WO2013137628A1 - 신규한 디아실글리세롤 아실트랜스퍼레이즈 2 억제 물질 및 이의 이용 - Google Patents
신규한 디아실글리세롤 아실트랜스퍼레이즈 2 억제 물질 및 이의 이용 Download PDFInfo
- Publication number
- WO2013137628A1 WO2013137628A1 PCT/KR2013/001990 KR2013001990W WO2013137628A1 WO 2013137628 A1 WO2013137628 A1 WO 2013137628A1 KR 2013001990 W KR2013001990 W KR 2013001990W WO 2013137628 A1 WO2013137628 A1 WO 2013137628A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dgat2
- compound
- composition
- present
- formula
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
Definitions
- the present invention relates to novel diacylglycerol Acyltransferase 2 (DGAT2) inhibitors and the use thereof.
- DGAT2 diacylglycerol Acyltransferase 2
- obesity is one of the rapidly increasing diseases, which is reported to be a cause of metabolic diseases such as diabetes, and development of therapeutic drugs for metabolic diseases by regulating the functions of enzymes involved in the biosynthetic pathway of triglycerides, which is the main cause of obesity
- Triglycerides play an important role in the storage function as an energy source in vivo, but if they are excessively accumulated in organs or tissues, they cause obesity, hypertriglyceridemia, fatty liver, etc.
- Serious diseases such as (Unger RH 2002 Lipotoxic diseases.Annu. Rev. Med. 53: 319-336., Friedman J. 2002. Fat in all the wrong places.Nature. 415: 268-269).
- TG triglycerides
- DGAT diacylglycerol acyltransferase
- DGAT has been identified as two isoforms, DGAT1 and DGAT2, and their biochemical functions are similar, but tissue distribution (DGAT1 is mainly expressed in the small intestine and adipose tissue, DGAT2 is mainly expressed in the liver and adipose tissue)
- tissue distribution DGAT1 is mainly expressed in the small intestine and adipose tissue
- DGAT2 is mainly expressed in the liver and adipose tissue
- Different roles of DGAT1 in the ACAT family and DGAT2 in the MGAT family are expected to have different roles for TG biosynthesis (Yen CE., Stone SJ, Koliwad S, Harris C, and Farese RV. 2008. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Research. 49: 2283-2301).
- ASOs antisense oligonucleotides
- DGAT2 can be used as a molecular target for the treatment of related metabolic diseases including fatty liver (Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, Kim S, Distefano A, Samuel VT, Neschen S, Zhang D, Wang A, Zhang XM, Kahn M, Cline GW, Pandey SK, Geisler JG, Bhanot S, Monia BP, Shulman GI. 2007. J. Biol. Chem.
- DGAT1 has been actively developed as a molecular target for metabolic diseases including obesity, diabetes, fatty liver, and hyperlipidemia at several large pharmaceutical companies including Novartis, Pfizer, and some of them are currently in clinical trials. In addition, some pharmaceutical companies and government-funded research institutes are developing studies on the development of inhibitors of DGAT1 and the treatment of metabolic diseases using the same. On the other hand, new drug development programs targeting DGAT2 are rarely reported at home or abroad.
- metabolic diseases generally require long-term prescription of drugs, it is very important to develop an active substance to reduce triglycerides by selectively acting on DGAT2 without showing toxicity to the human body.
- the present inventors while studying to solve the above problems, developed a method for screening a diacylglycerol acyl transferase 2 (DGAT2) inhibitor, and the compound of a specific structure is diacylglycerol acyl transferase 2 (DGAT2)
- DGAT2 diacylglycerol acyl transferase 2
- the present invention was completed by finding that it can be usefully used for preventing, treating, or ameliorating metabolic diseases such as obesity, diabetes, hyperlipidemia, and atherosclerosis.
- An object of the present invention is 5-methyl-1-[[2- (phenylmethoxy) phenyl] methyl] -1H-indole-2,3- as a diacylglycerol acyltransferase 2 (DGAT2) inhibitor.
- Treatment or prophylaxis of metabolic disorders comprising, as an active ingredient, 5-methyl-1-[[2- (phenylmethoxy) phenyl] methyl] -1H-Indole-2,3-dione or a pharmaceutically acceptable salt thereof It is to provide a pharmaceutical composition and a method of using the same.
- Another object of the present invention is a novel diacylglycerol acyltransferase 2 (DGAT2) inhibitor as 5-methyl-1-[[2- (phenylmethoxy) phenyl] methyl] -1H-indole-2,3- It is to provide a nutraceutical composition for preventing or ameliorating metabolic diseases including dione or a pharmaceutically acceptable salt thereof. In addition, another object of the present invention is to provide a method for preventing, ameliorating or treating metabolic diseases by administering the composition to a subject having or possibly developing a metabolic disease.
- DGAT2 novel diacylglycerol acyltransferase 2
- the present invention is 5-methyl-1-[[2- (phenylmethoxy) phenyl as a diacylglycerol Acyltransferase 2, DGAT2) inhibitory substance represented by the following general formula (1). It provides a pharmaceutical composition for the prevention or treatment of metabolic diseases comprising] methyl] -1H-indole-2,3-dione or a pharmaceutically acceptable salt thereof as an active ingredient.
- the present invention provides a health functional food composition for the prevention or improvement of metabolic diseases comprising the compound of Formula 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
- the present invention provides a method for preventing, ameliorating or treating a metabolic disease, comprising administering the composition to a subject who has or is likely to develop a metabolic disease.
- the diacylglycerol acyltransferase 2 (DGAT2) inhibitory substance of the present invention represented by the following formula (1) has the effect of selectively inhibiting DGAT2, and is the first substance with little toxicity at the cellular level, and is obesity, diabetes, fatty liver, hyperlipidemia. And it can be usefully used as a composition for the prevention, improvement or treatment of metabolic diseases such as cardiovascular diseases. In addition, it can be usefully used as a dietary supplement composition.
- A shows the time-dependent DGAT2 expression after infection with baculovirus-DGAT2 in sf9 cells, and (B) shows intracellular fat granules (lipid) after 3 days of baculovirus-DGAT2 infection.
- D shows an increase in DGAT2 activity according to the increase in the amount of DGAT2 expression, and
- D a compound represented by the formula (1) which is a DGAT2 inhibitor.
- the chemical structure of Compound 122) and its derivatives, (E), shows the results of measuring the inhibitory activity of each compound against DGAT2.
- FIG. 1 shows Lineweaver-Burk plots for oleoyl-CoA in the presence of various concentrations of Compound 122, (B) shows DGAT1-, DGAT2-, and GPAT1-overexpression sf-9 (C) shows the IC 50 measurement results of Compound 122 using the protein fraction isolated from the cells.
- FIG. 3 shows activity studies in mammalian cells of a compound (Compound 122) described in Formula 1, which is a DGAT2 inhibitor, of the present invention.
- the accumulation of lipid droplets was confirmed by Bodipy dye.
- C) and (D) measured the [ 14 C] glycerol binding to newly synthesized TG in the presence of compound 122 and DGAT1 indicator inhibitor in DGAT2 and DGAT1 overexpressing cells, (E) and (F). ) Is the result of measuring the number of LDs in the presence of compound 122 and DGAT1 indicator inhibitors in DGAT2 and DGAT1 overexpressing cells.
- HepG2 cells The results of evaluating the cytotoxicity of Compound 122 are shown.
- the present invention provides 5-methyl-1-[[2- (phenylmethoxy) phenyl] methyl]-as a diacylglycerol acyltransferase 2 (DGAT2) inhibitory substance represented by the following general formula (1).
- DGAT2 diacylglycerol acyltransferase 2
- the compound represented by Chemical Formula 1 may be prepared by a known chemical synthesis method, or a commercial reagent may be purchased and used.
- the inventors of the present invention solve the limitation of distinguishing DGAT1 and DGAT2 because the DGAT assay used in the past mainly uses the microsomal fraction (including the ER cell membrane) of mammalian cells.
- DGAT2 novel diacylglycerol acyltransferase 2
- the inhibitor compound 122 discovered through the above screening method is a compound having Formula 1 above (see FIG. 1D), and Compound 122 of Formula 1 selectively inhibits only DGAT2 (FIG. 2 (B)), it was confirmed that inhibiting the formation of TG in various efficacy verification using hepatocytes (see FIG. 3).
- the test using a variety of derivatives to identify the moiety (important) for the inhibitory activity was identified that the inhibitor was found that can be used as a composition for the prevention or treatment of metabolic diseases through subsequent studies.
- the compound of Formula 1 may be used in the form of a pharmaceutically acceptable salt, the term pharmaceutically acceptable salt used in the present invention does not cause serious irritation to the organism to which the compound is administered, A form of a compound that does not impair its activity and properties.
- Acid addition salts formed with pharmaceutically acceptable free acids are useful.
- Acid addition salts include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid or phosphorous acid and aliphatic mono and dicarboxylates, phenyl-substituted alkanoates, hydroxy alkanoates and alkanes. Obtained from non-toxic organic acids such as dioates, aromatic acids, aliphatic and aromatic sulfonic acids.
- Such pharmaceutically toxic salts include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate chloride, bromide and iodide Id, fluoride, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suverate , Sebacate, fumarate, maleate, butyne-1,4-dioate, hexane-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitro benzoate, hydroxybenzoate, meth Oxybenzoate, phthalate, terephthalate, benzenesulfonate, toluenesulfon
- the acid addition salts according to the invention dissolve in conventional methods, for example, the compounds of formula (1) in an excess of aqueous acid solution, which salts are water miscible organic solvents such as methanol, ethanol, acetone or acetonitrile. It can be prepared by precipitation using. Equivalent amounts of the compounds of formula (1) and acids or alcohols in water may be heated and then the mixture may be evaporated to dryness or the precipitated salts may be produced by suction filtration.
- aqueous acid solution which salts are water miscible organic solvents such as methanol, ethanol, acetone or acetonitrile. It can be prepared by precipitation using. Equivalent amounts of the compounds of formula (1) and acids or alcohols in water may be heated and then the mixture may be evaporated to dryness or the precipitated salts may be produced by suction filtration.
- Bases can also be used to make pharmaceutically acceptable metal salts.
- Alkali metal or alkaline earth metal salts are obtained, for example, by dissolving a compound in an excess of alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and evaporating and drying the filtrate. At this time, it is pharmaceutically suitable to prepare sodium, potassium or calcium salt as the metal salt.
- Corresponding silver salts are also obtained by reacting alkali or alkaline earth metal salts with a suitable silver salt (eg, silver nitrate).
- metabolic disease refers to diseases caused by disorders of metabolism in vivo and includes, but is not limited to, obesity, diabetes, fatty liver, and cardiovascular disease.
- cardiovascular disease refers to diseases occurring in the heart and major arteries induced by high fat levels in blood vessels, such as hypercholesterolemia, hyperlipidemia, atherosclerosis, arteriosclerosis, coronary atherosclerosis or Aortic aneurysms and the like, but is not limited thereto.
- Compound 122 described in Formula 1, a DGAT2 inhibitory substance of the present invention identified an IC 50 of about 5 ⁇ M in a DGAT2 activity inhibition assay (see FIG. 2C).
- prevention means any action that inhibits or delays the development of a metabolic disease by administration of a composition of the present invention.
- treatment means any action that improves or advantageously changes the symptoms caused by metabolic disease by administration of the composition of the present invention.
- the pharmaceutical composition according to the present invention is prepared using diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc. which are commonly used.
- diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc. which are commonly used.
- Solid preparations for oral administration include tablets, patients, powders, granules, capsules, troches, and the like, which solid preparations contain at least one excipient such as starch, calcium carbonate, or the like represented by one or more compounds of the invention. And sucrose, sucrose, lactose, or gelatin. In addition to simple excipients, lubricants such as magnesium styrate talc are also used.
- Liquid preparations for oral administration include suspensions, solutions, emulsions, or syrups, and include various excipients such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin. Can be.
- Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories, and the like.
- non-aqueous solvent and the suspension solvent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used.
- base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerol, gelatin and the like can be used.
- composition of the present invention can be administered orally or parenterally (eg, applied intravenously, subcutaneously, intraperitoneally or topically) according to the desired method, and the dosage is based on the condition and weight of the patient, the extent of the disease, Depending on the drug form, route of administration, and time, it may be appropriately selected by those skilled in the art.
- composition according to the invention is administered in a pharmaceutically effective amount.
- pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and an effective dose level refers to the type, severity, and activity of the patient's disease. , Sensitivity to the drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of the drug, and other factors well known in the medical arts.
- the compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be single or multiple doses. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, which can be easily determined by those skilled in the art.
- the effective amount of the compound according to the present invention may vary depending on the age, sex, and weight of the patient, and in general, 0.1 to 100 mg, preferably 0.5 to 10 mg per 1 kg of body weight is administered daily or every other day or 1 It can be administered in 1 to 3 times a day.
- the dosage may be increased or decreased depending on the route of administration, the severity of obesity, sex, weight, age, etc., and the above dosage does not limit the scope of the present invention in any way.
- the present invention relates to a health functional food composition for the prevention or amelioration of metabolic diseases comprising a compound represented by the formula (1), or a pharmaceutically acceptable salt thereof. That is, the composition of the present invention may be used simultaneously or separately with a medicament for treating a disease before or after the onset of the metabolic disease for the prevention or amelioration of the metabolic disease.
- the term “improvement” refers to any action that at least reduces the parameters associated with the condition being treated, such as the extent of symptoms.
- composition for health functional food effectively inhibits the activity of DGAT2 causing metabolic diseases such as obesity, diabetes, hyperlipidemia, arteriosclerosis in the process of lipid metabolism, thereby effectively controlling lipid metabolism and energy metabolism, It may be added to health supplements such as foods and beverages for the purpose of prevention or improvement.
- Examples of foods to which the substance may be added include dairy products, various soups, drinks, meat, sausages, breads, biscuits, rice cakes, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gums, ice cream, Beverages, alcoholic beverages and vitamin complexes, dairy products and dairy products, and the like includes all the health functional foods in the conventional sense.
- composition of the present invention may be added as it is to food or used with other food or food ingredients, and may be appropriately used according to conventional methods.
- the mixing amount of the active ingredient can be suitably determined according to the purpose of use (prevention or improvement).
- the compositions of the invention are added in an amount of up to 15% by weight, preferably up to 10% by weight relative to the raw materials.
- the amount may be below the above range.
- composition for health drinks of the present invention is not particularly limited to other ingredients except for containing the compound as essential ingredients in the indicated ratios, and may contain various flavors or natural carbohydrates as additional ingredients, such as ordinary drinks.
- natural carbohydrates include monosaccharides such as glucose, fructose and the like; Disaccharides such as maltose, sucrose and the like; And conventional sugars such as polysaccharides such as dextrin, cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol.
- natural flavoring agents such as, tauumatin, stevia extract (for example, rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.) can be advantageously used.
- the proportion of the natural carbohydrate can be appropriately determined by the choice of those skilled in the art.
- the composition for health functional food of the present invention includes various nutrients, vitamins, minerals (electrolytes), synthetic flavors and natural flavors such as flavoring agents, colorants and neutralizing agents (cheese, chocolate, etc.), pectic acid and salts thereof. , Alginic acid and salts thereof, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated drinks and the like.
- the composition of the present invention may contain fruit flesh for the production of natural fruit juices and fruit juice beverages and vegetable beverages. These components can be used independently or in combination. The proportion of such additives may also be appropriately selected by those skilled in the art.
- the present invention provides a method for preventing metabolic disease comprising administering to a subject having or likely developing a metabolic disease, the composition comprising a compound of Formula 1, or a pharmaceutically acceptable salt thereof. , Improvement, or treatment.
- the term "individual” means all animals including humans who have already developed or may have metabolic diseases, and by administering the composition of the present invention to an individual, the disease can be effectively prevented and treated.
- HepG2 and 3T3-L1 cells were purchased from the American Type Culture Collection (ATCC, Rockville, MD) and HEK293 Tet-on cells were provided by BD Biosciences Clontech.
- fatty acid-free BSA bovine serum albumin
- sn -1,2- diol Leo glycerol sn -1,2-dioleoylglycerol
- [ 3 H] oleoyl CoA, [ 14 C] oleoyl-CoA and [ 14 C] glycerol were purchased from PerkinElmer (Waltham, Mass.) And sf cells, Bac-to-Bac® baculovirus expression system (Baculovirus Expression System) and FBS (fetal bovine serum) were purchased from GIBCO (Invitrogen, USA). Antibodies against DGAT2 were purchased from Abcam (Cambridge, MA), and DGAT1 inhibitors were synthesized in Korea.
- the inventors have developed a screening method for selecting substances that selectively inhibit DGAT2 as follows.
- the present inventors have used the Bac-to-Bac® baculovirus expression system to express human DGAT1 and DGAT2 (hDGAT1 and hDGAT2) proteins in sf9 cells, which are insect cells.
- hDGAT1 and hDGAT2 human DGAT1 and DGAT2
- hDGAT1 NCBI Reference Sequence: AF059202
- hDGAT2 BC015234
- cDNA clones were provided from '21C Human Gene Bank, Genome Research Center, KRIBB, Korea', and after amplifying the DNA fragment of the ORF site by PCR Cloning into the pFastBac1 vector yielded a recombinant baculovirus.
- the collected cell membrane was resuspended in sucrose buffer (250 mM sucrose, 10 mM Tris (pH 7.4)), the protein concentration was determined by the Bradford protein assay method, and stored at -80 ° C. It was then used for the experiment.
- sucrose buffer 250 mM sucrose, 10 mM Tris (pH 7.4)
- the DGAT2 protein exhibited a maximal expression after 3 days of infection with sf9 cells of baculovirus-DGAT2 (recombinant baculovirus including the DGAT2 gene). I could see it.
- staining with Bodipy dye Bodipy dye
- LD inverted fluorescence microscope
- FIG. 1B the upper panel represents the optical microscope observation result (LD is the bright spot (white arrow) in the cell), and the lower panel is the inverted fluorescent microscope observation result. It is shown.
- High throughput screening for the detection of DGAT2 inhibitors results in the separation of membranes of whole cells to obtain DGAT2 protein and its enzymatic activity based on FlashPlate TM (PerkinElmer; Waltham, MA). This was done by using a radiation scintillation proximity assay.
- [ 3 H] -oleoyl CoA is used as a substrate and [ 3 H] -TG, newly synthesized by DGAT2, is highly hydrophobic and is separated from other substances in an isopropanol solvent. It is close to the scintillant and is much easier than the conventional manual assay, which is suitable for HTS.
- DGAT2 activity was measured at 100 ⁇ l final reaction volume of 96-well format Basic FlashPlate TM, at 20 mM HEPES (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid) (pH 7.4), 5 In a solution containing mM MgCl 2 and 1 mg / ml BSA, 100 ⁇ M diacylglycerol, 10 ⁇ M [ 3 H] oleoylCoA, 16 ⁇ g / ml DGAT2 cell membrane, and 10 ⁇ l compound Analyzed. At this time, the reaction proceeded at 37 ° C. for 120 minutes and was stopped by the addition of 100 ⁇ l isopropanol.
- the present inventors sought to find a novel diacylglycerol Acyltransferase 2 (DGAT2) inhibitor.
- DGAT2 diacylglycerol Acyltransferase 2
- Example 2 the screening method of Example 2 was used to test various parameters (CV, signal / noise, and Z-factor). As a result, it was confirmed that the numerical value was very suitable for screening. In addition, it was confirmed that the activity of the enzyme sample of 8 ⁇ g per reaction (1 well in 96 well plate) sufficiently high. In addition, primary screening of 20,000 compounds from the ChemBridge chemical library was performed at a final concentration of 10 ⁇ M and 15 compounds were found to significantly inhibit DGAT2 activity in vitro (> 3SD, 3 times higher than standard deviation). ).
- Example 3 15 compounds identified in Example 3 were re-measured the inhibitory activity of each compound against DGAT2 using conventional extraction-based assays and compound 122 showed the most consistently high inhibitory activity. .
- Compound 122 is one of the isatin families, and is the side chain of the isatin core and two consecutive benzyl groups. Consists of
- DGAT2 Diacylglycerol Acyltransferase 2
- DGAT2 activity was measured while varying the concentration of each of the two substrates (oleoyl-CoA and diacylglycerol) in the state where various concentrations of Compound 122 were present in the DGAT2-containing whole cell membrane.
- (A) it is shown as Lineweaver-Burk plots.
- Figure 2 (A) shows the results of the line Weber-Burk plot for oleoyl-CoA, it was confirmed that Compound 122 acted as a competitive inhibitor (opetitive inhibitor) with respect to oleoyl-CoA.
- Compound 122 was measured using protein fractions isolated from DGAT1-, DGAT2-, and GPAT1-overexpressing sf-9 cells, and the results are shown in FIG. As shown in FIG. 2B, Compound 122 had little inhibitory activity against DGAT1 at a concentration of 10 ⁇ M, while it was confirmed that DGAT2 had a distinct inhibitory effect. Compound 122 also showed a minor effect on GPAT1 ( ⁇ 10%). From the above results, it was found that Compound 122 was a selective inhibitor of DGAT2 activity in vitro .
- IC 50 of Compound 122 was measured and the results are shown in FIG. 2 (C). As shown in FIG. 2 (C), the IC 50 of the compound 122 was confirmed to be 5 ⁇ M.
- HEK293 Tet-on cell lines were first constructed. More specifically, pTRE2-hygro, a Tet-On gene expression vector (Clontech), was used to regulate the overexpression of hDGAT1 or hDGAT2. This cDNA was amplified by PrimeSTAR Max DNA polymerase (Takara) and inserted into the pTRE2-hygro vector using a primer containing a restriction site.
- pTRE2-hygro a Tet-On gene expression vector (Clontech)
- the primer pairs are 5'-agctGCTAGCgccacc atg ggcgaccgcggcagc -3 '(SEQ ID NO: 1) and 5'-agctAAGCTT tca ggtctctgccgctggggc -3' (antisense) (SEQ ID NO: 2)
- SEQ ID NO: 2 amino acid sequence corresponding to the hDGAT2
- 5'-agctGCTAGCgccacc atg aagaccctcatagccgcctactcc -3 '(SEQ ID NO: 3)
- 5'-agctAAGCTT tca gttcacctccaggacctcagtc -3' (antisense) SEQ ID NO: 4).
- the underlined portions represent the start codons (ATG) and stop codons (TCA) of hDGAT1 and hDGAT2, with capital letters representing restriction sites.
- transfection of pTRE2hygro / hDGAT1 or pTREhygro / hDGAT2 with Lipofectamine 2000 (Invitrogen) was followed by selection with 300 ⁇ g / ml hygromycin (Invitrogen) for 2 weeks.
- the DGAT2 selective inhibition of compound 122 was confirmed by measuring [ 14 C] glycerol incorporation into newly synthesized TG in cells. That is, in the presence of [ 14 C] glycerol, DGAT2- and DGAT1- overexpressing cells were treated with various concentrations of Compound 122 (2.5, 5 and 10 ⁇ M) and 10 ⁇ M of DGAT1 inhibitors for 6 hours and then extracted from each cell. A thin layer chromatography (TLC) -based DGAT assay was performed with lipids. Each TG band was quantified using Multi-Gauge V3.0 (Fujifilm) software, and the relative activity was calculated by setting the value in the control cell to 100%, and the result is shown in FIG. It is shown to C) and (D).
- TLC thin layer chromatography
- the accumulation of intracellular LD mostly indicates an increase in TG synthesis, and the selective inhibitory efficacy of Compound 122 was confirmed by measuring the number of LD in both cells.
- cells were treated with various concentrations of compound (1, 2.5, 5, 10 ⁇ M) 122 or DGAT1 inhibitors for 48 hours, and then LD was visualized by staining with Bodipy dye, using Cellomics BioApplication analysis software. The number was measured quantitatively, and the results are shown in FIGS. 3E and 3F. At this time, relative activity was calculated relative to the value obtained in DMSO-treated cells at 100%. As shown in (E) and (F) of FIG.
- the number of LDs was significantly reduced depending on the amount of Compound 122, whereas in DGAT2 overexpressing cells, it was not so in DGAT1 overexpressing cells. And under the same conditions, it was confirmed that the DGAT1 inhibitor reduced the number of LDs only in DGAT1 overexpressing cells depending on the dose.
- HepG2 cells (5 ⁇ 10 5 cells / mL) were treated with 2.5, 5 and 10 ⁇ M compound 122 for 6 hours in the presence of [ 14 C] glycerol (0.6 ⁇ Ci) or [ 14 C] oleate (1.25 ⁇ Ci). Treated. After treatment, the intracellular fat was extracted using a mixture of hexane: isopropanol (3: 2, v / v / v ), and hexane: diethyl as a developing solvent.
- Compound 122 is an inhibitor that selectively acts on DGAT2 in mammalian cells.
- the diacylglycerol acyltransferase 2 (DGAT2) inhibitory substance of the present invention represented by the following formula (1) has the effect of selectively inhibiting DGAT2, and is the first substance with little toxicity at the cellular level, and is obesity, diabetes, fatty liver, hyperlipidemia. And it can be usefully used as a composition for the prevention, improvement or treatment of metabolic diseases such as cardiovascular diseases. In addition, it can be usefully used as a dietary supplement composition.
Landscapes
- Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Obesity (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 신규한 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 물질 및 이의 이용 등에 관한 것이다. 본 발명의 하기 화학식 1로 기재되는 디아실글리세롤 아실트랜스퍼레이즈 2 (DGAT2) 억제 물질은 DGAT2를 선택적으로 억제하는 효과를 가지고, 세포수준에서 독성이 거의 없는 최초의 물질로 비만, 당뇨, 지방간, 고지혈증, 및 심혈관 질환 등의 대사성 질환의 예방, 개선 또는 치료용 조성물로 유용하게 사용될 수 있다. 이에 더하여 건강기능식품 조성물로도 유용하게 사용될 수 있다.
Description
본 발명은 신규한 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 물질 및 이의 이용 등에 관한 것이다.
현대에 들어와서 영양 섭취상태가 지나치게 풍요로워지고, 아파트, 자동차, 엘리베이터 등 문명의 이기들의 발달로 인한 운동 부족으로 인하여, 원시시대부터 별다른 변화가 없는 인체 고유의 에너지 대사과정에 커다란 변화가 발생하였으며, 이에 따라 비만증, 고지혈증, 당뇨병, 심혈관 질환, 관상동맥질환 등의 대사성질환 유병률이 심각한 수준에 이르게 되었다.
특히, 비만은 현재 빠르게 증가하고 있는 질병 중의 하나로서 당뇨와 같은 대사성 질환의 원인이 되는 것으로 보고되고 있으며, 비만의 주원인이 되는 중성지방의 생합성 경로에 관여하는 효소들의 기능 조절을 통한 대사성 질환 치료제 개발이 주목받고 있다. 중성지방은 생체 내에서 에너지원으로 저장기능에 있어서 매우 중요한 역할을 하지만, 장기나 조직에 과잉으로 축척 되면 비만, 고중성지방증, 지방간 등을 야기시켜 당뇨, 동맥경화, 대사이상 및 장기의 기능저하 등의 심각한 질병을 유발한다 (Unger RH. 2002 Lipotoxic diseases. Annu. Rev. Med. 53: 319-336., Friedman J. 2002. Fat in all the wrong places. Nature. 415:268-269).
중성지방의 대표적인 형태인 트리글리세라이드(triglycerides, TG)의 생합성에 있어서 결정적인 효소는 아실 코에이(acyl CoA):디아실글리세롤 아실트랜스퍼라아제(diacylglycerol acyltransferase, DGAT) 라는 효소로서 포유동물의 다양한 조직에서 발견된다. DGAT는 중성지방 합성의 주경로인 글리세롤 포스페이트(glycerol phosphate) 경로의 마지막 단계에서 디아실글리세롤(diacylglycerol)의 하이드록실기에 지방산 아실코에이(fatty acyl-CoA)를 결합시켜 TG를 합성하는 효소이다. 현재 DGAT는 2가지 이소체(isoform)인 DGAT1 및 DGAT2로 밝혀져 있고 이들의 생화학적 기능은 유사하지만 조직분포 (DGAT1은 소장과 지방조직, DGAT2는 간과 지방조직에서 주로 발현) 및 속해 있는 유전자 군 (DGAT1은 ACAT 패밀리, DGAT2는 MGAT 패밀리)이 달라 이들의 TG 생합성에 대한 역할이 다를 것으로 예상 된다(Yen CE., Stone SJ, Koliwad S, Harris C, and Farese RV. 2008. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Research. 49: 2283-2301).
동물실험을 포함한 여러 연구에서 생체 내 TG의 생합성에 DGAT2가 주로 기여하는 것으로 알려져 있다. DGAT2 녹아웃(knockout) 생쥐는 TG를 거의 합성해내지 못하고 비정상적인 피부층으로 인해서 태어난 후 얼마 지나지 않아서 죽게 되는 것과는 달리, DGAT1 녹아웃(knockout) 생쥐는 TG 수준이 약간만 감소하고 생쥐의 생존에는 문제가 없음을 보여주고 있다(Stone SJ, Myers HM, Watk Feingold KR, Elias PM, and Farese RV. 2004. J. Biol. Chem. 279: 11767-11776., Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, Sanan DA, Raber J, Eckel RH, and Farese RV. 2000. Nat. Genet. 25: 87-90).
안티센스 올리고뉴클레오타이드(Antisense oligonucleotide, ASO)를 이용해 지방간동물모델에서 DGAT1 또는 DGAT2의 발현양을 감소시켜본 결과 오직 DGAT2의 양을 감소한 경우에만 지방간 증상이 완화되고 간에서의 포도당생성률이 현저히 감소 것으로 보아, DGAT2가 지방간을 포함한 관련 대사성 질환의 치료를 위한 분자표적으로 활용될 수 있음을 강하게 증명하고 있다(Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, Kim S, Distefano A, Samuel VT, Neschen S, Zhang D, Wang A, Zhang XM, Kahn M, Cline GW, Pandey SK, Geisler JG, Bhanot S, Monia BP, Shulman GI. 2007. J. Biol. Chem. 282: 22678-88., Yu XX, Murray SF, Pandey SK, Booten SL, Bao D, Song XZ, Kelly S, Chen S, McKay R, Monia BP, Bhanot S. 2005. Hepatology. 42: 362-71., Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, Bhanot S, Monia BP, Li YX, Diehl AM. 2007. Hepatology. 45: 1366-74).
DGAT1는 노바티스, 화이자를 비롯한 몇몇 거대 제약회사에서 비만, 당뇨, 지방간, 및 고지혈증 등을 포함한 대사성질환의 분자표적으로 활발히 그 억제제 개발 프로그램이 진행되어 왔으며, 현재는 그 중 일부가 임상 시험 중에 있다. 또한, 국내에서도 일부 제약회사와 정부출연연구소 등에서 DGAT1의 억제물질 개발 및 이를 이용한 대사성 질환의 치료제 개발 연구가 진행 중에 있다. 반면에 DGAT2를 분자표적으로 하는 신약개발 프로그램은 국내외에서 거의 보고되지 않은 상황이다.
한편, 대사성 질환은 일반적으로 장기적인 의약품 처방이 요구되는데, 인체에 독성을 보이지 않고 DGAT2에 선택적으로 작용해서 중성지방을 감소시키는 활성물질의 개발이 매우 중요하다.
본 발명자들은 상기와 같은 문제점을 해결하기 위해 연구하던 중, 디아실글리세롤 아실트랜스퍼라아제 2 (DGAT2) 억제 물질의 스크리닝 방법을 개발하고, 특정 구조의 화합물이 디아실글리세롤 아실트랜스퍼라아제 2 (DGAT2)를 억제함을 발견하여, 비만, 당뇨병, 고지혈증, 동맥경화증 등의 대사성 질환을 예방, 치료, 또는 개선하기 위해 유용하게 사용될 수 있음을 알아내고 본 발명을 완성하였다.
본 발명의 목적은 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 물질로서 5-메틸-1-[[2-(페닐메톡시)페닐]메틸]-1H-인돌-2,3-디온(5-methyl-1-[[2-(phenylmethoxy)phenyl]methyl]-1H-Indole-2,3-dione) 또는 이의 약학적으로 허용가능한 염을 유효 성분으로 포함하는 대사성 질환의 치료 또는 예방용 약학적 조성물과 이의 이용방법을 제공하는 것이다.
본 발명의 다른 목적은 신규한 디아실글리세롤 아실트랜스퍼라아제 2 (DGAT2) 억제 물질로서 5-메틸-1-[[2-(페닐메톡시)페닐]메틸]-1H-인돌-2,3-디온 또는 이의 약학적으로 허용가능한 염을 포함하는 대사성 질환의 예방 또는 개선용 건강기능식품 조성물을 제공하는 것이다. 또한, 본 발명의 또 다른 목적은 상기 조성물을 대사성 질환의 발병 또는 발병가능성이 있는 개체에 투여하여 대사성 질환을 예방, 개선 또는 치료하는 방법을 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기의 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 기재되는 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 물질로서 5-메틸-1-[[2-(페닐메톡시)페닐]메틸]-1H-인돌-2,3-디온 또는 이의 약학적으로 허용가능한 염을 유효 성분으로 포함하는 대사성 질환의 예방 또는 치료용 약학 조성물을 제공한다.
[화학식 1]
또한, 본 발명은 상기 화학식 1로 기재되는 화합물 또는 이의 약학적으로 허용가능한 염을 유효 성분으로 포함하는 대사성 질환의 예방 또는 개선용 건강기능식품 조성물을 제공한다.
나아가, 본 발명은 상기 조성물을 대사성 질환의 발병 또는 발병가능성이 있는 개체에 투여하는 단계를 포함하는 대사성 질환의 예방, 개선 또는 치료 방법을 제공한다.
본 발명의 하기 화학식 1로 기재되는 디아실글리세롤 아실트랜스퍼레이즈 2 (DGAT2) 억제 물질은 DGAT2를 선택적으로 억제하는 효과를 가지고, 세포수준에서 독성이 거의 없는 최초의 물질로 비만, 당뇨, 지방간, 고지혈증, 및 심혈관질환등의 대사성 질환의 예방, 개선 또는 치료용 조성물로 유용하게 사용될 수 있다. 이에 더하여 건강기능식품 조성물로도 유용하게 사용될 수 있다.
도 1의 (A)는 sf9 세포에 바큘로바이러스(baculovirus)-DGAT2를 감염시킨 후 시간별 DGAT2 발현 양상을, (B)는 바큘로바이러스(baculovirus)-DGAT2 감염 3일 후 세포내 지방과립(lipid droplet)의 축적을 보디피 염색법(Bodipy dye)을 이용해 확인한 결과를, (C)는 DGAT2 발현양의 증가에 따른 DGAT2 활성의 증가를, (D)는 DGAT2 억제물질인 화학식 1로 기재되는 화합물(화합물 122) 및 이의 유도체들의 화학구조, (E)는 각 화합물의 DGAT2에 대한 저해 활성을 측정한 결과를 나타낸 것이다.
도 2의 (A)는 다양한 농도의 화합물 122의 존재에서 oleoyl-CoA에 대한 라인웨버-버크 플롯(Lineweaver-Burk plots)을, (B)는 DGAT1-, DGAT2-, 및 GPAT1-과발현 sf-9 세포로부터 분리된 단백질 분획(fraction)을 이용한 화합물 122의 억제 효능 측정 결과를, (C)는 화합물 122의 IC50 측정 결과를 나타낸 것이다.
도 3은 본 발명의 DGAT2 억제물질인 화학식 1로 기재되는 화합물(화합물 122)의 포유동물세포에서의 활성 연구를 나타낸 것으로서, (A) DGAT1 및 DGAT2 과발현 HEK293 tet-on 세포에서 세포내 지방과립(lipid droplet)의 축적을 보디피 염색법(Bodipy dye)을 이용해 확인한 결과를, (B)는 DGAT2 및 DGAT1 과발현 세포로부터 분리된 전체 세포막 각각을 이용하여 화합물 122와 DGAT1 지표 억제물질 존재 하에서 효소 활성을 측정한 결과를, (C) 및 (D)는 DGAT2 및 DGAT1 과발현 세포에서 화합물 122와 DGAT1 지표 억제물질 존재 하에 새롭게 합성된 TG로의 [14C]글리세롤 결합을 측정한 결과를, (E) 및 (F)는 DGAT2 및 DGAT1 과발현 세포에서 화합물 122와 DGAT1 지표 억제물질 존재 하에 LD의 수를 측정한 결과를, (G)는 HepG2 세포에서 화합물 122의 DGAT2 선택적 억제 효능을 평가한 결과를, (H)는 HepG2 세포에서 화합물 122의 세포독성을 평가한 결과를 나타낸 것이다.
이하, 본 발명을 상세히 설명한다.
하나의 양태로서 본 발명은 하기 화학식 1로 기재되는 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 물질로서 5-메틸-1-[[2-(페닐메톡시)페닐]메틸]-1H-인돌-2,3-디온 또는 이의 약학적으로 허용가능한 염을 포함하는 대사성 질환의 예방 또는 치료용 조성물을 제공한다.
[화학식 1]
상기 화학식 1로 기재되는 화합물은 공지된 화학적인 합성 방법으로 제조하거나, 시판되는 시약을 구입하여 사용할 수 있다.
본 발명자들은 기존에 사용된 DGAT 어세이가 주로 포유동물세포의 마이크로좀 분획(microsomal fraction, ER 세포막(membrane)을 포함)을 이용하기 때문에 DGAT1 및 DGAT2를 구분하지 못하는 한계를 해결하기 위해, 곤충세포인 sf9에 인간 DGAT2만을 과발현하고 이 세포에서 분리한 세포막 분획(membrane fraction)을 이용하여 신규한 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 물질을 발굴할 수 있는 스크리닝방법을 개발하고, 상기 스크리닝 방법을 통해 DGAT2 억제 활성을 나타내는 화합물을 발굴하였다.
구체적으로, 상기의 스크리닝 방법을 통해 발굴된 억제물질 화합물 122는 상기 화학식 1을 가지는 화합물로서(도 1의 (D) 참조), 화학식 1의 화합물 122는 DGAT2에만 선택적으로 억제효과를 보였으며(도 2의 (B) 참조), 간세포 등을 이용한 다양한 효능검증에서 TG의 형성을 억제하는 것을 확인하였다(도 3 참조). 또한 다양한 유도체들을 이용한 테스트를 통해서 억제활성에 중요한 부분(moiety)을 규명하여 발굴된 상기 억제 물질이 후속연구를 통해서 대사성 질환의 예방용 또는 치료용 조성물로 이용이 가능하다는 것을 확인하였다.
또한, 상기 화학식 1로 기재되는 화합물은 약학적으로 허용가능한 염의 형태로 사용할 수 있으며, 본 발명에서 사용되는 용어 약학적으로 허용가능한 염은 화합물이 투여되는 유기체에 심각한 자극을 유발하지 않고 화합물의 생물학적 활성과 물성들을 손상시키지 않는 화합물의 형태를 의미한다.
약학적으로 허용가능한 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의해 형성된 산 부가염이 유용하다. 산 부가염은 염산, 질산, 인산, 황산, 브롬화수소산, 요드화수소산, 아질산 또는 아인산과 같은 무기산류와 지방족 모노 및 디카르복실레이트, 페닐-치환된 알카노에이트, 하이드록시 알카노에이트 및 알칸디오에이트, 방향족 산류, 지방족 및 방향족 설폰산류와 같은 무독성 유기산으로부터 얻는다. 이러한 약학적으로 무독한 염류로는 설페이트, 피로설페이트, 바이설페이트, 설파이트, 바이설파이트, 니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 디하이드로겐 포스페이트, 메타포스페이트, 피로포스페이트 클로라이드, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 석시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 헥산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로 벤조에이트, 하이드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, -하이드록시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트 또는 만델레이트를 포함하지만 이에 제한되지는 않는다.
본 발명에 따른 산 부가염은 통상의 방법, 예를 들면, 화학식 1로 기재되는 화합물을 과량의 산 수용액 중에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들면 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조할 수 있다. 동량의 화학식 1로 기재되는 화합물 및 물 중의 산 또는 알코올을 가열하고, 이어서 이 혼합물을 증발시켜서 건조시키거나 또는 석출된 염을 흡입 여과시켜 제조할 수도 있다.
또한, 염기를 사용하여 약학적으로 허용가능한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리 토금속 염은 예를 들면 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해하고, 비용해 화합물 염을 여과하고, 여액을 증발, 건조시켜 얻는다. 이때, 금속염으로는 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하다. 또한, 이에 대응하는 은염은 알칼리 금속 또는 알칼리 토금속 염을 적당한 은염(예, 질산은)과 반응시켜 얻는다.
본 발명에서 사용되는 용어 "대사성 질환"은 생체 내 물질대사의 장애에 의해 일어나는 질환을 총칭하며, 비만, 당뇨, 지방간, 및 심혈관질환을 포함하나 이에 제한되지 않는다.
본 발명에서 사용되는 용어 "심혈관 질환"은 혈관 내 높은 지방수준으로 유도되는 심장과 주요 동맥에 발생하는 질환을 의미하는 것으로 예컨대, 고콜레스테롤혈증, 고지혈증, 아테롬성 동맥경화증, 동맥경화증, 관상동맥 경화증 또는 대동맥류 등일 수 있으며, 이에 제한되지 않는다.
구체적인 일실시예에서, 본 발명의 DGAT2 억제 물질인 화학식 1로 기재되는 화합물 122는 DGAT2 활성 억제 검정에서 IC50이 약 5 μM로 확인되었다(도 2의 (C) 참조).
본 발명에서 사용되는 용어, "예방"이란 본 발명의 조성물의 투여에 의해 대사성 질환을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.
본 발명에서 사용되는 용어, "치료"란 본 발명의 조성물의 투여에 의해 대사성 질환에 의한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
본 발명에 따른 상기 약학적 조성물을 제제화할 경우, 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 제조된다.
경구투여를 위한 고형 제제에는 정제, 환자, 산제, 과립제, 캡슐제, 트로키제 등이 포함되며, 이러한 고형 제제는 하나 이상의 본 발명로 표시되는 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로스(sucrose) 또는 락토오스(lactose) 또는 젤라틴 등을 섞어 조제된다. 또한, 단순한 부형제 외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다. 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제 또는 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁용제, 유제, 동결건조제제, 좌제 등이 포함된다.
비수성용제, 현탁용제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용될 수 있다.
본 발명의 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구투여(예를 들어, 정맥 내, 피하, 복강 내 또는 국소에 적용)할 수 있으며, 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 시간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다.
본 발명에 따른 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에 있어서, "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
구체적으로, 본 발명에 따른 화합물의 유효량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 체중 1㎏ 당 0.1 내지 100 mg, 바람직하게는 0.5 내지 10 mg을 매일 또는 격일 투여하거나 1일 1 내지 3회로 나누어 투여할 수 있다. 그러나 투여 경로, 비만의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.
다른 하나의 양태로서, 본 발명은 화학식 1로 기재되는 화합물, 또는 이의 약학적으로 허용가능한 염을 포함하는 대사성 질환의 예방 또는 개선용 건강기능식품용 조성물에 관한 것이다. 즉, 본 발명의 조성물은 대사성 질환의 예방 또는 개선을 위하여 대사성 질환의 발병 단계 이전 또는 발병 후, 질환의 치료를 위한 약제와 동시에 또는 별개로서 사용될 수 있다.
본 발명에서 사용되는 용어 "개선"이란 치료되는 상태와 관련된 파라미터, 예를 들면 증상의 정도를 적어도 감소시키는 모든 행위를 의미한다.
본 발명에 따른 상기 건강기능식품용 조성물은 지질대사 과정에서 비만, 당뇨병, 고지혈증, 동맥경화증 등과 같은 대사성 질환을 유발하는 DGAT2의 활성을 효과적으로 억제하여 지질대사와 에너지대사를 효과적으로 조절하므로, 대사성 질환의 예방 또는 개선을 목적으로 식품, 음료 등의 건강보조 식품에 첨가할 수 있다.
상기 식품의 종류에는 특별한 제한은 없다. 상기 물질을 첨가할 수 있는 식품의 예로는 드링크제, 육류, 소시지, 빵, 비스킷, 떡, 초콜릿, 캔디류, 스낵류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 알코올 음료 및 비타민 복합제, 유제품 및 유가공 제품 등이 있으며, 통상적인 의미에서의 건강기능식품을 모두 포함한다.
본 발명의 조성물은 식품에 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효 성분의 혼합량은 그의 사용 목적(예방 또는 개선용)에 따라 적합하게 결정될 수 있다. 일반적으로, 식품 또는 음료의 제조시에 본 발명의 조성물은 원료에 대하여 15 중량% 이하, 바람직하게는 10 중량% 이하의 양으로 첨가된다. 그러나 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 양은 상기 범위 이하일 수 있다.
본 발명의 건강음료용 조성물은 지시된 비율로 필수 성분으로서 상기 화합물을 함유하는 외에는 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상술한 것 이외의 향미제로서 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진등) 및 합성 향미제(사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 당업자의 선택에 의해 적절하게 결정될 수 있다.
상기 외에 본 발명의 건강기능식품용 조성물은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 조성물은 천연 과일 쥬스 및 과일 쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율 또한 당업자에 의해 적절히 선택될 수 있다.
다른 하나의 양태로서, 본 발명은 화학식 1로 기재되는 화합물, 또는 이의 약학적으로 허용가능한 염을 포함하는 조성물을 대사성 질환의 발병 또는 발병가능성이 있는 개체에 투여하는 단계를 포함하는 대사성 질환의 예방, 개선, 또는 치료방법에 관한 것이다.
본 발명에서 사용되는 용어, "개체"란 대사성 질환이 이미 발병하였거나 발병할 수 있는 인간을 포함한 모든 동물을 의미하고, 본 발명의 조성물을 개체에게 투여함으로써, 상기 질환을 효과적으로 예방 및 치료할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
실시예 1. 실험준비
HepG2 및 3T3-L1 세포는 American Type Culture Collection (ATCC, Rockville, MD)에서 구입했고, HEK293 Tet-on 세포는 BD Biosciences Clontech로부터 제공받았다. fatty acid-free BSA(bovine serum albumin) 및 sn-1,2-디올레오일글리세롤(sn-1,2-dioleoylglycerol)은 Sigma (St Louis, MO)로부터 제공받았다. 또한, [3H] oleoyl CoA, [14C] oleoyl-CoA 및 [14C] 글리세롤은 PerkinElmer (Waltham, MA)로부터 구입하였고, sf 세포, Bac-to-Bac®바큘로바이러스 발현 시스템(Baculovirus Expression System) 및 FBS(fetal bovine serum)는 GIBCO(Invitrogen, USA)로부터 구입하였다. DGAT2에 대한 항체는 Abcam (Cambridge, MA)에서 구입하였으며, DGAT1 억제물질은 국내에서 합성되었다.
실시예 2. 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 물질의 스크리닝 방법
본 발명자들은 DGAT2를 선택적으로 억제하는 물질을 선택하기 위한 스크리닝 방법을 하기와 같이 개발하였다.
2-1. DGAT2 단백질 발현 및 전체 세포막 준비
본 발명자들은 DGAT2 특이적 효소활성을 측정할 수 있는 어세이법을 확립하기 위해서 Bac-to-Bac® 바큘로바이러스 발현 시스템을 이용하여 곤충세포인 sf9 세포에 인간 DGAT1 및 DGAT2(hDGAT1 and hDGAT2) 단백질을 발현시켰다.
보다 구체적으로, '21C Human Gene Bank, Genome Research Center, KRIBB, Korea'로부터 hDGAT1(NCBI Reference Sequence: AF059202) 및 hDGAT2 (BC015234) cDNA 클론을 제공받았고, PCR을 통해 ORF 부위의 DNA fragment를 증폭한 후 pFastBac1 벡터에 클로닝하여, 재조합 바큘로바이러스(recombinant baculovirus)를 얻었다. sf9 세포(1×106 cells/ml)에 10 MOI의 재조합 바큘로바이러스를 감염시키고 다양한 시간(0, 24, 48, 72 및 96 시간)에서 원심분리를 통해 세포를 회수하고, 균질화 완충액(homogenizing buffer) (250 mM 수크로오스(sucrose), 10 mM Tris (pH 7.4), 1 mM EDTA)를 넣고 균질화 하였다. 균질액을 600g, 15분 및 4℃에서 원심분리하여 상등액만을 취하고, 이를 다시 100,000g, 60분 및 4℃에서 원심분리 하여 전체 세포막 분획(total membrane fraction)을 수집하였다. 수집된 세포막은 수크로오스 완충액(sucrose buffer)(250 mM 수크로오스, 10 mM Tris (pH 7.4))에 재현탁되었고, 브래드포드 방법(Bradford protein assay method)으로 단백질의 농도를 결정하였고, -80℃에 보관한 후 실험에 사용하였다.
이 후, 항DGAT2 항체를 이용한 웨스턴 블로팅 분석을 통해 각 시간별 DGAT2의 단밸질 발현 양상을 확인하였고, 그 결과를 도 1의 (A)에 나타내었다.
도 1의 (A)에 나타낸 바와 같이, DGAT2 단백질은 바큘로바이러스(baculovirus)-DGAT2 (DGAT2 유전자를 포함하는 재조합 바큘로바이러스(recombinant baculovirus))를 sf9 세포에 감염한 3일 후에 최대발현 양상을 보이는 것을 확인할 수 있었다. 또한, 10 MOI 재조합 바큘로바이러스로 72시간 감염 후, 보디피 염색법(Bodipy dye)으로 염색하여 광학현미경(light microscope) 및 도립형광현미경(inverted fluorescence microscope)을 통해 세포 내 지방과립(lipid droplet; LD) 축적 여부를 관찰하였고, 그 결과를 도 1의 (B)에 나타내었다. 보다 구체적으로, 도 1의 (B)에서 상부(upper panel)는 광학현미경 관찰결과를 나타내며(LD는 세포 내 밝은 반점(speckle)(흰색 화살표)), 하부(lower panel)는 도립형광현미경 관찰 결과를 나타낸 것이다. 도 1의 (B)에 나타낸 바와 같이, 세포 내에 지방 과립(LD)이 뚜렷하게 축적되는 것을 확인할 수 있었고, 상기 결과로부터 DGAT2의 발현에 의해서 트리글리세라이드(triglycerides, TG)가 새롭게 과량 합성되어 지방 과립(lipid droplet)의 형태로 축적됨을 알 수 있었다.
2-2. 신틸레이션 어세이법을 이용한 DGAT2 억제물질의 스크리닝
DGAT2 억제물질을 찾기 위한 고속대량스크리닝(high throughput screening; HTS)은, 세포 전체의 세포막(Membrane)을 분리해서 DGAT2 단백질을 얻어내고, 이의 효소활성을 FlashPlate™ (PerkinElmer; Waltham, MA)를 기초로 한 방사선 신틸레이션 어세이법(scintillation proximity assay)을 이용하여 측정함으로써 수행되었다.
상기의 신틸레이션 어세이법은 [3H]-oleoyl CoA를 기질로 하여 DGAT2에 의해서 새롭게 합성된 [3H]-TG가 소수성이 강하고 아이소프로판올(isopropanol) 용매에서 다른 물질들과 분리되어 신틸란트(scintillant)에 근접하는 특성을 이용한 것으로 기존의 매뉴얼 어세이법보다 훨씬 간편해서 HTS에 적합한 방법이다.
보다 구체적으로, DGAT2 활성은 96-well format Basic FlashPlate™의 최종 반응 볼륨(final reaction volume) 100μl에서, 20 mM의 HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)(pH 7.4), 5 mM의 MgCl2와 1 mg/ml의 BSA, 100 μM의 디아실글리세롤(diacylglycerol), 10 μM의 [3H]oleoylCoA, 16μg/ml의 DGAT2 세포막, 및 10μl의 화합물(compound)을 함유하는 용액에서 분석되었다. 이때, 반응은 120분, 37℃에서 진행되었고, 100μl 아이소프로판올(isopropanol)의 첨가에 의해 정지되었다. 플레이트(plate)는 밀봉되어 실온에서 하룻밤 동안 보관되었고, 새롭게 합성된 [3H]-표지된 TG([3H]-labeled TG)는 인큐베이션 동안 FlashPlate™에서 코팅된 신틸란트(scintillant)에 매우 근접하며, 이 후 Micro-beta(Perkin Elmer) plate reader를 이용한 신틸레이션 카운팅(counting)에 의해 정량적으로 측정하였다. 도 1의 (C)에 나타낸 바와 같이, 세포 내의 DGAT2 발현양이 증가함에 따라서 TG의 생합성이 현저히 증가되는 것을 확인할 수 있었다. 또한, 기존 매뉴얼 어세이법에서 DGAT2 효소활성을 억제하는 것으로 알려진 단백질 산화유도물질 NEM (N-ethylmaleimide) 이 Flashplate를 기초로 한 본 발명의 어세이법에서도 동일한 효과를 보이는 것을 확인하였다.
실시예 3. 신규한 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 물질
본 발명자들은 신규한 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 물질을 발굴하고자 하였다.
구체적으로 상기 실시예 2의 스크리닝 방법을 이용하여 여러가지 파라미터 (CV, signal/noise, 및 Z-factor)에 대해서 테스트한 결과, 스크리닝에 매우 적합한 수치를 보이는 것을 확인하였다. 또한, 한 반응당(1 well in 96 well plate) 8 μg의 효소 샘플로도 충분히 높은 활성을 보이는 것을 확인하였다. 더불어, 10 μM의 최종 농도에서 ChemBridge chemical library로부터 얻은 20,000개의 화합물의 1차 스크리닝을 수행하였고, in vitro에서 DGAT2 활성을 상당히 억제하는 15개의 화합물을 확인할 수 있었다(>3SD, 표준편차보다 3배 높음).
실시예 4. 신규한 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 물질의 활성 평가
실시예 3을 통해 확인된 15개의 화합물을 종래의 추출 기반 분석법(conventional extraction-based assay)을 사용하여 DGAT2에 대한 각 화합물의 저해 활성을 재측정한 결과 화합물 122가 가장 일관되게 높은 저해 활성을 보였다.
도 1의 (D)에 나타낸 바와 같이, 화합물 122는 이사틴(isatin) 군(family) 중 하나로서, 이사틴 코어(core)와 2개의 연속적인 벤질기(benzyl group)의 측쇄(side chain)로 구성되어 있다.
스크리닝에 사용한 화합물 라이브러리에 존재하는 화합물 122와 유사한 구조를 가지는 10개의 유도체에 대해서 DGAT2 억제 활성을 테스트한 결과, 10 μM에서 DGAT2에 대하여 어떠한 억제 효과도 가지지 못함을 확인할 수 있었다(도 1의 (D)와 (E) 참조).
상기 결과로부터, 화합물 122만이 가지는 측쇄의 말단 벤질 및 이사틴 코어의 카르보닐기(carbonyl group)가 DGAT2에 대한 억제활성에 결정적으로 필요한 활성부분(moiety)임을 알 수 있었다.
실시예 5. 화합물 122의 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 효능 평가
실시예 4를 통해 일관되게 가장 DGAT2 억제효능이 높은 것으로 확인된 물질인 화합물 122의 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 억제 기전을 하기와 같이 평가하였다.
먼저, DGAT2-함유 전체 세포막에 다양한 농도의 화합물 122가 있는 상태에서, 두 개의 기질(substrate)(oleoyl-CoA and 디아실글리세롤) 각각의 농도를 변화시키면서 DGAT2 활성을 측정하였고, 그 결과를 도 2의 (A)와 같이, 라인웨버-버크 플롯(Lineweaver-Burk plots)으로 나타내었다. 도 2의 (A)는 oleoyl-CoA에 대한 라인웨버-버크 플롯 결과를 나타낸 것으로서, 화합물 122는 oleoyl-CoA와 관련해서 경쟁적 억제제(competitive inhibitor)로 작용하였음을 확인할 수 있었다.
다음으로, DGAT1-, DGAT2-, 및 GPAT1-과발현 sf-9 세포로부터 분리된 단백질 분획(fraction)을 이용하여 화합물 122의 억제 효능을 측정하였고, 그 결과를 도 2의 (B)에 나타내었다. 도 2의 (B)에 나타낸 바와 같이, 화합물 122는 10 μM 농도에서 DGAT1에 대해 거의 억제 활성을 가지지 않은 반면, DGAT2에서는 뚜렷한 억제 효과를 보임을 재확인할 수 있었다. 또한, 화합물 122는 GPAT1에도 미미한 효과를 보였다(10% 미만). 상기 결과로부터, 화합물 122가 in vitro에서 DGAT2 활성의 선택적 억제물질임을 알 수 있었다.
마지막으로, 화합물 122의 IC50을 측정하였고, 그 결과를 도 2의 (C)에 나타내었다. 도 2의 (C)에 나타낸 바와 같이, 화합물 122의 IC50은 5 μM로 확인할 수 있었다.
실시예 6. 포유동물세포에서 화합물 122의 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglycerol Acyltransferase 2, DGAT2) 선택적 억제 효능 평가
6-1. HEK293 세포에서 화합물 122의 DGAT2 선택적 억제 효능 평가
HEK293 세포에서 화합물 122의 DGAT2 선택적 억제 효능을 평가하기 위해, 먼저 HEK293 Tet-on 세포주(cell line)를 구축하였다. 보다 구체적으로, Tet-On 유전자 발현 벡터(Clontech)인 pTRE2-hygro는 hDGAT1 또는 hDGAT2의 과발현을 조절하는데 사용되었다. 이러한 cDNA는 PrimeSTAR Max DNA polymerase(Takara)에 의해 증폭되었고, 제한 부위(restriction site)를 포함하는 프라이머를 사용하여 pTRE2-hygro 벡터로 삽입되었다. hDGAT1에 대하여, 프라이머 쌍은 5'- agctGCTAGCgccaccatgggcgaccgcggcagc -3' (sense)(서열번호 1) 및 5'- agctAAGCTTtcaggtctctgccgctggggc -3' (antisense)(서열번호 2)이며, hDGAT2에 대하여, 프라이머 쌍은 5'- agctGCTAGCgccaccatgaagaccctcatagccgcctactcc -3' (sense)(서열번호 3) 및 5'- agctAAGCTTtcagttcacctccaggacctcagtc -3' (antisense)(서열번호 4)이다. 여기서, 밑줄친 부분은 hDGAT1 및 hDGAT2의 개시 코돈(ATG) 및 정지 코돈(TCA)을 나타내며, 대문자는 제한 부위를 나타낸다. 이 후, Lipofectamine 2000 (Invitrogen)을 이용하여 pTRE2hygro/hDGAT1 또는 pTREhygro/hDGAT2를 형질주입(transfection)하고, 이어서 2주 동안 300 μg/ml 히그로마이신(hygromycin)(Invitrogen)을 이용한 선별(selection)에 의해 hDGAT1 또는 hDGAT2을 발현하는 안정한 HEK293 tet-on 세포주를 구축하였다.
구축된 HEK293 tet-on 세포주(cell line)를 96 well plate에 5×103cells/well로 접종하고, 배양배지(GM, 10% Tet-FBS(Tet System Approved Serum, Clontech), 100 U/ml의 페니실린(penicillin) 및 100 μg/ml의 스트렙토마이신(streptomycin)이 포함된 고농도-글루코스 DMEM)에서 배양하였다. 24시간 후, 배지는 1 μg/ml 독시사이클린(Dox)의 존재 및 부재인 화합물 122로 바꾸고, 48시간 배양 후, 도립형광 현미경(inverted fluorescence microscope)으로 관찰하도록 세포는 4% 포름알데히드(formaldehyde)로 고정시켰고, Bodipy 493/503 및 Hoechst 33342로 염색하였다. 이미지는 Spot Detector BioApplication를 가진 Cellomics ArrayScan을 사용하여 분석하였고, 그 결과를 도 3의 (A)에 나타내었다.
도 3의 (A)에 나타낸 바와 같이, DGAT2 및 DGAT1의 과발현은, 희미한 기저 신호를 나타낸 대조군(control) 세포와 비교할 때, LD의 형광신호를 10배 이상으로 크게 증가시킴을 확인할 수 있었다. 각 세포에서 증가된 형광 발광은 대부분 DGAT2 또는 DGAT1에 의해 생성된 세포 내 TG의 유도를 표시하며, 상기 결과로부터, DGAT2 및 DGAT1 모두 세포 내 TG 생합성에 중요한 역할을 하는 것임을 알 수 있었다.
또한, DGAT2 및 DGAT1 과발현 세포로부터 분리된 전체 세포막에서 효소 활성을 측정함으로써 DGAT2에서 화합물 122의 선택적 효능을 확인하였고, 그 결과를 도 3의 (B)에 나타내었다. 도 3의 (B)에 나타낸 바와 같이, 화합물 122는 DGAT2 함유 전체 세포막에서 9.7μM의 IC50값을 가져, 강한 억제 활성을 보여준 반면, DGAT1 함유 전체 세포막에서는 보다 높은 91.8μM의 IC50값을 가져 약한 억제 활성을 나타냄을 확인할 수 있었다. 반대로, DGAT1 억제물질은 DGAT1 함유 전체 세포막의 활성에 강하게 영향을 미친 반면, DGAT2 함유 전체 세포막에는 약한 억제 활성을 나타냄을 확인할 수 있었다.
또 다른 방법으로, 세포에서 새롭게 합성된 TG로의 [14C]글리세롤 결합(incorporation)을 측정함으로써, 화합물 122의 DGAT2 선택적 억제 효능을 확인하였다. 즉, [14C]글리세롤 존재 하에, DGAT2- 및 DGAT1- 과발현 세포를 다양한 농도의 화합물 122(2.5, 5 및 10 μM) 및 10μM의 DGAT1 억제물질로 6시간 동안 처리한 후, 각 세포로부터 추출된 지방(lipid)을 가지고 TLC(thin layer chromatography)-기반 DGAT 어세이법을 수행하였다. 각 TG 밴드는 Multi-Gauge V3.0 (Fujifilm) 소프트웨어를 사용하여 정량화하였으며, 상대적 활성은 대조군 세포(control cell)에서의 값을 100%로 설정함으로써 상대적으로 계산되었고, 그 결과를 도 3의 (C) 및 (D)에 나타내었다.
도 3의 (C) 및 (D)에 나타낸 바와 같이, 화합물 122는 DGAT2의 과발현에 의해 유도되는 신생 TG 생합성을 상당히 억제하였지만, DGAT1의 과발현에 의해 유도되는 신생 TG 생합성은 억제하지 못함을 확인할 수 있었다. 반면에, DGAT1 억제물질은 오직 DGAT1에 의해서 유도된 신생 TG 생합성에만 영향을 끼침을 확인할 수 있었다.
뿐만 아니라, 세포 내 LD의 축적은 대부분 TG 합성의 증가를 나타내는바, 화합물 122의 선택적 억제 효능을 양 세포에서 LD의 수를 측정함으로써 확인하였다. 즉, 세포를 다양한 농도 (1, 2.5, 5, 10 μM)의 화합물 122 또는 DGAT1 억제물질로 48시간 동안 처리한 후, LD를 Bodipy dye로 염색하여 시각화하고, Cellomics BioApplication analysis software를 사용하여 LD의 수를 정량적으로 측정하였으며, 그 결과를 도 3의 (E) 및 (F)에 나타내었다. 이 때, 상대적 활성은 DMSO-처리 세포에서 얻어진 값을 100%로 설정하고 상대적으로 계산되었다. 도 3의 (E) 및 (F)에 나타낸 바와 같이, DGAT2 과발현 세포에서는, 화합물 122의 처리양에 의존하여 LD의 수가 상당히 감소된 반면, DGAT1 과발현 세포에서는 그렇지 못함을 확인할 수 있었다. 그리고 동일한 조건에서, DGAT1 억제물질은 투여양에 의존적으로 오직 DGAT1 과발현 세포에서만 LD의 수를 감소시킴을 확인할 수 있었다.
6-2. HepG2 세포에서 화합물 122의 DGAT2 선택적 억제 효능 평가
HepG2 세포(5×105 cells/mL)를 [14C]글리세롤(0.6μCi) 또는 [14C]올레산염(oleate)(1.25μCi)의 존재 하에 2.5, 5 및 10 μM 화합물 122를 6시간 동안 처리하였다. 처리 후, 세포 내 지방을 헥산(hexane):아이소프로판올(isopropanol)(3:2, v/v/v)의 혼합물을 이용하여 추출하였고, 전개용매(developing solvent)로 헥산(hexane) : 디에틸에테르(diethyl ether) : 아세트산(acetic acid)(80:20:1, v/v/v)을 사용한 TLC(thin layer chromatography)(Kieselgel 60 F254 plates, Merck)에 의해 분리하고, 동위원소-표지 트리글리세라이드(isotope-labeled TG)는 생물영상분석기(bio-imaging analyzer)(FLA-7000, Fuji)를 사용하여 탐지하여 정량적으로 측정하였고, 그 결과를 도 3의 (G)에 나타내었다.
도 3의 (G)에 나타낸 바와 같이, 화합물 122는 TG로의 [14C]글리세롤 결합을 40%까지 감소시킨 반면, TG로의 [14C]올레산염 결합에는 거의 영향을 미치지 않음을 확인할 수 있었다. 또한, 도 3의 (H)에 나타낸 바와 같이 10 μM의 화합물 122의 처리는 HepG2 세포에서 어떠한 독성 효과도 거의 나타내지 않는다는 것을 확인할 수 있었다.
상기 결과로부터, 화합물 122는 포유동물세포에서 DGAT2에 선택적으로 작용하는 억제물질임을 알 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.
본 발명의 하기 화학식 1로 기재되는 디아실글리세롤 아실트랜스퍼레이즈 2 (DGAT2) 억제 물질은 DGAT2를 선택적으로 억제하는 효과를 가지고, 세포수준에서 독성이 거의 없는 최초의 물질로 비만, 당뇨, 지방간, 고지혈증, 및 심혈관질환등의 대사성 질환의 예방, 개선 또는 치료용 조성물로 유용하게 사용될 수 있다. 이에 더하여 건강기능식품 조성물로도 유용하게 사용될 수 있다.
Claims (10)
- 제 1항에 있어서,상기 조성물은 디아실글리세롤 아실트랜스퍼레이즈 2(Diacylglyc erol Acyltransferase 2, DGAT2)를 억제하는 것을 특징으로 하는, 약학적 조성물.
- 제 1항에 있어서,상기 대사성 질환은 비만, 당뇨, 지방간, 및 심혈관질환으로 구성된 군으로부터 선택되는 것을 특징으로 하는, 약학적 조성물.
- 제 3항에 있어서,상기 심혈관질환은 고콜레스테롤혈증, 고지혈증, 아테롬성 동맥경화증, 동맥경화증, 관상동맥 경화증, 및 대동맥류로 구성된 군으로부터 선택되는 것을 특징으로 하는, 약학적 조성물.
- 제 5항에 있어서,상기 대사성 질환은 비만, 당뇨, 지방간, 및 심혈관질환으로 구성 된 군으로부터 선택되는 것을 특징으로 하는, 건강기능식품 조성물.
- 제 6항에 있어서,상기 심혈관질환은 고콜레스테롤혈증, 고지혈증, 아테롬성 동맥경 화증, 동맥경화증, 관상동맥 경화증, 및 대동맥류로 구성된 군으로부터 선택되는 것을 특징으로 하는, 건강기능식품 조성물.
- 제 8항에 있어서,상기 대사성 질환은 비만, 당뇨, 지방간, 및 심혈관질환으로 구성 된 군으로부터 선택되는 것을 특징으로 하는, 방법.
- 제 9항에 있어서,상기 심혈관질환은 고콜레스테롤혈증, 고지혈증, 아테롬성 동맥경화증, 동맥경화증, 관상동맥 경화증, 및 대동맥류로 구성된 군으로부터 선택되는 것을 특징으로 하는, 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0027343 | 2012-03-16 | ||
KR20120027343 | 2012-03-16 | ||
KR10-2013-0026195 | 2013-03-12 | ||
KR1020130026195A KR101464429B1 (ko) | 2012-03-16 | 2013-03-12 | 신규한 디아실글리세롤 아실트랜스퍼레이즈 2 억제 물질 및 이의 이용 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137628A1 true WO2013137628A1 (ko) | 2013-09-19 |
Family
ID=49161462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/001990 WO2013137628A1 (ko) | 2012-03-16 | 2013-03-12 | 신규한 디아실글리세롤 아실트랜스퍼레이즈 2 억제 물질 및 이의 이용 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013137628A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018033832A1 (en) | 2016-08-19 | 2018-02-22 | Pfizer Inc. | Diacylglycerol acyltransferase 2 inhibitors |
WO2021064590A1 (en) | 2019-10-04 | 2021-04-08 | Pfizer Inc. | Diacylglycerol acyltransferase 2 inhibitor |
WO2021171163A1 (en) | 2020-02-24 | 2021-09-02 | Pfizer Inc. | Combinations of diacylglycerol acyltransferase 2 inhibitors and acetyl-coa carboxylase inhibitor |
WO2023026180A1 (en) | 2021-08-26 | 2023-03-02 | Pfizer Inc. | Amorphous form of (s)-2-(5-((3-ethoxypyridin-2-yl)oxy)pyridin-3-yl)-n-(tetrahydrofuran-3- yl)pyrimidine-5-carboxamide |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008514616A (ja) * | 2004-09-24 | 2008-05-08 | メルク エンド カムパニー インコーポレーテッド | 肥満の治療のための組合せ療法 |
JP2008543940A (ja) * | 2005-06-20 | 2008-12-04 | シェーリング コーポレイション | ヒスタミンh3アンタゴニストとして有用な、炭素結合した置換ピペリジンおよびその誘導体 |
EP2145884A1 (en) * | 2007-04-02 | 2010-01-20 | Banyu Pharmaceutical Co., Ltd. | Indoledione derivative |
US7902190B2 (en) * | 2006-09-27 | 2011-03-08 | Korea Research Institute Of Bioscience And Biotechnology | Indol derivatives, the method for preparing thereof and composition for the prevention and treatment of metabolic disorder containing the same as an active ingredient |
WO2011113060A2 (en) * | 2010-03-12 | 2011-09-15 | Trana Discovery, Inc. | Antiviral compounds and methods of use thereof |
-
2013
- 2013-03-12 WO PCT/KR2013/001990 patent/WO2013137628A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008514616A (ja) * | 2004-09-24 | 2008-05-08 | メルク エンド カムパニー インコーポレーテッド | 肥満の治療のための組合せ療法 |
JP2008543940A (ja) * | 2005-06-20 | 2008-12-04 | シェーリング コーポレイション | ヒスタミンh3アンタゴニストとして有用な、炭素結合した置換ピペリジンおよびその誘導体 |
US7902190B2 (en) * | 2006-09-27 | 2011-03-08 | Korea Research Institute Of Bioscience And Biotechnology | Indol derivatives, the method for preparing thereof and composition for the prevention and treatment of metabolic disorder containing the same as an active ingredient |
EP2145884A1 (en) * | 2007-04-02 | 2010-01-20 | Banyu Pharmaceutical Co., Ltd. | Indoledione derivative |
WO2011113060A2 (en) * | 2010-03-12 | 2011-09-15 | Trana Discovery, Inc. | Antiviral compounds and methods of use thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018033832A1 (en) | 2016-08-19 | 2018-02-22 | Pfizer Inc. | Diacylglycerol acyltransferase 2 inhibitors |
US10071992B2 (en) | 2016-08-19 | 2018-09-11 | Pfizer Inc. | Diacylglycerol acyl transferase 2 inhibitors |
US11034678B2 (en) | 2016-08-19 | 2021-06-15 | Pfizer Inc. | Diacylglycerol acyl transferase 2 inhibitors |
US11866425B2 (en) | 2016-08-19 | 2024-01-09 | Pfizer Inc. | Diacylglycerol acyl transferase 2 inhibitors |
WO2021064590A1 (en) | 2019-10-04 | 2021-04-08 | Pfizer Inc. | Diacylglycerol acyltransferase 2 inhibitor |
US11065249B2 (en) | 2019-10-04 | 2021-07-20 | Pfizer Inc. | Diacylglycerol acyl transferase 2 inhibitor |
US11471458B2 (en) | 2019-10-04 | 2022-10-18 | Pfizer Inc. | Diacylglycerol acyl transferase 2 inhibitor |
WO2021171163A1 (en) | 2020-02-24 | 2021-09-02 | Pfizer Inc. | Combinations of diacylglycerol acyltransferase 2 inhibitors and acetyl-coa carboxylase inhibitor |
WO2023026180A1 (en) | 2021-08-26 | 2023-03-02 | Pfizer Inc. | Amorphous form of (s)-2-(5-((3-ethoxypyridin-2-yl)oxy)pyridin-3-yl)-n-(tetrahydrofuran-3- yl)pyrimidine-5-carboxamide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tian et al. | Identification of cyanidin-3-arabinoside extracted from blueberry as a selective protein tyrosine phosphatase 1B inhibitor | |
Sánchez-Patán et al. | In vitro fermentation of a red wine extract by human gut microbiota: changes in microbial groups and formation of phenolic metabolites | |
Suwa et al. | Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles | |
AU2016327930B2 (en) | Compounds effective in treating hepatotoxicity and fatty liver diseases and uses thereof | |
WO2016137037A1 (ko) | Dpp-4 억제제를 포함하는 판막 석회화의 예방 또는 치료용 조성물 | |
Shih et al. | Synergistic effect of cyanidin and PPAR agonist against nonalcoholic steatohepatitis-mediated oxidative stress-induced cytotoxicity through MAPK and Nrf2 transduction pathways | |
AU2021269396A1 (en) | Very-long-chain polyunsaturated fatty acids, elovanoid hydroxylated derivatives, and methods of use | |
TW201033182A (en) | Tetrahydrotriazine compounds for treating diseases associated with AMPK activity | |
KR20080039361A (ko) | 산화환원 효소에 의해 nad(p)/nad(p)h비율을 조절하는 방법 | |
WO2013137628A1 (ko) | 신규한 디아실글리세롤 아실트랜스퍼레이즈 2 억제 물질 및 이의 이용 | |
KR20120023064A (ko) | Gne 단백질의 기능 저하에 기인하는 질환의 치료용 의약제, 식품 조성물 및 식품 첨가물 | |
US20160067209A1 (en) | Pterocarpan compound or pharmaceutically acceptable salt thereof and pharmaceutical composition for prevention or treatment of metabolic disease or complication thereof, or for antioxidant containing the same as an active ingredient | |
US20070135487A1 (en) | Use of a deoxynojirimycin derivative or a pharmaceutically salt thereof | |
US11684599B2 (en) | Very-long-chain polyunsaturated fatty acids, elovanoid hydroxylated derivatives, and methods of use | |
JP5813576B2 (ja) | サーチュイン1(sirt1)遺伝子活性化剤 | |
Sbarra et al. | In vitro polyphenol effects on activity, expression and secretion of pancreatic bile salt-dependent lipase | |
US20080182787A1 (en) | Agent and compositions comprising the same for inhibiting lipases and phospholipases in body fluids, cells and tissues | |
KR101464429B1 (ko) | 신규한 디아실글리세롤 아실트랜스퍼레이즈 2 억제 물질 및 이의 이용 | |
WO2023008919A1 (ko) | 벤질아미노에탄올 유도체를 유효성분으로 포함하는 대사질환의 예방 또는 치료용 조성 | |
WO2017039096A1 (ko) | 스핑고신 1-인산 또는 sphk2의 발현을 상승시키는 물질을 포함하는 대사 기능 장애의 예방 또는 치료용 약학 조성물 | |
KR20120115963A (ko) | 마 추출물을 포함하는 심혈관계 질환의 예방 또는 치료용 조성물 | |
KR20230087535A (ko) | 간 지방증을 역전시키는 방법 | |
WO2017209542A1 (ko) | 리보솜 결합제제를 포함하는 ldl 콜레스테롤 관련 질환의 예방 또는 치료용 약학적 조성물 | |
KR101596123B1 (ko) | 디아실글리세롤 아실트랜스퍼레이즈 억제용 신규 아자인돌계 화합물 및 이의 이용 | |
KR100577320B1 (ko) | 아실 코에이:디아실글리세롤 아실트랜스퍼라제 활성 저해제인 퀴놀론 알칼로이드 화합물을 유효성분으로 함유하는 중성지방 강하제 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13760838 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13760838 Country of ref document: EP Kind code of ref document: A1 |