[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014041690A1 - Optical element and head-up display - Google Patents

Optical element and head-up display Download PDF

Info

Publication number
WO2014041690A1
WO2014041690A1 PCT/JP2012/073691 JP2012073691W WO2014041690A1 WO 2014041690 A1 WO2014041690 A1 WO 2014041690A1 JP 2012073691 W JP2012073691 W JP 2012073691W WO 2014041690 A1 WO2014041690 A1 WO 2014041690A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
light
display image
lens
fresnel
Prior art date
Application number
PCT/JP2012/073691
Other languages
French (fr)
Japanese (ja)
Inventor
柳澤 琢麿
今井 哲也
育也 菊池
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2014535332A priority Critical patent/JPWO2014041690A1/en
Priority to PCT/JP2012/073691 priority patent/WO2014041690A1/en
Publication of WO2014041690A1 publication Critical patent/WO2014041690A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/16Advertising or display means not otherwise provided for using special optical effects involving the use of mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view

Definitions

  • the present invention relates to a technical field in which a display image is visually recognized simultaneously with a forward view.
  • display devices such as a head-up display for visually recognizing an image as a virtual image are known.
  • a relatively small screen (real image) such as a small liquid crystal display is magnified by a magnifying optical system such as a convex lens or a concave mirror.
  • a magnifying optical system such as a convex lens or a concave mirror is not necessary.
  • the image to be visually recognized is not a virtual image but a real image.
  • a head-up display uses a half mirror called a combiner (synthesizer) in order to make the information displayed on the display visible in a state of being superimposed on the front view.
  • a combiner semsizer
  • a normal display is not transparent, and if the display is installed directly in front of the driver, the front view is blocked. If there is a transparent display, there is no need to use a half mirror.
  • Patent Documents 2 and 3 propose techniques related to the present invention.
  • Patent Document 2 proposes a reflection type screen using a Fresnel lens
  • Patent Document 3 proposes a thin combiner using a Fresnel lens.
  • An object of the present invention is to provide an optical element and a head-up display capable of appropriately ensuring both the brightness of a display image and the size (viewing angle) of the display image.
  • an optical element that visually recognizes the display image by reflecting the light that constitutes the display image, has optical transparency, and diffuses the light that constitutes the display image.
  • a diffusing unit having a function and a condensing unit having light transmission and a function of condensing light constituting the display image, wherein the diffusing unit or the condensing unit is the display image It further has the function to reflect the light which constitutes.
  • the invention according to claim 13 is an optical element for visually recognizing the display image by reflecting light constituting the display image, and the optical element includes a reflective microlens array having transparency.
  • the microlens array is composed of an eccentric lens in which the optical axis of the microlens shifts outward as the distance from the center of the optical element increases.
  • a head-up display includes an optical element according to any one of the first to fourteenth aspects, and a light source unit that emits light constituting the display image toward the optical element. It is characterized by providing.
  • One aspect of the present invention is an optical element that visually recognizes a display image by reflecting the light that constitutes the display image, and has a function of diffusing the light that constitutes the display image while having light transparency.
  • the above-described optical element is used for visually recognizing the display image by reflecting light constituting the display image.
  • the diffusing unit has a function of diffusing the light constituting the display image while having a light transmissive property
  • the light collecting unit has a function of condensing the light constituting the display image while having a light transmissive property.
  • the diffusing unit or the condensing unit further has a function of reflecting light constituting the display image. According to the above optical element, since both the diffusion function and the condensing function for the light constituting the display image are provided, both the brightness of the display image and the size (viewing angle) of the display image are appropriately ensured. It becomes possible.
  • the condensing unit is a convex lens having a Fresnel structure
  • the diffusing unit receives light that constitutes the display image through the convex lens and diffuses the light.
  • the lens further includes a concave lens having a Fresnel structure that reflects toward the convex lens, and the diffusion portion is sandwiched between the convex lens and the convex lens.
  • the light constituting the display image is transmitted through the convex lens having the Fresnel structure twice before and after the reflection by the diffusing portion. Therefore, it is possible to appropriately collect the light constituting the display image.
  • the optical element described above by using a Fresnel-structured concave lens together with a Fresnel-structured convex lens, light incident from the opposite direction to the light constituting the display image (hereinafter referred to as “transmitted light” as appropriate). It is possible to cancel the lens effect on the optical element, and it is possible to suppress distortions such as a forward field of view in the optical element.
  • the convex lens and the concave lens have the same lens pitch, refractive index, and absolute value of focal length. Thereby, the mutual lens effect with respect to transmitted light can be canceled effectively.
  • the space between the diffusing portion and the convex lens is filled with a predetermined medium having a refractive index different from that of the convex lens, and the space between the diffusing portion and the concave lens is between The concave lens is filled with a predetermined medium having a different refractive index.
  • a diffusion part, a convex lens, and a concave lens can be constituted in one, securing the lens effect of a convex lens and a concave lens.
  • the condensing part is a surface having a convex lens shape having a Fresnel structure, formed on one of two opposing surfaces constituting the optical element.
  • the diffusion unit is formed inside the optical element, diffuses light constituting the display image incident through the light collecting unit and reflects the light toward the light collecting unit, and the optical element A surface having a Fresnel-shaped concave lens shape is further formed on the other of the two opposing surfaces constituting the lens.
  • the optical element has a condensing part and a diffusing part integrally formed. Also with this optical element, the light constituting the display image is transmitted twice through the surface having the convex lens shape of the Fresnel structure before and after reflection by the diffusing portion. Therefore, it is possible to appropriately collect the light constituting the display image.
  • the optical element described above by using the surface having the Fresnel structure convex lens shape and the surface having the Fresnel structure concave lens shape, the lens effect on the transmitted light can be canceled, and the front field of view of the optical element, etc. It becomes possible to suppress the distortion.
  • the convex lens shape and the concave lens shape are equal in absolute value of the lens pitch and focal length. Thereby, the mutual lens effect with respect to transmitted light can be canceled effectively.
  • the diffusing section includes a first diffusing section and a second diffusing section
  • the condensing section is a concave mirror having a Fresnel structure formed inside the optical element.
  • the optical element has a condensing part and a diffusing part (a first diffusing part and a second diffusing part) integrally formed.
  • the light constituting the display image travels toward the reflecting surface having a concave mirror shape having a Fresnel structure while diffusing by the first diffusing portion, and when reflected by the reflecting surface, the light again passes through the first diffusing portion. Transmitted and emitted. That is, the light constituting the display image is diffused by being transmitted twice through the first diffusion unit before and after reflection by the reflecting surface.
  • the reflecting surface functions as a concave mirror, so that the light constituting the display image can be appropriately condensed.
  • the optical element described above by using the second diffusing part together with the first diffusing part, it is possible to cancel the lens effect on the transmitted light, and it is possible to suppress distortion such as a field of view in front of the optical element. It becomes.
  • the diffusing unit includes a first diffusing unit and a second diffusing unit
  • the condensing unit includes a reflecting surface having a concave mirror shape having a Fresnel structure.
  • the first diffusing unit is disposed to face one surface of the condensing unit and diffuses light constituting the display image
  • the second diffusing unit is disposed on the other surface of the condensing unit. Opposed to each other.
  • the optical element has a condensing part and a diffusing part (a first diffusing part and a second diffusing part) configured separately. Also with this optical element, the light that constitutes the display image can be appropriately condensed because the reflecting surface having the concave mirror shape of the Fresnel structure functions as a concave mirror. Further, by using the second diffusing unit together with the first diffusing unit, it is possible to cancel the lens effect on the transmitted light, and it is possible to suppress distortion such as a field of view in front of the optical element.
  • a gap between the first diffusing unit and the condensing unit is filled with a predetermined medium having a refractive index different from the refractive index of the first diffusing unit
  • the space between the two diffusing parts and the light collecting part is filled with a predetermined medium having a refractive index different from the refractive index of the second diffusing part.
  • the first diffusing portion and the second diffusing portion are configured by a microlens array having the same shape, and a focal length of one microlens included in the microlens array. They are separated by a distance of twice. Thereby, the mutual lens effect with respect to transmitted light can be canceled effectively.
  • a region deviating from the center of the free-form surface that is the basis of the Fresnel structure is applied as the Fresnel structure.
  • the diffusing unit is constituted by a microlens array.
  • an optical element that visually recognizes a display image by reflecting light constituting the display image, the optical element including a reflective microlens array having transparency.
  • the microlens array is composed of an eccentric lens in which the optical axis of the microlens shifts outward as the distance from the center of the optical element increases.
  • optical element it is possible to appropriately realize both the diffusion function and the light collecting function, and it is possible to appropriately ensure both the brightness of the display image and the size (viewing angle) of the display image.
  • the above optical element is preferably configured in a flexible sheet shape and attached to the windshield of the moving body. According to such an optical element, it is possible to reduce the feeling of pressure or discomfort given to the driver or the like.
  • a head-up display includes an optical element according to any one of claims 1 to 14, and a light source unit that emits light constituting the display image toward the optical element.
  • a light source unit that emits light constituting the display image toward the optical element.
  • a liquid crystal display or a projector can be used as the light source unit.
  • FIG. 1 is a diagram schematically showing a head-up display according to Patent Document 1 described above (hereinafter referred to as “head-up display according to a comparative example”).
  • the head-up display according to the comparative example is used by being installed in the passenger compartment, and is mainly installed in front of the driver (near the windshield) and has transparency.
  • the projector includes a reflective diffusion plate (transparent diffusion plate) 100 and a projector 200 that emits light constituting a display image.
  • the head-up display emits light constituting the display image from the projector 200 and reflects the light emitted from the projector 200 by the transparent diffusion plate 100, thereby allowing the driver to visually recognize the display image.
  • the transparent diffusing plate 100 is formed by forming a reflective diffusing surface by attaching a semitransparent reflective film 100b to the convex surface of a microlens array 100a serving as a substrate, and covering the cover layer 100c with substantially the same refractive index as the substrate. According to such a transparent diffusing plate 100, light incident on the transparent diffusing plate 100 from the projector 200 is diffused and reflected, and light incident on the transparent diffusing plate 100 from the opposite side of the projector 200 is transmitted while traveling straight.
  • FIG. 2A shows a case where a microlens array 100 a 1 having a relatively long curvature radius is applied to the transparent diffusion plate 100.
  • FIG. 2B shows a case where a microlens array 100 a 2 having a relatively short radius of curvature is applied to the transparent diffusion plate 100.
  • the diffusion angle by the microlens array 100a1 is large, the size (viewing angle) of the display image is large, but the display image tends to be dark.
  • the brightness of the display image and the size (viewing angle) of the display image tend to be in a drad-off relationship.
  • the reflective optical element having transparency has both a diffusion function and a light collection function.
  • the optical element to be applied is applied to a head-up display.
  • the optical element 110 according to the first example constitutes a head-up display by being applied instead of the transparent diffusion plate 100 described above (the same applies to various optical elements described later).
  • the optical element 110 according to the first example mainly includes a transparent diffusion plate 111, a Fresnel convex lens 112, and a Fresnel concave lens 113.
  • the optical element 110 is configured by sandwiching a transparent diffusion plate 111 between a Fresnel convex lens 112 and a Fresnel concave lens 113, and is arranged so that the Fresnel convex lens 112 side faces the projector 200.
  • the transparent diffusion plate 111 has a microlens array 111a formed therein. Specifically, the transparent diffusion plate 111 forms a reflection diffusion surface by attaching a semi-transparent reflection film to the convex surface of the microlens array 111a as a substrate in the same manner as the transparent diffusion plate 100 described above. Created by covering the same refractive index cover layer. With such a configuration, the transparent diffuser plate 111 exhibits a function as a reflective diffuser plate having transparency.
  • the Fresnel convex lens 112 is a convex lens having a Fresnel structure (in other words, a Fresnel lens configured to function as a convex lens), and is a lens in which a normal convex lens is divided into concentric regions to reduce the thickness.
  • the Fresnel convex lens 112 has a surface 112 a having a convex lens shape with a Fresnel structure on the surface facing the transparent diffusion plate 111.
  • the Fresnel concave lens 113 is a concave lens having a Fresnel structure (in other words, a Fresnel lens configured to function as a concave lens), and is a lens in which a normal concave lens is divided into concentric regions to reduce the thickness.
  • the Fresnel concave lens 113 has a surface 113 a having a Fresnel-shaped concave lens shape on the surface facing the transparent diffusion plate 111.
  • the Fresnel convex lens 112 and the Fresnel concave lens 113 have a pitch related to the Fresnel structure (a pitch to be divided into concentric circular regions), a refractive index, and a focal length (a free curved surface (for example, a paraboloid) that is the basis of the Fresnel structure). The distance with respect to the focal point) is equal.
  • the refractive index of the transparent diffusion plate 111 may be the same as that of the Fresnel convex lens 112 and the Fresnel concave lens 113, or may be different.
  • the light emitted from the projector 200 enters the transparent diffusion plate 111 via the Fresnel convex lens 112, and is diffused and reflected by the transparent diffusion plate 111. Then, the light diffused and reflected by the transparent diffusion plate 111 enters the Fresnel convex lens 112 again. As described above, the light emitted from the projector 200 passes through the Fresnel convex lens 112 twice before and after the reflection by the transparent diffusion plate 111. Therefore, as indicated by arrows A11 and A12 in FIG. 3, the light from the projector 200 can be collected near the head of the driver.
  • the light from the projector 200 can be diffused by the transparent diffusion plate 111 and the light from the projector 200 can be condensed by the Fresnel convex lens 112. Therefore, according to the optical element 110 according to the first embodiment, both the diffusion function and the light collecting function can be appropriately realized, and both the brightness of the display image and the size (viewing angle) of the display image are appropriately set. It can be secured.
  • the optical element 110 according to the first embodiment has a light collecting function while being a (semi) transparent screen, so that the light use efficiency can be improved.
  • the transparent diffusion plate 111 corresponds to an example of the “diffusion part” in the present invention
  • the Fresnel convex lens 112 corresponds to an example of the “condensing part” in the present invention.
  • the thinner the transparent diffusion plate 111 the higher the transparency with respect to the transmitted light from the oblique direction.
  • the gap between the transparent diffuser plate 111 and the Fresnel convex lens 112 and the gap between the transparent diffuser plate 111 and the Fresnel concave lens 113 may be an air layer, but may be filled with a transparent resin or the like in order to integrally form them. good.
  • a material for filling the gap a material having a refractive index different from that of the Fresnel convex lens 112 and the Fresnel concave lens 113 may be used so that the lens effects of the Fresnel convex lens 112 and the Fresnel concave lens 113 are not lost.
  • the Fresnel convex lens 112 and the Fresnel concave lens 113 may have a Fresnel structure in which the center of the free-form surface (for example, the apex of the paraboloid) is not located at the center thereof. That is, a region off the center of the Fresnel pattern may be applied to the Fresnel convex lens 112 and the Fresnel concave lens 113.
  • the convex lens position and the concave lens position be aligned with the Fresnel convex lens 112 and the Fresnel concave lens 113. In this way, by applying a region deviating from the center of the Fresnel pattern, the position of the eye box EB can be appropriately changed in the vertical direction and / or the horizontal direction.
  • the Fresnel convex lens 112 and the Fresnel concave lens 113 may be configured by using a plurality of Fresnel lens shapes (in this case, an area outside the center of the Fresnel pattern may be applied). Thereby, a plurality of eyeboxes EB can be formed.
  • FIG. 4 shows an optical element 120 according to a first modification of the first embodiment.
  • FIG. 4 is a cross-sectional image view of the optical element 120 according to the first modification, cut along a plane along the light traveling direction.
  • the optical element 120 has a surface 120b having a convex lens shape having a Fresnel structure (in other words, a surface shape of a Fresnel lens configured to function as a convex lens) on one of two opposing surfaces. Is formed.
  • the optical element 120 has a surface 120c having a Fresnel-shaped concave lens shape (in other words, a surface shape of a Fresnel lens configured to function as a concave lens) on the other of the two opposing surfaces. ing.
  • the optical element 120 is arranged so that the surface 120b faces the projector 200.
  • the optical element 120 has a transparent diffusion portion 120a formed therein.
  • the transparent diffusing unit 120a is configured by attaching a semitransparent reflective film to the convex surface of the microlens array. That is, the optical element 120 includes a surface 120b having a convex lens shape with a Fresnel structure and a surface 120c having a concave lens shape with a Fresnel structure on each surface of the substrate on which the transparent diffusion portion 120a is formed and the cover layer covering the substrate. It can be said that was formed.
  • the convex lens shape of the surface 120b and the concave lens shape of the surface 120c have the same absolute value of the lens pitch and focal length. Further, the substrate and the cover layer have substantially the same refractive index.
  • the light emitted from the projector 200 is transmitted twice through the surface 120b having a Fresnel-shaped convex lens shape before and after the reflection by the transparent diffusion portion 120a.
  • Light from 200 can be collected near the driver's head. Therefore, both the diffusion function and the light collecting function can be appropriately realized, and both the brightness of the display image and the size (viewing angle) of the display image can be appropriately ensured.
  • the convex lens shape of the surface 120b and the concave lens shape of the surface 120c have the same absolute value of the pitch and the focal length, so the mutual lens effect on the transmitted light is canceled out. Transparency can be ensured while appropriately suppressing distortion of the front field of view.
  • the thickness can be reduced as compared with the optical element 110 according to the first embodiment.
  • the optical element 120 according to the first modified example is likely to be contaminated because the surface has irregularities. Therefore, the surface of the optical element 120 may be covered with a transparent resin or the like.
  • the refractive index of the transparent resin is made different from that of the substrate and the cover layer so that the functions of the convex lens and the concave lens are not lost.
  • the transparent diffusion portion 120a corresponds to an example of the “diffusion portion” in the present invention
  • the surface 120b having the convex lens shape of the Fresnel structure is “ It corresponds to an example of a “condenser”.
  • the surface 120b and the surface 120c may be configured using a plurality of Fresnel lens shapes (in this case, a region off the center of the Fresnel pattern may be applied together).
  • FIG. 5 shows an optical element 130 according to a second modification of the first embodiment.
  • a cross-sectional image view of the optical element 130 according to the second modification example cut along a plane along the light traveling direction is shown.
  • the optical element 130 according to the second modification has a transparent diffusion portion 130a, a surface 130b having a Fresnel structure convex lens shape, and a surface 120c having a Fresnel structure concave lens shape. And have.
  • the optical element 130 according to the second modification is obtained by configuring the optical element 120 according to the first modification in a flexible sheet shape, and the basic configuration is the same as the optical element 120 according to the first modification. . Therefore, description of the same configuration is omitted here, and only a different configuration is described.
  • the optical element 130 according to the second modification is attached to the windshield of the vehicle. Specifically, the optical element 130 is installed along the curvature of the windshield. As a result, it is possible to reduce the feeling of pressure or discomfort given to the driver or the like.
  • the focal length of the surface 130b having the Fresnel-shaped convex lens shape is set so that the eye box EB is suitable for the vicinity of the driver's head in consideration of the light collecting effect caused by placing the optical element 130 along the windshield. What is necessary is just to set so that it may be located in.
  • the eyebox EB is placed near the driver's head by applying an area appropriately shifted from the center of the Fresnel pattern to the surface 130b. What is necessary is just to set so that it may be located appropriately.
  • the configuration in which the optical element described in the second modification is formed into a sheet shape can be applied to the optical element 110 according to the first embodiment described above. It can also be applied to the optical element shown in FIG.
  • the optical element 140 As shown in the cross-sectional image diagram, the optical element 140 according to the second example has microlens arrays 140a and 140c formed on two opposing surfaces (that is, both surfaces).
  • the optical element 140 is arranged so that the surface on which the microlens array 140a is formed faces the projector 200.
  • the optical element 140 has a reflecting surface 140b having a concave mirror shape with a Fresnel structure (in other words, a reflecting surface shape with a Fresnel structure configured to function as a concave mirror) formed therein. That is, in the optical element 140, the reflection surface 140b is formed between the microlens array 140a and the microlens array 140c.
  • the reflective surface 140b is configured by attaching a translucent reflective film to a surface having a concave mirror shape with a Fresnel structure.
  • the reflective surface 140b corresponds to a surface (concave surface) that is recessed toward the microlens array 140a.
  • the microlens array 140a and the microlens array 140c have the same shape. Specifically, in the microlens array 140a and the microlens array 140c, microlenses having the same shape are arranged at the same lens pitch. The microlens array 140a and the microlens array 140c are separated from each other by a distance twice as long as the focal length of the microlens (a value converted in terms of refractive index is used). That is, it is configured to be a beam expander system with a magnification of 1. Note that the reflecting surface 140b having the Fresnel structure does not need to be disposed at an intermediate position between the microlens array 140a and the microlens array 140c.
  • the light emitted from the projector 200 is transmitted to the reflection surface 140b of the Fresnel structure while being collected by the microlens array 140a, and is transmitted again through the microlens array 140a while being diffused when reflected by the reflection surface 140b. Emitted.
  • the reflecting surface 140b having the Fresnel structure functions as a concave mirror, the light from the projector 200 can be collected near the head of the driver as indicated by arrows A21 and A22 in FIG. Therefore, both the diffusing function and the condensing function can be appropriately realized by the optical element 140 according to the second embodiment, and both the brightness of the display image and the size (viewing angle) of the display image are appropriately ensured. It becomes possible to do.
  • the optical element 140 can also ensure transparency while appropriately suppressing the distortion of the front field of view.
  • the microlens array 140a corresponds to an example of the “first diffusion portion” in the present invention
  • the microlens array 140c corresponds to an example of the “second diffusion portion” in the present invention
  • the reflecting surface 140b having a Fresnel-shaped concave mirror shape corresponds to an example of the “light collecting portion” in the present invention.
  • the reflecting surface 140b may be configured by using a plurality of Fresnel lens shapes (in this case, a region off the center of the Fresnel pattern may be applied together). Thereby, a plurality of eyeboxes EB can be formed.
  • FIG. 7A shows a case where the reflecting surface 140b is arranged on the microlens array 140c side
  • FIG. 7B shows that the reflecting surface 140b is arranged approximately in the middle between the microlens array 140a and the microlens array 140c
  • FIG. 7C shows a case where the reflection surface 140b is arranged on the microlens array 140a side.
  • FIG. 7A when the reflecting surface 140b is arranged, it can be seen that diffusion starts before being reflected.
  • the reflective surface 140b is arranged as shown in FIG.
  • FIG. 8 shows a cross-sectional image diagram of an optical element 150 according to a modification of the second embodiment, cut along a plane along the traveling direction of the light 7.
  • an optical element 150 includes microlens array portions 151 and 153 and a Fresnel reflection surface portion 152.
  • the optical element 150 is configured by sandwiching the Fresnel reflection surface portion 152 between the microlens array portions 151 and 153, and is arranged so that the microlens array portion 151 side faces the projector 200.
  • the microlens arrays 151a and 153a are formed on the surfaces facing the Fresnel reflection surface portion 152, respectively. That is, the microlens array portions 151 and 153 are arranged so that the convex side faces the Fresnel reflection surface portion 152.
  • microlenses having the same shape are arranged at the same lens pitch, and the focal length of the microlens (a value converted by a refractive index is used) is twice. They are separated by a distance.
  • the reflection surface 152a having a Fresnel structure concave mirror shape (in other words, a Fresnel structure reflection surface shape configured to function as a concave mirror) is formed inside the Fresnel reflection surface portion 152.
  • the reflection surface 152a is configured by attaching a translucent reflection film to a surface having a concave mirror shape with a Fresnel structure, and forms a Fresnel reflection surface portion 152 by being covered with a flat plate.
  • the reflective surface 152a corresponds to a surface (concave surface) that is recessed toward the microlens array portion 151 side.
  • the light from the projector 200 can be collected in the vicinity of the driver's head because the reflecting surface 152a having the Fresnel structure functions as a concave mirror. . Therefore, both the diffusion function and the light collecting function can be appropriately realized, and both the brightness of the display image and the size (viewing angle) of the display image can be appropriately ensured.
  • the microlens arrays 151a and 153a have the same shape and are separated by a distance twice as long as the focal length of the microlens. Since the mutual lens effect with respect to the transmitted light is canceled out, it is possible to ensure transparency while appropriately suppressing distortion of the front field of view.
  • the microlens array unit 151 corresponds to an example of the “first diffusion unit” in the present invention
  • the microlens array unit 153 includes the “second diffusion unit” in the present invention
  • the Fresnel reflection surface portion 152 corresponds to an example of a “light collecting portion” in the present invention.
  • the gap between the microlens array portion 151 and the Fresnel reflection surface portion 152 and the gap between the microlens array portion 153 and the Fresnel reflection surface portion 152 may be an air layer, but a transparent resin or the like is used in order to integrally form them. It may be filled with. However, as a material for filling the gap, a material having a refractive index different from that of the microlens array units 151 and 153 may be used so that the lens effect of the microlens array units 151 and 153 is not lost.
  • a region off the center of the Fresnel pattern may be applied to the reflecting surface 152a.
  • the reflection surface 152a may be configured using a plurality of Fresnel lens shapes (in this case, a region off the center of the Fresnel pattern may be applied together).
  • the optical element 160 has a microlens array 160a formed therein.
  • the microlens array 160a has a translucent reflective film on the convex surface.
  • the microlens array 160a is formed of an eccentric lens in which the intervals between the microlenses are equal, but the optical axis of each microlens shifts outward as the distance from the center of the optical element 160 increases. The closer the microlens array 160a is to the periphery, the greater the amount by which the optical axis of the microlens is shifted outward with respect to the thickness direction of the optical element 160. For example, in the microlens array 160a, the optical axis of each microlens is shifted so as to have the same inclination as the surface constituting the Fresnel lens.
  • the light emitted from the projector 200 is diffused and reflected by the microlens array 160a.
  • the optical axis of each microlens of the microlens array 160a is shifted toward the outer side, the diffusion of light to the outside by the microlens array 160a is suppressed. Therefore, as indicated by arrows A31 and A32 in FIG. 9, light from the projector 200 can be collected near the head of the driver. Therefore, both the diffusion function and the light collecting function can be appropriately realized by the optical element 160 according to the third embodiment, and both the brightness of the display image and the size (viewing angle) of the display image are appropriately ensured. It becomes possible to do.
  • the lens effect is not particularly given to the light incident from the front of the vehicle. Transparency can be ensured while appropriately suppressing.
  • the optical element 160 according to the third example since the Fresnel lens (including the surface of the Fresnel lens shape) as shown in the first example and the second example is not used, the manufacturing cost is reduced. It becomes possible.
  • a microlens array as a diffusion part in the present invention
  • the present invention is not limited to this.
  • a lenticular lens, a random scattering surface, or the like may be used as the diffusion unit in the present invention.
  • a lenticular lens may be used instead of the microlens array 160a.
  • the present invention can be used for a head-up display or a reflective screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Instrument Panels (AREA)

Abstract

Provided is an optical element that reflects light composing a displayed image so as to cause the displayed image to be recognized visually. The optical element includes: a diffusion section that has light permeability and has a function for diffusing the light composing a displayed image; and a light condensing section that has light permeability and has a function for condensing the light composing the displayed image. The diffusion section or the light condensing section further has a function for reflecting the light composing the displayed image. The above-described optical element, which has both the diffusing function and the light condensing function with respect to the light composing the displayed image, makes it possible to ensure both the brightness of the displayed image and the size (viewing angle) of the displayed image appropriately.

Description

光学素子及びヘッドアップディスプレイOptical element and head-up display
 本発明は、前方視界と同時に表示画像を視認させる技術分野に関する。 The present invention relates to a technical field in which a display image is visually recognized simultaneously with a forward view.
 従来から、虚像として画像を視認させるヘッドアップディスプレイなどの表示装置が知られている。通常、ヘッドアップディスプレイでは、小型液晶ディスプレイなどの比較的小さな画面(実像)を、凸レンズや凹面ミラーなどの拡大光学系によって拡大している。こうしているのは、車内には大きなディスプレイを設置することが難しいためである。仮に、大きなディスプレイを直接設置することができれば、凸レンズや凹面ミラーなどの拡大光学系は必要ない。ただし、拡大光学系を用いない場合は視認する画像は虚像ではなく実像になる。 Conventionally, display devices such as a head-up display for visually recognizing an image as a virtual image are known. Usually, in a head-up display, a relatively small screen (real image) such as a small liquid crystal display is magnified by a magnifying optical system such as a convex lens or a concave mirror. This is because it is difficult to install a large display in the car. If a large display can be directly installed, a magnifying optical system such as a convex lens or a concave mirror is not necessary. However, when the magnifying optical system is not used, the image to be visually recognized is not a virtual image but a real image.
 また、通常、ヘッドアップディスプレイでは、ディスプレイに表示された情報を前方視界と重畳した状態で視認させるために、コンバイナ(合成器)と呼ばれるハーフミラーを利用している。これは、通常のディスプレイが透明ではないため、直接、運転者の正面にディスプレイを設置してしまうと前方視界を塞いでしまうためである。仮に、透明なディスプレイがあれば、ハーフミラーを用いる必要はない。 Also, normally, a head-up display uses a half mirror called a combiner (synthesizer) in order to make the information displayed on the display visible in a state of being superimposed on the front view. This is because a normal display is not transparent, and if the display is installed directly in front of the driver, the front view is blocked. If there is a transparent display, there is no need to use a half mirror.
 つまり、車内に設置できる大画面で透明(半透明)なディスプレイがあれば、当該ディスプレイを運転手の正面(フロントガラス近傍)に設置することで、拡大光学系やハーフミラーを用いることなく、ヘッドアップディスプレイを構築することが可能になる。例えば、特許文献1には、基板の中に反射拡散面を形成することで透明性を有した反射型拡散板(以下では適宜「透明拡散板」と呼ぶ)を、プロジェクタと共に用いることで、そのようなヘッドアップディスプレイを構成する手法が提案されている。 In other words, if there is a large, transparent (semi-transparent) display that can be installed in the vehicle, the display can be installed in front of the driver (near the windshield) without using a magnifying optical system or a half mirror. It becomes possible to build up-displays. For example, in Patent Document 1, a reflection type diffusion plate having transparency by forming a reflection diffusion surface in a substrate (hereinafter referred to as “transparent diffusion plate” as appropriate) is used together with a projector. A method for constructing such a head-up display has been proposed.
 その他にも、本発明に関連する技術が特許文献2及び3に提案されている。特許文献2には、フレネルレンズを用いた反射型スクリーンが提案され、特許文献3には、フレネルレンズを用いた薄型コンバイナが提案されている。 In addition, Patent Documents 2 and 3 propose techniques related to the present invention. Patent Document 2 proposes a reflection type screen using a Fresnel lens, and Patent Document 3 proposes a thin combiner using a Fresnel lens.
特表2010-539525号公報JP 2010-539525 A 特開2009-169006号公報JP 2009-169006 A 特開2000-249965号公報JP 2000-249965 A
 しかしながら、上記した特許文献1に提案されたような透明拡散板をヘッドアップディスプレイで利用すると、表示像の明るさと表示像のサイズ(視野角)とがドレードオフの関係になる傾向にある。つまり、表示像を明るくするように構成すると表示像のサイズが小さくなり、表示像のサイズを大きくするように構成すると表示像が暗くなる傾向にあった。 However, when a transparent diffusion plate as proposed in Patent Document 1 described above is used in a head-up display, the brightness of the display image and the size (viewing angle) of the display image tend to be in a dreed off relationship. That is, if the display image is configured to be bright, the size of the display image tends to be small, and if the display image is configured to be large, the display image tends to be dark.
 本発明が解決しようとする課題は上記のようなものが例として挙げられる。本発明は、表示像の明るさと表示像のサイズ(視野角)の両方を適切に確保することが可能な光学素子及びヘッドアップディスプレイを提供することを課題とする。 Examples of the problem to be solved by the present invention include the above. An object of the present invention is to provide an optical element and a head-up display capable of appropriately ensuring both the brightness of a display image and the size (viewing angle) of the display image.
 請求項1に記載の発明では、表示像を構成する光を反射することで当該表示像を視認させる光学素子であって、光の透過性を有すると共に、前記表示像を構成する光を拡散する機能を有する拡散部と、光の透過性を有すると共に、前記表示像を構成する光を集光する機能を有する集光部と、を備え、前記拡散部又は前記集光部は、前記表示像を構成する光を反射する機能を更に有することを特徴とする。 According to the first aspect of the present invention, an optical element that visually recognizes the display image by reflecting the light that constitutes the display image, has optical transparency, and diffuses the light that constitutes the display image. A diffusing unit having a function and a condensing unit having light transmission and a function of condensing light constituting the display image, wherein the diffusing unit or the condensing unit is the display image It further has the function to reflect the light which constitutes.
 請求項13に記載の発明では、表示像を構成する光を反射することで当該表示像を視認させる光学素子であって、前記光学素子は、透過性を有する反射型のマイクロレンズアレイを備えており、前記マイクロレンズアレイは、前記光学素子の中心から離れるにつれて、マイクロレンズの光軸が外側にずれていく偏心レンズにて構成されていることを特徴とする。 The invention according to claim 13 is an optical element for visually recognizing the display image by reflecting light constituting the display image, and the optical element includes a reflective microlens array having transparency. The microlens array is composed of an eccentric lens in which the optical axis of the microlens shifts outward as the distance from the center of the optical element increases.
 請求項15に記載の発明では、ヘッドアップディスプレイは、請求項1乃至14のいずれか一項に記載の光学素子と、前記光学素子に向けて前記表示像を構成する光を出射する光源部と、を備えることを特徴とする。 According to a fifteenth aspect of the present invention, a head-up display includes an optical element according to any one of the first to fourteenth aspects, and a light source unit that emits light constituting the display image toward the optical element. It is characterized by providing.
比較例に係るヘッドアップディスプレイを概略的に示した図である。It is the figure which showed roughly the head up display which concerns on a comparative example. 比較例の問題点を説明するための図を示す。The figure for demonstrating the problem of a comparative example is shown. 第1実施例に係る光学素子を説明するための図を示す。The figure for demonstrating the optical element which concerns on 1st Example is shown. 第1実施例の第1変形例に係る光学素子を説明するための図を示す。The figure for demonstrating the optical element which concerns on the 1st modification of 1st Example is shown. 第1実施例の第2変形例に係る光学素子を説明するための図を示す。The figure for demonstrating the optical element which concerns on the 2nd modification of 1st Example is shown. 第2実施例に係る光学素子を説明するための図を示す。The figure for demonstrating the optical element which concerns on 2nd Example is shown. マイクロレンズアレイ間での反射面の好適な配置位置を説明するための図を示す。The figure for demonstrating the suitable arrangement position of the reflective surface between microlens arrays is shown. 第2実施例の変形例に係る光学素子を説明するための図を示す。The figure for demonstrating the optical element which concerns on the modification of 2nd Example is shown. 第3実施例に係る光学素子を説明するための図を示す。The figure for demonstrating the optical element which concerns on 3rd Example is shown.
 本発明の1つの観点では、表示像を構成する光を反射することで当該表示像を視認させる光学素子であって、光の透過性を有すると共に、前記表示像を構成する光を拡散する機能を有する拡散部と、光の透過性を有すると共に、前記表示像を構成する光を集光する機能を有する集光部と、を備え、前記拡散部又は前記集光部は、前記表示像を構成する光を反射する機能を更に有する。 One aspect of the present invention is an optical element that visually recognizes a display image by reflecting the light that constitutes the display image, and has a function of diffusing the light that constitutes the display image while having light transparency. A diffusing unit having a light transmitting property, and a condensing unit having a function of condensing light constituting the display image, and the diffusing unit or the condensing unit displays the display image. It further has a function of reflecting the constituent light.
 上記の光学素子は、表示像を構成する光を反射することで当該表示像を視認させるために利用される。拡散部は、光の透過性を有すると共に、表示像を構成する光を拡散する機能を有し、集光部は、光の透過性を有すると共に、表示像を構成する光を集光する機能を有する。そして、拡散部又は集光部は、表示像を構成する光を反射する機能を更に有する。上記の光学素子によれば、表示像を構成する光に対する拡散機能と集光機能の両方を具備しているため、表示像の明るさと表示像のサイズ(視野角)の両方を適切に確保することが可能となる。 The above-described optical element is used for visually recognizing the display image by reflecting light constituting the display image. The diffusing unit has a function of diffusing the light constituting the display image while having a light transmissive property, and the light collecting unit has a function of condensing the light constituting the display image while having a light transmissive property. Have The diffusing unit or the condensing unit further has a function of reflecting light constituting the display image. According to the above optical element, since both the diffusion function and the condensing function for the light constituting the display image are provided, both the brightness of the display image and the size (viewing angle) of the display image are appropriately ensured. It becomes possible.
 上記の光学素子の一態様では、前記集光部は、フレネル構造の凸レンズであり、前記拡散部は、前記表示像を構成する光が前記凸レンズを介して入射され、当該光を拡散すると共に前記凸レンズに向けて反射し、フレネル構造の凹レンズを更に備えており、前記凸レンズと前記凸レンズとの間に前記拡散部が挟み込まれている。 In one aspect of the optical element, the condensing unit is a convex lens having a Fresnel structure, and the diffusing unit receives light that constitutes the display image through the convex lens and diffuses the light. The lens further includes a concave lens having a Fresnel structure that reflects toward the convex lens, and the diffusion portion is sandwiched between the convex lens and the convex lens.
 上記態様によれば、表示像を構成する光は、拡散部による反射の前後でフレネル構造の凸レンズを2回透過することとなる。そのため、表示像を構成する光を適切に集光することができる。また、上記の光学素子によれば、フレネル構造の凸レンズと共にフレネル構造の凹レンズを用いることで、表示像を構成する光とは逆方向から入射する光(以下では適宜「透過光」と呼ぶ。)に対するレンズ効果を打ち消すことができ、光学素子における前方の視界などの歪みを抑制することが可能となる。 According to the above aspect, the light constituting the display image is transmitted through the convex lens having the Fresnel structure twice before and after the reflection by the diffusing portion. Therefore, it is possible to appropriately collect the light constituting the display image. In addition, according to the optical element described above, by using a Fresnel-structured concave lens together with a Fresnel-structured convex lens, light incident from the opposite direction to the light constituting the display image (hereinafter referred to as “transmitted light” as appropriate). It is possible to cancel the lens effect on the optical element, and it is possible to suppress distortions such as a forward field of view in the optical element.
 上記の光学素子において好適には、前記凸レンズと前記凹レンズとは、レンズのピッチと、屈折率と、焦点距離の絶対値とが等しい。これにより、透過光に対する互いのレンズ効果を効果的に打ち消すことができる。 In the above optical element, preferably, the convex lens and the concave lens have the same lens pitch, refractive index, and absolute value of focal length. Thereby, the mutual lens effect with respect to transmitted light can be canceled effectively.
 また、上記の光学素子において好適には、前記拡散部と前記凸レンズとの間は、当該凸レンズとは異なる屈折率を有する所定の媒体で埋められており、前記拡散部と前記凹レンズとの間は、当該凹レンズとは異なる屈折率を有する所定の媒体で埋められている。これにより、凸レンズ及び凹レンズのレンズ効果を確保しつつ、拡散部と凸レンズと凹レンズとを一体に構成することができる。 Preferably, in the above optical element, the space between the diffusing portion and the convex lens is filled with a predetermined medium having a refractive index different from that of the convex lens, and the space between the diffusing portion and the concave lens is between The concave lens is filled with a predetermined medium having a different refractive index. Thereby, a diffusion part, a convex lens, and a concave lens can be constituted in one, securing the lens effect of a convex lens and a concave lens.
 上記の光学素子の他の一態様では、前記集光部は、前記光学素子を構成する対向する2つの面のうちの一方の面に形成された、フレネル構造の凸レンズ形状を有する面であり、前記拡散部は、前記光学素子の内部に形成されており、前記集光部を介して入射された前記表示像を構成する光を拡散すると共に前記集光部に向けて反射し、前記光学素子を構成する対向する2つの面のうちの他方の面には、フレネル構造の凹レンズ形状を有する面が更に形成されている。 In another aspect of the optical element, the condensing part is a surface having a convex lens shape having a Fresnel structure, formed on one of two opposing surfaces constituting the optical element. The diffusion unit is formed inside the optical element, diffuses light constituting the display image incident through the light collecting unit and reflects the light toward the light collecting unit, and the optical element A surface having a Fresnel-shaped concave lens shape is further formed on the other of the two opposing surfaces constituting the lens.
 上記態様では、光学素子は、集光部と拡散部とが一体に構成されている。この光学素子によっても、表示像を構成する光は、拡散部による反射の前後でフレネル構造の凸レンズ形状を有する面を2回透過することとなる。そのため、表示像を構成する光を適切に集光することができる。また、上記の光学素子によれば、フレネル構造の凸レンズ形状を有する面と共にフレネル構造の凹レンズ形状を有する面を用いることで、透過光に対するレンズ効果を打ち消すことができ、光学素子における前方の視界などの歪みを抑制することが可能となる。 In the above aspect, the optical element has a condensing part and a diffusing part integrally formed. Also with this optical element, the light constituting the display image is transmitted twice through the surface having the convex lens shape of the Fresnel structure before and after reflection by the diffusing portion. Therefore, it is possible to appropriately collect the light constituting the display image. In addition, according to the optical element described above, by using the surface having the Fresnel structure convex lens shape and the surface having the Fresnel structure concave lens shape, the lens effect on the transmitted light can be canceled, and the front field of view of the optical element, etc. It becomes possible to suppress the distortion.
 上記の光学素子において好適には、前記凸レンズ形状と前記凹レンズ形状とは、レンズのピッチ及び焦点距離の絶対値が等しい。これにより、透過光に対する互いのレンズ効果を効果的に打ち消すことができる。 In the above optical element, preferably, the convex lens shape and the concave lens shape are equal in absolute value of the lens pitch and focal length. Thereby, the mutual lens effect with respect to transmitted light can be canceled effectively.
 上記の光学素子の他の一態様では、前記拡散部は、第1拡散部及び第2拡散部を有し、前記集光部は、前記光学素子の内部に形成された、フレネル構造の凹面ミラー形状を有する反射面であり、前記第1拡散部は、前記光学素子を構成する対向する2つの面のうちの一方の面に形成されており、前記表示像を構成する光を拡散し、前記第2拡散部は、前記光学素子を構成する対向する2つの面のうちの他方の面に形成されている。 In another aspect of the above optical element, the diffusing section includes a first diffusing section and a second diffusing section, and the condensing section is a concave mirror having a Fresnel structure formed inside the optical element. A reflecting surface having a shape, wherein the first diffusing portion is formed on one of two opposing surfaces constituting the optical element, diffuses light constituting the display image, and The second diffusing portion is formed on the other surface of the two opposing surfaces constituting the optical element.
 上記態様では、光学素子は、集光部と拡散部(第1拡散部及び第2拡散部)とが一体に構成されている。この光学素子によれば、表示像を構成する光は、第1拡散部によって拡散しながらフレネル構造の凹面ミラー形状を有する反射面に向かい、当該反射面で反射されると再び第1拡散部を透過して出射される。つまり、表示像を構成する光は、反射面による反射の前後で第1拡散部を2回透過することで拡散する。この際、反射面が凹面ミラーとして機能することで、表示像を構成する光を適切に集光することができる。また、上記の光学素子によれば、第1拡散部と共に第2拡散部を用いることで、透過光に対するレンズ効果を打ち消すことができ、光学素子の前方の視界などの歪みを抑制することが可能となる。 In the above aspect, the optical element has a condensing part and a diffusing part (a first diffusing part and a second diffusing part) integrally formed. According to this optical element, the light constituting the display image travels toward the reflecting surface having a concave mirror shape having a Fresnel structure while diffusing by the first diffusing portion, and when reflected by the reflecting surface, the light again passes through the first diffusing portion. Transmitted and emitted. That is, the light constituting the display image is diffused by being transmitted twice through the first diffusion unit before and after reflection by the reflecting surface. At this time, the reflecting surface functions as a concave mirror, so that the light constituting the display image can be appropriately condensed. Further, according to the optical element described above, by using the second diffusing part together with the first diffusing part, it is possible to cancel the lens effect on the transmitted light, and it is possible to suppress distortion such as a field of view in front of the optical element. It becomes.
 上記の光学素子の他の一態様では、前記拡散部は、第1拡散部及び第2拡散部を有し、前記集光部は、フレネル構造の凹面ミラー形状を有する反射面が内部に形成され、前記第1拡散部は、前記集光部の一方の面に対向して配置され、前記表示像を構成する光を拡散し、前記第2拡散部は、前記集光部の他方の面に対向して配置されている。 In another aspect of the optical element, the diffusing unit includes a first diffusing unit and a second diffusing unit, and the condensing unit includes a reflecting surface having a concave mirror shape having a Fresnel structure. The first diffusing unit is disposed to face one surface of the condensing unit and diffuses light constituting the display image, and the second diffusing unit is disposed on the other surface of the condensing unit. Opposed to each other.
 上記態様では、光学素子は、集光部と拡散部(第1拡散部及び第2拡散部)とが別体に構成されている。この光学素子によっても、フレネル構造の凹面ミラー形状を有する反射面が凹面ミラーとして機能することで、表示像を構成する光を適切に集光することができる。また、第1拡散部と共に第2拡散部を用いることで、透過光に対するレンズ効果を打ち消すことができ、光学素子の前方の視界などの歪みを抑制することが可能となる。 In the above aspect, the optical element has a condensing part and a diffusing part (a first diffusing part and a second diffusing part) configured separately. Also with this optical element, the light that constitutes the display image can be appropriately condensed because the reflecting surface having the concave mirror shape of the Fresnel structure functions as a concave mirror. Further, by using the second diffusing unit together with the first diffusing unit, it is possible to cancel the lens effect on the transmitted light, and it is possible to suppress distortion such as a field of view in front of the optical element.
 上記の光学素子において好適には、前記第1拡散部と前記集光部との間は、前記第1拡散部の屈折率とは異なる屈折率を有する所定の媒体で埋められており、前記第2拡散部と前記集光部との間は、前記第2拡散部の屈折率とは異なる屈折率を有する所定の媒体で埋められている。これにより、第1拡散部及び第2拡散部のレンズ効果などを確保しつつ、第1拡散部と集光部と第2拡散部とを一体に構成することができる。 Preferably, in the above optical element, a gap between the first diffusing unit and the condensing unit is filled with a predetermined medium having a refractive index different from the refractive index of the first diffusing unit, The space between the two diffusing parts and the light collecting part is filled with a predetermined medium having a refractive index different from the refractive index of the second diffusing part. Thereby, the 1st diffusion part, the condensing part, and the 2nd diffusion part can be constituted in one, securing the lens effect of the 1st diffusion part, and the 2nd diffusion part.
 上記の光学素子において好適には、前記第1拡散部と前記第2拡散部とは、同じ形状を有するマイクロレンズアレイで構成されており、前記マイクロレンズアレイが有する1つのマイクロレンズの焦点距離の2倍の距離だけ離間している。これにより、透過光に対する互いのレンズ効果を効果的に打ち消すことができる。 In the above optical element, preferably, the first diffusing portion and the second diffusing portion are configured by a microlens array having the same shape, and a focal length of one microlens included in the microlens array. They are separated by a distance of twice. Thereby, the mutual lens effect with respect to transmitted light can be canceled effectively.
 好適な例では、前記フレネル構造として、当該フレネル構造の元になる自由曲面の中心から外れた領域が適用されている。これにより、アイボックスの位置を上下方向及び/又は左右方向に適宜変えることができる。 In a preferred example, a region deviating from the center of the free-form surface that is the basis of the Fresnel structure is applied as the Fresnel structure. Thereby, the position of the eye box can be appropriately changed in the vertical direction and / or the horizontal direction.
 また、好適な例では、前記拡散部は、マイクロレンズアレイで構成される。 In a preferred example, the diffusing unit is constituted by a microlens array.
 本発明の他の観点では、表示像を構成する光を反射することで当該表示像を視認させる光学素子であって、前記光学素子は、透過性を有する反射型のマイクロレンズアレイを備えており、前記マイクロレンズアレイは、前記光学素子の中心から離れるにつれて、マイクロレンズの光軸が外側にずれていく偏心レンズにて構成されている。 In another aspect of the present invention, an optical element that visually recognizes a display image by reflecting light constituting the display image, the optical element including a reflective microlens array having transparency. The microlens array is composed of an eccentric lens in which the optical axis of the microlens shifts outward as the distance from the center of the optical element increases.
 上記の光学素子によっても、拡散機能と集光機能の両方を適切に実現することができ、表示像の明るさと表示像のサイズ(視野角)の両方を適切に確保することが可能となる。 Also with the above-described optical element, it is possible to appropriately realize both the diffusion function and the light collecting function, and it is possible to appropriately ensure both the brightness of the display image and the size (viewing angle) of the display image.
 上記の光学素子において好適には、フレキシブルなシート状に構成され、移動体のフロントガラスに取り付けられる。このような光学素子によれば、運転者などに与える圧迫感や違和感を低減することができる。 The above optical element is preferably configured in a flexible sheet shape and attached to the windshield of the moving body. According to such an optical element, it is possible to reduce the feeling of pressure or discomfort given to the driver or the like.
 本発明の他の観点では、ヘッドアップディスプレイは、請求項1乃至14のいずれか一項に記載の光学素子と、前記光学素子に向けて前記表示像を構成する光を出射する光源部と、を備える。例えば、光源部として、液晶ディスプレイやプロジェクタなどを用いることができる。 In another aspect of the present invention, a head-up display includes an optical element according to any one of claims 1 to 14, and a light source unit that emits light constituting the display image toward the optical element. Is provided. For example, a liquid crystal display or a projector can be used as the light source unit.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 <基本概念>
 まず、本実施例の内容を説明する前に、本実施例の基本概念について図1及び図2を参照して説明する。
<Basic concept>
First, before describing the contents of the present embodiment, the basic concept of the present embodiment will be described with reference to FIG. 1 and FIG.
 図1は、前述した特許文献1に係るヘッドアップディスプレイ(以下では「比較例に係るヘッドアップディスプレイ」と呼ぶ。)を概略的に示した図である。図1に示すように、比較例に係るヘッドアップディスプレイは、車室内に設置して利用されるものであり、主に、運転手の正面(フロントガラス近傍)に設置される、透明性を有する反射型拡散板(透明拡散板)100と、表示像を構成する光を出射するプロジェクタ200とを有する。このヘッドアップディスプレイは、表示像を構成する光をプロジェクタ200から出射し、プロジェクタ200から出射された光を透明拡散板100で反射することで、表示像を運転者に視認させる。 FIG. 1 is a diagram schematically showing a head-up display according to Patent Document 1 described above (hereinafter referred to as “head-up display according to a comparative example”). As shown in FIG. 1, the head-up display according to the comparative example is used by being installed in the passenger compartment, and is mainly installed in front of the driver (near the windshield) and has transparency. The projector includes a reflective diffusion plate (transparent diffusion plate) 100 and a projector 200 that emits light constituting a display image. The head-up display emits light constituting the display image from the projector 200 and reflects the light emitted from the projector 200 by the transparent diffusion plate 100, thereby allowing the driver to visually recognize the display image.
 図1の上側には、光の進行方向に沿った面にて切断した、透明拡散板100の断面イメージ図を示している。透明拡散板100は、基板としてのマイクロレンズアレイ100aの凸面に半透明反射膜100bを付すことで反射拡散面を形成し、基板とほぼ同じ屈折率のカバー層100cを被せることで作成される。このような透明拡散板100によれば、プロジェクタ200から透明拡散板100に入射する光は拡散して反射され、プロジェクタ200と逆側から透明拡散板100に入射する光は直進しながら透過する。 1 is a cross-sectional image of the transparent diffusion plate 100 cut along a plane along the light traveling direction. The transparent diffusing plate 100 is formed by forming a reflective diffusing surface by attaching a semitransparent reflective film 100b to the convex surface of a microlens array 100a serving as a substrate, and covering the cover layer 100c with substantially the same refractive index as the substrate. According to such a transparent diffusing plate 100, light incident on the transparent diffusing plate 100 from the projector 200 is diffused and reflected, and light incident on the transparent diffusing plate 100 from the opposite side of the projector 200 is transmitted while traveling straight.
 次に、図2を参照して、比較例に係る透明拡散板100の問題点について説明する。図2(a)は、曲率半径が比較的長いマイクロレンズアレイ100a1が透明拡散板100に適用された場合について示している。この場合には、マイクロレンズアレイ100a1による拡散角度が小さいため、表示像は明るいが、表示像の大きさ(視野角)が小さくなる傾向にある。他方で、図2(b)は、曲率半径が比較的短いマイクロレンズアレイ100a2が透明拡散板100に適用された場合について示している。この場合には、マイクロレンズアレイ100a1による拡散角度が大きいため、表示像の大きさ(視野角)は大きいが、表示像が暗くなる傾向にある。このように、比較例に係る透明拡散板100では、表示像の明るさと表示像のサイズ(視野角)とがドレードオフの関係になる傾向にある。 Next, with reference to FIG. 2, problems of the transparent diffusion plate 100 according to the comparative example will be described. FIG. 2A shows a case where a microlens array 100 a 1 having a relatively long curvature radius is applied to the transparent diffusion plate 100. In this case, since the diffusion angle by the microlens array 100a1 is small, the display image is bright, but the size (viewing angle) of the display image tends to be small. On the other hand, FIG. 2B shows a case where a microlens array 100 a 2 having a relatively short radius of curvature is applied to the transparent diffusion plate 100. In this case, since the diffusion angle by the microlens array 100a1 is large, the size (viewing angle) of the display image is large, but the display image tends to be dark. Thus, in the transparent diffusing plate 100 according to the comparative example, the brightness of the display image and the size (viewing angle) of the display image tend to be in a drad-off relationship.
 したがって、本実施例では、表示像の明るさと表示像のサイズ(視野角)の両方を適切に確保すべく、透明性を有する反射型の光学素子として、拡散機能と集光機能の両方を具備する光学素子をヘッドアップディスプレイに適用する。以下で、具体的な実施例の構成について説明する。 Therefore, in this embodiment, in order to appropriately ensure both the brightness of the display image and the size (viewing angle) of the display image, the reflective optical element having transparency has both a diffusion function and a light collection function. The optical element to be applied is applied to a head-up display. Hereinafter, the configuration of a specific embodiment will be described.
 <第1実施例>
 まず、図3を参照して、第1実施例に係る光学素子110について説明する。第1実施例に係る光学素子110は、上記した透明拡散板100の代わりに適用されることで、ヘッドアップディスプレイを構成する(後述する各種の光学素子についても同様であるものとする)。
<First embodiment>
First, the optical element 110 according to the first example will be described with reference to FIG. The optical element 110 according to the first example constitutes a head-up display by being applied instead of the transparent diffusion plate 100 described above (the same applies to various optical elements described later).
 図3の上側には、光の進行方向に沿った面にて切断した、第1実施例に係る光学素子110の断面イメージ図を示している。断面イメージ図に示すように、第1実施例に係る光学素子110は、主に、透明拡散板111と、フレネル凸レンズ112と、フレネル凹レンズ113と、を有する。光学素子110は、フレネル凸レンズ112とフレネル凹レンズ113との間に透明拡散板111を挟み込んで構成されており、フレネル凸レンズ112の側がプロジェクタ200のほうを向くように配置される。 3 is a cross-sectional image view of the optical element 110 according to the first embodiment, cut along a plane along the light traveling direction. As shown in the cross-sectional image diagram, the optical element 110 according to the first example mainly includes a transparent diffusion plate 111, a Fresnel convex lens 112, and a Fresnel concave lens 113. The optical element 110 is configured by sandwiching a transparent diffusion plate 111 between a Fresnel convex lens 112 and a Fresnel concave lens 113, and is arranged so that the Fresnel convex lens 112 side faces the projector 200.
 透明拡散板111は、マイクロレンズアレイ111aが内部に形成されている。具体的には、透明拡散板111は、上記した透明拡散板100と同様に、基板としてのマイクロレンズアレイ111aの凸面に半透明の反射膜を付すことで反射拡散面を形成し、基板とほぼ同じ屈折率のカバー層を被せることで作成される。このような構成により、透明拡散板111は、透明性を有した反射型の拡散板としての機能を発揮する。 The transparent diffusion plate 111 has a microlens array 111a formed therein. Specifically, the transparent diffusion plate 111 forms a reflection diffusion surface by attaching a semi-transparent reflection film to the convex surface of the microlens array 111a as a substrate in the same manner as the transparent diffusion plate 100 described above. Created by covering the same refractive index cover layer. With such a configuration, the transparent diffuser plate 111 exhibits a function as a reflective diffuser plate having transparency.
 フレネル凸レンズ112は、フレネル構造を有する凸レンズ(言い換えると凸レンズとして機能するように構成されたフレネルレンズ)であり、通常の凸レンズを同心円状の領域に分割して厚みを減らしたレンズである。具体的には、フレネル凸レンズ112は、透明拡散板111と対向する面に、フレネル構造の凸レンズ形状を有する面112aが形成されている。 The Fresnel convex lens 112 is a convex lens having a Fresnel structure (in other words, a Fresnel lens configured to function as a convex lens), and is a lens in which a normal convex lens is divided into concentric regions to reduce the thickness. Specifically, the Fresnel convex lens 112 has a surface 112 a having a convex lens shape with a Fresnel structure on the surface facing the transparent diffusion plate 111.
 フレネル凹レンズ113は、フレネル構造を有する凹レンズ(言い換えると凹レンズとして機能するように構成されたフレネルレンズ)であり、通常の凹レンズを同心円状の領域に分割して厚みを減らしたレンズである。具体的には、フレネル凹レンズ113は、透明拡散板111と対向する面に、フレネル構造の凹レンズ形状を有する面113aが形成されている。 The Fresnel concave lens 113 is a concave lens having a Fresnel structure (in other words, a Fresnel lens configured to function as a concave lens), and is a lens in which a normal concave lens is divided into concentric regions to reduce the thickness. Specifically, the Fresnel concave lens 113 has a surface 113 a having a Fresnel-shaped concave lens shape on the surface facing the transparent diffusion plate 111.
 また、フレネル凸レンズ112とフレネル凹レンズ113とは、フレネル構造に関するピッチ(同心円状の領域に分割するピッチ)と、屈折率と、焦点距離(フレネル構造の元になる自由曲面(例えば放物面)の焦点に関する距離)とが等しくなるように構成されている。なお、透明拡散板111の屈折率は、フレネル凸レンズ112及びフレネル凹レンズ113と同じ屈折率にしても良いし、異なる屈折率にしても良い。 In addition, the Fresnel convex lens 112 and the Fresnel concave lens 113 have a pitch related to the Fresnel structure (a pitch to be divided into concentric circular regions), a refractive index, and a focal length (a free curved surface (for example, a paraboloid) that is the basis of the Fresnel structure). The distance with respect to the focal point) is equal. The refractive index of the transparent diffusion plate 111 may be the same as that of the Fresnel convex lens 112 and the Fresnel concave lens 113, or may be different.
 ここで、プロジェクタ200から出射された光は、フレネル凸レンズ112を介して透明拡散板111に入射し、透明拡散板111によって拡散されると共に反射される。そして、透明拡散板111で拡散されて反射された光は、フレネル凸レンズ112に再度入射する。このように、プロジェクタ200から出射された光は、透明拡散板111による反射の前後でフレネル凸レンズ112を2回透過することとなる。そのため、図3中の矢印A11、A12に示すように、プロジェクタ200からの光を運転者の頭部付近に集めることができる。 Here, the light emitted from the projector 200 enters the transparent diffusion plate 111 via the Fresnel convex lens 112, and is diffused and reflected by the transparent diffusion plate 111. Then, the light diffused and reflected by the transparent diffusion plate 111 enters the Fresnel convex lens 112 again. As described above, the light emitted from the projector 200 passes through the Fresnel convex lens 112 twice before and after the reflection by the transparent diffusion plate 111. Therefore, as indicated by arrows A11 and A12 in FIG. 3, the light from the projector 200 can be collected near the head of the driver.
 つまり、第1実施例に係る光学素子110によれば、プロジェクタ200からの光を透明拡散板111によって拡散することができると共に、プロジェクタ200からの光をフレネル凸レンズ112によって集光することができる。よって、第1実施例に係る光学素子110によれば、拡散機能と集光機能の両方を適切に実現することができ、表示像の明るさと表示像のサイズ(視野角)の両方を適切に確保することが可能となる。即ち、第1実施例に係る光学素子110によれば、(半)透明スクリーンでありながら集光機能を有するため、光の利用効率を向上させることが可能となる。 That is, according to the optical element 110 according to the first embodiment, the light from the projector 200 can be diffused by the transparent diffusion plate 111 and the light from the projector 200 can be condensed by the Fresnel convex lens 112. Therefore, according to the optical element 110 according to the first embodiment, both the diffusion function and the light collecting function can be appropriately realized, and both the brightness of the display image and the size (viewing angle) of the display image are appropriately set. It can be secured. In other words, the optical element 110 according to the first embodiment has a light collecting function while being a (semi) transparent screen, so that the light use efficiency can be improved.
 他方で、光学素子110においてプロジェクタ200と反対側から入射される光(つまり車両の前方から入射される光)は、フレネル凹レンズ113、透明拡散板111、フレネル凸レンズ112の順に透過していく。この場合、フレネル凸レンズ112とフレネル凹レンズ113とは、上記したように、ピッチと、屈折率と、焦点距離の絶対値とが等しいため、図3中の矢印A13、A14に示すように、透過光に対する互いのレンズ効果が打ち消されることとなる。そのため、第1実施例に係る光学素子110によれば、前方視界の歪みを適切に抑制しつつ、透明性を確保することができる。 On the other hand, light incident on the optical element 110 from the side opposite to the projector 200 (that is, light incident from the front of the vehicle) passes through the Fresnel concave lens 113, the transparent diffuser plate 111, and the Fresnel convex lens 112 in this order. In this case, since the Fresnel convex lens 112 and the Fresnel concave lens 113 have the same pitch, refractive index, and absolute value of the focal length as described above, as shown by arrows A13 and A14 in FIG. Each other's lens effect on is canceled. Therefore, according to the optical element 110 according to the first example, it is possible to ensure transparency while appropriately suppressing the distortion of the front field of view.
 以上のように、第1実施例では、透明拡散板111は、本発明における「拡散部」の一例に相当し、フレネル凸レンズ112は、本発明における「集光部」の一例に相当する。 As described above, in the first embodiment, the transparent diffusion plate 111 corresponds to an example of the “diffusion part” in the present invention, and the Fresnel convex lens 112 corresponds to an example of the “condensing part” in the present invention.
 なお、透明拡散板111はできるだけ薄いほうが、斜め方向からの透過光に対して高い透明性を確保することができる。 It should be noted that the thinner the transparent diffusion plate 111, the higher the transparency with respect to the transmitted light from the oblique direction.
 また、透明拡散板111とフレネル凸レンズ112との隙間、及び透明拡散板111とフレネル凹レンズ113との隙間は、空気層としても良いが、これらを一体に構成するために透明樹脂などで埋めても良い。但し、隙間を埋める材料は、フレネル凸レンズ112及びフレネル凹レンズ113のレンズ効果が失われないように、フレネル凸レンズ112及びフレネル凹レンズ113と異なる屈折率を有するものを用いると良い。 In addition, the gap between the transparent diffuser plate 111 and the Fresnel convex lens 112 and the gap between the transparent diffuser plate 111 and the Fresnel concave lens 113 may be an air layer, but may be filled with a transparent resin or the like in order to integrally form them. good. However, as a material for filling the gap, a material having a refractive index different from that of the Fresnel convex lens 112 and the Fresnel concave lens 113 may be used so that the lens effects of the Fresnel convex lens 112 and the Fresnel concave lens 113 are not lost.
 更に、フレネル凸レンズ112及びフレネル凹レンズ113には、それらの中心に、自由曲面の中心(例えば放物面の頂点)が位置しないようなフレネル構造を適用しても良い。つまり、フレネルパターンの中心から外れた領域を、フレネル凸レンズ112及びフレネル凹レンズ113に適用しても良い。但し、光学素子110を正面から観察した場合に、フレネル凸レンズ112とフレネル凹レンズ113とで凸のレンズ位置と凹のレンズ位置とを揃えるように構成することが望ましい。このようにフレネルパターンの中心から外れた領域を適用することで、アイボックスEBの位置を上下方向及び/又は左右方向に適宜変えることができる。 Furthermore, the Fresnel convex lens 112 and the Fresnel concave lens 113 may have a Fresnel structure in which the center of the free-form surface (for example, the apex of the paraboloid) is not located at the center thereof. That is, a region off the center of the Fresnel pattern may be applied to the Fresnel convex lens 112 and the Fresnel concave lens 113. However, when the optical element 110 is observed from the front, it is desirable that the convex lens position and the concave lens position be aligned with the Fresnel convex lens 112 and the Fresnel concave lens 113. In this way, by applying a region deviating from the center of the Fresnel pattern, the position of the eye box EB can be appropriately changed in the vertical direction and / or the horizontal direction.
 加えて、複数のフレネルレンズ形状を用いて、フレネル凸レンズ112及びフレネル凹レンズ113を構成しても良い(この場合、フレネルパターンの中心から外れた領域を合わせて適用しても良い)。これにより、複数のアイボックスEBを形成することができる。 In addition, the Fresnel convex lens 112 and the Fresnel concave lens 113 may be configured by using a plurality of Fresnel lens shapes (in this case, an area outside the center of the Fresnel pattern may be applied). Thereby, a plurality of eyeboxes EB can be formed.
 次に、図4及び図5を参照して、第1実施例の変形例(第1変形例及び第2変形例)について説明する。 Next, modified examples (first modified example and second modified example) of the first embodiment will be described with reference to FIGS.
 図4は、第1実施例の第1変形例に係る光学素子120を示している。図4は、光の進行方向に沿った面にて切断した、第1変形例に係る光学素子120の断面イメージ図を示している。 FIG. 4 shows an optical element 120 according to a first modification of the first embodiment. FIG. 4 is a cross-sectional image view of the optical element 120 according to the first modification, cut along a plane along the light traveling direction.
 図4に示すように、光学素子120は、対向する2つの面(つまり両面)に、フレネル構造を有する面120b、120cが形成されている。具体的には、光学素子120は、対向する2つの面のうちの一方の面に、フレネル構造の凸レンズ形状(言い換えると凸レンズとして機能するように構成されたフレネルレンズの表面形状)を有する面120bが形成されている。また、光学素子120は、対向する2つの面のうちの他方の面に、フレネル構造の凹レンズ形状(言い換えると凹レンズとして機能するように構成されたフレネルレンズの表面形状)を有する面120cが形成されている。なお、光学素子120は、面120bがプロジェクタ200のほうを向くように配置される。 As shown in FIG. 4, in the optical element 120, surfaces 120b and 120c having a Fresnel structure are formed on two opposing surfaces (that is, both surfaces). Specifically, the optical element 120 has a surface 120b having a convex lens shape having a Fresnel structure (in other words, a surface shape of a Fresnel lens configured to function as a convex lens) on one of two opposing surfaces. Is formed. The optical element 120 has a surface 120c having a Fresnel-shaped concave lens shape (in other words, a surface shape of a Fresnel lens configured to function as a concave lens) on the other of the two opposing surfaces. ing. The optical element 120 is arranged so that the surface 120b faces the projector 200.
 また、光学素子120は、透明拡散部120aが内部に形成されている。透明拡散部120aは、マイクロレンズアレイの凸面に半透明の反射膜を付して構成されている。つまり、光学素子120は、透明拡散部120aが形成された基板及び当該基板を覆うカバー層のそれぞれの表面に、フレネル構造の凸レンズ形状を有する面120bと、フレネル構造の凹レンズ形状を有する面120cとが形成されたものと言える。 Also, the optical element 120 has a transparent diffusion portion 120a formed therein. The transparent diffusing unit 120a is configured by attaching a semitransparent reflective film to the convex surface of the microlens array. That is, the optical element 120 includes a surface 120b having a convex lens shape with a Fresnel structure and a surface 120c having a concave lens shape with a Fresnel structure on each surface of the substrate on which the transparent diffusion portion 120a is formed and the cover layer covering the substrate. It can be said that was formed.
 なお、面120bの凸レンズ形状と面120cの凹レンズ形状とは、レンズのピッチ及び焦点距離の絶対値が等しい。また、基板とカバー層とは、屈折率がほぼ等しい。 It should be noted that the convex lens shape of the surface 120b and the concave lens shape of the surface 120c have the same absolute value of the lens pitch and focal length. Further, the substrate and the cover layer have substantially the same refractive index.
 このような第1変形例に係る光学素子120によっても、プロジェクタ200から出射された光は、透明拡散部120aによる反射の前後でフレネル構造の凸レンズ形状を有する面120bを2回透過するため、プロジェクタ200からの光を運転者の頭部付近に集めることができる。よって、拡散機能と集光機能の両方を適切に実現することができ、表示像の明るさと表示像のサイズ(視野角)の両方を適切に確保することが可能となる。また、第1変形例に係る光学素子120によれば、面120bの凸レンズ形状と面120cの凹レンズ形状とはピッチ及び焦点距離の絶対値が等しいため、透過光に対する互いのレンズ効果が打ち消されるので、前方視界の歪みを適切に抑制しつつ、透明性を確保することができる。 Even with the optical element 120 according to the first modification, the light emitted from the projector 200 is transmitted twice through the surface 120b having a Fresnel-shaped convex lens shape before and after the reflection by the transparent diffusion portion 120a. Light from 200 can be collected near the driver's head. Therefore, both the diffusion function and the light collecting function can be appropriately realized, and both the brightness of the display image and the size (viewing angle) of the display image can be appropriately ensured. In addition, according to the optical element 120 according to the first modification, the convex lens shape of the surface 120b and the concave lens shape of the surface 120c have the same absolute value of the pitch and the focal length, so the mutual lens effect on the transmitted light is canceled out. Transparency can be ensured while appropriately suppressing distortion of the front field of view.
 更に、第1変形例に係る光学素子120によれば、上記した第1実施例に係る光学素子110と比較して、厚みを薄くすることができる。但し、第1変形例に係る光学素子120では、表面に凹凸があるため、汚れが付着しやすいと言える。そのため、光学素子120の表面を透明樹脂などで覆っても良い。ただし、透明樹脂の屈折率は凸レンズと凹レンズの機能が失われないように基板とカバー層の屈折率とは異なるようにする。 Furthermore, according to the optical element 120 according to the first modification, the thickness can be reduced as compared with the optical element 110 according to the first embodiment. However, it can be said that the optical element 120 according to the first modified example is likely to be contaminated because the surface has irregularities. Therefore, the surface of the optical element 120 may be covered with a transparent resin or the like. However, the refractive index of the transparent resin is made different from that of the substrate and the cover layer so that the functions of the convex lens and the concave lens are not lost.
 以上のように、第1実施例の第1変形例では、透明拡散部120aは、本発明における「拡散部」の一例に相当し、フレネル構造の凸レンズ形状を有する面120bは、本発明における「集光部」の一例に相当する。 As described above, in the first modification of the first embodiment, the transparent diffusion portion 120a corresponds to an example of the “diffusion portion” in the present invention, and the surface 120b having the convex lens shape of the Fresnel structure is “ It corresponds to an example of a “condenser”.
 なお、フレネルパターンの中心から外れた領域を、面120b及び面120cに適用しても良い。但し、光学素子120を正面から観察した場合に、凸のレンズ位置と凹のレンズ位置とを揃えるように構成することが望ましい。また、複数のフレネルレンズ形状を用いて面120b及び面120cを構成しても良い(この場合、フレネルパターンの中心から外れた領域を合わせて適用しても良い)。 In addition, you may apply the area | region which remove | deviated from the center of the Fresnel pattern to the surface 120b and the surface 120c. However, it is desirable that the convex lens position and the concave lens position are aligned when the optical element 120 is observed from the front. Further, the surface 120b and the surface 120c may be configured using a plurality of Fresnel lens shapes (in this case, a region off the center of the Fresnel pattern may be applied together).
 図5は、第1実施例の第2変形例に係る光学素子130を示している。図5の上側には、光の進行方向に沿った面にて切断した、第2変形例に係る光学素子130の断面イメージ図を示している。 FIG. 5 shows an optical element 130 according to a second modification of the first embodiment. On the upper side of FIG. 5, a cross-sectional image view of the optical element 130 according to the second modification example cut along a plane along the light traveling direction is shown.
 第2変形例に係る光学素子130は、第1変形例に係る光学素子120と同様に、透明拡散部130aと、フレネル構造の凸レンズ形状を有する面130bと、フレネル構造の凹レンズ形状を有する面120cとを有する。第2変形例に係る光学素子130は、第1変形例に係る光学素子120をフレキシブルなシート状に構成したものであり、基本的な構成は第1変形例に係る光学素子120と同様である。よって、ここでは、同様の構成については説明を省略することとし、異なる構成についてのみ説明する。 Similar to the optical element 120 according to the first modification, the optical element 130 according to the second modification has a transparent diffusion portion 130a, a surface 130b having a Fresnel structure convex lens shape, and a surface 120c having a Fresnel structure concave lens shape. And have. The optical element 130 according to the second modification is obtained by configuring the optical element 120 according to the first modification in a flexible sheet shape, and the basic configuration is the same as the optical element 120 according to the first modification. . Therefore, description of the same configuration is omitted here, and only a different configuration is described.
 第2変形例に係る光学素子130は、車両のフロントガラスに取り付けられる。具体的には、光学素子130は、フロントガラスの曲率に沿わせて設置される。これにより、運転者などに与える圧迫感や違和感を低減することができる。この場合、フレネル構造の凸レンズ形状を有する面130bの焦点距離は、光学素子130をフロントガラスに沿わせたことによる集光効果を考慮した上で、アイボックスEBが運転者の頭部付近に適切に位置するように設定すれば良い。また、フロントガラスが垂直に傾いていたり、左右に傾いていたりする場合には、フレネルパターンの中心から適宜ずらした領域を面130bに適用することで、アイボックスEBが運転者の頭部付近に適切に位置するように設定すれば良い。 The optical element 130 according to the second modification is attached to the windshield of the vehicle. Specifically, the optical element 130 is installed along the curvature of the windshield. As a result, it is possible to reduce the feeling of pressure or discomfort given to the driver or the like. In this case, the focal length of the surface 130b having the Fresnel-shaped convex lens shape is set so that the eye box EB is suitable for the vicinity of the driver's head in consideration of the light collecting effect caused by placing the optical element 130 along the windshield. What is necessary is just to set so that it may be located in. Further, when the windshield is tilted vertically or tilted to the left or right, the eyebox EB is placed near the driver's head by applying an area appropriately shifted from the center of the Fresnel pattern to the surface 130b. What is necessary is just to set so that it may be located appropriately.
 なお、第2変形例で述べたような光学素子をシート状にする構成は、前述した第1実施例に係る光学素子110にも適用することができし、後述する実施例(その変形例も含む)で示す光学素子にも適用することができる。 Note that the configuration in which the optical element described in the second modification is formed into a sheet shape can be applied to the optical element 110 according to the first embodiment described above. It can also be applied to the optical element shown in FIG.
 <第2実施例>
 次に、図6を参照して、第2実施例について説明する。図6の上側には、光の進行方向に沿った面にて切断した、第2実施例に係る光学素子140の断面イメージ図を示している。
<Second embodiment>
Next, a second embodiment will be described with reference to FIG. In the upper side of FIG. 6, a cross-sectional image view of the optical element 140 according to the second example, cut along a plane along the light traveling direction, is shown.
 断面イメージ図に示すように、第2実施例に係る光学素子140は、対向する2つの面(つまり両面)に、マイクロレンズアレイ140a、140cが形成されている。光学素子140は、マイクロレンズアレイ140aが形成された面がプロジェクタ200のほうを向くように配置される。 As shown in the cross-sectional image diagram, the optical element 140 according to the second example has microlens arrays 140a and 140c formed on two opposing surfaces (that is, both surfaces). The optical element 140 is arranged so that the surface on which the microlens array 140a is formed faces the projector 200.
 また、光学素子140は、内部に、フレネル構造の凹面ミラー形状(言い換えると凹面ミラーとして機能するように構成されたフレネル構造の反射面形状)を有する反射面140bが形成されている。つまり、光学素子140は、マイクロレンズアレイ140aとマイクロレンズアレイ140cとの間に反射面140bが形成されている。反射面140bは、フレネル構造の凹面ミラー形状を有する面に半透明の反射膜を付して構成されている。なお、反射面140bは、マイクロレンズアレイ140a側に凹んだ面(凹面)に相当する。 Also, the optical element 140 has a reflecting surface 140b having a concave mirror shape with a Fresnel structure (in other words, a reflecting surface shape with a Fresnel structure configured to function as a concave mirror) formed therein. That is, in the optical element 140, the reflection surface 140b is formed between the microlens array 140a and the microlens array 140c. The reflective surface 140b is configured by attaching a translucent reflective film to a surface having a concave mirror shape with a Fresnel structure. The reflective surface 140b corresponds to a surface (concave surface) that is recessed toward the microlens array 140a.
 更に、マイクロレンズアレイ140aとマイクロレンズアレイ140cとは、同じ形状を有している。具体的には、マイクロレンズアレイ140aとマイクロレンズアレイ140cとは、同じ形状を有するマイクロレンズが同じレンズピッチで配列されている。また、マイクロレンズアレイ140aとマイクロレンズアレイ140cとは、マイクロレンズの焦点距離(屈折率で換算した値を用いるものとする。)の2倍の距離だけ離間している。つまり、倍率が1倍のビームエキスパンダー系になるように構成されている。なお、フレネル構造の反射面140bについては、マイクロレンズアレイ140aとマイクロレンズアレイ140cとの中間位置に配置する必要はない。 Furthermore, the microlens array 140a and the microlens array 140c have the same shape. Specifically, in the microlens array 140a and the microlens array 140c, microlenses having the same shape are arranged at the same lens pitch. The microlens array 140a and the microlens array 140c are separated from each other by a distance twice as long as the focal length of the microlens (a value converted in terms of refractive index is used). That is, it is configured to be a beam expander system with a magnification of 1. Note that the reflecting surface 140b having the Fresnel structure does not need to be disposed at an intermediate position between the microlens array 140a and the microlens array 140c.
 ここで、プロジェクタ200から出射された光は、マイクロレンズアレイ140aによって集光しながらフレネル構造の反射面140bに向かい、反射面140bで反射されると拡散しながら再びマイクロレンズアレイ140aを透過して出射される。この際、フレネル構造の反射面140bは凹面ミラーとして機能するため、図6中の矢印A21、A22に示すように、プロジェクタ200からの光を運転者の頭部付近に集めることができる。よって、第2実施例に係る光学素子140によっても、拡散機能と集光機能の両方を適切に実現することができ、表示像の明るさと表示像のサイズ(視野角)の両方を適切に確保することが可能となる。 Here, the light emitted from the projector 200 is transmitted to the reflection surface 140b of the Fresnel structure while being collected by the microlens array 140a, and is transmitted again through the microlens array 140a while being diffused when reflected by the reflection surface 140b. Emitted. At this time, since the reflecting surface 140b having the Fresnel structure functions as a concave mirror, the light from the projector 200 can be collected near the head of the driver as indicated by arrows A21 and A22 in FIG. Therefore, both the diffusing function and the condensing function can be appropriately realized by the optical element 140 according to the second embodiment, and both the brightness of the display image and the size (viewing angle) of the display image are appropriately ensured. It becomes possible to do.
 他方で、車両の前方から光学素子140に入射される光は、マイクロレンズアレイ140c、反射面140b、マイクロレンズアレイ140aの順に透過していく。この場合、マイクロレンズアレイ140aとマイクロレンズアレイ140cとは、同じ形状を有していると共にマイクロレンズの焦点距離の2倍の距離だけ離間しているため、図6中の矢印A23、A24に示すように、透過光に対する互いのレンズ効果が打ち消されることとなる。そのため、第2実施例に係る光学素子140によっても、前方視界の歪みを適切に抑制しつつ、透明性を確保することができる。 On the other hand, light incident on the optical element 140 from the front of the vehicle passes through the microlens array 140c, the reflective surface 140b, and the microlens array 140a in this order. In this case, the microlens array 140a and the microlens array 140c have the same shape and are separated from each other by a distance twice as long as the focal length of the microlens, and are indicated by arrows A23 and A24 in FIG. Thus, the mutual lens effect on the transmitted light is canceled. Therefore, the optical element 140 according to the second example can also ensure transparency while appropriately suppressing the distortion of the front field of view.
 以上のように、第2実施例では、マイクロレンズアレイ140aは、本発明における「第1拡散部」の一例に相当し、マイクロレンズアレイ140cは、本発明における「第2拡散部」の一例に相当し、フレネル構造の凹面ミラー形状を有する反射面140bは、本発明における「集光部」の一例に相当する。 As described above, in the second embodiment, the microlens array 140a corresponds to an example of the “first diffusion portion” in the present invention, and the microlens array 140c corresponds to an example of the “second diffusion portion” in the present invention. Correspondingly, the reflecting surface 140b having a Fresnel-shaped concave mirror shape corresponds to an example of the “light collecting portion” in the present invention.
 なお、フレネルパターンの中心から外れた領域を反射面140bに適用しても良い。これにより、アイボックスEBの位置を上下方向及び/又は左右方向に適宜変えることができる。また、複数のフレネルレンズ形状を用いて反射面140bを構成しても良い(この場合、フレネルパターンの中心から外れた領域を合わせて適用しても良い)。これにより、複数のアイボックスEBを形成することができる。 In addition, you may apply the area | region which remove | deviated from the center of the Fresnel pattern to the reflective surface 140b. Thereby, the position of the eye box EB can be appropriately changed in the vertical direction and / or the horizontal direction. Further, the reflecting surface 140b may be configured by using a plurality of Fresnel lens shapes (in this case, a region off the center of the Fresnel pattern may be applied together). Thereby, a plurality of eyeboxes EB can be formed.
 ここで、図7を参照して、マイクロレンズアレイ140aとマイクロレンズアレイ140cとの間における反射面140bの好適な配置位置について説明する。図7(a)は、反射面140bをマイクロレンズアレイ140c側に配置した場合を示し、図7(b)は、反射面140bをマイクロレンズアレイ140aとマイクロレンズアレイ140cとの概ね中間に配置した場合を示し、図7(c)は、反射面140bをマイクロレンズアレイ140a側に配置した場合を示している。図7(a)に示すように反射面140bを配置した場合には、反射される前に拡散が始まっていることがわかる。他方で、図7(c)に示すように反射面140bを配置した場合には、反射直後に集光して、その後に拡散していることがわかる。以上より、図7(c)に示すように反射面140bを配置した場合には拡散度合いが少なくなってしまうので、図7(a)や(b)に示すように反射面140bを配置することが望ましいと言える。 Here, with reference to FIG. 7, a preferred arrangement position of the reflecting surface 140b between the microlens array 140a and the microlens array 140c will be described. FIG. 7A shows a case where the reflecting surface 140b is arranged on the microlens array 140c side, and FIG. 7B shows that the reflecting surface 140b is arranged approximately in the middle between the microlens array 140a and the microlens array 140c. FIG. 7C shows a case where the reflection surface 140b is arranged on the microlens array 140a side. As shown in FIG. 7A, when the reflecting surface 140b is arranged, it can be seen that diffusion starts before being reflected. On the other hand, when the reflective surface 140b is arranged as shown in FIG. 7C, it can be seen that the light is condensed immediately after reflection and diffused thereafter. As described above, when the reflecting surface 140b is disposed as shown in FIG. 7C, the degree of diffusion is reduced. Therefore, the reflecting surface 140b is disposed as shown in FIGS. 7A and 7B. Is desirable.
 次に、図8を参照して、第2実施例の変形例について説明する。図8は、光7の進行方向に沿った面にて切断した、第2実施例の変形例に係る光学素子150の断面イメージ図を示している。 Next, a modification of the second embodiment will be described with reference to FIG. FIG. 8 shows a cross-sectional image diagram of an optical element 150 according to a modification of the second embodiment, cut along a plane along the traveling direction of the light 7.
 図8に示すように、第2実施例の変形例に係る光学素子150は、マイクロレンズアレイ部151、153と、フレネル反射面部152と、を有する。光学素子150は、マイクロレンズアレイ部151、153の間にフレネル反射面部152を挟み込んで構成されており、マイクロレンズアレイ部151の側がプロジェクタ200のほうを向くように配置される。 As shown in FIG. 8, an optical element 150 according to a modification of the second embodiment includes microlens array portions 151 and 153 and a Fresnel reflection surface portion 152. The optical element 150 is configured by sandwiching the Fresnel reflection surface portion 152 between the microlens array portions 151 and 153, and is arranged so that the microlens array portion 151 side faces the projector 200.
 マイクロレンズアレイ部151、153は、それぞれ、フレネル反射面部152に対向する面に、マイクロレンズアレイ151a、153aが形成されている。つまり、マイクロレンズアレイ部151、153は、凸面の側がフレネル反射面部152のほうを向くように配置されている。また、マイクロレンズアレイ151a、153aは、同じ形状を有するマイクロレンズが同じレンズピッチで配列されていると共に、マイクロレンズの焦点距離(屈折率で換算した値を用いるものとする。)の2倍の距離だけ離間している。 In the microlens array portions 151 and 153, the microlens arrays 151a and 153a are formed on the surfaces facing the Fresnel reflection surface portion 152, respectively. That is, the microlens array portions 151 and 153 are arranged so that the convex side faces the Fresnel reflection surface portion 152. In the microlens arrays 151a and 153a, microlenses having the same shape are arranged at the same lens pitch, and the focal length of the microlens (a value converted by a refractive index is used) is twice. They are separated by a distance.
 フレネル反射面部152は、内部に、フレネル構造の凹面ミラー形状(言い換えると凹面ミラーとして機能するように構成されたフレネル構造の反射面形状)を有する反射面152aが形成されている。反射面152aは、フレネル構造の凹面ミラー形状を有する面に半透明の反射膜を付して構成されており、平板で覆われることでフレネル反射面部152を成す。なお、反射面152aは、マイクロレンズアレイ部151側に凹んだ面(凹面)に相当する。 The reflection surface 152a having a Fresnel structure concave mirror shape (in other words, a Fresnel structure reflection surface shape configured to function as a concave mirror) is formed inside the Fresnel reflection surface portion 152. The reflection surface 152a is configured by attaching a translucent reflection film to a surface having a concave mirror shape with a Fresnel structure, and forms a Fresnel reflection surface portion 152 by being covered with a flat plate. The reflective surface 152a corresponds to a surface (concave surface) that is recessed toward the microlens array portion 151 side.
 このような第2実施例の変形例に係る光学素子150によっても、フレネル構造の反射面152aが凹面ミラーとして機能することで、プロジェクタ200からの光を運転者の頭部付近に集めることができる。よって、拡散機能と集光機能の両方を適切に実現することができ、表示像の明るさと表示像のサイズ(視野角)の両方を適切に確保することが可能となる。また、第2実施例の変形例に係る光学素子150によれば、マイクロレンズアレイ151a、153aは、同じ形状を有していると共にマイクロレンズの焦点距離の2倍の距離だけ離間しているため、透過光に対する互いのレンズ効果が打ち消されるので、前方視界の歪みを適切に抑制しつつ、透明性を確保することができる。 Also by the optical element 150 according to the modified example of the second embodiment, the light from the projector 200 can be collected in the vicinity of the driver's head because the reflecting surface 152a having the Fresnel structure functions as a concave mirror. . Therefore, both the diffusion function and the light collecting function can be appropriately realized, and both the brightness of the display image and the size (viewing angle) of the display image can be appropriately ensured. Further, according to the optical element 150 according to the modification of the second embodiment, the microlens arrays 151a and 153a have the same shape and are separated by a distance twice as long as the focal length of the microlens. Since the mutual lens effect with respect to the transmitted light is canceled out, it is possible to ensure transparency while appropriately suppressing distortion of the front field of view.
 以上のように、第2実施例の変形例では、マイクロレンズアレイ部151は、本発明における「第1拡散部」の一例に相当し、マイクロレンズアレイ部153は、本発明における「第2拡散部」の一例に相当し、フレネル反射面部152は、本発明における「集光部」の一例に相当する。 As described above, in the modified example of the second embodiment, the microlens array unit 151 corresponds to an example of the “first diffusion unit” in the present invention, and the microlens array unit 153 includes the “second diffusion unit” in the present invention. The Fresnel reflection surface portion 152 corresponds to an example of a “light collecting portion” in the present invention.
 なお、マイクロレンズアレイ部151とフレネル反射面部152との隙間、及びマイクロレンズアレイ部153とフレネル反射面部152との隙間は、空気層としても良いが、これらを一体に構成するために透明樹脂などで埋めても良い。但し、隙間を埋める材料は、マイクロレンズアレイ部151、153のレンズ効果が失われないように、マイクロレンズアレイ部151、153と異なる屈折率を有するものを用いると良い。 Note that the gap between the microlens array portion 151 and the Fresnel reflection surface portion 152 and the gap between the microlens array portion 153 and the Fresnel reflection surface portion 152 may be an air layer, but a transparent resin or the like is used in order to integrally form them. It may be filled with. However, as a material for filling the gap, a material having a refractive index different from that of the microlens array units 151 and 153 may be used so that the lens effect of the microlens array units 151 and 153 is not lost.
 また、フレネルパターンの中心から外れた領域を反射面152aに適用しても良い。更に、複数のフレネルレンズ形状を用いて反射面152aを構成しても良い(この場合、フレネルパターンの中心から外れた領域を合わせて適用しても良い)。 Further, a region off the center of the Fresnel pattern may be applied to the reflecting surface 152a. Further, the reflection surface 152a may be configured using a plurality of Fresnel lens shapes (in this case, a region off the center of the Fresnel pattern may be applied together).
 <第3実施例>
 次に、図9を参照して、第3実施例について説明する。図9の上側には、光の進行方向に沿った面にて切断した、第3実施例に係る光学素子160の断面イメージ図を示している。
<Third embodiment>
Next, a third embodiment will be described with reference to FIG. On the upper side of FIG. 9, a cross-sectional image view of the optical element 160 according to the third example cut along a plane along the light traveling direction is shown.
 断面イメージ図に示すように、第3実施例に係る光学素子160は、内部にマイクロレンズアレイ160aが形成されている。マイクロレンズアレイ160aは、凸面に半透明の反射膜が付されている。また、マイクロレンズアレイ160aは、各マイクロレンズの間隔は等ピッチであるが、光学素子160の中心から離れるにつれて、各マイクロレンズの光軸が外側にずれていく偏心レンズにて構成されている。マイクロレンズアレイ160aは、周辺部になるほど、光学素子160の厚さ方向に対してマイクロレンズの光軸が外側にずらされる量が大きくなっている。例えば、マイクロレンズアレイ160aは、フレネルレンズを構成する面と同様の傾きとなるように、各マイクロレンズの光軸がずらされている。 As shown in the cross-sectional image diagram, the optical element 160 according to the third example has a microlens array 160a formed therein. The microlens array 160a has a translucent reflective film on the convex surface. The microlens array 160a is formed of an eccentric lens in which the intervals between the microlenses are equal, but the optical axis of each microlens shifts outward as the distance from the center of the optical element 160 increases. The closer the microlens array 160a is to the periphery, the greater the amount by which the optical axis of the microlens is shifted outward with respect to the thickness direction of the optical element 160. For example, in the microlens array 160a, the optical axis of each microlens is shifted so as to have the same inclination as the surface constituting the Fresnel lens.
 第3実施例に係る光学素子160によれば、プロジェクタ200から出射された光は、マイクロレンズアレイ160aによって拡散されると共に反射される。第3実施例では、マイクロレンズアレイ160aの各マイクロレンズは周辺部になるほど光軸が外側にずらされているため、マイクロレンズアレイ160aによる外側への光の拡散が抑えられる。そのため、図9中の矢印A31、A32に示すように、プロジェクタ200からの光を運転者の頭部付近に集めることができる。よって、第3実施例に係る光学素子160によっても、拡散機能と集光機能の両方を適切に実現することができ、表示像の明るさと表示像のサイズ(視野角)の両方を適切に確保することが可能となる。 According to the optical element 160 according to the third example, the light emitted from the projector 200 is diffused and reflected by the microlens array 160a. In the third example, since the optical axis of each microlens of the microlens array 160a is shifted toward the outer side, the diffusion of light to the outside by the microlens array 160a is suppressed. Therefore, as indicated by arrows A31 and A32 in FIG. 9, light from the projector 200 can be collected near the head of the driver. Therefore, both the diffusion function and the light collecting function can be appropriately realized by the optical element 160 according to the third embodiment, and both the brightness of the display image and the size (viewing angle) of the display image are appropriately ensured. It becomes possible to do.
 また、第3実施例に係る光学素子160では、図9中の矢印A33、A34に示すように、車両の前方から入射される光に対して特にレンズ効果を付与しないため、前方視界の歪みを適切に抑制しつつ、透明性を確保することができる。 Further, in the optical element 160 according to the third example, as indicated by arrows A33 and A34 in FIG. 9, the lens effect is not particularly given to the light incident from the front of the vehicle. Transparency can be ensured while appropriately suppressing.
 更に、第3実施例に係る光学素子160によれば、第1実施例及び第2実施例で示したようなフレネルレンズ(フレネルレンズ形状の面も含む)を用いないため、製造コストを削減することが可能となる。 Furthermore, according to the optical element 160 according to the third example, since the Fresnel lens (including the surface of the Fresnel lens shape) as shown in the first example and the second example is not used, the manufacturing cost is reduced. It becomes possible.
 <変形例>
 上記では、本発明における拡散部としてマイクロレンズアレイを用いる例を示したが、これに限定はされない。マイクロレンズアレイの代わりに、レンチキュラーレンズやランダム散乱面などを、本発明における拡散部として用いても良い。また、第3実施例で示した光学素子160において、マイクロレンズアレイ160aの代わりに、レンチキュラーレンズを用いても良い。
<Modification>
Although the example using a microlens array as a diffusion part in the present invention has been described above, the present invention is not limited to this. Instead of the microlens array, a lenticular lens, a random scattering surface, or the like may be used as the diffusion unit in the present invention. In the optical element 160 shown in the third example, a lenticular lens may be used instead of the microlens array 160a.
 本発明は、ヘッドアップディスプレイや反射型スクリーンなどに利用することができる。 The present invention can be used for a head-up display or a reflective screen.
 110、120、130、140、150、160 光学素子
 111 透明拡散板
 112 フレネル凸レンズ
 113 フレネル凹レンズ
 200 プロジェクタ
 EB アイボックス
110, 120, 130, 140, 150, 160 Optical element 111 Transparent diffuser plate 112 Fresnel convex lens 113 Fresnel concave lens 200 Projector EB Eye box

Claims (15)

  1.  表示像を構成する光を反射することで当該表示像を視認させる光学素子であって、
     光の透過性を有すると共に、前記表示像を構成する光を拡散する機能を有する拡散部と、
     光の透過性を有すると共に、前記表示像を構成する光を集光する機能を有する集光部と、を備え、
     前記拡散部又は前記集光部は、前記表示像を構成する光を反射する機能を更に有することを特徴とする光学素子。
    An optical element that visually recognizes the display image by reflecting light constituting the display image,
    A diffusing unit having light transmission and a function of diffusing light constituting the display image;
    A light condensing unit having a light transmissive property and a function of condensing light constituting the display image,
    The diffusing unit or the condensing unit further has a function of reflecting light constituting the display image.
  2.  前記集光部は、フレネル構造の凸レンズであり、
     前記拡散部は、前記表示像を構成する光が前記凸レンズを介して入射され、当該光を拡散すると共に前記凸レンズに向けて反射し、
     フレネル構造の凹レンズを更に備えており、前記凸レンズと前記凸レンズとの間に前記拡散部が挟み込まれていることを特徴とする請求項1に記載の光学素子。
    The condensing part is a convex lens having a Fresnel structure,
    The diffuser is configured such that light constituting the display image is incident through the convex lens, diffuses the light, and reflects the light toward the convex lens.
    The optical element according to claim 1, further comprising a concave lens having a Fresnel structure, wherein the diffusing portion is sandwiched between the convex lens and the convex lens.
  3.  前記凸レンズと前記凹レンズとは、レンズのピッチと、屈折率と、焦点距離の絶対値とが等しいことを特徴とする請求項2に記載の光学素子。 3. The optical element according to claim 2, wherein the convex lens and the concave lens have the same lens pitch, refractive index, and absolute value of focal length.
  4.  前記拡散部と前記凸レンズとの間は、当該凸レンズとは異なる屈折率を有する所定の媒体で埋められており、
     前記拡散部と前記凹レンズとの間は、当該凹レンズとは異なる屈折率を有する所定の媒体で埋められていることを特徴とする請求項2又は3に記載の光学素子。
    The space between the diffusion part and the convex lens is filled with a predetermined medium having a refractive index different from that of the convex lens.
    4. The optical element according to claim 2, wherein a space between the diffusing portion and the concave lens is filled with a predetermined medium having a refractive index different from that of the concave lens.
  5.  前記集光部は、前記光学素子を構成する対向する2つの面のうちの一方の面に形成された、フレネル構造の凸レンズ形状を有する面であり、
     前記拡散部は、前記光学素子の内部に形成されており、前記集光部を介して入射された前記表示像を構成する光を拡散すると共に前記集光部に向けて反射し、
     前記光学素子を構成する対向する2つの面のうちの他方の面には、フレネル構造の凹レンズ形状を有する面が更に形成されていることを特徴とする請求項1に記載の光学素子。
    The condensing part is a surface having a convex lens shape with a Fresnel structure, formed on one of two opposing surfaces constituting the optical element,
    The diffusing unit is formed inside the optical element, diffuses the light constituting the display image incident through the condensing unit and reflects it toward the condensing unit,
    2. The optical element according to claim 1, wherein a surface having a Fresnel-shaped concave lens shape is further formed on the other of the two opposing surfaces constituting the optical element.
  6.  前記凸レンズ形状と前記凹レンズ形状とは、レンズのピッチ及び焦点距離の絶対値が等しいことを特徴とする請求項5に記載の光学素子。 6. The optical element according to claim 5, wherein the convex lens shape and the concave lens shape have the same lens pitch and focal length absolute values.
  7.  前記拡散部は、第1拡散部及び第2拡散部を有し、
     前記集光部は、前記光学素子の内部に形成された、フレネル構造の凹面ミラー形状を有する反射面であり、
     前記第1拡散部は、前記光学素子を構成する対向する2つの面のうちの一方の面に形成されており、前記表示像を構成する光を拡散し、
     前記第2拡散部は、前記光学素子を構成する対向する2つの面のうちの他方の面に形成されていることを特徴とする請求項1に記載の光学素子。
    The diffusion part has a first diffusion part and a second diffusion part,
    The condensing part is a reflecting surface formed inside the optical element and having a concave mirror shape with a Fresnel structure,
    The first diffusing portion is formed on one of two opposing surfaces constituting the optical element, and diffuses the light constituting the display image,
    2. The optical element according to claim 1, wherein the second diffusing portion is formed on the other of the two opposing faces constituting the optical element.
  8.  前記拡散部は、第1拡散部及び第2拡散部を有し、
     前記集光部は、フレネル構造の凹面ミラー形状を有する反射面が内部に形成され、
     前記第1拡散部は、前記集光部の一方の面に対向して配置され、前記表示像を構成する光を拡散し、
     前記第2拡散部は、前記集光部の他方の面に対向して配置されていることを特徴とする請求項1に記載の光学素子。
    The diffusion part has a first diffusion part and a second diffusion part,
    The condensing part has a reflecting surface having a concave mirror shape with a Fresnel structure formed inside,
    The first diffusion unit is disposed to face one surface of the light collecting unit, diffuses light constituting the display image,
    The optical element according to claim 1, wherein the second diffusing unit is disposed to face the other surface of the light collecting unit.
  9.  前記第1拡散部と前記集光部との間は、前記第1拡散部の屈折率とは異なる屈折率を有する所定の媒体で埋められており、
     前記第2拡散部と前記集光部との間は、前記第2拡散部の屈折率とは異なる屈折率を有する所定の媒体で埋められていることを特徴とする請求項8に記載の光学素子。
    The space between the first diffusion part and the light collecting part is filled with a predetermined medium having a refractive index different from the refractive index of the first diffusion part,
    The optical system according to claim 8, wherein a space between the second diffusing unit and the condensing unit is filled with a predetermined medium having a refractive index different from a refractive index of the second diffusing unit. element.
  10.  前記第1拡散部と前記第2拡散部とは、同じ形状を有するマイクロレンズアレイで構成されており、前記マイクロレンズアレイが有する1つのマイクロレンズの焦点距離の2倍の距離だけ離間していることを特徴とする請求項7乃至9のいずれか一項に記載の光学素子。 The first diffusing unit and the second diffusing unit are configured by a microlens array having the same shape, and are separated by a distance twice the focal length of one microlens included in the microlens array. The optical element according to claim 7, wherein the optical element is an optical element.
  11.  前記フレネル構造として、当該フレネル構造の元になる自由曲面の中心から外れた領域が適用されていることを特徴とする請求項2乃至10のいずれか一項に記載の光学素子。 The optical element according to any one of claims 2 to 10, wherein a region deviating from the center of a free-form surface that is the basis of the Fresnel structure is applied as the Fresnel structure.
  12.  前記拡散部は、マイクロレンズアレイで構成されることを特徴とする請求項1乃至11のいずれか一項に記載の光学素子。 The optical element according to any one of claims 1 to 11, wherein the diffusing unit is configured by a microlens array.
  13.  表示像を構成する光を反射することで当該表示像を視認させる光学素子であって、
     前記光学素子は、透過性を有する反射型のマイクロレンズアレイを備えており、
     前記マイクロレンズアレイは、前記光学素子の中心から離れるにつれて、マイクロレンズの光軸が外側にずれていく偏心レンズにて構成されていることを特徴とする光学素子。
    An optical element that visually recognizes the display image by reflecting light constituting the display image,
    The optical element includes a reflective microlens array having transparency,
    The optical element, wherein the microlens array is configured by an eccentric lens in which the optical axis of the microlens is shifted outward as the distance from the center of the optical element increases.
  14.  フレキシブルなシート状に構成され、移動体のフロントガラスに取り付けられることを特徴とする請求項1乃至13のいずれか一項に記載の光学素子。 The optical element according to claim 1, wherein the optical element is configured in a flexible sheet shape and attached to a windshield of a moving body.
  15.  請求項1乃至14のいずれか一項に記載の光学素子と、前記光学素子に向けて前記表示像を構成する光を出射する光源部と、を備えることを特徴とするヘッドアップディスプレイ。 A head-up display comprising: the optical element according to any one of claims 1 to 14; and a light source unit that emits light constituting the display image toward the optical element.
PCT/JP2012/073691 2012-09-14 2012-09-14 Optical element and head-up display WO2014041690A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014535332A JPWO2014041690A1 (en) 2012-09-14 2012-09-14 Optical element and head-up display
PCT/JP2012/073691 WO2014041690A1 (en) 2012-09-14 2012-09-14 Optical element and head-up display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/073691 WO2014041690A1 (en) 2012-09-14 2012-09-14 Optical element and head-up display

Publications (1)

Publication Number Publication Date
WO2014041690A1 true WO2014041690A1 (en) 2014-03-20

Family

ID=50277842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073691 WO2014041690A1 (en) 2012-09-14 2012-09-14 Optical element and head-up display

Country Status (2)

Country Link
JP (1) JPWO2014041690A1 (en)
WO (1) WO2014041690A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024265A (en) * 2018-08-06 2020-02-13 大日本印刷株式会社 Reflection screen, laminated glass, and video display device
WO2020110961A1 (en) * 2018-11-26 2020-06-04 Agc株式会社 Reflection-type transparent screen, and image display system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11338056A (en) * 1998-05-22 1999-12-10 Nissho Giken Kk Video display device
JP2003207743A (en) * 2002-01-16 2003-07-25 Olympus Optical Co Ltd Stereoscopic observation apparatus
JP2005070255A (en) * 2003-08-22 2005-03-17 Denso Corp Virtual image display device
JP2010078860A (en) * 2008-09-25 2010-04-08 Toshiba Corp Optical member, display device, and moving object
JP2010539525A (en) * 2007-09-10 2010-12-16 マイクロビジョン,インク. Embedded numerical aperture expander with permeable characteristics
JP2011191715A (en) * 2010-03-17 2011-09-29 Toshiba Corp Optical element, display device, display method, and moving body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11338056A (en) * 1998-05-22 1999-12-10 Nissho Giken Kk Video display device
JP2003207743A (en) * 2002-01-16 2003-07-25 Olympus Optical Co Ltd Stereoscopic observation apparatus
JP2005070255A (en) * 2003-08-22 2005-03-17 Denso Corp Virtual image display device
JP2010539525A (en) * 2007-09-10 2010-12-16 マイクロビジョン,インク. Embedded numerical aperture expander with permeable characteristics
JP2010078860A (en) * 2008-09-25 2010-04-08 Toshiba Corp Optical member, display device, and moving object
JP2011191715A (en) * 2010-03-17 2011-09-29 Toshiba Corp Optical element, display device, display method, and moving body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024265A (en) * 2018-08-06 2020-02-13 大日本印刷株式会社 Reflection screen, laminated glass, and video display device
JP7124535B2 (en) 2018-08-06 2022-08-24 大日本印刷株式会社 Reflective screen, laminated glass and image display device
WO2020110961A1 (en) * 2018-11-26 2020-06-04 Agc株式会社 Reflection-type transparent screen, and image display system
CN113167933A (en) * 2018-11-26 2021-07-23 Agc株式会社 Reflective transparent screen and image display system
JPWO2020110961A1 (en) * 2018-11-26 2021-10-14 Agc株式会社 Reflective transparent screen and video display system
US11480864B2 (en) 2018-11-26 2022-10-25 AGC Inc. Reflection-type transparent screen, and image display system
JP7371639B2 (en) 2018-11-26 2023-10-31 Agc株式会社 Reflective transparent screen and video display system

Also Published As

Publication number Publication date
JPWO2014041690A1 (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP5930231B2 (en) Projection device and head-up display device
US10859826B2 (en) Head-up display device
US20180252917A1 (en) Display Image Projection Apparatus and Display Image Projection System
US20180252918A1 (en) Display Image Projection System
JP4720694B2 (en) Vehicle display device
JP6601431B2 (en) Head-up display device
WO2016047035A1 (en) Head-up display device
JP2011191715A (en) Optical element, display device, display method, and moving body
JP5499015B2 (en) OPTICAL ELEMENT, DISPLAY DEVICE, DISPLAY METHOD, AND MOBILE BODY
US20160004077A1 (en) Virtual image generation device and head-up display
JP2015161732A (en) Display light projection optical device
JP2014043205A (en) Image display system for vehicle
JP6414131B2 (en) Projection device and head-up display device
WO2019151498A1 (en) Display member and display device
JP6593462B2 (en) Virtual image display device
JP6593461B2 (en) Virtual image display device
CN112946890A (en) Projection unit for a visual field display device for use in a vehicle
WO2022130823A1 (en) Virtual image display device
WO2014041690A1 (en) Optical element and head-up display
JP6593464B2 (en) Virtual image display device
JP2018194699A (en) Display device, and array time display device
JP6593465B2 (en) Virtual image display device
JP6593463B2 (en) Virtual image display device
JP7087806B2 (en) Video display system
JP2017090860A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884708

Country of ref document: EP

Kind code of ref document: A1