[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014049668A1 - Communication system, ggsn, pgw, and program - Google Patents

Communication system, ggsn, pgw, and program Download PDF

Info

Publication number
WO2014049668A1
WO2014049668A1 PCT/JP2012/006250 JP2012006250W WO2014049668A1 WO 2014049668 A1 WO2014049668 A1 WO 2014049668A1 JP 2012006250 W JP2012006250 W JP 2012006250W WO 2014049668 A1 WO2014049668 A1 WO 2014049668A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
ggsn
pgw
destination
unit
Prior art date
Application number
PCT/JP2012/006250
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 佐々木
道一 福智
英夫 秦
古川 伸一郎
直人 久木▲崎▼
剛志 泉水
横田 大輔
吉修 関澤
Original Assignee
ソフトバンクモバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンクモバイル株式会社 filed Critical ソフトバンクモバイル株式会社
Priority to JP2013501965A priority Critical patent/JP5483657B1/en
Priority to PCT/JP2012/006250 priority patent/WO2014049668A1/en
Publication of WO2014049668A1 publication Critical patent/WO2014049668A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to a communication system, GGSN, PGW, and program.
  • the packet when the destination of a packet received from the first GGSN or the first PGW functioning as a gateway of the private network and the SGSN or SGW is in the public network, the packet is transmitted to the public network.
  • a communication system is provided comprising a second GGSN or a second PGW that transmits packets to a first GGSN or a first PGW when the packet destination is in a private network. .
  • the second GGSN or the second PGW includes a receiving unit that receives the encapsulated packet from the SGSN or SGW, a decapsulating unit that decapsulates the packet received by the receiving unit, and a packet destination A destination determination unit that determines whether the packet is in the public network or the private network, and if the packet destination is in the private network, the decapsulation unit encapsulates the decapsulated packet, and the capsule
  • the transmission unit may transmit the packet encapsulated by the conversion unit to the first GGSN or the first PGW.
  • SGSN or SGW may encapsulate the packet received from the communication terminal, and may transmit to 2nd GGSN or 2nd PGW.
  • the SGSN or the SGW transmits a packet received from the communication terminal to the DNS that stores the APN (Access Point Name) and the IP address of the second GGSN or the second PGW in association with each other.
  • the included APN may be transmitted, and the IP address of the second GGSN or the second PGW corresponding to the transmitted APN may be received from the DNS.
  • the second GGSN or the second PGW includes a routing instance storage unit that stores a routing instance for performing a transfer path for each APN, and an APN included in a packet received from the SGSN or the SGW. And a transfer route determination unit that determines a transfer route of the packet based on the routing instance corresponding to.
  • the transfer route determination unit may determine a transfer route for transferring a packet received from a communication terminal to the first GGSN or the first PGW.
  • the transfer path determination unit may generate an instance corresponding to the determined packet transfer path.
  • the transfer path determination unit may generate the instance for each different APN when receiving a plurality of packets including different APNs from the same communication terminal.
  • the communication system may further include a CDR storage unit that stores a CDR (Call Detail Record / Charge Data Record) for each instance generated by the transfer path determination unit.
  • the first GGSN or the first PGW and the private network may be arranged in the first region, and the second GGSN or the second PGW and the SGSN or SGW may be arranged in the second region.
  • the packet when the destination of the packet received from the SGSN is within the public network, the packet is transmitted to the destination within the public network, and when the destination of the packet is within the private network, A GGSN is provided that transmits packets to a GGSN that functions as a gateway.
  • the packet when the destination of the packet received from the SGW is within the public network, the packet is transmitted to the destination within the public network, and when the destination of the packet is within the private network, A PGW is provided that transmits packets to the PGW functioning as a gateway.
  • 1 schematically shows a communication environment of a communication system 10.
  • the function structure of 2nd GGSN200 is shown roughly.
  • An example of the flowchart of the packet process with respect to the communication terminal 250 by 2nd GGSN200 is shown.
  • stored by DNS242 and the IP address of GGSN is shown.
  • 1 schematically shows a packet transfer path for each communication terminal.
  • An example of a correspondence table between APNs stored in the routing instance storage unit 208 and routing instances is shown.
  • An example of the hardware constitutions of 2nd GGSN200 is shown.
  • FIG. 1 schematically shows a communication environment of a communication system 10 when the present invention is applied to a third generation communication system (3G) system.
  • the communication system 10 includes a first GGSN 100 and a second GGSN 200.
  • the first GGSN 100 and the second GGSN 200 are connected via the backbone network 300.
  • the backbone network 300 is, for example, GRX (GPRS Roaming Exchange).
  • the first GGSN 100 is a GGSN arranged in the first area 11.
  • the first region 11 is, for example, a country.
  • the first GGSN 100 is managed by the first communication carrier.
  • the first GGSN 100 functions as a gateway for the private network 110.
  • the gateway is a router located at the boundary of the independent system, and is provided between the dedicated network 110 and another network such as the backbone network 300.
  • the private network 110 is a private network managed by the first communication carrier.
  • the private network 110 may be accessible only by devices authorized by the first carrier.
  • the private network 110 may be accessible only via the first GGSN 100.
  • the dedicated network 110 is arranged in the first area 11. Note that the dedicated network 110 may be arranged in an area different from the first area 11.
  • the second GGSN 200 is a GGSN arranged in a second region 12 different from the first region 11.
  • the second region 12 is a country different from the first region 11.
  • the second GGSN 200 may be managed by the first communication carrier.
  • the second GGSN 200 communicates with the SGSN 240 located in the second region 12.
  • the SGSN 240 communicates with DNS 242 and communication terminal 250.
  • the DNS 242 stores a plurality of APNs and a plurality of GGSN IP addresses in association with each other.
  • the DNS 242 transmits the IP address of the GGSN corresponding to the APN received from the SGSN 240 to the SGSN 240.
  • the DNS 242 stores the APN provided by the first communication carrier and the IP address of the second GGSN 200 in association with each other.
  • the DNS 242 may store the APN provided by the first communication carrier and the IP address of the second GGSN in association with each other according to a request from the first communication carrier.
  • the DNS 242 may resolve the IP address of the DNS 122 arranged in the first region 11 by communicating with the Root DNS of the backbone network 300.
  • the communication terminal 250 is a communication terminal used by a user who has signed a communication service contract with the first communication carrier, and is a mobile phone, for example.
  • the communication terminal 250 has a so-called roaming function that enables communication via equipment provided by a communication carrier other than the first communication carrier.
  • the public network 400 is a packet communication network, for example, the Internet.
  • the communication terminal 250 transmits a communication connection request including an APN corresponding to the first GGSN 100 provided by the first communication carrier to the SGSN 240.
  • the communication connection request transmitted by the communication terminal 250 is transmitted to the SGSN 240 via the radio base station and RNC (Radio Network Controller).
  • the SGSN 240 transmits APN included in the communication connection request received from communication terminal 250 to DNS 242. Then, the IP address of the second GGSN 200 corresponding to the transmitted APN is received from the DNS 242. The SGSN 240 transmits the communication connection request received from the communication terminal 250 with the IP address of the second GGSN 200 received from the DNS 242 as a destination.
  • the second GGSN 200 determines a packet transfer path based on the APN included in the received communication connection request.
  • the second GGSN 200 determines a transfer path for transferring the packet received from the communication terminal 250 to the first GGSN 100 when the destination of the packet is in the private network 110.
  • second GGSN 200 determines a transfer path for transferring the packet received from communication terminal 250 to the destination in public network 400.
  • a GTP (GRPS Tunneling Protocol) connection is set between the second GGSN 200 and the SGSN 240.
  • a connection such as MiP (Mobile IP) may be set between the second GGSN 200 and the SGSN 240 as defined in the 3GPP specification.
  • the IP address is assigned to the communication terminal 250 by the second GGSN 200.
  • the communication terminal 250 may be assigned an IP address by the first GGSN 100.
  • the IP address assigned by the second GGSN 200 or the first GGSN 100 is transmitted to the communication terminal 250 by the SGSN 240.
  • the communication terminal 250 transmits a packet to the IP address of the second GGSN 200 for data communication.
  • the packet transmitted by the communication terminal 250 is transmitted to the second GGSN 200 via the SGSN 240.
  • second GGSN 200 transmits the packet to the destination in public network 400.
  • the second GGSN 200 transmits the packet to the first GGSN 100 when the destination of the packet is in the private network 110.
  • the packet transmission delay can be reduced as compared with the case where the packet is transmitted to the public network 400 via the first GGSN 100.
  • Transmission delay can be reduced.
  • the communication terminal 250 cannot access the dedicated network 110 when passing through the visited GGSN.
  • the packet transmitted by the communication terminal 250 can be transferred to the dedicated network 110 as well. That is, according to the second GGSN 200 according to the present embodiment, it is possible to reduce packet transmission delay while maintaining access to the dedicated network 110.
  • FIG. 2 schematically shows a functional configuration of the second GGSN 200.
  • the second GGSN 200 includes a reception unit 202, a communication control unit 204, a transfer route determination unit 206, a routing instance storage unit 208, a decapsulation unit 210, a destination determination unit 212, an encapsulation unit 214, a transmission unit 216, and a CDR storage unit. 218.
  • the receiving unit 202 receives a packet from the SGSN 240. In addition, the reception unit 202 receives packets from the backbone network 300 and the public network 400.
  • the communication control unit 204 controls the transfer path determination unit 206, the decapsulation unit 210, and the transmission unit 216 according to the packet received by the reception unit 202.
  • the communication control unit 204 causes the transfer route determining unit 206 to determine the packet transfer route.
  • the communication control unit 204 causes the decapsulating unit 210 to decapsulate the encapsulated packet.
  • the SGSN 240 encapsulates the packet according to GTP, for example.
  • the communication control unit 204 controls the transmission unit 216 to transmit the packet to the SGSN 240.
  • the packet transmitted to SGSN 240 is transmitted to communication terminal 250 by SGSN 240.
  • the communication control unit 204 controls the transmitting unit 216 to send the packet to the backbone network 300. Via the first GGSN 100. Further, when the packet received by the receiving unit 202 is a packet destined for the destination in the public network 400 from the communication terminal 250, the communication control unit 204 controls the transmission unit 216 to send the packet in the public network 400. Send to the destination.
  • the transfer route determination unit 206 determines the transfer route of the packet received by the reception unit 202.
  • the routing instance storage unit 208 stores a routing instance for determining a transfer route for each APN.
  • the routing instance storage unit 208 stores routing instances for determining different transfer routes for a plurality of types of APNs.
  • the plurality of types of APNs may be APNs provided by a plurality of communication carriers.
  • the plurality of types of APNs may be APNs for a plurality of types of communication terminals for each of a plurality of communication carriers.
  • the plurality of types of APNs may be APNs for a plurality of types of dedicated networks for each of a plurality of communication carriers.
  • a plurality of types of APNs include an APN for iPhone for a first private network provided by a first carrier, an APN for an Android terminal for a second private network provided by a first carrier, and An APN for an Android terminal for the third private network provided by the second communication carrier may be included.
  • the transfer route determination unit 206 determines a packet transfer route based on the routing instance corresponding to the APN included in the connection request transmitted by the communication terminal 250 and stored in the routing instance storage unit 208. Then, the transfer path determination unit 206 generates an instance corresponding to the determined transfer path in response to the connection request of the communication terminal 250 in order to execute communication on the determined transfer path. When the communication terminal 250 executes packet communication, packet communication is executed according to the generated instance.
  • the decapsulation unit 210 decapsulates the packet received by the reception unit 202.
  • the decapsulation unit 210 performs so-called GTP termination.
  • the destination determination unit 212 determines whether the destination of the packet decapsulated by the decapsulation unit 210 is in the public network 400 or the dedicated network 110.
  • the destination determination unit 212 When the destination of the packet is in the public network 400, the destination determination unit 212 causes the transmission unit 216 to transmit the decapsulated packet to the destination in the public network 400. In addition, when the destination of the packet is in the private network 110, the destination determination unit 212 causes the encapsulation unit 214 to encapsulate the decapsulated packet.
  • the encapsulating unit 214 encapsulates the packet decapsulated by the decapsulating unit 210.
  • the encapsulation unit 214 encapsulates the packet according to GTP.
  • the encapsulation unit 214 may encapsulate the packet with the transmission source as the IP address of the second GGSN 200 and the transmission destination as the IP address of the first GGSN 100.
  • the transmission unit 216 transmits the packet received by the reception unit 202 to the SGSN 240 under the control of the communication control unit 204. Further, the transmission unit 216 transmits the decapsulated packet received from the destination determination unit 212 to the destination in the public network 400. The transmission unit 216 transmits the packet encapsulated by the encapsulation unit to the destination dedicated network 110.
  • the CDR storage unit 218 stores a CDR (Call Detail Record / Charge Data Record).
  • the CDR storage unit 218 may generate and store a CDR for each instance generated by the transfer path determination unit 206. Thereby, for example, when the communication terminal 250 executes communication with different dedicated networks, the charging process can be executed for each communication with each dedicated network. Further, for example, a different charging process can be executed for each type of communication terminal 250.
  • FIG. 3 shows an example of a flowchart of packet processing for the communication terminal 250 by the second GGSN 200. This flowchart starts when the second GGSN 200 receives a connection request transmitted by the communication terminal 250 that has completed location registration in the second region 12.
  • step S302 the transfer path determination unit 206 determines a packet transfer path based on the routing instance corresponding to the APN included in the connection request received from the communication terminal 250.
  • the transfer path determination unit 206 generates an instance for the communication terminal 250 that has transmitted the connection request.
  • step S304 the receiving unit 202 receives a packet from the SGSN 240, the backbone network 300, or the public network 400.
  • step S306 the communication control unit 204 determines whether the packet received in step S304 is a packet received from the backbone network 300 or the public network 400 or a packet received from the SGSN 240. If the communication control unit 204 determines that the packet is not from the backbone network 300 or the public network 400, the process proceeds to step S308. If the packet is determined to be a packet from the backbone network 300 or the public network 400, the process proceeds to step S318. .
  • step S308 the decapsulation unit 210 decapsulates the packet received in step S304.
  • step S ⁇ b> 310 the destination determination unit 212 determines whether the destination of the decapsulated packet is in the public network 400 or the dedicated network 110. If the destination determining unit 212 determines that the destination is in the private network 110, the process proceeds to step S312. If the destination is determined to be in the public network 400, the process proceeds to step S316.
  • step S312 the encapsulating unit 214 encapsulates the packet decapsulated in step S308.
  • the transmission unit 216 transmits the packet encapsulated in step S312 to the first GGSN 100.
  • step S310 If it is determined in step S310 that the destination of the packet is not in the private network 110 but in the public network 400, the process proceeds to step S316.
  • step S316 the transmission unit 216 transmits the packet decapsulated in step S308 to the destination in the public network 400.
  • step S306 If it is determined in step S306 that the packet is from the backbone network 300 or the public network 400, the process proceeds to step S318.
  • step S3108 the transmission unit 216 transmits the packet to the SGSN 240, and then the process proceeds to step S320. Further, after the transmission unit 216 transmits the packet to the first GGSN 100 in step S314 and after the transmission unit 216 transmits the packet to the destination in the public network 400 in step S316, the process proceeds to step S320.
  • step S320 the CDR storage unit 218 updates the CDR according to the packet transmitted by the transmission unit 216.
  • the CDR storage unit 218 updates the CDR corresponding to the instance generated in step S302.
  • the CDR storage unit 218 generates a CDR corresponding to the instance when there is no CDR corresponding to the instance.
  • step S322 the communication control unit 204 determines whether a disconnection request is received from the communication terminal 250 via the SGSN 240. If the communication control unit 204 determines that a disconnection request has not been received, the process returns to step S304. If the communication control unit 204 determines that a disconnection request has been received, the communication disconnection process is executed and the process ends.
  • FIG. 4 shows an example of a correspondence table between the APN stored by the DNS 242 and the IP address of the GGSN.
  • the DNS 242 may store the APN and the IP address of the GGSN in the correspondence table in response to a request from the communication carrier that provides the APN. For example, the DNS 242 may request the two APNs for the two APNs according to a request from a first carrier that provides “aaa.xxx.ne.jp” and “bbb.xxx.ne.jp”.
  • the IP address of the second GGSN 200 is stored.
  • the second GGSN 200 may be shared by a plurality of communication carriers.
  • the second GGSN 200 is shared by a first telecommunications carrier and a second telecommunications carrier that is different from the first telecommunications carrier.
  • the IP address of the second GGSN is associated with “ccc. ⁇ .ne.jp” provided by the second communication carrier.
  • a user who has concluded a communication service contract with the first telecommunications carrier or the second telecommunications carrier designates the second GGSN 200 by designating an APN corresponding to the second GGSN 200 shown in FIG. Can receive packet forwarding service.
  • the GGSN of the third communication carrier provided by the third communication carrier is included in “ddd. ⁇ .ne.jp” provided by the third communication carrier. It is associated.
  • DNS 242 receives “ddd. ⁇ .ne.jp” from SGSN 240, DNS 242 transmits the GGSN IP address of the third communication carrier to SGSN 240.
  • the SGSN 240 forms a communication path with the GGSN of the third communication carrier.
  • communication via the GGSN corresponding to the APN can be provided to the APN that cannot receive the communication service provided by the second GGSN 200, as in the past.
  • FIG. 5 schematically shows a packet transfer path for each communication terminal.
  • the communication terminal 252 is a communication terminal that has concluded a communication service contract with a company A, which is a communication carrier.
  • the communication terminal 254 is a communication terminal that has concluded a communication service contract with Company B, which is a communication carrier.
  • the second GGSN 200 When the second GGSN 200 receives a connection request including the APN corresponding to the first GGSN 102 of the company A from the communication terminal 252, the second GGSN 200, the backbone network 300, the first VLAN (Virtual LAN) 304 of the company A, The transfer route in the order of the first GGSN 102 of company A may be determined. In response to the connection request from the communication terminal 252, an instance corresponding to the determined transfer path is generated.
  • the communication terminal 252 transmits a packet set in the first private network 112 whose destination is the company A to the second GGSN 200, the packet is stored in the backbone network 300 and the first VLAN 304 of the company A. , The first GGSN 102 of company A and the first private network 112 of company A are transferred in this order.
  • the shared ISP Internet Service Provider
  • the shared ISP is an ISP shared by a plurality of companies.
  • the ISP for Company A is an ISP that can be used by a communication terminal that has concluded a communication service contract with Company A.
  • the packet is transferred according to the transfer path determined by the second GGSN 200, thereby maintaining the access to the first dedicated network 112 of the company A from the communication terminal 252 or the ISP 406 for the company A or shared Packet transmission delay for the ISP 404 can be reduced.
  • the second GGSN 200 receives a connection request including an APN corresponding to the second GGSN 104 of the company A from the communication terminal 252, the second GGSN 200, the backbone network 300, the second VLAN 306 of the company A, and the first of the company A
  • the transfer path in the order of 2GGSN 104 is determined.
  • an instance corresponding to the determined transfer path is generated.
  • the communication terminal 252 transmits a packet set in the second dedicated network 114 whose destination is the company A to the second GGSN 200, the packet is stored in the backbone network 300 and the second VLAN 306 of the company A. , The second GGSN 104 of the company A and the second dedicated network 114 of the company A.
  • the second GGSN 200 generates an instance for each connection request when different APNs are specified in the plurality of connection requests. To do. That is, when a plurality of packets including different APNs are received from the same communication terminal, the transfer path determination unit 206 generates an instance for each different APN. Thereby, a packet can be transferred to each of a plurality of dedicated networks, and communication can be managed separately for each APN.
  • the second GGSN 200 When the second GGSN 200 receives a connection request including an APN corresponding to the B company GGSN from the communication terminal 254, the second GGSN 200 transfers the second GGSN 200, the backbone network 300, the B company VLAN 308, and the B company GGSN 106 in this order. Determine the route. In response to the connection request from the communication terminal 254, an instance corresponding to the determined transfer path is generated.
  • a packet whose destination is set to the shared ISP (Internet Service Provider) 404 is transmitted to the second GGSN 200 by the communication terminal 254, the packet is not transferred to the GGSN 106 of the B company, and the backbone network 300 is transmitted. To the shared ISP 404.
  • ISP Internet Service Provider
  • FIG. 6 shows an example of a correspondence table between APNs stored in the routing instance storage unit 208 and routing instances.
  • a routing instance indicating a path “second GGSN ⁇ backbone network ⁇ first VLAN of company A ⁇ first GGSN of company A” is associated with “aaa.xxx.ne.jp”. It is associated.
  • the transfer path determination unit 206 uses the second GGSN 200, the backbone network 300, and the first VLAN 304 of company A. , A transfer path in the order of the first GGSN 102 of company A is determined. In response to the connection request of the communication terminal 250, an instance corresponding to the transfer path is generated.
  • FIG. 7 shows an example of the hardware configuration of the second GGSN 200.
  • the second GGSN 200 includes a CPU peripheral unit having a CPU 504 and a RAM 506 connected to each other by a host controller 502, and an input / output unit having a ROM 510 and a communication interface 512 connected to the host controller 502 by an input / output controller 508.
  • the input / output unit may further include a hard disk drive, a CD-ROM drive, and a USB interface.
  • the host controller 502 connects the RAM 506 and the CPU 504 that accesses the RAM 506 at a high transfer rate.
  • the CPU 504 operates based on programs stored in the ROM 510 and the RAM 506 to control each unit.
  • the input / output controller 508 connects the host controller 502, the communication interface 512, which is a relatively high-speed input / output device, and the ROM 510.
  • the communication interface 512 communicates with the SGSN 240 and an external packet network via the network.
  • the hard disk drive stores programs and data used by the CPU 504 in the second GGSN 200.
  • the CD-ROM drive reads a program or data from the CD-ROM and provides it to the hard disk drive via the RAM 506.
  • the ROM 510 stores a boot program that the second GGSN 200 executes at startup, a program that depends on the hardware of the second GGSN 200, and the like.
  • the program provided to the hard disk drive via the RAM 506 is stored in a recording medium such as a CD-ROM or USB memory and provided by the user.
  • the program is read from the recording medium, installed in the hard disk drive in the second GGSN 200 via the RAM 506, and executed by the CPU 504.
  • the program installed and executed in the second GGSN 200 works on the CPU 504 and the like, and the second GGSN 200 is described with reference to FIGS. 1 to 6, the receiving unit 202, the communication control unit 204, the transfer path determination unit 206, The routing instance storage unit 208, the decapsulation unit 210, the destination determination unit 212, the encapsulation unit 214, the transmission unit 216, and the CDR storage unit 218 function.
  • the communication terminal 250 located in the second area 12 has been described with an example in which the packet is transmitted to the SGSN 240 arranged in the second area 12, but the present invention is not limited to this.
  • a packet transmitted from a communication terminal 250 located in a third area other than the first area and the second area 12 to the SGSN arranged in the third area is transmitted from the SGSN arranged in the third area.
  • the second GGSN 200 can be used from a plurality of countries.
  • One or more second GGSNs 200 may be arranged in each area.
  • the second GGSN 200 transmits the packet encapsulated by the encapsulating unit 214 to the first GGSN 100. explained. In addition to this, when the destination of the packet received by the receiving unit 202 is in the private network 110, the second GGSN 200 transmits the packet decapsulated by the decapsulating unit 210 to the border gateway of the private network 110. Also good.
  • the present invention may be applied to the third generation communication method as an example.
  • the present invention may be applied to LTE (Long Term Evolution).
  • LTE Long Term Evolution
  • the first GGSN 100 may be a first PGW installed in the first region 11.
  • the second GGSN 200 may be a second PGW installed in the second area 12.
  • the SGSN 240 may be an MME (MobilityMoManagement Entity) and an SGW.
  • the packet transmitted by the communication terminal 250 may be transmitted to the SGW via the radio base station, not via the RNC.
  • the SGSN may be connected to the SGW or PGW.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

When the distance between the SGSN or SGW at a global roaming destination and the GGSN or PGW at the origin of global roaming is large, transmission delay is caused by the increase in data transfer distance. Provided is a communication system including: a first GGSN or first PGW that functions as a gateway for a private network; and a second GGSN or second PGW that, when the address of a packet received from the SGSN or SGW is in a public network, transmits the packet to the address in the public network, and that, when the address of the packet is in the private network, transmits the packet to the first GGSN or first PGW.

Description

通信システム、GGSN、PGW、及びプログラムCommunication system, GGSN, PGW, and program
 本発明は、通信システム、GGSN、PGW、及びプログラムに関する。 The present invention relates to a communication system, GGSN, PGW, and program.
 国際ローミング先に在圏する端末装置が国際ローミング先のSGSN(Serving GPRS Support Node)又はSGW(Serving Gateway)に送信したデータを、国際ローミング元のGGSN(Gateway GPRS Support Node)又はPGW(Packet data network Gateway)を経由してインターネットに転送することにより、国際ローミング通信を可能にすることが知られている。(例えば、3GPP TS23.060、同 TS23.401、特許文献1)。
 特許文献1 特開2012-109709号公報
The data transmitted from the terminal device located in the international roaming destination to the international roaming destination SGSN (Serving GPRS Support Node) or SGW (Serving Gateway) is transmitted to the international roaming source GGSN (Gateway GPRS Support Node) or PGW (Packet data). It is known to enable international roaming communication by transferring to the Internet via Gateway. (For example, 3GPP TS 23.060, TS 23.401, Patent Document 1).
Patent Document 1 JP 2012-109709 A
 しかし、国際ローミング先のSGSN又はSGWと、国際ローミング元のGGSN又はPGWとの距離が離れている場合に、データの転送距離が長くなることによって伝送遅延が発生してしまう。 However, when the distance between the international roaming destination SGSN or SGW and the international roaming source GGSN or PGW is long, a transmission delay occurs due to a long data transfer distance.
 本発明の第1の態様によれば、専用網のゲートウェイとして機能する第1のGGSN又は第1のPGWと、SGSN又はSGWから受信したパケットの宛先が公衆網内にある場合、パケットを公衆網内の宛先に送信し、パケットの宛先が専用網内にある場合、パケットを第1のGGSN又は第1のPGWに送信する第2のGGSN又は第2のPGWとを備える通信システムが提供される。 According to the first aspect of the present invention, when the destination of a packet received from the first GGSN or the first PGW functioning as a gateway of the private network and the SGSN or SGW is in the public network, the packet is transmitted to the public network. A communication system is provided comprising a second GGSN or a second PGW that transmits packets to a first GGSN or a first PGW when the packet destination is in a private network. .
 上記通信システムにおいて、第2のGGSN又は第2のPGWは、カプセル化されたパケットをSGSN又はSGWから受信する受信部と、受信部が受信したパケットをデカプセル化するデカプセル化部と、パケットの宛先が公衆網内にあるか専用網内にあるかを判断する宛先判断部と、パケットの宛先が専用網内にある場合、デカプセル化部がデカプセル化したパケットをカプセル化するカプセル化部と、カプセル化部がカプセル化したパケットを第1のGGSN又は第1のPGWに送信する送信部とを有してよい。また、上記通信システムにおいて、SGSN又はSGWは、通信端末から受信したパケットをカプセル化して第2のGGSN又は第2のPGWに送信してよい。 In the communication system, the second GGSN or the second PGW includes a receiving unit that receives the encapsulated packet from the SGSN or SGW, a decapsulating unit that decapsulates the packet received by the receiving unit, and a packet destination A destination determination unit that determines whether the packet is in the public network or the private network, and if the packet destination is in the private network, the decapsulation unit encapsulates the decapsulated packet, and the capsule The transmission unit may transmit the packet encapsulated by the conversion unit to the first GGSN or the first PGW. Moreover, in the said communication system, SGSN or SGW may encapsulate the packet received from the communication terminal, and may transmit to 2nd GGSN or 2nd PGW.
 また、上記の通信システムにおいて、SGSN又はSGWは、APN(Access Point Name)と、第2のGGSN又は第2のPGWのIPアドレスとを対応付けて記憶するDNSに、通信端末から受信したパケットに含まれるAPNを送信して、送信したAPNに対応する第2のGGSN又は第2のPGWのIPアドレスをDNSから受信してよい。また、上記の通信システムにおいて、第2のGGSN又は第2のPGWは、APN毎に転送経路をするためのルーティングインスタンスを記憶するルーティングインスタンス記憶部と、SGSN又はSGWから受信したパケットに含まれるAPNに対応するルーティングインスタンスに基づいて、パケットの転送経路を決定する転送経路決定部とを備えてよい。 In the communication system described above, the SGSN or the SGW transmits a packet received from the communication terminal to the DNS that stores the APN (Access Point Name) and the IP address of the second GGSN or the second PGW in association with each other. The included APN may be transmitted, and the IP address of the second GGSN or the second PGW corresponding to the transmitted APN may be received from the DNS. In the communication system, the second GGSN or the second PGW includes a routing instance storage unit that stores a routing instance for performing a transfer path for each APN, and an APN included in a packet received from the SGSN or the SGW. And a transfer route determination unit that determines a transfer route of the packet based on the routing instance corresponding to.
 また、上記の通信システムにおいて、転送経路決定部は、通信端末から受信したパケットを前記第1のGGSN又は前記第1のPGWに転送する転送経路を決定してよい。また、上記の通信システムにおいて、転送経路決定部は、決定したパケットの転送経路に対応するインスタンスを生成してよい。また、上記の通信システムにおいて、転送経路決定部は、同一の通信端末から、それぞれ異なるAPNを含む複数のパケットを受信した場合に、それぞれ異なるAPN毎に前記インスタンスを生成してよい。また、上記の通信システムは、転送経路決定部により生成されたインスタンス毎にCDR(Call Detail Record/Charge Data Recordを記憶するCDR記憶部をさらに備えてよい。また、上記の通信システムにおいて、第1のGGSN又は第1のPGW、及び専用網は第1の地域に配置されてよく、第2のGGSN又は第2のPGW、及びSGSN又はSGWは第2の地域に配置されてよい。 In the above communication system, the transfer route determination unit may determine a transfer route for transferring a packet received from a communication terminal to the first GGSN or the first PGW. In the communication system, the transfer path determination unit may generate an instance corresponding to the determined packet transfer path. In the above communication system, the transfer path determination unit may generate the instance for each different APN when receiving a plurality of packets including different APNs from the same communication terminal. In addition, the communication system may further include a CDR storage unit that stores a CDR (Call Detail Record / Charge Data Record) for each instance generated by the transfer path determination unit. The first GGSN or the first PGW and the private network may be arranged in the first region, and the second GGSN or the second PGW and the SGSN or SGW may be arranged in the second region.
 本発明の第2の態様によれば、SGSNから受信したパケットの宛先が公衆網内にある場合、パケットを公衆網内の宛先に送信し、パケットの宛先が専用網内にある場合、専用網のゲートウェイとして機能するGGSNにパケットを送信するGGSNが提供される。 According to the second aspect of the present invention, when the destination of the packet received from the SGSN is within the public network, the packet is transmitted to the destination within the public network, and when the destination of the packet is within the private network, A GGSN is provided that transmits packets to a GGSN that functions as a gateway.
 本発明の第3の態様によれば、SGWから受信したパケットの宛先が公衆網内にある場合、パケットを公衆網内の宛先に送信し、パケットの宛先が専用網内にある場合、専用網のゲートウェイとして機能するPGWにパケットを送信するPGWが提供される。 According to the third aspect of the present invention, when the destination of the packet received from the SGW is within the public network, the packet is transmitted to the destination within the public network, and when the destination of the packet is within the private network, A PGW is provided that transmits packets to the PGW functioning as a gateway.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
通信システム10の通信環境を概略的に示す。1 schematically shows a communication environment of a communication system 10. 第2のGGSN200の機能構成を概略的に示すThe function structure of 2nd GGSN200 is shown roughly. 第2のGGSN200による通信端末250に対するパケット処理のフローチャートの一例を示す。An example of the flowchart of the packet process with respect to the communication terminal 250 by 2nd GGSN200 is shown. DNS242によって記憶されるAPNとGGSNのIPアドレスとの対応テーブルの一例を示す。An example of the correspondence table of APN memorize | stored by DNS242 and the IP address of GGSN is shown. 通信端末毎のパケットの転送経路を概略的に示す。1 schematically shows a packet transfer path for each communication terminal. ルーティングインスタンス記憶部208が記憶するAPNとルーティングインスタンスとの対応テーブルの一例を示す。An example of a correspondence table between APNs stored in the routing instance storage unit 208 and routing instances is shown. 第2のGGSN200のハードウェア構成の一例を示す。An example of the hardware constitutions of 2nd GGSN200 is shown.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、第3世代通信方式(3G)システムに本発明を適用した場合の、通信システム10の通信環境を概略的に示す。通信システム10は、第1のGGSN100及び第2のGGSN200を備える。第1のGGSN100及び第2のGGSN200は、バックボーンネットワーク300を介して接続される。バックボーンネットワーク300は、例えば、GRX(GPRS Roaming Exchange)である。 FIG. 1 schematically shows a communication environment of a communication system 10 when the present invention is applied to a third generation communication system (3G) system. The communication system 10 includes a first GGSN 100 and a second GGSN 200. The first GGSN 100 and the second GGSN 200 are connected via the backbone network 300. The backbone network 300 is, for example, GRX (GPRS Roaming Exchange).
 第1のGGSN100は、第1の地域11に配置されたGGSNである。第1の地域11は、例えば、国である。第1のGGSN100は、第1の通信事業者によって管理される。第1のGGSN100は、専用網110のゲートウェイとして機能する。ここで、ゲートウェイとは、自立システムの境界に位置するルータであり、専用網110とバックボーンネットワーク300等の他のネットワークとの間に設けられる。 The first GGSN 100 is a GGSN arranged in the first area 11. The first region 11 is, for example, a country. The first GGSN 100 is managed by the first communication carrier. The first GGSN 100 functions as a gateway for the private network 110. Here, the gateway is a router located at the boundary of the independent system, and is provided between the dedicated network 110 and another network such as the backbone network 300.
 専用網110は、第1の通信事業者によって管理されるプライベートネットワークである。専用網110は、第1の通信事業者によって許可された装置によってのみアクセス可能であってよい。専用網110は、第1のGGSN100を経由してのみアクセス可能であってよい。専用網110は、第1の地域11に配置される。なお、専用網110は、第1の地域11とは異なる地域に配置されてもよい。 The private network 110 is a private network managed by the first communication carrier. The private network 110 may be accessible only by devices authorized by the first carrier. The private network 110 may be accessible only via the first GGSN 100. The dedicated network 110 is arranged in the first area 11. Note that the dedicated network 110 may be arranged in an area different from the first area 11.
 第2のGGSN200は、第1の地域11とは異なる第2の地域12に配置されたGGSNである。第2の地域12は、例えば、第1の地域11とは異なる国である。第2のGGSN200は、第1の通信事業者によって管理されてよい。第2のGGSN200は、第2の地域12に配置されたSGSN240と通信する。 The second GGSN 200 is a GGSN arranged in a second region 12 different from the first region 11. For example, the second region 12 is a country different from the first region 11. The second GGSN 200 may be managed by the first communication carrier. The second GGSN 200 communicates with the SGSN 240 located in the second region 12.
 SGSN240は、DNS242及び通信端末250と通信する。DNS242は、複数のAPNと、複数のGGSNのIPアドレスとをそれぞれ対応付けて記憶する。DNS242は、SGSN240から受信したAPNに対応するGGSNのIPアドレスをSGSN240に送信する。 SGSN 240 communicates with DNS 242 and communication terminal 250. The DNS 242 stores a plurality of APNs and a plurality of GGSN IP addresses in association with each other. The DNS 242 transmits the IP address of the GGSN corresponding to the APN received from the SGSN 240 to the SGSN 240.
 本実施形態において、DNS242は、第1の通信事業者が提供するAPNと第2のGGSN200のIPアドレスとを対応付けて記憶する。DNS242は、第1の通信事業者からの要求によって、第1の通信事業者が提供するAPNと第2のGGSNのIPアドレスとを対応付けて記憶してよい。 In this embodiment, the DNS 242 stores the APN provided by the first communication carrier and the IP address of the second GGSN 200 in association with each other. The DNS 242 may store the APN provided by the first communication carrier and the IP address of the second GGSN in association with each other according to a request from the first communication carrier.
 なお、本実施形態では、DNS242はバックボーンネットワーク300のRootDNSと通信することにより、第1の地域11に配置されたDNS122のIPアドレスを解決してよい。 In this embodiment, the DNS 242 may resolve the IP address of the DNS 122 arranged in the first region 11 by communicating with the Root DNS of the backbone network 300.
 通信端末250は、第1の通信事業者と通信サービスの契約を締結したユーザによって利用される通信端末であり、例えば、携帯電話である。通信端末250は、第1の通信事業者以外の通信事業者が提供する設備を介して通信を可能とする、いわゆるローミング機能を有する。ここで、第2のGGSN200が、通信端末250により送信されたパケットを専用網110又は公衆網400に向けて転送する処理手順の一例を簡単に説明する。公衆網400は、パケット通信網であり、例えば、インターネットである。 The communication terminal 250 is a communication terminal used by a user who has signed a communication service contract with the first communication carrier, and is a mobile phone, for example. The communication terminal 250 has a so-called roaming function that enables communication via equipment provided by a communication carrier other than the first communication carrier. Here, an example of a processing procedure in which the second GGSN 200 transfers a packet transmitted from the communication terminal 250 toward the dedicated network 110 or the public network 400 will be briefly described. The public network 400 is a packet communication network, for example, the Internet.
 通信端末250は、第1の通信事業者によって提供される、第1のGGSN100に対応するAPNを含む通信接続要求を、SGSN240に向けて送信する。通信端末250によって送信された通信接続要求は、無線基地局、RNC(Radio Network Controller)を介してSGSN240に送信される。 The communication terminal 250 transmits a communication connection request including an APN corresponding to the first GGSN 100 provided by the first communication carrier to the SGSN 240. The communication connection request transmitted by the communication terminal 250 is transmitted to the SGSN 240 via the radio base station and RNC (Radio Network Controller).
 SGSN240は、通信端末250から受信した通信接続要求に含まれるAPNをDNS242に送信する。そして、送信したAPNに対応する第2のGGSN200のIPアドレスをDNS242から受信する。SGSN240は、DNS242から受信した第2のGGSN200のIPアドレスを宛先として、通信端末250から受信した通信接続要求を送信する。 SGSN 240 transmits APN included in the communication connection request received from communication terminal 250 to DNS 242. Then, the IP address of the second GGSN 200 corresponding to the transmitted APN is received from the DNS 242. The SGSN 240 transmits the communication connection request received from the communication terminal 250 with the IP address of the second GGSN 200 received from the DNS 242 as a destination.
 第2のGGSN200は、受信した通信接続要求に含まれるAPNに基づいて、パケットの転送経路を決定する。第2のGGSN200は、パケットの宛先が専用網110内にある場合、通信端末250から受信したパケットを第1のGGSN100に転送する転送経路を決定する。また、第2のGGSN200は、パケットの宛先が公衆網400内にある場合、通信端末250から受信したパケットを公衆網400内の宛先に転送する転送経路を決定する。 The second GGSN 200 determines a packet transfer path based on the APN included in the received communication connection request. The second GGSN 200 determines a transfer path for transferring the packet received from the communication terminal 250 to the first GGSN 100 when the destination of the packet is in the private network 110. In addition, when the destination of the packet is in public network 400, second GGSN 200 determines a transfer path for transferring the packet received from communication terminal 250 to the destination in public network 400.
 第2のGGSN200とSGSN240との間では、例えば、GTP(GRPS Tunnleing Protocol)コネクションが設定される。第2のGGSN200とSGSN240との間では、3GPP仕様で定義されるようにMiP(Mobile IP)等のコネクションが設定されてもよい。通信端末250には、例えば、第2のGGSN200によってIPアドレスが割り当てられる。通信端末250には、第1のGGSN100によってIPアドレスが割り当てられてもよい。そして、通信端末250には、SGSN240によって、第2のGGSN200または第1のGGSN100が割り当てるIPアドレスが送信される。 Between the second GGSN 200 and the SGSN 240, for example, a GTP (GRPS Tunneling Protocol) connection is set. A connection such as MiP (Mobile IP) may be set between the second GGSN 200 and the SGSN 240 as defined in the 3GPP specification. For example, the IP address is assigned to the communication terminal 250 by the second GGSN 200. The communication terminal 250 may be assigned an IP address by the first GGSN 100. Then, the IP address assigned by the second GGSN 200 or the first GGSN 100 is transmitted to the communication terminal 250 by the SGSN 240.
 次に、通信端末250は、データ通信をするべく、第2のGGSN200のIPアドレスに対してパケットを送信する。通信端末250によって送信されたパケットは、SGSN240を介して第2のGGSN200に送信される。第2のGGSN200は、SGSN240から受信したパケットの宛先が公衆網400内にある場合、パケットを公衆網400内の宛先に送信する。また、第2のGGSN200は、パケットの宛先が専用網110内にある場合、パケットを第1のGGSN100に送信する。 Next, the communication terminal 250 transmits a packet to the IP address of the second GGSN 200 for data communication. The packet transmitted by the communication terminal 250 is transmitted to the second GGSN 200 via the SGSN 240. When the destination of the packet received from SGSN 240 is in public network 400, second GGSN 200 transmits the packet to the destination in public network 400. The second GGSN 200 transmits the packet to the first GGSN 100 when the destination of the packet is in the private network 110.
 これにより、パケットの宛先が公衆網400内にある場合、第1のGGSN100を経由して公衆網400にパケットを送信するのに比べて、パケットの伝送遅延を低減することができる。なお、他の通信事業者によって提供される第2の地域12に配置された訪問先のGGSNを経由してパケットを公衆網400に送信することによっても、第1のGGSN100を介するのに比べて伝送遅延を低減することができる。 Thereby, when the destination of the packet is in the public network 400, the packet transmission delay can be reduced as compared with the case where the packet is transmitted to the public network 400 via the first GGSN 100. Note that even when a packet is transmitted to the public network 400 via the visited GGSN provided in the second area 12 provided by another telecommunications carrier, as compared with that via the first GGSN 100. Transmission delay can be reduced.
 しかし、訪問先のGGSNを経由させる場合、通信端末250は、専用網110にアクセスすることができない。これに対して、本実施形態に係る第2のGGSN200によれば、専用網110に対しても、通信端末250が送信したパケットを転送することができる。すなわち、本実施形態に係る第2のGGSN200によれば、専用網110へのアクセスを維持しつつ、パケットの伝送遅延を低減することができる。 However, the communication terminal 250 cannot access the dedicated network 110 when passing through the visited GGSN. On the other hand, according to the second GGSN 200 according to the present embodiment, the packet transmitted by the communication terminal 250 can be transferred to the dedicated network 110 as well. That is, according to the second GGSN 200 according to the present embodiment, it is possible to reduce packet transmission delay while maintaining access to the dedicated network 110.
 図2は、第2のGGSN200の機能構成を概略的に示す。第2のGGSN200は、受信部202、通信制御部204、転送経路決定部206、ルーティングインスタンス記憶部208、デカプセル化部210、宛先判断部212、カプセル化部214、送信部216、及びCDR記憶部218を備える。 FIG. 2 schematically shows a functional configuration of the second GGSN 200. The second GGSN 200 includes a reception unit 202, a communication control unit 204, a transfer route determination unit 206, a routing instance storage unit 208, a decapsulation unit 210, a destination determination unit 212, an encapsulation unit 214, a transmission unit 216, and a CDR storage unit. 218.
 受信部202は、パケットをSGSN240から受信する。また、受信部202は、パケットをバックボーンネットワーク300及び公衆網400から受信する。通信制御部204は、受信部202が受信したパケットに応じて、転送経路決定部206、デカプセル化部210、及び送信部216を制御する。通信制御部204は、受信部202が受信したパケットが、通信端末250により送信された接続要求を含む場合に、転送経路決定部206にパケットの転送経路を決定させる。 The receiving unit 202 receives a packet from the SGSN 240. In addition, the reception unit 202 receives packets from the backbone network 300 and the public network 400. The communication control unit 204 controls the transfer path determination unit 206, the decapsulation unit 210, and the transmission unit 216 according to the packet received by the reception unit 202. When the packet received by the receiving unit 202 includes a connection request transmitted by the communication terminal 250, the communication control unit 204 causes the transfer route determining unit 206 to determine the packet transfer route.
 また、通信制御部204は、受信部202が受信したパケットが、SGSN240によってカプセル化されたパケットである場合に、カプセル化されたパケットをデカプセル化部210にデカプセル化させる。SGSN240は、例えば、GTPに従ってパケットをカプセル化する。 In addition, when the packet received by the receiving unit 202 is a packet encapsulated by the SGSN 240, the communication control unit 204 causes the decapsulating unit 210 to decapsulate the encapsulated packet. The SGSN 240 encapsulates the packet according to GTP, for example.
 また、通信制御部204は、受信部202が受信したパケットが、バックボーンネットワーク300又は公衆網400から通信端末250に向けたパケットである場合、送信部216を制御して、パケットをSGSN240に送信させる。SGSN240に送信されたパケットは、SGSN240によって、通信端末250に送信される。 Further, when the packet received by the receiving unit 202 is a packet directed from the backbone network 300 or the public network 400 to the communication terminal 250, the communication control unit 204 controls the transmission unit 216 to transmit the packet to the SGSN 240. . The packet transmitted to SGSN 240 is transmitted to communication terminal 250 by SGSN 240.
 また、通信制御部204は、受信部202が受信したパケットが、通信端末250から専用網110内の宛先に向けたパケットである場合、送信部216を制御して、パケットを、バックボーンネットワーク300を介して第1のGGSN100に送信させる。また、通信制御部204は、受信部202が受信したパケットが、通信端末250から公衆網400内の宛先に向けたパケットである場合、送信部216を制御して、パケットを、公衆網400内の宛先に送信させる。 Further, when the packet received by the receiving unit 202 is a packet destined for the destination in the dedicated network 110 from the communication terminal 250, the communication control unit 204 controls the transmitting unit 216 to send the packet to the backbone network 300. Via the first GGSN 100. Further, when the packet received by the receiving unit 202 is a packet destined for the destination in the public network 400 from the communication terminal 250, the communication control unit 204 controls the transmission unit 216 to send the packet in the public network 400. Send to the destination.
 転送経路決定部206は、受信部202が受信したパケットの転送経路を決定する。ルーティングインスタンス記憶部208は、APN毎に転送経路を決定するためのルーティングインスタンスを記憶する。ルーティングインスタンス記憶部208は、複数種類のAPNに対して、それぞれ異なる転送経路を決定するためのルーティングインスタンスを記憶する。 The transfer route determination unit 206 determines the transfer route of the packet received by the reception unit 202. The routing instance storage unit 208 stores a routing instance for determining a transfer route for each APN. The routing instance storage unit 208 stores routing instances for determining different transfer routes for a plurality of types of APNs.
 複数種類のAPNは、複数の通信事業者によってそれぞれ提供されるAPNであってよい。また、複数種類のAPNは、複数の通信事業者ごとの、複数種類の通信端末用のAPNであってよい。また、複数種類のAPNは、複数の通信事業者ごとの、複数種類の専用網用のAPNであってよい。例えば、複数種類のAPNは、第1の通信事業者が提供する第1のプライベートネットワークに対するiPhone用のAPN、第1の通信事業者が提供する第2のプライベートネットワークに対するアンドロイド端末用のAPN、及び第2の通信事業者が提供する第3のプライベートネットワークに対するアンドロイド端末用のAPN等を含んでよい。 The plurality of types of APNs may be APNs provided by a plurality of communication carriers. The plurality of types of APNs may be APNs for a plurality of types of communication terminals for each of a plurality of communication carriers. The plurality of types of APNs may be APNs for a plurality of types of dedicated networks for each of a plurality of communication carriers. For example, a plurality of types of APNs include an APN for iPhone for a first private network provided by a first carrier, an APN for an Android terminal for a second private network provided by a first carrier, and An APN for an Android terminal for the third private network provided by the second communication carrier may be included.
 転送経路決定部206は、ルーティングインスタンス記憶部208に記憶された、通信端末250によって送信された接続要求に含まれるAPNに対応するルーティングインスタンスに基づいて、パケットの転送経路を決定する。そして、転送経路決定部206は、決定した転送経路での通信を実行するべく、当該通信端末250の当該接続要求に対して、決定した転送経路に対応するインスタンスを生成する。当該通信端末250がパケット通信を実行する場合に、生成されたインスタンスに従って、パケット通信が実行される。 The transfer route determination unit 206 determines a packet transfer route based on the routing instance corresponding to the APN included in the connection request transmitted by the communication terminal 250 and stored in the routing instance storage unit 208. Then, the transfer path determination unit 206 generates an instance corresponding to the determined transfer path in response to the connection request of the communication terminal 250 in order to execute communication on the determined transfer path. When the communication terminal 250 executes packet communication, packet communication is executed according to the generated instance.
 デカプセル化部210は、受信部202が受信したパケットをデカプセル化する。デカプセル化部210は、パケットがGTPに従ってカプセル化されている場合、いわゆるGTP終端を実行する。そして、宛先判断部212は、デカプセル化部210によってデカプセル化されたパケットの宛先が、公衆網400内にあるか専用網110内にあるかを判断する。 The decapsulation unit 210 decapsulates the packet received by the reception unit 202. When the packet is encapsulated according to GTP, the decapsulation unit 210 performs so-called GTP termination. Then, the destination determination unit 212 determines whether the destination of the packet decapsulated by the decapsulation unit 210 is in the public network 400 or the dedicated network 110.
 パケットの宛先が公衆網400内にある場合、宛先判断部212は、送信部216に、デカプセル化されたパケットを公衆網400内の宛先に送信させる。また、宛先判断部212は、パケットの宛先が専用網110内にある場合、デカプセル化されたパケットをカプセル化部214にカプセル化させる。 When the destination of the packet is in the public network 400, the destination determination unit 212 causes the transmission unit 216 to transmit the decapsulated packet to the destination in the public network 400. In addition, when the destination of the packet is in the private network 110, the destination determination unit 212 causes the encapsulation unit 214 to encapsulate the decapsulated packet.
 カプセル化部214は、デカプセル化部210によってデカプセル化されたパケットをカプセル化する。カプセル化部214は、ステップS304で受信したパケットが、GTPに従ってカプセル化されていた場合、GTPに従ってパケットをカプセル化する。カプセル化部214は、送信元を第2のGGSN200のIPアドレス、送信先を第1のGGSN100のIPアドレスとして、パケットをカプセル化してよい。 The encapsulating unit 214 encapsulates the packet decapsulated by the decapsulating unit 210. When the packet received in step S304 is encapsulated according to GTP, the encapsulation unit 214 encapsulates the packet according to GTP. The encapsulation unit 214 may encapsulate the packet with the transmission source as the IP address of the second GGSN 200 and the transmission destination as the IP address of the first GGSN 100.
 送信部216は、通信制御部204の制御に従い、受信部202が受信したパケットをSGSN240に送信する。また、送信部216は、宛先判断部212から受信したデカプセル化されたパケットを、公衆網400内の宛先に送信する。また、送信部216は、カプセル化部によりカプセル化されたパケットを、宛先の専用網110に送信する。 The transmission unit 216 transmits the packet received by the reception unit 202 to the SGSN 240 under the control of the communication control unit 204. Further, the transmission unit 216 transmits the decapsulated packet received from the destination determination unit 212 to the destination in the public network 400. The transmission unit 216 transmits the packet encapsulated by the encapsulation unit to the destination dedicated network 110.
 CDR記憶部218は、CDR(Call Detail Record/Charge Data Record)を記憶する。CDR記憶部218は、転送経路決定部206によって生成されたインスタンス毎に、CDRを生成して記憶してよい。これにより、例えば、通信端末250が、異なる専用網に対して通信を実行した場合に、各専用網に対する通信ごとに、課金処理を実行できる。また、例えば、通信端末250の種類ごとに、異なる課金処理を実行できる。 The CDR storage unit 218 stores a CDR (Call Detail Record / Charge Data Record). The CDR storage unit 218 may generate and store a CDR for each instance generated by the transfer path determination unit 206. Thereby, for example, when the communication terminal 250 executes communication with different dedicated networks, the charging process can be executed for each communication with each dedicated network. Further, for example, a different charging process can be executed for each type of communication terminal 250.
 図3は、第2のGGSN200による通信端末250に対するパケット処理のフローチャートの一例を示す。本フローチャートは、第2の地域12において位置登録を終了した通信端末250によって送信された接続要求を、第2のGGSN200が受信した場合に開始する。 FIG. 3 shows an example of a flowchart of packet processing for the communication terminal 250 by the second GGSN 200. This flowchart starts when the second GGSN 200 receives a connection request transmitted by the communication terminal 250 that has completed location registration in the second region 12.
 ステップS302では、転送経路決定部206が、通信端末250から受信した接続要求に含まれるAPNに対応するルーティングインスタンスに基づいて、パケットの転送経路を決定する。転送経路決定部206は、接続要求を送信した通信端末250用のインスタンスを生成する。 In step S302, the transfer path determination unit 206 determines a packet transfer path based on the routing instance corresponding to the APN included in the connection request received from the communication terminal 250. The transfer path determination unit 206 generates an instance for the communication terminal 250 that has transmitted the connection request.
 ステップS304では、受信部202が、SGSN240又はバックボーンネットワーク300若しくは公衆網400からパケットを受信する。ステップS306では、通信制御部204が、ステップS304で受信したパケットが、バックボーンネットワーク300又は公衆網400から受信したパケットであるか、SGSN240から受信したパケットであるかを判断する。通信制御部204により、バックボーンネットワーク300又は公衆網400からのパケットでないと判断された場合はステップS308に進み、バックボーンネットワーク300又は公衆網400からのパケットであると判断された場合はステップS318に進む。 In step S304, the receiving unit 202 receives a packet from the SGSN 240, the backbone network 300, or the public network 400. In step S306, the communication control unit 204 determines whether the packet received in step S304 is a packet received from the backbone network 300 or the public network 400 or a packet received from the SGSN 240. If the communication control unit 204 determines that the packet is not from the backbone network 300 or the public network 400, the process proceeds to step S308. If the packet is determined to be a packet from the backbone network 300 or the public network 400, the process proceeds to step S318. .
 ステップS308では、デカプセル化部210が、ステップS304で受信したパケットをデカプセル化する。ステップS310では、宛先判断部212が、デカプセル化されたパケットの宛先が公衆網400内にあるか、専用網110内にあるかを判断する。宛先判断部212によって、宛先が専用網110内にあると判断された場合、ステップS312に進み、宛先が公衆網400内にあると判断された場合、ステップS316に進む。 In step S308, the decapsulation unit 210 decapsulates the packet received in step S304. In step S <b> 310, the destination determination unit 212 determines whether the destination of the decapsulated packet is in the public network 400 or the dedicated network 110. If the destination determining unit 212 determines that the destination is in the private network 110, the process proceeds to step S312. If the destination is determined to be in the public network 400, the process proceeds to step S316.
 ステップS312では、カプセル化部214が、ステップS308でデカプセル化されたパケットをカプセル化する。ステップS314では、送信部216が、ステップS312においてカプセル化されたパケットを、第1のGGSN100に送信する。 In step S312, the encapsulating unit 214 encapsulates the packet decapsulated in step S308. In step S314, the transmission unit 216 transmits the packet encapsulated in step S312 to the first GGSN 100.
 ステップS310で、パケットの宛先が専用網110内ではなく公衆網400内にあると判断された場合に、ステップS316に進む。ステップS316では、送信部216が、ステップS308でデカプセル化されたパケットを、公衆網400内の宛先に送信する。 If it is determined in step S310 that the destination of the packet is not in the private network 110 but in the public network 400, the process proceeds to step S316. In step S316, the transmission unit 216 transmits the packet decapsulated in step S308 to the destination in the public network 400.
 ステップS306で、バックボーンネットワーク300又は公衆網400からのパケットであると判断された場合に、ステップS318に進む。ステップS318では、送信部216が、ステップS304で受信したパケットを、通信端末250に送信するべく、SGSN240に送信する。 If it is determined in step S306 that the packet is from the backbone network 300 or the public network 400, the process proceeds to step S318. In step S318, the transmission unit 216 transmits the packet received in step S304 to the SGSN 240 in order to transmit to the communication terminal 250.
 ステップS318において送信部216がパケットをSGSN240に送信した後、ステップS320に進む。また、ステップS314において送信部216がパケットを第1のGGSN100に送信した後、及びステップS316において送信部216がパケットを公衆網400内の宛先に送信した後にも、ステップS320に進む。 In step S318, the transmission unit 216 transmits the packet to the SGSN 240, and then the process proceeds to step S320. Further, after the transmission unit 216 transmits the packet to the first GGSN 100 in step S314 and after the transmission unit 216 transmits the packet to the destination in the public network 400 in step S316, the process proceeds to step S320.
 ステップS320では、CDR記憶部218が、送信部216により送信されたパケットに応じてCDRを更新する。CDR記憶部218は、ステップS302において生成されたインスタンスに対応するCDRを更新する。CDR記憶部218は、インスタンスに対応するCDRがない場合には、インスタンスに対応するCDRを生成する。 In step S320, the CDR storage unit 218 updates the CDR according to the packet transmitted by the transmission unit 216. The CDR storage unit 218 updates the CDR corresponding to the instance generated in step S302. The CDR storage unit 218 generates a CDR corresponding to the instance when there is no CDR corresponding to the instance.
 ステップS322では、通信制御部204が、SGSN240を介して通信端末250から切断要求を受信したか否かを判断する。通信制御部204により、切断要求を受信していないと判断された場合、ステップS304に戻る。そして、通信制御部204により、切断要求を受信したと判断された場合、通信切断処理を実行の上、処理が終了する。 In step S322, the communication control unit 204 determines whether a disconnection request is received from the communication terminal 250 via the SGSN 240. If the communication control unit 204 determines that a disconnection request has not been received, the process returns to step S304. If the communication control unit 204 determines that a disconnection request has been received, the communication disconnection process is executed and the process ends.
 図4は、DNS242によって記憶されるAPNとGGSNのIPアドレスとの対応テーブルの一例を示す。DNS242は、APNを提供する通信事業者からの要求によって、APNとGGSNのIPアドレスとを対応テーブルに記憶してよい。例えば、DNS242は、「aaa.○○○.ne.jp」及び「bbb.○○○.ne.jp」を提供する第1の通信事業者からの要求によって、これら2つのAPNに対して第2のGGSN200のIPアドレスを記憶する。 FIG. 4 shows an example of a correspondence table between the APN stored by the DNS 242 and the IP address of the GGSN. The DNS 242 may store the APN and the IP address of the GGSN in the correspondence table in response to a request from the communication carrier that provides the APN. For example, the DNS 242 may request the two APNs for the two APNs according to a request from a first carrier that provides “aaa.xxx.ne.jp” and “bbb.xxx.ne.jp”. The IP address of the second GGSN 200 is stored.
 第2のGGSN200は、複数の通信事業者によって共有されてもよい。例えば、第2のGGSN200は、第1の通信事業者と、第1の通信事業者とは異なる第2の通信事業者とによって共有される。図4に示す例では、第2の通信事業者によって提供される「ccc.△△△.ne.jp」に、第2のGGSNのIPアドレスが対応付けられている。 The second GGSN 200 may be shared by a plurality of communication carriers. For example, the second GGSN 200 is shared by a first telecommunications carrier and a second telecommunications carrier that is different from the first telecommunications carrier. In the example shown in FIG. 4, the IP address of the second GGSN is associated with “ccc.ΔΔΔ.ne.jp” provided by the second communication carrier.
 これにより、第2のGGSN200を設置する各通信事業者のコスト負担を低減することができる。また、第1の通信事業者又は第2の通信事業者と通信サービスの契約を締結しているユーザは、図4に示す第2のGGSN200に対応するAPNを指定することによって、第2のGGSN200によるパケット転送サービスを受けることができる。 Thereby, it is possible to reduce the cost burden on each communication carrier that installs the second GGSN 200. In addition, a user who has concluded a communication service contract with the first telecommunications carrier or the second telecommunications carrier designates the second GGSN 200 by designating an APN corresponding to the second GGSN 200 shown in FIG. Can receive packet forwarding service.
 また、図4に示す例では、第3の通信事業者によって提供される「ddd.□□□.ne.jp」に、第3の通信事業者が提供する第3の通信事業者のGGSNが対応付けられている。DNS242は、SGSN240から「ddd.□□□.ne.jp」を受信した場合、第3の通信事業者のGGSNのIPアドレスをSGSN240に送信する。 In the example illustrated in FIG. 4, the GGSN of the third communication carrier provided by the third communication carrier is included in “ddd. □□□ .ne.jp” provided by the third communication carrier. It is associated. When DNS 242 receives “ddd. □□□ .ne.jp” from SGSN 240, DNS 242 transmits the GGSN IP address of the third communication carrier to SGSN 240.
 そして、SGSN240は、第3の通信事業者のGGSNとの間で通信パスを形成する。このように、第2のGGSN200によって提供される通信サービスを受けることができないAPNに対しては、従来と同じように、そのAPNに対応するGGSNを介した通信を提供することができる。 Then, the SGSN 240 forms a communication path with the GGSN of the third communication carrier. As described above, communication via the GGSN corresponding to the APN can be provided to the APN that cannot receive the communication service provided by the second GGSN 200, as in the past.
 図5は、通信端末毎のパケットの転送経路を概略的に示す。通信端末252は、通信事業者であるA社と通信サービスの契約を締結している通信端末である。通信端末254は、通信事業者であるB社と通信サービスの契約を締結している通信端末である。 FIG. 5 schematically shows a packet transfer path for each communication terminal. The communication terminal 252 is a communication terminal that has concluded a communication service contract with a company A, which is a communication carrier. The communication terminal 254 is a communication terminal that has concluded a communication service contract with Company B, which is a communication carrier.
 第2のGGSN200は、通信端末252から、A社の第1GGSN102に対応するAPNを含む接続要求を受信した場合に、第2のGGSN200、バックボーンネットワーク300、A社の第1VLAN(Virtual LAN)304、A社の第1GGSN102の順の転送経路を決定してよい。そして、通信端末252からの当該接続要求に対して、決定した転送経路に対応するインスタンスを生成する。 When the second GGSN 200 receives a connection request including the APN corresponding to the first GGSN 102 of the company A from the communication terminal 252, the second GGSN 200, the backbone network 300, the first VLAN (Virtual LAN) 304 of the company A, The transfer route in the order of the first GGSN 102 of company A may be determined. In response to the connection request from the communication terminal 252, an instance corresponding to the determined transfer path is generated.
 インスタンス生成後、通信端末252により、宛先がA社の第1専用網112内に設定されたパケットが第2のGGSN200に対して送信された場合、パケットは、バックボーンネットワーク300、A社の第1VLAN304、A社の第1GGSN102、A社の第1専用網112の順に転送される。 After the instance generation, when the communication terminal 252 transmits a packet set in the first private network 112 whose destination is the company A to the second GGSN 200, the packet is stored in the backbone network 300 and the first VLAN 304 of the company A. , The first GGSN 102 of company A and the first private network 112 of company A are transferred in this order.
 また、通信端末252により、宛先が共用ISP(Internet Service Provider)404に設定されたパケットが第2のGGSN200に対して送信された場合、パケットは、A社の第1GGSN102に転送されず、バックボーンネットワーク300を経由して、共用ISP404に送信される。共用ISPは、複数社によって共用されるISPである。 In addition, when a packet whose destination is set to the shared ISP (Internet Service Provider) 404 is transmitted to the second GGSN 200 by the communication terminal 252, the packet is not transferred to the first GGSN 102 of the company A, and the backbone network It is transmitted to the shared ISP 404 via 300. The shared ISP is an ISP shared by a plurality of companies.
 また、通信端末252により、宛先がA社用ISP406に設定されたパケットが第2のGGSN200に対して送信された場合、パケットは、A社の第1GGSN102に転送されず、バックボーンネットワーク300を経由して、A社用ISP406に送信される。A社用ISPは、A社と通信サービスの契約を締結している通信端末によって利用可能なISPである。 In addition, when a packet whose destination is set to the ISP 406 for the company A is transmitted to the second GGSN 200 by the communication terminal 252, the packet is not transferred to the first GGSN 102 of the company A, but passes through the backbone network 300. And sent to the ISP 406 for Company A. The ISP for Company A is an ISP that can be used by a communication terminal that has concluded a communication service contract with Company A.
 上述したように、第2のGGSN200によって決定された転送経路に従ってパケットが転送されることにより、通信端末252からのA社の第1専用網112に対するアクセスを維持しつつ、A社用ISP406又は共用ISP404に対するパケットの伝送遅延を低減することができる。 As described above, the packet is transferred according to the transfer path determined by the second GGSN 200, thereby maintaining the access to the first dedicated network 112 of the company A from the communication terminal 252 or the ISP 406 for the company A or shared Packet transmission delay for the ISP 404 can be reduced.
 また、第2のGGSN200は、通信端末252から、A社の第2GGSN104に対応するAPNを含む接続要求を受信した場合、第2のGGSN200、バックボーンネットワーク300、A社の第2VLAN306、A社の第2GGSN104の順の転送経路を決定する。そして、通信端末252からの当該接続要求に対して、決定した転送経路に対応するインスタンスを生成する。 Further, when the second GGSN 200 receives a connection request including an APN corresponding to the second GGSN 104 of the company A from the communication terminal 252, the second GGSN 200, the backbone network 300, the second VLAN 306 of the company A, and the first of the company A The transfer path in the order of 2GGSN 104 is determined. In response to the connection request from the communication terminal 252, an instance corresponding to the determined transfer path is generated.
 インスタンス生成後、通信端末252により、宛先がA社の第2専用網114内に設定されたパケットが第2のGGSN200に対して送信された場合、パケットは、バックボーンネットワーク300、A社の第2VLAN306、A社の第2GGSN104、A社の第2専用網114の順に転送される。 After the instance is generated, when the communication terminal 252 transmits a packet set in the second dedicated network 114 whose destination is the company A to the second GGSN 200, the packet is stored in the backbone network 300 and the second VLAN 306 of the company A. , The second GGSN 104 of the company A and the second dedicated network 114 of the company A.
 このように、第2のGGSN200は、通信端末252から複数の接続要求を受信した場合であっても、複数の接続要求において異なるAPNが指定されている場合には、接続要求毎にインスタンスを生成する。すなわち、同一の通信端末から、それぞれ異なるAPNを含む複数のパケットを受信した場合、転送経路決定部206は、それぞれ異なるAPN毎にインスタンスを生成する。これにより、複数の専用網それぞれに対してパケットを転送することができ、また、APN毎に別々に通信を管理できる。 As described above, even when a plurality of connection requests are received from the communication terminal 252, the second GGSN 200 generates an instance for each connection request when different APNs are specified in the plurality of connection requests. To do. That is, when a plurality of packets including different APNs are received from the same communication terminal, the transfer path determination unit 206 generates an instance for each different APN. Thereby, a packet can be transferred to each of a plurality of dedicated networks, and communication can be managed separately for each APN.
 第2のGGSN200は、通信端末254から、B社のGGSNに対応するAPNを含む接続要求を受信した場合、第2のGGSN200、バックボーンネットワーク300、B社のVLAN308、B社のGGSN106の順の転送経路を決定する。そして、通信端末254からの当該接続要求に対して、決定した転送経路に対応するインスタンスを生成する。 When the second GGSN 200 receives a connection request including an APN corresponding to the B company GGSN from the communication terminal 254, the second GGSN 200 transfers the second GGSN 200, the backbone network 300, the B company VLAN 308, and the B company GGSN 106 in this order. Determine the route. In response to the connection request from the communication terminal 254, an instance corresponding to the determined transfer path is generated.
 インスタンス生成後、通信端末254により、宛先がB社の専用網116内に設定されたパケットが第2のGGSN200に対して送信された場合、パケットは、バックボーンネットワーク300、B社のVLAN308、B社のGGSN106、B社の専用網116の順に転送される。 After the instance is generated, when a packet set in the private network 116 whose destination is the company B is transmitted to the second GGSN 200 by the communication terminal 254, the packet is stored in the backbone network 300, the company B VLAN 308, and the company B. GGSN 106 and private network 116 of company B are transferred in this order.
 また、通信端末254により、宛先が共用ISP(Internet Service Provider)404に設定されたパケットが第2のGGSN200に対して送信された場合、パケットは、B社のGGSN106に転送されず、バックボーンネットワーク300を経由して、共用ISP404に送信される。 Further, when a packet whose destination is set to the shared ISP (Internet Service Provider) 404 is transmitted to the second GGSN 200 by the communication terminal 254, the packet is not transferred to the GGSN 106 of the B company, and the backbone network 300 is transmitted. To the shared ISP 404.
 図6は、ルーティングインスタンス記憶部208が記憶するAPNとルーティングインスタンスとの対応テーブルの一例を示す。図6に示す例では、「aaa.○○○.ne.jp」に対して、「第2のGGSN→バックボーンネットワーク→A社の第1VLAN→A社の第1GGSN」という経路を示すルーティングインスタンスが対応付けられている。 FIG. 6 shows an example of a correspondence table between APNs stored in the routing instance storage unit 208 and routing instances. In the example illustrated in FIG. 6, a routing instance indicating a path “second GGSN → backbone network → first VLAN of company A → first GGSN of company A” is associated with “aaa.xxx.ne.jp”. It is associated.
 転送経路決定部206は、通信端末252から受信した接続要求に含まれるAPNが「aaa.○○○.ne.jp」である場合に、第2のGGSN200、バックボーンネットワーク300、A社の第1VLAN304、A社の第1GGSN102の順の転送経路を決定する。そして、当該通信端末250の当該接続要求に対して、当該転送経路に対応するインスタンスを生成する。 When the APN included in the connection request received from the communication terminal 252 is “aaa.xxx.ne.jp”, the transfer path determination unit 206 uses the second GGSN 200, the backbone network 300, and the first VLAN 304 of company A. , A transfer path in the order of the first GGSN 102 of company A is determined. In response to the connection request of the communication terminal 250, an instance corresponding to the transfer path is generated.
 図7は、第2のGGSN200のハードウェア構成の一例を示す。第2のGGSN200は、ホストコントローラ502により相互に接続されるCPU504、RAM506を有するCPU周辺部と、入出力コントローラ508によりホストコントローラ502に接続されるROM510及び通信インターフェース512を有する入出力部とを備える。入出力部は、ハードディスクドライブ、CD-ROMドライブ、及びUSBインターフェースをさらに有してよい。 FIG. 7 shows an example of the hardware configuration of the second GGSN 200. The second GGSN 200 includes a CPU peripheral unit having a CPU 504 and a RAM 506 connected to each other by a host controller 502, and an input / output unit having a ROM 510 and a communication interface 512 connected to the host controller 502 by an input / output controller 508. . The input / output unit may further include a hard disk drive, a CD-ROM drive, and a USB interface.
 ホストコントローラ502は、RAM506と、高い転送レートでRAM506にアクセスするCPU504とを接続する。CPU504は、ROM510及びRAM506に格納されたプログラムに基づいて動作して、各部を制御する。入出力コントローラ508は、ホストコントローラ502と、比較的高速な入出力装置である通信インターフェース512と、ROM510とを接続する。 The host controller 502 connects the RAM 506 and the CPU 504 that accesses the RAM 506 at a high transfer rate. The CPU 504 operates based on programs stored in the ROM 510 and the RAM 506 to control each unit. The input / output controller 508 connects the host controller 502, the communication interface 512, which is a relatively high-speed input / output device, and the ROM 510.
 通信インターフェース512は、ネットワークを介してSGSN240及び外部のパケット網と通信する。ハードディスクドライブは、第2のGGSN200内のCPU504が使用するプログラム及びデータを格納する。CD-ROMドライブは、CD-ROMからプログラム又はデータを読み取り、RAM506を介してハードディスクドライブに提供する。また、ROM510は、第2のGGSN200が起動時に実行するブート・プログラム、第2のGGSN200のハードウェアに依存するプログラム等を格納する。 The communication interface 512 communicates with the SGSN 240 and an external packet network via the network. The hard disk drive stores programs and data used by the CPU 504 in the second GGSN 200. The CD-ROM drive reads a program or data from the CD-ROM and provides it to the hard disk drive via the RAM 506. The ROM 510 stores a boot program that the second GGSN 200 executes at startup, a program that depends on the hardware of the second GGSN 200, and the like.
 RAM506を介してハードディスクドライブに提供されるプログラムは、CD-ROM、又はUSBメモリ等の記録媒体に格納されて利用者によって提供される。プログラムは、記録媒体から読み出され、RAM506を介して第2のGGSN200内のハードディスクドライブにインストールされ、CPU504において実行される。 The program provided to the hard disk drive via the RAM 506 is stored in a recording medium such as a CD-ROM or USB memory and provided by the user. The program is read from the recording medium, installed in the hard disk drive in the second GGSN 200 via the RAM 506, and executed by the CPU 504.
 第2のGGSN200にインストールされて実行されるプログラムは、CPU504等に働きかけて、第2のGGSN200を、図1から図6にかけて説明した、受信部202、通信制御部204、転送経路決定部206、ルーティングインスタンス記憶部208、デカプセル化部210、宛先判断部212、カプセル化部214、送信部216、及びCDR記憶部218として機能させる。 The program installed and executed in the second GGSN 200 works on the CPU 504 and the like, and the second GGSN 200 is described with reference to FIGS. 1 to 6, the receiving unit 202, the communication control unit 204, the transfer path determination unit 206, The routing instance storage unit 208, the decapsulation unit 210, the destination determination unit 212, the encapsulation unit 214, the transmission unit 216, and the CDR storage unit 218 function.
 本実施形態では、第2の地域12に在圏する通信端末250が、第2の地域12に配置されたSGSN240にパケットを送信する例を挙げて説明したが、これに限らない。第1の地域及び第2の地域12以外の第3の地域に在圏する通信端末250が、第3の地域に配置されたSGSNに送信したパケットが、第3の地域に配置されたSGSNから、SGSN240に送信されてもよい。これにより、例えば、複数の国に対して1つの第2のGGSN200を配置した場合でも、複数の国から第2のGGSN200を利用することが可能となる。なお、第2のGGSN200は、各地域に1つ以上配置されてもよい。 In the present embodiment, the communication terminal 250 located in the second area 12 has been described with an example in which the packet is transmitted to the SGSN 240 arranged in the second area 12, but the present invention is not limited to this. A packet transmitted from a communication terminal 250 located in a third area other than the first area and the second area 12 to the SGSN arranged in the third area is transmitted from the SGSN arranged in the third area. , May be sent to SGSN 240. Thereby, for example, even when one second GGSN 200 is arranged for a plurality of countries, the second GGSN 200 can be used from a plurality of countries. One or more second GGSNs 200 may be arranged in each area.
 また、本実施形態では、受信部202により受信したパケットの宛先が専用網110内にある場合、第2のGGSN200が、カプセル化部214によりカプセル化したパケットを第1のGGSN100に送信する場合について説明した。これに加えて、第2のGGSN200は、受信部202により受信したパケットの宛先が専用網110内にある場合、デカプセル化部210によってデカプセル化したパケットを、専用網110のボーダーゲートウェイに送信してもよい。 In this embodiment, when the destination of the packet received by the receiving unit 202 is in the private network 110, the second GGSN 200 transmits the packet encapsulated by the encapsulating unit 214 to the first GGSN 100. explained. In addition to this, when the destination of the packet received by the receiving unit 202 is in the private network 110, the second GGSN 200 transmits the packet decapsulated by the decapsulating unit 210 to the border gateway of the private network 110. Also good.
 また、本実施形態では、第3世代通信方式に本発明を適用した場合を主に例に挙げて説明した。しかし、これに限らない。本発明は、LTE(Long Term Evolution)に適用されてもよい。LTEに適用された場合、第1のGGSN100は、第1の地域11に設置された第1のPGWであってよい。また、第2のGGSN200は、第2の地域12に設置された第2のPGWであってよい。また、SGSN240は、MME(Mobility Management Entity)およびSGWであってよい。また、通信端末250によって送信されたパケットは、RNCは介さず、無線基地局を介してSGWに送信されてよい。また、SGSNはSGWまたはPGWと接続されても良い。 In the present embodiment, the case where the present invention is applied to the third generation communication method has been mainly described as an example. However, it is not limited to this. The present invention may be applied to LTE (Long Term Evolution). When applied to LTE, the first GGSN 100 may be a first PGW installed in the first region 11. Further, the second GGSN 200 may be a second PGW installed in the second area 12. The SGSN 240 may be an MME (MobilityMoManagement Entity) and an SGW. Further, the packet transmitted by the communication terminal 250 may be transmitted to the SGW via the radio base station, not via the RNC. The SGSN may be connected to the SGW or PGW.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that it can be realized in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for convenience, it means that it is essential to carry out in this order. is not.
10 通信システム、11 第1の地域、12 第2の地域、100 第1のGGSN、102 A社の第1GGSN、104 A社の第2GGSN、106 B社のGGSN、110 専用網、112 A社の第1専用網、114 A社の第2専用網、116 B社の専用網、122 DNS、200 第2のGGSN、202 受信部、204 通信制御部、206 転送経路決定部、208 ルーティングインスタンス記憶部、210 デカプセル化部、212 宛先判断部、214 カプセル化部、216 送信部、218 CDR記憶部、240 SGSN、242 DNS、250 通信端末、252 通信端末、254 通信端末、300 バックボーンネットワーク、304 A社の第1VLAN、306 A社の第2VLAN、308 B社のVLAN、400 公衆網、404 共用ISP、406 A社用ISP、502 ホストコントローラ、504 CPU、506 RAM、508 入出力コントローラ、510 ROM、512 通信インターフェース 10 communication system, 11 1st region, 12 2nd region, 100 1st GGSN, 102 1st GGSN of Company A, 104 2nd GGSN of Company A, 106 GGSN of Company B, 110 dedicated network, 112 of Company A 1st dedicated network, 114 A company's 2nd dedicated network, 116 B company's dedicated network, 122 DNS, 200 2nd GGSN, 202 receiving unit, 204 communication control unit, 206 transfer route determining unit, 208 routing instance storage unit 210 decapsulation unit, 212 destination determination unit, 214 encapsulation unit, 216 transmission unit, 218 CDR storage unit, 240 SGSN, 242 DNS, 250 communication terminal, 252 communication terminal, 254 communication terminal, 300 backbone network, 304 company A 1st VLAN, 306 2nd VL of company A N, 308 B's VLAN, 400 PSTN 404 shared ISP, 406 A company ISP, 502 host controller, 504 CPU, 506 RAM, 508 input-output controller, 510 ROM, 512 communication interface

Claims (14)

  1.  専用網のゲートウェイとして機能する第1のGGSN(Gateway GPRS Support Node)又は第1のPGW(Packet data network Gateway)と、
     SGSN(Serving GPRS Support Node)又はSGW(Serving Gateway)から受信したパケットの宛先が公衆網内にある場合、前記パケットを前記公衆網内の宛先に送信し、前記パケットの宛先が前記専用網内にある場合、前記パケットを前記第1のGGSN又は前記第1のPGWに送信する第2のGGSN又は第2のPGWと
    を備える通信システム。
    A first GGSN (Gateway GPRS Support Node) or a first PGW (Packet data network Gateway) that functions as a gateway for the private network;
    When the destination of the packet received from the SGSN (Serving GPRS Support Node) or SGW (Serving Gateway) is in the public network, the packet is transmitted to the destination in the public network, and the destination of the packet is in the dedicated network. In some cases, a communication system comprising a second GGSN or a second PGW that transmits the packet to the first GGSN or the first PGW.
  2.  前記第2のGGSN又は前記第2のPGWは、
     カプセル化された前記パケットを前記SGSN又は前記SGWから受信する受信部と、
     前記受信部が受信した前記パケットをデカプセル化するデカプセル化部と、
     前記パケットの宛先が公衆網内にあるか前記専用網内にあるかを判断する宛先判断部と、
     前記パケットの宛先が前記専用網内にある場合、前記デカプセル化部がデカプセル化した前記パケットをカプセル化するカプセル化部と、
     前記カプセル化部がカプセル化した前記パケットを前記第1のGGSN又は前記第1のPGWに送信する送信部と
    を有する、請求項1に記載の通信システム。
    The second GGSN or the second PGW is
    A receiving unit for receiving the encapsulated packet from the SGSN or the SGW;
    A decapsulation unit that decapsulates the packet received by the reception unit;
    A destination determination unit that determines whether the destination of the packet is in a public network or the dedicated network;
    When the destination of the packet is in the private network, an encapsulation unit that encapsulates the packet decapsulated by the decapsulation unit;
    The communication system according to claim 1, further comprising: a transmission unit that transmits the packet encapsulated by the encapsulation unit to the first GGSN or the first PGW.
  3.  前記SGSN又は前記SGWは、通信端末から受信したパケットをカプセル化して前記第2のGGSN又は前記第2のPGWに送信する、請求項2に記載の通信システム。 The communication system according to claim 2, wherein the SGSN or the SGW encapsulates a packet received from a communication terminal and transmits the packet to the second GGSN or the second PGW.
  4.  前記SGSN又は前記SGWは、APN(Access Point Name)と前記第2のGGSN又は前記第2のPGWのIPアドレスとを対応付けて記憶するDNSに、通信端末から受信した前記パケットに含まれるAPNを送信して、送信した前記APNに対応する前記第2のGGSN又は前記第2のPGWのIPアドレスを前記DNSから受信する、請求項1から3のいずれか1項に記載の通信システム。 The SGSN or the SGW stores the APN included in the packet received from the communication terminal in the DNS that stores the APN (Access Point Name) and the IP address of the second GGSN or the second PGW in association with each other. The communication system according to any one of claims 1 to 3, wherein the second GGSN or the IP address of the second PGW corresponding to the transmitted APN is transmitted and received from the DNS.
  5.  前記第2のGGSN又は前記第2のPGWは、
     APN毎に転送経路を決定するためのルーティングインスタンスを記憶するルーティングインスタンス記憶部と、
     前記SGSN又は前記SGWから受信した前記パケットに含まれる前記APNに対応するルーティングインスタンスに基づいて、前記パケットの転送経路を決定する転送経路決定部と
    をさらに備える、請求項1から4のいずれか1項に記載の通信システム。
    The second GGSN or the second PGW is
    A routing instance storage unit that stores a routing instance for determining a transfer route for each APN;
    5. The transfer path determination unit according to claim 1, further comprising: a transfer path determination unit that determines a transfer path of the packet based on a routing instance corresponding to the APN included in the packet received from the SGSN or the SGW. The communication system according to item.
  6.  前記転送経路決定部は、通信端末から受信したパケットを前記第1のGGSN又は前記第1のPGWに転送する転送経路を決定する、請求項5に記載の通信システム。 The communication system according to claim 5, wherein the transfer path determination unit determines a transfer path for transferring a packet received from a communication terminal to the first GGSN or the first PGW.
  7.  前記転送経路決定部は、決定した前記パケットの前記転送経路に対応するインスタンスを生成する、請求項5又は6に記載の通信システム。 The communication system according to claim 5 or 6, wherein the transfer path determination unit generates an instance corresponding to the determined transfer path of the packet.
  8.  前記転送経路決定部は、同一の通信端末から、それぞれ異なるAPNを含む複数のパケットを受信した場合に、それぞれ異なるAPN毎に前記インスタンスを生成する、請求項7に記載の通信システム。 The communication system according to claim 7, wherein the transfer path determination unit generates the instance for each different APN when receiving a plurality of packets including different APNs from the same communication terminal.
  9.  前記転送経路決定部により生成されたインスタンス毎にCDR(Call Detail Record/Charge Data Recordを記憶するCDR記憶部
    をさらに備える、請求項7又は8に記載の通信システム。
    The communication system according to claim 7 or 8, further comprising a CDR storage unit that stores a CDR (Call Detail Record / Charge Data Record) for each instance generated by the transfer path determination unit.
  10.  前記第1のGGSN又は前記第1のPGW、及び前記専用網は第1の地域に配置され、前記第2のGGSN又は前記第2のPGW、及び前記SGSN又は前記SGWは第2の地域に配置される、請求項1から9のいずれか1項に記載の通信システム。 The first GGSN or the first PGW and the dedicated network are arranged in a first area, and the second GGSN or the second PGW and the SGSN or the SGW are arranged in a second area. The communication system according to any one of claims 1 to 9.
  11.  SGSNから受信したパケットの宛先が公衆網内にある場合、前記パケットを前記公衆網内の宛先に送信し、前記パケットの宛先が専用網内にある場合、前記専用網のゲートウェイとして機能するGGSNに前記パケットを送信するGGSN。 When the destination of the packet received from the SGSN is within the public network, the packet is transmitted to the destination within the public network, and when the destination of the packet is within the private network, the GGSN functioning as the gateway of the private network is sent to GGSN sending the packet.
  12.  コンピュータを、請求項11に記載のGGSNとして機能させるためのプログラム。 A program for causing a computer to function as the GGSN according to claim 11.
  13.  SGWから受信したパケットの宛先が公衆網内にある場合、前記パケットを前記公衆網内の宛先に送信し、前記パケットの宛先が専用網内にある場合、前記専用網のゲートウェイとして機能するPGWに前記パケットを送信するPGW。 When the destination of the packet received from the SGW is within the public network, the packet is transmitted to the destination within the public network, and when the destination of the packet is within the private network, the PGW functioning as the gateway of the private network A PGW that transmits the packet.
  14.  コンピュータを、請求項13に記載のPGWとして機能させるためのプログラム。 A program for causing a computer to function as the PGW according to claim 13.
PCT/JP2012/006250 2012-09-28 2012-09-28 Communication system, ggsn, pgw, and program WO2014049668A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013501965A JP5483657B1 (en) 2012-09-28 2012-09-28 Communication system, GGSN, PGW, and program
PCT/JP2012/006250 WO2014049668A1 (en) 2012-09-28 2012-09-28 Communication system, ggsn, pgw, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/006250 WO2014049668A1 (en) 2012-09-28 2012-09-28 Communication system, ggsn, pgw, and program

Publications (1)

Publication Number Publication Date
WO2014049668A1 true WO2014049668A1 (en) 2014-04-03

Family

ID=50387137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006250 WO2014049668A1 (en) 2012-09-28 2012-09-28 Communication system, ggsn, pgw, and program

Country Status (2)

Country Link
JP (1) JP5483657B1 (en)
WO (1) WO2014049668A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549455B (en) * 2009-12-04 2016-09-11 內數位專利控股公司 Extended local ip access for a converged gateway in a hybrid network
FR3063860A1 (en) * 2017-03-10 2018-09-14 Halys PMR NETWORK SYSTEM FOR FORMING A CENTRAL RC NETWORK AND AT LEAST ONE LOCAL MOBILE TELEPHONY RLI NETWORK
JP2019519140A (en) * 2016-05-09 2019-07-04 中国移動通信有限公司研究院China Mobile Communication Co., Ltd Research Institute Switching method, network element, gateway, base station, framework, apparatus and storage medium
JPWO2021200312A1 (en) * 2020-03-31 2021-10-07

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099308A (en) * 2002-01-08 2008-04-24 Nokia Corp Selecting ggsn in shared mobile network
EP2244495A1 (en) * 2009-04-20 2010-10-27 Panasonic Corporation Route optimazion of a data path between communicating nodes using a route optimization agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099308A (en) * 2002-01-08 2008-04-24 Nokia Corp Selecting ggsn in shared mobile network
EP2244495A1 (en) * 2009-04-20 2010-10-27 Panasonic Corporation Route optimazion of a data path between communicating nodes using a route optimization agent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549455B (en) * 2009-12-04 2016-09-11 內數位專利控股公司 Extended local ip access for a converged gateway in a hybrid network
JP2019519140A (en) * 2016-05-09 2019-07-04 中国移動通信有限公司研究院China Mobile Communication Co., Ltd Research Institute Switching method, network element, gateway, base station, framework, apparatus and storage medium
US11419029B2 (en) 2016-05-09 2022-08-16 China Mobile Communication Ltd, Research Institute Switching method, network element, gateway, base station, framework, apparatus, and storage medium
FR3063860A1 (en) * 2017-03-10 2018-09-14 Halys PMR NETWORK SYSTEM FOR FORMING A CENTRAL RC NETWORK AND AT LEAST ONE LOCAL MOBILE TELEPHONY RLI NETWORK
JPWO2021200312A1 (en) * 2020-03-31 2021-10-07
WO2021200312A1 (en) * 2020-03-31 2021-10-07 日本電気株式会社 Node device, control method, and program

Also Published As

Publication number Publication date
JPWO2014049668A1 (en) 2016-08-18
JP5483657B1 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
US8428050B2 (en) Radio communication system, radio access method, access point and gateway
US6973076B2 (en) Mobile communication network, terminal equipment, packet communication control method, and gateway
US8060088B2 (en) Method, network element and communication system for optimized selection of an agent entity as well as modules of the network element
JP5816743B2 (en) Method of communication under network conditions integrating cellular network and WLAN
CN101888703B (en) Method, system and terminal for accessing packet data serving node (PDSN)
JP5903728B2 (en) Method and trusted gateway for WIFI terminal to access packet data PS service domain
US9313049B2 (en) Communication system, network apparatus, gateway apparatus, computer program, data transmission method and data transfer method
CN103428811A (en) Co-existence support for 3GPP device and fixed device bearer transport over fixed broadband access network
WO2012149783A1 (en) Method, device, and user equipment applicable in accessing mobile network
KR20070076327A (en) Movement system for furnish wireless lan service for using wibro system and control method thereof
JP5483657B1 (en) Communication system, GGSN, PGW, and program
US20220006810A1 (en) Communication method, communications apparatus, and communications system
CN102695236A (en) Method and system of data routing
US9001836B2 (en) Method and apparatus for efficient signaling message processing in a communications network
CN102625305B (en) Access the method and system of evolved packet system
JP6137848B2 (en) Network communication system
CN108934058B (en) Communication method and device
JP5157713B2 (en) Communication method and gateway device
JP7321235B2 (en) Communication system and communication method
KR101129504B1 (en) Method and apparatus for accessing CDMA2000 networks
WO2012106984A1 (en) Method and system for accessing mobile core network through trustworthy fixed network
CN102075919B (en) Method and system for accessing service accepting system
EP2897417A1 (en) Pdn service realizing method, system and network element
JP4093265B2 (en) Communications system
JP2020137100A (en) Communication method, communication system, relay device and relay program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013501965

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC OF 030715

122 Ep: pct application non-entry in european phase

Ref document number: 12885833

Country of ref document: EP

Kind code of ref document: A1