[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014045388A1 - 蛍光センサ - Google Patents

蛍光センサ Download PDF

Info

Publication number
WO2014045388A1
WO2014045388A1 PCT/JP2012/074179 JP2012074179W WO2014045388A1 WO 2014045388 A1 WO2014045388 A1 WO 2014045388A1 JP 2012074179 W JP2012074179 W JP 2012074179W WO 2014045388 A1 WO2014045388 A1 WO 2014045388A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
light
emitting element
sensor
substrate
Prior art date
Application number
PCT/JP2012/074179
Other languages
English (en)
French (fr)
Inventor
亮 太田
悦朗 清水
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to PCT/JP2012/074179 priority Critical patent/WO2014045388A1/ja
Publication of WO2014045388A1 publication Critical patent/WO2014045388A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters

Definitions

  • the present invention relates to a fluorescence sensor for measuring the concentration of an analyte in a solution, and more particularly to a fluorescence sensor having an indicator made of an analyte and a hydrogel that generates fluorescence by excitation light.
  • a fluorometer that measures analyte concentration by injecting a solution to be measured containing a fluorescent dye and an analyte into a transparent container, irradiating excitation light, and measuring the fluorescence intensity from the fluorescent dye is known.
  • Fluorescent dyes change in properties due to the presence of an analyte, and generate fluorescence having an intensity corresponding to the analyte concentration when receiving excitation light.
  • a small fluorometer has a light source, a photodetector, and an indicator containing a fluorescent dye. And the excitation light from a light source is irradiated to the indicator which the analyte in a to-be-measured solution can enter / exit, and the photodetector receives the fluorescence which an indicator generate
  • the photodetector is a photoelectric conversion element and outputs an electrical signal corresponding to the received light intensity. The analyte concentration in the solution is calculated based on the electrical signal from the photodetector.
  • microfluorometer manufactured using semiconductor manufacturing technology and MEMS technology.
  • the microfluorometer is referred to as “fluorescence sensor”.
  • the fluorescent sensor 104 shown in FIGS. 1 and 2 is disclosed in International Publication No. 2010/119916.
  • the sensor unit 110 which is a main functional unit of the fluorescence sensor 104 includes a silicon substrate 111 on which a photoelectric conversion element 112 is formed, a transparent intermediate layer 113, a filter layer 114, a light emitting element 115, a transparent protective layer 116, An indicator 117 and a light shielding layer 118 are provided.
  • the analyte 9 passes through the light shielding layer 118 and enters the indicator 117.
  • the filter layer 114 of the fluorescence sensor 104 blocks the excitation light E and transmits the fluorescence F. Further, the light emitting element 115 transmits the fluorescence F.
  • the indicator 117 In the fluorescence sensor 104, when the excitation light E generated by the light emitting element 115 enters the indicator 117, the indicator 117 generates fluorescence F corresponding to the analyte concentration.
  • the fluorescent sensor 104 has a simple configuration and can be easily downsized.
  • the present invention has been made in view of the above circumstances, and its object is to provide a fluorescent sensor with high detection sensitivity.
  • the fluorescence sensor of one embodiment of the present invention is disposed in each of two substrate portions and a hollow portion formed in the two substrate portions, receives excitation light, and emits fluorescence having an intensity corresponding to the concentration of the analyte.
  • the two substrate parts comprising two indicators that generate, a light emitting element substrate part provided with a light emitting element that generates the excitation light, and one or more photoelectric conversion elements that convert the fluorescence into an electrical signal. Is formed so that the light emitting element substrate portion is sandwiched between the two indicators, and the light emitting element is disposed between the two indicators.
  • FIG. 5 is an exploded cross-sectional view taken along line VV in FIG. 4 at the distal end portion of the fluorescent sensor.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4 at the distal end portion of the fluorescent sensor.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG. 10 at the tip of the fluorescent sensor. It is a cross-sectional schematic diagram for demonstrating operation
  • the sensor system 1 includes a fluorescent sensor 4, a main body 2, and a receiver 3 that receives and stores a signal from the main body 2. Transmission / reception of signals between the main body 2 and the receiver 3 is performed wirelessly or by wire.
  • the fluorescent sensor 4 includes a needle portion 7 that is punctured by a subject and a connector portion 8 that is joined to the rear end portion of the needle portion 7.
  • the needle part 7 has an elongated needle body part 6 and a needle tip part 5 including a sensor part 10 which is a main function part. Needle tip 5, needle body 6, and connector 8 may be integrally formed of the same material, or may be separately produced and joined.
  • the connector part 8 is detachably fitted to the fitting part 2A of the main body part 2.
  • the plurality of wirings 60 extending from the sensor unit 10 of the fluorescent sensor 4 are electrically connected to the main body unit 2 when the connector unit 8 is mechanically fitted to the fitting unit 2A of the main body unit 2. .
  • Fluorescent sensor 4 is a needle-type sensor that can continuously measure the analyte concentration of a solution (body fluid) in a living body after inserting sensor unit 10 into the body for a predetermined period, for example, one week. However, the collected body fluid or the body fluid circulating through the body via the flow path outside the body may be brought into contact with the sensor unit 10 outside the body without inserting the sensor unit 10 into the body.
  • the main body unit 2 includes a control unit 2B that performs driving and control of the sensor unit 10, and a calculation unit 2C that processes a signal output from the sensor unit 10. Note that at least one of the control unit 2B and the calculation unit 2C may be disposed in the connector unit 8 of the fluorescent sensor 4 or may be disposed in the receiver 3.
  • the main body 2 further includes a radio antenna for transmitting and receiving radio signals to and from the receiver 3, a battery, and the like.
  • the main body 2 has a signal line instead of a wireless antenna.
  • the receiver 3 may not be provided when the main body 2 includes a memory unit having a necessary capacity.
  • the structure of the sensor unit 10 which is a main functional unit of the fluorescence sensor 4 will be described with reference to FIGS.
  • all the figures are schematic diagrams for explanation, and the vertical and horizontal dimensional ratios and the like are different from actual ones, and some components may not be shown.
  • the Z-axis direction shown in the figure is referred to as an upward direction in the fluorescence sensor 4.
  • the X-axis direction indicates the rear in the front-rear direction of the fluorescent sensor 4
  • the Y-axis direction indicates the left direction in the left-right direction.
  • the fluorescence sensor 4 of the first embodiment detects glucose in the body fluid of the subject.
  • the sensor unit 10 includes two frame-shaped substrate portions 40A and 40B having a through-hole 40X and a transparent resin interposed between the two frame-shaped substrate portions 40A and 40B.
  • Two indicators 17A and 17B disposed in a bonding substrate portion 30 to which a wiring substrate portion 20 as a light emitting element substrate portion formed of glass or the like is bonded, and through holes 40X of the frame-like substrate portions 40A and 40B.
  • a light emitting element 15 that is disposed on the wiring board portion 20 and emits light in the vertical and horizontal directions, two cover portions 18A and 18B that cover the opening of the upper surface or the lower surface of the through hole 40X, and the cover portions 18A and 18B Two light shielding layers 19A and 19B covering each of them are provided.
  • the first frame substrate portion 40A, the first indicator 17A, 17B, the two cover portions 18A, 18B, and the two light shielding layers 19A, 19B the first frame substrate portion 40A, the first indicator. 17A, the first cover portion 18A and the first light shielding layer 19A are on the upper side, and the second frame-shaped substrate portion 40B, the second indicator 17B, the second cover portion 18B and the second light shielding layer 19B are on the lower side. Are arranged so as to be laminated.
  • the first light shielding layer 19A, the first cover portion 18A, the first frame-like substrate portion 40A provided with the first indicator 17A, and the light emitting element 15 are provided on the upper surface.
  • the wiring board part 20, the second frame-like board part 40B provided with the second indicator 17B, the second cover part 18B, and the second light shielding layer 19B are laminated. That is, the two frame-like substrate portions 40A and 40B are disposed so as to sandwich the wiring substrate portion 20, and the first indicator 17A and the second indicator 17B are stacked so as to sandwich the light emitting element 15.
  • the cover portions 18A and 18B are formed by photodiode elements (hereinafter referred to as “PD elements”) 12A and 12B, which are photoelectric conversion elements that convert the fluorescence F from the light emitting element 15 into an electrical signal.
  • PD elements photodiode elements
  • the upper first cover portion 18A is provided with a first PD element 12A which is a photoelectric conversion element
  • the lower second cover portion 18B is provided with a second PD element 12B. ing.
  • the cover portions 18A and 18B are made of, for example, a silicon substrate having a minute through hole 18X (see FIG. 8), and the light receiving portions 12T of the PD elements 12A and 12B are formed on one side, respectively.
  • the PD elements 12A and 12B have a high conductivity and a low conductivity in which impurities are partially introduced in order to establish electrical connection between the base side of the one-conductivity type light receiving portion and the opposite conductivity type cover portions 18A and 18B.
  • the light receiving portion and the low resistance region may be collectively referred to as PD elements 12A and 12B. That is, the sensor unit 10 of the fluorescent sensor 4 of the present embodiment has a configuration in which two indicators 17A and 17B and PD elements 12A and 12B are provided above and below the light emitting element 15 as a boundary.
  • the minute through holes 18X of the cover portions 18A and 18B are entry paths through which the body fluid including the analyte 9 enters the indicators 17A and 17B. That is, body fluid can pass through the cover portions 18A and 18B.
  • the size, shape, position, and formation density of the minute through holes 18X of the cover portions 18A and 18B are appropriately selected according to the specifications.
  • the minute through holes 18X do not need to be arranged in an orderly manner.
  • the shape of the opening when the minute through hole 18X is observed from the upper surface may be any of a circle, a rectangle, a polygon, and the like.
  • the two cover portions 18A and 18B in which the minute through holes 18X are formed have the same structure as the membrane filter, but are produced by patterning the minute through holes 18X on a silicon plate or a silicon film, for example. .
  • the minute through hole 18X can be formed by dry etching such as ICP-RIE after an etching mask is formed on the surface of a silicon plate or the like by photolithography or a self-assembled film.
  • a machining method using a micro drill or the like may be used to form the minute through hole 18X.
  • a porous semiconductor that can pass a solution containing an analyte may be used for the cover portions 18A and 18B.
  • the porous means a material having voids and pores connected to the outside in the structure. The size, distribution, and shape of the voids / pores need not be regular as long as the solution can pass through.
  • the open porosity of the cover portions 18A and 18B is preferably 5 to 75% by volume, particularly preferably 20 to 50% by volume. If it is more than the said range, a bodily fluid will pass easily, and if it is below the said range, desired mechanical strength will be obtained.
  • the open porosity is a value measured by Archimedes method.
  • the two light shielding layers 19A and 19B provided on the upper and lower sides prevent the excitation light E and the fluorescence F from leaking to the outside, and at the same time, prevent the external light G from entering the indicator 17.
  • the two light shielding layers 19A and 19B have, for example, a submicron pore structure that does not prevent the analyte 9 from passing through the inside and reaching the adjacent indicators 17A and 17B.
  • a resin in which carbon black is mixed into an analyte-permeable polymer such as, or a resin obtained by laminating them is used.
  • a resin material such as silicon, glass or metal having a Young's modulus of several tens to several hundreds of GPa, or polypropylene or polystyrene having a Young's modulus of about 1 GPa to 5 GPa is used. .
  • the same silicon as the material of the cover portion 18A is particularly preferable.
  • the wiring board portion 20 is formed of a transparent resin, glass, or the like so that the excitation light E emitted downward from the light emitting element 15 can be transmitted to the lower indicator 17B side, but the through hole 40X is formed. Only a part may be formed from a transparent member, glass, etc., and may have a light transmittance.
  • the through-hole 40X in which the indicators 17A and 17B and / or the light emitting element 15 are housed is covered with the wiring board portion 20 at the lower surface or the upper surface, and the upper surface or the lower surface is covered with the cover portions 18A and 18B.
  • the side surface constitutes a hollow portion formed by the inner walls of the frame-like substrate portions 40A and 40B.
  • the hollow shape of the through hole 40X here is a rectangular parallelepiped (quadrangular columnar shape), but is not limited to this, and may be a columnar shape, a polygonal columnar shape, or the like. Note that the side surface of the through hole 40X may be inclined with respect to the main surface. Further, a reflective film that reflects the fluorescence F may be disposed on the side surface.
  • the wiring board portion 20 is provided with a wiring 51 that is connected to the external electrode 15T of the light emitting element 15 and supplies a driving signal.
  • wiring 61 for operating the PD elements 12A and 12B of the wiring 60 and transmitting signals is formed in the cover portions 18A and 18B.
  • the wirings 51 and 61 are a part of the plurality of wirings 60.
  • the light emitting element 15 is connected via the through holes 40a and 40b in which the wiring 61 for transmitting the signals of the PD elements 12A and 12B is formed in the frame-like substrate portions 40A and 40B.
  • the detection signal wiring 61 is disposed along with the driving wiring 51 on one main surface (upper surface side) of the wiring substrate section 20 by being guided to the upper surface side of the disposed wiring board section 20.
  • a filter that transmits the fluorescence F and blocks the excitation light E is used as a light receiving surface of the PD elements 12A and 12B, that is, the cover portions 18A and 18B. It is preferable to arrange on the surface facing the indicators 17A and 17B.
  • a filter for example, a light absorption filter that blocks the excitation light E having a wavelength of 375 nm but transmits the fluorescence F having a wavelength of 460 nm is used.
  • a minute through hole through which the analyte can pass is also formed in the filter.
  • the external electrode 15T on the lower surface of the light emitting element 15 is preferably sealed with an insulating resin. Furthermore, the light emitting element 15 may be sealed to the upper surface with a transparent resin or the like. The resin-sealed light emitting element 15 is not easily affected by moisture contained in the indicators 17A and 17B.
  • Indicator 17A, 17B consists of hydrogel which has the fluorescent pigment
  • the indicators 17A and 17B may be the analyte 9 itself in which the fluorescent dye that does not contain the fluorescent dye and the fluorescent dye that generates the fluorescence F exists in the solution.
  • Hydrogel is water such as acrylic hydrogel produced by polymerizing monomers such as polysaccharides such as methylcellulose or dextran, acrylamide, methylolacrylamide, hydroxyethyl acrylate, or urethane hydrogel produced from polyethylene glycol and diisocyanate. It is formed by encapsulating a fluorescent dye in a material that is easy to contain.
  • the hydrogel has a size that does not separate from the sensor through the cover portions 18A and 18B and the light shielding layers 19A and 19B.
  • the hydrogel may have a molecular weight of 1 million or more, or a particle having a diameter larger than the pore diameter of the cover portions 18A and 18B, for example, a particle having a diameter of 50 nm or more, or a form that is crosslinked and does not flow. preferable.
  • phenylboronic acid derivatives having a fluorescent residue are suitable as fluorescent dyes.
  • the fluorescent dye is prevented from detaching from the sensor by using a high molecular weight material or chemically fixing to a hydrogel.
  • the indicator is produced by polymerizing a phosphoric acid buffer containing a fluorescent dye, a gel skeleton-forming material, and a polymerization initiator in a nitrogen atmosphere for 1 hour.
  • a fluorescent dye 9,10-bis [N- [2- (5,5-dimethylborinan-2-yl) benzyl] -N- [6 ′-[(acryloyl polyethylene glycol-3400) carbonylamino ] -N-hexylamino] methyl] -2-acetylanthracene (F-PEG-AAm), acrylamide as the gel skeleton-forming material, sodium peroxodisulfate and N, N, N ′ as the polymerization initiator N'-tetramethylethylenediamine is used.
  • an element that emits light on both the upper and lower sides is selected from light emitting elements that emit desired excitation light E such as an LED element, an organic EL element, an inorganic EL element, or a laser diode element. Further, it is preferable to transmit the fluorescence F.
  • an LED element is used as the light emitting element 15, from the viewpoints of fluorescence transmittance, light generation efficiency, wide wavelength selectivity of the excitation light E, and generation of a light other than a wavelength having an excitation action. preferable.
  • an ultraviolet LED element made of a gallium nitride compound semiconductor formed on a sapphire substrate is particularly preferable.
  • the light emitting element 15 emits pulsed excitation light having a center wavelength of around 375 nm at an interval of once every 30 seconds, for example.
  • the current of the drive signal to the light emitting element 15 is 1 mA to 100 mA
  • the light emission pulse width is 1 ms to 100 ms.
  • the fluorescence F generated from the two indicators 17A and 17B is incident on the PD elements 12A and 12B on the upper surface or the lower surface of the indicators 17A and 17B.
  • the fluorescence F emitted according to the concentration of the analyte 9 is mostly the fluorescence F from the first indicator 17A by the first PD element 12A, and partly by the second PD element 12B.
  • the fluorescence F from the second indicator 17B is mostly detected by the first PD element 12B and partly by the first PD element 12A.
  • the fluorescent sensor 4 can efficiently use the excitation light E from the light emitting element 15 by arranging the indicators 17A and 17B and the PD elements 12A and 12B in the vertical direction with the light emitting element 15 interposed therebetween, so that the conventional fluorescent sensor Higher sensitivity than 104.
  • the fluorescence sensor 4A of the second embodiment will be described. Since the fluorescence sensor 4A is similar to the fluorescence sensor 4, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the fluorescent sensor 4A of the present embodiment is the same in that PD elements 12A and 12B, which are photoelectric conversion elements, are formed in the cover portions 18A and 18B.
  • PD elements 12A and 12B which are photoelectric conversion elements
  • cover portions 18A and 18B are formed in the cover portions 18A and 18B.
  • side opening portions 40S are formed on the side surfaces of the frame-shaped substrate portions 40A and 40B so as to communicate with the through holes 40X of the frame-shaped substrate portions 40A and 40B stacked with the wiring substrate portion 20 interposed therebetween.
  • the cover portions 18A and 18B disposed on the frame-like substrate portions 40A and 40B so as to cover the upper and lower sides of the through holes 40X are the functions of the light shielding layers 19A and 19B, that is, the external light G Has a function of preventing the excitation light E and the fluorescence F from leaking.
  • the two indicators 17A and 17B arranged in the through holes 40X in the frame-shaped substrate portions 40A and 40B are connected to the analytes from the total of the four side surface openings 40S via the light shielding layers 19A and 19B provided on the side surfaces. 9 can enter.
  • the analyte 9 is transmitted from the light shielding layers 19A, 19B provided on the side surfaces to the frame-shaped substrate portions 40A, 40B from the side surface openings 40S of the through holes 40X to the indicators 17A, Enter 17B.
  • the excitation light E emitted from the light emitting element 15 generates the fluorescence F corresponding to the concentration of the analyte 9 from the indicators 17A and 17B, and the fluorescence F1 emitted upward from the first indicator 17A located above is the first.
  • Fluorescence F2 detected by the first PD element 12A of the first cover portion 18A and emitted downward from the second indicator 17B located below is detected by the second PD element 12B of the second cover portion 18B.
  • the fluorescent sensor 4A of the present embodiment has minute through holes in the cover portions 18A and 18B that cover the upper and lower openings of the through holes 40X on the frame-like substrate portions 40A and 40B.
  • 18X does not need to be provided, and as a result, the minute through holes 18X are not formed in the PD elements 12A and 12B.
  • the area of entry of the analyte 9 is increased by the four side surface openings 40S, so that the analyte 9 can easily enter the indicators 17A and 17B, and the response to the concentration change of the analyte 9 is remarkably improved.
  • the side opening 40S communicating with the through-holes 40X of the frame-like substrate portions 40A and 40B is preferably formed on both side surfaces, but is not limited to this, and at least one side surface of the frame-like substrate portions 40A and 40B. It is good also as a structure formed in.
  • the fluorescence sensor 4B of the third embodiment will be described. Since the fluorescence sensor 4B is similar to the fluorescence sensor 4 of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the fluorescence sensor 4B shown in FIG. 13 has photoelectric conversion elements on the inner side surfaces of the frame-like substrate portions 40A and 40B that form the through holes 40X in which the indicators 17A and 17B are disposed. Are different in that PD elements 12C and 12D are formed.
  • PD elements 12C and 12D as light receiving portions are provided on the side surfaces of the through holes 40X of the frame-like substrate portions 40A and 40B (only the side surfaces in the front-rear direction are shown in FIG. 13).
  • the light shielding layers 19A and 19B are arranged so as to cover the openings on the upper surface or the lower surface of the through holes 40X of the frame-shaped substrate portions 40A and 40B.
  • Cover portions 18A and 18B including PD elements 12A and 12B may be provided between the light shielding layers 19A and 19B and the indicators 17A and 17B as in the first embodiment.
  • the analyte 9 enters the indicators 17A and 17B from the upper and lower light shielding layers 19A and 19B.
  • the fluorescent light F corresponding to the concentration of the analyte 9 is generated from the indicators 17A and 17B by the excitation light E from the light emitting element 15, and the fluorescent light F1 emitted laterally from the first indicator 17A located above is first.
  • Fluorescence F2 detected by one PD element 12C and emitted laterally from the second indicator 17B located below is detected by the second PD element 12D.
  • the fluorescence sensor 4B of the present embodiment does not have the PD elements 12B and 12C on the approach path of the analyte 9, so that the PD elements 12B and 12C are slightly penetrated. It is not necessary to provide the hole 18X, and the PD elements 12C and 12D are formed on the front, back, left and right side surfaces of the indicators 17A and 17B.
  • a PD element 12 ⁇ / b> E that is a photoelectric conversion element is provided between the first indicator 17 ⁇ / b> A and the light emitting element 15. That is, in the fluorescent sensor 4C, the light emitting element 15 is disposed between the PD element 12E and the second indicator 17B.
  • a through hole 12X is formed in the approximate center of the PD element 12E. Then, the excitation light E from the light emitting element 15 enters the second indicator 17B on the lower side and enters the first indicator 17A on the upper side through the through hole 12X. A plurality of through holes 12X may be formed in the PD element 12E.
  • the fluorescence F1 emitted downward from the first indicator 17A and the fluorescence F2 emitted upward from the second indicator 17B are both detected by the PD element 12E.
  • the fluorescence sensor 4D is provided with two PD elements 12EA and 12EB each having a through hole 12X, and these PD elements 12EA and 12EB are arranged vertically so as to sandwich the light emitting element 15. May be.
  • the fluorescence F1 emitted downward from the first indicator 17A is emitted from the first PD element 12EA, and the fluorescence F2 emitted upward from the second indicator 17B is emitted from the second PD element 12EB. Detected.
  • the fluorescence sensors 4C and 4D of the present embodiment have high sensitivity because there is no PD element 12 on the entry path of the analyte 9, and therefore it is not necessary to provide the minute through hole 18X in the PD element 12.
  • the fluorescent sensor 4E here has a structure in which the fluorescent sensor 4B shown in FIG. 13 and the fluorescent sensor 4C shown in FIG. 14 are combined.
  • the fluorescence F1 emitted downward from the first indicator 17A on the upper side is detected by the PD element 12E, and the fluorescence F2 emitted in the lateral direction is detected by the PD element 12C. Further, the fluorescence F3 emitted upward from the second indicator 17B on the lower side is detected by the PD element 12E, and the fluorescence F4 emitted in the lateral direction is detected by the PD element 12D.
  • the fluorescence sensor 4F here may have a structure in which the fluorescence sensor 4B shown in FIG. 13 and the fluorescence sensor 4D shown in FIG. 15 are combined.
  • the fluorescence F1 emitted downward from the first indicator 17A on the upper side is detected by the PD element 12EA, and the fluorescence F2 emitted horizontally is detected by the PD element 12C. Further, the fluorescence F3 emitted upward from the second indicator 17B on the lower side is detected by the PD element 12EB, and the fluorescence F4 emitted in the lateral direction is detected by the PD element 12D.
  • the fluorescence sensors 4E and 4F of the present embodiment have high sensitivity because there is no PD element 12 on the approach path of the analyte 9, and therefore it is not necessary to provide the minute through hole 18X in the PD element 12.
  • the shape of the sensor part of the fluorescence sensor demonstrated in the said several embodiment was a right-angled column shape, trapezoid shape, the shape where the side was curved, or a column shape etc. may be sufficient.
  • the wiring board 20 does not have optical transparency, for example, as shown in FIG. 18, two wiring boards 20A and 20B provided with light emitting elements 15A and 15B are bonded in the vertical direction. It is good.
  • FIG. 19 even if a hole 20a is provided in a part of the wiring substrate 20 facing the light emitting element 15 so that the excitation light E from the light emitting element 15 enters the second indicator 17B side. Good. That is, in the configuration of FIG. 19, the excitation light E that has passed through the hole 20 formed in the wiring board 20 is incident on the second indicator 17B.
  • the fluorescence sensor is compatible with various uses such as an enzyme sensor, a pH sensor, an immunosensor, or a microorganism sensor by selecting a fluorescent dye.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 蛍光センサ4は、2つの基板部40A,40Bと、2つの基板部40A,40Bに形成された中空部にそれぞれ配設され、励起光Eを受光してアナライト9の濃度に応じた強度の蛍光Fを発生する2つのインジケータ17A,17Bと、励起光Eを発生する発光素子15が設けられた発光素子基板部20と、蛍光Fを電気信号に変換する1つ以上の光電変換素子12と、を備え、2つの基板部40A,40Bによって発光素子基板部20を挟むように接合された接合基板部30が形成され、2つのインジケータ17A,17Bとの間に発光素子15が挟まれるように配設されている。

Description

蛍光センサ
 本発明は、溶液中のアナライトの濃度を計測する蛍光センサに関し、特に、アナライト及び励起光により蛍光を発生するハイドロゲルからなるインジケータを具備する蛍光センサに関する。
 溶液中のアナライトすなわち被計測物質の濃度を測定するための様々な分析装置が開発されている。例えば、蛍光色素とアナライトとを含む被計測溶液とを透明容器に注入し、励起光を照射し蛍光色素からの蛍光強度を計測することによりアナライト濃度を計測する蛍光光度計が知られている。蛍光色素は、アナライトの存在によって性質が変化し励起光を受光するとアナライト濃度に対応した強度の蛍光を発生する。
 小型の蛍光光度計は、光源と光検出器と蛍光色素を含有したインジケータとを有している。そして、被計測溶液中のアナライトが出入り自在なインジケータに光源からの励起光を照射し、インジケータが発生する蛍光を光検出器が受光する。光検出器は光電変換素子であり、受光強度に応じた電気信号を出力する。光検出器からの電気信号をもとに溶液中のアナライト濃度が算出される。
 微量試料中のアナライトを計測するために、半導体製造技術及びMEMS技術を用いて作製される微小蛍光光度計が提案されている。以下、微小蛍光光度計のことを「蛍光センサ」という。
 図1及び図2に示す蛍光センサ104が国際公開第2010/119916号パンフレットに開示されている。蛍光センサ104の主機能部であるセンサ部110は、光電変換素子112が形成されているシリコン基板111と、透明中間層113と、フィルタ層114と、発光素子115と、透明保護層116と、インジケータ117と、遮光層118と、を有する。アナライト9は、遮光層118を通過して、インジケータ117に進入する。蛍光センサ104のフィルタ層114は励起光Eを遮断し蛍光Fを透過する。さらに、発光素子115は蛍光Fを透過する。
 蛍光センサ104では、発光素子115が発生した励起光Eがインジケータ117に入射すると、インジケータ117はアナライト濃度に応じた蛍光Fを発生する。
 インジケータ117が発生した蛍光Fの一部は、発光素子115とフィルタ層114とを通過し、光電変換素子112に入射し光電変換される。なお、発光素子115が光電変換素子112の方向(下方向)に出射した励起光Eは、フィルタ層114により蛍光強度と比較して計測上問題ないレベルまで減光される。蛍光センサ104は、構成が単純で小型化が容易である。
 しかし、蛍光センサ104は光電変換素子112が発光素子115の下面にあるため、光電変換素子112による蛍光Fの受光効率が良いとはいえない。このため、より検出感度が高い蛍光センサが求められていた。
 そこで、本発明は、上記事情に鑑みて成されたものであり、その目的とするところは、検出感度が高い蛍光センサを提供することである。
 本発明の一態様の蛍光センサは、2つの基板部と、前記2つの基板部に形成された中空部にそれぞれ配設され、励起光を受光してアナライトの濃度に応じた強度の蛍光を発生する2つのインジケータと、前記励起光を発生する発光素子が設けられた発光素子基板部と、前記蛍光を電気信号に変換する1つ以上の光電変換素子と、を備え、前記2つの基板部によって前記発光素子基板部を挟むように接合された接合基板部が形成され、前記2つのインジケータとの間に前記発光素子が挟まれるように配設されている。
従来の蛍光センサの断面構造を示した説明図である。 従来の蛍光センサの構造を示した分解図である。 第1実施形態のセンサシステムの構成図である。 同、蛍光センサの先端部の斜視図である。 同、蛍光センサの先端部における図4のV-V線に沿った分解断面図である。 同、蛍光センサの先端部における図4のV-V線に沿った断面図である。 同、蛍光センサの動作を説明するための断面模式図である。 同、蛍光センサのカバー部の斜視図である。 第2実施形態の蛍光センサの先端部における分解断面図である。 同、蛍光センサの先端部の斜視図である。 同、蛍光センサの先端部における図10のXI-XI線に沿った断面図である。 同、蛍光センサの動作を説明するための断面模式図である。 第3実施形態の蛍光センサの動作を説明するための断面模式図である。 第4実施形態の蛍光センサの動作を説明するための断面模式図である。 同、変形例の蛍光センサの動作を説明するための断面模式図である。 第5実施形態の蛍光センサの動作を説明するための断面模式図である。 同、変形例の蛍光センサの動作を説明するための断面模式図である。 蛍光センサの先端部を示し、配線基板構成の一例を示す断面図である。 蛍光センサの先端部を示し、配線基板構成の他例を示す断面図である。
 <第1実施形態>
 本発明の第1実施形態の蛍光センサ4及びセンサシステム1について説明する。図3に示すように、センサシステム1は、蛍光センサ4と、本体部2と、本体部2からの信号を受信し記憶するレシーバー3と、を有する。本体部2とレシーバー3との間の信号の送受信は無線または有線で行われる。
 蛍光センサ4は、被検体に穿刺される針部7と、針部7の後端部と接合されたコネクタ部8と、からなる。針部7は、細長い針本体部6と、主要機能部であるセンサ部10を含む針先端部5と、を有する。針先端部5、針本体部6、コネクタ部8は、同一材料により一体形成されていてもよいし、別々に作製され接合されていてもよい。
 コネクタ部8は、本体部2の嵌合部2Aと着脱自在に嵌合する。蛍光センサ4のセンサ部10から延設された複数の配線60は、コネクタ部8が本体部2の嵌合部2Aと機械的に嵌合することにより、本体部2と電気的に接続される。
 蛍光センサ4は、センサ部10を体内に挿入後、所定期間、例えば、1週間、継続して生体内の溶液(体液)のアナライト濃度を測定可能な針型センサである。しかし、センサ部10を体内に挿入しないで、採取した体液、または体外の流路を介して体内と循環する体液を、体外においてセンサ部10と接触させてもよい。
 本体部2は、センサ部10の駆動及び制御などを行う制御部2Bと、センサ部10から出力された信号を処理する演算部2Cと、を有する。なお、制御部2Bまたは演算部2Cの少なくともいずれかが、蛍光センサ4のコネクタ部8等に配設されていてもよいし、レシーバー3に配設されていてもよい。
 図示しないが、本体部2は、レシーバー3との間で無線信号を送受信するための無線アンテナと、電池等と、をさらに有する。レシーバー3との間の信号を有線にて送受信する場合には、本体部2は無線アンテナに代えて信号線を有する。なお、本体部2が必要な容量のメモリ部を有する場合にはレシーバー3はなくてもよい。
<センサ部の構造>
 次に、図4~図8を用いて、蛍光センサ4の主要機能部であるセンサ部10の構造について説明する。なお、図は、いずれも説明のための模式図であり、縦横の寸法比等は実際とは異なっており、一部の構成要素を図示しない場合もある。また、図に示すZ軸方向を蛍光センサ4における上方向という。さらに、図中、X軸方向が蛍光センサ4における前後方向の後方を示し、Y軸方向が左右方向の左方向を示している。
 第1実施形態の蛍光センサ4は、被検体の体液中のグルコースを検出する。図4及び図5に示すように、センサ部10は、貫通孔40Xのある2つの枠状基板部40A,40Bとこれら2つの枠状基板部40A,40Bの間に介装される透明樹脂、ガラスなどから形成された発光素子基板部としての配線基板部20とがそれぞれ接合された接合基板部30と、枠状基板部40A,40Bの貫通孔40Xに配設される2つのインジケータ17A,17Bと、配線基板部20上に配設され、上下左右方向に発光する発光素子15と、貫通孔40Xの上面または下面の開口を覆う2つのカバー部18A,18Bと、これらカバー部18A,18Bのそれぞれを覆う2つの遮光層19A,19Bと、を有する。
 なお、2つの枠状基板部40A,40B、2つのインジケータ17A,17B、2つのカバー部18A,18Bおよび2つの遮光層19A,19Bのうち、第1の枠状基板部40A、第1のインジケータ17A、第1のカバー部18Aおよび第1の遮光層19Aが上方側、第2の枠状基板部40B、第2のインジケータ17B、第2のカバー部18Bおよび第2の遮光層19Bが下方側にそれぞれが積層するように配置されている。
 具体的には、上方から順に、第1の遮光層19A、第1のカバー部18A、第1のインジケータ17Aが設けられた第1の枠状基板部40A、発光素子15が上面に設けられた配線基板部20、第2のインジケータ17Bが設けられた第2の枠状基板部40B、第2のカバー部18Bおよび第2の遮光層19Bが積層されている。すなわち、2つの枠状基板部40A,40Bが配線基板部20を挟むように配設され、第1のインジケータ17Aおよび第2のインジケータ17Bが発光素子15を挟むように積層される。
 ここでの蛍光センサ4は、カバー部18A,18Bが、発光素子15からの蛍光Fを電気信号に変換する光電変換素子であるフォトダーオード素子(以下「PD素子」という)12A,12Bが形成された、アナライト9が通過する半導体材料からなる。なお、上方側の第1のカバー部18Aには、光電変換素子である第1のPD素子12Aが設けられ、下方側の第2のカバー部18Bには、第2のPD素子12Bが設けられている。
 カバー部18A,18Bは、微少貫通孔18X(図8参照)のある、例えばシリコン基板からなり、片面にそれぞれPD素子12A,12Bの受光部12Tが形成されている。なお、PD素子12A,12Bは、一導電型の受光部と、それとは反対導電型のカバー部18A,18Bの基体側の電気接続をとるために部分的に不純物を導入した導電率の高い低抵抗領域とから構成されているが、以下、受光部と低抵抗領域を合わせて、PD素子12A,12Bということがある。すなわち、本実施形態の蛍光センサ4のセンサ部10には、発光素子15を境に上下に2つのインジケータ17A,17BおよびPD素子12A,12Bが設けられた構成となっている。
 カバー部18A,18Bの微少貫通孔18Xは、アナライト9を含む体液がインジケータ17A,17Bに進入する進入経路である。すなわち、カバー部18A,18Bは、体液が通過可能である。
 カバー部18A,18Bの微少貫通孔18Xの大きさ、形状、位置、及び形成密度は、仕様により適宜、選択される。例えば、微少貫通孔18X(図8参照)は、整然と配列している必要はない。また、微少貫通孔18Xを上面から観察したときの開口部の形状は、円形、矩形、または多角形等のいずれでもよい。
 微少貫通孔18Xが形成された2つのカバー部18A,18Bは、メンブレンフィルタと同様の構造であるが、例えば、シリコン板またはシリコン膜等に、微少貫通孔18Xをパターニング形成することにより作製される。具体的には、微少貫通孔18Xは、シリコン板等の表面に、フォトリソグラフィまたは自己組織化膜等によりエッチングマスクを形成した後に、ICP-RIE等のドライエッチングにより作製できる。微少貫通孔18Xの形成には、マイクロドリル等による機械加工法を用いてもよい。
 また、カバー部18A,18Bには、アナライトを含む溶液が通過可能な多孔質半導体を用いてもよい。なお、多孔質とは構造中に外部と接続された空隙およびと気孔をもつ材料を意味する。空隙/気孔の、大きさ、分布及び形状は、溶液が通過可能であれば、規則性を有している必要はない。
 カバー部18A,18Bの開気孔率は5~75体積%が好ましく、特に好ましくは20~50体積%である。前記範囲以上であれば、体液が通過しやすく、前記範囲以下であれば所望の機械的強度が得られる。なお、開気孔率は、アルキメデス法により測定した値である。
 上下に設けられた2つの遮光層19A,19Bは、励起光E及び蛍光Fが外部へ漏光するのを防止すると同時に、外光Gがインジケータ17に進入することを防止する。
 2つの遮光層19A,19Bは、アナライト9が、その内部を通過して近接するインジケータ17A,17Bに到達するのを妨げない、例えば、サブミクロンサイズのポア構造である。遮光層19A,19Bには、金属、セラミック等の無機材料または、ポリイミドもしくはポリウレタン等の有機ポリマーの基材にカーボンブラックが混入されたハイドロゲル類とのコンポジット組成物、または、セルロース類もしくはポリアクリルアミド等のアナライト透過性ポリマーにカーボンブラックを混入した樹脂、または、それらを積層化した樹脂等を用いる。
 2つの枠状基板部40A,40Bには、ヤング率が数十GPaから数百GPaのシリコン、ガラスもしくは金属等、または、ヤング率が1GPa~5GPaの程度のポリプロピレンもしくはポリスチレン等の樹脂材料を用いる。カバー部18Aの材料と同じシリコンが、特に好ましい。なお、配線基板部20は、下面側のインジケータ17B側へ発光素子15から下方側へ発光された励起光Eが透過できるように透明樹脂、ガラス等から形成されるが、貫通孔40Xを形成する部分のみが透明部材、ガラス等から形成されて光透過性を有しているものでもよい。
 インジケータ17A,17B及び/または発光素子15が内部に収容されている貫通孔40Xは、下面または上面が配線基板部20に覆われており、上面または下面がカバー部18A,18Bに覆われており、側面が枠状基板部40A,40Bの内壁により形成された中空部を構成する。ここでの貫通孔40Xの中空形状は、直方体(四角柱状)であるが、これに限定されることなく、円柱状、または多角柱状等であってもよい。なお、貫通孔40Xの側面は、主面に対して傾斜していてもよい。さらに、側面に蛍光Fを反射する反射膜が配設されていてもよい。
 配線基板部20には、発光素子15の外部電極15Tと接続され駆動信号を供給する配線51が配設されている。カバー部18A,18Bには、配線60のうちPD素子12A,12Bを動作させ、信号を伝送する配線61が形成されている。また、配線51、61は複数の配線60の一部である。なお、図6に示すように、配線60のうちPD素子12A,12Bの信号を伝送する配線61が枠状基板部40A,40Bに形成されたスルーホール40a,40bを介して、発光素子15が配設されている配線基板部20の上面側に導かれて、配線基板部20の一主面(上面側)にて駆動用の配線51と共に、検出信号用の配線61が配置される。
 なお、PD素子12A,12Bに励起光Eが入射するのを防止するために、蛍光Fを透過し励起光Eを遮るフィルタを、PD素子12A,12Bの受光面、すなわち、カバー部18A,18Bのインジケータ17A,17Bに対向する面に配設するのが好ましい。このようなフィルタには、例えば、波長375nmの励起光Eを遮断するが、波長460nmの蛍光Fは透過する光吸収型フィルタを用いる。フィルタを配設する場合には、フィルタにもアナライトが通過可能な微少貫通孔が形成される。また、発光素子15の下面の外部電極15Tは絶縁性樹脂で封止されていることが好ましい。さらに、発光素子15が上面まで透明樹脂等で封止されていてもよい。樹脂封止されている発光素子15は、インジケータ17A,17Bが含有する水分の影響を受けにくい。
 インジケータ17A,17Bは、アナライト9及び励起光Eにより、励起光Eよりも長波長の蛍光Fを発生する蛍光色素を有するハイドロゲルからなる。すなわち2つのインジケータ17A,17Bは、試料中のアナライト濃度に応じた光量の蛍光Fを発生する蛍光色素を含み、励起光E及び蛍光Fが良好に透過するハイドロゲルから構成されている。なお、インジケータ17A,17Bが蛍光色素を含まず、蛍光Fを発生する蛍光色素が溶液中に存在するアナライト9そのものでもよい。
 ハイドロゲルは、メチルセルロースもしくはデキストラン等の多糖類、アクリルアミド、メチロールアクリルアミド、ヒドロキシエチルアクリレート等のモノマーを重合して作製するアクリル系ハイドロゲル、またはポリエチレングリコールとジイソシアネートから作製するウレタン系ハイドロゲル等の水を含みやすい材料に蛍光色素を内包することにより形成されている。
 ハイドロゲルは、カバー部18A,18B及び遮光層19A,19Bを介してセンサ外に離脱することがない大きさであることが好ましい。このため、ハイドロゲルは、構成する分子が分子量100万以上であるか、またはカバー部18A,18Bの孔径以上の例えば径50nm以上の粒子状であるか、または架橋され流動しない形態であることが好ましい。
 一方、蛍光色素としては、グルコース等の糖類を測定する場合には、蛍光残基を有するフェニルボロン酸誘導体等が適している。蛍光色素は、高分子量材料としたり、または、ハイドロゲルに化学的に固定したりすることにより、センサ外に離脱することが防止されている。
 蛍光色素と、ゲル骨格形成材と、重合開始剤と、を含むリン酸緩衝液を、窒素雰囲気下で1時間放置し、重合することにより、インジケータは作製される。例えば、蛍光色素としては、9、10-ビス[N-[2-(5,5-ジメチルボリナン-2-イル)ベンジル]-N-[6‘-[(アクリロイルポリエチレングリコール-3400)カルボニルアミノ]-n-ヘキシルアミノ]メチル]-2-アセチルアントラセン(F-PEG-AAm)を、ゲル骨格形成材としては、アクリルアミドを、重合開始剤としては、ペルオキソ二硫酸ナトリウム及びN、N、N’、N‘-テトラメチルエチレンジアミンを用いる。
 発光素子15としては、LED素子、有機EL素子、無機EL素子、またはレーザーダイオード素子等の所望の励起光Eを発光する発光素子の中から、上下両面に発光する素子が選択される。また、蛍光Fを透過することが好ましい。
 なお、発光素子15としては、蛍光透過率、光発生効率、励起光Eの波長選択性の広さ、及び励起作用のある波長以外の光を僅かしか発生しないこと等の観点から、LED素子が好ましい。さらにLED素子の中でも、サファイア基板上に形成された窒化ガリウム系化合物半導体よりなる紫外LED素子が、特に好ましい。
 発光素子15は、例えば30秒に1回の間隔で中心波長が375nm前後の励起光をパルス発光する。例えば、発光素子15への駆動信号の電流は1mA~100mAであり、発光のパルス幅は1ms~100msである。
 本実施形態の蛍光センサ4では、図7に示すように、2つのインジケータ17A,17Bから発生した蛍光Fがインジケータ17A,17Bの上面または下面のPD素子12A,12Bに入射する。このとき、アナライト9の濃度に応じて発光する蛍光Fは、第1のインジケータ17Aからの蛍光Fがその大部分は第1のPD素子12Aに、一部分は第2のPD素子12Bによって、第2のインジケータ17Bからの蛍光Fが大部分は第1のPD素子12Bによって、一部分は第1のPD素子12Aによって検出される。そのため、蛍光センサ4は、発光素子15を挟んで上下方向にインジケータ17A,17B及びPD素子12A,12Bを配置することで、発光素子15からの励起光Eを効率よく利用できるため従来の蛍光センサ104より高感度となる。
<第2実施形態>
 次に、第2実施形態の蛍光センサ4Aについて説明する。蛍光センサ4Aは蛍光センサ4と類似しているので、同じ構成要素には同じ符号を付し、説明は省略する。
 本実施形態の蛍光センサ4Aは、第1実施形態の蛍光センサ4と比較すると、カバー部18A,18Bに光電変換素子であるPD素子12A,12Bが形成されている点では同じであるが、図9に示すように、配線基板部20を挟んで積層する枠状基板部40A,40Bの貫通孔40Xに連通するよう側面開口部40Sを枠状基板部40A,40Bの側面に形成し、図10および図11に示すように、側面開口部40Sを覆うように2つの遮光層19A,19Bを側面に配置した点で異なっている。そして、ここでの蛍光センサ4Aでは、枠状基板部40A,40Bに貫通孔40Xの上下を覆うように配設されるカバー部18A,18Bが遮光層19A,19Bの機能、すなわち、外光Gの進入を防止し、励起光E及び蛍光Fの漏光を防止する機能、を有する。
 すなわち、枠状基板部40A,40Bに貫通孔40Xに配置される2つのインジケータ17A、17Bには、側面に設けられた遮光層19A,19Bを介して、合計4つの側面開口部40Sからアナライト9が進入可能となる。
 具体的には、図12に示す、蛍光センサ4Aでは、側面に設けられた遮光層19A,19Bからアナライト9が枠状基板部40A,40Bに貫通孔40Xの側面開口部40Sからインジケータ17A,17Bに進入する。そして、発光素子15で発光する励起光Eにより、インジケータ17A,17Bからアナライト9の濃度に応じた蛍光Fが発生し、上方に位置する第1のインジケータ17Aから上方に出射する蛍光F1が第1のカバー部18Aの第1のPD素子12Aにより検出され、下方に位置する第2のインジケータ17Bから下方向に出射する蛍光F2が第2のカバー部18Bの第2のPD素子12Bにより検出される。
 以上から本実施形態の蛍光センサ4Aは、第1実施形態の蛍光センサ4の効果に加え、枠状基板部40A,40Bに貫通孔40Xの上下の開口を覆うカバー部18A,18Bに微少貫通孔18Xを設けなくてよく、その結果、PD素子12A,12Bにも微少貫通孔18Xが形成されないため、さらに、高感度となる。また、4つの側面開口部40Sによって、アナライト9の進入面積が大きくなることで、インジケータ17A,17Bにアナライト9が進入し易くなり、アナライト9の濃度変化に対するレスポンスが格段に向上する。
 なお、枠状基板部40A,40Bの貫通孔40Xに連通する側面開口部40Sは、両側面に形成したほうが好ましいが、これに限定されることなく、枠状基板部40A,40Bの少なくとも一側面に形成する構成としてもよい。
<第3実施形態>
 次に、第3実施形態の蛍光センサ4Bについて説明する。蛍光センサ4Bは、第1実施形態の蛍光センサ4と類似しているので、同じ構成要素には同じ符号を付し、説明は省略する。
 図13に示す蛍光センサ4Bは、第1実施形態の蛍光センサ4と比較すると、インジケータ17A,17Bが配設される貫通孔40Xを形成する枠状基板部40A,40Bの内側面に光電変換素子としてのPD素子12C,12Dが形成されている点が異なる。
 具体的には、蛍光センサ4Bは、枠状基板部40A,40Bの貫通孔40Xのそれぞれの側面に受光部としてのPD素子12C,12Dが設けられる(なお、図13では前後方向の側面のみ図示)。また、ここでは、枠状基板部40A,40Bの貫通孔40Xの上面または下面の開口部を覆うように遮光層19A,19Bが配設されている。なお、これら遮光層19A,19Bとインジケータ17A,17Bの間にも、第1実施形態と同様に、PD素子12A,12Bを備えたカバー部18A,18Bを設けてもよい。
 このように構成された蛍光センサ4Bは、上下の遮光層19A,19Bからアナライト9がインジケータ17A,17Bに進入する。そして、発光素子15からの励起光Eにより、インジケータ17A,17Bからアナライト9の濃度に応じた蛍光Fが発生し、上方に位置する第1のインジケータ17Aから横方向に出射する蛍光F1が第1のPD素子12Cにより検出され、下方に位置する第2のインジケータ17Bから横方向に出射する蛍光F2が第2のPD素子12Dにより検出される。
 以上から本実施形態の蛍光センサ4Bは、第1実施形態の蛍光センサ4の効果に加え、アナライト9の進入経路上にPD素子12B,12Cがないため、これらPD素子12B,12Cに微少貫通孔18Xを設けなくてよく、さらに、インジケータ17A,17Bの前後左右の側面にPD素子12C,12Dが形成されているため、より高感度となる。
<第4実施形態>
 次に、第4実施形態の蛍光センサ4C,4Dについて説明する。なお、蛍光センサ4C,4Dは、第1実施形態の蛍光センサ4と類似しているので、同じ構成要素には同じ符号を付し、説明は省略する。
 図14に示すように、ここでの蛍光センサ4Cは、第1のインジケータ17Aと発光素子15との間に光電変換素子であるPD素子12Eが設けられている。すなわち、蛍光センサ4Cは、PD素子12Eと第2のインジケータ17Bとの間に発光素子15が配設されている。
 PD素子12Eの略中央には、貫通孔12Xが形成されている。そして、発光素子15からの励起光Eは、下方側の第2のインジケータ17Bに入射すると共に、貫通孔12Xを介して上方側の第1のインジケータ17Aに入射する。なお、PD素子12Eに複数の貫通孔12Xが形成されていてもよい。
 ここでの蛍光センサ4Cでは、第1のインジケータ17Aから下方向に出射する蛍光F1と、第2のインジケータ17Bから上方に出射する蛍光F2とが、共にPD素子12Eにより検出される。
 なお、図15に示すように、蛍光センサ4Dは、貫通孔12Xが形成された2つのPD素子12EA,12EBを設けて、これらPD素子12EA,12EBが発光素子15を挟むように上下に配設してもよい。
 ここでの蛍光センサ4Dでは、第1のインジケータ17Aから下方向に出射する蛍光F1が第1のPD素子12EAに、第2のインジケータ17Bから上方に出射する蛍光F2が第2のPD素子12EBにより検出される。
 以上から本実施形態の蛍光センサ4C,4Dは、いずれもアナライト9の進入経路上にPD素子12がないため、PD素子12に微少貫通孔18Xを設けなくてよいため高感度となる。
<第5実施形態>
 次に、第5実施形態の蛍光センサ4E,4Fについて説明する。なお、蛍光センサ4E,4Fは、第1実施形態の蛍光センサ4と類似しているので、同じ構成要素には同じ符号を付し、説明は省略する。
 図16に示すように、ここでの蛍光センサ4Eは、図13に示した蛍光センサ4Bと、図14に示した蛍光センサ4Cと、を組み合わせた構造である。
 すなわち、ここでの蛍光センサ4Eでは、上方側の第1のインジケータ17Aから下方向に出射する蛍光F1がPD素子12Eにより検出され、横方向に出射する蛍光F2がPD素子12Cにより検出される。また、下方側の第2のインジケータ17Bから上方向に出射する蛍光F3はPD素子12Eにより検出され、横方向に出射する蛍光F4はPD素子12Dにより検出される。
 さらに、図17に示すように、ここでの蛍光センサ4Fは、図13に示した蛍光センサ4Bと、図15に示した蛍光センサ4Dと、を組み合わせた構造でもよい。
 すなわち、ここでの蛍光センサ4Fでは、上方側の第1のインジケータ17Aから下方向に出射する蛍光F1がPD素子12EAにより検出され、横方向に出射する蛍光F2がPD素子12Cにより検出される。また、下方側の第2のインジケータ17Bから上方向に出射する蛍光F3はPD素子12EBにより検出され、横方向に出射する蛍光F4がPD素子12Dにより検出される。
 以上から本実施形態の蛍光センサ4E,4Fは、いずれもアナライト9の進入経路上にPD素子12がないため、PD素子12に微少貫通孔18Xを設けなくてよいため高感度となる。
 なお、複数の上記実施形態において説明した蛍光センサのセンサ部の形状は直角柱形状であったが、台形形状、側面が湾曲した形状、または円柱状等であってもよい。
 さらに、配線基板20は、光透過性を有していなくとも、例えば、図18に示すように、発光素子15A,15Bが設けられた2つの配線基板20A,20Bを上下方向に貼り合わせた構成としてもよい。なお、図19に示すように、発光素子15からの励起光Eが第2のインジケータ17B側に入射するよう配線基板20の発光素子15が設けられた対向する一部分に孔部20aを設けてもよい。すなわち、図19の構成においては、配線基板20に形成された孔部20を通過した励起光Eが第2のインジケータ17Bに入射される。
 また、グルコース等の糖類を検出するセンサを例に説明したが、蛍光センサは、蛍光色素の選択によって、酵素センサ、pHセンサ、免疫センサ、または微生物センサ等の多様な用途に対応している。
 すなわち、本発明は、上述した実施形態及び変形例に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等ができる。

Claims (10)

  1.  2つの基板部と、
     前記2つの基板部に形成された中空部にそれぞれ配設され、励起光を受光してアナライトの濃度に応じた強度の蛍光を発生する2つのインジケータと、
     前記励起光を発生する発光素子が設けられた発光素子基板部と、
     前記蛍光を電気信号に変換する1つ以上の光電変換素子と、
     を備え、
     前記2つの基板部によって前記発光素子基板部を挟むように接合された接合基板部が形成され、前記2つのインジケータの間に前記発光素子が挟まれるように配設されたことを特徴とする蛍光センサ。
  2.  前記1つ以上の光電変換素子が前記接合基板部の上面および下面に形成される前記中空部の開口に配置され、前記2つのインジケータに対向するように設けられていることを特徴とする請求項1に記載の蛍光センサ。
  3.  前記中空部の開口を覆うように配設され、前記アナライトが通過する貫通孔および前記光電変換素子が設けられた半導体材料からなるカバー部を備えていることを特徴とする請求項1または請求項2に記載の蛍光センサ。
  4.  前記接合基板部の上下面には、前記アナライトが通過する遮光層が設けられていることを特徴とする請求項1から請求項3のいずれかに記載の蛍光センサ。
  5.  前記2つの基板部の側部には、前記中空部に連通する側面開口部が形成され、
     前記側面開口部を覆うように前記アナライトが通過する遮光層が設けられていることを特徴とする請求項1から請求項4のいずれかに記載の蛍光センサ。
  6.  前記1つ以上の光電変換素子が前記中空部を形成する前記2つの基板部の内側面に配設されていることを特徴とする請求項1から請求項4のいずれかに記載の蛍光センサ。
  7.  前記1つ以上の光電変換素子の少なくとも1つが前記インジケータと前記発光素子との間に配設されていることを特徴とする請求項1から請求項6のいずれかに記載の蛍光センサ。
  8.  前記1つ以上の光電変換素子が前記2つのインジケータと前記発光素子との間に配設されていることを特徴とする請求項7に記載の蛍光センサ。
  9.  前記発光素子基板部は、光透過性を有していることを特徴とする請求項1から請求項8のいずれかに記載の蛍光センサ。
  10.  前記発光素子基板部は、前記発光素子が設けられた一部に励起光が通過するための孔部を有していることを特徴とする請求項1から請求項8のいずれかに記載の蛍光センサ。
PCT/JP2012/074179 2012-09-21 2012-09-21 蛍光センサ WO2014045388A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074179 WO2014045388A1 (ja) 2012-09-21 2012-09-21 蛍光センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074179 WO2014045388A1 (ja) 2012-09-21 2012-09-21 蛍光センサ

Publications (1)

Publication Number Publication Date
WO2014045388A1 true WO2014045388A1 (ja) 2014-03-27

Family

ID=50340742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074179 WO2014045388A1 (ja) 2012-09-21 2012-09-21 蛍光センサ

Country Status (1)

Country Link
WO (1) WO2014045388A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910661A (en) * 1997-05-13 1999-06-08 Colvin, Jr.; Arthur E. Flourescence sensing device
JP2001525930A (ja) * 1997-05-13 2001-12-11 コルビン,アーサー・イー・ジュニア 改良された蛍光検出デバイス
JP2002523774A (ja) * 1998-08-26 2002-07-30 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド 光学式検知装置
JP2003515163A (ja) * 1999-11-24 2003-04-22 アイオワ ステイト ユニヴァーシティ リサーチ ファウンデーション インコーポレイテッド 光センサ及びアレイ含有薄膜電界発光素子
WO2004071291A2 (en) * 2003-02-13 2004-08-26 Medtronic, Inc. Implantable chemical sensor
JP2012093128A (ja) * 2010-10-25 2012-05-17 Olympus Corp 蛍光センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910661A (en) * 1997-05-13 1999-06-08 Colvin, Jr.; Arthur E. Flourescence sensing device
JP2001525930A (ja) * 1997-05-13 2001-12-11 コルビン,アーサー・イー・ジュニア 改良された蛍光検出デバイス
JP2002523774A (ja) * 1998-08-26 2002-07-30 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド 光学式検知装置
JP2003515163A (ja) * 1999-11-24 2003-04-22 アイオワ ステイト ユニヴァーシティ リサーチ ファウンデーション インコーポレイテッド 光センサ及びアレイ含有薄膜電界発光素子
WO2004071291A2 (en) * 2003-02-13 2004-08-26 Medtronic, Inc. Implantable chemical sensor
JP2012093128A (ja) * 2010-10-25 2012-05-17 Olympus Corp 蛍光センサ

Similar Documents

Publication Publication Date Title
JP5638343B2 (ja) 蛍光センサ
JP5307901B2 (ja) 蛍光センサ、針型蛍光センサ、およびアナライトの計測方法
EP1596712B1 (en) Chemical sensor
US5517313A (en) Fluorescent optical sensor
EP2557415A1 (en) Fluorescence sensor
JPS62261036A (ja) 物質濃度を測定するためのセンサ素子
US9541503B2 (en) Compact systems, compact devices, and methods for sensing luminescent activity
CN104126113A (zh) 荧光传感器和感应系统
WO2008105435A1 (ja) 蛍光検出システム
WO2014045388A1 (ja) 蛍光センサ
WO2014045387A1 (ja) 蛍光センサ
WO2014045384A1 (ja) 蛍光センサ
WO2020045110A1 (ja) 光検出モジュールおよび光検出装置
WO2014045761A1 (ja) 蛍光センサ
US20240167970A1 (en) Methods and apparatus for integrating diamond with led towards on-chip quantum sensing
JP2015059869A (ja) 蛍光センサ
WO2013161990A1 (ja) 蛍光センサ
WO2013161991A1 (ja) 蛍光センサ
JP2012075750A (ja) 生体成分測定装置
WO2014045385A1 (ja) 蛍光センサ
WO2014045386A1 (ja) 蛍光センサ
WO2013161989A1 (ja) 蛍光センサ
WO2014045762A1 (ja) 蛍光センサ及びセンサシステム
JP2013076592A (ja) 針型センサおよび前記針型センサの製造方法
WO2013094562A1 (ja) 蛍光センサ、センサシステムおよび蛍光センサの補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP