[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014045563A1 - パワーコンディショナ及びその制御方法 - Google Patents

パワーコンディショナ及びその制御方法 Download PDF

Info

Publication number
WO2014045563A1
WO2014045563A1 PCT/JP2013/005488 JP2013005488W WO2014045563A1 WO 2014045563 A1 WO2014045563 A1 WO 2014045563A1 JP 2013005488 W JP2013005488 W JP 2013005488W WO 2014045563 A1 WO2014045563 A1 WO 2014045563A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
mode
voltage
intermediate link
Prior art date
Application number
PCT/JP2013/005488
Other languages
English (en)
French (fr)
Inventor
雅博 馬場
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/429,235 priority Critical patent/US20150236589A1/en
Priority to EP13839089.3A priority patent/EP2899606B1/en
Priority to CN201380048866.3A priority patent/CN104662484B/zh
Publication of WO2014045563A1 publication Critical patent/WO2014045563A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters

Definitions

  • the present invention relates to a power conditioner having a plurality of DC / DC converters and a method for controlling the power conditioner.
  • Patent Document 1 proposes an inverter that switches from a current control mode to a voltage control mode in an uninterruptible state with respect to a load when a power failure occurs in a power system.
  • the object of the present invention made in view of such circumstances is to use a mixture of MPPT (Maximum Power Point Tracking) control and voltage control mode in accordance with the power consumption of the load among a plurality of strings. Then, it is providing the power conditioner which can utilize generated electric power efficiently and stably, and its control method.
  • MPPT Maximum Power Point Tracking
  • a power conditioner comprising: a plurality of DC / DC converters that perform voltage conversion of a DC input power supply; and a power converter connected to the plurality of DC / DC converters,
  • the DC / DC converter outputs the output voltage of the DC / DC converter as a target voltage in accordance with fluctuations in the input voltage of the power converter during a self-sustained operation in which power can be supplied independently by disconnecting from the power system.
  • the intermediate link voltage constant mode that is controlled to the above and the MPPT mode that is controlled so that the output power of the DC input power supply is maximized are individually switched.
  • the DC / DC converter switches to the MPPT mode control when the input voltage of the power converter becomes less than the first threshold value, and the input voltage of the power converter becomes equal to or higher than the second threshold value. Is switched to the control in the intermediate link voltage constant mode.
  • the first threshold value is different for each DC / DC converter.
  • the first threshold value is common to the DC / DC converter, and the time from when the input voltage of the power converter becomes less than the first threshold value until switching to the control of the MPPT mode is the DC / DC converter. It is different for each DC converter.
  • the target voltage in the intermediate link voltage constant mode is different for each DC / DC converter.
  • the power converter includes a bidirectional converter.
  • a control method for a power conditioner includes: A method for controlling a power conditioner comprising a plurality of DC / DC converters that perform voltage conversion of a DC input power supply and a power converter connected to the plurality of DC / DC converters, During the self-sustained operation in which the DC / DC converter is disconnected from the power system and can be independently supplied with power, the output voltage of the DC / DC converter is changed to the target voltage according to the fluctuation of the input voltage of the power converter. Switching between an intermediate link voltage constant mode to be controlled and an MPPT mode controlled to maximize the output power of the DC input power supply.
  • the DC / DC converter that operates in the MPPT mode and the DC / DC converter that operates in the voltage control mode are mixed and controlled according to the power consumption of the load during the autonomous operation.
  • the generated power can be used efficiently and stably.
  • a self-operating power conditioner having a plurality of input power sources can move a load with higher power consumption than conventional control.
  • FIG. 1 is a block diagram showing a first configuration example of a power conditioner according to an embodiment of the present invention.
  • the power conditioner 1 includes a plurality of DC / DC converters 11 (11-1, 11-2, 11-3), an intermediate link capacitor 12, an inverter 13, a control unit 14, Is provided.
  • the output in FIG. 1 is a single-phase two-wire system, but the output format is not limited to this and may be, for example, a three-phase system.
  • the multi-string input type power conditioner 1 has a plurality of DC power input portions from the DC input power supply 10.
  • the DC input power supply 10 will be described as a solar cell string in which a plurality of solar cell modules that convert sunlight into DC power are connected in series.
  • the DC input power supply 10 is not limited to a solar cell string, A distributed power source such as wind power generation or a fuel cell may be used.
  • Each DC / DC converter 11 boosts the voltage input from each connected solar cell string 10 to make it constant.
  • the number of DC / DC converters 11 is three will be described.
  • the number of DC / DC converters 11 may be two or more.
  • the intermediate link capacitor 12 smoothes the DC voltage boosted by the DC / DC converter 11 and stabilizes the input voltage to the inverter 13.
  • a smoothing capacitor may be further provided in each DC / DC converter 11 in order to stabilize the output voltage.
  • the inverter 13 converts the DC voltage smoothed by the intermediate link capacitor 12 into AC.
  • the inverter 13 is normally connected to the power system, but performs an independent operation in the event of a power failure or the like, disconnects from the power system, and independently supplies AC power to the AC input device 15.
  • FIG. 1 shows the connection between the power conditioner 1 and the AC input device 15 during the independent operation.
  • the control unit 14 controls the output of the DC / DC converter 11 and the inverter 13 by controlling the duty ratio of the switching elements of the DC / DC converter 11 and the inverter 13.
  • FIG. 2 is a block diagram showing a second configuration example of the power conditioner according to the embodiment of the present invention.
  • the power conditioner 1 shown in FIG. 2 further includes a DC / DC converter 16 as compared with the power conditioner 1 shown in FIG.
  • the DC / DC converter 16 converts the DC voltage smoothed by the intermediate link capacitor 12 into a predetermined DC voltage, and supplies DC power to the DC input device 17 during the self-sustaining operation. By providing the DC / DC converter 16, power can be directly supplied to the DC input device 17.
  • the power conditioner 1 includes a power converter on the output side.
  • the power converter may be only the inverter 13 as shown in FIG. 1, or may be the inverter 13 and the DC / DC converter 16 connected in parallel as shown in FIG.
  • the power converter may be only the DC / DC converter 16 or may be an inverter 13 and a DC / DC converter 16 connected in parallel in any number.
  • the DC / DC converter 16 may be a bidirectional converter, and the same control as that of the other DC / DC converter 11 may be applied when moving as the input side, and another control may be applied when moving as the output side. .
  • the DC / DC converter 16 is controlled as an input side according to the remaining amount of the storage battery, or the DC / DC converter 16 is connected to the storage battery. Or control the output side to charge.
  • FIG. 3 is a diagram illustrating an example of a circuit diagram of the DC / DC converter 11 in the power conditioner 1.
  • a control unit 14 that controls the DC / DC converter 11 is also shown.
  • FIG. 3 shows a general non-isolated boost converter, the specific circuit configuration is not limited to this, and the impedance viewed from the input power source can be changed, and each input power can be set as desired. Any function that can be controlled independently of the value may be used.
  • the control unit 14 detects the voltage of each DC / DC converter 11 detected by the input voltage sensor 19 (19-1, 19-2, 19-3) and the input current sensor 20 (20-1, 20-2, 20). -3), the input current of each DC / DC converter 11 detected by 3) and the input voltage (intermediate link voltage) of the inverter 13 detected by the intermediate link voltage sensor 21 are monitored, and based on these, each DC / DC is monitored. A PWM signal for the switching element 18 (18-1, 18-2, 18-3) of the converter 11 is generated. Details of the control for the DC / DC converter 11 will be described later.
  • FIG. 4 is a block diagram showing functions of the control unit 14 in the power conditioner 1. The operation of the control unit 14 will be described with reference to FIG.
  • the duty ratio control unit 141-1 controls the duty ratio used to generate a PWM signal for the DC / DC converter 11-1.
  • the duty ratio control unit 141-2 controls the duty ratio used for generating the PWM signal for the DC / DC converter 11-2
  • the duty ratio control unit 141-3 is the DC / DC converter 11-. 3 to control the duty ratio used to generate the PWM signal.
  • the duty ratio control units 141-2 and 141-3 perform the same control as the duty ratio control unit 141-1, and the internal block diagram is the same as the duty ratio control unit 141-1, so illustration is omitted. .
  • the control mode determination unit 142 determines the control mode as the MPPT mode when connected to the power system. On the other hand, the control mode determination unit 142 determines the control mode to be either the MPPT mode or the intermediate link voltage constant mode according to the intermediate link voltage detected by the intermediate link voltage sensor 21 during the independent operation.
  • the MPPT mode is a mode in which MPPT control is performed so that the output power of the DC input power supply becomes maximum.
  • the intermediate link voltage constant mode is a mode in which the output voltage of the DC / DC converter 11 is controlled to the target voltage so that the power consumption of the load and the generated power of the input power supply are the same.
  • the MPPT control unit 143 monitors the input voltage detected by the input voltage sensor 19 and the input current detected by the input current sensor 20. Then, the MPPT control unit 143 determines an operation voltage for maximizing the input power to the power conditioner 1 when the control mode determination unit 142 determines the MPPT mode. In the example shown in FIG. 4, tracking is performed by the input voltage, but the specific method of MPPT is not limited to this.
  • the intermediate link voltage constant control unit 144 determines the operation voltage so that the intermediate link voltage detected by the intermediate link voltage sensor 21 becomes the target voltage when the control mode determination unit 142 determines the intermediate link voltage constant mode. To do.
  • the input voltage control unit 145 compares the input voltage detected by the input voltage sensor 19 with the operating voltage command value determined by the MPPT control unit 143 or the intermediate link voltage constant control unit 144, and the difference becomes equal to zero. Feedback control is performed to change the duty ratio. In the example shown in FIG. 4, control is performed using the operating voltage of the input power supply as a command value. However, if the control unit 14 is controlled to switch between the MPPT mode and the intermediate link voltage constant mode by the intermediate link voltage. Good. Therefore, control (feedback control with input current) may be performed with the operating current of the input power supply.
  • the PWM unit 147 generates a PWM signal by comparing the reference waveform synchronized with the clock generated by the clock generation unit 146 and the duty ratio generated by the input voltage control unit 145. Then, a PWM signal is output to each DC / DC converter 11.
  • FIG. 5 is a flowchart showing the operation of the duty ratio control unit 141 during the independent operation.
  • the duty ratio control unit 141 grasps the current operation mode of the power conditioner 1.
  • the intermediate link voltage acquired by the intermediate link voltage sensor 21 by the control mode determination unit 142 is less than the first threshold value. It is determined whether or not there is (step S103). Until the intermediate link voltage becomes less than the first threshold (step S103-No), the intermediate link voltage constant mode is maintained (step S105). Then, the operation voltage is determined by the intermediate link voltage constant control unit 144 and output to the input voltage control unit 145 (step S106).
  • the operation mode is switched to the MPPT mode (step S104). Then, the MPPT controller 143 determines the operating voltage and outputs it to the input voltage controller 145 (step S106).
  • step S101 when the inverter 1 is operating in the MPPT mode (step S101—Yes), the intermediate link voltage acquired by the intermediate link voltage sensor 21 by the control mode determination unit 142 is equal to or higher than the second threshold value. Whether or not (step S102).
  • the MPPT mode is maintained until the intermediate link voltage becomes equal to or higher than the second threshold (No in step S102) (step S104).
  • step S106 the MPPT controller 143 determines the operating voltage and outputs it to the input voltage controller 145 (step S106).
  • step S105 the intermediate link voltage constant mode
  • step S106 the operation voltage is determined by the intermediate link voltage constant control unit 144 and output to the input voltage control unit 145.
  • FIG. 6 is a diagram illustrating an example of control during a self-sustaining operation focusing on one DC / DC converter 11.
  • the PV characteristic of the solar cell input power source
  • the power conditioner 1 operates in the intermediate link voltage constant mode.
  • the operation voltage is controlled to be 200 V in the intermediate link voltage constant mode.
  • the control mode determination unit 142 monitors the intermediate link voltage, and switches the constant intermediate link voltage mode to the MPPT mode when the intermediate link voltage decreases to less than the first threshold. By switching to the MPPT mode, the maximum power can be obtained from the DC input power supply 10. However, in the example shown in FIG. 6, since the maximum power of the DC input power supply 10 is less than 800 W, the other DC input power supply 10 supplements the insufficient power.
  • the control mode determination unit 142 monitors the intermediate link voltage, and switches the MPPT mode to the intermediate link voltage constant mode when the intermediate link voltage increases to the second threshold or more.
  • the switching from the intermediate link voltage constant mode to the MPPT mode is preferably performed at a different timing for each DC / DC converter 11.
  • the first threshold value for determining whether or not to switch the intermediate link voltage constant mode to the MPPT mode is made different for each DC / DC converter 11.
  • this method is referred to as a first switching timing adjustment method.
  • the first threshold value of the DC / DC converter 11 is made common, and the time from when the intermediate link voltage becomes less than the first threshold value until switching to MPPT mode control differs for each DC / DC converter 11. You may do it.
  • this method is referred to as a second switching timing adjustment method.
  • the target voltage in the intermediate link voltage constant mode may be different for each DC / DC converter 11.
  • this method is referred to as a third adjustment method of switching timing.
  • FIG. 7 and 8 are diagrams illustrating an example in which the control during the independent operation of the power conditioner 1 is performed by the first adjustment method of the switching timing. If (first threshold for DC / DC converter 11-1)> (first threshold for DC / DC converter 11-2)> (first threshold for DC / DC converter 11-3), DC / DC The converter 11-1, DC / DC converter 11-2, and DC / DC converter 11-3 are switched from the intermediate link voltage constant mode to the MPPT mode in this order.
  • the DC / DC converters 11-1, 11-2, and 11-3 all operate in the intermediate link voltage constant mode, and the power consumption of the load and the generated power of the DC input power source 10 are Are equal. Thereafter, as the power consumption of the load increases, the intermediate link voltage decreases. When the intermediate link voltage becomes less than the first threshold value of the DC / DC converter 11-1, the operation mode of the DC / DC converter 11-1 is switched from the intermediate link voltage constant mode to the MPPT mode. When the DC / DC converter 11-1 operates in the MPPT mode, the generated power of the DC input power supply 10 increases, and when the power consumption of the load can be generated, the intermediate link voltage increases and eventually becomes a constant value.
  • the operation mode of the DC / DC converter 11-1 is switched from the intermediate link voltage constant mode to the MPPT mode. If the DC / DC converter 11-1 operates in the MPPT mode and the generated power of the DC input power supply 10 increases, even if the power consumption of the load cannot be generated, the intermediate link voltage as shown in FIG. Decreases further.
  • the operation mode of the DC / DC converter 11-2 also switches from the intermediate link voltage constant mode to the MPPT mode.
  • the DC / DC converter 11-1 and the DC / DC converter 11-2 operate in the MPPT mode and the DC input power supply 10 can generate power up to the power consumption of the load, the intermediate link voltage increases and eventually becomes a constant value. .
  • FIG. 9 is a diagram illustrating an example in which the control during the independent operation of the power conditioner 1 is performed by the second adjustment method of the switching timing.
  • the first threshold value of the DC / DC converter 11 is common, and the switching standby time from when the intermediate link voltage becomes less than the first threshold value until switching to MPPT mode control is DC / DC.
  • the DC converters 11-1, 11-2, and 11-3 are set to become longer in this order.
  • the DC / DC converters 11-1, 11-2, and 11-3 all operate in the intermediate link voltage constant mode, and the power consumption of the load and the generated power of the DC input power supply 10 are equal. It has become. Thereafter, as the power consumption of the load increases, the intermediate link voltage decreases. When the intermediate link voltage becomes less than the first threshold value of the DC / DC converter 11, each DC / DC converter 11 maintains the intermediate link voltage constant mode until the respective predetermined switching standby time elapses.
  • the operation mode of the DC / DC converter 11-1 is the intermediate link.
  • the mode is switched from the constant voltage mode to the MPPT mode. Since the intermediate link voltage is less than the first threshold even after the predetermined switching standby time of the DC / DC converter 11-2 has elapsed, the operation mode of the DC / DC converter 11-2 is changed from the intermediate link voltage constant mode to the MPPT mode. Switch to When the DC / DC converters 11-1 and 11-2 operate in the MPPT mode and the DC input power supply 10 can generate power up to the power consumption of the load, the intermediate link voltage increases and eventually becomes a constant value.
  • the intermediate link voltage is equal to or higher than the first threshold value, so that the operation mode of the DC / DC converter 11-3 is the intermediate link voltage constant mode. Will be maintained.
  • the target voltage in the intermediate link voltage constant mode of the DC / DC converter 11-1 is 250V.
  • the target voltage in the constant intermediate link voltage mode of the DC / DC converter 11-2 is set to 249V
  • the target voltage in the fixed intermediate link voltage mode of the DC / DC converter 11-3 is set to 248V.
  • the timing for switching from the constant mode to the MPPT mode can be shifted for each DC / DC converter 11.
  • the DC / DC converter changes the operation mode from the intermediate link voltage constant mode to the MPPT mode when the output of another DC / DC converter having a target voltage lower than its own target voltage exceeds a predetermined power. You may switch.
  • FIG. 10 is a diagram showing the generated power of each DC input power supply 10 during the independent operation.
  • the maximum generated power of the DC input power supply 10-1 is 250 W
  • the maximum generated power of the DC input power supply 10-2 is 150 W
  • the maximum generated power of the DC input power supply 10-3 is 200 W.
  • the DC / DC converter 11-1 operates in the intermediate link voltage constant mode and generates 200 W from the DC input power supply 10-1.
  • the DC input power supplies 10-2 and 10-3 do not generate power.
  • the DC / DC converter 11-1 switches from the intermediate link voltage constant mode to the MPPT mode by the adjustment method described above, and generates 250 W from the DC input power supply 10-1. .
  • the DC / DC converter 11-2 operates in the intermediate link voltage constant mode and generates 80 W from the DC input power supply 10-2.
  • the DC input power supply 10-3 does not generate power.
  • the DC / DC converter 11-2 When the power consumption of the load reaches 520 W, the DC / DC converter 11-2 is switched from the intermediate link voltage constant mode to the MPPT mode by the adjustment method described above, and 150 W is generated by the DC input power supply 10-2. .
  • the DC / DC converter 11-3 For the insufficient 120W, the DC / DC converter 11-3 operates in the intermediate link voltage constant mode, and 120W is generated by the DC input power supply 10-3.
  • the output voltage of the DC / DC converter 11 is changed according to the fluctuation of the intermediate link voltage (input voltage of the power converters 13 and 16).
  • the intermediate link voltage constant mode for controlling to the target voltage and the MPPT mode for controlling so that the output power of the DC input power supply 10 is maximized are individually switched.
  • a certain DC / DC converter 11 operates in the MPPT mode to generate the DC input power supply 10 connected to the DC / DC converter 11 with the maximum power, and the other DC / DC converters 11
  • the generated power of the DC input power supply 10 can be adjusted according to the power consumption of the load. Therefore, the generated power can be used efficiently and stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

 自立運転の際に、発電電力を効率良く且つ安定して利用する。 DC/DCコンバータ11は、電力系統から解列して独自に電力供給可能とする自立運転時において、電力変換器13,16の入力電圧の変動に応じて、DC/DCコンバータ11の出力電圧を目標電圧に制御する中間リンク電圧一定モードと、直流入力電源の出力電力が最大になるように制御するMPPTモードとを個別に切り替える。

Description

パワーコンディショナ及びその制御方法 関連出願の相互参照
 本出願は、2012年9月20日に出願された日本国特許出願2012-207089号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本発明は、DC/DCコンバータを複数有するパワーコンディショナ、及び該パワーコンディショナの制御方法に関する。
 従来、電力系統に連系する太陽光発電システムにおいて、電力系統に停電が発生した際に連系を解除して太陽光発電の自立運転を行うものがある。例えば、特許文献1では、電力系統の停電発生時に、負荷に対して無停電状態で電流制御モードから電圧制御モードへ切り替えるインバータが提案されている。
特開平8-66048号公報
 近年太陽電池の設置は、屋根の形状や面積に応じて直列接続するモジュール数が異なる複数のストリングで構成するマルチストリング形式が主流となりつつある。特許文献1に記載の技術は単独のストリングに対しては他の選択肢もなく有効である。しかし、マルチストリングの構成において自立運転時に全てのストリングを同じ電圧制御モードで制御することは、負荷に応じた電圧制御で最大電力点を超えてしまうことにつながり、複数ストリングによる発電電力を最大限に利用することは困難となる。
 かかる事情に鑑みてなされた本発明の目的は、複数のストリングの中で負荷の消費電力に応じてMPPT(最大電力点追従:Maximum Power Point Tracking)制御と電圧制御のモードを混在させて用いることで、発電電力を効率良く、且つ安定して利用することが可能なパワーコンディショナ及びその制御方法を提供することにある。
 上記課題を解決するため、本発明に係るパワーコンディショナは、
 直流入力電源の電圧変換を行う複数のDC/DCコンバータと、該複数のDC/DCコンバータに接続される電力変換器とを備えるパワーコンディショナであって、
 前記DC/DCコンバータは、電力系統から解列して独自に電力供給可能とする自立運転時において、前記電力変換器の入力電圧の変動に応じて、当該DC/DCコンバータの出力電圧を目標電圧に制御する中間リンク電圧一定モードと、前記直流入力電源の出力電力が最大になるように制御するMPPTモードとを個別に切り替えることを特徴とする。
 さらに、本発明に係るパワーコンディショナにおいて、
 前記DC/DCコンバータは、前記電力変換器の入力電圧が第1の閾値未満になった場合は前記MPPTモードの制御に切り替え、前記電力変換器の入力電圧が第2の閾値以上になった場合は前記中間リンク電圧一定モードの制御に切り替えることを特徴とする。
 さらに、本発明に係るパワーコンディショナにおいて、
 前記第1の閾値は、前記DC/DCコンバータごとに異なることを特徴とする。
 さらに、本発明に係るパワーコンディショナにおいて、
 前記第1の閾値は、前記DC/DCコンバータで共通であり、前記電力変換器の入力電圧が前記第1の閾値未満になってから前記MPPTモードの制御に切り替わるまでの時間が、前記DC/DCコンバータごとに異なることを特徴とする。
 さらに、本発明に係るパワーコンディショナにおいて、
 前記中間リンク電圧一定モードにおける前記目標電圧は、前記DC/DCコンバータごとに異なることを特徴とする。
 さらに、本発明に係るパワーコンディショナにおいて、
 前記電力変換器は、双方向コンバータを含むことを特徴とする。
 また、上記課題を解決するため、本発明に係るパワーコンディショナの制御方法は、
 直流入力電源の電圧変換を行う複数のDC/DCコンバータと、該複数のDC/DCコンバータに接続される電力変換器とを備えるパワーコンディショナを制御する方法であって、
 前記DC/DCコンバータにより、電力系統から解列して独自に電力供給可能とする自立運転時において、前記電力変換器の入力電圧の変動に応じて、当該DC/DCコンバータの出力電圧を目標電圧に制御する中間リンク電圧一定モードと、前記直流入力電源の出力電力が最大になるように制御するMPPTモードとを切り替えるステップを含むことを特徴とする。
 本発明によれば、自立運転の際に負荷の消費電力に応じて、MPPTモードで動作するDC/DCコンバータと電圧制御のモードで動作するDC/DCコンバータとを混在させて制御することで、発電電力を効率良く、且つ安定して利用することが可能となる。また、複数入力電源を有するパワーコンディショナの自立運転で、従来の制御と比較して、消費電力の大きい負荷を動かすことができる。
本発明の一実施形態に係るパワーコンディショナの第1の構成例を示すブロック図である。 本発明の一実施形態に係るパワーコンディショナの第2の構成例を示すブロック図である。 本発明の一実施形態に係るパワーコンディショナにおけるDC/DCコンバータの回路図を示す図である。 本発明の一実施形態に係るパワーコンディショナにおける制御部の機能を示すブロック図である。 本発明の一実施形態に係るパワーコンディショナにおけるデューティ比制御部の動作を示すフローチャートである。 本発明の一実施形態に係るパワーコンディショナの1つのDC/DCコンバータに着目した制御例を示す図である。 本発明の一実施形態に係るパワーコンディショナの第1の制御例を示す図である。 本発明の一実施形態に係るパワーコンディショナの第2の制御例を示す図である。 本発明の一実施形態に係るパワーコンディショナの第3の制御例を示す図である。 本発明の一実施形態に係るパワーコンディショナの各直流入力電源の発電電力を示す図である。
 以下、本発明による一実施形態について、図面を参照して詳細に説明する。
 図1は、本発明による一実施形態に係るパワーコンディショナの第1の構成例を示すブロック図である。図1に示すように、パワーコンディショナ1は、複数のDC/DCコンバータ11(11-1,11-2,11-3)と、中間リンクコンデンサ12と、インバータ13と、制御部14と、を備える。なお、図1における出力は単相2線式であるが、出力の形式はこれに限らず例えば3相式であってもよい。
 マルチストリング入力タイプのパワーコンディショナ1は、直流入力電源10からの直流電力の入力部を複数有する。直流入力電源10は、本実施形態では太陽光を直流電力に変換する複数の太陽電池モジュールを直列接続した太陽電池ストリングであるものとして説明するが、直流入力電源10は太陽電池ストリングに限られず、風力発電や燃料電池等の分散型電源であってもよい。
 各DC/DCコンバータ11は、接続される各太陽電池ストリング10から入力される電圧を昇圧して一定の電圧に揃える。なお、本実施形態ではDC/DCコンバータ11の数が3つの場合について説明するが、DC/DCコンバータ11の数は2つ以上であればよい。
 中間リンクコンデンサ12は、DC/DCコンバータ11により昇圧された直流電圧を平滑化し、インバータ13への入力電圧を安定させる。なお、各DC/DCコンバータ11内に、出力電圧を安定させるために、更に平滑化用のコンデンサを設けてもよい。
 インバータ13は、中間リンクコンデンサ12により平滑化された直流電圧を交流に変換する。インバータ13は、通常時には電力系統に連系するが、停電時等には自立運転を行い、電力系統から解列して独自に交流入力機器15に交流電力を供給する。図1では、自立運転時におけるパワーコンディショナ1と交流入力機器15との接続を示している。
 制御部14は、DC/DCコンバータ11及びインバータ13のスイッチング素子のデューティ比を制御することにより、DC/DCコンバータ11及びインバータ13の出力を制御する。
 図2は、本発明による一実施形態に係るパワーコンディショナの第2の構成例を示すブロック図である。図2に示すパワーコンディショナ1は、図1に示したパワーコンディショナ1と比較して、更にDC/DCコンバータ16を備える。DC/DCコンバータ16は、中間リンクコンデンサ12により平滑化された直流電圧を所定の直流電圧に変換し、自立運転時に直流入力機器17に直流電力を供給する。DC/DCコンバータ16を備えることで、直流入力機器17に対して直接電力を供給することができる。
 このように、パワーコンディショナ1は、出力側に電力変換器を備える。電力変換器は、図1に示すようにインバータ13のみであってもよいし、図2に示すように並列接続されたインバータ13及びDC/DCコンバータ16であってもよい。また、図示していないが、電力変換器はDC/DCコンバータ16のみであってもよいし、インバータ13及びDC/DCコンバータ16をそれぞれ任意の個数並列接続したものであってもよい。
 さらに、DC/DCコンバータ16を双方向コンバータとし、入力側として動くときは他のDC/DCコンバータ11と同じ制御を適用し、出力側として動くときは別の制御を適用するようにしてもよい。具体例としては、パワーコンディショナ1の入力電源に蓄電池が含まれていた場合に、蓄電池の残量に応じて、DC/DCコンバータ16を入力側として制御したり、DC/DCコンバータ16を蓄電池へ充電する出力側とし制御したりする。
 図3は、パワーコンディショナ1におけるDC/DCコンバータ11の回路図の一例を示す図である。あわせて、DC/DCコンバータ11に対する制御を行う制御部14も示している。図3には一般的な非絶縁型ブーストコンバータを示しているが、具体的な回路構成はこれに限定されるものではなく、入力電源から見たインピーダンスを変更可能で、各入力電力を所望の値に独立して制御できる機能を有するものであればよい。
 制御部14は、入力電圧センサ19(19-1,19-2,19-3)により検出される各DC/DCコンバータ11の電圧と、入力電流センサ20(20-1,20-2,20-3)により検出される各DC/DCコンバータ11の入力電流と、中間リンク電圧センサ21により検出されるインバータ13の入力電圧(中間リンク電圧)とを監視し、これらに基づいて各DC/DCコンバータ11のスイッチング素子18(18-1,18-2,18-3)に対するPWM信号を生成する。DC/DCコンバータ11に対する制御の詳細については後述する。
 図4は、パワーコンディショナ1における制御部14の機能を示すブロック図である。図4を参照して制御部14の動作を説明する。
 デューティ比制御部141-1は、DC/DCコンバータ11-1に対するPWM信号を生成するために用いられるデューティ比を制御する。同様に、デューティ比制御部141-2は、DC/DCコンバータ11-2に対するPWM信号を生成するために用いられるデューティ比を制御し、デューティ比制御部141-3は、DC/DCコンバータ11-3に対するPWM信号を生成するために用いられるデューティ比を制御する。なお、デューティ比制御部141-2,141-3はデューティ比制御部141-1と同じ制御を行い、内部のブロック図はデューティ比制御部141-1同じであるため、図示を省略している。
 制御モード判定部142は、電力系統に連系時には制御モードをMPPTモードに決定する。一方、制御モード判定部142は、自立運転時には中間リンク電圧センサ21により検出した中間リンク電圧に応じて、制御モードをMPPTモード又は中間リンク電圧一定モードのいずれかに決定する。ここで、MPPTモードとは、直流入力電源の出力電力が最大になるようにMPPT制御するモードである。中間リンク電圧一定モードとは、負荷の消費電力と入力電源の発電電力とが同じになるようにDC/DCコンバータ11の出力電圧を目標電圧に制御するモードである。制御モードの切り替え時は、切り替え前後で動作電圧が不連続にならないよう、直前の動作電圧を参照して滑らかに制御が切り替わるようにする。
 MPPT制御部143は、入力電圧センサ19により検出した入力電圧、及び入力電流センサ20により検出した入力電流を監視している。そして、MPPT制御部143は、制御モード判定部142によりMPPTモードと決定された場合に、パワーコンディショナ1への入力電力を最大限とするための動作電圧を決定する。なお、図4に示す例では入力電圧による追従を行っているが、MPPTの具体的な方式はこれに限られるものではない。
 中間リンク電圧一定制御部144は、制御モード判定部142により中間リンク電圧一定モードと決定された場合に、中間リンク電圧センサ21により検出した中間リンク電圧が目標電圧となるように、動作電圧を決定する。
 入力電圧制御部145は、入力電圧センサ19により検出した入力電圧と、MPPT制御部143又は中間リンク電圧一定制御部144により決定された動作電圧指令値とを比較し、その差が0に等しくなるようデューティ比を変化させるフィードバック制御を行う。図4に示す例では入力電源の動作電圧を指令値とする制御を行っているが、制御部14が中間リンク電圧によりMPPTモードと中間リンク電圧一定モードとを切り替えるように制御するものであればよい。よって、入力電源の動作電流で制御(入力電流でフィードバック制御)を行ってもよい。
 PWMユニット147は、クロック生成部146により生成されたクロックに同期した基準波形と、入力電圧制御部145によって生成されたデューティ比とを比較することで、PWM信号を生成する。そして、各DC/DCコンバータ11に対してPWM信号を出力する。
 図5は、自立運転時のデューティ比制御部141の動作を示すフローチャートである。デューティ比制御部141は、パワーコンディショナ1の現在の動作モードを把握している。パワーコンディショナ1が中間リンク電圧一定モードで動作している場合には(ステップS101-No)、制御モード判定部142により、中間リンク電圧センサ21により取得した中間リンク電圧が第1の閾値未満であるか否かを判定する(ステップS103)。中間リンク電圧が第1の閾値未満になるまでの間は(ステップS103-No)中間リンク電圧一定モードを維持する(ステップS105)。そして、中間リンク電圧一定制御部144により動作電圧を決定し、入力電圧制御部145に出力する(ステップS106)。中間リンク電圧が第1の閾値未満になると(ステップS103-Yes)、動作モードをMPPTモードに切り替える(ステップS104)。そして、MPPT制御部143により動作電圧を決定し、入力電圧制御部145に出力する(ステップS106)。
 一方、パワーコンディショナ1がMPPTモードで動作している場合には(ステップS101-Yes)、制御モード判定部142により、中間リンク電圧センサ21により取得した中間リンク電圧が第2の閾値以上であるか否かを判定する(ステップS102)。中間リンク電圧が第2の閾値以上になるまでの間は(ステップS102-No)MPPTモードを維持する(ステップS104)。そして、MPPT制御部143により動作電圧を決定し、入力電圧制御部145に出力する(ステップS106)。中間リンク電圧が第2の閾値以上になると(ステップS102-Yes)、動作モードを中間リンク電圧一定モードに切り替える(ステップS105)。そして、中間リンク電圧一定制御部144により動作電圧を決定し、入力電圧制御部145に出力する(ステップS106)。
 図6は、1つのDC/DCコンバータ11に着目した自立運転時の制御例を示す図である。図6の上部には太陽電池(入力電源)のPV特性を示している。自立運転時に負荷の消費電力が400Wであり、接続された直流入力電源10の発電最大電力が400W以上である場合、パワーコンディショナ1は中間リンク電圧一定モードで動作する。PV特性によると入力電力が400Wになるときの電圧は200Vであるため、中間リンク電圧一定モードにより動作電圧が200Vになるように制御する。
 その後、負荷の消費電力が400Wから800Wに増加したとする。すると、出力電力のほうが入力電力よりも大きくなるため、中間リンク電圧は減少する。制御モード判定部142は、中間リンク電圧を監視し、中間リンク電圧が第1の閾値未満まで減少した場合には、中間リンク電圧一定モードをMPPTモードに切り替える。MPPTモードに切り替えることにより、直流入力電源10から最大の電力を得ることができる。ただし、図6に示す例では、直流入力電源10の最大電力が800Wには満たないため、不足分の電力は他の直流入力電源10が補充する。
 続いて、負荷の消費電力が800Wから400Wに減少したとする。すると、入力電力のほうが出力電力よりも大きくなるため、中間リンク電圧は増加する。制御モード判定部142は、中間リンク電圧を監視し、中間リンク電圧が第2の閾値以上まで増加した場合には、MPPTモードを中間リンク電圧一定モードに切り替える。
 中間リンク電圧一定モードからMPPTモードへの切り替えは、DC/DCコンバータ11ごとに異なるタイミングで行うのが好適である。このため、中間リンク電圧一定モードをMPPTモードに切り替えるか否かを判定するための第1の閾値をDC/DCコンバータ11ごとに異なるようにする。以下、この方法を、切り替えタイミングの第1の調整方法と称する。また、DC/DCコンバータ11の第1の閾値は共通にしておき、中間リンク電圧が第1の閾値未満になってからMPPTモードの制御に切り替わるまでの時間を、DC/DCコンバータ11ごとに異なるようにしてもよい。以下、この方法を、切り替えタイミングの第2の調整方法と称する。また、中間リンク電圧一定モードにおける目標電圧をDC/DCコンバータ11ごとに異なるようにしてもよい。以下、この方法を、切り替えタイミングの第3の調整方法と称する。
 図7及び図8は、パワーコンディショナ1の自立運転時の制御を、切り替えタイミングの第1の調整方法により行う例を示す図である。(DC/DCコンバータ11-1に対する第1の閾値)>(DC/DCコンバータ11-2に対する第1の閾値)>(DC/DCコンバータ11-3に対する第1の閾値)とすると、DC/DCコンバータ11-1、DC/DCコンバータ11-2、DC/DCコンバータ11-3の順に中間リンク電圧一定モードからMPPTモードに切り替わる。
 図7に示す例では、最初はDC/DCコンバータ11-1,11-2,11-3は全て中間リンク電圧一定モードで動作しており、負荷の消費電力と直流入力電源10の発電電力とが等しくなっている。その後、負荷の消費電力が増加すると、中間リンク電圧は減少する。中間リンク電圧がDC/DCコンバータ11-1の第1の閾値未満となると、DC/DCコンバータ11-1の動作モードは中間リンク電圧一定モードからMPPTモードに切り替わる。DC/DCコンバータ11-1がMPPTモードで動作することにより直流入力電源10の発電電力が増加し、負荷の消費電力まで発電可能となると、中間リンク電圧は増加し、やがて一定値となる。
 図8に示す例も、図7と同様に、(DC/DCコンバータ11-1に対する第1の閾値)>(DC/DCコンバータ11-2に対する第1の閾値)>(DC/DCコンバータ11-3に対する第1の閾値)とし、最初はDC/DCコンバータ11-1,11-2,11-3は全て中間リンク電圧一定モードで動作しており、負荷の消費電力と直流入力電源10の発電電力とが等しくなっている。その後、負荷の消費電力が増加すると、中間リンク電圧は減少する。図8に示す例では、図7に示した例よりも負荷の消費電力の増加量が大きいものとする。
 中間リンク電圧がDC/DCコンバータ11-1の第1の閾値未満となると、DC/DCコンバータ11-1の動作モードは中間リンク電圧一定モードからMPPTモードに切り替わる。DC/DCコンバータ11-1がMPPTモードで動作することにより直流入力電源10の発電電力が増加しても、負荷の消費電力まで発電可能とならない場合には、図8に示すように中間リンク電圧はさらに減少する。中間リンク電圧がDC/DCコンバータ11-2の第1の閾値未満となると、DC/DCコンバータ11-2の動作モードも中間リンク電圧一定モードからMPPTモードに切り替わる。DC/DCコンバータ11-1及びDC/DCコンバータ11-2がMPPTモードで動作することにより直流入力電源10が負荷の消費電力まで発電可能となると、中間リンク電圧は増加し、やがて一定値となる。
 図9は、パワーコンディショナ1の自立運転時の制御を、切り替えタイミングの第2の調整方法により行う例を示す図である。図9に示す例では、DC/DCコンバータ11の第1の閾値は共通であり、中間リンク電圧が第1の閾値未満になってからMPPTモードの制御に切り替わるまでの切替待機時間が、DC/DCコンバータ11-1,11-2,11-3の順に長くなるように設定する。
 図9においても、最初はDC/DCコンバータ11-1,11-2,11-3は全て中間リンク電圧一定モードで動作しており、負荷の消費電力と直流入力電源10の発電電力とが等しくなっている。その後、負荷の消費電力が増加すると、中間リンク電圧は減少する。中間リンク電圧がDC/DCコンバータ11の第1の閾値未満となると、各DC/DCコンバータ11は、それぞれの所定の切替待機時間が経過するまで、中間リンク電圧一定モードを維持する。
 図9に示す例では、DC/DCコンバータ11-1の所定の切替待機時間の経過後に、中間リンク電圧が第1の閾値未満であるので、DC/DCコンバータ11-1の動作モードは中間リンク電圧一定モードからMPPTモードに切り替わる。DC/DCコンバータ11-2の所定の切替待機時間の経過後も、中間リンク電圧が第1の閾値未満であるので、DC/DCコンバータ11-2の動作モードも中間リンク電圧一定モードからMPPTモードに切り替わる。DC/DCコンバータ11-1及び11-2がMPPTモードで動作することにより直流入力電源10が負荷の消費電力まで発電可能となると、中間リンク電圧は増加し、やがて一定値となる。DC/DCコンバータ11-3の所定の切替待機時間の経過後には、中間リンク電圧は第1の閾値以上になっているので、DC/DCコンバータ11-3の動作モードは中間リンク電圧一定モードを維持することとなる。
 パワーコンディショナ1の自立運転時の制御を、切り替えタイミングの第3の調整方法により行う例については図示していないが、例えばDC/DCコンバータ11-1の中間リンク電圧一定モードにおける目標電圧を250Vとし、DC/DCコンバータ11-2の中間リンク電圧一定モードにおける目標電圧を249Vとし、DC/DCコンバータ11-3の中間リンク電圧一定モードにおける目標電圧を248Vとすることで、同様に中間リンク電圧一定モードからMPPTモードに切り替わるタイミングをDC/DCコンバータ11ごとにずらすことができる。この場合、DC/DCコンバータは、自らの目標電圧より低い目標電圧を持つ他のDC/DCコンバータの出力が予め定めた電力を超えたときに、動作モードを中間リンク電圧一定モードからMPPTモードに切り替えてもよい。
 図10は、自立運転時の各直流入力電源10の発電電力を示す図である。図10に示す例では、直流入力電源10-1の最大発電電力を250W、直流入力電源10-2の最大発電電力を150W、直流入力電源10-3の最大発電電力を200Wとする。負荷の消費電力が200Wである場合には、DC/DCコンバータ11-1は中間リンク電圧一定モードで動作して、直流入力電源10-1により200Wを発電する。直流入力電源10-2,10-3は発電しない。
 負荷の消費電力が330Wになった場合には、上述した調整方法により、DC/DCコンバータ11-1は中間リンク電圧一定モードからMPPTモードへの切り替わり、直流入力電源10-1により250Wを発電する。足りない80Wについては、DC/DCコンバータ11-2が中間リンク電圧一定モードで動作して、直流入力電源10-2により80Wを発電する。直流入力電源10-3は発電しない。
 負荷の消費電力が520Wになった場合には、上述した調整方法により、DC/DCコンバータ11-2も中間リンク電圧一定モードからMPPTモードへの切り替わり、直流入力電源10-2により150Wを発電する。足りない120Wについては、DC/DCコンバータ11-3が中間リンク電圧一定モードで動作して、直流入力電源10-3により120Wを発電する。
 このように、本発明に係るパワーコンディショナ1は、自立運転を行う際に、中間リンク電圧(電力変換器13,16の入力電圧)の変動に応じて、DC/DCコンバータ11の出力電圧を目標電圧に制御する中間リンク電圧一定モードと、直流入力電源10の出力電力が最大になるように制御するMPPTモードとを個別に切り替える。
 自立運転時に全てのDC/DCコンバータ11がMPPTモードに切り替わってしまうと、負荷の消費電力と直流入力電源10発電のバランスが崩れてしまう。また、自立運転時に全てのDC/DCコンバータ11が中間リンク電圧一定モードのままだと、直流入力電源10は最大電力で発電することができない。負荷の消費電力に追従しようとしてある直流入力電源10が最大電力点を乗り越えると、その直流入力電源10の発電電力が減少し、他の直流入力電源10が連鎖的に最大電力点を乗り越えるため、最終的に発電電力不足で停止するおそれがある。
 しかし、本発明では、あるDC/DCコンバータ11がMPPTモードで動作して、該DC/DCコンバータ11に接続された直流入力電源10を最大電力で発電させるとともに、他のDC/DCコンバータ11は中間リンク電圧一定モードで動作して、負荷の消費電力に合わせて直流入力電源10の発電電力を調整することができる。そのため、発電電力を効率良く、且つ安定して利用することが可能となる。また、自立運転時に、従来の制御と比較して、消費電力の大きい負荷を動かすことができる。
 上述の実施形態は、代表的な例として説明したが、本発明の趣旨および範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 1   パワーコンディショナ
 10  直流入力電源(太陽電池ストリング)
 11  DC/DCコンバータ
 12  中間リンクコンデンサ
 13  インバータ
 14  制御部
 15  交流入力機器
 16  DC/DCコンバータ
 17  直流入力機器
 18  スイッチング素子
 19  入力電圧センサ
 20  入力電流センサ
 21  中間リンク電圧センサ
 141 デューティ比制御部
 142 制御モード判定部
 143 MPPT制御部
 144 中間リンク電圧一定制御部
 145 入力電圧制御部
 146 クロック生成部
 147 PWMユニット

Claims (7)

  1.  直流入力電源の電圧変換を行う複数のDC/DCコンバータと、該複数のDC/DCコンバータに接続される電力変換器とを備えるパワーコンディショナであって、
     前記DC/DCコンバータは、電力系統から解列して独自に電力供給可能とする自立運転時において、前記電力変換器の入力電圧の変動に応じて、当該DC/DCコンバータの出力電圧を目標電圧に制御する中間リンク電圧一定モードと、前記直流入力電源の出力電力が最大になるように制御するMPPTモードとを個別に切り替えることを特徴とするパワーコンディショナ。
  2.  前記DC/DCコンバータは、前記電力変換器の入力電圧が第1の閾値未満になった場合は前記MPPTモードの制御に切り替え、前記電力変換器の入力電圧が第2の閾値以上になった場合は前記中間リンク電圧一定モードの制御に切り替えることを特徴とする、請求項1に記載のパワーコンディショナ。
  3.  前記第1の閾値は、前記DC/DCコンバータごとに異なることを特徴とする、請求項2に記載のパワーコンディショナ。
  4.  前記第1の閾値は、前記DC/DCコンバータで共通であり、前記電力変換器の入力電圧が前記第1の閾値未満になってから前記MPPTモードの制御に切り替わるまでの時間が、前記DC/DCコンバータごとに異なることを特徴とする、請求項2に記載のパワーコンディショナ。
  5.  前記中間リンク電圧一定モードにおける前記目標電圧は、前記DC/DCコンバータごとに異なることを特徴とする、請求項1に記載のパワーコンディショナ。
  6.  前記電力変換器は、双方向コンバータを含むことを特徴とする、請求項1に記載のパワーコンディショナ。
  7.  直流入力電源の電圧変換を行う複数のDC/DCコンバータと、該複数のDC/DCコンバータに接続される電力変換器とを備えるパワーコンディショナを制御する方法であって、
     前記DC/DCコンバータにより、電力系統から解列して独自に電力供給可能とする自立運転時において、前記電力変換器の入力電圧の変動に応じて、当該DC/DCコンバータの出力電圧を目標電圧に制御する中間リンク電圧一定モードと、前記直流入力電源の出力電力が最大になるように制御するMPPTモードとを切り替えるステップを含むことを特徴とするパワーコンディショナの制御方法。
     
     
PCT/JP2013/005488 2012-09-20 2013-09-17 パワーコンディショナ及びその制御方法 WO2014045563A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/429,235 US20150236589A1 (en) 2012-09-20 2013-09-17 Power conditioner and method of controlling power conditioner
EP13839089.3A EP2899606B1 (en) 2012-09-20 2013-09-17 Power conditioner, and method for controlling same
CN201380048866.3A CN104662484B (zh) 2012-09-20 2013-09-17 功率调节器及控制功率调节器的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012207089A JP5940946B2 (ja) 2012-09-20 2012-09-20 パワーコンディショナ及びその制御方法
JP2012-207089 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014045563A1 true WO2014045563A1 (ja) 2014-03-27

Family

ID=50340903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005488 WO2014045563A1 (ja) 2012-09-20 2013-09-17 パワーコンディショナ及びその制御方法

Country Status (5)

Country Link
US (1) US20150236589A1 (ja)
EP (1) EP2899606B1 (ja)
JP (1) JP5940946B2 (ja)
CN (1) CN104662484B (ja)
WO (1) WO2014045563A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026777A4 (en) * 2013-07-26 2017-04-12 Kyocera Corporation Power management device, power management system, and power management method
JPWO2016121402A1 (ja) * 2015-01-28 2017-08-31 京セラ株式会社 電力制御装置、電力制御システム、および電力制御方法
CN113162410A (zh) * 2021-04-19 2021-07-23 南通大学 一种三端口变换器及其控制方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
US9853565B2 (en) * 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
TW201513541A (zh) * 2013-09-26 2015-04-01 Delta Electronics Inc 太陽能發電系統之微逆變器及其操作方法
JP6511224B2 (ja) * 2014-04-23 2019-05-15 日立オートモティブシステムズ株式会社 電源装置
US20170063094A1 (en) * 2015-08-27 2017-03-02 Sunpower Corporation Power processing
JP6536346B2 (ja) * 2015-10-19 2019-07-03 住友電気工業株式会社 電力変換装置及びその制御方法
CN105305402B (zh) * 2015-10-20 2018-02-13 天津大学 一种直流微网母线电压鲁棒自治控制方法
WO2017150376A1 (ja) * 2016-03-02 2017-09-08 株式会社ダイヘン 電力システム
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
CN106300612A (zh) * 2016-08-26 2017-01-04 武汉理工大学 用于光伏直流供电系统中dc/dc的双模式控制系统及方法
CN114567925B (zh) * 2016-09-30 2024-03-22 瑞典爱立信有限公司 用于无线设备的自主定时调整的方法、无线设备及网络节点
JP6928330B2 (ja) * 2016-11-18 2021-09-01 シャープ株式会社 電力制御装置、及びその電力制御方法
KR101881730B1 (ko) * 2016-12-14 2018-07-25 엘에스산전 주식회사 솔라펌프 시스템에서 인버터 제어방법
AU2019262602B2 (en) 2018-05-04 2022-03-10 Nextracker Llc Systems and methods of DC power conversion and transmission for solar fields
US11190022B2 (en) * 2019-01-09 2021-11-30 Texas Instruments Incorporated Controller circuit for photovoltaic sub-module
JP7316645B2 (ja) * 2019-06-20 2023-07-28 パナソニックIpマネジメント株式会社 シャットダウンシステム、シャットダウン方法及びプログラム
JP7292179B2 (ja) * 2019-11-01 2023-06-16 株式会社日立製作所 電力変換装置、電力システム
DE102020113871A1 (de) * 2020-05-23 2021-11-25 Sma Solar Technology Ag Verfahren zur stabilisierung der gleichspannung in einem gleichstromnetz und gleichspannungswandler zur verbindung eines pv-generators mit einem gleichstromnetz
CN114301182A (zh) * 2022-01-05 2022-04-08 安徽扬子安防股份有限公司 智能电源管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866048A (ja) 1994-08-24 1996-03-08 Nissin Electric Co Ltd 分散電源用インバータ装置
JP2011145849A (ja) * 2010-01-14 2011-07-28 Sharp Corp 電気機器
WO2012090242A1 (ja) * 2010-12-27 2012-07-05 日立アプライアンス株式会社 電力変換器及び太陽光発電システム
JP2012137830A (ja) * 2010-12-24 2012-07-19 Ntt Facilities Inc 太陽光発電システム
JP2012181575A (ja) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd 系統連系装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3809316B2 (ja) * 1999-01-28 2006-08-16 キヤノン株式会社 太陽光発電装置
JP4170565B2 (ja) * 2000-06-30 2008-10-22 株式会社ダイヘン 電力変動平滑化装置及びそれを備えた分散電源システムの制御方法
JP2005151662A (ja) * 2003-11-13 2005-06-09 Sharp Corp インバータ装置および分散電源システム
US7646116B2 (en) * 2008-05-22 2010-01-12 Petra Solar Inc. Method and system for balancing power distribution in DC to DC power conversion
US20100084924A1 (en) * 2008-10-07 2010-04-08 Sunlight Photonics Inc. Apparatus and method for producing ac power
JP2010231456A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 電源システム
US8004232B2 (en) * 2009-05-27 2011-08-23 Miasole Method of battery charging and power control in conjunction with maximum power point tracking
JP5344759B2 (ja) * 2009-09-30 2013-11-20 パナソニック株式会社 配電システム
WO2011039616A1 (ja) * 2009-10-02 2011-04-07 パナソニック電工株式会社 配電装置およびこれを用いた配電システム
JP5541982B2 (ja) * 2010-06-28 2014-07-09 シャープ株式会社 直流配電システム
IT1402433B1 (it) * 2010-09-29 2013-09-04 St Microelectronics Srl Sistema automatico di abilitazione/disabilitazione sincrona di pannelli fotovoltaici di un impianto a conversione dc/dc distribuita
JP2012135105A (ja) * 2010-12-21 2012-07-12 Sony Corp 発電制御装置および発電制御方法、並びに発電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866048A (ja) 1994-08-24 1996-03-08 Nissin Electric Co Ltd 分散電源用インバータ装置
JP2011145849A (ja) * 2010-01-14 2011-07-28 Sharp Corp 電気機器
JP2012137830A (ja) * 2010-12-24 2012-07-19 Ntt Facilities Inc 太陽光発電システム
WO2012090242A1 (ja) * 2010-12-27 2012-07-05 日立アプライアンス株式会社 電力変換器及び太陽光発電システム
JP2012181575A (ja) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd 系統連系装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026777A4 (en) * 2013-07-26 2017-04-12 Kyocera Corporation Power management device, power management system, and power management method
US10698433B2 (en) 2013-07-26 2020-06-30 Kyocera Corporation Power management apparatus, power management system, and method for power management
JPWO2016121402A1 (ja) * 2015-01-28 2017-08-31 京セラ株式会社 電力制御装置、電力制御システム、および電力制御方法
EP3252562A4 (en) * 2015-01-28 2018-08-22 Kyocera Corporation Electric power control device, electric power control system, and electric power control method
US10298018B2 (en) 2015-01-28 2019-05-21 Kyocera Corporation Power control apparatus, power control system, and power control method
CN113162410A (zh) * 2021-04-19 2021-07-23 南通大学 一种三端口变换器及其控制方法

Also Published As

Publication number Publication date
US20150236589A1 (en) 2015-08-20
JP5940946B2 (ja) 2016-06-29
JP2014063282A (ja) 2014-04-10
EP2899606A1 (en) 2015-07-29
EP2899606B1 (en) 2020-12-09
CN104662484B (zh) 2016-06-15
CN104662484A (zh) 2015-05-27
EP2899606A4 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5940946B2 (ja) パワーコンディショナ及びその制御方法
JP6167252B2 (ja) 電力変換装置、電力管理方法、および電力変換システム
WO2012144357A1 (ja) 電力供給装置、電力供給装置の制御方法、および直流給電システム
JP6223449B2 (ja) 電力変換装置、電力管理装置、および電力管理方法
JP2012175801A (ja) 蓄電システム
KR101417669B1 (ko) 양방향 컨버터 제어 시스템
JP2010158098A (ja) 電源ユニットおよび電子装置
JP2020078242A (ja) 電力管理装置、および電力管理方法
EP1872460B1 (en) Uninterruptible power supply with additional feeding
JP6151649B2 (ja) 電力変換装置及び電力変換方法
JP2009207234A (ja) ハイブリッド系統連系システム
KR101609245B1 (ko) 에너지 저장 장치
JP4046700B2 (ja) 系統連系インバータ装置
JP6271638B2 (ja) パワーコンディショナ及びその制御方法
JP2011160610A (ja) 太陽光発電装置
WO2016084400A1 (ja) 蓄電池システムおよび蓄電方法
JP6646852B2 (ja) 電力変換装置、及び電力変換システム
KR101737461B1 (ko) 태양전지에서 생성된 전력으로 제어 구동전원을 얻는 태양광 발전 시스템 및 그 방법
JP6907796B2 (ja) 発電システム
JP2011097724A (ja) パワーコンディショナ
JP5258324B2 (ja) ハイブリッド系統連系システム
KR101771396B1 (ko) 병렬 모듈형 전력 변환 유닛의 효율 평준화 제어 및 출력전압 제어 방법 및 장치
JP2016054583A (ja) 蓄電池システム
JP2008092719A (ja) 瞬時電圧低下補償装置
JP2015111962A (ja) 並列運転電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14429235

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE