である。 漏洩量情報が示す情報の例である検量線を表すグラフである。 実施形態2に係る漏洩検査装置が行う漏洩量算出処理の流れの一例を示すフローチャートである。 変形例2に係る漏洩検査装置を表すブロック図である。 実施形態3に係る漏洩検査装置を表すブロック図である。 劣化率情報が示す情報の例である検量線を表すグラフである。 実施形態3に係る漏洩検査装置が行う劣化率算出処理の流れの一例を示すフローチャートである。 変形例3に係る漏洩検査装置を表すブロック図である。 実施形態4に係る漏洩検査装置を表すブロック図である。 実施形態4に係る漏洩検査装置が行う検査結果決定処理の流れの一例を示すフローチャートである。 変形例4に係る漏洩検査装置を表すブロック図である。 実施形態5に係る漏洩検査装置を表すブロック図である。 実施形態5に係る漏洩検査装置が漏洩位置を特定する方法を概念的に示す図である。 実施形態5に係る漏洩検査装置が行う漏洩位置特定処理の流れの一例を示すフローチャートである。 変形例5に係る漏洩検査装置を表すブロック図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 なお、以下に示す説明において、各装置の各構成要素は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。各装置の各構成要素は、任意のコンピュータのCPU、メモリ、メモリにロードされた本図の構成要素を実現するプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。
[実施形態1]
<概要>
 図1は、実施形態1に係る漏洩検査装置2000を表すブロック図である。図1において、矢印は情報の流れを表している。
 漏洩検査装置2000は、振動取得部2020を有する。振動取得部2020は、配管の振動、又は配管から伝播する振動を示す信号を取得する。
 漏洩検査装置2000は、フィルタリング部2040を有する。フィルタリング部2040は、振動取得部2020が取得した信号から、所定の周波数帯域の信号を抽出する。以下、振動取得部2020が取得した信号と、フィルタリング部2040がフィルタリング処理を行った後の信号を区別するため、前者をソース信号、後者を抽出信号と表記する。
 漏洩検査装置2000は、特徴値抽出部2060を有する。特徴値抽出部2060は、抽出信号を所定時間間隔で分割し、分割された抽出信号それぞれから、特徴値を抽出する。特徴値は、分割された抽出信号が示す信号の大きさの極値の絶対値に対し、統計処理を行った値である。
 漏洩検査装置2000は、漏洩判断部2080を有する。漏洩判断部2080は、上記特徴値に基づいて定まる判断指標値を利用して、配管の漏洩の有無を判断する。具体的には、漏洩判断部2080は、上記判断指標値が、所定の閾値より大きい場合に、検査結果を漏洩有りとする。
 以上のように、漏洩検査装置2000は、所定期間で分割した抽出信号それぞれから抽出した特徴値に基づいて、判断指標値を定める。そして、判断指標値が所定の閾値より大きい場合に、検査結果を漏洩有りとする。したがって漏洩検査装置2000は、抽出信号を表す全ての値を所定の閾値と比較する場合と比較して、少ない処理で漏洩の有無を判断することができる。そのため、漏洩検査装置2000は、少ない消費エネルギーで動作することができる。
 以下、本実施形態の詳細を述べる。
<振動取得部2020の詳細>
 振動取得部2020は、配管の振動、又は配管から伝播する振動を示す信号をソース信号として取得する。具体的には、ソース信号は、例えば配管の振動の大きさ、又は配管から伝播する振動の大きさを時系列で表す。また、ソース信号は、アナログ信号であっても、デジタル信号であってもよい。ここで、配管の振動、又は配管から伝播する振動は、例えば振動センサによって計測される。この振動センサには、例えば圧電振動センサを好適に用いることができる。以下、上記計測を行う装置を振動計測装置と表記する。振動計測装置は、配管に直接設置されてもよいし、配管の周りの地中や地面に設置されてもよい。
 ソース信号をアナログ信号として取得する場合、振動デジタル信号取得部2020は、上述した振動計測装置が計測した結果であるアナログ信号を、その振動計測装置から取得する。振動計測装置は、漏洩検査装置2000の外部にあってもよいし、内部にあってもよい。振動計測装置が漏洩検査装置2000の外部にある場合、漏洩検査装置2000とその振動計測装置は通信可能に接続されている。
 漏洩検査装置2000が内部に振動計測装置を有する場合、その振動計測装置の計測帯域を、1Hz~10kHzに制限することが好ましい。計測装置の計測範囲を限定することで、振動計測装置が検査に必要な量のアナログ信号を計測するためにかかる時間を短くすることができる。そのため、漏洩検査装置2000のエネルギーが小さくなる。
 ソース信号をアナログ信号として取得する場合、漏洩検査装置2000は、アナログ信号をデジタル信号に変換するAD変換部を有する。AD変換部は、例えばアナログ・デジタルコンバータ(ADコンバータ)である。
<フィルタリング部2040の詳細>
 フィルタリング部2040は例えば、ハイパスフィルタ、ローパスフィルタ、又はバンドパスフィルタ、又はこれらのフィルタの組み合わせで構成される。
 振動取得部2020がアナログ信号を取得する場合、フィルタリング部2040はAD変換部を有する。フィルタリング部2040は例えば、振動取得部2020から取得したアナログ信号から所定の周波数帯域のアナログ信号を抽出した後に、AD変換部によって、所定の周波数帯域のアナログ信号をデジタル信号に変換する。この場合、上述したハイパスフィルタ等は、アナログフィルタである。フィルタリング部2040は、振動取得部2020から取得したアナログ信号をAD変換部によってデジタル信号に変換した後に、そのデジタル信号から所定の周波数のデジタル信号を抽出してもよい。この場合、上述したハイパスフィルタ等のフィルタは、デジタルフィルタである。
 フィルタリング部2040は、ソース信号から、所定の周波数帯域の信号を抽出する。フィルタリング部2040が、上記所定の周波数帯域を示す情報を取得する方法は様々である。所定の周波数帯域を示す情報とは、例えば所定の周波数帯域の上限値と下限値である。フィルタリング部2040は、例えば漏洩検査装置2000に対して手動で入力された所定の周波数帯域を示す情報を取得する。その他にも例えば、フィルタリング部2040は、漏洩検査装置2000と通信可能に接続されている外部の装置から入力された所定の周波数帯域を示す情報を取得する。また、フィルタリング部2040は、フィルタリング部2040の製作時に、フィルタリング部2040に対して固定で設定された、所定の周波数帯域を示す情報を取得してもよい。
<特徴値抽出部2060の詳細>
 上述したように、特徴値抽出部2060は、分割された抽出信号が示す信号の大きさの極値の絶対値に対して統計処理を行うことで、特徴値を抽出する。特徴値抽出部2060が行う上記統計処理は様々である。例えば上記統計処理は、複数ある信号の大きさの極値の絶対値から、それらの最小値や平均値を算出する処理である。
 図2は、統計処理として最小値を算出する処理を利用する場合の様子を概念的に示す図である。この場合、特徴値抽出部2060は、所定期間ごとに分割された抽出信号それぞれから、信号の大きさの極値の絶対値のうち、最小のものを特徴値として抽出する。統計値として最小値を用いることで、振動取得部2020が取得する信号の大きさが突発的な外乱によって一時的に大きくなった場合に、漏洩検査装置2000が、その外乱による一時的な大きい信号に基づき、配管において漏洩が起こっていると誤検知することを防ぐことができる。そのため、漏洩検査装置2000が行う漏洩の有無の検査の精度が高くなる。
<漏洩判断部2080の詳細>
 漏洩判断部2080は、特徴値抽出部2060から取得した特徴値に基づいて、判断指標値を定める。例えば漏洩判断部2080は、特徴値抽出部2060から取得した特徴値を、判断指標値として定める。
 その他にも例えば、漏洩判断部2080は、特徴値抽出部2060から取得した特徴値、及び特徴値抽出部2060が過去に抽出した特徴値に基づいて算出した、現在の特徴値の増加度合いを表す値を、判断指標値とする。以下、特徴値の増加度合いを表す値を、特徴値加速度と呼ぶ。この場合、漏洩検査装置2000は、図3に示すように、特徴値履歴格納部2090を有する。特徴値履歴格納部2090は、特徴値抽出部2060が抽出した特徴値と、その特徴値を抽出した時点を示す情報とを紐づけ、特徴値履歴として記憶する。
 漏洩判断部2080は、例えば次の方法で算出する特徴値加速度を、判断指標値として用いることができる。まず漏洩判断部2080は、以下の数式1で算出する。siは、漏洩検査の基準時点を開始時点とする時間を所定期間で区切った期間の、i番目の期間(以下、期間pi)における振動の大きさを表す抽出信号から抽出した特徴値である。aiは、期間piにおける特徴値加速度である。
Figure JPOXMLDOC01-appb-M000001
 また、漏洩判断部2080は、以下の数式2で算出するbiを特徴値加速度としてもよい。biは、aiを初期値a0で規格化した値である。
Figure JPOXMLDOC01-appb-M000002
 また、漏洩判断部2080は、以下の数式3で算出するciを特徴値加速度としてもよい。ciは、期間piにおけるaiが、期間piの1つ前の期間pi-1におけるai-1に対して、どの程度増加したかを示す値である。Δtiは、期間piと期間pi-1との間の時間間隔を表す値である。例えばΔtiは、期間piの開始時点を表す値から、期間pi-1の開始時点を表す値を引いた値である。
Figure JPOXMLDOC01-appb-M000003
 その他にも例えば、漏洩判断部2080は、現在の特徴値の増加度合いを示す特徴値加速度と、過去の特徴値の増加度合いを示す特徴値加速度を加算した値を、判断指標値として用いることができる。この場合、例えば漏洩判断部2080は、次の数式4で判断指標値を計算する。ここで、diは期間piにおける判断指標値である。
Figure JPOXMLDOC01-appb-M000004
 漏洩判断部2080は、上記判断指標値と、所定の閾値との比較を行う。漏洩判断部2080が、上記所定の閾値を取得する方法は様々である。漏洩判断部2080は、例えば漏洩検査装置2000に対して手動で入力された所定の閾値を取得する。その他にも例えば、漏洩判断部2080は、漏洩検査装置2000と通信可能に接続されている外部の装置から入力された所定の閾値を取得する。また、漏洩判断部2080は、漏洩判断部2080の製作時に、漏洩判断部2080に対して固定で設定された所定の閾値を取得してもよい。
<検査結果の通知>
 漏洩検査装置2000は、例えば漏洩判断部2080による検査結果を外部に通知する。検査結果の通知先は、例えば漏洩検査装置2000と通信可能に接続されたサーバ等の外部装置である。上記接続の方法は、有線接続であっても、無線接続であっても、それらが混在された接続方法であっても構わない。
<漏洩検査処理の流れ>
 図4は、本実施形態の漏洩検査装置2000による漏洩検査処理の流れの一例を示すフローチャートである。
 ステップS102において、振動取得部2020は、ソース信号を取得する。上述したように、ソース信号とは、配管の振動の大きさ、又は配管から伝播する振動の大きさを時系列で表す信号である。
 ステップS104において、フィルタリング部2040は、ソース信号から抽出信号を抽出する。上述したように、抽出信号とは、ソース信号から抽出した、所定の周波数帯域の信号である。
 ステップS106において、特徴値抽出部2060は、抽出信号から特徴値を抽出する。
 ステップS108において、漏洩判断部2080は、特徴値に基づいて判断指標値を定める。
 ステップS110において、漏洩判断部2080は、上記判断指標値が所定の閾値より大きいか否かを判断する。判断指標値が所定の閾値より大きい場合、ステップS112に進む。一方、判断指標値が所定の閾値以下である場合は、ステップS114に進む。
 ステップS112において、漏洩判断部2080は、配管で漏洩が起こっていると判断する。
 ステップS114において、漏洩判断部2080は、配管で漏洩が行っていないと判断する。
<変形例1>
 本実施形態に係る漏洩検査装置2000は、所定の周波数帯域がそれぞれ異なるフィルタリング部2040、及び各フィルタリング部2040に対応する特徴値抽出部2060を複数有していてもよい。この場合の漏洩検査装置2000の構成は、例えば図5のブロック図が示す構成になる。この形態の漏洩検査装置2000を、変形例1の漏洩検査装置2000と呼ぶ。
 変形例1の漏洩検査装置2000は、複数のフィルタリング部2040によって、1つのソース信号から周波数帯域がそれぞれ異なる複数の抽出信号を抽出する。特徴値抽出部2060は、対応するフィルタリング部2040が抽出した抽出信号から、特徴値を抽出する。
 変形例1の漏洩検査装置2000の漏洩判断部2080は、複数の特徴値抽出部2060それぞれから特徴値を取得する。そして漏洩判断部2080は、各特徴値に基づいて、判断指標値をそれぞれ定める。そして、漏洩判断部2080は、各判断指標値を所定の閾値と比較することで、漏洩有無を判断する。例えば漏洩判断部2080は、いずれかの判断指標値が所定の閾値より大きい場合に、検査結果を漏洩有りとする。その他にも例えば、漏洩判断部2080は、所定の数以上の判断指標値が漏洩の可能性有りと判断した場合に、検査結果を漏洩有りとする。所定の閾値は、各判断指標値に対して共通の値であってもよいし、各特徴値を抽出する特徴値抽出部2060に対応した異なる値であってもよい。
<作用・効果>
 以上の構成により、本実施形態によれば、振動取得部2020は、配管の振動の大きさ、又は配管から伝播する振動の大きさを時系列で表す信号(ソース信号)を取得する。フィルタリング部2040は、取得したソース信号から、所定の周波数帯域の信号(抽出信号)を抽出する。特徴値抽出部2060は、抽出信号を所定時間間隔で分割し、分割された抽出信号それぞれから、特徴値を抽出する。そして、漏洩判断部2080は、上記特徴値に基づいて定める判断指標値が所定の閾値より大きい場合に、検査結果を漏洩有りとする。したがって漏洩検査装置2000は、抽出信号を表す全ての値を所定の閾値と比較する場合と比較して、少ない処理で漏洩の有無を判断することができる。そのため、漏洩検査装置2000は、少ない消費エネルギーで動作することができる。
 さらに変形例1の場合、漏洩検査装置2000は、ソース信号から、それぞれ異なる複数の周波数帯域の抽出信号を抽出する。そして、漏洩検査装置2000は、それぞれの抽出信号に基づく複数の判断指標値に基づいて、漏洩の有無を判断する。漏洩検査装置2000は、ソース信号からそれぞれ異なる複数の周波数帯域の抽出信号を抽出することで、各抽出信号の周波数帯域を狭くすることができる。ここで一般に、生活排水等の外乱は、ソース信号のうち、特定の狭い周波数帯域の信号に対して大きな影響を与える。したがって、漏洩検査装置2000は、ソース信号から抽出する各抽出信号の周波数帯域をそれぞれ異なる狭い範囲にすることで、外乱による影響を受ける抽出信号を一部の抽出信号に限定することができる。そのため、変形例1の漏洩検査装置2000は、多くの判断指標値を高い精度で算出することができる。したがって、変形例1の漏洩検査装置2000は、高い精度で漏洩の有無を検査することができる。
[実施形態2]
<概要>
 図6は、実施形態2に係る漏洩検査装置2000を表すブロック図である。図6が示す機能ブロックのうち、図1に同符号の機能ブロックがあるものは、特に説明をしない限り、図1の機能ブロックと同じ機能を有する。そのため、それらの機能ブロックの説明は適宜省略する。
 本実施形態の漏洩検査装置2000は、漏洩量情報取得部2100及び漏洩量算出部2120をさらに有する。漏洩量情報取得部2100は、上述した判断指標値と、漏洩量との対応づけを示す情報である漏洩量情報を取得する。漏洩量情報は、例えば図7に示す、判断指標値と漏洩量との関係を示す検量線を表す情報である。その他にも例えば、漏洩量情報は、漏洩度合いを示す値であってもよい。漏洩量算出部2120は例えば、通常時に配管を流れる流体の流量を取得し、取得した通常時の流量と漏洩度合いを示す値に基づいて、漏洩量を算出する。通常時に配管を流れる流体の流量は、例えば配管の管理者等から取得することができる。
 漏洩量算出部2120は、漏洩判断部2080から取得する判断指標値を用い、漏洩量情報取得部2100が取得した漏洩量情報から、その判断指標値に対応する漏洩量を算出する。
<漏洩量算出処理の流れ>
 図8は、本実施形態の漏洩検査装置2000による漏洩量算出処理の流れの一例を表すフローチャートである。ここで、図8において、ステップS102~S108は、実施形態1において説明した図4のステップS102~ステップS108と同じ処理である。そのため、ステップS102~S108の説明は省略する。
 ステップS202において、漏洩量情報取得部2100は、漏洩量情報を取得する。
 ステップS204において、漏洩量算出部2120は、漏洩判断部2080から取得する判断指標値を用い、漏洩量情報取得部2100が取得した漏洩量情報から、その判断指標値に対応する漏洩量を算出する。
<変形例2>
 変形例1と同様に、本実施形態の漏洩検査装置2000は、複数のフィルタリング部2040、及び特徴値抽出部2060を有していてもよい(図9参照)。この場合、漏洩量算出部2120は、漏洩判断部2080から複数の判断指標値を取得する。そして、漏洩量算出部2120は、複数の判断指標値それぞれを用い、上記漏洩量情報から、各判断指標値に対応する漏洩量をそれぞれ算出する。そして、漏洩量算出部2120は、算出した複数の漏洩量に基づいて、最終的な算出結果とする漏洩量を決定する。例えば、漏洩量算出部2120は、算出した複数の漏洩量を統計処理した結果を、最終的な算出結果とする。上記統計処理は、例えば平均値、最大値、最小値などを算出する処理である。
 漏洩量算出部2120は、複数の判断指標値のうち、一部の判断指標値を用いて漏洩量を算出してもよい。例えば、漏洩量算出部2120は、複数の判断指標のうち、漏洩判断部2080が用いる所定の閾値より大きい判断指標値のみを用いて、漏洩量を算出する。こうすることで、漏洩が有ることを示している判断指標値のみを用いて、漏洩量を算出する。これによって、漏洩を示さない周波数帯域の信号に基づく判断指標値を漏洩量の算出から除外し、より高い精度で漏洩量を算出することができる。
<作用・効果>
 以上の構成により、本実施形態によれば、漏洩検査装置2000は、配管の振動の大きさ、又は配管から伝播する振動の大きさを示す信号に基づいて、配管から漏洩している流体の量を算出できる。これにより、漏洩検査装置2000は、配管の修復など、配管に対する処置の必要性を示す情報を提供することができる。
 さらに変形例2の場合、漏洩検査装置2000は、それぞれ異なる複数の周波数帯域の抽出信号に基づく複数の判断指標値それぞれについて、漏洩量の算出を行う。そして、それぞれの判断指標値から算出した漏洩量に基づいて、最終的な算出結果とする漏洩量を算出する。漏洩検査装置2000は、それぞれ異なる複数の周波数帯域の抽出信号に基づく複数の判断指標値を用いることで、生活排水等の外乱の影響を受ける判断指標値を、一部の判断指標値に限定することができる。そのため、変形例2の漏洩検査装置2000は、多くの判断指標値を高い精度で算出することができる。したがって、漏洩検査装置2000は、高い精度で漏洩量を算出することができる。
[実施形態3]
<概要>
 図10は、実施形態2に係る漏洩検査装置2000を表すブロック図である。図10が示す機能ブロックのうち、図1に同符号の機能ブロックがあるものは、特に説明をしない限り、図1の機能ブロックと同じ機能を有する。そのため、それらの機能ブロックの説明は適宜省略する。
 本実施形態の漏洩検査装置2000は、劣化率情報取得部2140及び劣化率算出部2160をさらに有する。劣化率情報取得部2140は、上述した判断指標値と、配管の劣化率との対応付けを示す情報である劣化率情報を取得する。劣化率情報は、例えば図11に示す、判断指標値と配管の劣化率との関係を示す検量線を表す情報である。
 劣化率算出部2160は、漏洩判断部2080から取得する判断指標値を用い、劣化率情報取得部2140が取得した劣化率情報から、その判断指標値に対応する配管の劣化率を算出する。
<劣化率算出処理の流れ>
 図12は、本実施形態の漏洩検査装置2000による漏洩量算出処理の流れの一例を表すフローチャートである。ここで、図12において、ステップS102~S108は、実施形態1において説明した図4のステップS102~ステップS108と同じ処理である。そのため、ステップS102~S108の説明は省略する。
 ステップS302において、劣化率情報取得部2140は、劣化率情報を取得する。
 ステップS304において、劣化率算出部2160は、判断指標値を用い、劣化率情報から、その判断指標値に対応する劣化率を算出する。
<変形例3>
 変形例1と同様に、本実施形態の漏洩検査装置2000は、複数のフィルタリング部2040、及び特徴値抽出部2060を有していてもよい(図13参照)。この場合、劣化率算出部2160は、漏洩判断部2080から複数の判断指標値を取得する。そして、取得した判断指標値それぞれを用い、劣化率情報から、各判断指標値に対応する劣化率をそれぞれ算出する。劣化率算出部2160は、算出した複数の劣化率に基づいて、最終的な算出結果とする劣化率を決定する。例えば、劣化率算出部2160は、算出した複数の漏洩量を統計処理した結果を、最終的な算出結果とする。上記統計処理は、例えば平均値、最大値、最小値などを算出する処理である。
 劣化率算出部2160は、複数の判断指標値のうち、一部の判断指標値を用いて劣化率を算出してもよい。例えば、劣化率算出部2160は、複数の判断指標のうち、漏洩判断部2080が用いる所定の閾値より大きい判断指標値のみを用いて、劣化率を算出する。こうすることで、漏洩が有ることを示している判断指標値のみを用いて、劣化率を算出する。これによって、漏洩を示さない周波数帯域の信号に基づく判断指標値を劣化率の算出から除外し、より高い精度で劣化率を算出することができる。
<作用・効果>
 以上の構成により、本実施形態によれば、漏洩検査装置2000は、配管の振動の大きさ、又は配管から伝播する振動の大きさを示す信号に基づいて、配管の劣化率を算出できる。これにより、漏洩検査装置2000は、配管の修復など、配管に対する処置の必要性を示す情報を提供することができる。
 さらに変形例3の場合、漏洩検査装置2000は、それぞれ異なる複数の周波数帯域の抽出信号に基づく複数の判断指標値それぞれについて、劣化率の算出を行う。そして、それぞれの判断指標値から算出した劣化率に基づいて、最終的な算出結果とする劣化率を算出する。漏洩検査装置2000は、それぞれ異なる複数の周波数帯域の抽出信号に基づく複数の判断指標値を用いることで、生活排水等の外乱の影響を受ける判断指標値を、一部の判断指標値に限定することができる。そのため、変形例3の漏洩検査装置2000は、多くの判断指標値を高い精度で算出することができる。したがって、漏洩検査装置2000は、高い精度で劣化率を算出することができる。
[実施形態4]
<概要>
 図14は、実施形態3に係る漏洩検査装置2000を表すブロック図である。ここで、図14の機能ブロックのうち、図1に同符号の機能ブロックがあるものは、特に説明しない限り図1の機能ブロックと同じ機能を有する。そのため、それらの機能ブロックについては、適宜説明を省略する。
 本実施形態の漏洩検査装置2000は、その他の漏洩検査装置2000と共に使用される。本実施形態の漏洩検査装置2000は、判断結果取得部2180及び総合判断部2200をさらに有する。判断結果取得部2180は、他の漏洩検査装置2000の漏洩判断部2080による漏洩有無の判断結果を取得する。総合判断部2200は、当該漏洩検査装置2000の漏洩判断部2080による漏洩有無の判断結果と、判断結果取得部2180が他の漏洩検査装置2000から取得した漏洩有無の判断結果とに基づいて、検査結果とする漏洩の有無を決定する。
 総合判断部2200が検査結果とする漏洩の有無を決定する方法は様々である。例えば総合判断部2200は、いずれかの漏洩検査装置2000の漏洩判断部2080による漏洩有無の判断結果が漏洩有りの場合に、検査結果を漏洩有りと決定する。その他にも例えば、総合判断部2200は、所定の数以上の漏洩検査装置2000の漏洩判断部2080による漏洩有無の判断結果が漏洩有りの場合に、検査結果を漏洩有りと決定する。
<検査結果決定処理の流れ>
 図15は、本実施形態の漏洩検査装置2000が検査結果を決定する処理の流れの一例を示すフローチャートである。ここで、図15において、ステップS102~S114は、実施形態1において説明した図4のステップS102~ステップS114と同じ処理である。そのため、ステップS102~S114の説明は省略する。
 ステップS402において、判断結果取得部2180は、他の漏洩検査装置2000から、他の漏洩検査装置2000の漏洩判断部2080による漏洩有無の判断結果を取得する。
 ステップS404において、総合判断部2200は、当該漏洩検査装置2000の漏洩判断部2080による漏洩有無の判断結果と、判断結果取得部2180が他の漏洩検査装置2000から取得した漏洩有無の判断結果に基づいて、検査結果とする漏洩の有無を決定する。
<変形例4>
 変形例1と同様に、本実施形態の漏洩検査装置2000は、複数のフィルタリング部2040、及び特徴値抽出部2060を有していてもよい(図16参照)。この場合、漏洩検査装置2000は、判断指標値取得部2220を有する。判断指標値取得部2220は、他の漏洩検査装置2000の漏洩判断部2080から、複数の判断指標値を取得する。総合判断部2200は、各漏洩検査装置2000から取得した複数の判断指標値、及び当該漏洩検査装置2000の漏洩判断部2080から取得した複数の判断指標値に基づいて、漏洩の有無を決定する。具体的には、総合判断部2200は、いずれかの周波数帯域の信号に基づく複数の判断指標値のうち、所定の数以上の判断指標値が所定の閾値よりも大きい場合に、漏洩有りと決定する。
<作用・効果>
 以上の構成により、本実施形態によれば、漏洩検査装置2000は、他の漏洩検査装置2000の漏洩判断部2080による漏洩有無の判断結果を取得する。そして、漏洩検査装置2000は、当該漏洩検査装置2000の漏洩判断部2080による漏洩有無の判断結果と、判断結果取得部2180が他の漏洩検査装置2000から取得した漏洩有無の判断結果とに基づいて、検査結果とする漏洩の有無を決定する。これにより、本実施形態の漏洩検査装置2000は、生活排水等の外乱による誤検知を少なくすることができる。
 さらに変形例4の場合、漏洩検査装置2000は、他の漏洩検査装置2000から取得した複数の判断指標値、及び当該漏洩検査装置2000の漏洩判断部2080から取得した複数の判断指標値に基づいて、検査結果とする漏洩の有無を決定する。具体的には、総合判断部2200は、いずれかの周波数帯域の信号に基づく複数の判断指標値のうち、所定の数以上の判断指標値が所定の閾値よりも大きい場合に、漏洩有りと決定する。漏洩検査装置2000は、それぞれ異なる複数の周波数帯域の抽出信号に基づく複数の判断指標値を用いることで、生活排水等の外乱の影響を受ける判断指標値を、一部の判断指標値に限定することができる。そのため、変形例4の漏洩検査装置2000は、多くの判断指標値を高い精度で算出することができる。したがって、漏洩検査装置2000は、高い精度で漏洩の有無を判断することができる。
[実施形態5]
<概要>
 図17は、実施形態5に係る漏洩検査装置2000を表すブロック図である。ここで、図17の機能ブロックのうち、図1に同符号の機能ブロックがあるものは、特に説明しない限り図1の機能ブロックと同じ機能を有する。そのため、それらの機能ブロックについては、適宜説明を省略する。
 本実施形態の漏洩検査装置2000は、その他の漏洩検査装置2000と共に使用される。本実施形態の漏洩検査装置2000は、判断指標値取得部2220及び漏洩位置特定部2240を有する。判断指標値取得部2220は、他の漏洩検査装置2000から、その漏洩判断部2080が定めた判断指標値を取得する。漏洩位置特定部2240は、他の漏洩検査装置2000から取得した判断指標値の大きさ、及び当該漏洩検査装置2000の漏洩判断部2080が定めた判断指標値の大きさに基づいて、配管における漏洩位置を特定する。具体的には、漏洩位置特定部2240は、最大の判断指標値を示す漏洩検査装置2000の設置位置と、2番目に大きい判断指標値を示す漏洩検査装置2000の設置位置との間が、漏洩位置であると特定する。
 図18は、漏洩検査装置2000が漏洩位置を決定する方法を、概念的に示す図である。図18では、配管10における漏洩を、5つの漏洩検査装置2000(漏洩検査装置A~E)で検査している。図18では、漏洩検査装置Cが最大の判断指標値を示し、漏洩検査装置Bが2番目に大きい判断指標値を示している。そこで、本実施形態の漏洩検査装置2000は、漏洩検査装置BとCの間が漏洩位置であると特定する。なお、漏洩位置の特定を行う漏洩検査装置2000は、上記漏洩検査装置A~Eのどれであっても構わない。
 ここで、漏洩検査装置2000の設置位置は、例えば配管の延伸方向をX軸方向とした場合における、漏洩検査装置2000のX座標で表される。この場合、例えば図18における漏洩検査装置A~Eの設置位置はそれぞれ、Xa~Xeである。
<漏洩位置特定処理の流れ>
 図19は、本実施形態の漏洩検査装置2000が漏洩位置を特定する処理の流れの一例を示すフローチャートである。ここで、図19において、ステップS102~S114は、実施形態1において説明した図4のステップS102~ステップS114と同じ処理である。そのため、ステップS102~S114の説明は省略する。
 ステップS502において、判断指標値取得部2220は、他の漏洩検査装置2000から、その漏洩検査装置2000が定めた判断指標値を取得する。
 ステップS504において、漏洩位置特定部2240は、当該漏洩検査装置2000が定めた判断指標値の大きさ、及び判断指標値取得部2220によって取得した他の漏洩検査装置2000が定めた判断指標値の大きさに基づいて、漏洩位置を特定する。
<変形例5>
 本実施形態の漏洩検査装置2000は、変形例1と同様に、複数のフィルタリング部2040、及び特徴値抽出部2060を有していてもよい(図20参照)。この場合、判断指標値取得部2220は、他の漏洩検査装置2000から複数の判断指標値を取得する。漏洩位置特定部2240は、当該漏洩検査装置2000の漏洩判断部2080が定めた複数の判断指標値、及び他の御漏洩検査装置2000から取得した複数の判断指標値に基づいて、漏洩位置を特定する。
 漏洩位置特定部2240は、いずれかの周波数帯域の抽出信号から算出された複数の判断指標値のうち、最大の判断指標値、及び2番目に大きい判断指標値を特定する。そして、漏洩位置特定部2240は、最大の判断指標値を算出した漏洩検査装置2000の設置位置と、2番目に大きい判断指標値を算出した漏洩検査装置2000の設置位置の間が、漏洩位置であると特定する。
 上記のように、漏洩位置特定部2240は、いずれかの周波数帯域の抽出信号に基づく各判断指標値を用いて、漏洩位置を特定する。漏洩位置特定部2240は、どの周波数帯域の抽出信号に基づく判断指標値を用いて漏洩位置を特定するかを、次のように決定する。まず漏洩位置特定部2240は、全ての判断指標値の中から、最大の判断指標値を特定する。次に、その判断指標値が、どの周波数帯域の抽出信号に基づいて算出されたかを特定する。そして、漏洩位置特定部2240は、上記特定した周波数帯域の抽出信号に基づいて定められた各判断指標値を用いて、漏洩位置を特定する。
<作用・効果>
 以上の構成により、本実施形態によれば、漏洩検査装置2000は、当該漏洩検査装置2000及び他の漏洩検査装置2000のそれぞれが定めた判断指標値の大きさを比較することで、配管の漏洩位置を特定することができる。これにより、漏洩検査装置2000は、配管の漏洩位置を示す情報を提供することができる。例えばこれにより、漏洩検査装置2000の使用者は、修理すべき配管の漏洩位置を示す情報を取得することによって、迅速に配管の修復を行うことができる。
 さらに変形例5の場合、漏洩検査装置2000は、それぞれ異なる複数の周波数帯域の抽出信号に基づいて定められた判断指標値に基づいて、漏洩位置を特定する。漏洩検査装置2000は、それぞれ異なる複数の周波数帯域の抽出信号に基づく複数の判断指標値を用いることで、生活排水等の外乱の影響を受ける判断指標値を、一部の判断指標値に限定することができる。そのため、変形例5の漏洩検査装置2000は、多くの判断指標値を高い精度で算出することができる。したがって、変形例5の漏洩検査装置2000は、高い精度で漏洩位置を特定することができる。
 以上、図面を参照して本発明の実施形態及び変形例について述べたが、これらは本発明の例示であり、上記実施形態及び変形例の組み合わせ、及び上記実施形態及び変形例以外の様々な構成を採用することもできる。
 以下、参考形態の例を付記する。
1. 配管の振動の大きさ、又は配管から伝播する振動の大きさを時系列で示す信号を取得する振動取得手段と、
 前記信号から、1つの周波数帯域の信号を抽出するフィルタリング手段と、
 抽出した信号を所定時間間隔で分割し、分割した信号ごとに、振動の大きさの複数の極値それぞれの絶対値を算出し、分割した信号ごとに、算出した複数の前記絶対値に対して統計処理を行い、前記統計処理によって算出した値を特徴値として抽出する特徴値抽出手段と、
 前記特徴値を用いて定める判断指標値が、所定の閾値より大きい場合に、検査結果を漏洩有りとする漏洩判断手段と、
 を有する漏洩検査装置。
2. 前記特徴値抽出手段は、前記統計処理として、複数の前記絶対値の最小値を算出する処理を行う1.に記載の漏洩検査装置。
3. 前記漏洩判断手段は、前記特徴値を前記判断指標値とする1.又は2.に記載の漏洩検査装置。
4. 前記特徴値の履歴を格納する特徴値履歴格納手段をさらに有し、
 前記漏洩判断手段は、前記特徴値抽出手段が抽出した前記特徴値と、前記特徴値履歴格納手段に格納されている過去の前記特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度を算出し、算出した特徴値加速度を前記判断指標値とすること、
 を特徴とする1.又は2.に記載の漏洩検査装置。
5. 前記特徴値の履歴を格納する特徴値履歴格納手段をさらに有し、
 前記漏洩判断手段は、
  前記特徴値抽出手段が抽出した前記特徴値と、前記特徴値履歴格納手段に格納されている過去の前記特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度を算出し、
  前記特徴値履歴格納手段に格納されている過去の前記特徴値と、該過去の特徴値よりも以前に前記特徴値履歴格納手段に格納された前記特徴値とを用いて、前記特徴値の過去の増加度合いを示す過去特徴値加速度を算出し、
  前記特徴値加速度と前記過去特徴値加速度とを加算した値に基づいて前記判断指標値を定めること、
 を特徴とする1.又は2.に記載の漏洩検査装置。
6. 前記判断指標値と、配管の漏洩量との対応を示す漏洩量情報を取得する漏洩量情報取得手段と、
 前記漏洩判断手段から取得した判断指標値を用いて前記漏洩量情報を参照し、その参照結果に基づいて配管の漏洩量を算出する漏洩量算出手段と、
 をさらに有する1.乃至5.いずれか1つに記載の漏洩検査装置。
7. 前記判断指標値と、配管の劣化率との対応を示す情報である劣化率情報を取得する劣化率情報取得手段と、
 前記漏洩判断手段から取得した判断指標値を用いて前記劣化率情報を参照し、その参照結果に基づいて配管の劣化率を算出する劣化率算出手段と、
 をさらに有する1.乃至6.いずれか1つに記載の漏洩検査装置。
8. 他の漏洩検査装置の漏洩判断手段による判断結果を取得する判断結果取得手段と、
 当該漏洩検査装置、及び他の漏洩検査装置のうち、所定の数以上の漏洩検査装置において、漏洩有りと判断された場合は、検査結果を漏洩有りとする総合判断手段と、
 をさらに有する1.乃至7.いずれか1つに記載の漏洩検査装置。
9. 複数の他の漏洩検査装置のそれぞれから前記判断指標値を取得し、当該漏洩検査装置及び前記複数の漏洩検査装置のうち、最大の判断指標値を示した漏洩検査装置の設置位置と、2番目に大きい判断指標値を示した漏洩検査装置の設置位置との間が漏洩位置であると特定する漏洩位置特定手段をさらに有する1.乃至8.いずれか1つに記載の漏洩検査装置。
10. それぞれ異なる周波数帯域の信号を抽出する複数の前記フィルタリング手段と、
 それぞれ異なる前記フィルタリング手段が抽出した信号から前記特徴値を抽出する複数の前記特徴値抽出手段と、
 をさらに有し、
 前記漏洩判断手段は、前記複数の特徴値抽出手段から前記特徴値をそれぞれ取得し、前記各特徴値それぞれについて前記判断指標値を定め、該判断指標値それぞれを所定の閾値と比較し、いずれかの判断指標値が前記所定の閾値より大きい場合は、検査結果を漏洩有りとすること、
 を特徴とする1.乃至3.いずれか1つに記載の漏洩検査装置。
11. 前記特徴値抽出手段それぞれが抽出した前記特徴値の履歴を格納する特徴値履歴格納手段をさらに有し、
 前記漏洩判断手段は、前記各特徴値それぞれについて、該特徴値と、前記特徴値履歴格納手段に格納されている、該特徴値を抽出した前記特徴値抽出手段によって過去に抽出された特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度をそれぞれ算出し、該特徴値加速度それぞれを前記判断指標値とすること、
 を特徴とする10.に記載の漏洩検査装置。
12. 前記漏洩判断手段は、
  前記各特徴値について、該特徴値を抽出した前記特徴値抽出手段が前記特徴値格納手段に格納した過去の前記特徴値と、該特徴値抽出手段によって該過去の特徴値よりも以前に該特徴値履歴格納手段に格納された前記特徴値とを用いて、前記特徴値の過去の増加度合いを示す過去特徴値加速度をそれぞれ算出し、
  前記特徴値加速度と前記過去特徴値加速度とを加算した値に基づいて加算特徴値加速度をそれぞれ定め、前記各加算特徴値加速度をそれぞれ前記判断指標値とすること、
 を特徴とする11.に記載の漏洩検査装置。
13. 前記判断指標値と、配管の漏洩量との対応を示す漏洩量情報を取得する漏洩量情報取得手段と、
 前記各判断指標値を用い、前記漏洩量情報から前記各判断指標値に基づく漏洩量をそれぞれ取得し、取得した複数の漏洩量の統計値を配管の漏洩量とする漏洩量算出手段と、
 を備える10.乃至12.いずれか1つに記載の漏洩検査装置。
14. 前記判断指標値と、配管の劣化率との対応をそれぞれ示す劣化率情報を取得する劣化率情報取得手段と、
 前記各判断指標値を用い、前記劣化率情報から前記各判断指標値に基づく劣化率をそれぞれ取得し、取得した複数の劣化率の統計値を配管の劣化率とする劣化率算出手段と、
 を備える10.乃至13.いずれか1つに記載の漏洩検査装置。
15. 複数の他の漏洩検査装置から、前記判断指標値を取得する判断指標値取得手段と、
 いずれかの周波数帯域の信号に基づく複数の前記判断指標値のうち、所定の数以上の該判断指標値が前記所定の閾値より大きい場合は、当該漏洩検査装置による検査結果を漏洩有りとする総合判断手段と、
 をさらに有する10.乃至14.いずれか一つに記載の漏洩検査装置。
16. 複数の他の漏洩検査装置から、前記判断指標値を取得する判断指標値取得手段と、
 当該漏洩検査装置が定めた判断指標値及び他の漏洩検査装置から取得した判断指標値の中から最大の判断指標値を特定して第1の判断指標値とし、第1の判断指標値と同一の周波数帯域の信号に基づいて定められた他の前記各判断指標値のうち、最大の判断指標値を特定して第2の判断指標値とし、第1の判断指標値を定めた漏洩検査装置の設置位置と、第2の判断指標値を定めた漏洩検査装置の設置位置との間が、漏洩位置であると特定する漏洩位置特定手段と、
 をさらに有する10.乃至14.いずれか1つに記載の漏洩検査装置。
17. 前記判断指標値取得手段が取得した判断指標値の中から最大の判断指標値を特定して第1の判断指標値とし、第1の判断指標値と同一の周波数帯域の信号に基づいて定められた他の前記各判断指標値のうち、最大の判断指標値を特定して第2の判断指標値とし、第1の判断指標値を定めた漏洩検査装置の設置位置と、第2の判断指標値を定めた漏洩検査装置の設置位置との間が、漏洩位置であると特定する漏洩位置特定手段をさらに有する15.に記載の漏洩検査装置。
18. コンピュータに、配管の漏洩検査を行う漏洩検査装置として動作する機能を持たせる漏洩検査プログラムであって、前記コンピュータに、
 配管の振動の大きさ、又は配管から伝播する振動の大きさを時系列で示す信号を取得する振動取得機能と、
 前記信号から、1つの周波数帯域の信号を抽出するフィルタリング機能と、
 抽出した信号を所定時間間隔で分割し、分割した信号ごとに、振動の大きさの複数の極値それぞれの絶対値を算出し、分割した信号ごとに、算出した複数の前記絶対値に対して統計処理を行い、前記統計処理によって算出した値を特徴値として抽出する特徴値抽出機能と、
 前記特徴値を用いて定める判断指標値が、所定の閾値より大きい場合に、検査結果を漏洩有りとする漏洩判断機能と、
 を持たせる漏洩検査プログラム。
19. 前記特徴値抽出機能は、前記統計処理として、複数の前記絶対値の最小値を算出する処理を行う18.に記載の漏洩検査プログラム。
20. 前記漏洩判断機能は、前記特徴値を前記判断指標値とする18.又は19.に記載の漏洩検査プログラム。
21. 前記コンピュータに、前記特徴値の履歴を格納する特徴値履歴格納機能をさらに持たせ、
 前記漏洩判断機能は、前記特徴値抽出機能が抽出した前記特徴値と、前記特徴値履歴格納機能が格納している過去の前記特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度を算出し、算出した特徴値加速度を前記判断指標値とすること、
 を特徴とする18.又は19.に記載の漏洩検査プログラム。
22. 前記コンピュータに、前記特徴値の履歴を格納する特徴値履歴格納機能をさらに持たせ、
 前記漏洩判断機能は、
  前記特徴値抽出機能が抽出した前記特徴値と、前記特徴値履歴格納機能が格納している過去の前記特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度を算出し、
  前記特徴値履歴格納機能が格納している過去の前記特徴値と、該過去の特徴値よりも以前に前記特徴値履歴格納手段に格納された前記特徴値とを用いて、前記特徴値の過去の増加度合いを示す過去特徴値加速度を算出し、
  前記特徴値加速度と前記過去特徴値加速度とを加算した値に基づいて前記判断指標値を定めること、
 を特徴とする18.又は19.に記載の漏洩検査プログラム。
23. 前記コンピュータに、
 前記判断指標値と、配管の漏洩量との対応を示す漏洩量情報を取得する漏洩量情報取得機能と、
 前記漏洩判断機能から取得した判断指標値を用いて前記漏洩量情報を参照し、その参照結果に基づいて配管の漏洩量を算出する漏洩量算出機能と、
 をさらに持たせる18.乃至22.いずれか一つに記載の漏洩検査プログラム。
24. 前記コンピュータに、
 前記判断指標値と、配管の劣化率との対応を示す情報である劣化率情報を取得する劣化率情報取得機能と、
 前記漏洩判断機能から取得した判断指標値を用いて前記劣化率情報を参照し、その参照結果に基づいて配管の劣化率を算出する劣化率算出機能と、
 をさらに持たせる18.乃至23.いずれか一つに記載の漏洩検査プログラム。
25. 前記コンピュータに、
 他の漏洩検査装置の漏洩判断機能による判断結果を取得する判断結果取得機能と、
 当該漏洩検査装置、及び他の漏洩検査装置のうち、所定の数以上の漏洩検査装置において、漏洩有りと判断された場合は、検査結果を漏洩有りとする総合判断機能と、
 をさらに持たせる18.乃至24.いずれか一つに記載の漏洩検査プログラム。
26. 前記コンピュータに、複数の他の漏洩検査装置のそれぞれから前記判断指標値を取得し、当該漏洩検査装置及び前記複数の漏洩検査装置のうち、最大の判断指標値を示した漏洩検査装置の設置位置と、2番目に大きい判断指標値を示した漏洩検査装置の設置位置との間が漏洩位置であると特定する漏洩位置特定機能をさらに持たせる18.乃至25.いずれか一つに記載の漏洩検査プログラム。
27. 前記コンピュータに、
 それぞれ異なる周波数帯域の信号を抽出する複数の前記フィルタリング機能と、
 それぞれ異なる前記フィルタリング手段が抽出した信号から前記特徴値を抽出する複数の前記特徴値抽出機能と、
 をさらに持たせ、
 前記漏洩判断機能は、前記複数の特徴値抽出機能から前記特徴値をそれぞれ取得し、前記各特徴値それぞれについて前記判断指標値を定め、該判断指標値それぞれを所定の閾値と比較し、いずれかの判断指標値が前記所定の閾値より大きい場合は、検査結果を漏洩有りとすること、
 を特徴とする18.乃至20.いずれか1つに記載の漏洩検査プログラム。
28. 前記コンピュータに、前記特徴値抽出機能それぞれが抽出した前記特徴値の履歴を格納する特徴値履歴格納機能をさらに持たせ、
 前記漏洩判断機能は、前記各特徴値それぞれについて、該特徴値と、前記特徴値履歴格納機能が格納している、該特徴値を抽出した前記特徴値抽出機能によって過去に抽出された特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度をそれぞれ算出し、該特徴値加速度それぞれを前記判断指標値とすること、
 を特徴とする27.に記載の漏洩検査プログラム。
29. 前記漏洩判断機能は、
  前記各特徴値について、前記特徴値抽出機能が抽出した前記特徴値を前記特徴値格納機能が格納した過去の前記特徴値と、該特徴値抽出機能によって該過去の特徴値よりも以前に該特徴値履歴格納機能が格納している前記特徴値とを用いて、前記特徴値の過去の増加度合いを示す過去特徴値加速度をそれぞれ算出し、
  前記特徴値加速度と前記過去特徴値加速度とを加算した値に基づいて加算特徴値加速度をそれぞれ定め、前記各加算特徴値加速度をそれぞれ前記判断指標値とすること、
 を特徴とする28.に記載の漏洩検査プログラム。
30. 前記コンピュータに、
 前記判断指標値と、配管の漏洩量との対応を示す漏洩量情報を取得する漏洩量情報取得機能と、
 前記各判断指標値を用い、前記漏洩量情報から前記各判断指標値に基づく漏洩量をそれぞれ取得し、取得した複数の漏洩量の統計値を配管の漏洩量とする漏洩量算出機能と、
 をさらに持たせる27.乃至29.いずれか1つに記載の漏洩検査プログラム。
31. 前記コンピュータに、
 前記判断指標値と、配管の劣化率との対応をそれぞれ示す劣化率情報を取得する劣化率情報取得機能と、
 前記各判断指標値を用い、前記劣化率情報から前記各判断指標値に基づく劣化率をそれぞれ取得し、取得した複数の劣化率の統計値を配管の劣化率とする劣化率算出機能と、
 をさらに持たせる27.乃至30.いずれか1つに記載の漏洩検査プログラム。
32. 前記コンピュータに、
 複数の他の漏洩検査装置から、前記判断指標値を取得する判断指標値取得機能と、
 いずれかの周波数帯域の信号に基づく複数の前記判断指標値のうち、所定の数以上の該判断指標値が前記所定の閾値より大きい場合は、当該漏洩検査装置による検査結果を漏洩有りとする総合判断機能と、
 をさらに持たせる27.乃至31.いずれか一つに記載の漏洩検査装置。
33. 前記コンピュータに、
 複数の他の漏洩検査装置から、前記判断指標値を取得する判断指標値取得機能と、
 当該漏洩検査装置が定めた判断指標値及び他の漏洩検査装置から取得した判断指標値の中から最大の判断指標値を特定して第1の判断指標値とし、第1の判断指標値と同一の周波数帯域の信号に基づいて定められた他の前記各判断指標値のうち、最大の判断指標値を特定して第2の判断指標値とし、第1の判断指標値を定めた漏洩検査装置の設置位置と、第2の判断指標値を定めた漏洩検査装置の設置位置との間が、漏洩位置であると特定する漏洩位置特定機能と、
 をさらに持たせる27.乃至31.いずれか1つに記載の漏洩検査プログラム。
34. 前記コンピュータに、前記判断指標値取得機能が取得した判断指標値の中から最大の判断指標値を特定して第1の判断指標値とし、第1の判断指標値と同一の周波数帯域の信号に基づいて定められた他の前記各判断指標値のうち、最大の判断指標値を特定して第2の判断指標値とし、第1の判断指標値を定めた漏洩検査装置の設置位置と、第2の判断指標値を定めた漏洩検査装置の設置位置との間が、漏洩位置であると特定する漏洩位置特定機能をさらに持たせる32.に記載の漏洩検査プログラム。
35. コンピュータによって実行される配管の漏洩検査方法であって、
 配管の振動の大きさ、又は配管から伝播する振動の大きさを時系列で示す信号を取得する振動取得ステップと、
 前記信号から、1つの周波数帯域の信号を抽出するフィルタリングステップと、
 抽出した信号を所定時間間隔で分割し、分割した信号ごとに、振動の大きさの複数の極値それぞれの絶対値を算出し、分割した信号ごとに、算出した複数の前記絶対値に対して統計処理を行い、前記統計処理によって算出した値を特徴値として抽出する特徴値抽出ステップと、
 前記特徴値を用いて定める判断指標値が、所定の閾値より大きい場合に、検査結果を漏洩有りとする漏洩判断ステップと、
 を有する漏洩検査方法。
36. 前記特徴値抽出ステップは、前記統計処理として、複数の前記絶対値の最小値を算出する処理を行う35.に記載の漏洩検査方法。
37. 前記漏洩判断ステップは、前記特徴値を前記判断指標値とする35.又は36.に記載の漏洩検査方法。
38. 前記特徴値の履歴を格納する特徴値履歴格納ステップをさらに有し、
 前記漏洩判断ステップは、前記特徴値抽出ステップで抽出した前記特徴値と、前記特徴値履歴格納ステップで格納した過去の前記特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度を算出し、算出した特徴値加速度を前記判断指標値とすること、
 を特徴とする35.又は36.に記載の漏洩検査方法。
39. 前記特徴値の履歴を格納する特徴値履歴格納ステップをさらに有し、
 前記漏洩判断ステップは、
  前記特徴値抽出ステップで抽出した前記特徴値と、前記特徴値履歴格納ステップで格納した過去の前記特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度を算出し、
  前記特徴値履歴格納ステップで格納した過去の前記特徴値と、該過去の特徴値よりも以前に前記特徴値履歴格納ステップで格納した前記特徴値とを用いて、前記特徴値の過去の増加度合いを示す過去特徴値加速度を算出し、
  前記特徴値加速度と前記過去特徴値加速度とを加算した値に基づいて前記判断指標値を定めること、
 を特徴とする35.又は36.に記載の漏洩検査方法。
40. 前記判断指標値と、配管の漏洩量との対応を示す漏洩量情報を取得する漏洩量情報取得ステップと、
 前記漏洩判断ステップから取得した判断指標値を用いて前記漏洩量情報を参照し、その参照結果に基づいて配管の漏洩量を算出する漏洩量算出ステップと、
 をさらに有する35.乃至39.いずれか一つに記載の漏洩検査方法。
41. 前記判断指標値と、配管の劣化率との対応を示す情報である劣化率情報を取得する劣化率情報取得ステップと、
 前記漏洩判断ステップから取得した判断指標値を用いて前記劣化率情報を参照し、その参照結果に基づいて配管の劣化率を算出する劣化率算出ステップと、
 をさらに有する35.乃至40.いずれか一つに記載の漏洩検査方法。
42. 他の漏洩検査装置の漏洩判断ステップによる判断結果を取得する判断結果取得ステップと、
 当該漏洩検査装置、及び他の漏洩検査装置のうち、所定の数以上の漏洩検査装置において、漏洩有りと判断された場合は、検査結果を漏洩有りとする総合判断ステップと、
 をさらに有する35.乃至41.いずれか一つに記載の漏洩検査方法。
43. 複数の他の漏洩検査装置のそれぞれから前記判断指標値を取得し、当該漏洩検査装置及び前記複数の漏洩検査装置のうち、最大の判断指標値を示した漏洩検査装置の設置位置と、2番目に大きい判断指標値を示した漏洩検査装置の設置位置との間が漏洩位置であると特定する漏洩位置特定ステップをさらに有する35.乃至42.いずれか一つに記載の漏洩検査方法。
44. それぞれ異なる周波数帯域の信号を抽出する複数の前記フィルタリングステップと、
 それぞれ異なる前記フィルタリング手段が抽出した信号から前記特徴値を抽出する複数の前記特徴値抽出ステップと、
 をさらに有し、
 前記漏洩判断ステップは、前記複数の特徴値抽出ステップから前記特徴値をそれぞれ取得し、前記各特徴値それぞれについて前記判断指標値を定め、該判断指標値それぞれを所定の閾値と比較し、いずれかの判断指標値が前記所定の閾値より大きい場合は、検査結果を漏洩有りとすること、
 を特徴とする35.乃至37.いずれか1つに記載の漏洩検査方法。
45. 前記特徴値抽出ステップそれぞれが抽出した前記特徴値の履歴を格納する特徴値履歴格納ステップを有し、
 前記漏洩判断ステップは、前記各特徴値それぞれについて、該特徴値と、前記特徴値履歴格納ステップで格納した、該特徴値を抽出した前記特徴値抽出ステップによって過去に抽出された特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度をそれぞれ算出し、該特徴値加速度それぞれを前記判断指標値とすること、
 を特徴とする44.に記載の漏洩検査方法。
46. 前記漏洩判断ステップは、
  前記各特徴値について、前記特徴値抽出ステップで抽出した前記特徴値を前記特徴値格納ステップにおいて格納した過去の前記特徴値と、該特徴値抽出ステップによって該過去の特徴値よりも以前に該特徴値履歴格納ステップで格納した前記特徴値とを用いて、前記特徴値の過去の増加度合いを示す過去特徴値加速度をそれぞれ算出し、
  前記特徴値加速度と前記過去特徴値加速度とを加算した値に基づいて加算特徴値加速度をそれぞれ定め、前記各加算特徴値加速度をそれぞれ前記判断指標値とすること、
 を特徴とする45.に記載の漏洩検査方法。
47. 前記判断指標値と、配管の漏洩量との対応を示す漏洩量情報を取得する漏洩量情報取得ステップと、
 前記各判断指標値を用い、前記漏洩量情報から前記各判断指標値に基づく漏洩量をそれぞれ取得し、取得した複数の漏洩量の統計値を配管の漏洩量とする漏洩量算出ステップと、
 をさらに有する44.乃至46.いずれか1つに記載の漏洩検査プログラム。
48. 前記判断指標値と、配管の劣化率との対応をそれぞれ示す劣化率情報を取得する劣化率情報取得ステップと、
 前記各判断指標値を用い、前記劣化率情報から前記各判断指標値に基づく劣化率をそれぞれ取得し、取得した複数の劣化率の統計値を配管の劣化率とする劣化率算出ステップと、
 をさらに有する44.乃至47.いずれか1つに記載の漏洩検査方法。
49. 複数の他の漏洩検査装置から、前記判断指標値を取得する判断指標値取得ステップと、
 いずれかの周波数帯域の信号に基づく複数の前記判断指標値のうち、所定の数以上の該判断指標値が前記所定の閾値より大きい場合は、当該漏洩検査装置による検査結果を漏洩有りとする総合判断ステップと、
 をさらに有する44.乃至48.いずれか一つに記載の漏洩検査方法。
50. 複数の他の漏洩検査装置から、前記判断指標値を取得する判断指標値取得ステップと、
 当該漏洩検査装置が定めた判断指標値及び他の漏洩検査装置から取得した判断指標値の中から最大の判断指標値を特定して第1の判断指標値とし、第1の判断指標値と同一の周波数帯域の信号に基づいて定められた他の前記各判断指標値のうち、最大の判断指標値を特定して第2の判断指標値とし、第1の判断指標値を定めた漏洩検査装置の設置位置と、第2の判断指標値を定めた漏洩検査装置の設置位置との間が、漏洩位置であると特定する漏洩位置特定ステップと、
 をさらに有する44.乃至48.いずれか1つに記載の漏洩検査方法。
51. 前記判断指標値取得ステップで取得した判断指標値の中から最大の判断指標値を特定して第1の判断指標値とし、第1の判断指標値と同一の周波数帯域の信号に基づいて定められた他の前記各判断指標値のうち、最大の判断指標値を特定して第2の判断指標値とし、第1の判断指標値を定めた漏洩検査装置の設置位置と、第2の判断指標値を定めた漏洩検査装置の設置位置との間が、漏洩位置であると特定する漏洩位置特定ステップをさらに有する49.に記載の漏洩検査方法。
 この出願は、2012年9月27日に出願された日本出願特願2012-214811号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (19)

  1.  配管の振動、又は配管から伝播する振動を示す信号を取得する振動取得手段と、
     前記信号から、1つの周波数帯域の信号を抽出するフィルタリング手段と、
     抽出した信号を所定時間間隔で分割し、分割した信号ごとに、信号の大きさの複数の極値それぞれについて絶対値を算出し、分割した信号ごとに、算出した複数の前記絶対値に対して統計処理を行い、前記統計処理によって算出した値を特徴値として抽出する特徴値抽出手段と、
     前記特徴値を用いて定める判断指標値が、所定の閾値より大きい場合に、検査結果を漏洩有りとする漏洩判断手段と、
     を有する漏洩検査装置。
  2.  前記特徴値抽出手段は、前記統計処理として、複数の前記絶対値の最小値を算出する処理を行う請求項1に記載の漏洩検査装置。
  3.  前記漏洩判断手段は、前記特徴値を前記判断指標値とする請求項1又は2に記載の漏洩検査装置。
  4.  前記特徴値の履歴を格納する特徴値履歴格納手段をさらに有し、
     前記漏洩判断手段は、前記特徴値抽出手段が抽出した前記特徴値と、前記特徴値履歴格納手段に格納されている過去の前記特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度を算出し、算出した特徴値加速度を前記判断指標値とすること、
     を特徴とする請求項1又は2に記載の漏洩検査装置。
  5.  前記特徴値の履歴を格納する特徴値履歴格納手段をさらに有し、
     前記漏洩判断手段は、
      前記特徴値抽出手段が抽出した前記特徴値と、前記特徴値履歴格納手段に格納されている過去の前記特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度を算出し、
      前記特徴値履歴格納手段に格納されている過去の前記特徴値と、該過去の特徴値よりも以前に前記特徴値履歴格納手段に格納された前記特徴値とを用いて、前記特徴値の過去の増加度合いを示す過去特徴値加速度を算出し、
      前記特徴値加速度と前記過去特徴値加速度とを加算した値に基づいて前記判断指標値を定めること、
     を特徴とする請求項1又は2に記載の漏洩検査装置。
  6.  前記判断指標値と、配管の漏洩量との対応を示す漏洩量情報を取得する漏洩量情報取得手段と、
     前記漏洩判断手段から取得した判断指標値を用いて前記漏洩量情報を参照し、その参照結果に基づいて配管の漏洩量を算出する漏洩量算出手段と、
     をさらに有する請求項1乃至5いずれか一項に記載の漏洩検査装置。
  7.  前記判断指標値と、配管の劣化率との対応を示す情報である劣化率情報を取得する劣化率情報取得手段と、
     前記漏洩判断手段から取得した判断指標値を用いて前記劣化率情報を参照し、その参照結果に基づいて配管の劣化率を算出する劣化率算出手段と、
     をさらに有する請求項1乃至6いずれか一項に記載の漏洩検査装置。
  8.  他の漏洩検査装置の漏洩判断手段による判断結果を取得する判断結果取得手段と、
     当該漏洩検査装置、及び他の漏洩検査装置のうち、所定の数以上の漏洩検査装置において、漏洩有りと判断された場合は、検査結果を漏洩有りとする総合判断手段と、
     をさらに有する請求項1乃至7いずれか一項に記載の漏洩検査装置。
  9.  複数の他の漏洩検査装置のそれぞれから前記判断指標値を取得し、当該漏洩検査装置及び前記複数の漏洩検査装置のうち、最大の判断指標値を示した漏洩検査装置の設置位置と、2番目に大きい判断指標値を示した漏洩検査装置の設置位置との間が漏洩位置であると特定する漏洩位置特定手段をさらに有する請求項1乃至8いずれか一項に記載の漏洩検査装置。
  10.  それぞれ異なる周波数帯域の信号を抽出する複数の前記フィルタリング手段と、
     それぞれ異なる前記フィルタリング手段が抽出した信号から前記特徴値を抽出する複数の前記特徴値抽出手段と、
     をさらに有し、
     前記漏洩判断手段は、前記複数の特徴値抽出手段から前記特徴値をそれぞれ取得し、前記各特徴値それぞれについて前記判断指標値を定め、該判断指標値それぞれを所定の閾値と比較し、いずれかの判断指標値が前記所定の閾値より大きい場合は、検査結果を漏洩有りとすること、
     を特徴とする請求項1乃至3いずれか一項に記載の漏洩検査装置。
  11.  前記特徴値抽出手段それぞれが抽出した前記特徴値の履歴を格納する特徴値履歴格納手段をさらに有し、
     前記漏洩判断手段は、前記各特徴値それぞれについて、該特徴値と、前記特徴値履歴格納手段に格納されている、該特徴値を抽出した前記特徴値抽出手段によって過去に抽出された特徴値とを用いて、特徴値の増加度合いを示す特徴値加速度をそれぞれ算出し、該特徴値加速度それぞれを前記判断指標値とすること、
     を特徴とする請求項10に記載の漏洩検査装置。
  12.  前記漏洩判断手段は、
      前記各特徴値について、該特徴値を抽出した前記特徴値抽出手段が前記特徴値格納手段に格納した過去の前記特徴値と、該特徴値抽出手段によって該過去の特徴値よりも以前に該特徴値履歴格納手段に格納された前記特徴値とを用いて、前記特徴値の過去の増加度合いを示す過去特徴値加速度をそれぞれ算出し、
      前記特徴値加速度と前記過去特徴値加速度とを加算した値に基づいて加算特徴値加速度をそれぞれ定め、前記各加算特徴値加速度をそれぞれ前記判断指標値とすること、
     を特徴とする請求項11に記載の漏洩検査装置。
  13.  前記判断指標値と、配管の漏洩量との対応を示す漏洩量情報を取得する漏洩量情報取得手段と、
     前記各判断指標値を用い、前記漏洩量情報から前記各判断指標値に基づく漏洩量をそれぞれ取得し、取得した複数の漏洩量の統計値を配管の漏洩量とする漏洩量算出手段と、
     を備える請求項10乃至12いずれか一項に記載の漏洩検査装置。
  14.  前記判断指標値と、配管の劣化率との対応を示す劣化率情報を取得する劣化率情報取得手段と、
     前記各判断指標値を用い、前記劣化率情報から前記各判断指標値に基づく劣化率をそれぞれ取得し、取得した複数の劣化率の統計値を配管の劣化率とする劣化率算出手段と、
     を備える請求項10乃至13いずれか一項に記載の漏洩検査装置。
  15.  複数の他の漏洩検査装置から、前記判断指標値を取得する判断指標値取得手段と、
     いずれかの周波数帯域の信号に基づく複数の前記判断指標値のうち、所定の数以上の該判断指標値が前記所定の閾値より大きい場合は、当該漏洩検査装置による検査結果を漏洩有りとする総合判断手段と、
     をさらに有する請求項10乃至14いずれか一項に記載の漏洩検査装置。
  16.  複数の他の漏洩検査装置から、前記判断指標値を取得する判断指標値取得手段と、
     当該漏洩検査装置が定めた判断指標値及び他の漏洩検査装置から取得した判断指標値の中から最大の判断指標値を特定して第1の判断指標値とし、第1の判断指標値と同一の周波数帯域の信号に基づいて定められた他の前記各判断指標値のうち、最大の判断指標値を特定して第2の判断指標値とし、前記第1の判断指標値を定めた漏洩検査装置の設置位置と、前記第2の判断指標値を定めた漏洩検査装置の設置位置との間が、漏洩位置であると特定する漏洩位置特定手段と、
     をさらに有する請求項10乃至14いずれか一項に記載の漏洩検査装置。
  17.  前記判断指標値取得手段が取得した判断指標値の中から最大の判断指標値を特定して第1の判断指標値とし、第1の判断指標値と同一の周波数帯域の信号に基づいて定められた他の前記各判断指標値のうち、最大の判断指標値を特定して第2の判断指標値とし、前記第1の判断指標値を定めた漏洩検査装置の設置位置と、前記第2の判断指標値を定めた漏洩検査装置の設置位置との間が、漏洩位置であると特定する漏洩位置特定手段をさらに有する請求項15に記載の漏洩検査装置。
  18.  コンピュータに、配管の漏洩検査を行う漏洩検査装置として動作する機能を持たせる漏洩検査プログラムであって、前記コンピュータに、
     配管の振動、又は配管から伝播する振動を示す信号を取得する振動取得機能と、
     前記信号から、1つの周波数帯域の信号を抽出するフィルタリング機能と、
     抽出した信号を所定時間間隔で分割し、分割した信号ごとに、信号の大きさの複数の極値それぞれについて絶対値を算出し、分割した信号ごとに、算出した複数の前記絶対値に対して統計処理を行い、前記統計処理によって算出した値を特徴値として抽出する特徴値抽出機能と、
     前記特徴値を用いて定める判断指標値が、所定の閾値より大きい場合に、検査結果を漏洩有りとする漏洩判断機能と、
     を持たせる漏洩検査プログラム。
  19.  コンピュータによって実行される配管の漏洩検査方法であって、
     配管の振動、又は配管から伝播する振動を示す信号を取得する振動取得ステップと、
     前記信号から、1つの周波数帯域の信号を抽出するフィルタリングステップと、
     抽出した信号を所定時間間隔で分割し、分割した信号ごとに、信号の大きさの複数の極値それぞれについて絶対値を算出し、分割した信号ごとに、算出した複数の前記絶対値に対して統計処理を行い、前記統計処理によって算出した値を特徴値として抽出する特徴値抽出ステップと、
     前記特徴値を用いて定める判断指標値が、所定の閾値より大きい場合に、検査結果を漏洩有りとする漏洩判断ステップと、
     を有する漏洩検査方法。
PCT/JP2013/072100 2012-09-27 2013-08-19 漏洩検査装置、漏洩検査方法、及び漏洩検査プログラム WO2014050358A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13841540.1A EP2902765A4 (en) 2012-09-27 2013-08-19 LEAK INSPECTION DEVICE, LEAK INSPECTION METHOD, AND LEAK INSPECTION PROGRAM
US14/430,258 US9970840B2 (en) 2012-09-27 2013-08-19 Leak inspection device, leak inspection method, and leak inspection program
JP2014538278A JP6248933B2 (ja) 2012-09-27 2013-08-19 漏洩検査装置、漏洩検査方法、及び漏洩検査プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-214811 2012-09-27
JP2012214811 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050358A1 true WO2014050358A1 (ja) 2014-04-03

Family

ID=50387769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072100 WO2014050358A1 (ja) 2012-09-27 2013-08-19 漏洩検査装置、漏洩検査方法、及び漏洩検査プログラム

Country Status (4)

Country Link
US (1) US9970840B2 (ja)
EP (1) EP2902765A4 (ja)
JP (1) JP6248933B2 (ja)
WO (1) WO2014050358A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180110543A (ko) * 2017-03-29 2018-10-10 한국원자력연구원 누출음의 시공간 특성을 이용한 미세누출 탐지 장치 및 이를 이용한 미세누출 탐지 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015072130A1 (ja) * 2013-11-12 2017-03-16 日本電気株式会社 漏洩判定システムおよび漏洩判定方法
WO2016152143A1 (ja) * 2015-03-24 2016-09-29 日本電気株式会社 欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体
CN112145980A (zh) * 2020-08-17 2020-12-29 中煤科工集团重庆研究院有限公司 煤矿瓦斯抽采智能管网泄漏检测控制方法
US11773856B1 (en) 2021-02-12 2023-10-03 State Farm Mutual Automobile Insurance Company Detecting and utilizing a rise rate for sump pump system control
CA3214293A1 (en) * 2021-03-22 2022-09-29 South East Water Corporation Method and system of leak detection

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255540A (ja) 1985-09-04 1987-03-11 Hitachi Ltd 漏洩検出装置
JPS6370138A (ja) * 1986-09-11 1988-03-30 Hitachi Ltd 漏洩検出器
JPH1172409A (ja) 1997-06-23 1999-03-16 Mitsui Eng & Shipbuild Co Ltd 配管の漏洩検知方法
JP2006317172A (ja) 2005-05-10 2006-11-24 Toshiba Corp 漏水検出装置
JP2006349572A (ja) * 2005-06-17 2006-12-28 Toshiba Corp 漏水判定装置及び方法
JP2009002873A (ja) * 2007-06-23 2009-01-08 Fuji Tecom Inc 漏洩探知装置
JP2012037492A (ja) 2010-08-11 2012-02-23 Toshiba Corp 漏水検出装置
JP2012214811A (ja) 2011-03-25 2012-11-08 Sekisui Plastics Co Ltd ポリスチレン系樹脂発泡シート、容器、及びポリスチレン系樹脂発泡シートの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272464A (en) * 1990-04-23 1993-12-21 Jorgensen Adam A Centralized automotive resource management system
US6404343B1 (en) * 1999-06-25 2002-06-11 Act Lsi Inc. Water leakage monitoring apparatus
US7891246B2 (en) 2002-11-12 2011-02-22 Itron, Inc. Tracking vibrations in a pipeline network

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255540A (ja) 1985-09-04 1987-03-11 Hitachi Ltd 漏洩検出装置
JPS6370138A (ja) * 1986-09-11 1988-03-30 Hitachi Ltd 漏洩検出器
JPH1172409A (ja) 1997-06-23 1999-03-16 Mitsui Eng & Shipbuild Co Ltd 配管の漏洩検知方法
JP2006317172A (ja) 2005-05-10 2006-11-24 Toshiba Corp 漏水検出装置
JP2006349572A (ja) * 2005-06-17 2006-12-28 Toshiba Corp 漏水判定装置及び方法
JP2009002873A (ja) * 2007-06-23 2009-01-08 Fuji Tecom Inc 漏洩探知装置
JP2012037492A (ja) 2010-08-11 2012-02-23 Toshiba Corp 漏水検出装置
JP2012214811A (ja) 2011-03-25 2012-11-08 Sekisui Plastics Co Ltd ポリスチレン系樹脂発泡シート、容器、及びポリスチレン系樹脂発泡シートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902765A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180110543A (ko) * 2017-03-29 2018-10-10 한국원자력연구원 누출음의 시공간 특성을 이용한 미세누출 탐지 장치 및 이를 이용한 미세누출 탐지 방법
KR102035266B1 (ko) * 2017-03-29 2019-10-22 한국원자력연구원 누출음의 시공간 특성을 이용한 미세누출 탐지 장치 및 이를 이용한 미세누출 탐지 방법

Also Published As

Publication number Publication date
JP6248933B2 (ja) 2017-12-20
EP2902765A1 (en) 2015-08-05
US9970840B2 (en) 2018-05-15
JPWO2014050358A1 (ja) 2016-08-22
EP2902765A4 (en) 2016-06-15
US20150253216A1 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP6248933B2 (ja) 漏洩検査装置、漏洩検査方法、及び漏洩検査プログラム
CN108050396B (zh) 一种流体管道泄漏源监测定位系统及方法
WO2015072130A1 (ja) 漏洩判定システムおよび漏洩判定方法
JPWO2014050618A1 (ja) 欠陥分析装置、欠陥分析方法及びプログラム
CN110529746B (zh) 管道泄漏的检测方法、装置和设备
JP5807107B1 (ja) 分析データ作成方法、周波数フィルター作成方法、異常音発生位置の特定方法、分析データ作成装置、周波数フィルター作成装置および異常音発生位置の特定装置
KR102702406B1 (ko) 초음파 음향을 통해 비접촉 및 비파괴 방식으로 배관 누설을 원격으로 탐지하기 위한 장치 및 이를 위한 방법
JP6789042B2 (ja) 漏水場所の特定方法
JP6295955B2 (ja) 漏洩位置特定装置、漏洩位置特定方法、漏洩位置特定プログラム、及び漏洩位置特定システム
US20240053222A1 (en) Method for determining and/or analyzing a leak in a line for liquid media, in particular a water line
JP2018205192A (ja) 漏水位置特定方法、漏洩有無判定方法
KR20140126479A (ko) 케이블 손상 신호 처리 장치 및 방법
JP2017083291A (ja) 異常音の発生位置特定方法および異常音の発生位置特定装置
JP6557576B2 (ja) 異常音の発生位置特定方法および異常音の発生位置特定装置
JP6523919B2 (ja) 管路の異常の判定方法
JP6299597B2 (ja) 漏洩検査装置、プログラム、及び制御方法
CN117292706B (zh) 管道气体泄漏声音诊断方法、系统、设备和介质
KR102584912B1 (ko) 음향방출신호 및 진동가속도의 측정에 의한 유체수송관의 감육 탐지 장치 및 방법
JP2016148617A (ja) 分析データ作成方法、漏水位置検知装置および漏水位置特定方法
KR102568086B1 (ko) 음향방출신호 및 진동가속도의 측정에 의한 유체수송관의 누수 탐지 장치 및 방법
RU108840U1 (ru) Блок датчиков системы технологической защиты трубопроводов
RU2538360C2 (ru) Способ и устройство акустико-эмиссионной диагностики дефектов морских ледостойких сооружений
TWI649543B (zh) 結構件的劣化偵測方法
JP2008032619A (ja) 漏水判定装置、漏水判定方法
KR20230080619A (ko) 상수도관의 잔존수명을 예측하기 위한 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013841540

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014538278

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14430258

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE