[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013137188A1 - 立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板 - Google Patents

立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板 Download PDF

Info

Publication number
WO2013137188A1
WO2013137188A1 PCT/JP2013/056627 JP2013056627W WO2013137188A1 WO 2013137188 A1 WO2013137188 A1 WO 2013137188A1 JP 2013056627 W JP2013056627 W JP 2013056627W WO 2013137188 A1 WO2013137188 A1 WO 2013137188A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
image display
phase difference
anisotropic layer
support
Prior art date
Application number
PCT/JP2013/056627
Other languages
English (en)
French (fr)
Inventor
誠 石黒
孝浩 大場
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020147018332A priority Critical patent/KR20140097557A/ko
Publication of WO2013137188A1 publication Critical patent/WO2013137188A1/ja
Priority to US14/331,641 priority patent/US20140320775A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • the present invention relates to a stereoscopic image display device, a manufacturing method thereof, a method of reducing boundary unevenness, a stereoscopic image display system, and a pattern phase difference plate.
  • a stereoscopic (3D) image display device that displays a stereoscopic image requires an optical member for converting the right-eye image and the left-eye image into, for example, circularly polarized images in opposite directions.
  • an optical member uses a patterned optical anisotropic element in which regions having different slow axes and retardations are regularly arranged in a plane, and supports the patterned optical anisotropic element.
  • FPR Frm Patterned Retarder
  • Type pattern retardation film FPR film
  • a method for producing an FPR film for example, a method of pattern exposure in a roll state is generally known in a state in which the support is not bent and productivity is improved.
  • a method of pattern exposure in a state where a certain amount of tensile stress is applied is known.
  • a pixel for a left and right eye image present in a display panel unit such as a liquid crystal panel and a phase difference region for a left and right eye image of a pattern optical anisotropic layer are provided. It is necessary to stack them in correspondence with each other.
  • an FPR film having a patterned optically anisotropic layer having a stripe pattern is used, and when this is bonded to a display panel, the period direction of the pattern (stripe-like different phase differences) is used.
  • the direction in which the areas are alternately switched is made to coincide with the vertical direction (vertical direction) of the display surface.
  • FIG. 4 schematically shows an example in which the left and right eye image pixels of the display panel unit and the left and right eye image phase difference regions of the pattern optical anisotropic layer are arranged in correspondence with each other.
  • the observation direction is a normal direction to the display surface
  • the light that has passed through the right-eye image pixel (R) inside the display panel is to the right of the pattern optical anisotropic layer. Since the eye image phase difference region (R) is passed, no crosstalk occurs.
  • the observation direction is shifted from the normal direction of the display surface to the vertical direction of the display surface, as shown by an arrow b in FIG.
  • the pixel for the right eye image (R) inside the display panel (for example, in the liquid crystal cell) is transmitted.
  • the transmitted light passes through the left-eye image retardation region (L) of the patterned optically anisotropic layer, and crosstalk occurs. That is, there is a problem that the viewing angle of the stereoscopic image becomes narrow in the vertical direction of the display surface.
  • Non-patent Document 1 the black matrix of the color filter disposed in the liquid crystal cell is thickened.
  • the crosstalk can be reduced.
  • the crosstalk can be reduced, there is a problem of display unevenness due to the patterned optical anisotropic layer, and the improvement thereof is desired.
  • An object of the present invention is to solve the above-described problems, and specifically, a stereoscopic image display device that contributes to reduction of the vertical crosstalk viewing angle and reduction of 3D boundary unevenness, a manufacturing method thereof, and reduction of boundary unevenness. It is an object to provide a method, a stereoscopic image display system, and a pattern phase difference plate.
  • pattern exposure is generally performed with a tensile stress applied to a support. That is, the support body before pattern exposure has the end of the support meandering slightly due to the influence of the arc or distortion of the support, and the end of the support is not a perfect straight line. No ( Figure 5a).
  • Figure 5a When a tensile stress is applied to such a support, distortion at the end of the support is alleviated and the meandering state is eliminated.
  • pattern exposure has been performed in a state in which distortion or the like at the end of the support is relaxed. That is, in a state where distortion and meandering at the end of the support are reduced, regions having different slow axes and retardations formed on the support are formed by pattern exposure (FIG. 5b).
  • the present inventors have found that the performance of the stereoscopic image display device is greatly influenced and completed the present invention (FIG. 5c). Also, unexpectedly, it has been found that not only crosstalk but also 3D boundary unevenness can be improved by relaxing the meandering of the end of the support.
  • a stereoscopic image display device having at least an image display panel and a pattern phase difference plate disposed on the viewing side of the image display panel,
  • the pattern phase difference plate includes a support, and first phase difference regions and second positions that are alternately arranged in stripes on at least one of the in-plane slow axis direction and the phase difference on the support.
  • Linearity that is a meandering width in a direction perpendicular to the direction along the pattern of the patterned optically anisotropic layer at the edge of the support along the pattern of the patterned optically anisotropic layer Is not more than 0.0195% of the length in the direction perpendicular to the direction along the pattern of the patterned optically anisotropic layer of the image display panel.
  • the “patterned optically anisotropic layer” is not limited to this as long as the first retardation region and the second retardation region are included, and further includes other regions. Note that you get.
  • [5] The stereoscopic image according to any one of [1] to [4], wherein the first and second retardation regions have in-plane slow axes orthogonal to each other and an in-plane retardation of ⁇ / 4.
  • Display device [6] The stereoscopic image display device according to any one of [1] to [5], wherein the size of the image display panel is 32 to 65 inches.
  • Manufacture of a stereoscopic image display device having at least a patterned optical anisotropic layer having first and second retardation regions that are different from each other in direction and retardation and are alternately arranged in a stripe pattern A method, Linearity that is a meandering width in a direction perpendicular to the direction along the pattern of the patterned optically anisotropic layer at the edge of the support along the pattern of the patterned optically anisotropic layer Includes providing a patterned optical anisotropic layer after setting the length to 0.0195% or less of the length in the direction perpendicular to the direction along the pattern of the patterned optical anisotropic layer of the image display panel. A manufacturing method of a featured stereoscopic image display device.
  • It has at least an image display panel and a pattern retardation plate disposed on the viewing side of the image display panel, and the pattern retardation plate has a support and an in-plane slow axis on the support.
  • a stereoscopic image display device having at least a pattern optical anisotropic layer having first and second retardation regions that are different from each other in direction and retardation and are alternately arranged in a stripe pattern
  • linearity which is a meandering width in the direction perpendicular to the direction along the pattern of the patterned optical anisotropic layer at the end in the direction along the pattern of the patterned optical anisotropic layer is the image.
  • a method for reducing boundary unevenness of a stereoscopic image display device comprising using a support that is 0.0195% or less of a length in a direction perpendicular to a direction along a pattern of the patterned optically anisotropic layer of the display panel.
  • a support and a first retardation region and a second retardation region that are different from each other in at least one of the in-plane slow axis direction and the phase difference on the support and are alternately arranged in a stripe shape.
  • linearity that is a meandering width in a direction perpendicular to the direction along the pattern of the pattern optical anisotropic layer at the end in the direction along the pattern of the pattern optical anisotropic layer is the pattern.
  • a pattern phase difference plate characterized by being 0.0195% or less of the length in the direction perpendicular to the direction along the pattern of the optically anisotropic layer.
  • a stereoscopic image display device that contributes to reduction of the vertical crosstalk viewing angle and reduction of 3D boundary unevenness, a manufacturing method thereof, a method of reducing boundary unevenness, a stereoscopic image display system, and a pattern phase difference plate. can do.
  • FIG. 4 is a schematic diagram in which left and right eye image pixels of a display panel unit and left and right eye image phase difference regions of a pattern optical anisotropic layer are arranged in correspondence with each other. 4 indicates that “the right-eye pixel of the pixel of the liquid crystal cell and the right-eye pixel of the FPR film match”, and Y represents “the right-eye pixel of the pixel of the liquid crystal cell and the FPR film”. The right eye pixel does not match ”.
  • FIG. 5a to 5c are schematic diagrams showing the relationship between the production of the FPR film and the distortion and meandering of the support.
  • ⁇ in FIG. 5a indicates that “the end of the support meanders due to the base arc, distortion (including ear extension, etc.),” and ⁇ in FIG. In the state in which tensile stress is applied to the body, meandering at the end of the support is reduced.
  • ⁇ in FIG. 5c indicates that “when the tensile stress is released, the end of the support meanders, The pattern also meanders along with it. " It is the schematic diagram which showed an example of the exposure mask.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at the wavelength ⁇ , respectively.
  • Re ( ⁇ ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of ⁇ nm incident in the normal direction of the film.
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • Rth ( ⁇ ) is calculated by the following method.
  • This measuring method is also partially used for measuring the average tilt angle on the alignment film side of the discotic liquid crystal molecules in the optically anisotropic layer, which will be described later, and the average tilt angle on the opposite side.
  • Rth ( ⁇ ) is the film surface when Re ( ⁇ ) is used and the in-plane slow axis (determined by KOBRA 21ADH or WR) is the tilt axis (rotation axis) (if there is no slow axis) Measurement is performed at a total of 6 points by injecting light of wavelength ⁇ nm from each inclined direction in steps of 10 degrees from the normal direction to 50 ° on one side with respect to the film normal direction (with any rotation direction as the rotation axis).
  • KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
  • the value is calculated by KOBRA 21ADH or WR after changing its sign to negative. Note that the retardation value is measured from two inclined directions with the slow axis as the tilt axis (rotation axis) (in the absence of the slow axis, the arbitrary direction in the film plane is the rotation axis).
  • Rth can also be calculated from the following formula (A) and formula (B) based on the value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction.
  • nx represents the refractive index in the slow axis direction in the plane
  • ny represents the refractive index in the direction orthogonal to nx in the plane
  • nz is the direction orthogonal to nx and ny.
  • d is the film thickness.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is from ⁇ 50 ° to the normal direction of the film, with Re ( ⁇ ) being an in-plane slow axis (determined by KOBRA 21ADH or WR) as an inclination axis (rotation axis).
  • Re ( ⁇ ) being an in-plane slow axis (determined by KOBRA 21ADH or WR) as an inclination axis (rotation axis).
  • the assumed value of the average refractive index the values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. If the average refractive index is not known, it can be measured with an Abbe refractometer.
  • the average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
  • visible light means 380 nm to 780 nm.
  • a measurement wavelength is 550 nm.
  • the angle for example, an angle such as “90 °”
  • the relationship for example, “orthogonal”, “parallel”, “crossing at 45 °”, etc.
  • the range of allowable error is included. For example, it means that the angle is within the range of strict angle ⁇ 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
  • the patterned phase difference plate of the present invention comprises a support and first retardation regions and first retardation regions alternately arranged in stripes on the support, wherein at least one of the in-plane slow axis direction and the phase difference is different from each other.
  • Having at least a patterned optically anisotropic layer having two retardation regions In the support, linearity that is a meandering width in a direction perpendicular to the direction along the pattern of the pattern optical anisotropic layer at the end in the direction along the pattern of the pattern optical anisotropic layer is the pattern. It is characterized by being 0.0195% or less of the length in the direction perpendicular to the direction along the pattern of the optically anisotropic layer.
  • the stereoscopic image display device of the present invention is a stereoscopic image display device having at least an image display panel and a pattern retardation plate disposed on the viewing side of the image display panel, wherein the pattern retardation plate is Patterned optics having a support and first and second retardation regions that are different from each other in at least one of the in-plane slow axis direction and the phase difference on the support and are alternately arranged in a stripe shape
  • the linearity that is the meandering width in the vertical direction is 0.0195% or less of the length in the vertical direction with respect to the direction along the pattern of the patterned optically anisotropic layer of the image display panel.
  • the linearity of the end portion in the direction along the pattern of the support of the pattern phase difference plate is 0.0195% or less of the length in the vertical direction in the direction along the pattern of the stereoscopic image display device.
  • the crosstalk viewing angle in the vertical direction can be reduced, the 3D boundary unevenness cannot be reduced.
  • the crosstalk viewing angle in the vertical direction not only the crosstalk viewing angle in the vertical direction but also the 3D boundary unevenness can be reduced. It was found that it can be significantly reduced.
  • the direction along the pattern means a direction parallel to the stripe pattern. For example, as shown in FIG. 2, it refers to the direction along the boundary between the first and second phase difference regions alternately arranged in a stripe shape.
  • the present inventors consider the reason why the problem of 3D boundary unevenness as well as the vertical crosstalk viewing angle can be solved by the present invention as follows.
  • the narrowness of the crosstalk viewing angle in the vertical direction is caused by a shift between the pixel of the liquid crystal cell and the pattern optical anisotropic layer. Therefore, when the FPR film in which the support is distorted and the meandering is reappeared, there is a large variation in displacement from the liquid crystal cell pixels in the image display region, and therefore the entire image display region is displaced from the liquid crystal cell pixels.
  • the meandering of the FPR film is small, the variation of the deviation from the pixels of the liquid crystal cell in the image display area is also reduced.
  • the deviation from the pixels of the liquid crystal cell in consideration of the entire image display area is narrowed. Therefore, it is considered that the crosstalk viewing angle in the vertical direction is enlarged.
  • the boundary between the first phase difference region and the second phase difference region also meanders (FIG. 5c).
  • the meandering is visually recognized in the vertical direction, it is visually recognized as 3D display unevenness (3D boundary unevenness), and the quality of 3D display becomes poor.
  • the meandering of the FPR film is reduced, the 3D boundary unevenness is not visually recognized. Therefore, the stereoscopic effect of the 3D image in the screen can be enhanced, and the 3D boundary unevenness problem can be solved.
  • the stereoscopic image display device includes a pair of the viewing-side polarizing film 16 and the backlight-side polarizing film 18, the image display panel 1 disposed therebetween, and the pattern retardation plate 20, and further includes the backlight-side polarizing film 18.
  • a backlight 30 is provided outside.
  • the pattern phase difference plate 20 is disposed on the viewing-side surface of the image display panel and separates into right-eye and left-eye polarized images (for example, circularly-polarized images). An observer observes these polarized images through a polarizing plate such as polarized glasses (for example, circular polarized glasses) and recognizes them as a stereoscopic image.
  • a protective film 24 is provided on both surfaces of the polarizing film 16 and the polarizing film 18.
  • the viewing-side polarizing film 16 may be incorporated as a polarizing plate PL1 having a protective film 24 attached to each surface.
  • the backlight side polarizing film 18 may also be incorporated as a polarizing plate PL2 having a protective film 24 attached to each surface.
  • FIG. 1 is a schematic cross-sectional view of an example when the image display panel is a liquid crystal panel, but the image display panel 1 is not limited at all.
  • an organic EL display panel including an organic EL layer or a plasma display panel may be used.
  • the liquid crystal cell When the image display panel 1 is a liquid crystal panel, the liquid crystal cell includes a pair of substrates 1A and 1B and a liquid crystal layer 10 including a nematic liquid crystal material disposed therebetween.
  • a rubbing alignment film (not shown) is disposed on the inner surfaces of the substrates 1A and 1B, and the alignment of the nematic liquid crystal is controlled by the respective rubbing directions to be twisted.
  • electrode layers (not shown) are formed on the inner surfaces of the substrates 1A and 1B, and the twisted alignment of the nematic liquid crystal is eliminated when a voltage is applied, so that the substrates are aligned perpendicular to the substrate surface.
  • the liquid crystal cell LC may include other members such as a color filter.
  • the liquid crystal cell of a general structure is employable.
  • the driving mode of the liquid crystal cell is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB).
  • TN twisted nematic
  • STN super twisted nematic
  • VA vertical alignment
  • IPS in-plane switching
  • OBC optically compensated bend cell
  • the size of the image display panel is not particularly limited, but is preferably 32 to 65 inches (about 80 cm to about 165 cm). According to the present invention, since the viewing angle of a stereoscopic image is wider than in the past, when applied to a medium-to-large image display panel such as 32 to 65 inches than a small image display panel, the stereoscopic image is displayed. Since observation of an image becomes easy, it tends to be particularly effective.
  • the pattern retardation plate 20 is a so-called FPR film. As shown in FIGS. 1 and 2, the pattern retardation plate has a first retardation region 14 and a second retardation region 15 on a support 13.
  • the patterned optically anisotropic layer 12 is provided, and a boundary portion is provided between the first and second retardation regions.
  • membrane normally used in order to control the orientation of an optically anisotropic layer is abbreviate
  • the linearity of the end of the support is the end of the support in the direction along the pattern of the patterned optically anisotropic layer support (hereinafter also referred to as “lateral direction” (longitudinal direction)).
  • the linearity of the end portion of the support is parallel to the horizontal direction of the image display panel, and meanders in a direction perpendicular to the straight line connecting both ends of the support (hereinafter also referred to as “vertical direction”). It is the width (length of perpendicular).
  • the linearity of the edge of the support is preferably 0.0195% or less of the length in the direction perpendicular to the pattern along the pattern optical anisotropic layer of the image display panel.
  • the “direction along the pattern” means the direction along the pattern of the patterned optically anisotropic layer, that is, the direction along the longitudinal direction of the stripe-shaped retardation region. is there.
  • the “end portion in the direction along the pattern of the patterned optically anisotropic layer” of the support means the end portion of the support and is perpendicular to the direction along the pattern of the patterned optically anisotropic layer. It means the end part in.
  • the difference between the length of the perpendicular and the vertical length of the image display panel is preferably 75 ⁇ m or less, and 50 ⁇ m. The following is more preferable.
  • the length of the perpendicular of the support is measured as follows. 1) On a roll-shaped support, a point A at one end of the horizontal length range of the image display panel and a point B at the other end are provided, and a straight line connecting AB is drawn. The straight line between AB is parallel to the horizontal direction of the image display panel. 2) Draw a straight line connecting the AB lines. 3) 1) and 2) are carried out at 10 points for every 3 m in the longitudinal direction of the roll-shaped support, and the longest perpendicular is defined as “the length of the normal of the support”, and the vertical length of the image display panel is used as a reference. The ratio of the lengths of the vertical lines of the support is defined as the linearity of the end of the support.
  • the patterned optically anisotropic layer 12 can be formed from one or more curable compositions containing a liquid crystal compound as a main component, and among the liquid crystal compounds, a liquid crystal compound having a polymerizable group is preferred. It is preferably formed from one of the curable compositions.
  • the patterned optically anisotropic layer 12 may have a single layer structure or a laminated structure of two or more layers.
  • the patterned optically anisotropic layer can be formed from one or two types of compositions containing a liquid crystal compound as a main component.
  • the linearity of the patterned optically anisotropic layer is preferably 0.0065% or less, and more preferably 0.0025% or less of the length in the vertical direction of the image display panel. Thereby, crosstalk in the vertical direction and 3D boundary unevenness can be reduced.
  • the linearity of the patterned optically anisotropic layer is the ratio of the length of the perpendicular to the straight line connecting the points of 40 mm from both ends of the boundary when the vertical length of the image display panel is used as a reference.
  • the perpendicular line of the patterned optically anisotropic layer is measured as follows. 1) A point A 40 mm from the start point of an arbitrary boundary part and a point B 40 mm from the end point of the boundary part are provided, and a straight line connecting AB is drawn. 2) A straight line connecting point AB passing through point A, a line connecting line AB passing through point B, and a line connecting line AB passing through the center of the line are drawn. Measure the length. 3) 1) and 2) are performed on 20 FPR films, and the longest perpendicular is "the length of the perpendicular of the pattern optical anisotropic layer", and the horizontal length of the image display panel is used as a reference. The ratio of the perpendicular lengths of the patterned optically anisotropic layer is defined as the so-called linearity of the patterned optically anisotropic layer.
  • the pattern optical anisotropic layer 12 has an in-plane retardation Re and in-plane retardation axes a and b of the first and second retardation regions 14 and 15 orthogonal to each other.
  • a pattern ⁇ / 4 layer that is ⁇ / 4.
  • an alignment film is uniformly formed on the surface of the support 13, the alignment treatment is performed in one direction, and the liquid crystalline curable composition is aligned on the alignment processing surface. , And can be formed by fixing in the orientation state.
  • the liquid crystal is aligned perpendicularly and perpendicularly to the alignment regulation processing direction (for example, rubbing direction), that is, orthogonally aligned vertically, and for the other, the liquid crystal is aligned.
  • the alignment regulation processing direction for example, rubbing direction
  • Each phase difference region can be formed by aligning in parallel and perpendicular to the alignment regulation processing direction (for example, rubbing direction), that is, parallel and vertical alignment, and fixing each state.
  • the pattern phase difference plate is useful as a member of a stereoscopic image display device, particularly a passive stereoscopic image display device.
  • the polarized image that has passed through each of the first and second phase difference regions is recognized as an image for the right eye or the left eye through polarized glasses or the like. Therefore, it is preferable that the first and second phase difference regions have the same shape so that the left and right images do not become non-uniform, and that the respective arrangements are preferably uniform and symmetrical.
  • the patterned optically anisotropic layer is not limited to the embodiment shown in FIG.
  • a display pixel region in which one in-plane retardation of the first and second retardation regions is ⁇ / 4 and the other in-plane retardation is 3 ⁇ / 4 can be used.
  • a retardation region in which one in-plane retardation of the first and second retardation regions 14 and 15 is ⁇ / 2 and the other in-plane retardation is 0 may be used.
  • the in-plane slow axis of each pattern in the first and second retardation regions can be adjusted in different directions, for example, directions orthogonal to each other by using a pattern alignment film or the like.
  • a pattern alignment film a photo-alignment film that can form a patterning alignment film by mask exposure, a rubbing alignment film that can form a patterning alignment film by mask rubbing, and a different alignment film (for example, orthogonal or parallel to rubbing) Any material that is patterned by printing or the like can be used.
  • the in-plane slow axes of the first and second retardation regions are perpendicular to each other, the in-plane slow axis of the boundary is the in-plane slow axis direction of the first and second retardation regions. It is preferable that it is a substantially intermediate value of, that is, about 45 degrees.
  • the pattern phase difference plate is not limited to the mode shown in a simplified manner in FIGS. 1 and 2, and may include other members.
  • the alignment film may be provided between the support and the patterned optical anisotropic layer.
  • the patterned phase difference plate of the present invention has a hard coat layer, an antireflection layer, a low reflection layer, an antiglare layer, etc. on the surface of the support opposite to the surface on which the patterned optically anisotropic layer is formed. (Or alternatively) surface layers such as a forward scattering layer, a primer layer, an antistatic layer, and an undercoat layer may be disposed.
  • the polarizing films 16 and 18 are arranged so that their transmission axes are orthogonal to each other.
  • the transmission axis of the polarizing film 16 is parallel to the rubbing axis of the substrate 1A
  • the transmission axis of the polarizing film 18 is parallel to the rubbing axis of the substrate 1B.
  • the polarizing films 16 and 18 can be general linear polarizing films.
  • the polarizing film may be a stretched film or a layer formed by coating.
  • the former include a film obtained by dyeing a stretched film of polyvinyl alcohol with iodine or a dichroic dye.
  • the latter include a layer in which a composition containing a dichroic liquid crystalline dye is applied and fixed in a predetermined alignment state.
  • the polarizing film 16 is arranged with the in-plane slow axes a and b of the first and second retardation regions 14 and 15 set to ⁇ 45 ° with respect to the transmission axis p of the polarizing film, respectively.
  • it is not strictly required to be ⁇ 45 °, and either one of the first and second phase difference regions 14 and 15 is preferably 40 to 50 °, and the other is -50 to -40 °.
  • the viewing angle may be further increased by further laminating ⁇ / 2 plates.
  • No other layer is disposed between the patterned optically anisotropic layer 12 and the polarizing film 16 or only an optically isotropic layer (for example, an adhesive layer) is disposed. Is preferred.
  • the protective film 24 is disposed on both surfaces of the polarizing film 16 and the polarizing film 18.
  • a various polymer film can be used, and it contains the cellulose acylate film, acrylic polymer, or cyclic olefin resin currently used widely as a protective film of a polarizing plate as a main component. It may be a film.
  • a retardation film for viewing angle compensation may be disposed or omitted.
  • the in-plane slow axis of the retardation film is preferably arranged in parallel or perpendicular to the rubbing direction applied to the inner surfaces of the substrates 1A and 1B, and more preferably in parallel.
  • the retardation film may be an optically biaxial film or a film composed of a support and an optically anisotropic layer obtained by curing a rod-like or discotic liquid crystal compound.
  • the present invention also relates to a stereoscopic image display system that includes at least the stereoscopic image display device of the present invention and a polarizing plate disposed on the viewing side of the stereoscopic image display device, and allows a stereoscopic image to be visually recognized through the polarizing plate.
  • a polarizing plate disposed outside the viewing side of the stereoscopic image display device is polarized glasses worn by an observer. The observer observes the right-eye and left-eye polarized images displayed by the stereoscopic image display device through circularly polarized light or linearly polarized glasses and recognizes them as a stereoscopic image.
  • the linearity of the end portion in the direction along the pattern of the support of the patterned optically anisotropic layer is 0.0195% or less of the vertical length in the direction along the pattern of the image display panel.
  • the present invention also relates to a method for manufacturing a stereoscopic image display device including providing a patterned optically anisotropic layer.
  • the linearity of the end portion in the direction along the pattern of the support is defined as the vertical length in the direction along the pattern of the image display panel.
  • the present invention also relates to a method for reducing boundary unevenness of a stereoscopic image display device using a support that is 0.0195% or less. By using a support whose linearity is 0.0195% or less of the vertical length in the direction along the pattern of the image display panel, not only the vertical crosstalk viewing angle but also 3D boundary unevenness can be reduced. Can do.
  • Pattern optical anisotropic layer includes a first retardation region and a second retardation region in which at least one of an in-plane slow axis direction and an in-plane retardation is different from each other, and the first and second positions
  • the phase difference regions are alternately arranged in the plane, and have a boundary portion between the first phase difference region and the second phase difference region.
  • An example is an optically anisotropic layer in which the first and second retardation regions each have Re of about ⁇ / 4 and the in-plane slow axes are orthogonal to each other.
  • polymerization is performed in a state in which a rod-like liquid crystal having a polymerizable group is horizontally aligned and a discotic liquid crystal is vertically aligned. It is preferable to form them by immobilization.
  • the patterned optically anisotropic layer alone may have Re of about ⁇ / 4.
  • Re (550) is preferably about ⁇ / 4 ⁇ 30 nm, more preferably 110 to 165 nm, and 120 It is more preferably from ⁇ 150 nm, particularly preferably from 125 to 145 nm.
  • the in-plane retardation Re of ⁇ / 4 means a value having a width of about 1 ⁇ 4 to ⁇ 30 nm of the wavelength ⁇ unless otherwise specified.
  • ⁇ / 2 refers to a value having a width of about 1 ⁇ 2 to ⁇ 30 nm of the wavelength ⁇ unless otherwise specified.
  • Rth is a positive value.
  • Rth (550) of the patterned optically anisotropic layer is preferably negative, and is between ⁇ 80 and ⁇ 50 nm. It is preferable that it is ⁇ 75 to ⁇ 60 nm.
  • liquid crystal compounds can be classified into a rod type and a disk type from the shape.
  • Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but a rod-like liquid crystal compound or a disk-like liquid crystal compound is preferably used.
  • Two or more kinds of rod-like liquid crystal compounds, two or more kinds of disk-like liquid crystal compounds, or a mixture of a rod-like liquid crystal compound and a disk-like liquid crystal compound may be used.
  • the liquid crystal compound may be a mixture of two or more types, and in that case, at least one preferably has two or more reactive groups.
  • the rod-like liquid crystal compound for example, those described in JP-A-11-513019 and JP-A-2007-279688 can be preferably used, and examples of the discotic liquid crystal compound include JP-A-2007-108732. Although those described in Japanese Patent Laid-Open No. 2010-244038 can be preferably used, the invention is not limited to these.
  • the liquid crystal compound has two or more reactive groups having different polymerization conditions.
  • the polymerization conditions used may be the wavelength range of ionizing radiation used for polymerization immobilization, or the difference in polymerization mechanism used, but preferably a radical reaction group and a cationic reaction that can be controlled by the type of initiator used. A combination of groups is good.
  • a combination in which the radical reactive group is an acrylic group and / or a methacryl group and the cationic group is a vinyl ether group, an oxetane group and / or an epoxy group is particularly preferable because the reactivity can be easily controlled.
  • the optically anisotropic layer can be formed by various methods using an alignment film, and the production method is not particularly limited.
  • the first aspect uses a plurality of actions that affect the alignment control of the liquid crystal, and then eliminates any action by an external stimulus (such as heat treatment) to make the predetermined alignment control action dominant. It is. For example, by combining the alignment control ability of the alignment film with the alignment control ability of the alignment control agent added to the liquid crystal compound, the liquid crystal is brought into a predetermined alignment state and fixed to form one retardation region. After that, by external stimulus (heat treatment, etc.), one of the actions (for example, the action by the alignment control agent) disappears, and the other orientation control action (the action by the alignment film) becomes dominant, thereby causing another alignment state.
  • an external stimulus such as heat treatment
  • a predetermined pyridinium compound or imidazolium compound is unevenly distributed on the surface of the hydrophilic polyvinyl alcohol alignment film because the pyridinium group or imidazolium group is hydrophilic.
  • the pyridinium group is further substituted with an amino group that is a substituent of an acceptor of a hydrogen atom, intermolecular hydrogen bonds are generated with polyvinyl alcohol, and are unevenly distributed on the surface of the alignment film at a higher density.
  • the pyridinium derivative is aligned in the direction orthogonal to the main chain of polyvinyl alcohol, so that the orthogonal alignment of the liquid crystal is promoted with respect to the rubbing direction. Since the pyridinium derivative has a plurality of aromatic rings in the molecule, a strong intermolecular ⁇ - ⁇ interaction occurs between the liquid crystal, particularly the discotic liquid crystal compound described above, and the orientation of the discotic liquid crystal Induces orthogonal orientation in the vicinity of the film interface. In particular, when a hydrophobic aromatic ring is connected to a hydrophilic pyridinium group, it also has an effect of inducing vertical alignment due to the hydrophobic effect.
  • the effect is that when heated above a certain temperature, the hydrogen bond is broken, the density of the pyridinium compound or the like on the surface of the alignment film is lowered, and the action disappears.
  • the liquid crystal is aligned by the regulating force of the rubbing alignment film itself, and the liquid crystal is in a parallel alignment state. Details of this method are described in Japanese Patent Application No. 2010-141346 (Japanese Patent Laid-Open No. 2012-8170), the contents of which are incorporated herein by reference.
  • the second mode is a mode using a pattern alignment film.
  • pattern alignment films having different alignment control capabilities are formed, and a liquid crystal compound is disposed thereon to align the liquid crystal.
  • the alignment of the liquid crystal is regulated by the respective alignment control ability of the pattern alignment film, thereby achieving different alignment states.
  • the patterns of the first and second retardation regions are formed according to the alignment film pattern.
  • the pattern alignment film can be formed using a printing method, mask rubbing for the rubbing alignment film, mask exposure for the photo alignment film, or the like.
  • the alignment film can be formed uniformly, and an additive that affects the alignment control ability (for example, the onium salt or the like) can be separately printed in a predetermined pattern to form the pattern alignment film.
  • a method using a printing method is preferable in that large-scale equipment is not required and manufacturing is easy. Details of this method are described in Japanese Patent Application No. 2010-173077 (Japanese Patent Laid-Open No. 2012-032661), the contents of which are incorporated herein by reference.
  • first and second aspects may be used in combination.
  • An example is an example in which a photoacid generator is added to the alignment film.
  • a photoacid generator is added to the alignment film, and pattern exposure exposes a region where the photoacid generator is decomposed to generate an acidic compound and a region where no acid compound is generated.
  • the photoacid generator remains almost undecomposed in the unirradiated portion, and the interaction between the alignment film material, the liquid crystal, and the alignment control agent added as required dominates the alignment state, and the liquid crystal has its slow axis. Is oriented in a direction perpendicular to the rubbing direction.
  • the alignment film When the alignment film is irradiated with light and an acidic compound is generated, the interaction is no longer dominant, the rubbing direction of the rubbing alignment film dominates the alignment state, and the liquid crystal has its slow axis parallel to the rubbing direction. Parallel orientation.
  • a water-soluble compound is preferably used. Examples of photoacid generators that can be used include Prog. Polym. Sci. , 23, 1485 (1998).
  • pyridinium salts, iodonium salts and sulfonium salts are particularly preferably used. Details of this method are described in Japanese Patent Application No. 2010-289360 (Japanese Patent Application Laid-Open No. 2012-150428 based on Japanese Patent Application No. 2010-289360), the contents of which are referred to in this specification. It is captured.
  • a method using a discotic liquid crystal compound having polymerizable groups for example, oxetanyl group and polymerizable ethylenically unsaturated group
  • the pre-optical anisotropic layer is formed by performing light irradiation or the like under the condition that the polymerization reaction of only one polymerizable group proceeds.
  • mask exposure is performed under conditions that allow polymerization of the other polymerizable group (for example, in the presence of a polymerization initiator that initiates polymerization of the other polymerizable group.
  • the alignment state of the exposed portion is completely fixed.
  • One phase difference region having a predetermined Re is formed, and in the unexposed region, the reaction of one reactive group proceeds, but the other reactive group remains unreacted. Therefore, when heated to a temperature exceeding the isotropic phase temperature and allowing the reaction of the other reactive group to proceed, the unexposed region is fixed in the isotropic phase state, that is, Re becomes 0 nm.
  • Support There is no restriction
  • a low retardation polymer film is preferably used, and specifically, a film having an in-plane retardation with an absolute value of about 10 nm or less is preferably used. Even in an embodiment in which a protective film for a polarizing film is disposed between the polarizing film and the pattern retardation film, it is preferable to use a low retardation polymer film as the protective film. It is.
  • Examples of the material for forming the support that can be used in the present invention include polycarbonate polymers, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymers, and the like. Examples thereof include styrenic polymers such as (AS resin).
  • Polyolefin such as polyethylene and polypropylene, polyolefin polymer such as ethylene / propylene copolymer, norbornene polymer, vinyl chloride polymer, amide polymer such as nylon and aromatic polyamide, imide polymer, sulfone polymer, poly Ether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the aforementioned polymer Mixed polymers are also examples.
  • the polymer film of the present invention can also be formed as a cured layer of an ultraviolet-curable or thermosetting resin such as acrylic, urethane, acrylic urethane, epoxy, or silicone.
  • a cellulose acylate polymer a polyester polymer, an acrylic polymer, and a norbornene polymer can be preferably used.
  • thermoplastic norbornene resins can be preferably used.
  • thermoplastic norbornene-based resin examples include ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., and ARTON manufactured by JSR Corporation.
  • cellulose acylate a cellulose polymer represented by triacetyl cellulose (hereinafter referred to as cellulose acylate), which has been conventionally used as a transparent protective film for polarizing plates, can be preferably used.
  • a sugar ester for the film constituting the support, a sugar ester, a polycondensed ester, a retardation developer, an antioxidant, a peeling accelerator, a fine particle, a thermal degradation inhibitor, and an ultraviolet absorber within the scope of the present invention. Etc. may be included.
  • sugar esters can be referred to the descriptions in paragraph numbers 0050 to 0080 of JP2012-226276A, the contents of which are incorporated herein. Addition of such a compound facilitates adjustment of moisture permeability and moisture content by imparting hydrophobicity and adjustment of mechanical properties by imparting plasticity.
  • a sugar ester containing 1 to 12 pyranose structures or furanose structures in which at least one hydroxyl group is aromatically esterified is particularly preferable. Of these, the following sugar esters are preferably used.
  • a nitrogen-containing aromatic compound is preferable.
  • the description of paragraph numbers 0081 to 0109 in JP 2012-226276 A can be referred to, and the contents thereof are incorporated in the present specification.
  • the description of paragraph numbers 0109 to 0112 of JP2012-226276A can be referred to, and the contents thereof are incorporated in the present specification.
  • the compounds described in International Publication WO2008-126535 pamphlet can be employed.
  • Examples of ultraviolet absorbers can be referred to the descriptions in paragraph numbers 0059 to 0135 of JP-A-2006-199855, the contents of which are incorporated herein.
  • the film forming method and equipment for the support used in the present invention are not particularly limited.
  • a solution casting film forming method and a solution casting film forming apparatus conventionally used for producing a cellulose triacetate film are used.
  • the support is made of a cellulose acylate film, the support can be obtained by forming a film using the cellulose acylate solution.
  • the solutions containing cellulose acylate are respectively supplied from a plurality of casting openings provided at intervals in the traveling direction of the metal support.
  • a film may be produced while being cast and laminated. For example, the methods described in JP-A Nos. 61-158414, 1-122419, and 11-198285 can be applied.
  • a film may also be formed by casting a cellulose acylate solution from two casting ports. For example, Japanese Patent Publication Nos. 60-27562, 61-94724, 61-947245, 61-947245, It can be carried out by the methods described in JP-A Nos.
  • a cellulose acylate film in which a flow of a high-viscosity cellulose acylate solution described in JP-A-56-162617 is wrapped with a low-viscosity cellulose acylate solution and the high- and low-viscosity cellulose acylate solutions are simultaneously extruded.
  • a casting method may be used.
  • the outer solution described in JP-A-61-94724 and JP-A-61-94725 contains a larger amount of an alcohol component which is a poor solvent than the inner solution.
  • a film may be produced, for example, a method described in Japanese Patent Publication No. 44-20235.
  • the inner and outer thicknesses are not particularly limited, but the outer side is preferably 1 to 50% of the total film thickness, more preferably 2 to 30%.
  • the total thickness of the layer in contact with the metal support and the layer in contact with the air side is defined as the outer thickness.
  • the endlessly running metal support used for manufacturing the support a drum whose surface is mirror-finished by chrome plating or a band (stainless belt) whose surface is polished by surface polishing is used.
  • One or more pressure dies used for manufacturing the support may be installed above the metal support. Preferably 1 or 2 groups. When two or more units are installed, the amount of dope to be cast may be divided into various ratios for each die, or the dope may be fed to the dies from each of a plurality of precision quantitative gear pumps.
  • the temperature of the cellulose acylate solution used for casting is preferably ⁇ 10 to 55 ° C., more preferably 25 to 50 ° C.
  • the temperature may be a desired temperature just before casting.
  • the casting speed is preferably 20 to 200 m / min, more preferably 40 to 160 m / min, and particularly preferably 60 to 120 m / min. By setting the casting speed within the above range, a support having excellent linearity can be produced.
  • Drying of the dope on the metal support involved in the production of the support is performed by applying hot air from the surface of the metal support (drum or belt), that is, from the surface of the web on the metal support, from the back of the drum or belt.
  • the drying temperature is preferably 70 to 220 ° C, more preferably 80 to 180 ° C, and particularly preferably 90 to 160 ° C.
  • the surface temperature of the metal support before casting may be any number as long as it is not higher than the boiling point of the solvent used for the dope.
  • the temperature is 1 to 10 ° C. lower than the boiling point of the lowest boiling solvent among the solvents used. It is preferable to set to.
  • the support body excellent in linearity can be manufactured by making the temperature of a hot air into the said range.
  • the support can adjust the retardation by a stretching treatment as necessary. Further, there is a method of positively stretching in the width direction.
  • a stretching treatment for example, JP-A-62-115035, JP-A-4-152125, JP-A-4-284221, JP-A-4-298310, and JP-A-11 -48271 and the like.
  • Pattern retardation plate manufacturing method As a manufacturing method of the pattern phase difference plate, for example, a long film (support) wound up in a roll form is sent out and conveyed while applying a predetermined tensile stress. In order to form the second retardation region, pattern exposure is performed to continuously produce a long pattern retardation plate. If desired, it may be rolled up again and stored and transported in a roll form, or a pattern phase difference plate may be produced by a so-called roll-to-roll process.
  • a manufacturing method of the pattern phase difference plate for example, a long film (support) wound up in a roll form is sent out and conveyed while applying a predetermined tensile stress. In order to form the second retardation region, pattern exposure is performed to continuously produce a long pattern retardation plate. If desired, it may be rolled up again and stored and transported in a roll form, or a pattern phase difference plate may be produced by a so-called roll-to-roll process.
  • An example of the manufacturing method of the pattern phase difference plate is as follows.
  • On the alignment film a coating layer of a curable liquid crystal composition containing liquid crystal as a main component is formed, and the liquid crystal in the coating layer is aligned parallel or perpendicular to the alignment treatment direction, and then pattern exposure is performed.
  • the method for example, orthogonal or parallel
  • Each process is performed while transporting in a state where a predetermined tensile stress is applied. This is performed in a state where the long film is stretched by the tensile stress.
  • the predetermined tensile stress is preferably 10 to 800 N / m, more preferably 15 to 600 N / m, and particularly preferably 20 to 400 N / m.
  • a tensile stress of 10 to 800 N / m is applied to the support (long film), the lower the linearity of the end of the support, the greater the change rate of the linearity of the end of the support due to the tensile stress.
  • the linearity at the end of the support is 0.0195% or less, the change rate of the linearity at the end of the support due to the load of the tensile stress is small. The amount of deterioration of the linearity of the optically anisotropic layer can be greatly reduced.
  • the first exposure step is performed through a mask having an opening.
  • the entire surface may be exposed, or only an unexposed portion corresponding to the second retardation region may be exposed using another mask.
  • a step of forming an alignment film oriented in one direction on the long film The alignment film is subjected to pattern exposure, and a first alignment control region having an alignment control capability different from the alignment control capability generated by the alignment treatment is formed in the exposed portion, and an alignment control generated in the unexposed portion by the alignment treatment.
  • a pattern exposure step for forming a second alignment control region having a function A coating layer of a curable liquid crystal composition mainly composed of liquid crystal is formed on the alignment film, Aligning the liquid crystal in the coating layer in different directions by the respective alignment control ability of the first alignment control region and the second alignment control region; A step of fixing the alignment state while maintaining the alignment state and forming first and second retardation regions.
  • Each process is performed while transporting in a state where a predetermined tensile stress is applied. This is performed in a state where the long film is stretched by the tensile stress.
  • the predetermined tensile stress is preferably 10 to 800 N / m, more preferably 15 to 600 N / m, and particularly preferably 20 to 400 N / m.
  • the pattern exposure process in the said method is implemented through the mask etc. which have an opening part.
  • the thickness of the patterned optically anisotropic layer thus formed is not particularly limited, but is preferably 0.1 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m.
  • Polarizing film As the polarizing film, a general polarizing film can be used. For example, a polarizer film made of a polyvinyl alcohol film dyed with iodine or a dichroic dye can be used.
  • Adhesive layer An adhesive layer may be disposed between the optically anisotropic layer and the polarizing film.
  • an adhesive For example, a polyvinyl alcohol-type adhesive can be used.
  • the liquid crystal cell used in the stereoscopic image display apparatus and the stereoscopic image display system of the present invention is preferably VA mode, OCB mode, IPS mode, or TN mode, but is not limited thereto.
  • a TN mode liquid crystal cell rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and are twisted and aligned at 60 to 120 °.
  • the TN mode liquid crystal cell is most frequently used as a color TFT liquid crystal display device, and is described in many documents.
  • a VA mode liquid crystal cell rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied.
  • the VA mode liquid crystal cell includes: (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625) (2) Liquid crystal cell (SID97, Digest of tech. Papers (Preliminary Proceed) 28 (1997) 845 in which the VA mode is converted into a multi-domain (MVA mode) for widening the viewing angle.
  • VA mode liquid crystal cell includes: (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625) (2) Liquid crystal cell (SID97, Digest of tech. Papers (Preliminary Proceed) 28 (1997) 845 in which the VA mode is converted into a multi-domain (MVA mode) for widening the
  • a liquid crystal cell in which rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is applied when a voltage is applied (Preliminary collections 58-59 of the Japan Liquid Crystal Society) (1998)) and (4) SURVIVAL mode liquid crystal cells (announced at LCD International 98).
  • any of PVA (Patterned Vertical Alignment) type, optical alignment type (Optical Alignment), and PSA (Polymer-Sustained Alignment) may be used. Details of these modes are described in JP-A-2006-215326 and JP-T 2008-538819.
  • JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522 are methods for reducing leakage light during black display in an oblique direction and improving the viewing angle using an optical compensation sheet. No. 11-133408, No. 11-305217, No. 10-307291, and the like.
  • Polarizing plate for stereoscopic image display system In the stereoscopic image display system of the present invention, in order to make the viewer recognize a stereoscopic image called 3D video, the image is recognized through the polarizing plate.
  • One aspect of the polarizing plate is polarized glasses. In the aspect in which the right-polarized and left-eye circularly polarized images are formed by the retardation plate, circularly polarized glasses are used, and in the aspect in which the linearly polarized images are formed, linear glasses are used. Right-eye image light emitted from one of the first and second retardation regions of the optically anisotropic layer is transmitted through the right glasses and shielded by the left glasses, and the first and second positions.
  • the polarizing glasses form polarizing glasses by including a retardation functional layer and a linear polarizer.
  • the phase difference plate is formed on a plurality of first lines and a plurality of second lines that are alternately repeated on the video display panel (for example, on odd-numbered lines and even-numbered lines in the horizontal direction if the lines are in the horizontal direction).
  • the first phase difference region and the second phase difference region having different polarization conversion functions are provided on the odd-numbered and even-numbered lines in the vertical direction if the line is in the vertical direction.
  • the phase difference between the first phase difference region and the second phase difference region is preferably ⁇ / 4, and the first phase difference region and the first phase difference region are In the two phase difference region, it is more preferable that the slow axes are orthogonal.
  • the phase difference values of the first phase difference region and the second phase difference region are both set to ⁇ / 4, the right eye image is displayed on the odd lines of the video display panel, and the odd line phase difference is displayed.
  • the slow axis of the region is in the 45 degree direction, it is preferable to arrange ⁇ / 4 plates on both the right and left glasses of the polarized glasses, and the slow axis of the ⁇ / 4 plate of the right glasses of the polarized glasses is Specifically, it may be fixed at approximately 45 degrees.
  • the left eye image is displayed on the even line of the video display panel, and if the slow axis of the even line phase difference region is in the direction of 135 degrees, the left eyeglass of the polarizing glasses Specifically, the slow axis may be fixed at approximately 135 degrees. Furthermore, from the viewpoint of emitting image light as circularly polarized light once in the patterning retardation film and returning the polarization state to the original state by the polarized glasses, the angle of the slow axis fixed by the right glasses in the above example is exactly The closer to 45 degrees in the horizontal direction, the better. Further, it is preferable that the angle of the slow axis fixed by the left spectacles is exactly close to 135 degrees (or -45 degrees) horizontally.
  • the absorption axis direction of the front-side polarizing plate of the liquid crystal display panel is usually a horizontal direction
  • the absorption axis of the linear polarizer of the polarizing glasses is the front-side polarization
  • the direction perpendicular to the absorption axis direction of the plate is preferable, and the absorption axis of the linear polarizer of the polarizing glasses is more preferably the vertical direction.
  • the absorption axis direction of the front-side polarizing plate of the liquid crystal display panel and the slow axis of the odd line retardation region and the even line retardation region of the patterning retardation film are 45 degrees on the efficiency of polarization conversion. It is preferable to make it.
  • a preferable arrangement of such polarizing glasses, a patterning retardation film, and a liquid crystal display device is disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-170693.
  • Examples of polarized glasses include those described in Japanese Patent Application Laid-Open No. 2004-170693, and examples of commercially available products include Zalman ZM-M220W accessories and LG 55LW5700 accessories.
  • the linearity of the optically anisotropic layer was determined as follows. By punching out the pattern phase difference plate having a size larger by 5 mm each in the vertical and horizontal directions than the screen size of the display device, two by 50 mm from the both end faces of the FPR film roll in the roll width direction, and every 3 m in length of the roll, Twenty pattern retardation plates were punched out. A point A of 40 mm from the start point of the boundary between the first and second retardation regions of the pattern phase difference plate and a point B of 40 mm from the end point of the other end are defined, and a straight line connecting the points AB is drawn. .
  • each length of a straight line passing through the vicinity of 40 mm (point A, point B) and the center from both ends and connecting between AB was measured with a precise ruler or a measuring instrument.
  • This operation is performed on 20 pattern phase difference plates, and the ratio between the length of the longest vertical line and the length of the image display panel in the vertical direction is determined based on the vertical length of the image display panel.
  • the linearity of the anisotropic layer was taken. That is, in the case of a pattern retardation plate bonded to Toshiba 32ZP2, since the screen size of Toshiba 32ZP2 is 697.3 mm wide and 392.3 mm long, the pattern retardation plate has a length of 702.3 mm and a width of 397.3 mm.
  • the linearity of the end of the support was determined as follows. For the support roll end, a start point A at one end and an end point B at the other end are defined in the longitudinal range of the screen of the display device, and a straight line connecting the points AB is drawn. A perpendicular line connecting the points AB was drawn, and the length of the perpendicular line was measured with a precise ruler or a measuring instrument. The same measurement is performed at 10 locations every 3 m in the longitudinal direction of the support roll, and the ratio between the length of the longest perpendicular line and the vertical length of the image display panel is based on the vertical length of the image display panel. The end of the support was linear.
  • Example 1 ⁇ Preparation of transparent support A> The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution (dope C) having a solid content concentration of 22% by mass.
  • Cellulose acetate solution composition Cellulose acetate having an acetylation degree of 60.7 to 61.1% 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Ultraviolet absorber (Tinuvin 328 Ciba Japan 0.9 parts by weight UV absorber (manufactured by Tinuvin 326 Ciba Japan) 0.2 parts by weight Methylene chloride (first solvent) 336 parts by weight Methanol (second solvent) 29 parts by weight 1-butanol (third solvent) 11 parts by mass
  • a dope D containing a matting agent was prepared by adding 0.02 mass of silica particles (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 16 nm to 100 mass parts of cellulose acetate.
  • the solid composition concentration was adjusted to 19% by mass with the same solvent composition as the dope C.
  • the dope C was mainstream, the matting agent-containing dope D was the lowermost layer and the uppermost layer, and was cast using a band stretching machine. After the film surface temperature on the band reaches 40 ° C., the film is dried with warm air of 70 ° C. for 1 minute, peeled off from the band and dried with 140 ° C. drying air, and then the film width is 1340 mm. Both ends were cut off to produce a roll of transparent support A having a residual solvent amount of 0.3% by mass and a length of 4000 m or more. The flow rate during casting was adjusted so that the lowermost layer and the uppermost layer containing the matting agent were each 3 ⁇ m, and the main flow was 74 ⁇ m.
  • the linearity of the obtained transparent support A at a length of 697.3 mm was 74 ⁇ m.
  • the transparent support A in addition to adjusting the roll core fluctuation of the band stretching machine and the wind strength at the time of drying the film, the transparent support A was prepared in the same manner as the transparent support A except that the film casting speed was changed. Body B and C were made. The linearity of the roll edge part in the 697.3 mm length of the obtained transparent supports B and C was 92 ⁇ m and 32 ⁇ m, respectively.
  • ⁇ Preparation of transparent supports D to F> In the production of the transparent support A, the adjustment of the strength of the wind at the time of drying the film, the film casting speed was changed, and the transparent support A and the support A except that both ends were cut off so that the film width was 1490 mm.
  • a transparent support D was produced in the same manner.
  • the transparent support D In the production of the transparent support D, in addition to adjusting the roll core fluctuation of the band stretching machine and the wind strength at the time of drying the film, the transparent support D was prepared in the same manner as the transparent support D except that the film casting speed was changed. Body E and F were made. The linearity of the roll ends in the 1209 mm length of the obtained transparent supports D to F was 126 ⁇ m, 165 ⁇ m, and 74 ⁇ m, respectively.
  • ⁇ Preparation of transparent support M> A commercially available cellulose acylate support TD80UL (manufactured by FUJIFILM Corporation) was prepared and used as the transparent support M. As a result of preparing 5 rolls of the transparent support M and measuring the linearity of the roll edge at a length of 697.3 mm, it was 91 ⁇ m.
  • composition of cellulose ester solution for air layer 100 parts by mass of cellulose ester (acetyl substitution degree 2.86) 3 parts by mass of sugar ester compound of formula (RI) 1 part by mass of sugar ester compound of formula (R-II) -2.4 parts by weight of the following UV absorber-Silica particle dispersion (average particle size 16 nm) "AEROSIL R972", 0.026 parts by mass of Nippon Aerosil Co., Ltd.-339 parts by mass of methylene chloride-74 parts by mass of methanol-Butanol 3 parts by mass
  • Composition of cellulose ester solution for drum layer • Cellulose ester (acetyl substitution degree 2.86) 100 parts by mass • Sugar ester compound of formula (RI) 3 parts by mass • Sugar ester compound of formula (R-II) 1 part by mass UV absorber 2.4 parts by weight Silica particle dispersion (average particle size 16 nm) “AEROSIL R972”, Nippon Aerosil Co., Ltd. 0.091 parts by mass, methylene chloride 339 parts by mass, methanol 74 parts by mass butanol 3 parts by mass
  • Composition of Cellulose Ester Solution for Core Layer • Cellulose ester (acetyl substitution degree 2.86) 100 parts by mass • Sugar ester compound of formula (R-II) 8.3 parts by mass • Sugar ester compound of formula (R-II) 2 8 parts by mass-UV absorber 2.4 parts by weight-Methylene chloride 266 parts by mass-Methanol 58 parts by mass-Butanol 2.6 parts by mass
  • the cellulose ester web held by the pin tenter was conveyed to the drying zone.
  • a drying air of 45 ° C. was blown and then dried at 110 ° C. for 5 minutes.
  • the cellulose ester web was conveyed while stretching in the width direction at a magnification of 10%.
  • the portion held by the pin tenter was continuously cut out, and unevenness with a width of 15 mm and a height of 10 ⁇ m was made at both ends in the width direction of the web.
  • the width of the web at this time was 1610 mm. It was dried at 140 ° C. for 10 minutes while applying a tensile stress of 210 N in the transport direction.
  • the width direction edge part was continuously cut off so that a web might become desired width, and the transparent support body R with a film thickness of 40 micrometers was produced. At this time, the film thickness of the width direction edge part cut off after 140 degreeC drying and the web center part was the same.
  • the linearity of the roll edge in the 1209 mm length of the obtained transparent support R was 126 ⁇ m.
  • Transparent supports S and T were prepared.
  • the linearity of the roll edge part in 1209 mm length of the obtained transparent supports S and T was 165 ⁇ m and 74 ⁇ m, respectively.
  • the mass average molecular weight was 1600, and among the components higher than the oligomer component, the component having a molecular weight of 1000 to 20000 was 100%. Further, from the gas chromatography analysis, the raw material acryloyloxypropyltrimethoxysilane did not remain at all.
  • the transparent support C is unrolled in a roll form, and the antiglare layer is formed by a die coating method shown in the apparatus configuration and coating conditions described in [0172] of JP-A-2007-41495.
  • the coating solution was applied and dried at 30 ° C. for 15 seconds and at 90 ° C. for 20 seconds, and further under a nitrogen purge using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.).
  • the coating layer was cured by irradiating UV light of / cm 2 to form an antiglare layer having an antiglare thickness of 6 ⁇ m.
  • the linearity of the roll edge part in the 697.3 mm length of the obtained surface film G was 73 micrometers.
  • the linearity of the roll edge part in the 697.3 mm length of the obtained surface films H and I was 116 ⁇ m and 43 ⁇ m, respectively.
  • the linearity of the roll edge part in the 1209 mm length of the obtained surface films J to L was 131 ⁇ m, 179 ⁇ m, and 49 ⁇ m, respectively.
  • ⁇ Preparation of surface film U> In the production of the surface film J, a surface film U was produced in the same manner as the surface film J except that the transparent support C was changed to the transparent support T.
  • the linearity of the roll end portion in the 1209 mm length of the obtained surface film U was 131 ⁇ m.
  • the linearity of the roll edge portion in the 1209 mm length of the obtained surface films V to W was 179 ⁇ m and 49 ⁇ m, respectively.
  • a transparent support A was prepared, passed through a dielectric heating roll having a temperature of 60 ° C., and the film surface temperature was raised to 40 ° C. Then, an alkali solution having the composition shown below was applied using a bar coater to a coating amount of 14 ml / It applied in m 2, and transported for 10 seconds and heated to 110 ° C.. Subsequently, 3 ml / m 2 of pure water was applied using the same bar coater. Subsequently, washing with water and draining with an air knife were repeated three times, followed by transporting to a drying zone at 70 ° C. for 10 seconds and drying to prepare an alkali saponified cellulose acetate transparent support.
  • a rubbing alignment film coating solution having the following composition was continuously applied with a # 8 wire bar to the saponified surface of the prepared support.
  • the alignment film was formed by drying with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds.
  • a stripe mask having a lateral stripe width of 364 ⁇ m at the transmission portion and a lateral stripe width of 364 ⁇ m at the shielding portion is disposed on the rubbing alignment film, and a metal halide having an illuminance of 2.5 mW / cm 2 in the UV-C region at room temperature.
  • the alignment layer for the first retardation region was formed by irradiating ultraviolet rays for 4 seconds using a lamp to decompose the photoacid generator and generate an acidic compound. Thereafter, a rubbing treatment was performed once in one direction at 500 rpm while maintaining an angle of 45 ° with respect to the stripe of the stripe mask, and a transparent support with a rubbing alignment film was produced.
  • the thickness of the alignment film was 0.5 ⁇ m.
  • the conveyance tensile stress at the time of mask exposure in a manufacturing machine was 150 N / m.
  • Composition of coating solution for alignment film formation ⁇ 3.9 parts by mass of polymer material for alignment film (PVA103, Kuraray Co., Ltd. polyvinyl alcohol)
  • Photoacid generator (S-2) 0.1 parts by weight Methanol 36 parts by weight Water 60 parts by weight ⁇ ⁇
  • ⁇ Preparation of patterned optically anisotropic layer The following coating liquid for optically anisotropic layer was applied at a coating amount of 4 ml / m 2 using a bar coater. Next, after aging at a film surface temperature of 110 ° C. for 2 minutes, the film is cooled to 80 ° C. and irradiated with ultraviolet rays for 20 seconds using a 20 mW / cm 2 UV metal halide lamp in the air to fix the alignment state. Thus, a patterned optically anisotropic layer was formed, and a patterned retardation plate A was produced.
  • the discotic liquid crystal In the mask exposure portion (first retardation region), the discotic liquid crystal is vertically aligned with the slow axis direction parallel to the rubbing direction, and the unexposed portion (second retardation region) is orthogonally aligned perpendicularly. It was.
  • the film thickness of the optically anisotropic layer was 0.9 ⁇ m.
  • Discotic liquid crystal E-1 100 parts by mass alignment film interface aligner (II-1) 3.0 parts by mass air interface aligner (P-1) 0.4 parts by mass photopolymerization initiator 3.0 parts by mass (Irgacure 907 , Manufactured by Ciba Specialty Chemicals Co., Ltd.) Sensitizer (Kayacure-DETX, Nippon Kayaku Co., Ltd.) 1.0 part by weight Methyl ethyl ketone 400 parts by weight ⁇ ⁇
  • the linearity of the obtained optically anisotropic layer A at a length of 622.3 mm was 25 ⁇ m.
  • the pattern phase difference plate B was produced in the same manner as the pattern phase difference plate A except that the transparent support A was changed to the transparent support B.
  • the linearity of the obtained optically anisotropic layer B at a length of 622.3 mm was 44 ⁇ m.
  • the pattern phase difference plate C was produced in the same manner as the pattern phase difference plate A except that the transparent support A was changed to the transparent support C.
  • the linearity of the obtained optically anisotropic layer C at a length of 622.3 mm was 9 ⁇ m.
  • the pattern phase difference plate D was produced in the same manner as the pattern phase difference plate A except that the transparent support A was changed to the transparent support D.
  • the linearity at 1134 mm length of the obtained optically anisotropic layer D was 42 ⁇ m.
  • the pattern phase difference plate E was produced in the same manner as the pattern phase difference plate A except that the transparent support A was changed to the transparent support E.
  • the linearity in 1134 mm length of the obtained optically anisotropic layer E was 66 ⁇ m.
  • the pattern phase difference plate F was produced in the same manner as the pattern phase difference plate A except that the transparent support A was changed to the transparent support F.
  • the linearity at 1134 mm length of the obtained optically anisotropic layer F was 17 ⁇ m.
  • pattern retardation plate G In the production of the pattern retardation plate A, the pattern position is formed on the surface where the antiglare layer and the low refractive index layer are not formed in the same manner as the pattern retardation plate A except that the transparent support A is changed to the surface film G. A patterned retardation plate G having a retardation layer was produced. The linearity of the obtained optically anisotropic layer G at a length of 622.3 mm was 19 ⁇ m.
  • the pattern phase difference plate H was produced in the same manner as the pattern phase difference plate G except that the surface film G was changed to the surface film H.
  • the linearity of the obtained optically anisotropic layer H at a length of 622.3 mm was 51 ⁇ m.
  • the pattern phase difference plate I was produced in the same manner as the pattern phase difference plate G except that the surface film G was changed to the surface film I.
  • the linearity of the obtained optically anisotropic layer I at a length of 622.3 mm was 10 ⁇ m.
  • the pattern phase difference plate J was produced in the same manner as the pattern phase difference plate G except that the surface film G was changed to the surface film J.
  • the linearity in 1134 mm length of the obtained optically anisotropic layer J was 44 ⁇ m.
  • the pattern phase difference plate K was produced in the same manner as the pattern phase difference plate G except that the surface film G was changed to the surface film K.
  • the linearity at 1134 mm length of the obtained optically anisotropic layer K was 74 ⁇ m.
  • the pattern phase difference plate L was produced in the same manner as the pattern phase difference plate G except that the surface film G was changed to the surface film L.
  • the linearity of the obtained optically anisotropic layer L at a length of 1134 mm was 10 ⁇ m.
  • the pattern phase difference plate M was produced in the same manner as the pattern phase difference plate A except that the transparent support A was changed to the transparent support M.
  • the linearity of the obtained optically anisotropic layer M at a length of 622.3 mm was 44 ⁇ m.
  • a pattern phase difference plate N was produced in the same manner as the pattern phase difference plate A except that the transparent support A was changed to the transparent support N.
  • the linearity of the obtained optically anisotropic layer N at 1134 mm length was 66 ⁇ m.
  • the pattern phase difference plate was peeled from the stereoscopic image display device (32ZP2 manufactured by Toshiba Corporation). Furthermore, instead of the pattern phase difference plate, the pattern phase difference plate A was bonded onto the front polarizing plate via an adhesive to produce a stereoscopic image liquid crystal display device A. In addition, it bonded so that a pattern phase difference layer might become a front polarizing plate side.
  • the stereoscopic image liquid crystal display device B was produced in the same manner as the production of the stereoscopic image display device A, except that the pattern retardation plate B was used instead of the pattern retardation plate A. .
  • the stereoscopic image liquid crystal display device C was produced in the same manner as the production of the stereoscopic image display device A, except that the pattern retardation plate C was used instead of the pattern retardation plate A. .
  • the pattern phase difference plate was peeled off from the stereoscopic image display device (55LW5700 manufactured by LG). Furthermore, instead of the pattern phase difference plate, the pattern phase difference plate D was bonded onto the front polarizing plate via an adhesive to produce a stereoscopic image liquid crystal display device D. In addition, it bonded so that a pattern phase difference layer might become a front polarizing plate side.
  • a stereoscopic image liquid crystal display device E was produced in the same manner as the production of the stereoscopic image display device D, except that the pattern retardation plate E was used instead of the pattern retardation plate D. .
  • the stereoscopic image liquid crystal display device F was produced in the same manner as the production of the stereoscopic image display device D, except that the pattern retardation plate F was used instead of the pattern retardation plate D. .
  • a stereoscopic image liquid crystal display device G was produced in the same manner as the production of the stereoscopic image display device A, except that the pattern retardation plate G was used instead of the pattern retardation plate A. .
  • the stereoscopic image liquid crystal display device H was produced in the same manner as the production of the stereoscopic image display device A, except that the pattern retardation plate H was used instead of the pattern retardation plate A. .
  • the stereoscopic image liquid crystal display device I was produced in the same manner as the production of the stereoscopic image display device A, except that the pattern retardation plate I was used instead of the pattern retardation plate A. .
  • the stereoscopic image liquid crystal display device J was produced in the same manner as the production of the stereoscopic image display device D, except that the pattern retardation plate J was used instead of the pattern retardation plate D. .
  • a stereoscopic image liquid crystal display device K was produced in the same manner as the production of the stereoscopic image display device D, except that the pattern retardation plate K was used instead of the pattern retardation plate D. .
  • the stereoscopic image liquid crystal display device L was produced in the same manner as the production of the stereoscopic image display device D, except that the pattern retardation plate L was used instead of the pattern retardation plate D. .
  • the stereoscopic image liquid crystal display device M was produced in the same manner as the production of the stereoscopic image display device A, except that the pattern retardation plate M was used instead of the pattern retardation plate A. .
  • the stereoscopic image liquid crystal display device N was produced in the same manner as the production of the stereoscopic image display device D, except that the pattern retardation plate N was used instead of the pattern retardation plate D. .
  • LG 55LW5700 was used as the stereoscopic image liquid crystal display device P.
  • the linearity at 1134 mm length of the optically anisotropic layer formed on the patterned phase difference plate peeled from 55LW5700 manufactured by LG Co. was 78 ⁇ m.
  • front crosstalk was measured at nine intersections when the display unit of the liquid crystal display device was divided into four equal parts in the horizontal direction and the vertical direction, and the average value was calculated as average front crosstalk.
  • the measuring machine was tilted up and down with respect to the liquid crystal display device while maintaining the positional relationship between the 3D glasses and the measuring machine, and a stripe image similar to the front crosstalk was obtained.
  • the luminance was measured, and the crosstalk in the vertical direction was measured in the same way. Based on the obtained crosstalk, a viewing angle range in which all measurement points were within 5% of the average front crosstalk was defined as a vertical crosstalk viewing angle.
  • 3D boundary unevenness A stripe image in which white and black are alternately arranged in the vertical direction is displayed on the liquid crystal display device, and the attached 3D glasses are attached to the 55LW5700 manufactured by LG, and the white stripe is visually recognized in the front.
  • the liquid crystal display device was observed from the front and up and down directions at a distance of three times the vertical length of the screen while shielding the glasses on the side, the entire screen was black on the front side.
  • the inspection angle was increased, a luminance leak was visually recognized in a region with a large prospective angle.
  • 3D boundary unevenness observed at the boundary between the black display region and the luminance leakage region was observed.
  • the black display portion in the display surface means that there is no or little crosstalk, and the portion where the luminance leakage is visually recognized and the white display portion mean that there is crosstalk. If the linearity of the 3D boundary unevenness is poor, the crosstalk variation in the screen in 3D display is large, and as a result, the stereoscopic effect of the 3D video is impaired.
  • 3D boundary unevenness in the vertical direction was evaluated according to the following criteria. A: 3D boundary unevenness meandering is not visually recognized. B: Although the meandering of 3D boundary unevenness is slightly visually recognized, it is acceptable as 3D quality. C: 3D boundary unevenness is clearly visible and is not acceptable as 3D quality.
  • Examples 1 to 8 described above a cellulose acylate film having a film thickness of 80 ⁇ m was used, but the same effect was obtained even with a cellulose acylate film having a film thickness of 60 ⁇ m, 40 ⁇ m, and 30 ⁇ m.
  • the patterned phase difference plate used in Examples 1 to 8 has a patterned optically anisotropic layer formed of a vertically aligned discotic liquid crystal, but instead of the transparent support with a rubbing alignment film. Except that a transparent support with a photo-alignment film having the following composition was used, and an optically anisotropic layer having the following composition was used in place of the patterned optically anisotropic layer made of vertically aligned discotic liquid crystal. The same effect was obtained even with the pattern retardation plate formed by the above method and having a patterned optically anisotropic layer made of horizontally aligned rod-like liquid crystals.
  • the wire grid polarizer was set to the direction 2, and it exposed through the mask B (The stripe mask in which a transmission part and a shielding part have the same horizontal stripe width).
  • the distance between the exposure mask surface and the photo-alignment film was set to 200 ⁇ m.
  • the illuminance of ultraviolet rays used at this time was 100 mW / cm 2 in the UV-A region (accumulation of wavelengths 380 nm to 320 nm), and the irradiation amount was 1000 mJ / cm 2 in the UV-A region.
  • ⁇ Preparation of patterned optically anisotropic layer> After preparing the following composition for optically anisotropic layers, it was filtered through a polypropylene filter having a pore size of 0.2 ⁇ m and used as a coating solution. The coating solution is applied onto a transparent support with a photo-alignment film, dried at a film surface temperature of 105 ° C. for 2 minutes to form a liquid crystal phase, cooled to 75 ° C., and air-cooled at 160 W / cm 2 under air. An attempt was made to produce an optically anisotropic layer patterned on a transparent support by irradiating ultraviolet rays using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) to fix the orientation state. The film thickness of the optically anisotropic layer was 1.3 ⁇ m.
  • the same effect can be obtained by using a cellulose acylate film produced by another manufacturing method and material instead of the cellulose acylate film used in Examples 1 to 8.
  • the transparent support R is used instead of the transparent support D
  • the transparent support T is used instead of the transparent support F
  • the surface film J The surface film U is used instead
  • the surface film W is used instead of the surface film L
  • the transparent support S is used instead of the transparent support E
  • the surface film V is used instead of the surface film K.
  • a transparent support having a film thickness of 100 ⁇ m prepared by the same method as in Example 2 of Japanese Patent No.
  • Example 4 of JP 2010-270162 A A transparent support having a film thickness of 40 ⁇ m produced by the method, a commercially available norbornene-based polymer film “ZEONOR ZF14-060” (manufactured by Optes Co., Ltd.) having a film thickness of 60 ⁇ m, low in Example 9 of JP2008-268738
  • the linearity of the end portion in the direction along the support pattern is 0.0195% or less of the vertical length in the direction along the pattern of the image display panel, the type of the support It can be seen that the visibility of the stereoscopic image display device can be improved.
  • Apel APL5014DP Cyclic polyolefin resin (Mitsui Chemicals)
  • the low moisture-permeable layer forming composition A-1 is applied onto the transparent support R using a gravure coater, dried at 25 ° C. for 1 minute, and then dried at 80 ° C. for about 5 minutes.
  • a transparent support X having a thickness of 50 ⁇ m and having a 10 ⁇ m low moisture-permeable layer coated thereon was produced.
  • the moisture permeability (moisture permeability at 40 ° C. and 90% relative humidity) of the produced transparent support X was measured by the following method.
  • the moisture permeability of the transparent support X was 21 g / m 2 / day.
  • ⁇ Moisture permeability moisture permeability at 40 ° C. and 90% relative humidity
  • composition of dope Cellulose acetate propionate 30 parts by mass Dianal BR88 (trade name), manufactured by Mitsubishi Rayon Co., Ltd. Weight average molecular weight 1500000 70 parts by mass (cellulose ester and acrylic resin total 100 parts by mass) Moisture permeability reducing compound A-5 50 parts by mass UV absorber (Tinubin 328 (manufactured by Ciba Specialty Chemicals)) 2 parts by weight dichloromethane 447 parts by weight ethanol 61 parts by weight
  • the solid content concentration of the dope (total concentration of cellulose ester, acrylic resin, moisture permeability reducing compound, and UV absorber) was 18% by mass.
  • the prepared dope was uniformly cast from a casting die onto a stainless steel endless band (casting support) having a width of 2000 mm.
  • a stainless steel endless band (casting support) having a width of 2000 mm.
  • the amount of residual solvent in the dope reaches 40% by mass, it is peeled off from the casting support as a polymer film, conveyed without being actively stretched by a tenter, and dried at 130 ° C. in a drying zone.
  • a transparent support Y having a thickness of 40 ⁇ m was obtained.
  • the produced transparent support Y has a water vapor transmission rate (water vapor transmission rate at 40 ° C. and 90% relative humidity) of 40 g / m 2 / It was a day.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

 本発明は、上下方向のクロストーク視野角の軽減及び3D境界ムラの軽減に寄与する立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板を提供するものである。画像表示パネルと、画像表示パネルの視認側に配置されるパターン位相差板とを少なくとも有し、パターン位相差板は、支持体と、支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有し、支持体において、パターン光学異方性層のパターンに沿った方向の端部の、パターン光学異方性層のパターンに沿った方向に対する垂直方向における蛇行幅である直線性が、画像表示パネルのパターン光学異方性層のパターンに沿った方向に対する垂直方向の長さの0.0195%以下である。

Description

立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板
 本発明は、立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板に関する。
 立体画像を表示する立体(3D)画像表示装置には、右眼用画像及び左眼用画像を、例えば、互いに反対方向の円偏光画像とするための光学部材が必要である。
例えば、かかる光学部材には、遅相軸やレターデーション等が互いに異なる領域が規則的に面内に配置されたパターン光学異方性素子が利用されており、このパターン光学異方性素子の支持体として、フィルムを利用する、いわゆるFPR(Film Patterned Retarder
)方式のパターン位相差フィルム(FPRフィルム)も提案されている。
 FPRフィルムの製造方法としては、例えば、支持体をたわまない状態で、且つ生産性を向上させるために、ロール状態でパターン露光する方法が一般的に知られており、例えば、支持体にある程度の引張り応力を負荷した状態でパターン露光する方法などが知られている。
 ところで、FPRフィルムを使用した立体画像表示装置では、例えば、液晶パネル等の表示パネル部に存在する左右眼画像用の画素と、パターン光学異方性層の左右眼画像用の位相差領域とをそれぞれ対応させて積層することが必要である。一般的に使用されているのは、ストライプパターンを有するパターン光学異方性層を有するFPRフィルムであり、これを表示パネルと貼合する際は、パターンの周期方向(ストライプ状の互いに異なる位相差領域が交互に入れ替わる方向)を、表示面の鉛直方向(上下方向)と一致させるのが一般的である。図4に、表示パネル部の左右眼画像用画素と、パターン光学異方性層の左右眼画像用位相差領域とを対応させて配置した例を模式的に示す。図4中矢印aで示す通り、観察方向が表示面に対して法線方向であれば、表示パネル内部の右眼画像用画素(R)を通過した光は、パターン光学異方性層の右眼画像用位相差領域(R)を通過するので、クロストークは生じない。しかし、表示面法線方向から表示面鉛直方向に観察方向をずらすと、図4中に矢印bで示すように、表示パネル内部(例えば液晶セル内)の右眼画像用画素(R)を透過した光が、パターン光学異方性層の左眼画像用位相差領域(L)を透過してしまい、クロストークが発生する。即ち、表示面鉛直方向では、立体画像の視野角が狭くなるという問題がある。
 上記問題を解決するため、例えば、パターン光学異方性層を利用した空間分割方式の立体液晶表示装置では、液晶セル内に配置されるカラーフィルタのブラックマトリックスを太くしている(非特許文献1)。
H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin and I.-J. Chung, SID Symposium Digest 41, 1-4 (2010).
 特許文献1に記載の立体液晶表示装置では、上記クロストークを軽減することはできるが、カラーフィルタのブラックマトリックスを太くすることによって、液晶セル全体の設計を見直す必要があり、既存の液晶セルを利用できないという問題点を有する。
 また、上記クロストークを軽減することはできるが、パターン光学異方性層に起因する表示ムラの問題があり、その改善が望まれている。
 本発明は前記諸問題を解決することを課題とし、具体的には、上下方向のクロストーク視野角の軽減及び3D境界ムラの軽減に寄与する立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板を提供することを目的とする。
 FPRフィルムを製造する際、支持体に引張り応力を負荷した状態でパターン露光するのが一般的である。
 即ち、パターン露光前の支持体は、支持体の端部が支持体の円弧や歪みなどの影響により、支持体端部がごく僅かに蛇行しており、支持体の端部は完全な直線ではない(図5a)。このような支持体に引張り応力を負荷すると、支持体の端部の歪み等が緩和され、前記蛇行状態は解消される。そして、これまで、支持体の端部の歪み等が緩和された状態でパターン露光がなされていた。すなわち、支持体の端部の歪みや蛇行が軽減された状態で、支持体上に形成された遅相軸やレターデーション等が互いに異なる領域をパターン露光により形成させることなる(図5b)。
 しかし、製造ラインから外れた状態や商品形態など支持体にかかる引張り応力が開放された状態になると、支持体端部に歪み等が再発現し、支持体端部が蛇行してしまう。このような支持体の端部の蛇行は極めて小さなレベルのものであり、いわゆる、二次元(2D)表示装置では全く問題とならなかった。しかしながら、本願発明者が検討したところ、わずかな蛇行が、立体画像表示装置においては、大きな影響を及ぼすことを見出した。すなわち、支持体端部に歪み等が再発現すると、支持体上に形成された、遅相軸やレターデーション等が互いに異なる領域の境界も支持体端部の歪み等に沿って蛇行してしまい、立体画像表示装置の性能を大きく左右することを見出し、本発明を完成するに至った(図5c)。また、予期せぬことに、支持体の端部の蛇行を緩和させると、クロストークだけでなく、3D境界ムラも改善できることを見出した。
 前記課題を解決するための手段は、下記[1]の手段であり、好ましくは、下記[2]~[11]の手段である。
[1] 画像表示パネルと、前記画像表示パネルの視認側に配置されるパターン位相差板とを少なくとも有する立体画像表示装置であって、
前記パターン位相差板は、支持体と、前記支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有し、
 前記支持体の端部において、前記パターン光学異方性層のパターンに沿った方向の端部の、前記パターン光学異方性層のパターンに沿った方向に対し垂直方向における蛇行幅である直線性が、前記画像表示パネルの前記パターン光学異方性層のパターンに沿った方向に対する垂直方向の長さの0.0195%以下であることを特徴とする立体画像表示装置。なお、当然ではあるが、「パターン光学異方性層」は第1位相差領域及び第2位相差領域が含まれている限りは、これに限定されるものではなく、更にその他の領域を含み得ることには留意されたい。
[2] 前記支持体の前記パターン光学異方性層が形成されている面の反対側の面に表面層を有する[1]の立体画像表示装置。
[3]前記パターン光学異方性層の前記パターンに沿った方向の直線性が、前記画像表示パネルの前記パターンに沿った方向の垂直方向の長さの0.0065%以下である[1]又は[2]の立体画像表示装置。
[4] 前記支持体が、セルロースアシレート系フィルム、ポリエステル系フィルム、アクリル系フィルム、およびノルボルネン系フィルムのいずれかである[1]~[3]のいずれかの立体画像表示装置。
[5] 前記第1及び第2位相差領域が、互いに直交する面内遅相軸を有し、且つλ/4の面内レターデーションを有する[1]~[4]のいずれかの立体画像表示装置。
[6] 前記画像表示パネルの大きさが、32~65インチである[1]~[5]のいずれかの立体画像表示装置。
[7] 前記画像表示パネルが、液晶表示パネルである[1]~[6]のいずれかの立体画像表示装置。
[8] 画像表示パネルと、前記画像表示パネルの視認側に配置されるパターン位相差板とを少なくとも有し、前記パターン位相差板は、支持体と、前記支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有する立体画像表示装置の製造方法であって、
 前記支持体の端部において、前記パターン光学異方性層のパターンに沿った方向の端部の、前記パターン光学異方性層のパターンに沿った方向に対し垂直方向における蛇行幅である直線性が、前記画像表示パネルの前記パターン光学異方性層のパターンに沿った方向に対し垂直方向の長さの0.0195%以下とした後に、パターン光学異方性層を設けることを含むことを特徴とする立体画像表示装置の製造方法。
[9]画像表示パネルと、前記画像表示パネルの視認側に配置されるパターン位相差板とを少なくとも有し、前記パターン位相差板は、支持体と、前記支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有する立体画像表示装置において、
前記支持体として、前記パターン光学異方性層のパターンに沿った方向の端部の、前記パターン光学異方性層のパターンに沿った方向に対する垂直方向における蛇行幅である直線性が、前記画像表示パネルの前記パターン光学異方性層のパターンに沿った方向に対する垂直方向の長さの0.0195%以下である支持体を用いることを特徴とする立体画像表示装置の境界ムラの低減方法。
[10] [1]~[7]のいずれかの立体画像表示装置と、該立体画像表示装置の視認側に配置される偏光板とを少なくとも有し、該偏光板を通じて立体画像を視認させる立体画像表示システム。
[11] 支持体と、前記支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有し、
 前記支持体において、前記パターン光学異方性層のパターンに沿った方向の端部の、前記パターン光学異方性層のパターンに沿った方向に対する垂直方向における蛇行幅である直線性が、前記パターン光学異方性層のパターンに沿った方向に対する垂直方向の長さの0.0195%以下であることを特徴とするパターン位相差板。
 本発明によれば、上下方向のクロストーク視野角の軽減及び3D境界ムラの軽減に寄与する立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板を提供することができる。
本発明の立体画像表示装置の一例の模式断面図である。 パターン光学異方性層の一例の上面模式図である。 偏光膜と光学異方性層との関係の一例の概略図である。 表示パネル部の左右眼画像用画素と、パターン光学異方性層の左右眼画像用位相差領域とを対応させて配置した模式図である。なお、図4中のXは「液晶セルの画素の右目用画素とFPRフィルムの右目用画素とが一致」することを示すものであり、Yは「液晶セルの画素の右目用画素とFPRフィルムの右目用画素とが不一致」することを示すものである。 図5a~cは、FPRフィルムの作製と支持体の歪みや蛇行の関係を示した模式図である。なお、図5a中のαは、「支持体端部がベース円弧、歪み(耳伸びなど含む)などにより、蛇行している。」ことを示すものであり、図5b中のβは、「支持体に引張り応力を負荷した状態。支持体端部の蛇行が軽減される。」ことを示すものであり、図5c中のγは、「引張り応力を開放すると支持体端部が蛇行し、それに伴いパターンも蛇行する。」ことを示すものである。 露光マスクの一例を示した模式図である。
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。まず、本明細書で用いられる用語について説明する。
 Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーション、及び厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルターをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。測定されるフィルムが、1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)が算出される。なお、この測定方法は、後述する光学異方性層中のディスコティック液晶分子の配向膜側の平均チルト角、その反対側の平均チルト角の測定においても一部利用される。
 Rth(λ)は、前記Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH、又はWRが算出する。なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値、及び入力された膜厚値を基に、以下の式(A)、及び式(B)よりRthを算出することもできる。
Figure JPOXMLDOC01-appb-M000001
 なお、上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。また、式(A)におけるnxは、面内における遅相軸方向の屈折率を表し、nyは、面内においてnxに直交する方向の屈折率を表し、nzは、nx及びnyに直交する方向の屈折率を表す。dは膜厚である。
Rth=((nx+ny)/2-nz)×d・・・・・・・・・・・式(B)
 測定されるフィルムが、1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法により、Rth(λ)は算出される。Rth(λ)は、前記Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として、フィルム法線方向に対して-50°から+50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。また、上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについては、アッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADH又はWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx-nz)/(nx-ny)が更に算出される。
 なお、本明細書では、「可視光」とは、380nm~780nmのことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 また、本明細書において、角度(例えば「90°」等の角度)、及びその関係(例えば「直交」、「平行」、及び「45°で交差」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることなどを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
 本発明のパターン位相差板は、支持体と、前記支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有し、
 前記支持体において、前記パターン光学異方性層のパターンに沿った方向の端部の、前記パターン光学異方性層のパターンに沿った方向に対する垂直方向における蛇行幅である直線性が、前記パターン光学異方性層のパターンに沿った方向に対する垂直方向の長さの0.0195%以下であることを特徴とする。
 また、本発明の立体画像表示装置は、画像表示パネルと、前記画像表示パネルの視認側に配置されるパターン位相差板とを少なくとも有する立体画像表示装置であって、前記パターン位相差板は、支持体と、前記支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有し、前記支持体の端部において、前記パターン光学異方性層のパターンに沿った方向の端部の、前記パターン光学異方性層のパターンに沿った方向に対し垂直方向における蛇行幅である直線性が、前記画像表示パネルの前記パターン光学異方性層のパターンに沿った方向に対する垂直方向の長さの0.0195%以下であることを特徴とする。
 本発明では、パターン位相差板の支持体のパターンに沿った方向の端部の直線性が、立体画像表示装置のパターンに沿った方向の垂直方向の長さの0.0195%以下とすることで、支持体が引張り応力から開放された状態になっても、支持体の歪みや蛇行の再発現が抑制される。従来は、上下方向のクロストーク視野角を軽減することができても、3D境界ムラを軽減することができなかったが、これにより、上下方向のクロストーク視野角だけでなく、3D境界ムラも顕著に軽減できることがわかった。なお、パターンに沿った方向とは、ストライプ状のパターンに平行な方向をいう。例えば、図2に一例を示したように、ストライプ状に交互に配置されている第1及び第2位相差領域の間の境界部に沿った方向のことをいう。
 本発明により、上下方向のクロストーク視野角だけでなく、3D境界ムラの問題が解決できた理由については、本発明者らは以下の通り考えている。
 上下方向のクロストーク視野角の狭さは、図4に示すように、液晶セルの画素とパターン光学異方性層のズレに起因したものである。よって、支持体の歪みや蛇行が再発現した状態のFPRフィルムを使用すると、画像表示領域内における液晶セルの画素とのズレのばらつきが大きいため、画像表示領域全体では液晶セルの画素とのズレが拡大するが、FPRフィルムの蛇行等が小さいと、画像表示領域内における液晶セルの画素とのズレのばらつきも小さくなる結果、画像表示領域全体を考慮した液晶セルの画素とのズレが狭くなるので、上下方向のクロストーク視野角が拡大すると考えられる。
 また、支持体端部の蛇行などが大きいと、第1位相差領域及び第2位相差領域の境界も共に蛇行する(図5c)。この蛇行が上下方向で視認されることで、3D表示のムラ(3D境界ムラ)として視認され、3D表示の品位が乏しくなる。一方、FPRフィルムの蛇行等を小さくすると、3D境界ムラが視認されなくなることから画面内の3D映像の立体感を高めることができ、3D境界ムラの問題も解決できたと考えている。
 以下、図面を用いて、本発明のいくつかの実施形態を説明するが、図中の各層の厚みの相対的関係は、実際の相対的関係を反映しているわけではない。また、図中、同一の部材については、同一の符号を付し、詳細な説明は省略する場合がある。
 本発明の立体画像表示装置の一例の模式断面図を図1に示す。立体画像表示装置は、一対の視認側偏光膜16及びバックライト側偏光膜18、その間に配置される画像表示パネル1、並びに、パターン位相差板20を有し、バックライト側偏光膜18のさらに外側にバックライト30を備えている。パターン位相差板20は、画像表示パネルの視認側表面に配置され、右眼用及び左眼用の偏光画像(例えば円偏光画像)に分離する。観察者は、これらの偏光画像を、偏光眼鏡(例えば円偏光眼鏡)等の偏光板を介して観察し、立体画像として認識する。
 偏光膜16及び偏光膜18のそれぞれの両面には、保護フィルム24を有する。なお、視認側偏光膜16は、各表面にそれぞれ保護フィルム24を貼付された偏光板PL1として組み込まれていてもよい。バックライト側偏光膜18についても、各表面にそれぞれ保護フィルム24を貼付された偏光板PL2として組み込まれていてもよい。
 なお、図1は、画像表示パネルが液晶パネルの場合の一例の模式断面図であるが、画像表示パネル1についてなんら制限はない。例えば、有機EL層を含む有機EL表示パネルであっても、プラズマディスプレイパネルであってもよい。
 画像表示パネル1が液晶パネルである場合、液晶セルは、一対の基板1A及び1B、並びにその間に配置されるネマチック液晶材料を含む液晶層10を有する。基板1A及び1Bの内面にはラビング配向膜(不図示)が配置されていて、ネマチック液晶の配向が、それぞれのラビング方向によって制御され、捩れ配向している。また、基板1A及び1Bの内面には電極層(不図示)が形成されていて、電圧印加時には、ネマチック液晶の捩れ配向が解消され、基板面に対して垂直配向するように構成されている。液晶セルLCは、カラーフィルタ等の他の部材を含んでいてもよい。
 液晶セルの構成については特に制限はなく、一般的な構成の液晶セルを採用することができる。液晶セルの駆動モードについても特に制限はなく、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等の種々のモードを利用することができる。
 画像表示パネルの大きさは、特に制限されないが、32~65インチ(約80cm~約165cm)であることが好ましい。本発明によれば、従来よりも立体画像の視野角が広くなることから、小型の画像表示パネルよりも、32~65インチなどといいった中型から大型の画像表示パネルに適用した場合に、立体画像の観察が容易となるため、特に効果を奏する傾向にある。
 パターン位相差板20は、いわゆるFPRフィルムであり、図1及び図2に示すように、パターン位相差板は、支持体13上に、第1位相差領域14及び第2位相差領域15を有するパターン光学異方性層12を有し、第1及び第2位相差領域の間に境界部を有する。なお、通常、光学異方性層の配向を制御するために用いられる(光)配向膜の記載は省略してある。
 支持体の端部の直線性は、支持体の端部において、パターン光学異方性層支持体のパターンに沿った方向(以下、「横方向」(長手方向)ともいう)の端部の、パターン光学異方性層のパターンに沿った方向に対し垂直方向における蛇行幅のことをいう。また、支持体の端部の直線性は、画像表示パネルの横方向と平行であり、支持体の両端部を結ぶ直線に対し垂直方向(以下、「縦方向」ともいう)に蛇行している幅(垂線の長さ)となっている。かかる支持体の端部の直線性は、画像表示パネルの前記パターン光学異方性層のパターンに沿った方向に対する垂直方向の長さの0.0195%以下であることが好ましい。
 なお、ここでいう「パターンに沿った方向」とは、パターン光学異方性層のパターンに沿った方向であり、すなわちストライプ状の位相差領域の長手方向に沿った方向のことをいうものである。また、支持体の「パターン光学異方性層のパターンに沿った方向の端部」とは、支持体の端部であって、パターン光学異方性層のパターンに沿った方向に対し垂直方向にある端部をいうものである。
 上記構成を採用することにより、上下方向のクロストーク及び3D境界ムラを低減させることができる。
 具体的には、例えば、画像表示装置の縦方向の長さを390mmとしたとき、前記垂線の長さと、画像表示パネルの縦方向の長さとの差が、75μm以下であることが好ましく、50μm以下であることがより好ましい。
 前記支持体の垂線の長さは、以下のように測定する。
1)ロール状の支持体において、画像表示パネルの横方向の長さ範囲の一方の端部の点Aと、他方の端部の点Bを設け、AB間を結ぶ直線を引く。なお、AB間の直線は画像表示パネルの横方向と平行とする。
2)このAB間を結ぶ直線の垂線を引く。
3)1)及び2)をロール状の支持体の長手方向3mごとに10箇所行い、最も長い垂線を「支持体の垂線の長さ」とし、画像表示パネルの縦方向の長さを基準としたときの支持体の垂線の長さの比率を、いわゆる支持体の端部の直線性と定義する。
 パターン光学異方性層12は、液晶化合物を主成分とする硬化性組成物の1種又は複数種から形成することができ、液晶化合物のうち、重合性基を有する液晶化合物が好ましい。前記硬化性組成物の1種から形成されているのが好ましい。なお、パターン光学異方性層12は、単層構造であっても、2層以上の積層構造であってもよい。パターン光学異方性層は、液晶化合物を主成分とする組成物の1種又は2種から形成することができる。
 パターン光学異方性層の直線性は、前記画像表示パネルの縦方向の長さの0.0065%以下であることが好ましく、0.0025%以下であることがより好ましい。これにより、上下方向のクロストーク及び3D境界ムラを低減させることができる。
 ここで、パターン光学異方性層の直線性とは、画像表示パネルの縦方向の長さを基準としたとき、境界部の両端部から40mmの点を結ぶ直線に対する垂線の長さとの比率をいう。
 前記パターン光学異方性層の垂線は、以下のように測定する。
1)任意の境界部の始点から40mmの点Aと、前記境界部の終点から40mmの点Bを設け、AB間を結ぶ直線を引く。
2)点Aを通りこのAB間を結ぶ直線の垂線、点Bを通りこのAB間を結ぶ直線の垂線、及び直線の中心を通りこのAB間を結ぶ直線の垂線を引き、これら3本の垂線の長さを測定する。
3)1)及び2)を20枚のFPRフィルムについて行い、最も長い垂線を「パターン光学異方性層の垂線の長さ」とし、画像表示パネルの横方向の長さを基準としたときのパターン光学異方性層の垂線の長さの比率を、いわゆるパターン光学異方性層の直線性と定義する。
 パターン光学異方性層12の一例は、図2に示すように、第1及び第2位相差領域14、15の面内遅相軸a及びbが互いに直交するとともに、面内レターデーションReがλ/4であるパターンλ/4層である。この態様のパターン光学異方性層を偏光膜と組み合わせると、第1及び第2位相差領域のそれぞれを通過した光は互いに逆向きの円偏光状態になり、それぞれ右眼及び左眼用の円偏光画像を形成する。
 前記パターンλ/4層は、例えば、支持体13の表面上に一様に配向膜を形成し、一方向に配向処理し、配向処理面上にて、前記液晶性硬化性組成物を配向させ、当該配向状態に固定することで形成できる。前記第1及び第2位相差領域14、15の一方については、液晶を配向規制処理方向(例えばラビング方向)に対して直交且つ垂直に配向させ、即ち直交垂直配向させ、他方については、液晶を配向規制処理方向(例えばラビング方向)に対して平行且つ垂直に配向させ、即ち平行垂直配向させ、それぞれの状態を固定することで、各位相差領域を形成できる。
 パターン位相差板は、立体画像表示装置、特にパッシブ方式の立体画像表示装置の部材として有用である。この態様では、第1及び第2位相差領域のそれぞれを通過した偏光画像は、偏光眼鏡等を介して右眼用又は左眼用の画像として、認識される。従って、左右画像が不均一とならないように、第1及び第2位相差領域は、互いに等しい形状であるのが好ましく、また、それぞれの配置は、均等且つ対称的であるのが好ましい。
 本発明において、前記パターン光学異方性層は、図2に示す態様に限定されるものではない。第1及び第2位相差領域の一方の面内レターデーションがλ/4であり、且つ他方の面内レターデーションが3λ/4である表示画素領域を利用することができる。さらに、第1及び第2位相差領域14及び15の一方の面内レターデーションがλ/2であり、且つ他方の面内レターデーションが0である位相差領域を利用することもできる。
 また、第1及び第2位相差領域の各パターンの面内遅相軸は、パターン配向膜等を利用することで、互いに異なる方向、例えば互いに直交する方向に調整することができる。パターン配向膜としては、マスク露光によりパターニング配向膜を形成可能な光配向膜、及びマスクラビングによりパターニング配向膜を形成可能なラビング配向膜、異種の配向膜(例えば、ラビングに対して、直交又は平行に配向する材料)を印刷等でパターニング配置したものなど、いずれも利用することができる。なお、第1及び第2位相差領域の各面内遅相軸が互いに直交する方向である場合、境界部の面内遅相軸は第1及び第2位相差領域の面内遅相軸方向の略中間値、即ち45度程度であることが好ましい。
 パターン位相差板は、図1~図2に簡略化して示した態様に限定されるものではなく、他の部材を含んでいてもよい。例えば、上記した通り、パターン光学異方性層を、配向膜を利用して形成する態様では、支持体とパターン光学異方性層との間に、配向膜を有していてもよい。また、本発明のパターン位相差板は、又は支持体のパターン光学異方性層が形成されている面の反対側の面に、ハードコート層、反射防止層、低反射層、アンチグレア層等とともに(又はそれに替えて)、前方散乱層、プライマー層、帯電防止層、下塗り層等の表面層が配置されていてもよい。
 偏光膜16及び18は、それぞれの透過軸を互いに直交に配置されている。一例では、偏光膜16の透過軸は、基板1Aのラビング軸と平行であり、且つ偏光膜18の透過軸は、基板1Bのラビング軸と平行である。
 偏光膜16及び18は、一般的な直線偏光膜を用いることができる。偏光膜は延伸フィルムからなっていても、塗布により形成される層であってもよい。前者の例には、ポリビニルアルコールの延伸フィルムをヨウ素又は二色性染料等で染色したフィルムが挙げられる。後者の例には、二色性液晶性色素を含む組成物を塗布して、所定の配向状態に固定した層が挙げられる。
 偏光膜16は、図3に一例を示すように、第1及び第2位相差領域14及び15の面内遅相軸a及びbをそれぞれ、偏光膜の透過軸pと±45°にして配置する。本明細書では、厳密に±45°であることを要求するものではなく、第1及び第2位相差領域14及び15のいずれか一方については、40~50°であることが好ましく、他方は、-50~-40°であることが好ましい。この構成により右眼用及び左眼用の円偏光画像を分離することができる。また、λ/2板をさらに積層することで、視野角をより拡大してもよい。
 パターン光学異方性層12と偏光膜16との間には、他の層が配置されていないか、又は光学的に等方性の層(例えば、粘着剤層)のみが配置されているのが好ましい。
 保護フィルム24は、偏光膜16及び偏光膜18の両表面に配置される。保護フィルム24については特に制限はなく、種々のポリマーフィルムを用いることができ、偏光板の保護フィルムとして汎用されているセルロースアシレート系フィルム、アクリル系ポリマー、又は環状オレフィン樹脂を主成分として含有するフィルムであってもよい。また、保護フィルム24の代わりに、視野角補償のための位相差フィルムを配置してもよく、省略してもよい。位相差フィルムの面内遅相軸は、基板1A及び1Bの内面に施されたラビング方向に対して、それぞれ平行又は直交で配置することが好ましく、平行に配置することがより好ましい。位相差フィルムは、光学的に二軸性のフィルムであってもよく、支持体と棒状又はディスコティック液晶化合物を硬化させた光学異方性層とからなるフィルムであってもよい。
 本発明は、本発明の立体画像表示装置と、該立体画像表示装置の視認側に配置される偏光板とを少なくとも備え、該偏光板を通じて立体画像を視認させる立体画像表示システムにも関する。立体画像表示装置の視認側外側に配置される前記偏光板の一例は、観察者が装着する偏光眼鏡である。観察者は、立体画像表示装置が表示する右眼用及び左眼用の偏光画像を円偏光又は直線偏光眼鏡を介して観察し、立体画像として認識する。
 本発明は、パターン光学異方性層の支持体の前記パターンに沿った方向の端部の直線性を、画像表示パネルのパターンに沿った方向の垂直方向の長さの0.0195%以下とした後に、パターン光学異方性層を設けることを含む、立体画像表示装置の製造方法にも関する。支持体の端部の直線性を画像表示パネルの前記パターンに沿った方向の垂直方向の長さの0.0195%以下とした後でパターン光学異方性層を設けることで、パターン光学異方性層の直線性も高めることができる。これにより、上下方向のクロストーク視野角及び3D境界ムラを軽減することができる。
 本発明は、パターン光学異方性層の支持体として、該支持体の前記パターンに沿った方向の端部の直線性を、前記画像表示パネルの前記パターンに沿った方向の垂直方向の長さの0.0195%以下である支持体を用いる立体画像表示装置の境界ムラの低減方法にも関する。直線性が画像表示パネルの前記パターンに沿った方向の垂直方向の長さの0.0195%以下である支持体を用いることで上下方向のクロストーク視野角だけでなく3D境界ムラも軽減することができる。
 以下、本発明のパターン位相差板に用いられる種々の部材等について詳細に説明する。
パターン光学異方性層:
 本発明におけるパターン光学異方性層は、面内遅相軸方向及び面内レターデーションの少なくとも一方が互いに異なる第1位相差領域及び第2位相差領域を含み、且つ前記第1及び第2位相差領域が、面内において交互に配置されており、第1位相差領域及び第2位相差領域の間には境界部を有する。一例は、第1及び第2位相差領域がそれぞれλ/4程度のReを有し、且つ面内遅相軸が互いに直交している光学異方性層である。このようなパターン光学異方性層の形成には種々の方法があるが、本発明では、重合性基を有する棒状液晶を水平配向させた状態、及びディスコティック液晶を垂直配向させた状態で重合させ、固定化して形成することが好ましい。
 パターン光学異方性層は単独でReがλ/4程度であってもよく、その場合はRe(550)が、λ/4±30nm程度が好ましく、110~165nmであることがより好ましく、120~150nmであることがさらに好ましく、125~145nmであることが特に好ましい。なお、本明細書において、面内レターデーションReがλ/4とは、特に断りがない限り、波長λの1/4から±30nm程度幅を持つ値のことを言い、面内レターデーションReがλ/2とは、特に断りがない限り、波長λの1/2から±30nm程度幅を持つ値のことを言う。また、市販の支持体の多くはRthが正の値となる。Rthが正の値となる支持体上に前記パターン光学異方性層を形成する場合は、前記パターン光学異方性層のRth(550)は負であるのが好ましく、-80~-50nmであることが好ましく、-75~-60nmであることがより好ましい。
 一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプに分類できる。さらにそれぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物または円盤状液晶化合物を用いるのが好ましい。2種以上の棒状液晶化合物、2種以上の円盤状液晶化合物、又は棒状液晶化合物と円盤状液晶化合物との混合物を用いてもよい。温度変化や湿度変化を小さくできることから、反応性基を有する棒状液晶化合物または円盤状液晶化合物を用いて形成することがより好ましく、少なくとも1つは1液晶分子中の反応性基が2以上あることがさらに好ましい。液晶化合物は二種類以上の混合物でもよく、その場合少なくとも1つが2以上の反応性基を有していることが好ましい。
 棒状液晶化合物としては、例えば、特表平11-513019号公報や特開2007-279688号公報に記載のものを好ましく用いることができ、ディスコティック液晶化合物としては、例えば、特開2007-108732号公報や特開2010-244038号公報に記載のものを好ましく用いることができるが、これらに限定されない。
 液晶化合物が重合条件の異なる2種類以上の反応性基を有することもまた好ましい。この場合、条件を選択して複数種類の反応性基の一部種類のみを重合させることにより、未反応の反応性基を有する高分子を含む位相差層を作製することが可能となる。用いる重合条件としては重合固定化に用いる電離放射線の波長域でもよいし、用いる重合機構の違いでもよいが、好ましくは用いる開始剤の種類によって制御可能な、ラジカル性の反応基とカチオン性の反応基の組み合わせがよい。前記ラジカル性の反応性基がアクリル基および/またはメタクリル基であり、かつ前記カチオン性基がビニルエーテル基、オキセタン基および/またはエポキシ基である組み合わせが反応性を制御しやすく特に好ましい。
 前記光学異方性層は、配向膜を利用した種々の方法で形成でき、その製法については特に制限はない。
 第1の態様は、液晶の配向制御に影響を与える複数の作用を利用し、その後、外部刺激(熱処理等)によりいずれかの作用を消失させて、所定の配向制御作用を支配的にする方法である。例えば、配向膜による配向制御能と、液晶化合物中に添加される配向制御剤の配向制御能との複合作用により、液晶を所定の配向状態とし、それを固定して一方の位相差領域を形成した後、外部刺激(熱処理等)により、いずれかの作用(例えば配向制御剤による作用)を消失させて、他の配向制御作用(配向膜による作用)を支配的にし、それによって他の配向状態を実現し、それを固定して他方の位相差領域を形成する。例えば、所定のピリジニウム化合物又はイミダゾリウム化合物は、ピリジニウム基又はイミダリウム基が親水的であるため前記親水的なポリビニルアルコール配向膜表面に偏在する。特に、ピリジニウム基が、さらに、水素原子のアクセプターの置換基であるアミノ基が置換されていると、ポリビニルアルコールとの間に分子間水素結合が発生し、より高密度に配向膜表面に偏在すると共に、水素結合の効果により、ピリジニウム誘導体がポリビニルアルコールの主鎖と直交する方向に配向するため、ラビング方向に対して液晶の直交配向を促進する。前記ピリジニウム誘導体は、分子内に複数個の芳香環を有しているため、前述した、液晶、特にディスコティック液晶化合物との間に強い分子間π-π相互作用が起こり、ディスコティック液晶の配向膜界面近傍における直交配向を誘起する。特に、親水的なピリジニウム基に疎水的な芳香環が連結されていると、その疎水性の効果により垂直配向を誘起する効果も有する。しかし、その効果は、ある温度を超えて加熱すると、水素結合が切断され、前記ピリジニウム化合物等の配向膜表面における密度が低下し、その作用を消失する。その結果、ラビング配向膜そのものの規制力により液晶が配向し、液晶は平行配向状態になる。この方法の詳細については、特願2010-141346号明細書(特開2012-8170号公報)に記載があり、その内容は本明細書に参照として取り込まれる。
 第2の態様は、パターン配向膜を利用する態様である。この態様では、互いに異なる配向制御能を有するパターン配向膜を形成し、その上に、液晶化合物を配置し、液晶を配向させる。液晶は、パターン配向膜のそれぞれの配向制御能によって配向規制され、互いに異なる配向状態を達成する。それぞれの配向状態を固定することで、配向膜のパターンに応じて第1及び第2の位相差領域のパターンが形成される。パターン配向膜は、印刷法、ラビング配向膜に対するマスクラビング、光配向膜に対するマスク露光等を利用して形成することができる。また、配向膜を一様に形成し、配向制御能に影響を与える添加剤(例えば、上記オニウム塩等)を別途所定のパターンで印刷することによって、パターン配向膜を形成することもできる。大掛かりな設備が不要である点や製造容易な点で、印刷法を利用する方法が好ましい。この方法の詳細については、特願2010-173077号明細書(特開2012-032661号公報)に記載があり、その内容は本明細書に参照として取り込まれる。
 また、第1及び第2の態様を併用してもよい。一例は、配向膜中に光酸発生剤を添加する例である。この例では、配向膜中に光酸発生剤を添加し、パターン露光により、光酸発生剤が分解して酸性化合物が発生した領域と、発生していない領域とを形成する。光未照射部分では光酸発生剤はほぼ未分解のままであり、配向膜材料、液晶、及び所望により添加される配向制御剤の相互作用が配向状態を支配し、液晶を、その遅相軸がラビング方向と直交する方向に配向させる。配向膜へ光照射し、酸性化合物が発生すると、その相互作用はもはや支配的ではなくなり、ラビング配向膜のラビング方向が配向状態を支配し、液晶は、その遅相軸をラビング方向と平行にして平行配向する。前記配向膜に用いられる光酸発生剤としては、水溶性の化合物が好ましく用いられる。使用可能な光酸発生剤の例には、Prog. Polym. Sci., 23、1485(1998)に記載の化合物が含まれる。前記光酸発生剤としては、ピリジニウム塩、ヨードニウム塩及びスルホニウム塩が特に好ましく用いられる。この方法の詳細については、特願2010-289360号明細書(特願2010-289360号明細書を基礎とする特開2012-150428号公報)に記載があり、その内容は本明細書に参照として取り込まれる。
 さらに、第3の態様として、重合性が互いに異なる重合性基(例えば、オキセタニル基及び重合性エチレン性不飽和基)を有するディスコティック液晶化合物を利用する方法がある。この態様では、ディスコティック液晶化合物を所定の配向状態にした後、一方の重合性基のみの重合反応が進行する条件で、光照射等を行い、プレ光学異方性層を形成する。次に、他方の重合性基の重合を可能にする条件で(例えば他方の重合性基の重合を開始させる重合開始剤の存在下で、マスク露光を行う。露光部の配向状態は完全に固定され、所定のReを有する一方の位相差領域が形成される。未露光領域は、一方の反応性基の反応が進行しているものの、他方の反応性基は未反応のままとなっている。よって、等方相温度を超え、他方の反応性基の反応が進行可能な温度まで加熱すると、未露光領域は、等方相状態に固定され、即ち、Reが0nmになる。
支持体:
 本発明に利用可能な支持体(支持体フィルム)としては、その材料については特に制限はない。低レターデーションのポリマーフィルムを用いるのが好ましく、具体的には、面内レターデーションの絶対値が約10nm以下のフィルムを用いるのが好ましい。偏光膜とパターン位相差フィルムとの間に、偏光膜の保護膜が配置されている態様でも、該保護膜として、低レターデーションのポリマーフィルムを用いるのが好ましく、具体的範囲については、上記通りである。
 本発明に使用可能な支持体を形成する材料としては、例えば、ポリカーボネート系ポリマー、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマーなどがあげられる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、ノルボルネン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、又は前記ポリマーを混合したポリマーも例としてあげられる。また本発明の高分子フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の紫外線硬化型、熱硬化型の樹脂の硬化層として形成することもできる。
 また、前記フィルムの材料としては、セルロースアシレート系ポリマー、ポリエステル系ポリマー、アクリル系ポリマー、およびノルボルネン系ポリマーを好ましく用いることができる。ノルボルネン系ポリマーの中でも、熱可塑性ノルボルネン系樹脂を好ましく用いることが出来る。熱可塑性ノルボルネン系樹脂としては、日本ゼオン(株)製のゼオネックス、ゼオノア、JSR(株)製のアートン等があげられる。
 また、前記フィルムの材料としては、従来偏光板の透明保護フィルムとして用いられてきた、トリアセチルセルロースに代表される、セルロース系ポリマー(以下、セルロースアシレートという)を好ましく用いることが出来る。
 支持体を構成するフィルムには、本発明の趣旨を逸脱しない範囲内で、糖エステル、重縮合エステル、レターデーション発現剤、酸化防止剤、剥離促進剤、微粒子、熱劣化防止剤、紫外線吸収剤等を含んでいても良い。
 糖エステルの例としては、特開2012-226276号公報の段落番号0050~0080の記載を参酌でき、これらの内容は本願明細書に組み込まれる。このような化合物の添加によって、疎水性の付与による透湿性や含水率の調整や可塑性の付与による機械的物性の調整などが容易となる。本発明では特に、ヒドロキシル基の少なくとも1つが芳香族エステル化されたピラノース構造またはフラノース構造を1個~12個含む糖エステルが好ましい。中でも、以下の糖エステルを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 レターデーション発現剤としては、含窒素芳香族化合物が好ましい。レターデーション発現剤の例としては、特開2012-226276号公報の段落番号0081~0109の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 その他の添加剤については、特開2012-226276号公報の段落番号0109~0112の記載を参酌でき、これらの内容は本願明細書に組み込まれる。また、国際公開WO2008-126535号パンフレットに記載の化合物を採用できる。
 紫外線吸収剤の例としては、特開2006-199855号公報の段落番号0059~0135に記載を参酌でき、これらの内容は本願明細書に組み込まれる。
支持体の製造方法:
 本発明で使用する支持体の製膜方法および設備は、特に限定されず、例えば、従来セルローストリアセテートフィルムの製造に供する溶液流延製膜方法および溶液流延製膜装置等が用いられる。
 支持体がセルロースアシレート系フィルムからなる場合、支持体は、前記セルロースアシレート溶液を用いて製膜を行うことにより得ることができる。
 支持体がセルロースアシレート系フィルムからなり、複数のセルロースアシレート溶液を流延する場合、金属支持体の進行方向に間隔を置いて設けた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよく、例えば特開昭61-158414号、特開平1-122419号、および特開平11-198285号の各公報などに記載の方法が適応できる。また、2つの流延口からセルロースアシレート溶液を流延することによってフィルム化することでもよく、例えば特公昭60-27562号、特開昭61-94724号、特開昭61-947245号、特開昭61-104813号、特開昭61-158413号、および特開平6-134933号の各公報に記載の方法で実施できる。また、特開昭56-162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高、低粘度のセルロースアシレート溶液を同時に押出すセルロースアシレートフィルム流延方法でもよい。さらに、特開昭61-94724号および特開昭61-94725号の各公報に記載の外側の溶液が内側の溶液よりも貧溶媒であるアルコール成分を多く含有させることも好ましい態様である。或いはまた2個の流延口を用いて、第一の流延口により金属支持体に成型したフィルムを剥離し、金属支持体面に接していた側に第二の流延を行なうことでより、フィルムを作製することでもよく、例えば特公昭44-20235号公報に記載されている方法である。
 支持体としては、複数のセルロースアシレート溶液を流延口から流延することにより、高粘度の溶液を同時に金属支持体上に押出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる共流延により製造することが好ましい。
 共流延の場合、内側と外側の厚さは特に限定されないが、好ましくは外側が全膜厚の1~50%であることが好ましく、より好ましくは2~30%の厚さである。ここで、3層以上の共流延の場合は金属支持体に接した層と空気側に接した層のトータル膜厚を外側の厚さと定義する。共流延の詳細は、特開2011-127127号公報の記載を参照することができる。
[流延]
 溶液の流延方法としては、調製されたドープを加圧ダイから金属支持体上に均一に押し出す方法、一旦金属支持体上に流延されたドープをブレードで膜厚を調節するドクターブレードによる方法、或いは逆回転するロールで調節するリバースロールコーターによる方法等があるが、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやTダイタイプ等があるがいずれも好ましく用いることができる。また、ここで挙げた方法以外にも従来知られているセルローストリアセテート溶液を流延製膜する種々の方法で実施でき、用いる溶媒の沸点等の違いを考慮して各条件を設定することによりそれぞれの公報に記載の内容と同様の効果が得られる。
 支持体を製造するのに使用されるエンドレスに走行する金属支持体としては、表面がクロムメッキによって鏡面仕上げされたドラムや表面研磨によって鏡面仕上げされたバンド(ステンレスベルト)が用いられる。支持体の製造に用いられる加圧ダイは、金属支持体の上方に1基或いは2基以上の設置でもよい。好ましくは1基または2基である。2基以上設置する場合には流延するドープ量をそれぞれのダイに種々な割合にわけてもよく、複数の精密定量ギヤアポンプからそれぞれの割合でダイにドープを送液してもよい。流延に用いられるセルロースアシレート溶液の温度は、-10~55℃が好ましく、より好ましくは25~50℃である。その場合、工程のすべてが同一でもよく、あるいは工程の各所で異なっていてもよい。異なる場合は、流延直前で所望の温度であればよい。
 また、流延速度としては、20~200m/分が好ましく、40~160m/分がより好ましく、60~120m/分が特に好ましい。流延速度を上記範囲内とすることで、直線性に優れた支持体を製造することができる。
[乾燥]
 支持体の製造に係わる金属支持体上におけるドープの乾燥は、金属支持体(ドラム或いはベルト)の表面側、つまり金属支持体上にあるウェブの表面から熱風を当てる方法、ドラム或いはベルトの裏面から熱風を当てる方法、裏面液体伝熱方式などが挙げられるが、熱風を当てる方法が一般的である。
 乾燥時の温度としては、70~220℃が好ましく、80~180℃がより好ましく、90~160℃が特に好ましい。
 なお、流延される前の金属支持体の表面温度はドープに用いられている溶媒の沸点以下であれば何度でもよい。しかし、乾燥初期については乾燥を促進するために、また金属支持体上での流動性を失わせるためには、使用される溶媒の内の最も沸点の低い溶媒の沸点より1~10℃低い温度に設定することが好ましい。熱風の温度を上記範囲内とすることで、直線性に優れた支持体を製造することができる。
[延伸処理]
 支持体は、必要に応じて延伸処理によりレターデーションを調整することができる。さらには、積極的に幅方向に延伸する方法もあり、例えば、特開昭62-115035号、特開平4-152125号、特開平4-284211号、特開平4-298310号、および特開平11-48271号の各公報などに記載されている。
パターン位相差板の製造方法:
 パターン位相差板の製造方法としては、例えば、ロール形態に巻き上げられた長尺状のフィルム(支持体)を送り出し、所定の引張り応力を負荷しながら搬送し、その表面に連続的に第1及び第2位相差領域を形成するためにパターン露光し、長尺状のパターン位相差板を連続的に製造する。所望により再びロール形態に巻き上げ、ロール形態で、保存・搬送してもよく、いわゆるロールツーロールプロセスで、パターン位相差板を作製してもよい。
 パターン位相差板の製造方法の一例は、以下の通りである。
長尺フィルム上に、一方向に配向処理された配向膜を形成する工程と、
該配向膜上に、液晶を主成分とする硬化性液晶組成物の塗布層を形成し、前記塗布層中の液晶を配向処理方向に平行にもしくは直交に配向させた後に、パターン露光して、当該露光部に第1位相差領域を形成する第1の露光工程と、
非露光部の塗布層中の液晶を配向処理方向とは異なる方向(例えば、直交にもしくは平行)に配向させた後に露光して、第2位相差領域を形成する第2の露光工程とを含む方法である。
 各工程は、所定の引張り応力を負荷した状態にて搬送しながら行う。長尺フィルムが引張り応力により伸ばされた状態で行う。所定の引張り応力としては、10~800N/mであることが好ましく、15~600N/mであることがより好ましく、20~400N/mであることが特に好ましい。なお、支持体(長尺フィルム)に10~800N/mの引張り応力を負荷する場合、支持体端部の直線性が悪いほど引張り応力の負荷による支持体端部の直線性の変化率が大きくなる傾向を示すが、支持体の端部の直線性が0.0195%以下であると、引張り応力の負荷による支持体端部の直線性の変化率が小さいことから、引張り応力の負荷に伴う光学異方性層の直線性の悪化量を大きく軽減できる。
 第1の露光工程は、開口部を有するマスク等を介して実施する。第2の露光工程は、全面に露光してもよいし、他のマスクを用いて、第2の位相差領域に相当する未露光部のみに露光してもよい。
 他の例は、以下の通りである。
長尺フィルム上に、一方向に配向処理された配向膜を形成する工程と、
該配向膜を、パターン露光して、露光部に、配向処理によって生じた配向制御能とは異なる配向制御能を有する第1の配向制御領域を、未露光部に、配向処理によって生じた配向制御能を有する第2配向制御領域を形成するパターン露光工程と、
該配向膜上に、液晶を主成分とする硬化性液晶組成物の塗布層を形成し、
前記塗布層中の液晶を、第1の配向制御領域、及び第2の配向制御領域のそれぞれの配向制御能により、互いに異なる方向に配向させる工程、
上記配向状態を、維持したまま配向状態を固定し、第1及び第2の位相差領域を形成する工程とを含む方法である。
 各工程は、所定の引張り応力を負荷した状態にて搬送しながら行う。長尺フィルムが引張り応力により伸ばされた状態で行う。所定の引張り応力としては、10~800N/mであることが好ましく、15~600N/mであることがより好ましく、20~400N/mであることが特に好ましい。
 また、前記方法におけるパターン露光工程は、開口部を有するマスク等を介して実施する。
 この様にして形成するパターン光学異方性層の厚みについては特に制限されないが、0.1~10μmであるのが好ましく、0.5~5μmであるのがより好ましい。
偏光膜:
 偏光膜は、一般的な偏光膜を用いることができる。例えば、ヨウ素や二色性色素によって染色されたポリビニルアルコールフィルム等からなる偏光子膜を用いることができる。
粘着層:
 光学異方性層と偏光膜との間には、粘着層が配置されていてもよい。光学異方性層と偏光膜との積層のために用いられる粘着層とは、例えば、動的粘弾性測定装置で測定したG’とG”との比(tanδ=G”/G’)が0.001~1.5である物質のことを表し、いわゆる、粘着剤やクリープしやすい物質等が含まれる。粘着剤については特に制限はなく、例えば、ポリビニルアルコール系粘着剤を用いることができる。
液晶セル:
 本発明の立体画像表示装置、及び立体画像表示システムに用いられる液晶セルは、VAモード、OCBモード、IPSモード、又はTNモードであることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)及び(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、及びPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、及び特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、特開平10-307291号公報などに開示されている。
立体画像表示システム用偏光板:
 本発明の立体画像表示システムでは、特に3D映像とよばれる立体画像を視認者に認識させるため、偏光板を通して画像を認識する。偏光板の一態様は、偏光眼鏡である。前記位相差板によって右眼用及び左眼用の円偏光画像を形成する態様では、円偏光眼鏡が用いられ、直線偏光画像を形成する態様では、直線眼鏡が用いられる。光学異方性層の前記第1及び第2の位相差領域のいずれか一方から出射された右眼用画像光が右眼鏡を透過し、且つ左眼鏡で遮光され、前記第1及び第2位相差領域の他方から出射された左眼用画像光が左眼鏡を透過し、且つ右眼鏡で遮光されるように構成されていることが好ましい。
 前記偏光眼鏡は、位相差機能層と直線偏光子を含むことで偏光眼鏡を形成している。なお、直線偏光子と同等の機能を有するその他の部材を用いてもよい。
 偏光眼鏡を含め、本発明の立体画像表示システムの具体的な構成について説明する。まず、位相差板は、映像表示パネルの交互に繰り返されている複数の第一ライン上と複数の第二ライン上(例えば、ラインが水平方向であれば水平方向の奇数ライン上と偶数ライン上であり、ラインが垂直方向であれば垂直方向の奇数ライン上と偶数ライン上でもよい)に偏光変換機能が異なる前記第1位相差領域と前記第2位相差領域が設けられている。円偏光を表示に利用する場合には、上述の前記第1位相差領域と前記第2位相差領域の位相差は、ともにλ/4であることが好ましく、前記第1位相差領域と前記第2位相差領域は遅相軸が直交していることがより好ましい。
 円偏光を利用する場合、前記第1位相差領域と前記第2位相差領域の位相差値をともにλ/4とし、映像表示パネルの奇数ラインに右眼用画像を表示し、奇数ライン位相差領域の遅相軸が45度方向であるならば、偏光眼鏡の右眼鏡と左眼鏡にともにλ/4板を配置することが好ましく、偏光眼鏡の右眼鏡のλ/4板の遅相軸は具体的には略45度に固定すればよい。また、上記の状況であれば、同様に、映像表示パネルの偶数ラインに左眼用画像を表示し、偶数ライン位相差領域の遅相軸が135度方向であるならば、偏光眼鏡の左眼鏡の遅相軸は具体的には略135度に固定すればよい。
 更に、一度前記パターニング位相差フィルムにおいて円偏光として画像光を出射し、偏光眼鏡により偏光状態を元に戻す観点からは、上記の例の場合の右眼鏡の固定する遅相軸の角度は正確に水平方向45度に近いほど好ましい。また、左眼鏡の固定する遅相軸の角度は正確に水平135度(又は-45度)に近いほど好ましい。
 また、例えば前記映像表示パネルが液晶表示パネルである場合、液晶表示パネルのフロント側偏光板の吸収軸方向が通常、水平方向であり、前記偏光眼鏡の直線偏光子の吸収軸が該フロント側偏光板の吸収軸方向に直交する方向であることが好ましく、前記偏光眼鏡の直線偏光子の吸収軸は鉛直方向であることがより好ましい。
 また、前記液晶表示パネルのフロント側偏光板の吸収軸方向と、前記パターニング位相差フィルムの奇数ライン位相差領域と偶数ライン位相差領域の各遅相軸は、偏光変換の効率上、45度をなすことが好ましい。
 なお、このような偏光眼鏡と、パターニング位相差フィルム及び液晶表示装置の好ましい配置については、例えば特開2004-170693号公報に開示がある。
 偏光眼鏡の例としては、特開2004-170693号公報に記載のものや、市販品として、Zalman製 ZM-M220Wの付属品、LG製 55LW5700の付属品を挙げることができる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 光学異方性層の直線性は、以下のようにして決定した。
 表示装置の画面サイズよりも縦横各5mmずつ大きいサイズのパターン位相差板を、FPRフィルムロールの両端面からそれぞれ50mmの位置からロール巾方向に2枚ずつ、ロールの長手3mごとに打ち抜くことで、20枚分のパターン位相差板を打ち抜いた。パターン位相差板の第1及び第2位相差領域の境界部の始点から40mmの点Aと、もう一方の端部の終点から40mmの点Bとを定義し、点ABを結ぶ直線を引いた。
 次に、フィルム短辺に関して両端辺から40mm付近(点A、点B)および中央を通り、且つAB間を結ぶ直線の垂線のそれぞれの長さを精密なものさしまたは測定器で計測した。
 この操作を打ち抜いた20枚のパターン位相差板について行い、画像表示パネルの縦方向の長さを基準とし、最も長い垂線の長さと、画像表示パネルの縦方向の長さとの比率をそのパターン光学異方性層の直線性とした。
 すなわち、東芝製32ZP2に貼合するパターン位相差板の場合、東芝製32ZP2の画面サイズが横697.3mm、縦392.3mmであるため、長手702.3mm、巾397.3mmのパターン位相差板を打ち抜いてパターン長622.3mmでの直線性を評価した。LG製55LW5700に貼合するFPRフィルムの場合、LG製55LW5700の画面サイズが横1209mm、縦679.9mmであるため、長手1214mm、巾684.9mmのFPRフィルムを打ち抜いてパターン長1134mmでの直線性を測定した。
 支持体の端部の直線性は、以下のようにして決定した。
 支持体ロール端部について、表示装置の画面の長手方向の長さ範囲で一方の端部の始点Aと、他方の終点Bとを定義し、点ABを結ぶ直線を引いた。
 点ABを結ぶ直線の垂線を引き、垂線の長さを精密なものさしまたは測定器で計測した。
 支持体ロールの長手方向3mごとに10箇所で同様の測定を行い、最も長い垂線の長さと、画像表示パネルの縦方向の長さとの割合を、画像表示パネルの縦方向の長さを基準としてその支持体の端部の直線性とした。
 すなわち、東芝製32ZP2に貼合するFPRフィルムの場合、東芝製32ZP2の画面サイズが横697.3mm、縦392.3mmであるため、697.3mmあたりの直線性を評価した。LG製55LW5700に貼合するFPRフィルムの場合、LG製55LW5700の画面サイズが横1209mm、縦679.9mmであるため、1209mmあたりの直線性を測定した。
 表面フィルム(反射防止層つきの透明支持体を意味する)の直線性も同様に測定した。
[実施例1]
<透明支持体Aの作製>
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、固形分濃度22質量%のセルロースアセテート溶液(ドープC)を調製した。
(セルロースアセテート溶液組成)
 酢化度60.7~61.1%のセルロースアセテート       100質量部
 トリフェニルホスフェート(可塑剤)              7.8質量部
 ビフェニルジフェニルホスフェート(可塑剤)          3.9質量部
 紫外線吸収剤(チヌビン328 チバ・ジャパン製)       0.9質量部
 紫外線吸収剤(チヌビン326 チバ・ジャパン製)       0.2質量部
 メチレンクロライド(第1溶媒)                336質量部
 メタノール(第2溶媒)                     29質量部
 1-ブタノール(第3溶媒)                   11質量部
 上記ドープCに平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)をセルロースアセテート100質量部に対して0.02質量添加したマット剤入りドープDを調製した。ドープCと同じ溶剤組成で固形分濃度が19質量%になるように調節した。
 ドープCを主流とし、マット剤入りドープDを最下層及び最上層になるようにして、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムをはがし140℃の乾燥風で乾燥した後、フィルム巾が1340mmとなるように、両端部を切り落とし、残留溶剤量が0.3質量%で長さ4000m以上の透明支持体Aのロールを作製した。なお、流延時の流量は、マット剤入りの最下層及び最上層はそれぞれ3μmに、主流は74μmになるように調節した。
 得られた透明支持体Aの697.3mm長における直線性は、74μmであった。
<透明支持体BおよびCの作製>
 透明支持体Aの作製において、バンド延伸機のロール芯変動やフィルム乾燥時の風の強さの調整に加え、フィルム流延速度を変更した以外は透明支持体Aと同様の方法で、透明支持体BおよびCを作製した。
 得られた透明支持体B及びCの697.3mm長におけるロール端部の直線性は、それぞれ92μm、32μmであった。
<透明支持体D~Fの作製>
 透明支持体Aの作製において、フィルム乾燥時の風の強さの調整し、フィルム流延速度を変更し、さらにフィルム巾が1490mmとなるように、両端部を切り落とした以外は透明支持体Aと同様の方法で、透明支持体Dを作製した。
 透明支持体Dの作製において、バンド延伸機のロール芯変動やフィルム乾燥時の風の強さの調整に加え、フィルム流延速度を変更した以外は透明支持体Dと同様の方法で、透明支持体EおよびFを作製した。
 得られた透明支持体D~Fの1209mm長におけるロール端部の直線性は、それぞれ126μm、165μm、74μmであった。
<透明支持体Mの作製>
 市販のセルロースアシレート系支持体TD80UL(富士フイルム(株)製)を用意し、透明支持体Mとして使用した。透明支持体Mを5ロール用意し、697.3mm長におけるロール端部の直線性を計測した結果、91μmであった。
<透明支持体Nの作製>
 市販のセルロースアシレート系支持体TD80UL(富士フイルム(株)製)を用意し、透明支持体Nとして使用した。透明支持体Nを5ロール用意し、1209mm長におけるロール端部の直線性を計測した結果、163μmであった。
<透明支持体Rの作製>
(エア層用セルロースエステル溶液の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、エア層用セルロースエステル溶液を調製した。
エア層用セルロースエステル溶液の組成
・セルロースエステル(アセチル置換度2.86)      100質量部
・式(R-I)の糖エステル化合物               3質量部
・式(R-II)の糖エステル化合物              1質量部
・下記紫外線吸収剤                    2.4重量部
・シリカ粒子分散液(平均粒径16nm) “AEROSIL R972”、日本アエロジル(株)製                     0.026質量部
・メチレンクロライド                   339質量部
・メタノール                        74質量部
・ブタノール                         3質量部
式(R-I)
Figure JPOXMLDOC01-appb-C000003
式(R-II)
Figure JPOXMLDOC01-appb-C000004
紫外線吸収剤
Figure JPOXMLDOC01-appb-C000005
(ドラム層用セルロースエステル溶液の調製)
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、ドラム層用セルロースエステル溶液を調製した。
ドラム層用セルロースエステル溶液の組成
・セルロースエステル(アセチル置換度2.86)           100質量部
・式(R-I)の糖エステル化合物                    3質量部
・式(R-II)の糖エステル化合物                   1質量部
・紫外線吸収剤                           2.4重量部
・シリカ粒子分散液(平均粒径16nm) “AEROSIL R972”、
 日本アエロジル(株)製                    0.091質量部
・メチレンクロライド                        339質量部
・メタノール                             74質量部
ブタノール                              3質量部
(コア層用セルロースエステル溶液の調製)
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、コア層用セルロースエステル溶液を調製した。
コア層用セルロースエステル溶液の組成
・セルロースエステル(アセチル置換度2.86)          100質量部
・式(R-II)の糖エステル化合物                8.3質量部
・式(R-II)の糖エステル化合物                2.8質量部
・上記紫外線吸収剤                        2.4重量部
・メチレンクロライド                       266質量部
・メタノール                            58質量部
・ブタノール                           2.6質量部
(共流延による製膜)
 流延ダイとして、共流延用に調整したフィードブロックを装備して、3層構造のフィルムを成形できるようにした装置を用いた。上記エア層用セルロースエステル溶液、コア層用セルロースエステル溶液、及びドラム層用セルロースエステル溶液を流延口から-7℃に冷却したドラム上に共流延した。このとき、厚みの比がエア層/コア層/ドラム層=7/90/3となるように各ドープの流量を調整した。
 直径3mのドラムである鏡面ステンレス支持体上に流延した。ドラム上で34℃の乾燥風を270m3/分で当てた。
 そして、流延部の終点部から50cm手前で、流延して回転してきたセルロースエステルフィルムをドラムから剥ぎ取った後、両端をピンテンターでクリップした。剥離の際、搬送方向(長手方向)に5%の延伸を行った。
 ピンテンターで保持されたセルロースエステルウェブを乾燥ゾーンに搬送した。初めの乾燥では45℃の乾燥風を送風し、次に110℃で5分乾燥した。このとき、セルロースエステルウェブを幅手方向に倍率を10%で延伸しながら搬送した。
 ピンテンターからウェブを離脱させたあと、ピンテンターで保持されていた部分を連続的に切り取り、ウェブの幅方向両端部に15mmの幅で10μmの高さの凹凸をつけた。このときのウェブの幅は1610mmであった。搬送方向に210Nの引っ張り応力の付加をかけながら140℃で10分乾燥した。さらに、ウェブが所望の幅になるように幅方向端部を連続的に切り取り、膜厚40μmの透明支持体Rを作製した。このとき、140℃乾燥後に切り取られる幅方向端部とウェブ中央部の膜厚は同じであった。
 得られた透明支持体Rの1209mm長におけるロール端部の直線性は、126μmであった。
<透明支持体SおよびTの作製>
 透明支持体Rの作製において、ドラム製膜機内の搬送ロール芯変動やフィルム乾燥時の風の強さの調整に加え、フィルム流延速度を変更した以外は透明支持体Rと同様の方法で、透明支持体SおよびTを作製した。
 得られた透明支持体S及びTの1209mm長におけるロール端部の直線性は、それぞれ165μm、74μmであった。
<表面フィルムGの作製>
(ゾル液aの調製)
 攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120質量部、アクリロイルオキシプロピルトリメトキシシラン(KBM-5103、信越化学工業(株)製)100質量部、ジイソプロポキシアルミニウムエチルアセトアセテート3質量部を加え混合したのち、イオン交換水30質量部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000~20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
(防眩層用塗布液の調製)
 ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(PET-30、日本化薬(株)製)31gをメチルイソブチルケトン38gで希釈した。更に、重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)を1.5g添加し、混合攪拌した。続いてフッ素系表面改質剤(FP-148)0.04g、シランカップリング剤(KBM-5103、信越化学工業(株)製)を6.2g加えた。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.520であった。最後に、この溶液にポリトロン分散機にて10000rpmで20分間分散した平均粒径3.5μmの架橋ポリ(アクリル-スチレン)粒子(共重合組成比=50/50、屈折率1.540)の30%シクロヘキサノン分散液を39.0g加え、完成液とした。前記混合液を孔径30μmのポリプロピレン製フィルターでろ過して防眩層用塗布液を調製した。
Figure JPOXMLDOC01-appb-C000006
(低屈折率層用塗布液の調製)
 ポリシロキサンおよび水酸基を含有する屈折率1.44の熱架橋性含フッ素ポリマー(JTA113、固形分濃度6%、JSR(株)製)13g、コロイダルシリカ分散液MEK-ST-L(商品名、平均粒径45nm、固形分濃度30%、日産化学(株)製)1.3g、前記ゾル液a0.6g、およびメチルエチルケトン5g、シクロヘキサノン0.6gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層塗布液を調製した。この塗布液により形成される層の屈折率は、1.45であった。
(1)防眩層の塗設
 透明支持体Cをロール形態で巻き出して、特開2007-41495号公報の[0172]に記載の装置構成および塗布条件で示されるダイコート法によって前記防眩層用塗布液を塗布し、30℃で15秒間、90℃で20秒間乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量90mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ6μmの防眩性を有する
防眩層を形成した。
(2)低屈折率層の塗設
 上記防眩層用塗布液を塗布して防眩層を塗設したフィルムを再び巻き出して、前記低屈折率層用塗布液を特開2007-41495号公報の[0172]に記載の基本条件で塗布し、120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージにより酸素濃度0.1体積%の雰囲気下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量900mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、表面フィルムGを得た。
 得られた表面フィルムGの697.3mm長におけるロール端部の直線性は73μmであった。
<表面フィルムH~Lの作製>
 表面フィルムGの作製において、防眩層塗設時の搬送速度、搬送方向引張り応力等の処法条件、低屈折率層塗設時の搬送速度、搬送方向引張り応力等の処法条件を変更した以外は表面フィルムGと同様の方法で、表面フィルムH~Lを作製した。
 得られた表面フィルムH及びIの697.3mm長におけるロール端部の直線性は、それぞれ116μm、43μmであった。得られた表面フィルムJ~Lの1209mm長におけるロール端部の直線性は、それぞれ131μm、179μm、49μmであった。
<表面フィルムUの作製>
 表面フィルムJの作製において、透明支持体Cを透明支持体Tに変更した以外は表面フィルムJと同様の方法で、表面フィルムUを作製した。
 得られた表面フィルムUの1209mm長におけるロール端部の直線性は、131μmであった。
<表面フィルムV~Wの作製>
 表面フィルムUの作製において、防眩層塗設時の搬送速度、搬送方向引張り応力等の処法条件、低屈折率層塗設時の搬送速度、搬送方向引張り応力等の処法条件を変更した以外は表面フィルムUと同様の方法で、表面フィルムVおよびWを作製した。
 得られた表面フィルムV~Wの1209mm長におけるロール端部の直線性は、それぞれ179μm、49μmであった。
[パターン位相差板Aの作製]
<アルカリ鹸化処理>
 透明支持体Aを準備し、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布し、110℃に加熱して10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアセテート透明支持体を作製した。
────────────────────────────────────
アルカリ溶液の組成(質量部)
────────────────────────────────────
 水酸化カリウム                     4.7質量部
 水                          15.8質量部
 イソプロパノール                   63.7質量部
 界面活性剤
 SF-1:C1429O(CH2CH2O)20H        1.0質量部
 プロピレングリコール                 14.8質量部
────────────────────────────────────
<ラビング配向膜付透明支持体の作製>
 上記作製した支持体の、鹸化処理を施した面に、下記の組成のラビング配向膜塗布液を#8のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜を形成した。次に、透過部の横ストライプ幅364μm、遮蔽部の横ストライプ幅364μmのストライプマスクをラビング配向膜上に配置し、室温空気下にて、UV-C領域における照度2.5mW/cm2のメタルハライドランプを用いて紫外線を4秒間照射して、光酸発生剤を分解し酸性化合物を発生させることにより第1位相差領域用配向層を形成した。その後に、ストライプマスクのストライプに対して45°の角度を保持して500rpmで一方向に1往復、ラビング処理を行い、ラビング配向膜付透明支持体を作製した。配向膜の膜厚は、0.5μmであった。なお、製造機におけるマスク露光時の搬送引張り応力は150N/mであった。
────────────────────────────────────
配向膜形成用塗布液の組成
────────────────────────────────────
配向膜用ポリマー材料                    3.9質量部
(PVA103、クラレ(株)製ポリビニルアルコール)
光酸発生剤(S-2)                    0.1質量部
メタノール                          36質量部
水                              60質量部
────────────────────────────────────
Figure JPOXMLDOC01-appb-C000007
<パターン化された光学異方性層の作製>
 下記の光学異方性層用塗布液を、バーコーターを用いて塗布量4ml/m2で塗布した。次いで、膜面温度110℃で2分間加熱熟成した後、80℃まで冷却し空気下にて20mW/cm2のUVメタルハライドランプを用いて紫外線を20秒間照射して、その配向状態を固定化することによりパターン光学異方性層を形成し、パターン位相差板Aを作製した。マスク露光部分(第1位相差領域)は、ラビング方向に対し遅相軸方向が平行にディスコティック液晶が垂直配向しており、未露光部分(第2位相差領域)は直交に垂直配向していた。光学異方性層の膜厚は、0.9μmであった。
────────────────────────────────────
光学異方性層用塗布液の組成
────────────────────────────────────
ディスコティック液晶E-1                100質量部
配向膜界面配向剤(II-1)               3.0質量部
空気界面配向剤(P-1)                 0.4質量部
光重合開始剤                       3.0質量部
(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)
増感剤(カヤキュア-DETX、日本化薬(株)製)     1.0質量部
メチルエチルケトン                    400質量部
────────────────────────────────────
Figure JPOXMLDOC01-appb-C000008
 得られた光学異方性層Aの622.3mm長における直線性は、25μmであった。
[パターン位相差板Bの作製]
 パターン位相差板Aの作製において、透明支持体Aを透明支持体Bに変更した以外はパターン位相差板Aと同様の方法で、パターン位相差板Bを作製した。
 得られた光学異方性層Bの622.3mm長における直線性は、44μmであった。
[パターン位相差板Cの作製]
 パターン位相差板Aの作製において、透明支持体Aを透明支持体Cに変更した以外はパターン位相差板Aと同様の方法で、パターン位相差板Cを作製した。
 得られた光学異方性層Cの622.3mm長における直線性は、9μmであった。
[パターン位相差板Dの作製]
 パターン位相差板Aの作製において、透明支持体Aを透明支持体Dに変更した以外はパターン位相差板Aと同様の方法で、パターン位相差板Dを作製した。
 得られた光学異方性層Dの1134mm長における直線性は、42μmであった。
[パターン位相差板Eの作製]
 パターン位相差板Aの作製において、透明支持体Aを透明支持体Eに変更した以外はパターン位相差板Aと同様の方法で、パターン位相差板Eを作製した。
 得られた光学異方性層Eの1134mm長における直線性は、66μmであった。
[パターン位相差板Fの作製]
 パターン位相差板Aの作製において、透明支持体Aを透明支持体Fに変更した以外はパターン位相差板Aと同様の方法で、パターン位相差板Fを作製した。
 得られた光学異方性層Fの1134mm長における直線性は、17μmであった。
[パターン位相差板Gの作製]
 パターン位相差板Aの作製において、透明支持体Aを表面フィルムGに変更した以外はパターン位相差板Aと同様の方法で、防眩層および低屈折率層が形成されてない面にパターン位相差層を有するパターン位相差板Gを作製した。
 得られた光学異方性層Gの622.3mm長における直線性は、19μmであった。
[パターン位相差板Hの作製]
 パターン位相差板Gの作製において、表面フィルムGを表面フィルムHに変更した以外はパターン位相差板Gと同様の方法で、パターン位相差板Hを作製した。
 得られた光学異方性層Hの622.3mm長における直線性は、51μmであった。
[パターン位相差板Iの作製]
 パターン位相差板Gの作製において、表面フィルムGを表面フィルムIに変更した以外はパターン位相差板Gと同様の方法で、パターン位相差板Iを作製した。
 得られた光学異方性層Iの622.3mm長における直線性は、10μmであった。
[パターン位相差板Jの作製]
 パターン位相差板Gの作製において、表面フィルムGを表面フィルムJに変更した以外はパターン位相差板Gと同様の方法で、パターン位相差板Jを作製した。
 得られた光学異方性層Jの1134mm長における直線性は、44μmであった。
[パターン位相差板Kの作製]
 パターン位相差板Gの作製において、表面フィルムGを表面フィルムKに変更した以外はパターン位相差板Gと同様の方法で、パターン位相差板Kを作製した。
 得られた光学異方性層Kの1134mm長における直線性は、74μmであった。
[パターン位相差板Lの作製]
 パターン位相差板Gの作製において、表面フィルムGを表面フィルムLに変更した以外はパターン位相差板Gと同様の方法で、パターン位相差板Lを作製した。
 得られた光学異方性層Lの1134mm長における直線性は、10μmであった。
[パターン位相差板Mの作製]
 パターン位相差板Aの作製において、透明支持体Aを透明支持体Mに変更した以外はパターン位相差板Aと同様の方法で、パターン位相差板Mを作製した。
 得られた光学異方性層Mの622.3mm長における直線性は、44μmであった。
[パターン位相差板Nの作製]
 パターン位相差板Gの作製において、透明支持体Aを透明支持体Nに変更した以外はパターン位相差板Aと同様の方法で、パターン位相差板Nを作製した。
 得られた光学異方性層Nの1134mm長における直線性は、66μmであった。
(立体画像液晶表示装置Aの作製)
 立体画像表示装置(東芝社製32ZP2)からパターン位相差板を剥離した。さらに、パターン位相差板の代わりに、パターン位相差板Aをフロント偏光板上に粘着剤を介して貼合し、立体画像液晶表示装置Aを作製した。なお、パターン位相差層がフロント偏光板側になるように貼合した。
(立体画像液晶表示装置Bの作製)
 立体画像表示装置Aの作製において、パターン位相差板Aの代わりにパターン位相差板Bを用いた以外は、立体画像表示装置Aの作製と同様の方法で、立体画像液晶表示装置Bを作製した。
(立体画像液晶表示装置Cの作製)
 立体画像表示装置Aの作製において、パターン位相差板Aの代わりにパターン位相差板Cを用いた以外は、立体画像表示装置Aの作製と同様の方法で、立体画像液晶表示装置Cを作製した。
(立体画像液晶表示装置Dの作製)
 立体画像表示装置(LG社製55LW5700)からパターン位相差板を剥離した。さらに、パターン位相差板の代わりに、パターン位相差板Dをフロント偏光板上に粘着剤を介して貼合し、立体画像液晶表示装置Dを作製した。なお、パターン位相差層がフロント偏光板側になるように貼合した。
(立体画像液晶表示装置Eの作製)
 立体画像表示装置Dの作製において、パターン位相差板Dの代わりにパターン位相差板Eを用いた以外は、立体画像表示装置Dの作製と同様の方法で、立体画像液晶表示装置Eを作製した。
(立体画像液晶表示装置Fの作製)
 立体画像表示装置Dの作製において、パターン位相差板Dの代わりにパターン位相差板Fを用いた以外は、立体画像表示装置Dの作製と同様の方法で、立体画像液晶表示装置Fを作製した。
(立体画像液晶表示装置Gの作製)
 立体画像表示装置Aの作製において、パターン位相差板Aの代わりにパターン位相差板Gを用いた以外は、立体画像表示装置Aの作製と同様の方法で、立体画像液晶表示装置Gを作製した。
(立体画像液晶表示装置Hの作製)
 立体画像表示装置Aの作製において、パターン位相差板Aの代わりにパターン位相差板Hを用いた以外は、立体画像表示装置Aの作製と同様の方法で、立体画像液晶表示装置Hを作製した。
(立体画像液晶表示装置Iの作製)
 立体画像表示装置Aの作製において、パターン位相差板Aの代わりにパターン位相差板Iを用いた以外は、立体画像表示装置Aの作製と同様の方法で、立体画像液晶表示装置Iを作製した。
(立体画像液晶表示装置Jの作製)
 立体画像表示装置Dの作製において、パターン位相差板Dの代わりにパターン位相差板Jを用いた以外は、立体画像表示装置Dの作製と同様の方法で、立体画像液晶表示装置Jを作製した。
(立体画像液晶表示装置Kの作製)
 立体画像表示装置Dの作製において、パターン位相差板Dの代わりにパターン位相差板Kを用いた以外は、立体画像表示装置Dの作製と同様の方法で、立体画像液晶表示装置Kを作製した。
(立体画像液晶表示装置Lの作製)
 立体画像表示装置Dの作製において、パターン位相差板Dの代わりにパターン位相差板Lを用いた以外は、立体画像表示装置Dの作製と同様の方法で、立体画像液晶表示装置Lを作製した。
(立体画像液晶表示装置Mの作製)
 立体画像表示装置Aの作製において、パターン位相差板Aの代わりにパターン位相差板Mを用いた以外は、立体画像表示装置Aの作製と同様の方法で、立体画像液晶表示装置Mを作製した。
(立体画像液晶表示装置Nの作製)
 立体画像表示装置Dの作製において、パターン位相差板Dの代わりにパターン位相差板Nを用いた以外は、立体画像表示装置Dの作製と同様の方法で、立体画像液晶表示装置Nを作製した。
(立体画像液晶表示装置Oの作製)
 東芝社製32ZP2を立体画像液晶表示装置Oとして使用した。東芝社製32ZP2から剥離したパターン位相差板に形成されていた光学異方性層の622.3mm長における直線性は、49μmであった。
(立体画像液晶表示装置Pの作製)
 LG社製55LW5700を立体画像液晶表示装置Pとして使用した。LG社製55LW5700から剥離したパターン位相差板に形成されていた光学異方性層の1134mm長における直線性は、78μmであった。
<評価>
(1)上下方向クロストーク視野角
 暗室にて、上下方向に白と黒が交互に並んだストライプ画像を表示した液晶表示装置の正面に、LG社製55LW5700に付属の3Dメガネと測定器(BM-5A トプコン製)を配置した。白のストライプが視認できる方の3Dメガネを通した位置に測定器をおいて正面輝度Cを測定し、続いて、白と黒の位置を入れ替えたストライプ画像を表示して、先ほどと同じ側のメガネで同様に正面輝度Dを測定し、次の式を用いて正面クロストークを算出した。
 正面クロストーク=正面輝度D/正面輝度C ×100%
 続いて、液晶表示装置の表示部を横方向と上下方向でそれぞれ4等分したときの交点9点について正面クロストークを測定し、平均値を平均正面クロストークとして算出した。
 また、正面クロストークを測定した9点について、3Dメガネと測定機の位置関係を保ったまま、液晶表示装置に対し測定機を上下方向に傾けて、正面クロストークと同様のストライプ画像をもとに輝度を測定し、同様の考え方で上下方向のクロストークを測定した。得られクロストークを元に、測定点すべてが平均正面クロストークから5%以内となる視野角範囲を上下方向クロストーク視野角と定義して算出した。
(2)3D境界ムラ
 液晶表示装置に白と黒が上下方向に交互に並んだストライプ画像を表示し、LG社製55LW5700に付属の3Dメガネを装着して、正面にて白ストライプが視認される側のメガネを遮光して、画面の縦方向の長さの3倍の距離にて正面および上下方向から液晶表示装置を観察したところ、正面では画面全体が黒表示であったが、上下方向の監察角度を大きくすると、見込み角の大きい領域では輝度漏れが視認された。ここで、黒表示領域と輝度漏れ領域の境界にて観察される3D境界ムラを観察した。この評価では、表示面内にて黒表示部分はクロストークがない、または小さいことを意味し、輝度漏れが視認される部分および白表示部分はクロストークがあることを意味する。3D境界ムラの直線性が悪いと、3D表示における画面内のクロストークばらつきが大きく、結果として3D映像の立体感が損なわれることを意味する。正面では3D境界ムラが視認されない立体画像表示装置を用い、上下方向の3D境界ムラを以下の基準で評価した。
 A:3D境界ムラの蛇行が視認されない。
 B:3D境界ムラの蛇行がわずかに視認されるが、3D品位として許容できる。
 C:3D境界ムラがはっきり視認され、3D品位として許容できない。
Figure JPOXMLDOC01-appb-T000009



Figure JPOXMLDOC01-appb-T000010

















































 表から、支持体のパターンに沿った方向の端部の直線性が、画像表示パネルのパターンに沿った方向の垂直方向の長さの0.0195%以下である実施例は、上下方向のクロストークだけでなく、3D境界ムラも改善されていることがわかる。また、支持体の端部の直線性に追随して光学異方性層の直線性も高いことがわかる。
 一方、パターン光学異方性層の支持体の長手方向の両端部を結ぶ、立体画像表示装置の短手方向と平行な直線に対する垂線の長さが、立体画像表示装置の短手方向の長さの0.0195%以下の要件を満たしていない比較例は、実施例と比較して3D境界ムラが劣っていることから、上下方向のクロストーク及び3D境界ムラを共に改善されていないことがわかる。
 上記の実施例1~8では、膜厚80μmのセルロースアシレート系フィルムを使用しているが、膜厚60μm、40μm、30μmのセルロースアシレート系フィルムであっても同様の効果が得られた。
 また、実施例1~8に使用したパターン位相差板には、垂直配向したディスコティック液晶からなるパターン化された光学異方性層が形成されているが、ラビング配向膜付透明支持体の代わりに下記の組成の光配向膜付透明支持体を用い、垂直配向したディスコティック液晶からなるパターン化された光学異方性層の代わりに下記の組成の光学異方性層を用いた以外は同様の方法で作製した、水平配向した棒状液晶からなるパターン化された光学異方性層を形成したパターン位相差板であっても同様の効果が得られた。
<光配向膜付透明支持体の作製>
 透明支持体の鹸化処理を施した面に、下記構造の光配向材料E-1 1%水溶液を塗布し、100℃で1分間乾燥した。得られた塗布膜に、空気下にて160W/cm2の空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射した。このとき、ワイヤーグリッド偏光子(Moxtek社製, ProFlux PPL02)を図6(a)に示すように、方向1にセットして、さらにマスクA(透過部と遮蔽部が同じ横ストライプ幅を有するストライプマスク)を通して、露光を行った。その後、図6(b)に示すように、ワイヤーグリッド偏光子を方向2にセットして、さらにマスクB(透過部と遮蔽部が同じ横ストライプ幅を有するストライプマスク)を通して、露光を行った。露光マスク面と光配向膜の間の距離を200μmに設定した。この際用いる紫外線の照度はUV-A領域(波長380nm~320nmの積算)において100mW/cm2、照射量はUV-A領域において1000mJ/cm2とした。
Figure JPOXMLDOC01-appb-C000011
<パターン化された光学異方性層の作製>
 下記の光学異方性層用組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、塗布液として用いた。光配向膜付透明支持体上に該塗布液を塗布、膜面温度105℃で2分間乾燥して液晶相状態とした後、75℃まで冷却して、空気下にて160W/cm2の空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射して、その配向状態を固定化して、透明支持体上にパターン化された光学異方性層の作製を試みた。光学異方性層の膜厚は、1.3μmであった。
────────────────────────────────────────光学異方性層用組成
────────────────────────────────────────棒状液晶(LC242、BASF(株)製)             100質量部
水平配向剤A                           0.3質量部
光重合開始剤                           3.3質量部
(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)
増感剤(カヤキュア-DETX、日本化薬(株)製)         1.1質量部
メチルエチルケトン                        300質量部
────────────────────────────────────────
Figure JPOXMLDOC01-appb-C000012
 実施例1~8で用いたセルロースアシレート系フィルムの代わりに、別の製法および材料で作製したセルロースアシレート系フィルムであっても同様の効果を得られる。例えば、実施例3、4、7および8、比較例2および4において、それぞれ透明支持体Dの代わりに透明支持体Rを、透明支持体Fの代わりに透明支持体Tを、表面フィルムJの代わりに表面フィルムUを、表面フィルムLの代わりに表面フィルムWを、透明支持体Eの代わりに透明支持体Sを、表面フィルムKの代わりに表面フィルムVを使用した態様であっても同様の効果が得られた。
 また、セルロースアシレート系フィルムの代わりに、特許第4962661号公報の実施例2と同様の方法にて作製した膜厚100μmの透明支持体、特開2010-270162号公報の実施例4と同様の方法にて作製した膜厚40μmの透明支持体、市販の膜厚60μmのノルボルネン系ポリマーフィルム「ZEONOR ZF14-060」((株)オプテス製)、特開2008-268938号公報の実施例9の低透湿層を塗設した保護フィルムと同様の方法にて作製した膜厚84μmの透明支持体、以下のように作製した低透湿層を塗設した膜厚50μmの透明支持体Xでも同様の効果が得られた。すなわち、支持体のパターンに沿った方向の端部の直線性が、画像表示パネルのパターンに沿った方向の垂直方向の長さの0.0195%以下である態様であれば、支持体の種類によらず、立体画像表示装置の視認性を改善できることがわかる。
<透明支持体Xの作製>
(低透湿層形成用組成物の調製)
 各成分を下記表のように混合した後、攪拌機をつけたガラス製セパラブルフラスコに仕込み、室温にて5時間攪拌後、孔径5μmのポリプロピレン製デプスフィルターでろ過し、組成物を得た。なお、下記表において、各成分の添加量は「質量%」を表す。
Figure JPOXMLDOC01-appb-T000013
 以下、使用した化合物について説明する。
・アペルAPL5014DP:環状ポリオレフィン樹脂(三井化学(株)製)
Figure JPOXMLDOC01-appb-C000014
 透明支持体R上に、前記低透湿層形成用組成物A-1をグラビアコーターを用いて塗布した後、25℃で1分間乾燥し、続いて80℃で約5分間乾燥して膜厚10μmの低透湿層を塗設した膜厚50μmの透明支持体Xを作製した。
 作製した透明支持体Xの透湿度(40℃90%相対湿度での透湿度)を下記に示す方法で測定した。透明支持体Xの透湿度は21g/m2/dayであった。
<透湿度(40℃90%相対湿度での透湿度)>
 透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁~294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用した。
 試料70mmφを40℃、相対湿度90%でそれぞれ24時間調湿し、JIS Z-0208の方法に従い透湿カップを用いて、透湿度=調湿後質量-調湿前質量で単位面積あたりの水分量(g/m2)を算出した。なお、本測定では、吸湿剤の入れていないブランクのカップで上記条件における質量変化を測定し、透湿度値の補正を行なった。
 また、セルロースアシレート系フィルムの代わりに、以下のように作製した膜厚40μmの透明支持体Yを使用しても、同様の効果が得られた。すなわち、支持体のパターンに沿った方向の端部の直線性が、画像表示パネルのパターンに沿った方向の垂直方向の長さの0.0195%以下である態様であれば、支持体の種類によらず、立体画像表示装置の視認性を改善できることがわかる。
<透明支持体Yの作製>
(ドープの調製)
 下記に記載の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、ドープを調製した。
(ドープの組成)
セルロースアセテートプロピオネート        30質量部
ダイヤナールBR88(商品名)、三菱レイヨン(株)製、
重量平均分子量1500000           70質量部
 (セルロースエステルとアクリル樹脂は合計100質量部)
透湿度低減化合物 A-5             50質量部
紫外線吸収剤(チヌビン328(チバ・スペシャルティ・ケミカルズ(株)製))
                          2質量部
ジクロロメタン                 447質量部
エタノール                    61質量部
Figure JPOXMLDOC01-appb-C000015
 ドープの固形分濃度(セルロースエステル、アクリル樹脂、透湿度低減化合物、紫外線吸収剤の合計濃度)は18質量%であった。
 バンド流延装置を用い、前記調製したドープを2000mm幅でステンレス製のエンドレスバンド(流延支持体)に流延ダイから均一に流延した。ドープ中の残留溶媒量が40質量%になった時点で流延支持体から高分子膜として剥離し、テンターにて積極的に延伸をせずに搬送し、乾燥ゾーンで130℃で乾燥を行い、膜厚40μmの透明支持体Yを得た。
 作製した透明支持体Yの透湿度(40℃90%相対湿度での透湿度)は40g/m2
dayであった。
1      画像表示パネル
1A、1B  基板
10     液晶層
12     パターン光学異方性層
13     支持体
14     第1位相差領域
15     第2位相差領域
16     視認側偏光膜
18     バックライト側偏光膜
20     パターン位相差板
24     保護フィルム
30     バックライト

Claims (11)

  1.  画像表示パネルと、前記画像表示パネルの視認側に配置されるパターン位相差板とを少なくとも有する立体画像表示装置であって、
     前記パターン位相差板は、支持体と、前記支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有し、
     前記支持体の端部において、前記パターン光学異方性層のパターンに沿った方向の端部の、前記パターン光学異方性層のパターンに沿った方向に対し垂直方向における蛇行幅である直線性が、前記画像表示パネルの前記パターン光学異方性層のパターンに沿った方向に対する垂直方向の長さの0.0195%以下であることを特徴とする立体画像表示装置。
  2.  前記支持体の前記パターン光学異方性層が形成されている面の反対側の面に表面層を有する請求項1に記載の立体画像表示装置。
  3.  前記パターン光学異方性層の前記パターンに沿った方向の直線性が、前記画像表示パネルの前記パターンに沿った方向の垂直方向の長さの0.0065%以下である請求項1又は2に記載の立体画像表示装置。
  4.  前記支持体が、セルロースアシレート系フィルム、ポリエステル系フィルム、アクリル系フィルム、およびノルボルネン系フィルムのいずれかである請求項1~3のいずれか1項に記載の立体画像表示装置。
  5.  前記第1及び第2位相差領域が、互いに直交する面内遅相軸を有し、且つλ/4の面内レターデーションを有する請求項1~4のいずれか1項に記載の立体画像表示装置。
  6. 前記画像表示パネルの大きさが、32~65インチである請求項1~5のいずれか1項に記載の立体画像表示装置。
  7.  前記画像表示パネルが、液晶表示パネルである請求項1~6のいずれか1項に記載の立体画像表示装置。
  8.  画像表示パネルと、前記画像表示パネルの視認側に配置されるパターン位相差板とを少なくとも有し、前記パターン位相差板は、支持体と、前記支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有する立体画像表示装置の製造方法であって、
     前記支持体の端部において、前記パターン光学異方性層のパターンに沿った方向の端部の、前記パターン光学異方性層のパターンに沿った方向に対し垂直方向における蛇行幅である直線性が、前記画像表示パネルの前記パターン光学異方性層のパターンに沿った方向に対し垂直方向の長さの0.0195%以下とした後に、パターン光学異方性層を設けることを含むことを特徴とする立体画像表示装置の製造方法。
  9.  画像表示パネルと、前記画像表示パネルの視認側に配置されるパターン位相差板とを少なくとも有し、前記パターン位相差板は、支持体と、前記支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有する立体画像表示装置において、
     前記支持体として、前記パターン光学異方性層のパターンに沿った方向の端部の、前記パターン光学異方性層のパターンに沿った方向に対する垂直方向における蛇行幅である直線性が、前記画像表示パネルの前記パターン光学異方性層のパターンに沿った方向に対する垂直方向の長さの0.0195%以下である支持体を用いることを特徴とする立体画像表示装置の境界ムラの低減方法。
  10.  請求項1~7のいずれか1項に記載の立体画像表示装置と、該立体画像表示装置の視認側に配置される偏光板とを少なくとも有し、該偏光板を通じて立体画像を視認させることを特徴とする立体画像表示システム。
  11.  支持体と、前記支持体上に面内遅相軸方向及び位相差の少なくとも一方が互いに異なり、ストライプ状に交互に配置されている第1位相差領域及び第2位相差領域とを有するパターン光学異方性層とを少なくとも有し、
     前記支持体において、前記パターン光学異方性層のパターンに沿った方向の端部の、前記パターン光学異方性層のパターンに沿った方向に対する垂直方向における蛇行幅である直線性が、前記パターン光学異方性層のパターンに沿った方向に対する垂直方向の長さの0.0195%以下であることを特徴とするパターン位相差板。
PCT/JP2013/056627 2012-03-13 2013-03-11 立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板 WO2013137188A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147018332A KR20140097557A (ko) 2012-03-13 2013-03-11 입체 화상 표시 장치, 그 제조 방법 및 경계 불균일의 저감 방법, 입체 화상 표시 시스템 그리고 패턴 위상차판
US14/331,641 US20140320775A1 (en) 2012-03-13 2014-07-15 Stereoscopic image display device, method for manufacturing same, method for reducing boundary variation, stereoscopic image display system, and patterned phase difference plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012055215 2012-03-13
JP2012-055215 2012-03-13
JP2013044062 2013-03-06
JP2013-044062 2013-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/331,641 Continuation US20140320775A1 (en) 2012-03-13 2014-07-15 Stereoscopic image display device, method for manufacturing same, method for reducing boundary variation, stereoscopic image display system, and patterned phase difference plate

Publications (1)

Publication Number Publication Date
WO2013137188A1 true WO2013137188A1 (ja) 2013-09-19

Family

ID=49161097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056627 WO2013137188A1 (ja) 2012-03-13 2013-03-11 立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板

Country Status (4)

Country Link
US (1) US20140320775A1 (ja)
JP (1) JPWO2013137188A1 (ja)
KR (1) KR20140097557A (ja)
WO (1) WO2013137188A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238834A (ja) * 2012-04-20 2013-11-28 Dainippon Printing Co Ltd パターン位相差フィルム、画像表示装置、パターン位相差フィルムの製造用金型及びパターン位相差フィルムの製造方法
JP2014153526A (ja) * 2013-02-08 2014-08-25 Dainippon Printing Co Ltd パターン位相差フィルム及び画像表示装置
JP2016006494A (ja) * 2014-05-30 2016-01-14 富士フイルム株式会社 セルロースエステルフィルム、位相差フィルム、液晶表示装置、及びセルロースエステルフィルムの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655631B1 (ko) * 2014-12-30 2016-09-08 주식회사 효성 노르보넨 필름용 첨가제, 및 이를 포함하는 광학 필름
KR101655630B1 (ko) * 2014-12-30 2016-09-23 주식회사 효성 노르보넨 필름용 첨가제, 및 이를 포함하는 광학 필름
JP6571167B2 (ja) * 2015-03-30 2019-09-04 富士フイルム株式会社 位相差フィルム、円偏光フィルム、および、画像表示装置
KR102573661B1 (ko) * 2015-12-31 2023-09-04 엘지디스플레이 주식회사 편광판 및 이를 포함하는 표시장치
CN106200099A (zh) * 2016-08-31 2016-12-07 深圳市华星光电技术有限公司 用于3d显示的液晶面板、驱动方法及像素优化方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044769A (ja) * 2011-08-22 2013-03-04 Dainippon Printing Co Ltd パターン位相差フィルムの製造方法及び光学フィルムの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947936B1 (ko) * 2007-12-24 2010-03-15 주식회사 에이스 디지텍 편광자의 제조방법
JP2011022419A (ja) * 2009-07-16 2011-02-03 Sony Corp 位相差素子、ならびに表示装置およびその製造方法
WO2011102492A1 (ja) * 2010-02-19 2011-08-25 富士フイルム株式会社 光学フィルム、偏光板及び液晶表示装置
KR20110109449A (ko) * 2010-03-31 2011-10-06 동우 화인켐 주식회사 패턴화 리타더, 이 패턴화 리타더를 제조하는 롤-투-롤 제조장치와 제조공정

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044769A (ja) * 2011-08-22 2013-03-04 Dainippon Printing Co Ltd パターン位相差フィルムの製造方法及び光学フィルムの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238834A (ja) * 2012-04-20 2013-11-28 Dainippon Printing Co Ltd パターン位相差フィルム、画像表示装置、パターン位相差フィルムの製造用金型及びパターン位相差フィルムの製造方法
JP2014153526A (ja) * 2013-02-08 2014-08-25 Dainippon Printing Co Ltd パターン位相差フィルム及び画像表示装置
JP2016006494A (ja) * 2014-05-30 2016-01-14 富士フイルム株式会社 セルロースエステルフィルム、位相差フィルム、液晶表示装置、及びセルロースエステルフィルムの製造方法

Also Published As

Publication number Publication date
JPWO2013137188A1 (ja) 2015-08-03
KR20140097557A (ko) 2014-08-06
US20140320775A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2013137188A1 (ja) 立体画像表示装置、その製造方法及び境界ムラの低減方法、立体画像表示システム並びにパターン位相差板
US8223280B2 (en) Phase difference element and display device
JP5783846B2 (ja) 3d画像表示用光学フィルム、3d画像表示装置及び3d画像表示システム
WO2012070424A1 (ja) 光学積層体および液晶表示装置
JP5524903B2 (ja) パターン偏光板、画像表示装置、及び画象表示システム
US9671543B2 (en) Patterned retardation film, patterned polarizing plate, image displaying device, and stereo picture displaying system
JP5815492B2 (ja) 光学フィルム、偏光板、画像表示装置及び3d画像表示システム
JP2012237928A (ja) 光学フィルム、偏光板、画像表示装置及び3d画像表示システム
US20140254014A1 (en) Optical film, polarizing plate and liquid crystal display device
KR20190131576A (ko) 액정 표시 장치
WO2015008850A1 (ja) 光学フィルム、円偏光フィルム、3d画像表示装置
JP5753747B2 (ja) 光学異方性素子、偏光板、画像表示装置、及び立体画像表示システム
JP2012256028A (ja) 光学異方性素子、偏光板、立体画像表示装置、及び立体画像表示システム
WO2013114960A1 (ja) 積層体、並びにそれを有する偏光板、立体画像表示装置、及び立体画像表示システム
JP5711071B2 (ja) 積層体、低反射性積層体、偏光板、画像表示装置、及び3d画像表示システム
JP5837680B2 (ja) 立体画像表示装置及び立体画像表示システム
JP2014006421A (ja) 光学フィルム、3d画像表示装置及び3d画像表示システム
JP2013156494A (ja) パターン位相差板、並びにそれを有する偏光板、立体画像表示装置、及び立体画像表示システム
JP2015045874A (ja) パターン位相差フィルム、パターン偏光板、画像表示装置、及び立体画像表示システム
KR101798465B1 (ko) 입체 화상 표시 장치용 광학 필름, 입체 화상 표시 장치용 편광판 및 입체 화상 표시 장치
JP5899032B2 (ja) 光学フィルム、光学フィルムの製造方法、偏光板、立体画像表示装置、及び立体画像表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147018332

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014504859

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13760444

Country of ref document: EP

Kind code of ref document: A1