[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013136977A1 - Λ/4 phase difference film and method for producing same, circularly polarizing plate, and organic electroluminescent display device - Google Patents

Λ/4 phase difference film and method for producing same, circularly polarizing plate, and organic electroluminescent display device Download PDF

Info

Publication number
WO2013136977A1
WO2013136977A1 PCT/JP2013/055037 JP2013055037W WO2013136977A1 WO 2013136977 A1 WO2013136977 A1 WO 2013136977A1 JP 2013055037 W JP2013055037 W JP 2013055037W WO 2013136977 A1 WO2013136977 A1 WO 2013136977A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
group
retardation film
retardation
compound
Prior art date
Application number
PCT/JP2013/055037
Other languages
French (fr)
Japanese (ja)
Inventor
範江 谷原
田代 耕二
理英子 れん
幸仁 中澤
賢治 三島
翠 木暮
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020147023050A priority Critical patent/KR101662920B1/en
Publication of WO2013136977A1 publication Critical patent/WO2013136977A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a ⁇ / 4 retardation film, a method for producing the same, a circularly polarizing plate provided with a ⁇ / 4 retardation film, and an organic electroluminescence display device.
  • a self-luminous display device such as an organic electroluminescence display device has attracted attention as a new display device.
  • the self-luminous display device has a room for suppressing power consumption compared with a liquid crystal display device whose backlight is always lit, and in addition, a light source corresponding to each color such as an organic electroluminescence display device is lit.
  • a color filter that causes a reduction in contrast, so that the contrast can be further increased.
  • a reflector such as an aluminum plate is provided on the back side of the display in order to increase the light extraction efficiency. Therefore, the external light incident on the display is reflected by the reflector and the image is reflected. There is a problem of lowering the contrast.
  • the ⁇ / 4 retardation film has characteristics capable of converting linearly polarized light into circularly polarized light and elliptically polarized light, or converting circularly polarized light and elliptically polarized light into linearly polarized light.
  • Such a ⁇ / 4 retardation film Are widely used in various optical applications such as image display devices and optical pickup devices.
  • the ⁇ / 4 retardation film used in the organic electroluminescence display device substantially gives a retardation of ⁇ / 4 with respect to a wide wavelength range of visible light. It is required that the phase difference imparted to the light has a negative wavelength dispersion (reverse wavelength dispersion) greater than the phase difference imparted to the short wavelength light.
  • it is a film that gives a phase difference of 1 ⁇ 4 wavelength and exhibits sufficient negative wavelength dispersion (reverse wavelength dispersion), and has a phase difference of ⁇ / 4 for light in a wide wavelength region. It was difficult to obtain a film capable of imparting.
  • Japanese Patent Laid-Open No. 8-321381 discloses a method of using a circularly polarizing element for preventing external light reflection on a mirror surface.
  • the circularly polarizing element described in the above patent document is formed by laminating an absorption linear polarizing plate and a ⁇ / 4 retardation film so that their optical axes intersect at 45 degrees or 135 degrees. Yes.
  • the refractive index of the stretched film is different from wavelength to wavelength. Although it can be exactly 1 ⁇ 4 wavelength, the phase difference is shifted from the ⁇ / 4 wavelength at other wavelengths, so that it does not function as a ⁇ / 4 retardation film.
  • Japanese Patent Laid-Open No. 2-285304 describes a method of laminating uniaxially stretched films having different Abbe numbers
  • Japanese Patent No. 0734211 discloses a ⁇ / 2 retardation film using a liquid crystal coating film.
  • a method of laminating a ⁇ / 4 retardation film is disclosed.
  • Japanese Patent Laid-Open No. 2001-194527 discloses a method of blending a polymer having positive and negative intrinsic birefringence
  • Japanese Patent No. 345779 discloses a method of copolymerizing a material having positive and negative intrinsic birefringence. Each method for forming a film is disclosed.
  • a method for producing an optical compensation film for a liquid crystal display device by adding a compound having a retardation increasing function to a cellulose ester film having a retardation exhibiting reverse wavelength dispersibility and performing a stretching treatment is known. Yes.
  • the cellulose ester resin is generally a highly isotropic substance, the retardation development property is low, and in order to achieve the retardation necessary for ⁇ / 4, the addition of a compound capable of increasing retardation It was necessary to increase the amount.
  • Patent Document 1 discloses that a retardation film in which a vertically aligned liquid crystal layer is provided on an obliquely stretched cellulose ester film has a ⁇ / 4 retardation in a wide wavelength range. It is disclosed that the provided organic EL display device improves the color variation due to reflection of external light.
  • Patent Document 1 since a vertically aligned liquid crystal layer is provided after producing a retardation film, the process is complicated, and further improvement has been desired from the viewpoint of manufacturability. .
  • the organic EL display device provided with the retardation film has a problem that the image has bleeding and a high-definition image cannot be obtained. This problem is that light that enters the retardation film from the light emitting layer is reflected at the interface between the retardation film and the adjacent layer, and is further diffusely reflected by the additives separated in the retardation film, resulting in image blurring. Is presumed to be the cause.
  • Patent Document 2 and Patent Document 3 disclose a retardation plate composed of a reverse wavelength dispersive single layer having a retardation value of ⁇ / 4 in the entire wavelength region by containing a compound having a specific structure. ing.
  • the actual retardation development is low, and in order to realize the ⁇ / 4 retardation, it is necessary to increase the film thickness.
  • the light extraction efficiency deteriorates as the transmittance decreases.
  • Patent Document 4 discloses a retardation plate in which the retardation and reverse wavelength dispersion characteristics are further improved by containing a specific compound. However, since the retardation in the thickness direction is high, the retardation plate is viewed obliquely. Further, there is a problem that the phase difference deviates by more than ⁇ / 4 and the visibility deteriorates.
  • Patent Document 5 as a retardation control agent, a low-molecular compound in which the magnitude of the dipole moment in the direction orthogonal to the molecular major axis direction is larger than the magnitude of the dipole moment in the direction parallel to the molecular major axis direction. Including optical films have been proposed.
  • the retardation control agent described in Patent Document 5 has low retardation, particularly in-plane retardation, and the film thickness must be increased in order to obtain a desired retardation. Have a problem.
  • the retardation development property and the reverse wavelength dispersion property are in a trade-off relationship, and the ⁇ / 4 retardation film has a high retardation development property in a wide wavelength region and exhibits a sufficient reverse wavelength dispersion property.
  • the development of is eagerly desired.
  • the present invention has been made in view of the above problems, and its solution is high retardation development in a wide wavelength region, excellent reverse wavelength dispersion characteristics in a thin film, low haze and high transparency, A ⁇ / 4 retardation film excellent in light resistance and coloring resistance, a method for producing the same, a circularly polarizing plate using the same, and an organic electroluminescence display device including the circularly polarizing plate and excellent in color stability Is to provide.
  • the present inventor has obtained a ⁇ / containing a thermoplastic resin and a compound (I) bonded with a linking group having a linking site at least at three positions as a phase difference adjusting agent.
  • the compound (I) includes a linking group and a group linked via the two linking sites, and has a chemical structure moiety X (having a maximum absorption wavelength in a wavelength region of 200 nm or more and less than 280 nm) A main chain) and a chemical structure moiety Y (a structure branched from the chemical structure moiety X (main chain) by a group bonded via at least one of the other linking sites of the linking group.
  • A) chemical structural moiety Y (side chain) of the compound (I) has a maximum absorption wavelength in the wavelength range of 280 to 380 nm
  • b) chemical structural moiety X (main chain) Total absorption intensity and total absorption intensity of chemical structure part Y (side chain)
  • the ratio of Ro (450) / Ro (550) and the value of Ro (550) / Ro (650) are set to a specific range as chromatic dispersion characteristics.
  • the ⁇ / 4 retardation film has high retardation development in a wide wavelength region, excellent reverse wavelength dispersion characteristics in a thin film, low haze, high transparency, light resistance, and excellent coloring resistance. It has been found that a phase difference film can be realized and has reached the present invention.
  • a ⁇ / 4 retardation film containing a thermoplastic resin and a compound (I) bonded with a linking group having a linking site at least at three positions, the linking group in the compound (I) and the two positions
  • a chemical structure moiety X (main chain) having a maximum absorption wavelength in a wavelength region of 200 nm or more and less than 280 nm, and at least one of the other linking sites of the linking group.
  • the chemical structure portion Y (side chain) has a maximum absorption wavelength in a wavelength range of 280 to 380 nm.
  • B 25.0 ⁇ ⁇ ABS y / ⁇ ABS x ⁇ 1.01
  • ⁇ ABS x represents the total absorption intensity of the chemical structure portion X (main chain) of the compound (I)
  • ⁇ ABS y represents the total absorption intensity of the chemical structure portion Y (side chain) of the compound (I).
  • DSP1 and DSP2 each represent the wavelength dispersion characteristic of a ⁇ / 4 retardation film
  • Ro (450) is an in-plane retardation value for light having a wavelength of 450 nm
  • Ro (550) is an in-plane retardation for light having a wavelength of 550 nm
  • Ro (650) is an in-plane retardation value for light having a wavelength of 650 nm.
  • each in-plane retardation value is the value measured in the environment of 23 degreeC and 55% RH.
  • L 1 and L 2 each independently represent a single bond or a divalent linking group.
  • R 1 , R 2 and R 3 each independently represent a substituent.
  • n represents an integer of 0 to 2.
  • Wa and Wb each represent a hydrogen atom or a substituent; (I) Wa and Wb are bonded to each other to form a ring; (II) at least one of Wa and Wb has a ring structure; or (III) Wa and Wb At least one of Wb is an alkenyl group or an alkynyl group. ] 3.
  • the aspect ratio of the compound (I) is less than 1.70, The ⁇ / 4 retardation film according to item 1 or 2,
  • thermoplastic resin is a cellulose ester
  • the ⁇ / 4 retardation film according to any one of Items 1 to 4, wherein the ⁇ / 4 retardation film is in a range of ⁇ 0.70.
  • the ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the fast axis direction is in the range of 0.05 to 0.70 through the stretching shrinkage step of shrinking into A method for producing a ⁇ / 4 retardation film, wherein the film is produced by stretching the film.
  • a method for producing a ⁇ / 4 retardation film which produces the ⁇ / 4 retardation film according to any one of items 1 to 4, wherein a slow axis direction is 30 to A method for producing a ⁇ / 4 retardation film, which is produced under the condition of orientation within an angle range of 60 °.
  • a method for producing a ⁇ / 4 retardation film for producing the ⁇ / 4 retardation film according to any one of items 1 to 4, wherein the film feeding direction and the film take-up in the stretching step A method for producing a ⁇ / 4 retardation film, characterized in that the film is produced under the condition that the direction is oblique and the slow axis is provided within an angle range of 30 to 60 ° with respect to the film take-off direction.
  • a circularly polarizing plate comprising the ⁇ / 4 retardation film according to any one of items 1 to 7 and a polarizer.
  • An organic electroluminescence display device comprising the circularly polarizing plate according to item 11 and an organic electroluminescence element.
  • the present inventors have studied a wide range of compounds having various structures by paying attention to the main chain structure of a phase difference adjusting agent that is excellent in retardation increasing effect.
  • the wavelength dispersion characteristics were insufficient.
  • the compound having a specific absorption peak in the absorption intensity ratio between the main chain structure and the side chain structure is in a specific condition.
  • ⁇ / 4 position having high retardation development in a wide wavelength region, excellent reverse wavelength dispersion characteristics in a thin film, low haze, high transparency, excellent light resistance and coloring resistance
  • a phase difference film a method for producing the same, a circularly polarizing plate using the same, and an organic electroluminescence display device having the circularly polarizing plate and having excellent color stability can be provided.
  • FIG. 1 Schematic diagram illustrating the shrinkage ratio in the stretching / shrinking process of stretching in the slow axis direction and contracting in the fast axis direction
  • the schematic diagram which shows an example of the extending
  • the schematic diagram which shows another example of the extending
  • the ⁇ / 4 retardation film of the present invention is a ⁇ / 4 retardation film containing a thermoplastic resin and a compound (I) bonded with a linking group having a linking site at least at three positions, and the compound A chemical structure moiety X (main chain) having a maximum absorption wavelength in a wavelength region of 200 nm or more and less than 280 nm, which includes the linking group in (I) and a group linked via the two linking sites; Among the other linking sites of the group, a group bonded via at least one linking site, and having a chemical structure portion Y (side) having a shorter molecular length than the chemical structure portion X (main chain, hereinafter also referred to as main chain X)
  • the compound (I) satisfies the conditions specified in the above (a) and (b) at the same time, and the wavelength dispersion characteristics satisfy the above (c) and (d) at the same time.
  • a ⁇ / 4 retardation film that is high, has a thin film with excellent reverse wavelength dispersion characteristics, low haze, high transparency, and excellent light resistance and coloring resistance can be realized. This feature is a technical feature common to the inventions according to claims 1 to 12.
  • the chemical structure part X (main chain) and the chemical structure part Y (side chain) in the compound (I) according to the present invention are defined as follows.
  • a chemical structure portion having a maximum absorption wavelength in the wavelength region is defined as a chemical structure portion X (main chain).
  • the chemical structure portion X (main chain) is a chemical structure portion constituted by an interatomic distance between atoms having the longest linear distance.
  • the chemical structure portion Y (side chain) is a group that is bonded to at least one linking site among the other linking sites of the linking group and is branched from the chemical structure portion X (main chain). Is defined as a chemical structure portion having a maximum absorption wavelength in the wavelength range of 280 to 380 nm.
  • the compound (I) is a compound represented by the general formula (A) from the viewpoint that the effect intended by the present invention can be further expressed. Moreover, it is a preferable aspect that the aspect ratio of the said compound (I) is less than 1.70, More preferably, it is the range of 1.01 or more and less than 1.70.
  • the thermoplastic resin is a cellulose ester.
  • the film is produced by stretching in the slow axis direction and shrinking in the fast axis direction, and the ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the slow axis direction (shrinkage ratio / stretch ratio) is 0. It is preferably within the range of .05 to 0.70.
  • the slow axis direction is preferably oriented within an angle range of 30 to 60 ° with respect to the transport direction. Further, it is preferable that the film feeding direction and the film take-up direction are obliquely crossed and that the slow axis is within an angle range of 30 to 60 ° with respect to the film take-up direction.
  • the ⁇ / 4 retardation film of the present invention can be produced by a stretching / shrinking process of stretching in the slow axis direction and contracting in the fast axis direction, and then proceeding to the stretch ratio in the slow axis direction. It is produced by stretching under the condition that the ratio of shrinkage ratio in the axial direction (shrinkage ratio / stretching ratio) is in the range of 0.05 to 0.70, and the slow axis direction is 30 to 60 with respect to the conveying direction.
  • the film is manufactured under the condition that the film is oriented within the angle range of °, and the film feeding direction and the film drawing direction in the stretching process are obliquely crossed, and within the angle range of 30 to 60 ° with respect to the film drawing direction. It is preferable to produce them under the condition of providing a slow axis.
  • the ⁇ / 4 retardation film of the present invention can be suitably included in a circularly polarizing plate and an organic electroluminescence display device.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the ⁇ / 4 retardation film of the present invention refers to a film having a function of converting linearly polarized light having a specific wavelength into circularly polarized light or converting circularly polarized light into linearly polarized light.
  • the ⁇ / 4 retardation film has an in-plane retardation value Ro of about 1 ⁇ 4 with respect to a predetermined wavelength of light (usually in the visible light region).
  • Ro (550) measured at a wavelength of 550 nm is preferably in the range of 120 to 180 nm, more preferably in the range of 120 to 160 nm, and 125 to 150 nm. It is particularly preferable that it is within the range.
  • the retardation plate Since the ⁇ / 4 retardation film of the present invention obtains almost perfect circularly polarized light in the visible light wavelength range, the retardation plate has a retardation of approximately 1 ⁇ 4 of the wavelength in the visible light wavelength range.
  • a broadband ⁇ / 4 retardation film which is a (film) is preferable.
  • a phase difference of approximately 1 ⁇ 4 in the wavelength range of visible light means an inverse wavelength dispersion characteristic having a larger phase difference value as the wavelength is longer in a wavelength range of 400 to 700 nm.
  • the in-plane retardation value Ro is represented by the following formula (i).
  • n x and n y are, 23 ° C., respectively, were measured under the environment of 55% RH, the refractive index at a wavelength of 450 nm, 550 nm, or 650 nm, n x is the plane of the film the refractive index of the (refractive index in a slow axis direction), n y is a refractive index in a direction perpendicular to the slow axis in the film plane, d is the film thickness (nm).
  • the ratio of Ro (450) measured at a wavelength of 450 nm to the in-plane retardation value Ro (550) measured at a wavelength of 550 nm (as defined in the above item (c)) is in the range of 0.72 to 0.96, preferably in the range of 0.75 to 0.92. More preferably, it is within the range of 78 to 0.88.
  • the ratio of the in-plane retardation value Ro (550) measured at a wavelength of 550 nm to the in-plane retardation value Ro (650) measured at a wavelength of 650 nm (DSP2; Ro (550) ) / Ro (650)) is in the range of 0.83 to 0.98, but the balance with the value of Ro (450) / Ro (550) is important.
  • the value of (450) / Ro (550) is in the range of 0.72 to 0.96
  • the value of Ro (550) / Ro (650) is in the range of 0.87 to 0.98.
  • the value of Ro (450) / Ro (550) is in the range of 0.75 to 0.92
  • the value of Ro (550) / Ro (650) is 0.88 to 0.00.
  • the value of Ro (450) / R is more preferably in the range of 0.90 to 0.94.
  • the film thickness d is generally within the range of 30 to 150 ⁇ m, preferably within the range of 40 to 100 ⁇ m, and preferably within the range of 50 to 75 ⁇ m. It is particularly preferable from the viewpoint of further manifesting the effects of the invention.
  • the in-plane retardation value Ro can be calculated by measuring the birefringence at each wavelength in an environment of 23 ° C. and 55% RH using an Axoscan manufactured by Axometers.
  • a circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the ⁇ / 4 retardation film of the present invention and the transmission axis of the polarizer described later is substantially 45 °.
  • substantially 45 ° means within a range of 40 to 50 °.
  • the angle between the in-plane slow axis of the ⁇ / 4 retardation film of the present invention and the transmission axis of the polarizer is preferably in the range of 41 to 49 °, and in the range of 42 to 48 °. More preferably, it is more preferably in the range of 43 to 47 °, and most preferably in the range of 44 to 46 °.
  • the compound (I) according to the present invention is a compound bonded with a linking group having a linking site in at least three places, and the linking group and the two linking sites.
  • a chemical structure moiety X (main chain) having a maximum absorption wavelength in a wavelength region of 200 nm or more and less than 280 nm, and at least one linking site among the other linking sites of the linking group.
  • a chemical structure portion Y (side chain) having a structure branched from the chemical structure portion X (main chain), and the conditions specified in the following (a) and (b): It is characterized by satisfying at the same time.
  • the chemical structure part Y (side chain) part constituting the compound (I) has a maximum absorption wavelength in a wavelength range of 280 to 380 nm.
  • the compound (I) having a main chain and a side chain according to the present invention has at least two maximum absorption wavelengths in the ultraviolet absorption region in a state dissolved in a solvent, and the maximum absorption wavelength ⁇ max x on the shorter wavelength side is Spectral absorption characteristics belonging to the main chain X of the compound (I), having a maximum absorption wavelength in a wavelength range of 200 nm or more and less than 280 nm, and the maximum absorption wavelength ⁇ max y on the longer wave side is the side chain Y of the compound (I) Spectral absorption characteristics belonging to In the present invention, the maximum absorption wavelength ⁇ max y on the long wave side belonging to the side chain Y is in the wavelength range of 280 to 380 nm.
  • the second condition is (B)
  • the total absorption intensity attributed to the chemical structure part X (main chain) of the compound (I) is ⁇ ABS x
  • the total absorption intensity attributed to the chemical structure part Y (side chain) of the compound (I) is ⁇ ABS y
  • the value of the absorption intensity ratio ( ⁇ ABS y / ⁇ ABS x ) between ⁇ ABS x and ⁇ ABS y is in the range of 1.01 to 25.0.
  • ShigumaABS y total absorption intensity attributed the total absorption intensity attributable to the chemical structure moiety X (main chain) of the present invention to ShigumaABS x and chemical structure moiety Y (side chain) can be measured according to the following procedure .
  • Compound (I) according to the present invention is dissolved in tetrahydrofuran (without stabilizer) at a concentration of 10 ⁇ 4 mol / L to prepare a compound (I) solution.
  • the prepared compound (I) solution is put in a quartz cell (10 mm long square cell), and an ultraviolet-visible infrared spectrophotometer (U-570, manufactured by JASCO Corporation) is used to measure the wavelength range of the compound (I) solution.
  • U-570 ultraviolet-visible infrared spectrophotometer
  • the absorbance (solution absorption spectrum) in the range of 200 to 380 nm is measured.
  • the maximum absorption wavelength on the long wavelength side belonging to the chemical structure portion Y (side chain) in the absorption spectrum in the wavelength region of 200 to 380 nm is expressed as ⁇ max y
  • the absorbance at ⁇ max y is determined as the total absorption intensity ⁇ ABS y attributed to the chemical structure portion Y (side chain).
  • the wavelength of the maximum absorption on the short wavelength side belonging to the chemical structure portion X (main chain) is ⁇ max x
  • the absorbance at ⁇ max x is measured as the total absorption intensity ⁇ ABS x belonging to the chemical structure portion X (main chain).
  • the value of the absorption intensity ratio ( ⁇ ABS y / ⁇ ABS x ) is calculated from each obtained measurement value.
  • the main chain X and the side chain Y of the compound (I) according to the present invention can be defined by measurement by the above-described method.
  • a ⁇ / 4 retardation film described later is used.
  • the orientation is such that the direction of the slow axis of the compound coincides with the direction of the main chain X of the compound (I).
  • the aspect ratio is preferably less than 1.70, more preferably 1.01 or more and less than 1.70.
  • Winstar MOPAC AM1 (MOP6W70) (Senda, “Development of molecular computing support system Winmostar”, Idemitsu Technical Report, 49, 1, 106-111 (2006)) is used. This is the calculated value.
  • the aspect ratio is the molecular length / molecular width
  • the molecular length is a value obtained by adding the van der Waals radii of two atoms at both ends to the maximum interatomic distance in the compound
  • the molecular width is This is a value obtained by adding the van der Waals radii of two atoms at both ends to the maximum interatomic distance when each atom is projected onto a plane perpendicular to the molecular long axis.
  • the compound (I) having an aspect ratio of less than 1.70 by selecting the compound (I) having an aspect ratio of less than 1.70, it becomes anisotropic to the thermoplastic resin, and the effect of increasing the reverse wavelength dispersibility is easily obtained.
  • the retardation development required for the retardation film can be achieved.
  • the compound (I) according to the present invention is not particularly limited as long as it simultaneously satisfies the conditions (a) and (b) specified above, but is represented by the following general formula (A) and the condition (a It is preferable that the compound satisfies the conditions specified in (b) and (b) at the same time.
  • the refractive index nx in the slow axis direction can be increased, and the fast axis direction refractive index ny in the ultraviolet region can be increased to increase the fast axis.
  • the forward wavelength dispersion slope of the directional refractive index ny can be made steep.
  • L 1 and L 2 each independently represent a single bond or a divalent linking group.
  • R 1 , R 2 and R 3 each independently represent a substituent.
  • n represents an integer of 0 to 2.
  • Wa and Wb each represent a hydrogen atom or a substituent, (I) Wa and Wb may be bonded to each other to form a ring, and (II) at least one of Wa and Wb may have a ring structure Or (III) at least one of Wa and Wb may be an alkenyl group or an alkynyl group.
  • L 1 and L 2 each independently represent a single bond or a divalent linking group.
  • L 1 and L 2 are preferably O, (C ⁇ O) —O, or O (C ⁇ O).
  • R 1 , R 2 and R 3 each independently represent a substituent.
  • substituent represented by R 1 , R 2 and R 3 include a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), an alkyl group (eg, methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (for example, cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group ( For example, vinyl group, allyl group, etc.), cycloalkenyl group (eg, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg, ethyl
  • R 1 and R 2 are preferably a substituted or unsubstituted benzene ring or a substituted or unsubstituted cyclohexane ring. More preferably, they are a benzene ring having a substituent and a cyclohexane ring having a substituent, and the benzene ring having a substituent at the 4-position is a compound of the general formula (A) in the slow axis direction of the ⁇ / 4 retardation film. This is particularly preferred from the viewpoint of orienting the main chain and increasing the slow axis direction refractive index nx.
  • R 3 is preferably a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a hydroxy group, a carboxy group, an alkoxy group, an aryloxy group, an acyloxy group, a cyano group, or an amino group, More preferably, they are a hydrogen atom, a halogen atom, an alkyl group, a cyano group, and an alkoxy group.
  • Wa and Wb each independently represent a hydrogen atom or a substituent, and Wa and Wb may be bonded to each other to form a ring, or at least one of Wa and Wb may have a ring structure, or Wa and Wb At least one may be an alkenyl group or an alkynyl group.
  • substituent represented by Wa and Wb include halogen atoms (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl groups (eg, methyl group, ethyl group, n-propyl group, Isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (for example, cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (for example, vinyl group, Allyl group), cycloalkenyl group (eg 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg ethynyl group, propargyl group etc.), aryl group (eg phenyl group) ,
  • Wa and Wb are bonded to each other to form a ring, the following structures may be mentioned.
  • R 4 , R 5 and R 6 each represent a hydrogen atom or a substituent, and examples of the substituent include the same groups as the specific examples of the substituent represented by R 1 , R 2 and R 3 above. be able to.
  • Wa and Wb are a hydrogen atom and the other has a ring-setting group
  • the following structures are exemplified.
  • R ii and R iii may include the same groups as the specific examples of the substituents represented by R 1 , R 2 and R 3 , respectively.
  • the content of the compound (I) according to the present invention in the ⁇ / 4 retardation film is preferably in the range of 0.01 to 30% by mass, more preferably 1.0 to 20% by mass. Within range.
  • the compound (I) according to the present invention can be performed by applying a known synthesis method. Specifically, synthesis may be performed with reference to the methods described in Journal of Chemical Crystallography (1997); 27 (9); 512-526), JP 2010-31223 A, JP 2008-107767 A, and the like. it can.
  • the ⁇ / 4 retardation film of the present invention is configured using a thermoplastic resin as a matrix resin.
  • a thermoplastic resin Cellulose ester resin (cellulose acetate, cellulose acylate, etc.), a polycarbonate-type resin, and a cycloolefin type resin are preferable, and it is preferable that especially a main component is a cellulose ester resin.
  • the “main component” in the present invention means that 60% by mass or more of the thermoplastic resin component constituting the ⁇ / 4 retardation film is composed of a cellulose ester.
  • the cellulose ester resin is cellulose acetate.
  • the cellulose acetate preferably has an average degree of acetyl group substitution of 2.00 or more, more preferably in the range of 2.00 to 2.95, and further in the range of 2.20 to 2.90. preferable.
  • the average acetyl group average substitution degree here means the average number of esterified (acetylated) hydroxy groups (hydroxyl groups) among the three hydroxy groups (hydroxyl groups) of each anhydroglucose constituting the cellulose. Value, a value in the range of 0 to 3.0.
  • the average degree of acetyl group substitution of cellulose acetate is 2.0 or more, it is possible to suppress the occurrence of deterioration in film surface quality due to an increase in dope viscosity and haze increase due to an increase in stretching tension.
  • the portion not substituted with an acetyl group is usually present as a hydroxy group (hydroxyl group).
  • hydroxy group hydroxyl group
  • the degree of substitution of the acetyl group was determined according to the method prescribed in ASTM-D817-96 (test method for cellulose acetate etc.).
  • the number average molecular weight (Mn) of the cellulose acetate according to the present invention is preferably in the range of 30,000 to 300,000 because the mechanical strength of the resulting film is strong. Further, it is preferably in the range of 50,000 to 200,000.
  • the value of the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose acetate is preferably in the range of 1.4 to 3.0.
  • the weight average molecular weight Mw and number average molecular weight Mn of cellulose acetate can be determined by measurement using gel permeation chromatography (GPC).
  • the measurement conditions are as follows.
  • the cellulose which is a raw material of the cellulose acetate according to the present invention is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
  • the cellulose acetate according to the present invention can be produced by a known method.
  • cellulose is mixed with raw material cellulose, a predetermined organic acid (such as acetic acid), acid anhydride (such as acetic anhydride), and a catalyst (such as sulfuric acid) to esterify (acetylate) cellulose, The reaction proceeds until ester (acetylation) is formed.
  • ester acetylation
  • triester (acetylation) the three hydroxy groups (hydroxyl groups) of the glucose unit are substituted with acetyl groups of organic acids.
  • cellulose acetate having a desired degree of acetyl group substitution can be synthesized by hydrolyzing the triester of cellulose. Thereafter, cellulose acetate can be obtained through steps such as filtration, precipitation, washing with water, dehydration, and drying.
  • the retardation development property is high, and even if it is a retardation film having a high retardation, it can be made into a thin film, and even if a high retardation is exhibited, the draw ratio Cellulose acylate other than the above-mentioned cellulose acetate can be applied as the cellulose ester resin from the standpoint that the failure can be avoided and failure such as breakage can be avoided, and the total acyl group substitution degree of the cellulose acylate can be reduced.
  • One preferred embodiment is to use a film having an average value of 1.00 or more and 3.00 or less.
  • the average value of the degree of substitution of acyl groups having 3 or more carbon atoms is preferably in the range of 0.50 to 2.50.
  • the method for measuring the degree of acyl group substitution defined in the present invention can be carried out in accordance with ASTM D-817-91.
  • the average value of the total acyl group substitution degree is preferably in the range of 1.00 to 3.00, more preferably in the range of 2.00 to 2.90, and particularly preferably 2.40. Within the range of ⁇ 2.75.
  • the average substitution degree of acyl groups having 3 or more carbon atoms is preferably in the range of 0.50 to 2.50, more preferably in the range of 0.80 to 2.00, Particularly preferably, it is within the range of 1.00 to 1.70.
  • the film is not damaged by the alkali saponification treatment at the time of forming the circularly polarizing plate, and can function as a protective film.
  • the upper limit of the total acyl group substitution degree of cellulose acylate is determined to be 3.0.
  • the acyl group substitution degree of 3 or more carbon atoms of cellulose acylate is 0.50 or more, the ⁇ / 4 plate can be imparted with hydrophobicity, and the effect of improving the durability of the light emitting device according to the present invention can be obtained. If it can be obtained and it is 2.50 or less, the adhesiveness with the polarizer becomes good, and the production of the polarizing plate becomes easy.
  • the acyl group having 3 or more carbon atoms is preferably a propionyl group.
  • the number average molecular weight (Mn) of the cellulose acylate is preferably in the range of 30000 to 300000, since the mechanical strength of the resulting film is strong. Further, those within the range of 50,000 to 200,000 are preferably used.
  • the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose acylate is preferably in the range of 1.4 to 3.0.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of cellulose acylate can be determined by measurement using the above-mentioned gel permeation chromatography (GPC).
  • the cellulose acylate including the cellulose acetate according to the present invention can be obtained by acylating a cellulose raw material.
  • the acylating agent is an acid anhydride (for example, acetic anhydride, propionic anhydride, butyric anhydride, etc.)
  • an organic acid such as acetic acid or an organic solvent such as methylene chloride is used. Synthesize using a protic catalyst.
  • the acylating agent is acid chloride (for example, CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl, etc.)
  • the reaction is carried out using a basic compound such as amine as a catalyst. Done.
  • the cellulose acylate applicable to the present invention can be produced by a known method. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
  • the cellulose used as a raw material for the cellulose resin is not particularly limited, and examples thereof include cotton linter, wood pulp (for example, derived from coniferous tree, derived from broadleaf tree), kenaf and the like. Moreover, the cellulose acylate obtained from them can be mixed and used in arbitrary ratios, respectively.
  • cellulose acylates include cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate or cellulose acetate phthalate as well as propionate group, butyrate group or phthalyl group.
  • a mixed fatty acid ester of cellulose to which is bound can be used.
  • the butyryl group forming butyrate may be linear or branched.
  • cellulose acylate preferably used in the present invention, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are particularly preferably used. Of these, cellulose acetate propionate is most preferred.
  • resins having different degrees of substitution may be mixed and used.
  • the mixing ratio is preferably in the range of 10:90 to 90:10 (mass ratio).
  • thermoplastic resin other than cellulose ester may be used.
  • thermoplastic resin refers to a resin that has the characteristics that it becomes soft when heated to the glass transition temperature (Tg) or melting point and can be molded into the desired shape.
  • thermoplastic resin examples include polyethylene (PE), high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), polypropylene (PP), polyvinyl chloride (PVC), and polyvinylidene chloride ( PVDC), polystyrene (PS), polyvinyl acetate (PVAc), Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene copolymer), AS resin (acrylonitrile styrene copolymer), Acrylic resin (PMMA) or the like can be used.
  • PE polyethylene
  • HDPE high density polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PVDC polyvinyl chloride
  • PS polyvinyl acetate
  • Teflon registered trademark
  • ABS resin acrylonitrile butadiene styrene copolymer
  • PA polyamide
  • nylon polyacetal
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • GF-PET glass fiber reinforced polyethylene terephthalate
  • COP cyclic polyolefin
  • polyphenylene sulfide PPS
  • polytetrafluoroethylene PTFE
  • PSF polysulfone
  • PES polyethersulfone
  • amorphous Polyarylate liquid crystal polymer, polyetheretherketone (PEEK), thermoplastic polyimide (PI), polyamideimide (PAI) and the like can be used.
  • thermoplastic resin in accordance with the application of the present invention.
  • Organic solvents useful for preparing cellulose ester solution or dope by dissolving cellulose ester mainly include chlorinated organic solvents and non-chlorinated organic solvents.
  • Examples of the chlorinated organic solvent include methylene chloride (methylene chloride).
  • methylene chloride methylene chloride
  • non-chlorine organic solvents include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1, Examples include 1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane.
  • a dissolution method at normal temperature can be used, but a known dissolution method such as a high-temperature dissolution method, a cooling dissolution method, or a high-pressure dissolution method may be used. From the viewpoint of reducing the amount of insoluble matter.
  • methylene chloride can be used for the cellulose ester, it is preferable to use methyl acetate, ethyl acetate, or acetone, and among them, methyl acetate is particularly preferable.
  • an organic solvent having good solubility with respect to the cellulose ester is referred to as a good solvent, and has a main effect on dissolution, and an organic solvent used in a large amount among them is a main (organic) solvent or a main solvent. It is called (organic) solvent.
  • the dope used for forming the ⁇ / 4 retardation film of the present invention preferably contains an alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass in addition to the organic solvent. .
  • These alcohols after casting the dope on a metal support, start to evaporate the organic solvent, and when the relative proportion of the alcohol component increases, the dope film (web) gels, making the web strong and supporting the metal It can act as a gelling solvent that makes it easy to peel off from the body, and when the proportion of these alcohols is low, it also has a role of promoting dissolution of the cellulose ester of the non-chlorine organic solvent.
  • Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, it is preferable to use ethanol from the viewpoints of excellent dope stability, relatively low boiling point, and good drying properties. These alcohols are categorized as poor solvents because they do not have solubility in cellulose esters by themselves.
  • the concentration of cellulose ester in the dope is preferably in the range of 15 to 30% by mass, and the dope viscosity is adjusted in the range of 100 to 500 Pa ⁇ s, from the viewpoint that excellent film surface quality can be obtained. To preferred.
  • additives examples include plasticizers, ultraviolet absorbers, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, and fine particles.
  • additives other than fine particles may be added when preparing the cellulose ester solution, or may be added when preparing the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to the polarizing plate used in the image display device.
  • the ⁇ / 4 retardation film of the present invention preferably contains a plasticizer.
  • the ⁇ / 4 retardation film of the present invention preferably contains a polyester plasticizer having a number average molecular weight (Mn) in the range of 1000 to 10,000.
  • the specific structure of the polyester plasticizer is not particularly limited, and a polyester plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be used.
  • polyester plasticizer examples include a polyester plasticizer represented by the following general formula (a).
  • B represents a benzene monocarboxylic acid group or an aliphatic monocarboxylic acid group
  • G represents an alkylene glycol group having 2 to 12 carbon atoms, an aryl glycol group having 6 to 12 carbon atoms, or 4 carbon atoms.
  • A represents an alkylene dicarboxylic acid group having 4 to 12 carbon atoms or an aryl dicarboxylic acid group having 6 to 12 carbon atoms
  • n represents an integer of 1 or more.
  • the polyester plasticizer represented by the general formula (a) is obtained by the same reaction as a normal polyester plasticizer.
  • benzene monocarboxylic acid component of the polyester plasticizer examples include benzoic acid, paratertiary butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, and aminobenzoic acid. , Acetoxybenzoic acid and the like, each of which can be used alone or as a mixture of two or more.
  • the aliphatic monocarboxylic acid component of the polyester plasticizer is preferably an aliphatic monocarboxylic acid having 3 or less carbon atoms, more preferably acetic acid, propionic acid or butanoic acid, and most preferably acetic acid.
  • the number of carbon atoms of the monocarboxylic acids used at both ends of the polycondensed ester is 3 or less, the heat loss of the compound does not increase, and no surface failure occurs.
  • a monocarboxylic acid having a cycloaliphatic having 3 to 8 carbon atoms is preferred, a monocarboxylic acid having a cycloaliphatic having 6 carbons is more preferred, and cyclohexanecarboxylic acid and 4-methyl-cyclohexanecarboxylic acid are most preferred.
  • the cycloaliphatic carbon number of the monocarboxylic acid used at both ends of the polycondensed ester is in the range of 3 to 8, the heat loss of the compound does not increase, and it is preferable in that a surface failure does not occur.
  • alkylene glycol component having 2 to 12 carbon atoms of the polyester plasticizer examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, and 1,3-butanediol.
  • an alkylene glycol having 2 to 12 carbon atoms is preferable in terms of excellent compatibility with a cellulose ester, more preferably an alkylene glycol having 2 to 6 carbon atoms, and still more preferably an alkylene glycol. 2 to 4 alkylene glycols.
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the polyester plasticizer include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. It can be used alone or as a mixture of two or more.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the polyester plasticizer examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and the like. Each of these may be used alone or as a mixture of two or more.
  • examples of the arylene dicarboxylic acid component having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, and the like.
  • the number average molecular weight of the polyester plasticizer preferably used for the ⁇ / 4 retardation film of the present invention is in the range of 200 to 10,000, more preferably in the range of 300 to 3000.
  • the acid value of the polyester plasticizer is preferably 0.5 mgKOH / g or less, more preferably 0.3 mgKOH / g or less.
  • the hydroxy group value of the polyester plasticizer is preferably 25 mgKOH / g or less, more preferably 15 mgKOH / g or less.
  • an acid value means the milligram number of potassium hydroxide required in order to neutralize the acid (carboxy group which exists in a sample) contained in 1g of samples. The acid value is measured according to JIS K0070.
  • plasticizers may be applied to the ⁇ / 4 retardation film of the present invention.
  • plasticizers examples include polyhydric alcohol ester plasticizers, glycolate plasticizers, phthalate ester plasticizers, citrate ester plasticizers, fatty acid ester plasticizers, and phosphate esters.
  • plasticizers examples include polyhydric alcohol ester plasticizers, glycolate plasticizers, phthalate ester plasticizers, citrate ester plasticizers, fatty acid ester plasticizers, and phosphate esters.
  • plasticizers examples include polyhydric alcohol ester plasticizers, glycolate plasticizers, phthalate ester plasticizers, citrate ester plasticizers, fatty acid ester plasticizers, and phosphate esters.
  • plasticizer examples include a plasticizer, a polycarboxylic acid ester plasticizer, and an acrylic plasticizer.
  • sugar ester compound in the ⁇ / 4 retardation film of the present invention, it is preferable to contain a sugar ester compound as a phase solvent, and as a sugar ester compound.
  • a sugar ester compound which is an ester compound excluding cellulose ester, having at least one pyranose structure or furanose structure in the range of 1 to 12 and in which part or all of the hydroxy groups of the structure are esterified be able to.
  • sugar ester compounds examples include the following, but the present invention is not limited to these.
  • Examples of the compound (saccharide) having a pyranose structure or furanose structure include glucose, galactose, mannose, fructose, xylose, or arabinose, lactose, sucrose, nystose, 1F-fructosylnystose, stachyose, maltitol, lactitol, lactulose , Cellobiose, maltose, cellotriose, maltotriose, raffinose, and kestose.
  • gentiobiose gentiotriose
  • gentiotetraose gentiotetraose
  • xylotriose galactosyl sucrose
  • sucrose kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
  • the monocarboxylic acid used for esterifying all or part of the hydroxy group of the compound (sugar) having the above-described pyranose structure or furanose structure when preparing the sugar ester compound is not particularly limited and is known. Aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, aromatic monocarboxylic acids, and the like can be used. The carboxylic acid used may be one kind alone or a mixture of two or more kinds.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid; Examples thereof include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and o
  • Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene.
  • aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof.
  • the sugar ester compound described above is based on 100% by mass of the ⁇ / 4 retardation film. It is preferably contained within the range of 1 to 30% by mass, and more preferably within the range of 5 to 30% by mass. Within this range, the above-described excellent effects are exhibited, and there is no bleed out and the like.
  • the ⁇ / 4 retardation film of the present invention or the protective film constituting the circularly polarizing plate described later preferably contains an ultraviolet absorber.
  • Examples of the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based or salicylic acid phenyl ester-based ones.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.
  • UV absorbers with a molecular weight of 400 or more are less likely to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that light resistance is effectively improved with a relatively small amount of addition. Can do.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- ( Benzotriazoles such as 1,1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, Hindered amines such as bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and further 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl Bis (1,2,2,6,6-pentamethyl-4-piperidyl) malonate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy Cis] ethyl] -4- [3- (3
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • UV absorbers commercially available products may be used.
  • TINUBIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, TINUVIN 928, etc. manufactured by BASF Japan Ltd. are absorbed.
  • An agent can be preferably used.
  • antioxidants can also be added to the ⁇ / 4 retardation film in order to improve the thermal decomposability and thermal colorability during molding.
  • an antistatic agent can be added to impart antistatic performance to the ⁇ / 4 retardation film.
  • ⁇ Phosphorus flame retardant For the ⁇ / 4 retardation film of the present invention, a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
  • Phosphorus flame retardants applicable to the present invention include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated Examples thereof include one or a mixture of two or more selected from alkyl phosphates, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, and halogen-containing phosphites.
  • triphenyl phosphate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris ( ⁇ -chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
  • the ⁇ / 4 retardation film of the present invention has, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydration from the viewpoint of improving handling properties. It is preferable to include a matting agent such as inorganic fine particles such as calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate, and a crosslinked polymer. Of these, silicon dioxide is preferably used from the viewpoint of reducing the haze of the film.
  • the primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably in the range of 5 to 16 nm, and particularly preferably in the range of 5 to 12 nm.
  • the ⁇ / 4 retardation film of the present invention can be formed according to a known method. Hereinafter, typical solution casting methods and melt casting methods will be described.
  • the ⁇ / 4 retardation film of the present invention can be produced by a solution casting method.
  • a cellulose ester which is a thermoplastic resin, additives, and the like are dissolved in an organic solvent by heating to prepare a dope, and the prepared dope is flowed on a belt-shaped or drum-shaped metal support.
  • the concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy increases. becomes worse.
  • the concentration that achieves both of these is preferably in the range of 10 to 35% by mass, and more preferably in the range of 15 to 25% by mass.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface, and as the metal support, a stainless steel belt or a drum whose surface is plated with a casting is preferably used.
  • the cast width is preferably in the range of 1 to 4 m.
  • the surface temperature of the metal support in the casting step is appropriately selected and set within a range from ⁇ 50 ° C. to a temperature at which the solvent does not boil and foam. A higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam and flatness may deteriorate.
  • a preferable support temperature is appropriately determined within a range of 0 to 100 ° C., and more preferably within a temperature range of 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, a method of bringing hot water into contact with the back side of the metal support, and the like.
  • the method using hot water is preferable in that heat is efficiently transferred and the time until the temperature of the metal support becomes constant is short.
  • a method of efficiently drying by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling is preferable.
  • the residual solvent amount when peeling the web from the metal support within a range of 10 to 150% by mass, and more preferably. It is in the range of 20 to 40% by mass or 60 to 130% by mass, and particularly preferably in the range of 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent as used in the present invention is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of a sample collected at any time during or after production of the web or film
  • N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support, and further dried, so that the residual solvent amount is preferably 1.0% by mass or less, more preferably 0 to 0.00.
  • the range is 01% by mass.
  • a roller drying method for example, a method in which webs are alternately passed through a number of upper and lower rollers and a method in which the web is dried while being conveyed by a tenter method is employed.
  • the in-plane retardation Ro550 measured at a wavelength of 550 nm is preferably in the range of 120 to 180 nm.
  • the retardation can be imparted by film stretching.
  • the ⁇ / 4 retardation film may be referred to as a cellulose ester film.
  • the stretching method For example, a method in which a difference in peripheral speed is applied to a plurality of rollers, and the rollers are stretched in the longitudinal direction using the difference in peripheral speed between the rollers. And a method of stretching in the vertical direction (tenter method), a method of stretching in the horizontal direction and stretching in the horizontal direction, or a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions. Of course, these methods may be used in combination. That is, the film may be stretched in the transverse direction, longitudinally, or in both directions with respect to the film forming direction, and when stretched in both directions, simultaneous stretching or sequential stretching may be used. May be. In the case of the so-called tenter method, driving the clip portion by the linear drive method is preferable from the viewpoint that smooth stretching can be performed and the risk of breakage and the like can be reduced.
  • One of the methods for producing a ⁇ / 4 retardation film of the present invention includes a stretching / shrinking step of stretching in the slow axis direction and shrinking in the fast axis direction, and then proceeding with respect to the stretch ratio in the slow axis direction. It is characterized by being manufactured by stretching under the condition that the ratio of shrinkage ratio in the phase axis direction (shrinkage ratio / stretch ratio) is in the range of 0.05 to 0.70.
  • the film is stretched in the direction in which the slow axis is to be generated and contracted in the vertical direction (fast axis direction), and the ratio of the shrinkage rate to the stretching ratio is controlled.
  • the orientation direction of the main axis X of the compound (I) is controlled so that the main chain X direction of the compound (I) according to the present invention coincides with the main axis direction (stretching direction, slow axis direction) of the cellulose ester. It is preferable to do.
  • the shrinkage ratio / stretch ratio 0.05.
  • the preferred embodiment is in the range of ⁇ 0.70, but the most preferred is in the range of 0.10 to 0.30.
  • the main chain X of the compound (I) is changed to If the side chain Y of the compound (I) is oriented in the film fast axis direction and contains a high refractive index molecule in the side chain, the refractive index in the fast axis direction in the ultraviolet region of 280 nm it is possible to increase the n y (280), it can be a steep slope of n y order chromatic dispersion in the visible light region.
  • a method of starting shrinkage after stretching within 30 to 70% of the total stretching step is preferable.
  • the stretching process usually involves stretching in the width direction (TD direction) and contracting in the transport direction (MD direction), but when contracting, it is easy to match the main chain direction when transported in an oblique direction. In addition, the phase difference effect is even greater.
  • the shrinkage rate is determined by the transport angle.
  • FIG. 1 is a schematic diagram for explaining a shrinkage ratio in oblique stretching in a stretching / shrinking process in which stretching in the slow axis direction and shrinking in the fast axis direction.
  • 111 is the stretching direction (TD direction)
  • 113 is the transport direction (MD direction)
  • 114 is the slow axis.
  • the slow axis of the ⁇ / 4 retardation film is preferably in the range of 30 to 60 ° with respect to the transport direction. It is preferably in the range of ⁇ 50%.
  • the ⁇ / 4 retardation film of the present invention has an orientation angle of 45 ° ⁇ 2 ° with respect to the conveying direction, and can be bonded by roll-to-roll with a polarizing film. Most preferred.
  • an obliquely stretched tenter as a method for imparting an oblique orientation to the cellulose ester film to be stretched.
  • the orientation angle of the film can be set freely by changing the rail pattern in various ways, and the film orientation axis can be set to the left and right in the film width direction with high accuracy. It is preferable that the film stretching apparatus be capable of being oriented to the film and controlling the film thickness and retardation with high accuracy.
  • the method for producing a ⁇ / 4 retardation film of the present invention is such that the slow axis direction is oriented within an angle range of 30 to 60 ° with respect to the conveying direction. It manufactures on the conditions to do.
  • FIG. 2A and FIG. 2B are schematic views showing an example of an oblique stretching apparatus in which a film feeding direction and a film drawing direction applicable to the present invention match.
  • a pair of left and right grips gripping both ends of the film at the entrance of the tenter run at the same speed on the left and right rails in a zone where the distance between the left and right rails is constant in the initial stage of the tenter, and thereafter In the zone where the distance between the rails is increased, the vehicle travels on the left and right rails at different speeds, and then travels on the left and right rails at a constant speed again in the zone where the distance between the left and right rails is equal.
  • the long original film 4 whose direction is controlled by the guide roller 12-1 on the tenter entrance side is gripped by the gripping tool at the positions of the outer film gripping start point 8-1 and the inner film gripping start point 8-2.
  • the traveling speed of the left side gripping tool (hereinafter referred to as the high speed side gripping tool) is the same as the right side gripping tool (hereinafter referred to as the low speed side gripping).
  • the high speed side gripping tool is again equal to the low speed side gripping tool.
  • the pair of left and right gripping tools starts running again at the same speed. Thereafter, when the low-speed side gripping tool reaches the point 11-1 at which the widening of the left and right rails ends, one of the pair of left and right gripping tools reaches 11-2.
  • the pair of left and right clips travel on the left and right rails at a constant speed, the left gripper releases the film at the left grip end point 9-2, and then the right gripper at the right grip end point 9-1. The film is released and the oblique stretching is finished.
  • FIG. 2B is also a schematic view of a diagonally stretched tenter in which the film feeding direction and the film take-up direction applicable to the present invention are the same.
  • a pair of left and right grips that grip both ends of the film at the entrance of the tenter travel on the left and right rails at different speeds in a zone where the distance between the left and right rails is constant in the initial stage of the tenter.
  • the tenter shown in FIG. 2B is a tenter having a portion where the distance between the left and right rails is widened.
  • a pair of left and right grips grip the film at the tenter inlet portions 8-1 and 8-2, and the left and right grips travel on the left and right rails at different speeds.
  • the high-speed side gripping tool of the pair of left and right grips reaches the grip release point 9-2 at the tenter outlet, the paired low-speed side clips are positioned at 11-1, so The film held by the holding tool is stretched obliquely.
  • the tenter shown in FIG. 2B is a tenter having a portion where the distance between the left and right rails is widened, but does not necessarily have a portion where the distance between the left and right rails is widened.
  • the traveling speed of the gripper can be selected as appropriate, but is usually 1 to 100 m / min.
  • the fact that the pair of left and right film grippers travel at different speeds means that the difference in travel speed between the pair of left and right grippers substantially exceeds 1% of the travel speed.
  • the difference in travel speed between the pair of left and right gripping tools is preferably in the range of more than 1% and less than 50%, more preferably in the range of more than 1% and less than 30% of the travel speed. More preferably within the range of more than 1% and not more than 10% of the speed.
  • a known one can be used as long as it is a tenter having a mechanism that changes the traveling speed of the gripping tool in the middle of the tenter.
  • the film feeding direction and the film take-up direction in the stretching process are obliquely crossed, and 30 with respect to the film take-up direction.
  • the production is characterized in that the slow axis is provided within an angle range of from 60 ° to 60 °.
  • FIG. 3 is a schematic view showing an example of an oblique stretching apparatus in which a film feeding direction and a film take-up direction applicable to the present invention are obliquely crossed.
  • the long film original 4 whose direction is controlled by the guide roller 12-1 on the tenter entrance side is the film at the positions of the outer film holding start point 8-1 and the inner film holding start point 8-2. It is gripped by a gripping tool.
  • the pair of left and right film grippers are transported and stretched at the same speed in the diagonal direction indicated by the outer film gripping means trajectory 7-1 and the inner film gripping means trajectory 7-2 by the oblique stretching tenter 6.
  • the gripping is released by the outer film gripping end point 9-1 and the inner film gripping end point 9-2, and the conveyance is controlled by the guide roller 12-2 on the tenter outlet side, whereby the obliquely stretched film 5 is formed.
  • the long film original is obliquely stretched at an angle (feeding angle ⁇ i) in the film stretching direction 14-2 with respect to the film feeding direction 14-1.
  • the traveling speed of the film gripper can be selected as appropriate, but is usually 1 to 100 m / min.
  • the pair of left and right film grippers having the same speed means that the travel speed of the pair of left and right grippers is substantially 1% or less of the travel speed.
  • a large bending rate is often required for the rail that regulates the locus of the gripping tool inside the tenter.
  • the traveling direction 14-1 at the tenter entrance of the long film original is different from the traveling direction 14-2 at the tenter exit side of the stretched film.
  • the feeding angle ⁇ i is an angle formed by the traveling direction 14-1 at the tenter entrance and the traveling direction 14-2 on the tenter exit side of the stretched film.
  • This tenter is a device that heats the film fabric to an arbitrary temperature at which it can be stretched and stretches it obliquely.
  • This tenter includes a heating zone, a pair of rails on the left and right on which a gripping tool for transporting the film travels, and a number of gripping tools that travel on the rails. Both ends of the film sequentially supplied to the entrance portion of the tenter are gripped by a gripping tool, the film is guided into the heating zone, and the film is released from the gripping tool at the exit portion of the tenter. The film released from the gripping tool is wound around the core.
  • Each of the pair of rails has an endless continuous track, and the gripping tool which has released the grip of the film at the exit portion of the tenter travels outside and is sequentially returned to the entrance portion.
  • the rail pattern of the tenter has an asymmetric shape on the left and right, so that the rail pattern can be adjusted manually or automatically according to the orientation angle ⁇ , the draw ratio, etc. given to the long stretched film to be manufactured. It has become.
  • the position of each rail part and the rail connecting part can be freely set and the rail pattern can be arbitrarily changed.
  • the “ ⁇ ” part shown in FIG. 3 is an example of a connecting part.
  • the tenter gripping tool is configured to travel at a constant speed with a constant interval from the front and rear gripping tools.
  • the traveling speed of the gripping tool can be selected as appropriate, but is usually 1 to 100 m / min.
  • the difference in travel speed between the pair of left and right grippers is usually 1% or less, preferably 0.5% or less, more preferably 0.1% or less of the travel speed. This is because if there is a difference in the traveling speed between the left and right sides of the film at the exit of the stretching process, wrinkles and shifts will occur at the exit of the stretching process, so the speed difference between the right and left gripping tools is required to be substantially the same speed. Because.
  • the ⁇ / 4 retardation film of the present invention may be formed by a melt film forming method.
  • the melt film forming method is a molding method in which a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature exhibiting fluidity, and then a melt containing a fluid thermoplastic resin is cast.
  • the heating and melting molding method can be classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like.
  • the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy.
  • the plurality of raw materials used in the melt extrusion method are usually preferably kneaded and pelletized in advance.
  • pelletization For pelletization, a known method can be applied. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder with a feeder, kneaded using a single-screw or twin-screw extruder, It can be obtained by extruding into a strand, cooling with water or air, and cutting.
  • the additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • the method of mixing in advance is preferable.
  • the extruder used for pelletization preferably has a method of processing at as low a temperature as possible so that pelletization is possible so that the shearing force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be put into a feeder as it is, supplied to an extruder, heated and melted, and then directly formed into a film without being pelletized.
  • the pellets are extruded using a single or twin screw type extruder and the melting temperature is within the range of 200 to 300 ° C.
  • the T die After removing foreign matter by filtering with a leaf disk type filter etc., the T die Then, the film is cast into a film, and the film is nipped with a cooling roller and an elastic touch roller, and solidified on the cooling roller.
  • the extrusion flow rate is preferably carried out stably by introducing a gear pump.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • a stainless steel fiber sintered filter is a product in which a stainless steel fiber body is intricately intertwined and compressed, and the contact points are sintered and integrated. The accuracy can be adjusted.
  • Additives such as plasticizers and fine particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the touch roller side when the film is nipped by the cooling roller and the elastic touch roller is preferably in the range of Tg or more and Tg + 110 ° C. or less of the film.
  • a known elastic touch roller can be used as the elastic touch roller having an elastic surface used for such a purpose.
  • the elastic touch roller is also called a pinching rotary body, and a commercially available one can also be used.
  • the film obtained as described above is subjected to stretching and shrinking treatment by the stretching operation after passing through the step of contacting the cooling roller.
  • the stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
  • the end Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding.
  • the knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing.
  • the holding part of the clip of the both ends of a film is cut out, and a cut part is reused.
  • the film thickness of the ⁇ / 4 retardation film of the present invention is not particularly limited, but can be used in the range of 10 to 250 ⁇ m, preferably in the range of 20 to 100 ⁇ m, more preferably in the range of 40 to 80 ⁇ m. It is within the range, and particularly preferably within the range of 40 to 65 ⁇ m.
  • the ⁇ / 4 retardation film of the present invention may have a width in the range of 1 to 4 m. Furthermore, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it is 4 m or less as a width
  • the arithmetic average roughness Ra of the surface of the ⁇ / 4 retardation film of the present invention is generally in the range of 2.0 to 4.0 nm, preferably in the range of 2.5 to 3.5 nm.
  • the dimensional change rate (%) of the ⁇ / 4 retardation film of the present invention is preferably less than 0.5%. , Preferably less than 0.3%.
  • failure tolerance In the ⁇ / 4 retardation film of the present invention, it is preferable that there are few failures in the film (hereinafter also referred to as defects).
  • the failure mentioned here refers to a cavity failure (foaming defect) in the film caused by the rapid evaporation of the solvent in the drying process in film formation by the solution casting method, foreign matter in the film-forming stock solution and production.
  • a defect having a diameter of 5 ⁇ m or more is 1 piece / 10 cm square or less in the film plane. More preferably, it is 0.5 piece / 10 cm square or less, and particularly preferably 0.1 piece / 10 cm square or less.
  • the diameter of the above defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the defect range is measured by the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope.
  • the defect is accompanied by a change in surface shape such as transfer of a roller scratch or an abrasion, the size is confirmed by observing the defect with reflected light of a differential interference microscope.
  • the number of defects is 1/10 cm square or less, for example, even when tension is applied to the film during processing in the subsequent process, the probability of the film starting to break and the film breaking can be reduced, resulting in high productivity. Can be maintained. Moreover, if the diameter of a fault is 5 micrometers or less, it will not be visually recognized by polarizing plate observation etc., but when it uses as an optical member, a bright spot will not arise.
  • the ⁇ / 4 retardation film of the present invention preferably has a breaking elongation of at least 10% or more in at least one direction (TD direction or MD direction) in the measurement based on JIS-K7127-1999, Preferably it is 20% or more.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the ⁇ / 4 retardation film of the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact portion (cooling roller, calendar roller, drum, belt, coating substrate in solution casting, transport roller, etc.) during film formation. Thus, a method of reducing the diffusion and reflection of light on the film surface is effective.
  • the circularly polarizing plate of the present invention is prepared by cutting a long roll having a long protective film, a long polarizer and a long ⁇ / 4 retardation film of the present invention in this order, The long ⁇ / 4 retardation film satisfies the conditions defined in claim 1, and the organic EL light emission is obtained by applying the circularly polarizing plate of the present invention to an organic EL display device. The effect of shielding the specular reflection of the metal electrode of the body is expressed.
  • the ⁇ / 4 retardation film of the present invention is obliquely stretched so that the angle of the slow axis (that is, the orientation angle ⁇ ) is “substantially 45 °” with respect to the longitudinal direction
  • the direction of the maximum elastic modulus is also “substantially 45 °” with respect to the longitudinal direction, and the circularly polarizing plate tends to warp in an oblique direction.
  • the polarizer is preferably sandwiched between the ⁇ / 4 retardation film of the present invention and a protective film, and a cured layer is laminated on the viewing side of the protective film. It is more preferable because it has an effect of preventing the polarizing plate from warping.
  • the circularly polarizing plate of the present invention has an ultraviolet absorption function in order to prevent deterioration due to ultraviolet rays. If the protective film on the viewing side has an ultraviolet absorbing function, both the polarizer and the organic EL element are preferable from the viewpoint of exhibiting the protective effect against ultraviolet rays, but the ⁇ / 4 retardation film on the light emitter side also has an ultraviolet absorbing function. It is preferable that deterioration of the organic EL element can be further suppressed.
  • the organic electroluminescence display device of the present invention comprises a circularly polarizing plate having the ⁇ / 4 retardation film of the present invention and an organic electroluminescence element, and has a screen size of 20 inches or more.
  • FIG. 6 shows an example of the configuration of the organic EL display device of the present invention, but the present invention is not limited to this.
  • An organic material having a metal electrode 102, a TFT 103, an organic light emitting layer 104, a transparent electrode (ITO, etc.) 105, an insulating layer 106, a sealing layer 107, and a film 108 (optional) on a substrate 101 made of glass, polyimide, or the like.
  • the circularly polarizing plate C of the present invention in which the polarizer 110 is sandwiched between the ⁇ / 4 retardation film 109 of the present invention and the protective film 111 is provided to constitute the organic EL display device A.
  • the protective film 111 is preferably laminated with a cured layer 112.
  • the hardened layer 112 not only prevents scratches on the surface of the organic EL display device but also has an effect of preventing warpage due to the circularly polarizing plate. Furthermore, an antireflection layer 113 may be provided on the hardened layer 112. The thickness of the organic EL element itself is about 1 ⁇ m.
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, Or a structure having various combinations such as a laminate of such a light-emitting layer and an electron injection layer made of a perylene derivative, or a laminate of these hole injection layer, light-emitting layer, and electron injection layer.
  • a laminate of various organic thin films for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, Or a structure having various combinations such as a laminate of such a light-emitting layer and an electron injection layer made of a perylene derivative, or a laminate of these hole injection layer, light-emitting layer, and electron injection layer.
  • holes and electrons are injected into the organic light-emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by recombination of these holes and electrons becomes a fluorescent material or phosphorescent material.
  • the light is emitted on the principle that when the excited fluorescent substance or phosphorescent substance returns to the ground state, light (fluorescence or phosphorescence) is emitted.
  • the mechanism of recombination in the middle is the same as that of a general diode, and as can be predicted from this, the current and the emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
  • an organic EL display device in order to take out light emitted from the organic light emitting layer, at least one of the electrodes needs to be transparent, and is usually a transparent electrode formed of a transparent conductor such as indium tin oxide (ITO). Is preferably used as the anode. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.
  • ITO indium tin oxide
  • the circularly polarizing plate having the ⁇ / 4 retardation film of the present invention is preferably applied to an organic EL display device having a large screen having a screen size of 20 inches or more, that is, a diagonal distance of 50.8 cm or more.
  • the organic light emitting layer is formed of an extremely thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, the light incident from the surface of the transparent substrate when not emitting light, transmitted through the transparent electrode and the organic light emitting layer, and reflected by the metal electrode is radiated again to the surface side of the transparent substrate. When the display surface of the organic EL display device is observed as a mirror surface.
  • an organic EL display device including an organic EL element having a transparent electrode on the surface side of an organic light emitting layer that emits light by applying a voltage and a metal electrode on the back side of the organic light emitting layer, the surface side of the transparent electrode While providing a polarizing plate on the (viewing side), a retardation plate can be provided between the transparent electrode and the polarizing plate.
  • the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarization action.
  • the retardation plate is composed of a 1 ⁇ 4 retardation film and the angle formed by the polarization direction of the polarizing plate and the retardation plate is adjusted to ⁇ / 4, the mirror surface of the metal electrode can be completely shielded. it can.
  • the external light incident on the organic EL display device is transmitted only by the linearly polarized light component by the polarizing plate, and this linearly polarized light is generally elliptically polarized light by the phase difference plate.
  • the phase difference plate has a ⁇ / 4 position. When the angle formed by the polarization direction of the polarizing plate and the retardation plate is ⁇ / 4, it is circularly polarized.
  • This circularly polarized light is transmitted through the transparent substrate, the transparent electrode, and the organic thin film, reflected by the metal electrode, is again transmitted through the organic thin film, the transparent electrode, and the transparent substrate, and becomes linearly polarized light again on the retardation plate. And since this linearly polarized light is orthogonal to the polarization direction of a polarizing plate, it cannot permeate
  • Fine particles (Aerosil R812, primary particle size: about 7 nm, made by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above is stirred and mixed with a dissolver for 50 minutes, and then dispersed using a high-pressure disperser Manton Gorin disperser To prepare a fine particle dispersion.
  • Fine particle additive solution 1 50 parts by mass of methylene chloride was placed in the dissolution tank, and 50 parts by mass of the fine particle dispersion prepared above was slowly added while sufficiently stirring the methylene chloride. Further, the particles were dispersed by an attritor so that the secondary particle diameter became a predetermined size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • the exemplified compound (I-2), the sugar ester compound (benzyl saccharose having an average substitution degree of 7.3) as the compound (I) and the fine particle addition liquid prepared as described above were charged into the main dissolution vessel at the following ratio and sealed. Then, the dope 1 was prepared by dissolving with stirring.
  • the peeled film was stretched according to the stretching method described in FIG. Using a tenter while heating the peeled film at 185 ° C., the film was uniaxially stretched only in the width direction 11 (TD direction) at a stretch ratio of 100%, and then contracted 27% in the transport direction 13 (MD direction). It was. The residual solvent at the start of stretching was 15% by mass.
  • drying was completed while the drying zone was conveyed through a number of rollers.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • a roll-like ⁇ / 4 retardation film 1 having a dry film thickness of 60 ⁇ m was obtained.
  • the orientation angle of the ⁇ / 4 retardation film 1 was 0 °.
  • ⁇ / 4 retardation films 2 to 24 [Production of ⁇ / 4 retardation films 2 to 24]
  • the type of cellulose ester acetyl group substitution degree, propionyl group substitution degree
  • the compound (I) according to the present invention as a phase difference adjusting agent acetyl group substitution degree
  • the kind and addition amount of the comparative compound ⁇ / 4 retardation films 2 to 24 were produced in the same manner except that the stretching conditions (details are described in Table 2) and the film thicknesses were changed to the combinations shown in Table 1, respectively.
  • the orientation angle was also measured using an Axoscan made by Axometrcs.
  • the film thickness was measured using a commercially available micrometer.
  • Table 1 shows the characteristic values of each film obtained as described above.
  • Table 2 shows details of each stretching condition described in abbreviations in Table 1.
  • condition (I) is the stretching method according to claim 4 and claim 7, and is stretched 100% in the slow axis direction and stretched in the fast axis direction by the method shown in FIG.
  • the film shrinks under the condition of 27%, and the ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the fast axis direction (shrinkage ratio / stretch ratio) is 0.27.
  • condition (II) is a stretching method according to claims 6 and 9, wherein the film feeding direction and the film take-off direction are obliquely crossed as shown in FIG. This method has a slow axis at °.
  • condition (III) is the stretching method according to claim 5 and claim 8, and the method shown in FIGS. 2A and 2B, the film feeding direction and the film take-up direction are the same, This is a method of obliquely stretching with a speed difference.
  • Condition (IV) is a method in which uniaxial stretching is performed only in the MD direction (film transport direction) by the method described in JP-A-2007-197508 without performing oblique stretching.
  • the orientation angles shown in Table 2 are displayed with reference to the TD direction (width direction).
  • the polarizer was bonded to one side of the produced ⁇ / 4 retardation films 101 to 124 using a completely saponified polyvinyl alcohol 5% aqueous solution as an adhesive. At that time, bonding was performed such that the transmission axis of the polarizer and the slow axis of the ⁇ / 4 retardation film were 45 degrees.
  • the following protective film 1 is similarly alkali saponified and bonded to the other surface of the polarizer, and circularly polarizing plates 101 to 124 composed of a ⁇ / 4 retardation film, a polarizer and a protective film are formed. Produced.
  • the dope A was uniformly cast on a stainless steel band support using a belt casting apparatus.
  • the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel band support was peeled off.
  • the cellulose ester film web was evaporated at 35 ° C., slit to 1.65 m width, and 30% in the TD direction (film width direction) with a tenter while applying heat at 160 ° C. (stretch ratio: 1.30).
  • the draw ratio in the MD direction was 1% (stretch ratio: 1.01).
  • the residual solvent amount at the start of stretching was 20%. After drying for 15 minutes while transporting the inside of a drying device at 120 ° C.
  • the protective film 1 was obtained.
  • the residual solvent amount of the protective film 1 was 0.2%, the film thickness was 40 ⁇ m, and the winding length was 3900 m.
  • the orientation angle ⁇ of the protective film 1 was measured using KOBRA-21ADH manufactured by Oji Scientific Instruments, and as a result, it was in the range of 90 ° ⁇ 1 ° with respect to the film longitudinal direction.
  • a reflective electrode made of chromium was formed by vapor deposition on a glass transparent substrate 1a, and ITO was formed as a metal electrode 2a (anode) by vapor deposition on the formed reflective electrode.
  • PEDOT poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate
  • RGB light emitting layers 3aR, 3aG, and 3aB were formed with a layer thickness of 100 nm.
  • the red light emitting layer 3aR includes tris (8-hydroxyquinolinate) aluminum (Alq 3 ) as a host compound and [4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran as a light emitting compound. (DCM) were co-evaporated (mass ratio 99: 1) to form a thickness of 100 nm.
  • the green light emitting layer 3aG was formed to a thickness of 100 nm by co-evaporating Alq 3 as a host compound and coumarin 6 as a light emitting compound (mass ratio 99: 1).
  • the blue light emitting layer 3aB was formed to have a thickness of 100 nm by co-evaporation (mass ratio 90:10) of the following BAlq as a host compound and Perylene as a light emitting compound.
  • first cathode having a low work function so that electrons can be efficiently injected calcium is deposited in a thickness of 4 nm on the light emitting layer by a vacuum deposition method, and a second cathode is formed on the first cathode.
  • Aluminum was formed with a thickness of 2 nm as a cathode.
  • the transparent electrode 4a (transparent conductive film) formed on the aluminum used as the second cathode is formed by sputtering, the calcium serving as the first cathode is chemically altered. There is a role to prevent this.
  • the organic light emitting layer and each cathode were formed as described above.
  • a transparent conductive film (transparent electrode) was formed with a thickness of 80 nm on the cathode by sputtering.
  • ITO was used as the transparent conductive film.
  • 200 nm of silicon nitride was formed on the transparent conductive film by a CVD method, whereby the organic EL element 11a was manufactured by using the insulating film 5a.
  • haze 2 total haze value including the retardation film was measured by the following procedure.
  • the haze meter, glass, and glycerin used in the above measurement are as follows.
  • Haze meter Measured using a haze meter (turbidity meter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.).
  • the light source was a 5V9W halogen bulb
  • the light receiving part was a silicon photocell (with a relative visibility filter)
  • the measurement was performed according to JIS K-7136.
  • the spectral transmittance T 1 (%) of the retardation film before ultraviolet treatment and the spectral transmittance T 2 (%) of the retardation film after ultraviolet irradiation were measured for the spectral transmittance at a wavelength of 550 nm, and T 1
  • the reduction width ⁇ T (%) of the transmittance of T 2 with respect to the film was obtained, and the light resistance was evaluated according to the following criteria.
  • the spectral transmittance was measured using a spectrophotometer U-3400 (manufactured by Hitachi, Ltd.), and from a spectral transmittance ⁇ ( ⁇ ) profile obtained every 10 nm in a wavelength region of 350 to 700 nm, a wavelength of 550 nm. The transmittance was determined.
  • the transmittance decrease width ⁇ T is less than 5%.
  • the transmittance decrease width ⁇ T is 5% or more and less than 10%.
  • X The transmittance decrease width ⁇ T is 10% or more. Evaluation of coloring characteristics)
  • Each ⁇ / 4 retardation film was cut as a 30 mm square sample, its absorption spectrum was measured using a spectrophotometer U-3310 manufactured by Hitachi High-Technologies, and tristimulus values X, Y, and Z were calculated. . From these tristimulus values X, Y and Z, a yellow index YI was calculated according to JIS-K7103, specifically, the following equation, and the coloring characteristics were evaluated according to the following criteria.
  • YI is less than 0.8 ⁇ : YI is 0.8 or more and less than 1.0 ⁇ : YI is 1.0 or more and less than 2.0 ⁇ : YI is 2. 0 or more [Evaluation of organic EL display device] Each of the organic EL display devices produced above was evaluated as follows.
  • the front position of the organic EL display device (0 ° with respect to the surface normal) and visibility from an oblique angle of 40 ° with respect to the surface normal are performed by 10 general monitors,
  • the visibility of the BGR color image was evaluated according to the following criteria. In the present invention, if the evaluation rank is ⁇ or more, it is judged practically acceptable.
  • the visibility from a front position of the organic EL display device (0 ° with respect to the surface normal) and an oblique angle of 40 ° with respect to the surface normal is performed by 10 general monitors.
  • the visibility of the black image was evaluated according to the standard. In the present invention, if the evaluation rank is ⁇ or more, it is judged practically acceptable.
  • the ⁇ / 4 retardation film of the present invention having the characteristic values defined in the present invention is excellent in transparency, light resistance and coloring resistance. It can be seen that the organic EL display device including the circularly polarizing plate having a film is superior in the image display performance (visibility) of the displayed black image and BGR color image as compared with the comparative example.
  • the ⁇ / 4 retardation film of the present invention has a high retardation development property in a wide wavelength region, an excellent reverse wavelength dispersion characteristic in a thin film, a low haze, a high transparency, and an excellent light resistance and coloring resistance. It has characteristics and can be suitably used for a circularly polarizing plate and an organic electroluminescence display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

The present invention addresses the problem of providing: a λ/4 phase difference film exhibiting excellent phase-difference-inducing properties, suitability as a thin-film, and reverse-wavelength-dispersion properties, having a low haze level, and also exhibiting excellent light resistance and coloration resistance; a method for producing the same; a circularly polarizing plate; and an organic EL display device. This λ/4 phase difference film contains a thermoplastic resin and a compound (I), and has: a principal chain linked to the linking group of the compound (I) via two link sites thereof, and having maximum absorption at 200-280nm; and a side chain bonding to one or more of the other link sites of the linking group, and branching from a chemical structure section (X; principal chain). The λ/4 phase difference film is characterized by satisfying (a) and (b), and in that the wavelength-dispersion properties satisfy (c) and (d). (a) Side chain having maximum-absorption wavelength of 280-380nm. (b) 25.0≥ΣABSy/ΣABSx≥1.01. (c) Ro(450)/Ro(550)=0.72-0.96. (d) Ro(550)/Ro(650)=0.83-0.98.

Description

λ/4位相差フィルムとその製造方法、円偏光板及び有機エレクトロルミネッセンス表示装置λ / 4 retardation film and manufacturing method thereof, circularly polarizing plate, and organic electroluminescence display device
 本発明は、λ/4位相差フィルムとその製造方法と、λ/4位相差フィルムを具備した円偏光板及び有機エレクトロルミネッセンス表示装置に関する。 The present invention relates to a λ / 4 retardation film, a method for producing the same, a circularly polarizing plate provided with a λ / 4 retardation film, and an organic electroluminescence display device.
 近年、新たなディスプレイ装置として、有機エレクトロルミネッセンス表示装置のような自発光型の表示装置が注目されている。自発光型表示装置は、バックライトが常に点灯している液晶表示装置に対して消費電力を抑制できる余地があり、加えて、有機エレクトロルミネッセンス表示装置のような各色に対応した光源がそれぞれ点灯する自発光表示装置では、コントラスト低減の原因となるカラーフィルターを設置する必要がない為、コントラストを更に高めることが可能である。しかしながら、有機エレクトロルミネッセンス表示装置においては、光取り出し効率を高めるため、ディスプレイの背面側にアルミニウム板等の反射体が設けられるため、ディスプレイに入射した外光がこの反射体で反射されることで画像のコントラストを低下させるという問題がある。 In recent years, a self-luminous display device such as an organic electroluminescence display device has attracted attention as a new display device. The self-luminous display device has a room for suppressing power consumption compared with a liquid crystal display device whose backlight is always lit, and in addition, a light source corresponding to each color such as an organic electroluminescence display device is lit. In the self-luminous display device, it is not necessary to install a color filter that causes a reduction in contrast, so that the contrast can be further increased. However, in the organic electroluminescence display device, a reflector such as an aluminum plate is provided on the back side of the display in order to increase the light extraction efficiency. Therefore, the external light incident on the display is reflected by the reflector and the image is reflected. There is a problem of lowering the contrast.
 これらの問題を改善するため、鏡面の外光反射防止を目的として、λ/4位相差フィルムを備えた円偏光板を使用する方法が知られている。 In order to improve these problems, a method of using a circularly polarizing plate provided with a λ / 4 retardation film is known for the purpose of preventing reflection of external light on the mirror surface.
 λ/4位相差フィルムは、直線偏光を円偏光や楕円偏光に変換、もしくは円偏光や楕円偏光を直線偏光に変換することが可能な特性を備えており、このようなλ/4位相差フィルムは、画像表示装置や光ピックアップ装置など、様々な光学用途に広く用いられている。 The λ / 4 retardation film has characteristics capable of converting linearly polarized light into circularly polarized light and elliptically polarized light, or converting circularly polarized light and elliptically polarized light into linearly polarized light. Such a λ / 4 retardation film Are widely used in various optical applications such as image display devices and optical pickup devices.
 有機エレクトロルミネッセンス表示装置に用いられるλ/4位相差フィルムは、可視光の広い波長域に対して実質的にλ/4の位相差を付与することが理想的であり、その為、長波長の光に対して付与する位相差が、短波長の光に対して付与する位相差よりも大きい、負の波長分散性(逆波長分散性)を有することが求められる。しかしながら、現状では、1/4波長の位相差を付与し、かつ十分な負の波長分散性(逆波長分散性)を示すフィルムで、かつ広い波長領域の光に対してλ/4の位相差を付与しうるフィルムを得ることは困難であった。 It is ideal that the λ / 4 retardation film used in the organic electroluminescence display device substantially gives a retardation of λ / 4 with respect to a wide wavelength range of visible light. It is required that the phase difference imparted to the light has a negative wavelength dispersion (reverse wavelength dispersion) greater than the phase difference imparted to the short wavelength light. However, at present, it is a film that gives a phase difference of ¼ wavelength and exhibits sufficient negative wavelength dispersion (reverse wavelength dispersion), and has a phase difference of λ / 4 for light in a wide wavelength region. It was difficult to obtain a film capable of imparting.
 例えば、特開平8-321381号公報には、鏡面の外光反射防止に円偏光素子を使用する方法が開示されている。上記特許文献に記載されている円偏光素子では、吸収型直線偏光板と、λ/4位相差フィルムとを、それらの光軸が45度あるいは135度で交差するように積層して形成されている。 For example, Japanese Patent Laid-Open No. 8-321381 discloses a method of using a circularly polarizing element for preventing external light reflection on a mirror surface. The circularly polarizing element described in the above patent document is formed by laminating an absorption linear polarizing plate and a λ / 4 retardation film so that their optical axes intersect at 45 degrees or 135 degrees. Yes.
 ここで、λ/4位相差フィルムを、例えば、1枚の延伸フィルムで形成した場合、この延伸フィルムの屈折率が、波長毎に異なる波長分散に起因して、その位相差はある波長に対しては丁度1/4波長となり得るが、他の波長ではその位相差がλ/4波長からずれるため、λ/4位相差フィルムとして機能しないことになる。 Here, when the λ / 4 retardation film is formed of, for example, a single stretched film, the refractive index of the stretched film is different from wavelength to wavelength. Although it can be exactly ¼ wavelength, the phase difference is shifted from the λ / 4 wavelength at other wavelengths, so that it does not function as a λ / 4 retardation film.
 すなわち、例えば、550nmの緑色の光に対しλ/4位相差フィルムとして機能する場合、それより波長の長い赤色の光や、波長の短い青色の光の反射を完全に防止することが困難であり、特に、青色の光についての位相差のずれが大きく、反射色が、青色味がかったものとなってしまうという問題がある。 That is, for example, when functioning as a λ / 4 retardation film for 550 nm green light, it is difficult to completely prevent reflection of red light having a longer wavelength or blue light having a shorter wavelength. In particular, there is a problem that the phase difference for blue light is large and the reflected color becomes bluish.
 可視光の全波長領域に対して反射を防止するためには、全波長領域でλ/4の位相差値を有する逆波長分散性(長波長ほど位相差値が大きい)を備えていることが必要である。 In order to prevent reflection in the entire wavelength region of visible light, it has reverse wavelength dispersion having a phase difference value of λ / 4 in the entire wavelength region (the longer the wavelength, the larger the phase difference value). is necessary.
 上記問題に対し、λ/4位相差フィルムとして、広帯域でその物性を満たすため、位相差とその波長分散を制御する様々な方法が検討されていた。 In response to the above problems, various methods for controlling the phase difference and the wavelength dispersion of the λ / 4 retardation film have been studied in order to satisfy the physical properties in a wide band.
 例えば、特開平2-285304号公報には、アッベ数の異なる一軸延伸フィルムを積層させる方法が記載されており、特許第03734211号公報には、液晶塗布フィルムを用いてλ/2位相差フィルムとλ/4位相差フィルムを積層させる方法が開示されている。また、特開2001-194527号公報には、固有複屈折性が正と負のポリマーをブレンドする方法が、特許第3459779号公報には、固有複屈折が正と負の材料を共重合してフィルム化する方法がそれぞれ開示されている。 For example, Japanese Patent Laid-Open No. 2-285304 describes a method of laminating uniaxially stretched films having different Abbe numbers, and Japanese Patent No. 0734211 discloses a λ / 2 retardation film using a liquid crystal coating film. A method of laminating a λ / 4 retardation film is disclosed. Japanese Patent Laid-Open No. 2001-194527 discloses a method of blending a polymer having positive and negative intrinsic birefringence, and Japanese Patent No. 345779 discloses a method of copolymerizing a material having positive and negative intrinsic birefringence. Each method for forming a film is disclosed.
 一方、近年では、表示装置の薄膜化が更に進み、λ/4位相差フィルムについても、薄膜でかつ単層のフィルムで、広帯域λ/4特性を得ることが切望されている。このような要望に対し、上記の技術では十分に対応することが困難であった。 On the other hand, in recent years, thinning of display devices has further progressed, and it has been eagerly desired to obtain a broadband λ / 4 characteristic with a thin film and a single-layer film for a λ / 4 retardation film. It has been difficult to sufficiently respond to such a request with the above technique.
 別の技術として、位相差が逆波長分散性を示すセルロースエステルフィルムに、リターデーション上昇機能を有する化合物を添加し、延伸処理することで液晶表示装置用光学補償フィルムを製造する方法が知られている。しかしながら、セルロースエステル樹脂は一般的に等方性が高い物質であるため、位相差発現性が低く、λ/4に必要な位相差を達成するためには、リターデーション上昇能を有する化合物の添加量を増やす必要があった。その場合、従来のリターデーション上昇能を有する化合物では、その上昇能と波長分散調整能とが取り合いとなり、波長分散が順波長分散となり、λ/4に必要な波長分散を満たすことができなかったのが現状である。 As another technique, a method for producing an optical compensation film for a liquid crystal display device by adding a compound having a retardation increasing function to a cellulose ester film having a retardation exhibiting reverse wavelength dispersibility and performing a stretching treatment is known. Yes. However, since the cellulose ester resin is generally a highly isotropic substance, the retardation development property is low, and in order to achieve the retardation necessary for λ / 4, the addition of a compound capable of increasing retardation It was necessary to increase the amount. In that case, in the conventional compound having the retardation increasing ability, the increasing ability and the chromatic dispersion adjusting ability come together, the chromatic dispersion becomes the forward chromatic dispersion, and the chromatic dispersion required for λ / 4 could not be satisfied. is the current situation.
 上記問題に対し、特許文献1には、斜めに延伸したセルロースエステルフィルム上に垂直配向液晶層を設けた位相差フィルムが、幅広い波長範囲でλ/4位相差を有し、該位相差フィルムを設けた有機EL表示装置により、外光反射による色味変動が改善されることが開示されている。 In order to solve the above problem, Patent Document 1 discloses that a retardation film in which a vertically aligned liquid crystal layer is provided on an obliquely stretched cellulose ester film has a λ / 4 retardation in a wide wavelength range. It is disclosed that the provided organic EL display device improves the color variation due to reflection of external light.
 しかしながら、特許文献1で開示されている方法では、位相差フィルムを作製した後、垂直配向液晶層を設けるため、工程が複雑であり、製造容易性の観点からは更なる改善が望まれていた。また、上記位相差フィルムを設けた有機EL表示装置は、画像に滲みがあり、高精細な画像が得られないという問題も抱えている。この問題は、発光層から位相差フィルムに入った光が、位相差フィルムと隣接層との界面で反射され、更に位相差フィルム内で相分離した添加剤により乱反射され、画像の滲みが生じることが原因であると推定している。 However, in the method disclosed in Patent Document 1, since a vertically aligned liquid crystal layer is provided after producing a retardation film, the process is complicated, and further improvement has been desired from the viewpoint of manufacturability. . In addition, the organic EL display device provided with the retardation film has a problem that the image has bleeding and a high-definition image cannot be obtained. This problem is that light that enters the retardation film from the light emitting layer is reflected at the interface between the retardation film and the adjacent layer, and is further diffusely reflected by the additives separated in the retardation film, resulting in image blurring. Is presumed to be the cause.
 特許文献2及び特許文献3には、特定の構造を有する化合物を含有することにより、全波長領域でλ/4の位相差値を有する逆波長分散性の単一層からなる位相差板が開示されている。しかしながら、上記開示されている方法では、実際の位相差発現性は低く、λ/4位相差を実現するためには厚膜化しなくてはならないため、経済性や画像表示装置の薄膜化の観点で問題を抱えており、更に、透過率の低下に伴い、光取出し効率が劣化するという問題点も有している。 Patent Document 2 and Patent Document 3 disclose a retardation plate composed of a reverse wavelength dispersive single layer having a retardation value of λ / 4 in the entire wavelength region by containing a compound having a specific structure. ing. However, in the method disclosed above, the actual retardation development is low, and in order to realize the λ / 4 retardation, it is necessary to increase the film thickness. In addition, there is a problem that the light extraction efficiency deteriorates as the transmittance decreases.
 特許文献4には、特定の化合物を含有することにより、更に位相差と逆波長分散特性が改良された位相差板が開示されているが、厚さ方向における位相差が高いため、斜めから見た位相差がλ/4より大きく外れ、視認性が劣化するという問題がある。 Patent Document 4 discloses a retardation plate in which the retardation and reverse wavelength dispersion characteristics are further improved by containing a specific compound. However, since the retardation in the thickness direction is high, the retardation plate is viewed obliquely. Further, there is a problem that the phase difference deviates by more than λ / 4 and the visibility deteriorates.
 また、特許文献5では、リターデーション制御剤として、分子長軸方向と直交する方向の双極子モーメントの大きさが、分子長軸方向と平行方向の双極子モーメントの大きさよりも大きい低分子化合物を含む光学フィルムが提案されている。しかしながら、特許文献5に記載のレターデーション制御剤は、位相差発現性、特に面内方向の位相差発現性が低く、所望の位相差を得るためには、フィルム膜厚を厚くしなければならないという問題を抱えている。 Further, in Patent Document 5, as a retardation control agent, a low-molecular compound in which the magnitude of the dipole moment in the direction orthogonal to the molecular major axis direction is larger than the magnitude of the dipole moment in the direction parallel to the molecular major axis direction. Including optical films have been proposed. However, the retardation control agent described in Patent Document 5 has low retardation, particularly in-plane retardation, and the film thickness must be increased in order to obtain a desired retardation. Have a problem.
 このように、位相差発現性と逆波長分散性とはトレードオフの関係にあり、広い波長領域において高い位相差発現性を有し、かつ十分な逆波長分散性を示すλ/4位相差フィルムの開発が切望されている。 As described above, the retardation development property and the reverse wavelength dispersion property are in a trade-off relationship, and the λ / 4 retardation film has a high retardation development property in a wide wavelength region and exhibits a sufficient reverse wavelength dispersion property. The development of is eagerly desired.
国際公開第2009/25170号International Publication No. 2009/25170 特開2008-6602号公報JP 2008-6602 A 特開2011-75924号公報JP 2011-75924 A 特開2010-254949号公報JP 2010-254949 A 特開2007-249180号公報JP 2007-249180 A
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、広波長領域で位相差発現性が高く、薄膜で優れた逆波長分散特性を備え、低ヘイズで透明性が高く、耐光性及び着色耐性に優れたλ/4位相差フィルム及びその製造方法と、それを用いた円偏光板と、該円偏光板を具備し、色味安定性に優れた有機エレクトロルミネッセンス表示装置を提供することである。 The present invention has been made in view of the above problems, and its solution is high retardation development in a wide wavelength region, excellent reverse wavelength dispersion characteristics in a thin film, low haze and high transparency, A λ / 4 retardation film excellent in light resistance and coloring resistance, a method for producing the same, a circularly polarizing plate using the same, and an organic electroluminescence display device including the circularly polarizing plate and excellent in color stability Is to provide.
 本発明者は、上記問題に鑑み鋭意検討を進めた結果、熱可塑性樹脂と、位相差調整剤として、少なくとも3箇所に連結部位を有する連結基で結合された化合物(I)を含有するλ/4位相差フィルムで、化合物(I)が、連結基とその2箇所の連結部位を介して連結された基を含み、200nm以上、280nm未満の波長域に極大吸収波長を有する化学構造部分X(主鎖)と、該連結基の他の連結部位のうち、少なくとも一つの連結部位を介して結合された基で、該化学構造部分X(主鎖)に対し分岐した構造の化学構造部分Y(側鎖)とを有し、該化合物(I)のa)化学構造部分Y(側鎖)が、280~380nmの波長域内に極大吸収波長を有し、b)化学構造部分X(主鎖)の総吸収強度と化学構造部分Y(側鎖)の総吸収強度との比が特定の範囲にあり、かつ波長分散特性として、Ro(450)/Ro(550)の値及びRo(550)/Ro(650)の値を特定の範囲に設定したことを特徴とするλ/4位相差フィルムにより、広波長領域で位相差発現性が高く、薄膜で優れた逆波長分散特性を備え、低ヘイズで透明性が高く、耐光性、着色耐性に優れたλ/4位相差フィルムを実現することができることを見出し、本発明に至った次第である。 As a result of diligent investigation in view of the above problems, the present inventor has obtained a λ / containing a thermoplastic resin and a compound (I) bonded with a linking group having a linking site at least at three positions as a phase difference adjusting agent. In the four phase difference film, the compound (I) includes a linking group and a group linked via the two linking sites, and has a chemical structure moiety X (having a maximum absorption wavelength in a wavelength region of 200 nm or more and less than 280 nm) A main chain) and a chemical structure moiety Y (a structure branched from the chemical structure moiety X (main chain) by a group bonded via at least one of the other linking sites of the linking group. A) chemical structural moiety Y (side chain) of the compound (I) has a maximum absorption wavelength in the wavelength range of 280 to 380 nm, and b) chemical structural moiety X (main chain) Total absorption intensity and total absorption intensity of chemical structure part Y (side chain) And the ratio of Ro (450) / Ro (550) and the value of Ro (550) / Ro (650) are set to a specific range as chromatic dispersion characteristics. The λ / 4 retardation film has high retardation development in a wide wavelength region, excellent reverse wavelength dispersion characteristics in a thin film, low haze, high transparency, light resistance, and excellent coloring resistance. It has been found that a phase difference film can be realized and has reached the present invention.
 すなわち、本発明の上記問題は、下記の手段により解決される。 That is, the above problem of the present invention is solved by the following means.
 1.熱可塑性樹脂と、少なくとも3箇所に連結部位を有する連結基で結合された化合物(I)とを含有するλ/4位相差フィルムであって、該化合物(I)における前記連結基とその2箇所の連結部位を介して連結された基を含み、200nm以上、280nm未満の波長域に極大吸収波長を有する化学構造部分X(主鎖)と、該連結基の他の連結部位のうち、少なくとも一つの連結部位を介して結合された基で、該化学構造部分X(主鎖)に対し分岐した構造の化学構造部分Y(側鎖)を有し、該化合物(I)が下記(a)及び(b)で規定する条件を同時に満たし、波長分散特性が下記(c)及び(d)を同時に満たすことを特徴とするλ/4位相差フィルム。 1. A λ / 4 retardation film containing a thermoplastic resin and a compound (I) bonded with a linking group having a linking site at least at three positions, the linking group in the compound (I) and the two positions A chemical structure moiety X (main chain) having a maximum absorption wavelength in a wavelength region of 200 nm or more and less than 280 nm, and at least one of the other linking sites of the linking group. A group bonded through two linking sites, having a chemical structure portion Y (side chain) having a structure branched from the chemical structure portion X (main chain), wherein the compound (I) comprises the following (a) and (Lambda) / 4 phase difference film characterized by satisfy | filling simultaneously the conditions prescribed | regulated by (b), and satisfy | filling the following chromatic dispersion characteristics (c) and (d) simultaneously.
 (a)前記化学構造部分Y(側鎖)が、280~380nmの波長域内に極大吸収波長を有する
 (b)25.0≧ΣABS/ΣABS≧1.01
 (c)DSP1;Ro(450)/Ro(550)=0.72~0.96
 (d)DSP2;Ro(550)/Ro(650)=0.83~0.98
〔式中、ΣABSは、化合物(I)の化学構造部分X(主鎖)の総吸収強度を表し、ΣABSは、化合物(I)の化学構造部分Y(側鎖)の総吸収強度を表す。DSP1及びDSP2はそれぞれλ/4位相差フィルムの波長分散特性を表し、Ro(450)は波長450nmの光における面内リターデーション値であり、Ro(550)は波長550nmの光における面内リターデーション値であり、Ro(650)は波長650nmの光における面内リターデーション値である。なお、それぞれの面内リターデーション値は、23℃、55%RHの環境下で測定した値である。〕
 2.前記化合物(I)が、下記一般式(A)で表される化合物であることを特徴とする第1項に記載のλ/4位相差フィルム。
(A) The chemical structure portion Y (side chain) has a maximum absorption wavelength in a wavelength range of 280 to 380 nm. (B) 25.0 ≧ ΣABS y / ΣABS x ≧ 1.01
(C) DSP1; Ro (450) / Ro (550) = 0.72 to 0.96
(D) DSP2; Ro (550) / Ro (650) = 0.83 to 0.98
[In the formula, ΣABS x represents the total absorption intensity of the chemical structure portion X (main chain) of the compound (I), and ΣABS y represents the total absorption intensity of the chemical structure portion Y (side chain) of the compound (I). To express. DSP1 and DSP2 each represent the wavelength dispersion characteristic of a λ / 4 retardation film, Ro (450) is an in-plane retardation value for light having a wavelength of 450 nm, and Ro (550) is an in-plane retardation for light having a wavelength of 550 nm. Ro (650) is an in-plane retardation value for light having a wavelength of 650 nm. In addition, each in-plane retardation value is the value measured in the environment of 23 degreeC and 55% RH. ]
2. The λ / 4 retardation film according to item 1, wherein the compound (I) is a compound represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000002
〔式中、L及びLは各々独立に単結合又は2価の連結基を表す。R、R及びRは各々独立に置換基を表す。nは0から2までの整数を表す。Wa及びWbはそれぞれ水素原子又は置換基を表し、(I)Wa及びWbが互いに結合して環を形成する、(II)Wa及びWbの少なくとも一つが環構造を有する、又は(III)Wa及びWbの少なくとも一つがアルケニル基若しくはアルキニル基である。〕
 3.前記化合物(I)のアスペクト比が、1.70未満であることを特徴とする第1項又は第2項に記載のλ/4位相差フィルム。
Figure JPOXMLDOC01-appb-C000002
[Wherein, L 1 and L 2 each independently represent a single bond or a divalent linking group. R 1 , R 2 and R 3 each independently represent a substituent. n represents an integer of 0 to 2. Wa and Wb each represent a hydrogen atom or a substituent; (I) Wa and Wb are bonded to each other to form a ring; (II) at least one of Wa and Wb has a ring structure; or (III) Wa and Wb At least one of Wb is an alkenyl group or an alkynyl group. ]
3. The aspect ratio of the compound (I) is less than 1.70, The λ / 4 retardation film according to item 1 or 2,
 4.前記熱可塑性樹脂が、セルロースエステルであることを特徴とする第1項から第3項までのいずれか一項に記載のλ/4位相差フィルム。 4. The λ / 4 retardation film according to any one of Items 1 to 3, wherein the thermoplastic resin is a cellulose ester.
 5.遅相軸方向に延伸し、進相軸方向に収縮されて作製され、該遅相軸方向の延伸倍率に対する該進相軸方向の収縮倍率の比率(収縮倍率/延伸倍率)が、0.05~0.70の範囲内であることを特徴とする第1項から第4項までのいずれか一項に記載のλ/4位相差フィルム。 5. It is produced by stretching in the slow axis direction and shrinking in the fast axis direction, and the ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the slow axis direction (shrinkage ratio / stretch ratio) is 0.05. The λ / 4 retardation film according to any one of Items 1 to 4, wherein the λ / 4 retardation film is in a range of ˜0.70.
 6.遅相軸方向が、搬送方向に対し30~60°の角度範囲内で配向していることを特徴とする第1項から第4項までのいずれか一項に記載のλ/4位相差フィルム。 6. The λ / 4 retardation film according to any one of items 1 to 4, wherein the slow axis direction is oriented within an angle range of 30 to 60 ° with respect to the transport direction. .
 7.フィルムの送り方向とフィルムの引取り方向とが斜交し、かつ該フィルムの引取り方向に対して30~60°の角度範囲内に遅相軸があることを特徴とする第1項から第4項までのいずれか一項に記載のλ/4位相差フィルム。 7. The first to second aspects, wherein the film feeding direction and the film take-off direction are obliquely crossed, and the slow axis is within an angle range of 30 to 60 ° with respect to the film take-up direction. The λ / 4 retardation film according to any one of items 4 to 4.
 8.第1項から第4項までのいずれか一項に記載のλ/4位相差フィルムを製造するλ/4位相差フィルムの製造方法であって、遅相軸方向に延伸し、進相軸方向に収縮する延伸収縮工程を経て、該遅相軸方向の延伸倍率に対する該進相軸方向の収縮倍率の比率(収縮倍率/延伸倍率)が、0.05~0.70の範囲内となる条件で延伸して製造することを特徴とするλ/4位相差フィルムの製造方法。 8. A method for producing a λ / 4 retardation film for producing the λ / 4 retardation film according to any one of items 1 to 4, wherein the film is stretched in a slow axis direction and is advanced in a fast axis direction. The ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the fast axis direction (shrinkage ratio / stretch ratio) is in the range of 0.05 to 0.70 through the stretching shrinkage step of shrinking into A method for producing a λ / 4 retardation film, wherein the film is produced by stretching the film.
 9.第1項から第4項までのいずれか一項に記載のλ/4位相差フィルムを製造するλ/4位相差フィルムの製造方法であって、遅相軸方向が、搬送方向に対し30~60°の角度範囲内で配向する条件で製造することを特徴とするλ/4位相差フィルムの製造方法。 9. A method for producing a λ / 4 retardation film, which produces the λ / 4 retardation film according to any one of items 1 to 4, wherein a slow axis direction is 30 to A method for producing a λ / 4 retardation film, which is produced under the condition of orientation within an angle range of 60 °.
 10.第1項から第4項までのいずれか一項に記載のλ/4位相差フィルムを製造するλ/4位相差フィルムの製造方法であって、延伸工程におけるフィルムの送り方向とフィルムの引取り方向とを斜交させ、該フィルムの引取り方向に対して30~60°の角度範囲内に遅相軸を設ける条件で製造することを特徴とするλ/4位相差フィルムの製造方法。 10. A method for producing a λ / 4 retardation film for producing the λ / 4 retardation film according to any one of items 1 to 4, wherein the film feeding direction and the film take-up in the stretching step A method for producing a λ / 4 retardation film, characterized in that the film is produced under the condition that the direction is oblique and the slow axis is provided within an angle range of 30 to 60 ° with respect to the film take-off direction.
 11.第1項から第7項までのいずれか一項に記載のλ/4位相差フィルムと偏光子とを具備することを特徴とする円偏光板。 11. A circularly polarizing plate comprising the λ / 4 retardation film according to any one of items 1 to 7 and a polarizer.
 12.第11項に記載の円偏光板と、有機エレクトロルミネッセンス素子とを具備することを特徴とする有機エレクトロルミネッセンス表示装置。 12. An organic electroluminescence display device comprising the circularly polarizing plate according to item 11 and an organic electroluminescence element.
 本発明で規定する構成により、上記問題を解決することができたのは、以下の理由によるものと推測している。 It is presumed that the above problem could be solved by the configuration defined in the present invention for the following reason.
 本発明者らは、上記課題を解決すべく、位相差上昇効果に優れる位相差調整剤の主鎖構造に着目して、様々な構造を有する化合物を広範囲にわたり検討を進めてきたが、いずれも波長分散特性が不十分であった。更に、側鎖部分を構成する置換基の種類及び組合せを変化させて検討を進めた結果、主鎖構造と側鎖構造との吸収強度比が特定の条件にあり、特異な吸収ピークを有する化合物が、波長分散特性と位相差発現性に優れることを見出した。 In order to solve the above problems, the present inventors have studied a wide range of compounds having various structures by paying attention to the main chain structure of a phase difference adjusting agent that is excellent in retardation increasing effect. The wavelength dispersion characteristics were insufficient. Furthermore, as a result of investigations by changing the types and combinations of substituents constituting the side chain moiety, the compound having a specific absorption peak in the absorption intensity ratio between the main chain structure and the side chain structure is in a specific condition. However, it discovered that it was excellent in the wavelength dispersion characteristic and phase difference expression.
 また、このような化合物を含有するフィルムを、特定の延伸方法及び延伸条件で製造することにより、位相差と波長分散特性を兼ね備えたλ/4位相差フィルムを得ることができた。 In addition, by producing a film containing such a compound by a specific stretching method and stretching conditions, a λ / 4 retardation film having both retardation and wavelength dispersion characteristics could be obtained.
 本発明の上記手段により、広波長領域での位相差発現性が高く、薄膜で優れた逆波長分散特性を備え、低ヘイズで透明性が高く、耐光性及び着色耐性に優れたλ/4位相差フィルムとその製造方法、それを用いた円偏光板と、該円偏光板を具備し、色味安定性に優れた有機エレクトロルミネッセンス表示装置を提供することができる。 By the above means of the present invention, λ / 4 position having high retardation development in a wide wavelength region, excellent reverse wavelength dispersion characteristics in a thin film, low haze, high transparency, excellent light resistance and coloring resistance A phase difference film, a method for producing the same, a circularly polarizing plate using the same, and an organic electroluminescence display device having the circularly polarizing plate and having excellent color stability can be provided.
遅相軸方向に延伸し、進相軸方向に収縮する延伸収縮工程における収縮倍率を説明する模式図Schematic diagram illustrating the shrinkage ratio in the stretching / shrinking process of stretching in the slow axis direction and contracting in the fast axis direction 本発明に適用可能なフィルムの送り方向とフィルムの引取り方向とが一致している延伸装置の一例を示す模式図The schematic diagram which shows an example of the extending | stretching apparatus with which the feed direction of a film applicable to this invention and the take-up direction of a film correspond. 本発明に適用可能なフィルムの送り方向とフィルムの引取り方向とが一致している延伸装置の他の一例を示す模式図The schematic diagram which shows another example of the extending | stretching apparatus with which the feed direction of a film applicable to this invention and the take-up direction of a film correspond. 本発明に適用可能なフィルムの送り方向とフィルムの引取り方向とが斜交している延伸装置の一例を示す模式図The schematic diagram which shows an example of the extending | stretching apparatus with which the feed direction of a film applicable to this invention and the take-up direction of a film crossed diagonally 本発明に適用可能な有機エレクトロルミネッセンス素子の構成の一例を示す概略断面図であるIt is a schematic sectional drawing which shows an example of a structure of the organic electroluminescent element applicable to this invention.
 本発明のλ/4位相差フィルムは、熱可塑性樹脂と、少なくとも3箇所に連結部位を有する連結基で結合された化合物(I)とを含有するλ/4位相差フィルムであって、該化合物(I)における前記連結基とその2箇所の連結部位を介して連結された基を含み、200nm以上、280nm未満の波長域に極大吸収波長を有する化学構造部分X(主鎖)と、該連結基の他の連結部位のうち、少なくとも一つの連結部位を介して結合された基で、該化学構造部分X(主鎖、以下主鎖Xともいう)より分子長が短い化学構造部分Y(側鎖、以下側鎖Yともいう)を有し、該化合物(I)が前記(a)及び(b)で規定する条件を同時に満たし、波長分散特性が前記(c)及び(d)を同時に満たすことを特徴とし、広波長領域で位相差発現性が高く、薄膜で優れた逆波長分散特性を備え、低ヘイズで透明性が高く、耐光性及び着色耐性に優れたλ/4位相差フィルムを実現することができる。この特徴は、請求項1から請求項12までの請求項に係る発明に共通する技術的特徴である。 The λ / 4 retardation film of the present invention is a λ / 4 retardation film containing a thermoplastic resin and a compound (I) bonded with a linking group having a linking site at least at three positions, and the compound A chemical structure moiety X (main chain) having a maximum absorption wavelength in a wavelength region of 200 nm or more and less than 280 nm, which includes the linking group in (I) and a group linked via the two linking sites; Among the other linking sites of the group, a group bonded via at least one linking site, and having a chemical structure portion Y (side) having a shorter molecular length than the chemical structure portion X (main chain, hereinafter also referred to as main chain X) The compound (I) satisfies the conditions specified in the above (a) and (b) at the same time, and the wavelength dispersion characteristics satisfy the above (c) and (d) at the same time. It is characterized by the fact that it exhibits phase difference in a wide wavelength range. A λ / 4 retardation film that is high, has a thin film with excellent reverse wavelength dispersion characteristics, low haze, high transparency, and excellent light resistance and coloring resistance can be realized. This feature is a technical feature common to the inventions according to claims 1 to 12.
 本発明に係る化合物(I)における化学構造部分X(主鎖)と化学構造部分Y(側鎖)は、以下のように定義する。 The chemical structure part X (main chain) and the chemical structure part Y (side chain) in the compound (I) according to the present invention are defined as follows.
 すなわち、少なくとも3箇所に連結部位を有する連結基で結合された化合物(I)の分子構造において、連結基とその2箇所の連結部位を介して連結された基を含み、200nm以上、280nm未満の波長域に極大吸収波長を有する化学構造部分を化学構造部分X(主鎖)と定義する。化学構造部分X(主鎖)としては、最も直線距離が長い原子同士の原子間距離で構成する化学構造部分をとることが多い。また、化学構造部分Y(側鎖)は、連結基の他の連結部位のうち、少なくとも一つの連結部位を介して結合された基で、該化学構造部分X(主鎖)に対し分岐した構造で、280~380nmの波長域内に極大吸収波長を有する化学構造部分であると定義する。 That is, in the molecular structure of the compound (I) bonded with a linking group having a linking site at least at three positions, the linking group and a group linked via the two linking sites are included, and the molecular structure is 200 nm or more and less than 280 nm. A chemical structure portion having a maximum absorption wavelength in the wavelength region is defined as a chemical structure portion X (main chain). In many cases, the chemical structure portion X (main chain) is a chemical structure portion constituted by an interatomic distance between atoms having the longest linear distance. Further, the chemical structure portion Y (side chain) is a group that is bonded to at least one linking site among the other linking sites of the linking group and is branched from the chemical structure portion X (main chain). Is defined as a chemical structure portion having a maximum absorption wavelength in the wavelength range of 280 to 380 nm.
 本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、前記化合物(I)が、前記一般式(A)で表される化合物であることが好ましい。また、前記化合物(I)のアスペクト比が、1.70未満であることが好ましい態様であり、より好ましくは、1.01以上、1.70未満の範囲である。 As an embodiment of the present invention, it is preferable that the compound (I) is a compound represented by the general formula (A) from the viewpoint that the effect intended by the present invention can be further expressed. Moreover, it is a preferable aspect that the aspect ratio of the said compound (I) is less than 1.70, More preferably, it is the range of 1.01 or more and less than 1.70.
 また、前記熱可塑性樹脂がセルロースエステルであることが好ましい。また、遅相軸方向に延伸し、進相軸方向に収縮されて作製され、該遅相軸方向の延伸倍率に対する該進相軸方向の収縮倍率の比率(収縮倍率/延伸倍率)が、0.05~0.70の範囲内であることが好ましい。また、遅相軸方向が、搬送方向に対し30~60°の角度範囲内で配向していることが好ましい。また、フィルムの送り方向とフィルムの引取り方向とが斜交し、かつ該フィルムの引取り方向に対して30~60°の角度範囲内に遅相軸があることが好ましい。 Moreover, it is preferable that the thermoplastic resin is a cellulose ester. Further, the film is produced by stretching in the slow axis direction and shrinking in the fast axis direction, and the ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the slow axis direction (shrinkage ratio / stretch ratio) is 0. It is preferably within the range of .05 to 0.70. The slow axis direction is preferably oriented within an angle range of 30 to 60 ° with respect to the transport direction. Further, it is preferable that the film feeding direction and the film take-up direction are obliquely crossed and that the slow axis is within an angle range of 30 to 60 ° with respect to the film take-up direction.
 また、本発明のλ/4位相差フィルムの製造方法としては、遅相軸方向に延伸し、進相軸方向に収縮する延伸収縮工程を経て、該遅相軸方向の延伸倍率に対する該進相軸方向の収縮倍率の比率(収縮倍率/延伸倍率)が、0.05~0.70の範囲内となる条件で延伸して製造すること、遅相軸方向が、搬送方向に対し30~60°の角度範囲内で配向する条件で製造すること、延伸工程におけるフィルムの送り方向とフィルムの引取り方向とを斜交させ、該フィルムの引取り方向に対して30~60°の角度範囲内に遅相軸を設ける条件で製造すること、が好ましい。 The λ / 4 retardation film of the present invention can be produced by a stretching / shrinking process of stretching in the slow axis direction and contracting in the fast axis direction, and then proceeding to the stretch ratio in the slow axis direction. It is produced by stretching under the condition that the ratio of shrinkage ratio in the axial direction (shrinkage ratio / stretching ratio) is in the range of 0.05 to 0.70, and the slow axis direction is 30 to 60 with respect to the conveying direction. The film is manufactured under the condition that the film is oriented within the angle range of °, and the film feeding direction and the film drawing direction in the stretching process are obliquely crossed, and within the angle range of 30 to 60 ° with respect to the film drawing direction. It is preferable to produce them under the condition of providing a slow axis.
 本発明のλ/4位相差フィルムは、円偏光板及び有機エレクトロルミネッセンス表示装置に好適に具備させることができる。 The λ / 4 retardation film of the present invention can be suitably included in a circularly polarizing plate and an organic electroluminescence display device.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《λ/4位相差フィルム》
 本発明のλ/4位相差フィルムとは、ある特定の波長の直線偏光を円偏光に、又は、円偏光を直線偏光に変換する機能を有するフィルムをいう。λ/4位相差フィルムは、所定の光の波長(通常、可視光領域)に対して、フィルム層の面内の位相差値Roが約1/4である。
<< λ / 4 retardation film >>
The λ / 4 retardation film of the present invention refers to a film having a function of converting linearly polarized light having a specific wavelength into circularly polarized light or converting circularly polarized light into linearly polarized light. The λ / 4 retardation film has an in-plane retardation value Ro of about ¼ with respect to a predetermined wavelength of light (usually in the visible light region).
 本発明のλ/4位相差フィルムは、波長550nmで測定したRo(550)が120~180nmの範囲内であることが好ましく、120~160nmの範囲内であることが更に好ましく、125~150nmの範囲内であることが特に好ましい。 In the λ / 4 retardation film of the present invention, Ro (550) measured at a wavelength of 550 nm is preferably in the range of 120 to 180 nm, more preferably in the range of 120 to 160 nm, and 125 to 150 nm. It is particularly preferable that it is within the range.
 本発明のλ/4位相差フィルムは、可視光の波長の範囲においてほぼ完全な円偏光を得るため、可視光の波長の範囲内において、概ね波長の1/4の位相差を有する位相差板(フィルム)である広帯域λ/4位相差フィルムであることが好ましい。 Since the λ / 4 retardation film of the present invention obtains almost perfect circularly polarized light in the visible light wavelength range, the retardation plate has a retardation of approximately ¼ of the wavelength in the visible light wavelength range. A broadband λ / 4 retardation film which is a (film) is preferable.
 本発明でいう「可視光の波長の範囲において概ね1/4の位相差」とは、波長400から700nmの領域において、長波長ほど位相差値が大きい逆波長分散特性であることを意味する。 In the present invention, “a phase difference of approximately ¼ in the wavelength range of visible light” means an inverse wavelength dispersion characteristic having a larger phase difference value as the wavelength is longer in a wavelength range of 400 to 700 nm.
 本発明においては、面内位相差値Roは下記式(i)で表される。 In the present invention, the in-plane retardation value Ro is represented by the following formula (i).
 式(i)
   Ro=(n-n)×d
 上記式(i)において、n及びnは、それぞれ23℃、55%RHの環境下で測定した、波長450nm、550nm、又は650nmにおける屈折率であり、nはフィルムの面内の最大の屈折率(遅相軸方向の屈折率)であり、nはフィルム面内で遅相軸に直交する方向の屈折率であり、dはフィルムの厚さ(nm)である。
Formula (i)
Ro = (n x −n y ) × d
Maximum In the above formula (i), n x and n y is, 23 ° C., respectively, were measured under the environment of 55% RH, the refractive index at a wavelength of 450 nm, 550 nm, or 650 nm, n x is the plane of the film the refractive index of the (refractive index in a slow axis direction), n y is a refractive index in a direction perpendicular to the slow axis in the film plane, d is the film thickness (nm).
 本発明のλ/4位相差フィルムにおいては、前記(c)項で規定するように、波長550nmで測定した面内位相差値Ro(550)に対する波長450nmで測定したRo(450)の比(DSP1;Ro(450)/Ro(550))が0.72~0.96の範囲内であることを特徴とするが、0.75~0.92の範囲内であることが好ましく、0.78~0.88の範囲内であることがより好ましい。 In the λ / 4 retardation film of the present invention, the ratio of Ro (450) measured at a wavelength of 450 nm to the in-plane retardation value Ro (550) measured at a wavelength of 550 nm (as defined in the above item (c)) ( DSP1; Ro (450) / Ro (550)) is in the range of 0.72 to 0.96, preferably in the range of 0.75 to 0.92. More preferably, it is within the range of 78 to 0.88.
 また、前記(d)項で規定するように、波長650nmで測定した面内位相差値Ro(650)に対する波長550nmで測定した面内リターデーション値Ro(550)の比(DSP2;Ro(550)/Ro(650))の値は、0.83~0.98範囲内であることを特徴とするが、前記Ro(450)/Ro(550)の値とのバランスが大切であり、Ro(450)/Ro(550)の値が0.72~0.96の範囲内にある場合には、Ro(550)/Ro(650)の値は0.87~0.98の範囲内であることが好ましく、Ro(450)/Ro(550)の値が0.75~0.92の範囲にある場合には、Ro(550)/Ro(650)の値は0.88~0.96の範囲内であることが好ましく、Ro(450)/Ro(550)の値が0.78~0.88の範囲である場合は、Ro(550)/Ro(650)の値は0.90~0.94の範囲内であることがより好ましい。 Further, as defined in the above item (d), the ratio of the in-plane retardation value Ro (550) measured at a wavelength of 550 nm to the in-plane retardation value Ro (650) measured at a wavelength of 650 nm (DSP2; Ro (550) ) / Ro (650)) is in the range of 0.83 to 0.98, but the balance with the value of Ro (450) / Ro (550) is important. When the value of (450) / Ro (550) is in the range of 0.72 to 0.96, the value of Ro (550) / Ro (650) is in the range of 0.87 to 0.98. Preferably, when the value of Ro (450) / Ro (550) is in the range of 0.75 to 0.92, the value of Ro (550) / Ro (650) is 0.88 to 0.00. Preferably within the range of 96, Ro (450) / R If the value of (550) is in the range of from 0.78 to 0.88, the value of Ro (550) / Ro (650) is more preferably in the range of 0.90 to 0.94.
 面内位相差値Ro(550)を高める場合には、フィルム膜厚dを高めることが簡単な手段ではあるが、経済性の低下、画像表示装置の厚さの増大、透過率低下による光取出し効率低下の観点から好ましくない。 In the case of increasing the in-plane retardation value Ro (550), it is a simple means to increase the film thickness d, but light extraction due to a decrease in economic efficiency, an increase in the thickness of the image display device, and a decrease in transmittance. It is not preferable from the viewpoint of efficiency reduction.
 本発明のλ/4位相差フィルムにおいては、フィルム膜厚dは、おおむね30~150μmの範囲内であるが、40~100μmの範囲内が好ましく、50~75μmの範囲内であることが、本発明の効果をより発現できる観点から特に好ましい。 In the λ / 4 retardation film of the present invention, the film thickness d is generally within the range of 30 to 150 μm, preferably within the range of 40 to 100 μm, and preferably within the range of 50 to 75 μm. It is particularly preferable from the viewpoint of further manifesting the effects of the invention.
 本発明において、面内位相差値Roは、Axometrcs社製のAxoscanを用いて、23℃、55%RHの環境下で、各波長での複屈折率測定により算出することができる。 In the present invention, the in-plane retardation value Ro can be calculated by measuring the birefringence at each wavelength in an environment of 23 ° C. and 55% RH using an Axoscan manufactured by Axometers.
 本発明のλ/4位相差フィルムの遅相軸と、後述する偏光子の透過軸との角度が実質的に45°になるように積層することにより、円偏光板が得られる。 A circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the λ / 4 retardation film of the present invention and the transmission axis of the polarizer described later is substantially 45 °.
 本発明でいう「実質的に45°」とは、40~50°の範囲内であることを意味する。本発明のλ/4位相差フィルムの面内の遅相軸と、偏光子の透過軸との角度は、41~49°の範囲内であることが好ましく、42~48°の範囲内であることがより好ましく、43~47°の範囲内であることが更に好ましく、44~46°の範囲内であることが最も好ましい。 In the present invention, “substantially 45 °” means within a range of 40 to 50 °. The angle between the in-plane slow axis of the λ / 4 retardation film of the present invention and the transmission axis of the polarizer is preferably in the range of 41 to 49 °, and in the range of 42 to 48 °. More preferably, it is more preferably in the range of 43 to 47 °, and most preferably in the range of 44 to 46 °.
 〔位相差調整剤:化合物(I)〕
 本発明のλ/4位相差フィルムにおいては、本発明に係る化合物(I)は、少なくとも3箇所に連結部位を有する連結基で結合された化合物であり、前記連結基とその2箇所の連結部位を介して連結された基を含み、200nm以上、280nm未満の波長域に極大吸収波長を有する化学構造部分X(主鎖)と、該連結基の他の連結部位のうち、少なくとも一つの連結部位を介して結合された基で、該化学構造部分X(主鎖)に対し分岐した構造の化学構造部分Y(側鎖)とを有し、下記(a)及び(b)で規定する条件を同時に満たすことを特徴とする。
[Phase difference adjusting agent: Compound (I)]
In the λ / 4 retardation film of the present invention, the compound (I) according to the present invention is a compound bonded with a linking group having a linking site in at least three places, and the linking group and the two linking sites. A chemical structure moiety X (main chain) having a maximum absorption wavelength in a wavelength region of 200 nm or more and less than 280 nm, and at least one linking site among the other linking sites of the linking group. And a chemical structure portion Y (side chain) having a structure branched from the chemical structure portion X (main chain), and the conditions specified in the following (a) and (b): It is characterized by satisfying at the same time.
 第1の条件としては、
 (a)化合物(I)を構成する化学構造部分Y(側鎖)部分が、280~380nmの波長域内に最大吸収波長を有することを特徴としている。
As the first condition,
(A) The chemical structure part Y (side chain) part constituting the compound (I) has a maximum absorption wavelength in a wavelength range of 280 to 380 nm.
 本発明に係る主鎖及び側鎖を有する化合物(I)は、溶媒に溶解した状態で、紫外吸収領域に少なくとも2つの極大吸収波長を有しており、より短波側の極大吸収波長λmaxは化合物(I)の主鎖Xに帰属する分光吸収特性で、200nm以上、280nm未満の波長域に極大吸収波長を有し、より長波側の極大吸収波長λmaxは化合物(I)の側鎖Yに帰属する分光吸収特性である。本発明では、側鎖Yに帰属する該長波側の極大吸収波長λmaxが280~380nmの波長域内にあることを特徴とする。 The compound (I) having a main chain and a side chain according to the present invention has at least two maximum absorption wavelengths in the ultraviolet absorption region in a state dissolved in a solvent, and the maximum absorption wavelength λmax x on the shorter wavelength side is Spectral absorption characteristics belonging to the main chain X of the compound (I), having a maximum absorption wavelength in a wavelength range of 200 nm or more and less than 280 nm, and the maximum absorption wavelength λmax y on the longer wave side is the side chain Y of the compound (I) Spectral absorption characteristics belonging to In the present invention, the maximum absorption wavelength λmax y on the long wave side belonging to the side chain Y is in the wavelength range of 280 to 380 nm.
 第2の条件は、
 (b)化合物(I)の化学構造部分X(主鎖)に帰属する総吸収強度をΣABSとし、化合物(I)の化学構造部分Y(側鎖)に帰属する総吸収強度をΣABSとしたとき、ΣABSとΣABSの吸収強度比(ΣABS/ΣABS)の値が、1.01~25.0の範囲内であることを特徴とする。
The second condition is
(B) The total absorption intensity attributed to the chemical structure part X (main chain) of the compound (I) is ΣABS x, and the total absorption intensity attributed to the chemical structure part Y (side chain) of the compound (I) is ΣABS y The value of the absorption intensity ratio (ΣABS y / ΣABS x ) between ΣABS x and ΣABS y is in the range of 1.01 to 25.0.
 本発明に係る化学構造部分X(主鎖)に帰属する総吸収強度をΣABS及び化学構造部分Y(側鎖)に帰属する総吸収強度をΣABSは、下記の手順に従って測定することができる。 ShigumaABS y total absorption intensity attributed the total absorption intensity attributable to the chemical structure moiety X (main chain) of the present invention to ShigumaABS x and chemical structure moiety Y (side chain) can be measured according to the following procedure .
 本発明に係る化合物(I)を、テトラヒドロフラン(安定剤なし)に、濃度として10-4mol/Lで溶解し、化合物(I)溶液を調製する。 Compound (I) according to the present invention is dissolved in tetrahydrofuran (without stabilizer) at a concentration of 10 −4 mol / L to prepare a compound (I) solution.
 調製した化合物(I)溶液を、石英セル(10mm長四角セル)に入れて、紫外可視赤外分光光度計(U-570、日本分光社製)を用いて、化合物(I)溶液の波長領域200~380nmの範囲における吸光度(溶液吸収スペクトラム)を測定する。 The prepared compound (I) solution is put in a quartz cell (10 mm long square cell), and an ultraviolet-visible infrared spectrophotometer (U-570, manufactured by JASCO Corporation) is used to measure the wavelength range of the compound (I) solution. The absorbance (solution absorption spectrum) in the range of 200 to 380 nm is measured.
 得られた溶液吸収スペクトル特性のうち、波長領域200~380nmの範囲における吸収スペクトルの中で、上記のように化学構造部分Y(側鎖)に帰属する長波長側の極大吸収の波長をλmaxとし、λmaxにおける吸光度を化学構造部分Y(側鎖)に帰属する総吸収強度ΣABSとして求める。同様に、化学構造部分X(主鎖)に帰属する短波長側の極大吸収の波長をλmaxとし、λmaxにおける吸光度を化学構造部分X(主鎖)に帰属する総吸収強度ΣABSとして測定する。次いで、得られた各測定値より、吸収強度比(ΣABS/ΣABS)の値を算出する。 Among the obtained absorption spectra of the solution, the maximum absorption wavelength on the long wavelength side belonging to the chemical structure portion Y (side chain) in the absorption spectrum in the wavelength region of 200 to 380 nm is expressed as λmax y And the absorbance at λmax y is determined as the total absorption intensity ΣABS y attributed to the chemical structure portion Y (side chain). Similarly, the wavelength of the maximum absorption on the short wavelength side belonging to the chemical structure portion X (main chain) is λmax x, and the absorbance at λmax x is measured as the total absorption intensity ΣABS x belonging to the chemical structure portion X (main chain). To do. Next, the value of the absorption intensity ratio (ΣABS y / ΣABS x ) is calculated from each obtained measurement value.
 本発明に係る化合物(I)の主鎖X及び側鎖Yは、上記の方法で測定することにより定義することができるが、多くの化合物(I)においては、後述するλ/4位相差フィルムの遅相軸の方向と化合物(I)の主鎖Xの方向が一致するように配向する場合が多い。 The main chain X and the side chain Y of the compound (I) according to the present invention can be defined by measurement by the above-described method. In many compounds (I), a λ / 4 retardation film described later is used. In many cases, the orientation is such that the direction of the slow axis of the compound coincides with the direction of the main chain X of the compound (I).
 本発明に係る化合物(I)においては、アスペクト比が、1.70未満であることが好ましい態様であり、より好ましくは、1.01以上、1.70未満の範囲である。 In the compound (I) according to the present invention, the aspect ratio is preferably less than 1.70, more preferably 1.01 or more and less than 1.70.
 本発明でいう化合物(I)のアスペクト比とは、Winmostar MOPAC AM1(MOP6W70)(千田,“分子計算支援システムWinmostarの開発”,出光技報,49,1,106-111(2006))を用いて算出した値である。 With respect to the aspect ratio of the compound (I) in the present invention, Winstar MOPAC AM1 (MOP6W70) (Senda, “Development of molecular computing support system Winmostar”, Idemitsu Technical Report, 49, 1, 106-111 (2006)) is used. This is the calculated value.
 本発明でいうアスペクト比とは、分子長/分子幅であり、分子長とは、化合物中で最大の原子間距離に両端の2原子のファンデルワールス半径を加えた値であり、分子幅は分子長軸に垂直な面に各原子を投影したときの最大の原子間距離に両端の2原子のファンデルワールス半径を加えた値である。 In the present invention, the aspect ratio is the molecular length / molecular width, and the molecular length is a value obtained by adding the van der Waals radii of two atoms at both ends to the maximum interatomic distance in the compound, and the molecular width is This is a value obtained by adding the van der Waals radii of two atoms at both ends to the maximum interatomic distance when each atom is projected onto a plane perpendicular to the molecular long axis.
 本発明において、アスペクト比が1.70未満である化合物(I)を選択することにより、熱可塑性樹脂に対して異方的になり、逆波長分散性を高める効果が得られやすく、λ/4位相差フィルムに必要な位相差発現性を達成することができる。 In the present invention, by selecting the compound (I) having an aspect ratio of less than 1.70, it becomes anisotropic to the thermoplastic resin, and the effect of increasing the reverse wavelength dispersibility is easily obtained. The retardation development required for the retardation film can be achieved.
 本発明に係る化合物(I)としては、上記で規定する条件(a)及び(b)を同時に満たすものであれば特に制限はないが、下記一般式(A)で表され、かつ条件(a)及び(b)で規定する条件を同時に満たす化合物であることが好ましい。 The compound (I) according to the present invention is not particularly limited as long as it simultaneously satisfies the conditions (a) and (b) specified above, but is represented by the following general formula (A) and the condition (a It is preferable that the compound satisfies the conditions specified in (b) and (b) at the same time.
 下記一般式(A)で表される化合物を用いることにより、遅相軸方向の屈折率nxを高くすることができ、かつ紫外領域での進相軸方向屈折率nyを高めて、進相軸方向屈折率nyの順波長分散傾きを急峻にすることができる。 By using the compound represented by the following general formula (A), the refractive index nx in the slow axis direction can be increased, and the fast axis direction refractive index ny in the ultraviolet region can be increased to increase the fast axis. The forward wavelength dispersion slope of the directional refractive index ny can be made steep.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(A)において、L及びLは各々独立に単結合又は2価の連結基を表す。R、R及びRは各々独立に置換基を表す。nは0から2までの整数を表す。Wa及びWbはそれぞれ水素原子又は置換基を表し、(I)Wa及びWbが互いに結合して環を形成してもよく、(II)Wa及びWbの少なくとも一つが環構造を有してもよく、又は(III)Wa及びWbの少なくとも一つがアルケニル基又はアルキニル基であってもよい。 In the general formula (A), L 1 and L 2 each independently represent a single bond or a divalent linking group. R 1 , R 2 and R 3 each independently represent a substituent. n represents an integer of 0 to 2. Wa and Wb each represent a hydrogen atom or a substituent, (I) Wa and Wb may be bonded to each other to form a ring, and (II) at least one of Wa and Wb may have a ring structure Or (III) at least one of Wa and Wb may be an alkenyl group or an alkynyl group.
 一般式(A)において、L及びLは各々独立に単結合又は2価の連結基を表すが、2価の連結基としては、アルキレン基、アルケニレン基、アルキニレン基、O、(C=O)、(C=O)-O、NR、S及び(C=O)-NR(Rは、後述するR、R及びRと同義である)が挙げられる。L及びLとして、好ましくはO、(C=O)-O、又はO(C=O)である。 In the general formula (A), L 1 and L 2 each independently represent a single bond or a divalent linking group. Examples of the divalent linking group include an alkylene group, an alkenylene group, an alkynylene group, O, and (C = O), (C═O) —O, NR, S, and (C═O) —NR (R has the same meaning as R 1 , R 2, and R 3 described later). L 1 and L 2 are preferably O, (C═O) —O, or O (C═O).
 R、R及びRは各々独立に置換基を表す。R、R及びRで表される置換基の具体例としては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(例えば、シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、シクロアルケニル基(例えば、2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、p-トリル基、ナフチル基等)、ヘテロ環基(例えば、2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(例えば、フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(例えば、N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N′-フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(例えば、アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)が挙げられる。 R 1 , R 2 and R 3 each independently represent a substituent. Specific examples of the substituent represented by R 1 , R 2 and R 3 include a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), an alkyl group (eg, methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (for example, cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group ( For example, vinyl group, allyl group, etc.), cycloalkenyl group (eg, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg, ethynyl group, propargyl group, etc.), aryl group (Eg, phenyl group, p-tolyl group, naphthyl group, etc.), heterocyclic group (eg, 2-furyl group, 2-thienyl group, 2 -Pyrimidinyl group, 2-benzothiazolyl group, etc.), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group (for example, methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2 -Methoxyethoxy group), aryloxy group (eg, phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), acyloxy group ( For example, formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, etc.), amino group (for example, amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphe ), Acylamino groups (for example, formylamino group, acetylamino group, pivaloylamino group, lauroylamino group, benzoylamino group, etc.), alkyl and arylsulfonylamino groups (for example, methylsulfonylamino group, butylsulfonylamino group, Phenylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenylsulfonylamino group, etc.), mercapto group, alkylthio group (eg, methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (Eg, phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl group (eg, N-ethylsulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N Dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N- (N'-phenylcarbamoyl) sulfamoyl group, etc.), sulfo group, acyl group (for example, acetyl group, pivaloyl) Benzoyl group, etc.), carbamoyl group (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N-di-n-octylcarbamoyl group, N- (methylsulfonyl) carbamoyl group, etc.) .
 R及びRとしては、好ましくは、置換もしくは無置換のベンゼン環、置換もしくは無置換のシクロヘキサン環である。より好ましくは置換基を有するベンゼン環、置換基を有するシクロヘキサン環であり、さらに4位に置換基を有するベンゼン環が、λ/4位相差フィルムの遅相軸方向に一般式(A)の化合物の主鎖を配向させて、遅相軸方向屈折率nxを高めることができる観点で、特に好ましい。 R 1 and R 2 are preferably a substituted or unsubstituted benzene ring or a substituted or unsubstituted cyclohexane ring. More preferably, they are a benzene ring having a substituent and a cyclohexane ring having a substituent, and the benzene ring having a substituent at the 4-position is a compound of the general formula (A) in the slow axis direction of the λ / 4 retardation film. This is particularly preferred from the viewpoint of orienting the main chain and increasing the slow axis direction refractive index nx.
 Rとして、好ましくは、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシ基、カルボキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基、アミノ基であり、さらに好ましくは、水素原子、ハロゲン原子、アルキル基、シアノ基、アルコキシ基である。 R 3 is preferably a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a hydroxy group, a carboxy group, an alkoxy group, an aryloxy group, an acyloxy group, a cyano group, or an amino group, More preferably, they are a hydrogen atom, a halogen atom, an alkyl group, a cyano group, and an alkoxy group.
 Wa及びWbは各々独立に水素原子又は置換基を表し、Wa及びWbが互いに結合して環を形成しても、Wa及びWbの少なくとも1つが環構造を有しても、又はWa及びWbの少なくとも1つがアルケニル基又はアルキニル基であってもよい。 Wa and Wb each independently represent a hydrogen atom or a substituent, and Wa and Wb may be bonded to each other to form a ring, or at least one of Wa and Wb may have a ring structure, or Wa and Wb At least one may be an alkenyl group or an alkynyl group.
 Wa及びWbで表される置換基の具体例としては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(例えば、シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、シクロアルケニル基(例えば、2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、p-トリル基、ナフチル基等)、ヘテロ環基(例えば、2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(例えば、フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシル編みの基(例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(例えば、N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N′フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(例えば、アセチル基ピバロイルベンゾイル基等)、カルバモイル基(例えば、カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)を挙げることができる。 Specific examples of the substituent represented by Wa and Wb include halogen atoms (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl groups (eg, methyl group, ethyl group, n-propyl group, Isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (for example, cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (for example, vinyl group, Allyl group), cycloalkenyl group (eg 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg ethynyl group, propargyl group etc.), aryl group (eg phenyl group) , P-tolyl group, naphthyl group, etc.), heterocyclic group (for example, 2-furyl group, 2-thienyl group, 2-pyryl group) Diynyl group, 2-benzothiazolyl group, etc.), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group (for example, methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2- Methoxyethoxy group), aryloxy group (for example, phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), acyloxy group (for example, , Formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, etc.), amino group (for example, amino group, methylamino group, dimethylamino group, anilino group, N -Methyl-anilino group, diphenyla Group), acyl knitted groups (for example, formylamino group, acetylamino group, pivaloylamino group, lauroylamino group, benzoylamino group, etc.), alkyl and arylsulfonylamino groups (for example, methylsulfonylamino group, butylsulfonylamino group) Group, phenylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenylsulfonylamino group, etc.), mercapto group, alkylthio group (for example, methylthio group, ethylthio group, n-hexadecylthio group, etc.), Arylthio groups (eg, phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl groups (eg, N-ethylsulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethyl Rusulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N- (N′phenylcarbamoyl) sulfamoyl group, etc.), sulfo group, acyl group (for example, acetyl group pivaloylbenzoyl group), Examples thereof include a carbamoyl group (for example, a carbamoyl group, an N-methylcarbamoyl group, an N, N-dimethylcarbamoyl group, an N, N-di-n-octylcarbamoyl group, an N- (methylsulfonyl) carbamoyl group).
 上記の置換基は、更に上記の基で置換されていてもよい。 The above substituents may be further substituted with the above groups.
 Wa及びWbが互いに結合して環を形成する場合、以下のような構造が挙げられる。 When Wa and Wb are bonded to each other to form a ring, the following structures may be mentioned.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式中、R、R、Rはそれぞれ水素原子又は置換基を表し、置換基としては、上記R、R及びRで表される置換基の具体例と同様の基を挙げることができる。 In the formula, R 4 , R 5 and R 6 each represent a hydrogen atom or a substituent, and examples of the substituent include the same groups as the specific examples of the substituent represented by R 1 , R 2 and R 3 above. be able to.
 また、Wa及びWbのいずれか一方が水素原子で、他方が置環基を有する場合、以下のような構造が挙げられる。 In addition, when one of Wa and Wb is a hydrogen atom and the other has a ring-setting group, the following structures are exemplified.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、Rii、Riiiは、それぞれ上記R、R及びRで表される置換基の具体例と同様の基を挙げることができる。 In the formula, R ii and R iii may include the same groups as the specific examples of the substituents represented by R 1 , R 2 and R 3 , respectively.
 以下に、本発明に係る化合物(I)の具体例を示すが、本発明で用いることができる化合物(I)は、以下の具体例によって何ら限定されることはない。 Specific examples of compound (I) according to the present invention are shown below, but compound (I) that can be used in the present invention is not limited by the following specific examples.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明に係る化合物(I)のλ/4位相差フィルム中での含有量としては、0.01~30質量%の範囲内であることが好ましく、さらに好ましくは1.0~20質量%の範囲内である。 The content of the compound (I) according to the present invention in the λ / 4 retardation film is preferably in the range of 0.01 to 30% by mass, more preferably 1.0 to 20% by mass. Within range.
 なお、本発明に係る化合物(I)は、既知の合成方法を適用して行うことができる。具体的には、Journal of Chemical Crystallography(1997);27(9); 512-526)、特開2010-31223号公報、特開2008-107767号公報等に記載の方法を参照に合成することができる。 In addition, the compound (I) according to the present invention can be performed by applying a known synthesis method. Specifically, synthesis may be performed with reference to the methods described in Journal of Chemical Crystallography (1997); 27 (9); 512-526), JP 2010-31223 A, JP 2008-107767 A, and the like. it can.
 〔熱可塑性樹脂〕
 本発明のλ/4位相差フィルムにおいては、マトリックス樹脂として熱可塑性樹脂を用いて構成される。熱可塑性樹脂としては、特に制限は無いが、セルロースエステル樹脂(セルロースアセテート、セルロースアシレート等)、ポリカーボネート系樹脂、シクロオレフィン系樹脂が好ましく、特に、主たる成分がセルロースエステル樹脂であることが好ましい。本発明でいう「主たる成分」とは、λ/4位相差フィルムを構成する熱可塑性樹脂成分の60質量%以上がセルロースエステルで構成されていることをいう。
〔Thermoplastic resin〕
The λ / 4 retardation film of the present invention is configured using a thermoplastic resin as a matrix resin. Although there is no restriction | limiting in particular as a thermoplastic resin, Cellulose ester resin (cellulose acetate, cellulose acylate, etc.), a polycarbonate-type resin, and a cycloolefin type resin are preferable, and it is preferable that especially a main component is a cellulose ester resin. The “main component” in the present invention means that 60% by mass or more of the thermoplastic resin component constituting the λ / 4 retardation film is composed of a cellulose ester.
 上記構成とすることにより、リターデーション発現性が高く、その結果、高いリターデーションを有する位相差フィルムとする場合であっても薄膜化が可能となり、高倍率延伸を行っても、高温高湿環境下で長期間にわたり保存した際の視認性及び耐久性と、鹸化適性に優れている特性を有している。 By adopting the above configuration, retardation development is high, and as a result, even when a retardation film having a high retardation is obtained, a thin film can be formed. It has excellent visibility and durability when stored under a long period of time, and excellent saponification suitability.
 (セルロースエステル樹脂)
 本発明に適用可能なセルロースエステル樹脂のひとつとして、セルロースアセテートを挙げることができる。セルロースアセテートとしては、平均アセチル基置換度が2.00以上であることが好ましく、より好ましくは2.00~2.95の範囲であり、2.20~2.90の範囲であることが更に好ましい。ここでいう平均アセチル基平均置換度とは、セルロースを構成する各無水グルコースの有する3個のヒドロキシ基(水酸基)のうち、エステル化(アセチル化)されているヒドロキシ基(水酸基)の数の平均値を示し、0~3.0の範囲内の値を示す。
(Cellulose ester resin)
One of the cellulose ester resins applicable to the present invention is cellulose acetate. The cellulose acetate preferably has an average degree of acetyl group substitution of 2.00 or more, more preferably in the range of 2.00 to 2.95, and further in the range of 2.20 to 2.90. preferable. The average acetyl group average substitution degree here means the average number of esterified (acetylated) hydroxy groups (hydroxyl groups) among the three hydroxy groups (hydroxyl groups) of each anhydroglucose constituting the cellulose. Value, a value in the range of 0 to 3.0.
 セルロースアセテートの平均アセチル基置換度が2.0以上であれば、ドープ粘度の上昇によるフィルム面品質の劣化や延伸張力の上昇によるヘイズアップなどが発生を抑制することができる。 If the average degree of acetyl group substitution of cellulose acetate is 2.0 or more, it is possible to suppress the occurrence of deterioration in film surface quality due to an increase in dope viscosity and haze increase due to an increase in stretching tension.
 本発明において、アセチル基で置換されていない部分は通常ヒドロキシ基(水酸基)として存在しているものである。これらは公知の方法で合成することができる。 In the present invention, the portion not substituted with an acetyl group is usually present as a hydroxy group (hydroxyl group). These can be synthesized by known methods.
 なお、アセチル基の置換度は、ASTM-D817-96(セルロースアセテート等の試験方法)に規定されている方法に従って求めたものである。 The degree of substitution of the acetyl group was determined according to the method prescribed in ASTM-D817-96 (test method for cellulose acetate etc.).
 本発明に係るセルロースアセテートの数平均分子量(Mn)は、30,000~300,000の範囲内であることが、得られるフィルムの機械的強度が強く好ましい。更に50,000~200,000の範囲内であることが好ましい。 The number average molecular weight (Mn) of the cellulose acetate according to the present invention is preferably in the range of 30,000 to 300,000 because the mechanical strength of the resulting film is strong. Further, it is preferably in the range of 50,000 to 200,000.
 セルロースアセテートの重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnの値は、1.4~3.0の範囲内であることが好ましい。 The value of the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose acetate is preferably in the range of 1.4 to 3.0.
 セルロースアセテートの重量平均分子量Mw及び数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いた測定により求めることができる。 The weight average molecular weight Mw and number average molecular weight Mn of cellulose acetate can be determined by measurement using gel permeation chromatography (GPC).
 測定条件は以下の通りである。 The measurement conditions are as follows.
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 1000,000 to 500, a calibration curve with 13 samples was used. Thirteen samples are used at approximately equal intervals.
 本発明に係るセルロースアセテートの原料であるセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することができる。 The cellulose which is a raw material of the cellulose acetate according to the present invention is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
 本発明に係るセルロースアセテートは、公知の方法により製造することができる。一般的には、原料のセルロースと所定の有機酸(酢酸など)と酸無水物(無水酢酸など)、触媒(硫酸など)と混合して、セルロースをエステル化(アセチル化)し、セルロースのトリエステル(アセチル化)ができるまで反応を進める。トリエステル(アセチル化)においてはグルコース単位の三個のヒドロキシ基(水酸基)は、有機酸のアセチル基で置換されている。次いで、セルロースのトリエステルを加水分解することで、所望のアセチル基置換度を有するセルロースアセテートを合成することができる。その後、濾過、沈殿、水洗、脱水、乾燥などの工程を経て、セルロースアセテートを得ることができる。 The cellulose acetate according to the present invention can be produced by a known method. In general, cellulose is mixed with raw material cellulose, a predetermined organic acid (such as acetic acid), acid anhydride (such as acetic anhydride), and a catalyst (such as sulfuric acid) to esterify (acetylate) cellulose, The reaction proceeds until ester (acetylation) is formed. In the triester (acetylation), the three hydroxy groups (hydroxyl groups) of the glucose unit are substituted with acetyl groups of organic acids. Next, cellulose acetate having a desired degree of acetyl group substitution can be synthesized by hydrolyzing the triester of cellulose. Thereafter, cellulose acetate can be obtained through steps such as filtration, precipitation, washing with water, dehydration, and drying.
 具体的には、特開平10-45804号公報に記載の方法を参考にして合成することができる。 Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
 本発明のλ/4位相差フィルムにおいて、リターデーション発現性が高く、高いリターデーションを有する位相差フィルムとする場合であっても薄膜化可能であること、高いリターデーションを発現させても延伸倍率を低く抑えることができ破断等の故障を回避できるなどの観点から、セルロースエステル樹脂として、上述のセルロースアセテート以外のセルロースアシレートを適用することもでき、該セルロースアシレートの総アシル基置換度の平均値が1.00以上、3.00以下であるフィルムを用いることが好ましい態様のひとつである。 In the λ / 4 retardation film of the present invention, the retardation development property is high, and even if it is a retardation film having a high retardation, it can be made into a thin film, and even if a high retardation is exhibited, the draw ratio Cellulose acylate other than the above-mentioned cellulose acetate can be applied as the cellulose ester resin from the standpoint that the failure can be avoided and failure such as breakage can be avoided, and the total acyl group substitution degree of the cellulose acylate can be reduced. One preferred embodiment is to use a film having an average value of 1.00 or more and 3.00 or less.
 加えて、透湿性を保ちつつ疎水性を高める観点から、炭素数が3以上のアシル基の置換度の平均値が0.50~2.50の範囲内であることが好ましい。 In addition, from the viewpoint of improving hydrophobicity while maintaining moisture permeability, the average value of the degree of substitution of acyl groups having 3 or more carbon atoms is preferably in the range of 0.50 to 2.50.
 本発明で規定するアシル基置換度の測定方法は、ASTMのD-817-91に準じて行うことができる。総アシル基置換度の平均値は、1.00~3.00の範囲内であることが好ましいが、2.00~2.90の範囲内であることがより好ましく、特に好ましくは2.40~2.75の範囲内である。また、炭素数が3以上のアシル基の置換度の平均値が0.50~2.50の範囲内であることが好ましいが、より好ましくは0.80~2.00の範囲内であり、特に好ましくは1.00~1.70の範囲内である。 The method for measuring the degree of acyl group substitution defined in the present invention can be carried out in accordance with ASTM D-817-91. The average value of the total acyl group substitution degree is preferably in the range of 1.00 to 3.00, more preferably in the range of 2.00 to 2.90, and particularly preferably 2.40. Within the range of ~ 2.75. Further, the average substitution degree of acyl groups having 3 or more carbon atoms is preferably in the range of 0.50 to 2.50, more preferably in the range of 0.80 to 2.00, Particularly preferably, it is within the range of 1.00 to 1.70.
 セルロースアシレートの総アシル基置換度が1.0以上であれば、円偏光板作成時のアルカリ鹸化処理でフィルムがダメージを受けることがなく、保護フィルムとしての機能を果たすことができる。セルロースアシレートの総アシル基置換度は、上限が3.0と決まっている。 If the total acyl group substitution degree of cellulose acylate is 1.0 or more, the film is not damaged by the alkali saponification treatment at the time of forming the circularly polarizing plate, and can function as a protective film. The upper limit of the total acyl group substitution degree of cellulose acylate is determined to be 3.0.
 セルロースアシレートの炭素数3以上のアシル基置換度が0.50以上であれば、λ/4板に疎水性を付与することができ、本発明に係る発光体素子の耐久性改良の効果を得ることができ、2.50以下であれば、偏光子との接着性が良好となり、偏光板の作製が容易になる。 When the acyl group substitution degree of 3 or more carbon atoms of cellulose acylate is 0.50 or more, the λ / 4 plate can be imparted with hydrophobicity, and the effect of improving the durability of the light emitting device according to the present invention can be obtained. If it can be obtained and it is 2.50 or less, the adhesiveness with the polarizer becomes good, and the production of the polarizing plate becomes easy.
 鹸化適性の観点からは、炭素数が3以上のアシル基は、プロピオニル基であることが好ましい。 From the viewpoint of suitability for saponification, the acyl group having 3 or more carbon atoms is preferably a propionyl group.
 セルロースアシレートの数平均分子量(Mn)は、30000~300000の範囲内であることが、得られるフィルムの機械的強度が強く好ましい。更に50000~200000の範囲内のものが好ましく用いられる。 The number average molecular weight (Mn) of the cellulose acylate is preferably in the range of 30000 to 300000, since the mechanical strength of the resulting film is strong. Further, those within the range of 50,000 to 200,000 are preferably used.
 セルロースアシレートの重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnの値は、1.4~3.0の範囲内であることが好ましい。 The ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose acylate is preferably in the range of 1.4 to 3.0.
 セルロースアシレートの数平均分子量(Mn)、重量平均分子量(Mw)は、上述のゲルパーミエーションクロマトグラフィー(GPC)を用いて測定して求めることができる。 The number average molecular weight (Mn) and weight average molecular weight (Mw) of cellulose acylate can be determined by measurement using the above-mentioned gel permeation chromatography (GPC).
 本発明に係るセルロースアセテートを含めたセルロースアシレートは、セルロース原料をアシル化することにより得ることができる。例えば、アシル化剤が酸無水物(例えば、無水酢酸、無水プロピオン酸、無水酪酸等。)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いて合成する。また、例えば、アシル化剤が酸クロライド(例えば、CHCOCl、CCOCl、CCOCl等。)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。 The cellulose acylate including the cellulose acetate according to the present invention can be obtained by acylating a cellulose raw material. For example, when the acylating agent is an acid anhydride (for example, acetic anhydride, propionic anhydride, butyric anhydride, etc.), an organic acid such as acetic acid or an organic solvent such as methylene chloride is used. Synthesize using a protic catalyst. Further, for example, when the acylating agent is acid chloride (for example, CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl, etc.), the reaction is carried out using a basic compound such as amine as a catalyst. Done.
 本発明に適用可能なセルロースアシレートは、公知の方法により製造することができる。具体的には、特開平10-45804号に記載の方法を参考にして合成することができる。 The cellulose acylate applicable to the present invention can be produced by a known method. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
 セルロース樹脂の原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(例えば、針葉樹由来、広葉樹由来等)、ケナフ等を挙げることができる。また、それらから得られたセルロースアシレートは、それぞれ任意の割合で混合して使用することができる。 The cellulose used as a raw material for the cellulose resin is not particularly limited, and examples thereof include cotton linter, wood pulp (for example, derived from coniferous tree, derived from broadleaf tree), kenaf and the like. Moreover, the cellulose acylate obtained from them can be mixed and used in arbitrary ratios, respectively.
 具体的なセルロースアシレートとしては、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレート又はセルロースアセテートフタレートのようなアセチル基の他にプロピオネート基、ブチレート基又はフタリル基が結合したセルロースの混合脂肪酸エステルを用いることができる。尚、ブチレートを形成するブチリル基としては、直鎖状でも分岐していてもよい。 Specific cellulose acylates include cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate or cellulose acetate phthalate as well as propionate group, butyrate group or phthalyl group. A mixed fatty acid ester of cellulose to which is bound can be used. The butyryl group forming butyrate may be linear or branched.
 本発明において好ましく用いられるセルロースアシレートとしては、特に、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく用いられる。中でもセルロースアセテートプロピオネートが最も好ましい。 As the cellulose acylate preferably used in the present invention, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are particularly preferably used. Of these, cellulose acetate propionate is most preferred.
 また、目的に叶う光学特性を得るため、置換度の異なる樹脂を混合して用いても良い。混合比としては10:90~90:10(質量比)の範囲内が好ましい。 Also, in order to obtain optical properties that meet the purpose, resins having different degrees of substitution may be mixed and used. The mixing ratio is preferably in the range of 10:90 to 90:10 (mass ratio).
 本発明のλ/4位相差フィルムには、セルロースエステル以外の熱可塑性樹脂を用いてもよい。 For the λ / 4 retardation film of the present invention, a thermoplastic resin other than cellulose ester may be used.
 本発明でいう「熱可塑性樹脂」とは、ガラス転移温度(Tg)又は融点まで加熱することによって軟らかくなり、目的の形に成形できる特性を備えた樹脂のことをいう。 As used herein, the term “thermoplastic resin” refers to a resin that has the characteristics that it becomes soft when heated to the glass transition temperature (Tg) or melting point and can be molded into the desired shape.
 熱可塑性樹脂としては、例えば、ポリエチレン(PE)、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、テフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)、ABS樹脂(アクリロニトリルブタジエンスチレン共重合体)、AS樹脂(アクリロニトリルスチレン共重合体)、アクリル樹脂(PMMA)等を用いることができる。 Examples of the thermoplastic resin include polyethylene (PE), high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), polypropylene (PP), polyvinyl chloride (PVC), and polyvinylidene chloride ( PVDC), polystyrene (PS), polyvinyl acetate (PVAc), Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene copolymer), AS resin (acrylonitrile styrene copolymer), Acrylic resin (PMMA) or the like can be used.
 また、強度や壊れにくさを特に要求される場合には、例えば、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE、変性PPE、PPO)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF-PET)、環状ポリオレフィン(COP)等を用いることができる。 When strength and resistance to breakage are particularly required, for example, polyamide (PA), nylon, polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE, PPO), poly Butylene terephthalate (PBT), polyethylene terephthalate (PET), glass fiber reinforced polyethylene terephthalate (GF-PET), cyclic polyolefin (COP), and the like can be used.
 さらに、高い熱変形温度と長期使用できる耐久性が要求される場合には、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリスルホン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)等を用いることができる。 Furthermore, when high heat distortion temperature and durability that can be used for a long time are required, polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone (PSF), polyethersulfone (PES), amorphous Polyarylate, liquid crystal polymer, polyetheretherketone (PEEK), thermoplastic polyimide (PI), polyamideimide (PAI) and the like can be used.
 なお、本発明の用途に沿って、熱可塑性樹脂の種類や分子量を組み合わせて、2種以上用いることも可能である。 In addition, it is also possible to use two or more types in combination of the types and molecular weights of the thermoplastic resin in accordance with the application of the present invention.
 〔λ/4位相差フィルムのその他の添加剤〕
 (有機溶媒)
 セルロースエステルを溶解してセルロースエステル溶液、あるいはドープを調製するのに有用な有機溶媒としては、主に、塩素系有機溶媒と非塩素系有機溶媒が挙げられる。
[Other Additives for λ / 4 Retardation Film]
(Organic solvent)
Organic solvents useful for preparing cellulose ester solution or dope by dissolving cellulose ester mainly include chlorinated organic solvents and non-chlorinated organic solvents.
 塩素系有機溶媒としては、例えば、メチレンクロライド(塩化メチレン)を挙げることができる。しかしながら、昨今の環境問題の視点から、非塩素系有機溶媒の適用が盛んに検討されている。非塩素系有機溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができる。 Examples of the chlorinated organic solvent include methylene chloride (methylene chloride). However, application of non-chlorine organic solvents has been actively studied from the viewpoint of recent environmental problems. Examples of the non-chlorine organic solvent include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1, Examples include 1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane.
 これらの有機溶媒を、セルロースエステルに対して使用する場合には、常温での溶解方法も使用可能であるが、高温溶解方法、冷却溶解方法、高圧溶解方法等の公知の溶解方法を用いることが、不溶解物を少なくすることができる観点で好ましい。セルロースエステルに対しては、メチレンクロライドを用いることもできるが、酢酸メチル、酢酸エチル、アセトンを用いることが好ましく、その中でも、特に酢酸メチルが好ましい。 When these organic solvents are used for cellulose esters, a dissolution method at normal temperature can be used, but a known dissolution method such as a high-temperature dissolution method, a cooling dissolution method, or a high-pressure dissolution method may be used. From the viewpoint of reducing the amount of insoluble matter. Although methylene chloride can be used for the cellulose ester, it is preferable to use methyl acetate, ethyl acetate, or acetone, and among them, methyl acetate is particularly preferable.
 本発明において、上記セルロースエステルに対して良好な溶解性を有する有機溶媒を良溶媒といい、また溶解に主たる効果を示し、その中で多量に使用する有機溶媒を、主(有機)溶媒又は主たる(有機)溶媒という。 In the present invention, an organic solvent having good solubility with respect to the cellulose ester is referred to as a good solvent, and has a main effect on dissolution, and an organic solvent used in a large amount among them is a main (organic) solvent or a main solvent. It is called (organic) solvent.
 本発明のλ/4位相差フィルムの製膜に用いられるドープには、上記有機溶媒の他に、1~40質量%の範囲内で、炭素原子数1~4のアルコールを含有させることが好ましい。これらのアルコールは、ドープを金属支持体上に流延した後、有機溶媒の蒸発が開始され、アルコール成分の相対比率が高くなると、ドープ膜(ウェブ)がゲル化し、ウェブを丈夫にし、金属支持体から剥離することを容易にするゲル化溶媒として作用させることができ、これらのアルコールの割合が低い時には、非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。 The dope used for forming the λ / 4 retardation film of the present invention preferably contains an alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass in addition to the organic solvent. . These alcohols, after casting the dope on a metal support, start to evaporate the organic solvent, and when the relative proportion of the alcohol component increases, the dope film (web) gels, making the web strong and supporting the metal It can act as a gelling solvent that makes it easy to peel off from the body, and when the proportion of these alcohols is low, it also has a role of promoting dissolution of the cellulose ester of the non-chlorine organic solvent.
 炭素原子数が1~4の範囲内にあるアルコールとしては、例えば、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうち、ドープの安定性に優れ、沸点も比較的低く、乾燥性も良いこと等の観点から、エタノールを用いることが好ましい。これらのアルコール類は、単独ではセルロースエステルに対して溶解性を有していないので、貧溶媒として分類される。 Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, it is preferable to use ethanol from the viewpoints of excellent dope stability, relatively low boiling point, and good drying properties. These alcohols are categorized as poor solvents because they do not have solubility in cellulose esters by themselves.
 ドープ中のセルロースエステルの濃度は15~30質量%の範囲内であることが好ましく、ドープ粘度は100~500Pa・sの範囲内に調整することが、優れたフィルム面品質を得ることができる観点から好ましい。 The concentration of cellulose ester in the dope is preferably in the range of 15 to 30% by mass, and the dope viscosity is adjusted in the range of 100 to 500 Pa · s, from the viewpoint that excellent film surface quality can be obtained. To preferred.
 ドープ中に添加することのできる添加剤としては、例えば、可塑剤、紫外線吸収剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等が挙げられる。本発明において、微粒子以外の添加剤については、セルロースエステル溶液の調製時に添加してもよいし、微粒子分散液の調製時に添加してもよい。画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。 Examples of additives that can be added to the dope include plasticizers, ultraviolet absorbers, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, and fine particles. In the present invention, additives other than fine particles may be added when preparing the cellulose ester solution, or may be added when preparing the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to the polarizing plate used in the image display device.
 (可塑剤)
 本発明のλ/4位相差フィルムにおいては、可塑剤を含有することが好ましい。特に、本発明のλ/4位相差フィルムでは、数平均分子量(Mn)が1000~10000の範囲内にあるポリエステル系可塑剤を含有することが好ましい。
(Plasticizer)
The λ / 4 retardation film of the present invention preferably contains a plasticizer. In particular, the λ / 4 retardation film of the present invention preferably contains a polyester plasticizer having a number average molecular weight (Mn) in the range of 1000 to 10,000.
 ポリエステル系可塑剤の具体的な構造については、特に制限はなく、分子内に芳香環又はシクロアルキル環を有するポリエステル系可塑剤を用いることができる。 The specific structure of the polyester plasticizer is not particularly limited, and a polyester plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be used.
 ポリエステル系可塑剤としては、例えば、下記一般式(a)で表されるポリエステル系可塑剤が挙げられる。 Examples of the polyester plasticizer include a polyester plasticizer represented by the following general formula (a).
 一般式(a)
   B-(G-A)-G-B
 上記一般式(a)において、Bはベンゼンモノカルボン酸基又は脂肪族モノカルボン酸基を表し、Gは炭素数2~12のアルキレングリコール基、炭素数6~12のアリールグリコール基又は炭素数4~12のオキシアルキレングリコール基を表し、Aは炭素数4~12のアルキレンジカルボン酸基又は炭素数6~12のアリールジカルボン酸基を表し、nは1以上の整数を表す。
Formula (a)
B- (GA) n -GB
In the general formula (a), B represents a benzene monocarboxylic acid group or an aliphatic monocarboxylic acid group, and G represents an alkylene glycol group having 2 to 12 carbon atoms, an aryl glycol group having 6 to 12 carbon atoms, or 4 carbon atoms. Represents an oxyalkylene glycol group having ˜12, A represents an alkylene dicarboxylic acid group having 4 to 12 carbon atoms or an aryl dicarboxylic acid group having 6 to 12 carbon atoms, and n represents an integer of 1 or more.
 一般式(a)で表されるポリエステル系可塑剤は、通常のポリエステル系可塑剤と同様の反応により得られるものである。 The polyester plasticizer represented by the general formula (a) is obtained by the same reaction as a normal polyester plasticizer.
 ポリエステル系可塑剤のベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリーブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等が挙げられ、これらはそれぞれが1種単独で、又は2種以上の混合物として使用されうる。 Examples of the benzene monocarboxylic acid component of the polyester plasticizer include benzoic acid, paratertiary butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, and aminobenzoic acid. , Acetoxybenzoic acid and the like, each of which can be used alone or as a mixture of two or more.
 また、ポリエステル系可塑剤の脂肪族モノカルボン酸成分としては、例えば、炭素数3以下の脂肪族モノカルボン酸が好ましく、酢酸、プロピオン酸、ブタン酸がより好ましく、酢酸が最も好ましい。重縮合エステルの両末端に使用するモノカルボン酸類の炭素数が3以下であると、化合物の加熱減量が大きくならず、面状故障が発生しない。 The aliphatic monocarboxylic acid component of the polyester plasticizer is preferably an aliphatic monocarboxylic acid having 3 or less carbon atoms, more preferably acetic acid, propionic acid or butanoic acid, and most preferably acetic acid. When the number of carbon atoms of the monocarboxylic acids used at both ends of the polycondensed ester is 3 or less, the heat loss of the compound does not increase, and no surface failure occurs.
 また、炭素数3以上8以下の環状脂肪族を有するモノカルボン酸が好ましく、炭素数6の環状脂肪族を有するモノカルボン酸がより好ましく、シクロヘキサンカルボン酸、4-メチル-シクロヘキサンカルボン酸が最も好ましい。重縮合エステルの両末端に使用するモノカルボン酸類の環状脂肪族の炭素数が3から8の範囲内であると、化合物の加熱減量が大きくならず、面状故障が発生しない点で好ましい。 Further, a monocarboxylic acid having a cycloaliphatic having 3 to 8 carbon atoms is preferred, a monocarboxylic acid having a cycloaliphatic having 6 carbons is more preferred, and cyclohexanecarboxylic acid and 4-methyl-cyclohexanecarboxylic acid are most preferred. . When the cycloaliphatic carbon number of the monocarboxylic acid used at both ends of the polycondensed ester is in the range of 3 to 8, the heat loss of the compound does not increase, and it is preferable in that a surface failure does not occur.
 ポリエステル系可塑剤の炭素数が2~12のアルキレングリコール成分としては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール-1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が挙げられ、これらはそれぞれが1種単独で、又は2種以上の混合物として使用することができる。中でも、特に、炭素数が2~12のアルキレングリコールが、セルロースエステルとの相溶性に優れている点で好ましく、より好ましくは炭素数が2~6のアルキレングリコールであり、さらに好ましくは炭素数が2~4のアルキレングリコールである。 Examples of the alkylene glycol component having 2 to 12 carbon atoms of the polyester plasticizer include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, and 1,3-butanediol. 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol) 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3 -Methyl-1,5-pentanediol-1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanedio And 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol, and the like. Can be used singly or as a mixture of two or more. Among them, in particular, an alkylene glycol having 2 to 12 carbon atoms is preferable in terms of excellent compatibility with a cellulose ester, more preferably an alkylene glycol having 2 to 6 carbon atoms, and still more preferably an alkylene glycol. 2 to 4 alkylene glycols.
 また、ポリエステル系可塑剤の炭素数が4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等が挙げられ、これらはそれぞれ1種単独で、又は2種以上の混合物として使用されうる。 Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the polyester plasticizer include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. It can be used alone or as a mixture of two or more.
 ポリエステル系可塑剤の炭素数が4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等が挙げられ、これらはそれぞれ1種単独で、又は2種以上の混合物として使用されうる。さらに、炭素数が6~12のアリーレンジカルボン酸成分としては、例えば、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸等が挙げられる。 Examples of the alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the polyester plasticizer include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and the like. Each of these may be used alone or as a mixture of two or more. Further, examples of the arylene dicarboxylic acid component having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, and the like.
 本発明のλ/4位相差フィルムに好ましく用いられるポリエステル系可塑剤は、その数平均分子量が200~10000の範囲内であり、より好ましくは300~3000の範囲内である。 The number average molecular weight of the polyester plasticizer preferably used for the λ / 4 retardation film of the present invention is in the range of 200 to 10,000, more preferably in the range of 300 to 3000.
 ポリエステル系可塑剤の酸価としては、好ましくは0.5mgKOH/g以下であり、より好ましくは0.3mgKOH/g以下である。また、ポリエステル系可塑剤のヒドロキシ基価は、好ましくは25mgKOH/g以下であり、より好ましくは15mgKOH/g以下である。なお、酸価とは、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。 The acid value of the polyester plasticizer is preferably 0.5 mgKOH / g or less, more preferably 0.3 mgKOH / g or less. The hydroxy group value of the polyester plasticizer is preferably 25 mgKOH / g or less, more preferably 15 mgKOH / g or less. In addition, an acid value means the milligram number of potassium hydroxide required in order to neutralize the acid (carboxy group which exists in a sample) contained in 1g of samples. The acid value is measured according to JIS K0070.
 以上説明したポリエステル系可塑剤以外にも、従来公知の各種可塑剤を、本発明のλ/4位相差フィルムに適用してもよい。 In addition to the polyester plasticizer described above, various conventionally known plasticizers may be applied to the λ / 4 retardation film of the present invention.
 このような従来公知の可塑剤としては、例えば、多価アルコールエステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、リン酸エステル系可塑剤、多価カルボン酸エステル系可塑剤、アクリル系可塑剤等が挙げられる。 Examples of such conventionally known plasticizers include polyhydric alcohol ester plasticizers, glycolate plasticizers, phthalate ester plasticizers, citrate ester plasticizers, fatty acid ester plasticizers, and phosphate esters. Examples thereof include a plasticizer, a polycarboxylic acid ester plasticizer, and an acrylic plasticizer.
 (糖エステル化合物)
 本発明のλ/4位相差フィルムにおいては、相溶媒として糖エステル化合物を含有することが好ましく、糖エステル化合物としては。ピラノース構造又はフラノース構造の少なくとも1種を1~12個の範囲内で有し、その構造のヒドロキシ基の一部又はすべてがエステル化された、セルロースエステルを除くエステル化合物である糖エステル化合物を挙げることができる。
(Sugar ester compound)
In the λ / 4 retardation film of the present invention, it is preferable to contain a sugar ester compound as a phase solvent, and as a sugar ester compound. Examples of the sugar ester compound, which is an ester compound excluding cellulose ester, having at least one pyranose structure or furanose structure in the range of 1 to 12 and in which part or all of the hydroxy groups of the structure are esterified be able to.
 糖エステル化合物の例としては、以下のようなものを挙げることができるが、本発明ではこれらに限定されるものではない。 Examples of sugar ester compounds include the following, but the present invention is not limited to these.
 ピラノース構造又はフラノース構造を有する化合物(糖類)としては、例えば、グルコース、ガラクトース、マンノース、フルクトース、キシロース、あるいはアラビノース、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノース、及びケストース等が挙げられる。 Examples of the compound (saccharide) having a pyranose structure or furanose structure include glucose, galactose, mannose, fructose, xylose, or arabinose, lactose, sucrose, nystose, 1F-fructosylnystose, stachyose, maltitol, lactitol, lactulose , Cellobiose, maltose, cellotriose, maltotriose, raffinose, and kestose.
 このほか、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。 Other examples include gentiobiose, gentiotriose, gentiotetraose, xylotriose, and galactosyl sucrose.
 これらの化合物の中で、特に、ピラノース構造とフラノース構造の双方を有する化合物が好ましい。その例としては、スクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、さらに好ましくは、スクロースである。 Among these compounds, compounds having both a pyranose structure and a furanose structure are particularly preferable. For example, sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
 糖エステル化合物を調製する際に、上述したピラノース構造又はフラノース構造を有する化合物(糖)のヒドロキシ基のすべて又は一部をエステル化するのに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は1種単独でもよいし、2種以上の混合物であってもよい。 The monocarboxylic acid used for esterifying all or part of the hydroxy group of the compound (sugar) having the above-described pyranose structure or furanose structure when preparing the sugar ester compound is not particularly limited and is known. Aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, aromatic monocarboxylic acids, and the like can be used. The carboxylic acid used may be one kind alone or a mixture of two or more kinds.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸;ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等が挙げられる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid; Examples thereof include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and octenoic acid.
 好ましい脂環族モノカルボン酸の例としては、酢酸、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体が挙げられる。 Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体が挙げられ、より具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-アニス酸、m-アニス酸、p-アニス酸、クレオソート酸、o-ホモサリチル酸、m-ホモサリチル酸、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸が挙げられるが、特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene. Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof. More specifically, xylyl acid, hemelic acid, mesitylene acid, prenylic acid, γ-isodryl Acid, duryl acid, mesitoic acid, α-isoduric acid, cumic acid, α-toluic acid, hydroatropic acid, atropaic acid, hydrocinnamic acid, salicylic acid, o-anisic acid, m-anisic acid, p-anisic acid, creosote Acid, o-homosalicylic acid, m-homosalicylic acid, p-homosalicylic acid, o-pyrocatechuic acid, β Resorcylic acid, vanillic acid, isovanillic acid, veratromic acid, o-veratrumic acid, gallic acid, asaronic acid, mandelic acid, homoanisic acid, homovanillic acid, homoveratormic acid, o-homoveratormic acid, phthalonic acid, p-coumaric acid However, benzoic acid is particularly preferable.
 本発明のλ/4位相差フィルムにおいて、位相差値の変動を抑制して表示品位を安定化するという観点から、上述した糖エステル化合物は、λ/4位相差フィルム100質量%に対して、1~30質量%の範囲内で含まれることが好ましく、5~30質量%の範囲内で含まれることがより好ましい。この範囲内であれば、上記の優れた効果を呈するとともに、ブリードアウトなどもなく好ましい。 In the λ / 4 retardation film of the present invention, from the viewpoint of stabilizing the display quality by suppressing the fluctuation of the retardation value, the sugar ester compound described above is based on 100% by mass of the λ / 4 retardation film. It is preferably contained within the range of 1 to 30% by mass, and more preferably within the range of 5 to 30% by mass. Within this range, the above-described excellent effects are exhibited, and there is no bleed out and the like.
 (紫外線吸収剤)
 本発明のλ/4位相差フィルム、あるいは後述する円偏光板を構成する保護フィルムにおいては、紫外線吸収剤を含有することが好ましい。
(UV absorber)
The λ / 4 retardation film of the present invention or the protective film constituting the circularly polarizing plate described later preferably contains an ultraviolet absorber.
 用いられる紫外線吸収剤としては、例えば、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。 Examples of the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based or salicylic acid phenyl ester-based ones. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.
 なお、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐光性を改良することができる。 Of the UV absorbers, UV absorbers with a molecular weight of 400 or more are less likely to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that light resistance is effectively improved with a relatively small amount of addition. Can do.
 分子量が400以上の紫外線吸収剤としては、例えば、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、更には2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。 Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- ( Benzotriazoles such as 1,1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, Hindered amines such as bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and further 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl Bis (1,2,2,6,6-pentamethyl-4-piperidyl) malonate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy Cis] ethyl] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine The hybrid type | system | group which has the structure of a hindered amine is mentioned, These can be used individually or in combination of 2 or more types. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
 これらの紫外線吸収剤としては、市販品を用いてもよく、例えば、BASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビンシリーズの紫外線吸収剤を好ましく使用できる。 As these ultraviolet absorbers, commercially available products may be used. For example, TINUBIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, TINUVIN 928, etc. manufactured by BASF Japan Ltd. are absorbed. An agent can be preferably used.
 (その他の添加剤)
 更に、λ/4位相差フィルムには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また、帯電防止剤を加えて、λ/4位相差フィルムに帯電防止性能を与えることも可能である。
(Other additives)
Furthermore, various antioxidants can also be added to the λ / 4 retardation film in order to improve the thermal decomposability and thermal colorability during molding. In addition, an antistatic agent can be added to impart antistatic performance to the λ / 4 retardation film.
 〈リン系難燃剤〉
 本発明のλ/4位相差フィルムには、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。
<Phosphorus flame retardant>
For the λ / 4 retardation film of the present invention, a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
 本発明に適用可能なリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。 Phosphorus flame retardants applicable to the present invention include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated Examples thereof include one or a mixture of two or more selected from alkyl phosphates, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, and halogen-containing phosphites.
 具体的な例としては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。 Specific examples include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
 〈マット剤〉
 また、本発明のλ/4位相差フィルムには、取扱性を向上させる観点から、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などのマット剤を含有させることが好ましい。なかでも、二酸化ケイ素は、フィルムのヘイズを小さくすることができる観点から好ましく用いられる。
<Matting agent>
In addition, the λ / 4 retardation film of the present invention has, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydration from the viewpoint of improving handling properties. It is preferable to include a matting agent such as inorganic fine particles such as calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate, and a crosslinked polymer. Of these, silicon dioxide is preferably used from the viewpoint of reducing the haze of the film.
 微粒子の一次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmの範囲内であり、特に好ましくは、5~12nmの範囲内である。 The primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably in the range of 5 to 16 nm, and particularly preferably in the range of 5 to 12 nm.
 〔λ/4位相差フィルムの製膜方法〕
 本発明のλ/4位相差フィルムは、公知の方法に従って製膜することができる。以下、代表的な溶液流延法及び溶融流延法について説明する。
[Formation method of λ / 4 retardation film]
The λ / 4 retardation film of the present invention can be formed according to a known method. Hereinafter, typical solution casting methods and melt casting methods will be described.
 (溶液流延法)
 本発明のλ/4位相差フィルムは、溶液流延法によって製造することができる。溶液流延法では、熱可塑性樹脂であるセルロースエステル及び添加剤等を、有機溶媒に加熱溶解させてドープを調製するドープ調製工程、調製したドープをベルト状もしくはドラム状の金属支持体上に流延する流延工程、流延したドープをウェブとして乾燥する乾燥工程、金属支持体からウェブを剥離する剥離工程、剥離したウェブを延伸又は収縮する延伸工程、更に乾燥する乾燥工程、仕上がったフィルムの巻取り工程等を経て製造される。
(Solution casting method)
The λ / 4 retardation film of the present invention can be produced by a solution casting method. In the solution casting method, a cellulose ester, which is a thermoplastic resin, additives, and the like are dissolved in an organic solvent by heating to prepare a dope, and the prepared dope is flowed on a belt-shaped or drum-shaped metal support. A casting process, a drying process for drying the cast dope as a web, a peeling process for peeling the web from the metal support, a stretching process for stretching or shrinking the peeled web, a drying process for further drying, and a finished film Manufactured through a winding process and the like.
 ドープ中のセルロースエステルの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷は低減できて好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増大し、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%の範囲内が好ましく、更に好ましくは、15~25質量%の範囲内である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススチールベルト、又は鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 The concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy increases. Becomes worse. The concentration that achieves both of these is preferably in the range of 10 to 35% by mass, and more preferably in the range of 15 to 25% by mass. The metal support in the casting (casting) step preferably has a mirror-finished surface, and as the metal support, a stainless steel belt or a drum whose surface is plated with a casting is preferably used.
 キャストの幅は1~4mの範囲とすることが好ましい。流延工程の金属支持体の表面温度は-50℃~溶媒が沸騰して発泡しない温度以下の範囲で適宜選択して設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、過度に高すぎるとウェブが発泡し、平面性が劣化する場合がある。 The cast width is preferably in the range of 1 to 4 m. The surface temperature of the metal support in the casting step is appropriately selected and set within a range from −50 ° C. to a temperature at which the solvent does not boil and foam. A higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam and flatness may deteriorate.
 好ましい支持体温度としては0~100℃の範囲内で適宜決定され、5~30℃の温度範囲内が更に好ましい。又は、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は、特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法等がある。温水を用いる方法が、熱の伝達が効率的に行われ、金属支持体の温度が一定になるまでの時間が短い点で好ましい。 A preferable support temperature is appropriately determined within a range of 0 to 100 ° C., and more preferably within a temperature range of 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, a method of bringing hot water into contact with the back side of the metal support, and the like. The method using hot water is preferable in that heat is efficiently transferred and the time until the temperature of the metal support becomes constant is short.
 温風を用いる場合は、溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。 When using warm air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there is a case where wind at a temperature higher than the target temperature is used while preventing foaming. is there.
 特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行う方法が好ましい。 In particular, a method of efficiently drying by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling is preferable.
 λ/4位相差フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量として、10~150質量%の範囲内で設定することが好ましく、更に好ましくは20~40質量%又は60~130質量%の範囲内であり、特に好ましくは、20~30質量%又は70~120質量%の範囲内である。 In order for the λ / 4 retardation film to exhibit good flatness, it is preferable to set the residual solvent amount when peeling the web from the metal support within a range of 10 to 150% by mass, and more preferably. It is in the range of 20 to 40% by mass or 60 to 130% by mass, and particularly preferably in the range of 20 to 30% by mass or 70 to 120% by mass.
 本発明でいう残留溶媒量は、下記式で定義される。 The amount of residual solvent as used in the present invention is defined by the following formula.
   残留溶媒量(質量%)={(M-N)/N}×100
 式中、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱した後の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
In the formula, M is the mass of a sample collected at any time during or after production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
 また、λ/4位相差フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1.0質量%以下にすることが好ましく、更に好ましくは0~0.01質量%の範囲である。 Further, in the drying step of the λ / 4 retardation film, the web is peeled off from the metal support, and further dried, so that the residual solvent amount is preferably 1.0% by mass or less, more preferably 0 to 0.00. The range is 01% by mass.
 フィルム乾燥工程では、一般にローラー乾燥方式、例えば、上下に配置した多数のローラーにウェブを交互に通し乾燥させる方式や、テンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, a roller drying method, for example, a method in which webs are alternately passed through a number of upper and lower rollers and a method in which the web is dried while being conveyed by a tenter method is employed.
 〈延伸工程〉
 本発明のλ/4位相差フィルムは、波長550nmで測定した面内方向の位相差Ro550が120~180nmの範囲内が好ましいが、該位相差はフィルム延伸によって付与することができる。以下、本発明においては、λ/4位相差フィルムをセルロースエステルフィルムと称する場合がある。
<Extension process>
In the λ / 4 retardation film of the present invention, the in-plane retardation Ro550 measured at a wavelength of 550 nm is preferably in the range of 120 to 180 nm. The retardation can be imparted by film stretching. Hereinafter, in the present invention, the λ / 4 retardation film may be referred to as a cellulose ester film.
 延伸する方法には特に限定はない。例えば、複数のローラーに周速差をつけ、その間でローラー周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法(テンター方式)、同様に横方向に広げて横方向に延伸する方法、あるいは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれらの方法は、組み合わせて用いてもよい。すなわち、製膜方向に対して横方向に延伸しても、縦方向に延伸しても、両方向に延伸してもよく、さらに両方向に延伸する場合は同時延伸であっても、逐次延伸であってもよい。なお、いわゆるテンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸が行うことができ、破断等の危険性を減少することができる観点から好ましい。 There is no particular limitation on the stretching method. For example, a method in which a difference in peripheral speed is applied to a plurality of rollers, and the rollers are stretched in the longitudinal direction using the difference in peripheral speed between the rollers. And a method of stretching in the vertical direction (tenter method), a method of stretching in the horizontal direction and stretching in the horizontal direction, or a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions. Of course, these methods may be used in combination. That is, the film may be stretched in the transverse direction, longitudinally, or in both directions with respect to the film forming direction, and when stretched in both directions, simultaneous stretching or sequential stretching may be used. May be. In the case of the so-called tenter method, driving the clip portion by the linear drive method is preferable from the viewpoint that smooth stretching can be performed and the risk of breakage and the like can be reduced.
 次いで、本発明のλ/4位相差フィルムの具体的な製造方法について、図を交えて説明する。 Next, a specific method for producing the λ / 4 retardation film of the present invention will be described with reference to the drawings.
 本発明のλ/4位相差フィルムの製造方法の一つとしては、遅相軸方向に延伸し、進相軸方向に収縮する延伸収縮工程を経て、該遅相軸方向の延伸倍率に対する該進相軸方向の収縮倍率の比率(収縮倍率/延伸倍率)が、0.05~0.70の範囲内となる条件で延伸して製造することを特徴とする。 One of the methods for producing a λ / 4 retardation film of the present invention includes a stretching / shrinking step of stretching in the slow axis direction and shrinking in the fast axis direction, and then proceeding with respect to the stretch ratio in the slow axis direction. It is characterized by being manufactured by stretching under the condition that the ratio of shrinkage ratio in the phase axis direction (shrinkage ratio / stretch ratio) is in the range of 0.05 to 0.70.
 本発明のλ/4位相差フィルムにおいては、特に、遅相軸を発生させたい方向に延伸し、垂直方向(進相軸方向)には収縮させ、その延伸倍率に対する収縮率の比率をコントロールすることにより、本発明で係る化合物(I)の主鎖X方向と、セルロースエステルの主軸方向(延伸方向、遅相軸方向)とを一致させるように化合物(I)の主軸Xの配向方向を制御することが好ましい。 In the λ / 4 retardation film of the present invention, in particular, the film is stretched in the direction in which the slow axis is to be generated and contracted in the vertical direction (fast axis direction), and the ratio of the shrinkage rate to the stretching ratio is controlled. Thus, the orientation direction of the main axis X of the compound (I) is controlled so that the main chain X direction of the compound (I) according to the present invention coincides with the main axis direction (stretching direction, slow axis direction) of the cellulose ester. It is preferable to do.
 すなわち、遅相軸方向(幅手方向)への延伸倍率と、遅相軸方向とは垂直の方向(進相軸方向)への収縮倍率の比率としては、収縮倍率/延伸倍率=0.05~0.70の範囲とすることが好ましい態様であるが、最も好ましいのは0.10~0.30の範囲内であり、この範囲において、化合物(I)の主鎖Xをマトリックス樹脂の主鎖に合わせることができると共に、化合物(I)の側鎖Yもフィルム進相軸方向に配向し、側鎖に高屈折率分子を含有させれば、紫外線領域280nmにおける進相軸方向の屈折率n(280)を高めることが可能となり、可視光領域のn順波長分散の傾きを急峻にすることができる。 That is, as the ratio of the draw ratio in the slow axis direction (width direction) and the shrinkage ratio in the direction perpendicular to the slow axis direction (fast axis direction), the shrinkage ratio / stretch ratio = 0.05. The preferred embodiment is in the range of ˜0.70, but the most preferred is in the range of 0.10 to 0.30. In this range, the main chain X of the compound (I) is changed to If the side chain Y of the compound (I) is oriented in the film fast axis direction and contains a high refractive index molecule in the side chain, the refractive index in the fast axis direction in the ultraviolet region of 280 nm it is possible to increase the n y (280), it can be a steep slope of n y order chromatic dispersion in the visible light region.
 本発明に係る延伸工程においては、全延伸工程の30~70%の範囲内で延伸した後に、収縮を開始する方法が好ましい。 In the stretching step according to the present invention, a method of starting shrinkage after stretching within 30 to 70% of the total stretching step is preferable.
 延伸工程としては、通常、幅手方向(TD方向)に延伸し、搬送方向(MD方向)に収縮する場合が多いが、収縮させる際、斜め方向に搬送させると主鎖方向を合せ易くなるため、位相差発現効果はさらに大きい。収縮率は搬送させる角度によって決まる。 The stretching process usually involves stretching in the width direction (TD direction) and contracting in the transport direction (MD direction), but when contracting, it is easy to match the main chain direction when transported in an oblique direction. In addition, the phase difference effect is even greater. The shrinkage rate is determined by the transport angle.
 図1は、遅相軸方向に延伸し、進相軸方向に収縮する延伸収縮工程において、斜め延伸における収縮倍率を説明する模式図である。 FIG. 1 is a schematic diagram for explaining a shrinkage ratio in oblique stretching in a stretching / shrinking process in which stretching in the slow axis direction and shrinking in the fast axis direction.
 図1において、セルロースエステルフィルムFを斜め延伸112する際に、搬送方向である長軸Mが、斜め屈曲することでMに収縮する。このとき、収縮率(%)は、
   収縮率(%)=(M-M)/M×100
 で表される。
In Figure 1, when the oblique stretching 112 cellulose ester film F, the major axis M 1 in the conveying direction, contracts in M 2 by oblique bending. At this time, the shrinkage rate (%) is
Shrinkage rate (%) = (M 1 −M 2 ) / M 1 × 100
It is represented by
 屈曲角度をθとすると、
   M=M×sin(π-θ)
 となり、よって、
   収縮率(%)=(1-sin(π-θ))×100
 で表される。
If the bending angle is θ,
M 2 = M 1 × sin (π−θ)
And therefore
Shrinkage rate (%) = (1−sin (π−θ)) × 100
It is represented by
 図1において、111は延伸方向(TD方向)であり、113は搬送方向(MD方向)であり、114は遅相軸である。 1, 111 is the stretching direction (TD direction), 113 is the transport direction (MD direction), and 114 is the slow axis.
 化合物(I)の配向をコントロール方法としては、λ/4位相差フィルムの遅相軸が搬送方向に対して30~60°の範囲内であることが好ましく、その際の収縮率としては、10~50%の範囲内であることが好ましい。 As a method for controlling the orientation of the compound (I), the slow axis of the λ / 4 retardation film is preferably in the range of 30 to 60 ° with respect to the transport direction. It is preferably in the range of ˜50%.
 円偏光板の生産性を考慮すると、本発明のλ/4位相差フィルムは、搬送方向に対する配向角が45°±2°であることが、偏光フィルムとのロールツーロールで貼合が可能となり最も好ましい。 Considering the productivity of the circularly polarizing plate, the λ / 4 retardation film of the present invention has an orientation angle of 45 ° ± 2 ° with respect to the conveying direction, and can be bonded by roll-to-roll with a polarizing film. Most preferred.
 (斜め延伸テンターによる延伸)
 次いで、斜め延伸方法について説明する。
(Stretching with an oblique stretching tenter)
Next, the oblique stretching method will be described.
 本発明のλ/4位相差フィルムの製造方法において、延伸にするセルロースエステルフィルムに斜め方向の配向を付与する方法として、斜め延伸テンターを用いることが好ましい。 In the method for producing a λ / 4 retardation film of the present invention, it is preferable to use an obliquely stretched tenter as a method for imparting an oblique orientation to the cellulose ester film to be stretched.
 本発明に適用可能な斜め延伸テンターとしては、レールパターンを多様に変化させることにより、フィルムの配向角を自在に設定でき、さらに、フィルムの配向軸をフィルム幅方向に渡って左右均等に高精度に配向させることができ、かつ、高精度でフィルム厚さやリターデーションを制御できるフィルム延伸装置であることが好ましい。 As an obliquely stretched tenter that can be applied to the present invention, the orientation angle of the film can be set freely by changing the rail pattern in various ways, and the film orientation axis can be set to the left and right in the film width direction with high accuracy. It is preferable that the film stretching apparatus be capable of being oriented to the film and controlling the film thickness and retardation with high accuracy.
 本発明のλ/4位相差フィルムの製造方法の一つの態様としては、λ/4位相差フィルムの製造方法が、遅相軸方向が、搬送方向に対し30~60°の角度範囲内で配向する条件で製造することを特徴とする。 As one aspect of the method for producing a λ / 4 retardation film of the present invention, the method for producing a λ / 4 retardation film is such that the slow axis direction is oriented within an angle range of 30 to 60 ° with respect to the conveying direction. It manufactures on the conditions to do.
 図2A及び図2Bは、本発明に適用可能なフィルムの送り方向とフィルムの引取り方向とが一致している斜め延伸装置の一例を示す模式図である。 FIG. 2A and FIG. 2B are schematic views showing an example of an oblique stretching apparatus in which a film feeding direction and a film drawing direction applicable to the present invention match.
 図2Aにおいて、テンター入口部においてフィルムの両端を把持した左右一対の把持具は、テンター内の初期において左右のレール間の距離が一定のゾーンでは左右のレール上を等速で走行し、その後左右のレール間距離が拡幅するゾーンにおいては左右のレール上を異なる速度で走行し、その後再び左右のレール間距離が等しくなるゾーンにおいて左右のレール上を等速で走行するようになる。 In FIG. 2A, a pair of left and right grips gripping both ends of the film at the entrance of the tenter run at the same speed on the left and right rails in a zone where the distance between the left and right rails is constant in the initial stage of the tenter, and thereafter In the zone where the distance between the rails is increased, the vehicle travels on the left and right rails at different speeds, and then travels on the left and right rails at a constant speed again in the zone where the distance between the left and right rails is equal.
 例えば、図2A中の左側のレールを走行する把持具が図中右側のレールを走行する把持具よりも速い場合を例に挙げて説明する。 For example, a case where the gripping tool traveling on the left rail in FIG. 2A is faster than the gripping tool traveling on the right rail in the drawing will be described as an example.
 テンター入り口側のガイドローラー12-1によって方向を制御された長尺フィルム原反4は、外側のフィルム把持開始点8-1、内側のフィルム把持開始点8-2の位置で把持具によって把持される。その後左右のレール間隔が等しい領域においては左右一対の把持具はレール上を等速で走行する。その後左右のレールが拡幅を始める点10-1及び10-2において、図中左側の把持具(以下、高速側の把持具)の走行速度が図中右側の把持具(以下、低速側の把持具)の走行速度よりも速く走行しはじめ、左右のレールが拡幅を終えて左右のレールの拡幅が終了する点11-3において、高速側の把持具は再度低速側の把持具と等しい走行速度まで減速し、左右一対の把持具は再び同じ速度で走行を始める。その後、低速側の把持具が、左右レールの拡幅が終了する点11-1まで到達した際に、左右一対の把持具の片方は11-2に到達することになる。 The long original film 4 whose direction is controlled by the guide roller 12-1 on the tenter entrance side is gripped by the gripping tool at the positions of the outer film gripping start point 8-1 and the inner film gripping start point 8-2. The Thereafter, in a region where the distance between the left and right rails is equal, the pair of left and right grips travel on the rails at a constant speed. Thereafter, at the points 10-1 and 10-2 at which the left and right rails start to widen, the traveling speed of the left side gripping tool (hereinafter referred to as the high speed side gripping tool) is the same as the right side gripping tool (hereinafter referred to as the low speed side gripping). At a point 11-3 where the left and right rails have finished widening and the left and right rails have finished widening, the high speed side gripping tool is again equal to the low speed side gripping tool. The pair of left and right gripping tools starts running again at the same speed. Thereafter, when the low-speed side gripping tool reaches the point 11-1 at which the widening of the left and right rails ends, one of the pair of left and right gripping tools reaches 11-2.
 この後、左右一対のクリップは等速に左右レール上を走行し、左側把持終了点9-2において左側の把持具がフィルムを解放し、次いで右側把持終了点9-1において右側の把持具がフィルムを解放し、斜め延伸が終了する。 Thereafter, the pair of left and right clips travel on the left and right rails at a constant speed, the left gripper releases the film at the left grip end point 9-2, and then the right gripper at the right grip end point 9-1. The film is released and the oblique stretching is finished.
 図2Bも、本発明に適用可能なフィルムの送り方向とフィルムの引取り方向とが一致した方式の斜め延伸テンターの模式図である。 FIG. 2B is also a schematic view of a diagonally stretched tenter in which the film feeding direction and the film take-up direction applicable to the present invention are the same.
 テンター入口部においてフィルムの両端を把持した左右一対の把持具は、テンター内初期において左右のレール間の距離が一定のゾーンでは左右のレール上を異なる速度で走行する。 A pair of left and right grips that grip both ends of the film at the entrance of the tenter travel on the left and right rails at different speeds in a zone where the distance between the left and right rails is constant in the initial stage of the tenter.
 図2Bで示されるテンターは、左右のレール間距離が拡幅する箇所を有するテンターである。テンター入口部8-1、8-2にて左右一対の把持具がフィルムを把持し、左右の把持具はそれぞれ異なる速度で左右のレール上を走行する。左右一対の把持具のうち高速側の把持具がテンター出口部の把持解放点9-2に到達した際に、対となる低速側のクリップは11-1に位置することになるため、左右一対の把持具によって把持されたフィルムは斜め延伸されることになる。 The tenter shown in FIG. 2B is a tenter having a portion where the distance between the left and right rails is widened. A pair of left and right grips grip the film at the tenter inlet portions 8-1 and 8-2, and the left and right grips travel on the left and right rails at different speeds. When the high-speed side gripping tool of the pair of left and right grips reaches the grip release point 9-2 at the tenter outlet, the paired low-speed side clips are positioned at 11-1, so The film held by the holding tool is stretched obliquely.
 図2Bで示されるテンターは、左右のレール間距離が拡幅する箇所を有するテンターであるが、必ずしも左右のレール間距離が拡幅する箇所を有していなくてもよい。 The tenter shown in FIG. 2B is a tenter having a portion where the distance between the left and right rails is widened, but does not necessarily have a portion where the distance between the left and right rails is widened.
 図2A及び図2Bにおいて、把持具の走行速度は適宜選択できるが、通常、1~100m/分である。また、左右一対のフィルム把持具がそれぞれ異なる速度で走行するとは実質的に、左右一対の把持具の走行速度の差として、走行速度の1%を超えることを意味する。 In FIGS. 2A and 2B, the traveling speed of the gripper can be selected as appropriate, but is usually 1 to 100 m / min. In addition, the fact that the pair of left and right film grippers travel at different speeds means that the difference in travel speed between the pair of left and right grippers substantially exceeds 1% of the travel speed.
 左右一対の把持具の走行速度の差としては、走行速度の1%を超えて、50%以下の範囲内が好ましく、走行速度の1%を超えて30%以下の範囲内がさらに好ましく、走行速度の1%を超えて10%以下の範囲内がさらに好ましい。 The difference in travel speed between the pair of left and right gripping tools is preferably in the range of more than 1% and less than 50%, more preferably in the range of more than 1% and less than 30% of the travel speed. More preferably within the range of more than 1% and not more than 10% of the speed.
 また、図2A及び図2Bに示す斜め延伸装置においては、テンターの途中にて把持具の走行速度が変化する機構を有しているテンターであれば公知のものを用いることができる。 Further, in the oblique stretching apparatus shown in FIGS. 2A and 2B, a known one can be used as long as it is a tenter having a mechanism that changes the traveling speed of the gripping tool in the middle of the tenter.
 一般的なテンター装置等では、チェーンを駆動するスプロケットの歯の周期、駆動モーターの周波数等に応じ、秒以下のオーダーで発生する速度ムラがあり、しばしば数%の速度ムラを生ずるが、これらは本発明でいう走行速度の差には該当しない。 In general tenter devices, etc., there are speed irregularities that occur in the order of seconds or less depending on the period of the sprocket teeth that drive the chain, the frequency of the drive motor, etc. This does not correspond to the difference in travel speed referred to in the present invention.
 また、本発明のλ/4位相差フィルムの製造方法の一つの態様としては、延伸工程におけるフィルムの送り方向とフィルムの引取り方向とを斜交させ、該フィルムの引取り方向に対して30°~60°の角度範囲内に遅相軸を設ける条件で製造することを特徴とする。 In addition, as one aspect of the method for producing a λ / 4 retardation film of the present invention, the film feeding direction and the film take-up direction in the stretching process are obliquely crossed, and 30 with respect to the film take-up direction. The production is characterized in that the slow axis is provided within an angle range of from 60 ° to 60 °.
 図3は、本発明に適用可能なフィルムの送り方向とフィルムの引取り方向とが斜交している斜め延伸装置の一例を示す模式図である。 FIG. 3 is a schematic view showing an example of an oblique stretching apparatus in which a film feeding direction and a film take-up direction applicable to the present invention are obliquely crossed.
 図3において、テンター入り口側のガイドローラー12-1によって方向を制御された長尺フィルム原反4は、外側のフィルム保持開始点8-1、内側のフィルム保持開始点8-2の位置でフィルム把持具によって把持される。 In FIG. 3, the long film original 4 whose direction is controlled by the guide roller 12-1 on the tenter entrance side is the film at the positions of the outer film holding start point 8-1 and the inner film holding start point 8-2. It is gripped by a gripping tool.
 左右一対のフィルム把持具は互いに等速度で、斜め延伸テンター6にて外側のフィルム把持手段の軌跡7-1、内側のフィルム把持手段の軌跡7-2で示される斜め方向に搬送、延伸され、外側のフィルム把持終了点9-1、内側のフィルム把持終了点9-2によって把持を解放され、テンター出口側のガイドローラー12-2によって搬送を制御されて斜め延伸フィルム5が形成される。図中、長尺フィルム原反は、フィルムの送り方向14-1に対して、フィルムの延伸方向14-2の角度(繰出し角度θi)で斜め延伸される。 The pair of left and right film grippers are transported and stretched at the same speed in the diagonal direction indicated by the outer film gripping means trajectory 7-1 and the inner film gripping means trajectory 7-2 by the oblique stretching tenter 6. The gripping is released by the outer film gripping end point 9-1 and the inner film gripping end point 9-2, and the conveyance is controlled by the guide roller 12-2 on the tenter outlet side, whereby the obliquely stretched film 5 is formed. In the drawing, the long film original is obliquely stretched at an angle (feeding angle θi) in the film stretching direction 14-2 with respect to the film feeding direction 14-1.
 図3において、フィルム把持具の走行速度は適宜選択できるが、通常、1~100m/分である。また、左右一対のフィルム把持具が互いに等速度とは実質的に、左右一対の把持具の走行速度の差として走行速度の1%以下であることを意味する。 In FIG. 3, the traveling speed of the film gripper can be selected as appropriate, but is usually 1 to 100 m / min. The pair of left and right film grippers having the same speed means that the travel speed of the pair of left and right grippers is substantially 1% or less of the travel speed.
 本発明に用いられる斜め延伸テンターにおいて、特に、図3に示すようにテンター内部において、把持具の軌跡を規制するレールには、しばしば大きい屈曲率が求められる。急激な屈曲による把持具同士の干渉、あるいは局所的な応力集中を避ける目的から、屈曲部では把持具の軌跡が円弧を描くようにすることが望ましい。 In the obliquely stretched tenter used in the present invention, in particular, as shown in FIG. 3, a large bending rate is often required for the rail that regulates the locus of the gripping tool inside the tenter. In order to avoid interference between gripping tools due to sudden bending or local stress concentration, it is desirable that the trajectory of the gripping tool draws an arc at the bent portion.
 図2A及び図2Bで示される斜め延伸テンターにおいては、長尺フィルム原反のテンター入口での進行方向14-1は、延伸後のフィルムのテンター出側での進行方向14-2と異なっている。繰出し角度θiは、テンター入口での進行方向14-1と延伸後のフィルムのテンター出側での進行方向14-2とのなす角度である。 In the oblique stretching tenter shown in FIGS. 2A and 2B, the traveling direction 14-1 at the tenter entrance of the long film original is different from the traveling direction 14-2 at the tenter exit side of the stretched film. . The feeding angle θi is an angle formed by the traveling direction 14-1 at the tenter entrance and the traveling direction 14-2 on the tenter exit side of the stretched film.
 更に詳しく説明すると、本発明のλ/4位相差フィルムを製造する方法においては、図3に示す斜め延伸可能なテンターを用いて斜め延伸を行うことが、特に好ましい。 More specifically, in the method for producing a λ / 4 retardation film of the present invention, it is particularly preferable to perform oblique stretching using a tenter capable of oblique stretching shown in FIG.
 このテンターは、フィルム原反を、延伸可能な任意の温度に加熱し、斜め延伸する装置である。このテンターは、加熱ゾーンと、フィルムを搬送するための把持具が走行する左右で一対のレールと、該レール上を走行する多数の把持具とを備えている。テンターの入口部に順次供給されるフィルムの両端を、把持具で把持し、加熱ゾーン内にフィルムを導き、テンターの出口部で把持具からフィルムを開放する。把持具から開放されたフィルムは巻芯に巻き取られる。一対のレールは、それぞれ無端状の連続軌道を有し、テンターの出口部でフィルムの把持を開放した把持具は、外側を走行して順次入口部に戻されるようになっている。 This tenter is a device that heats the film fabric to an arbitrary temperature at which it can be stretched and stretches it obliquely. This tenter includes a heating zone, a pair of rails on the left and right on which a gripping tool for transporting the film travels, and a number of gripping tools that travel on the rails. Both ends of the film sequentially supplied to the entrance portion of the tenter are gripped by a gripping tool, the film is guided into the heating zone, and the film is released from the gripping tool at the exit portion of the tenter. The film released from the gripping tool is wound around the core. Each of the pair of rails has an endless continuous track, and the gripping tool which has released the grip of the film at the exit portion of the tenter travels outside and is sequentially returned to the entrance portion.
 なお、テンターのレールパターンは左右で非対称な形状となっており、製造すべき長尺延伸フィルムに与える配向角θ、延伸倍率等に応じて、そのレールパターンは手動で又は自動で調整できるようになっている。本発明のλ/4位相差フィルムの製造方法で用いられる斜め延伸装置では、各レール部及びレール連結部の位置を自由に設定し、レールパターンを任意に変更できることが好ましい。なお、図3に示す「○」部は連結部の一例である。 In addition, the rail pattern of the tenter has an asymmetric shape on the left and right, so that the rail pattern can be adjusted manually or automatically according to the orientation angle θ, the draw ratio, etc. given to the long stretched film to be manufactured. It has become. In the oblique stretching apparatus used in the method for producing a λ / 4 retardation film of the present invention, it is preferable that the position of each rail part and the rail connecting part can be freely set and the rail pattern can be arbitrarily changed. In addition, the “◯” part shown in FIG. 3 is an example of a connecting part.
 本発明の実施形態において、テンターの把持具は、前後の把持具と一定間隔を保って、一定速度で走行するようになっている。 In the embodiment of the present invention, the tenter gripping tool is configured to travel at a constant speed with a constant interval from the front and rear gripping tools.
 把持具の走行速度は適宜選択できるが、通常、1~100m/分である。左右一対の把持具の走行速度の差は、走行速度の通常1%以下、好ましくは0.5%以下、より好ましくは0.1%以下である。これは、延伸工程出口でフィルムの左右に進行速度差があると、延伸工程出口におけるシワ、寄りが発生するため、左右の把持具の速度差は、実質的に同速度であることが求められるためである。 The traveling speed of the gripping tool can be selected as appropriate, but is usually 1 to 100 m / min. The difference in travel speed between the pair of left and right grippers is usually 1% or less, preferably 0.5% or less, more preferably 0.1% or less of the travel speed. This is because if there is a difference in the traveling speed between the left and right sides of the film at the exit of the stretching process, wrinkles and shifts will occur at the exit of the stretching process, so the speed difference between the right and left gripping tools is required to be substantially the same speed. Because.
 (溶融製膜法)
 本発明のλ/4位相差フィルムは、溶融製膜法によって製膜しても良い。溶融製膜法は、樹脂及び可塑剤などの添加剤を含む組成物を、流動性を呈する温度まで加熱溶融した後、流動性の熱可塑性樹脂を含む溶融物を流延する成形方法である。
(Melting method)
The λ / 4 retardation film of the present invention may be formed by a melt film forming method. The melt film forming method is a molding method in which a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature exhibiting fluidity, and then a melt containing a fluid thermoplastic resin is cast.
 加熱溶融する成形法としては、更に詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの成形法の中では、機械的強度及び表面精度などの点から、溶融押出し法が好ましい。溶融押出し法に用いる複数の原材料は、通常、あらかじめ混錬してペレット化しておくことが好ましい。 More specifically, the heating and melting molding method can be classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these molding methods, the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. The plurality of raw materials used in the melt extrusion method are usually preferably kneaded and pelletized in advance.
 ペレット化は、公知の方法を適用することができ、例えば、乾燥セルロースエステルや可塑剤、その他添加剤をフィーダーで押出し機に供給し、一軸や二軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることで得ることができる。 For pelletization, a known method can be applied. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder with a feeder, kneaded using a single-screw or twin-screw extruder, It can be obtained by extruding into a strand, cooling with water or air, and cutting.
 添加剤は、押出し機に供給する前に混合しておいてもよく、あるいはそれぞれ個別のフィーダーで供給してもよい。なお、微粒子や酸化防止剤等の少量の添加剤は、均一に混合するため、事前に混合しておく方法が好ましい。 The additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders. In addition, in order to mix a small amount of additives, such as microparticles | fine-particles and antioxidant, uniformly, the method of mixing in advance is preferable.
 ペレット化に用いる押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないように、ペレット化可能でなるべく低温で加工する方式が好ましい。例えば、二軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder used for pelletization preferably has a method of processing at as low a temperature as possible so that pelletization is possible so that the shearing force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーに投入して押出し機に供給し、加熱溶融した後、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. Of course, the raw material powder can be put into a feeder as it is, supplied to an extruder, heated and melted, and then directly formed into a film without being pelletized.
 上記ペレットを一軸や二軸タイプの押出し機を用いて、押出す際の溶融温度としては200~300℃の範囲内とし、リーフディスクタイプのフィルターなどで濾過して異物を除去した後、Tダイからフィルム状に流延し、冷却ローラーと弾性タッチローラーでフィルムをニップし、冷却ローラー上で固化させる。 The pellets are extruded using a single or twin screw type extruder and the melting temperature is within the range of 200 to 300 ° C. After removing foreign matter by filtering with a leaf disk type filter etc., the T die Then, the film is cast into a film, and the film is nipped with a cooling roller and an elastic touch roller, and solidified on the cooling roller.
 供給ホッパーから押出し機へ導入する際は、真空下又は減圧下や不活性ガス雰囲気下で行って、酸化分解等を防止することが好ましい。 When introducing into the extruder from the supply hopper, it is preferable to carry out under vacuum, reduced pressure or inert gas atmosphere to prevent oxidative decomposition and the like.
 押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し、接触箇所を焼結して一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。 The extrusion flow rate is preferably carried out stably by introducing a gear pump. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances. A stainless steel fiber sintered filter is a product in which a stainless steel fiber body is intricately intertwined and compressed, and the contact points are sintered and integrated. The accuracy can be adjusted.
 可塑剤や微粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。 Additives such as plasticizers and fine particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
 冷却ローラーと弾性タッチローラーでフィルムをニップする際のタッチローラー側のフィルム温度は、フィルムのTg以上、Tg+110℃以下の範囲内とすることが好ましい。このような目的で使用する弾性体表面を有する弾性タッチローラーとしては、公知の弾性タッチローラーを使用することができる。弾性タッチローラーは、挟圧回転体ともいい、市販されているものを用いることもできる。 The film temperature on the touch roller side when the film is nipped by the cooling roller and the elastic touch roller is preferably in the range of Tg or more and Tg + 110 ° C. or less of the film. A known elastic touch roller can be used as the elastic touch roller having an elastic surface used for such a purpose. The elastic touch roller is also called a pinching rotary body, and a commercially available one can also be used.
 冷却ローラーからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roller, it is preferable to control the tension to prevent deformation of the film.
 また、上記のようにして得られたフィルムは、冷却ローラーに接する工程を通過した後、前記延伸操作により延伸及び収縮処理を施す。 In addition, the film obtained as described above is subjected to stretching and shrinking treatment by the stretching operation after passing through the step of contacting the cooling roller.
 延伸及び収縮する方法は、前述のような公知のローラー延伸機やテンターなどを好ましく用いることができる。延伸温度は、通常、フィルムを構成する樹脂のTg~Tg+60℃の温度範囲で行われることが好ましい。 As a method of stretching and shrinking, a known roller stretching machine or tenter as described above can be preferably used. The stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
 巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きやすり傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、フィルムが変形しており製品として使用できないので切除されて、切除部は再利用される。 Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding. The knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing. In addition, since the film has deform | transformed and cannot use as a product normally, the holding part of the clip of the both ends of a film is cut out, and a cut part is reused.
 〔λ/4位相差フィルムの特性〕
 (フィルム仕様)
 本発明のλ/4位相差フィルムの膜厚は、特に限定はされないが10~250μmの範囲内で用いることができるが、好ましくは20~100μmの範囲内であり、より好ましくは40~80μmの範囲内であり、特に好ましくは40~65μmの範囲内である。
[Characteristics of λ / 4 retardation film]
(Film specification)
The film thickness of the λ / 4 retardation film of the present invention is not particularly limited, but can be used in the range of 10 to 250 μm, preferably in the range of 20 to 100 μm, more preferably in the range of 40 to 80 μm. It is within the range, and particularly preferably within the range of 40 to 65 μm.
 本発明のλ/4位相差フィルムは、幅として1~4mの範囲内のものを用いることができる。更には、幅1.4~4mのものが好ましく用いられ、特に好ましくは1.6~3mである。幅として4m以下であれば、搬送安定性を確保することができる。 The λ / 4 retardation film of the present invention may have a width in the range of 1 to 4 m. Furthermore, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it is 4 m or less as a width | variety, conveyance stability can be ensured.
 (表面粗さ)
 本発明のλ/4位相差フィルム表面の算術平均粗さRaとしては、おおむね2.0~4.0nmの範囲内であり、好ましくは2.5~3.5nmの範囲内である。
(Surface roughness)
The arithmetic average roughness Ra of the surface of the λ / 4 retardation film of the present invention is generally in the range of 2.0 to 4.0 nm, preferably in the range of 2.5 to 3.5 nm.
 (寸法変化率)
 本発明のλ/4位相差フィルムを、本発明の有機エレクトロルミネッセンス表示装置に具備した場合、使用する環境雰囲気、例えば、高湿環境下での吸湿による寸法変化に起因する、ムラや位相差値の変化、及びコントラストの低下や色むらといった問題の発生を抑制する観点から、本発明のλ/4位相差フィルムの寸法変化率(%)は、0.5%未満であることが好ましく、更に、0.3%未満であることが好ましい。
(Dimensional change rate)
When the λ / 4 retardation film of the present invention is provided in the organic electroluminescence display device of the present invention, unevenness and retardation values caused by dimensional changes due to moisture absorption in a high humidity environment, for example, From the viewpoint of suppressing the occurrence of problems such as a change in image quality and a decrease in contrast and color unevenness, the dimensional change rate (%) of the λ / 4 retardation film of the present invention is preferably less than 0.5%. , Preferably less than 0.3%.
 (故障耐性)
 本発明のλ/4位相差フィルムでは、フィルム中の故障(以下、欠点ともいう)が少ないことが好ましい。ここでいう故障とは、溶液流延法により製膜において、乾燥工程での溶媒の急激な蒸発に起因して発生するフィルム中の空洞故障(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物故障(異物欠点)をいう。
(Fault tolerance)
In the λ / 4 retardation film of the present invention, it is preferable that there are few failures in the film (hereinafter also referred to as defects). The failure mentioned here refers to a cavity failure (foaming defect) in the film caused by the rapid evaporation of the solvent in the drying process in film formation by the solution casting method, foreign matter in the film-forming stock solution and production. A foreign matter failure (foreign matter defect) in the film caused by foreign matter mixed in the film.
 具体的にはフィルム面内に、直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下であり、特に好ましくは0.1個/10cm四方以下である。 Specifically, it is preferable that a defect having a diameter of 5 μm or more is 1 piece / 10 cm square or less in the film plane. More preferably, it is 0.5 piece / 10 cm square or less, and particularly preferably 0.1 piece / 10 cm square or less.
 上記欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。 The diameter of the above defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさで測定する。また、欠点が、ローラー傷の転写や擦り傷など、表面形状の変化を伴う場合には、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。 ¡When the defect is a bubble or a foreign object, the defect range is measured by the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope. In addition, when the defect is accompanied by a change in surface shape such as transfer of a roller scratch or an abrasion, the size is confirmed by observing the defect with reflected light of a differential interference microscope.
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。 In addition, when observing with reflected light, if the size of the defect is not clear, aluminum or platinum is vapor-deposited on the surface for observation. In order to obtain a film having excellent quality expressed by such a defect frequency with high productivity, it is necessary to filter the polymer solution with high precision immediately before casting, to increase the cleanliness around the casting machine, It is effective to set drying conditions after rolling stepwise and to dry efficiently while suppressing foaming.
 欠点の個数が1個/10cm四方以下であれば、例えば、後工程での加工時などでフィルムに張力がかかる場合でも、欠点が起点となりフィルムが破断する発生確率を低減でき、高い生産性を維持することができる。また、欠点の直径が5μm以下であれば、偏光板観察などにより視認されることがなく、光学部材として用いた際にも、輝点が生じることがない。 If the number of defects is 1/10 cm square or less, for example, even when tension is applied to the film during processing in the subsequent process, the probability of the film starting to break and the film breaking can be reduced, resulting in high productivity. Can be maintained. Moreover, if the diameter of a fault is 5 micrometers or less, it will not be visually recognized by polarizing plate observation etc., but when it uses as an optical member, a bright spot will not arise.
 (破断伸度)
 また、本発明のλ/4位相差フィルムは、JIS-K7127-1999に準拠した測定において、少なくとも一方向(TD方向又はMD方向)の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。
(Elongation at break)
Further, the λ / 4 retardation film of the present invention preferably has a breaking elongation of at least 10% or more in at least one direction (TD direction or MD direction) in the measurement based on JIS-K7127-1999, Preferably it is 20% or more.
 破断伸度の上限は、特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには、異物や発泡に起因するフィルム中の欠点を抑制することが有効である。 The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
 (全光線透過率)
 本発明のλ/4位相差フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。また、製膜時のフィルム接触部(冷却ローラー、カレンダーローラー、ドラム、ベルト、溶液製膜における塗布基材、搬送ローラーなど)の表面粗さを小さくしてフィルム表面の表面粗さを小さくすることにより、フィルム表面の光の拡散や反射を低減させる方法が有効である。
(Total light transmittance)
The λ / 4 retardation film of the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact portion (cooling roller, calendar roller, drum, belt, coating substrate in solution casting, transport roller, etc.) during film formation. Thus, a method of reducing the diffusion and reflection of light on the film surface is effective.
 《円偏光板》
 本発明の円偏光板は、長尺状の保護フィルム、長尺状の偏光子及び長尺状の本発明のλ/4位相差フィルムをこの順に有する長尺ロールを断裁して作製され、該長尺状のλ/4位相差フィルムが、請求項1で規定する条件を満たすことを特徴とするものであり、本発明の円偏光板を有機EL表示装置に適用することにより、有機EL発光体の金属電極の鏡面反射を遮蔽する効果を発現する。
《Circularly polarizing plate》
The circularly polarizing plate of the present invention is prepared by cutting a long roll having a long protective film, a long polarizer and a long λ / 4 retardation film of the present invention in this order, The long λ / 4 retardation film satisfies the conditions defined in claim 1, and the organic EL light emission is obtained by applying the circularly polarizing plate of the present invention to an organic EL display device. The effect of shielding the specular reflection of the metal electrode of the body is expressed.
 また、本発明のλ/4位相差フィルムを斜め延伸することによって遅相軸の角度(即ち配向角θ)を長手方向に対して「実質的に45°」となるようにすると、面内の最大弾性率となる方向も長手方向に対して「実質的に45°」となり、円偏光板が斜め方向の反りを生じやすくなる。 Further, when the λ / 4 retardation film of the present invention is obliquely stretched so that the angle of the slow axis (that is, the orientation angle θ) is “substantially 45 °” with respect to the longitudinal direction, The direction of the maximum elastic modulus is also “substantially 45 °” with respect to the longitudinal direction, and the circularly polarizing plate tends to warp in an oblique direction.
 本発明の円偏光板では、偏光子を本発明のλ/4位相差フィルムと保護フィルムによって挟持して構成することが好ましく、該保護フィルムの視認側に硬化層が積層されることが、円偏光板の反りを防止する効果を有することから、更に好ましい。 In the circularly polarizing plate of the present invention, the polarizer is preferably sandwiched between the λ / 4 retardation film of the present invention and a protective film, and a cured layer is laminated on the viewing side of the protective film. It is more preferable because it has an effect of preventing the polarizing plate from warping.
 また、本発明の有機EL表示装置は、紫外線による劣化を防止するために、本発明の円偏光板が紫外線吸収機能を備えていることが好ましい。視認側の保護フィルムが紫外線吸収機能を備えていると、偏光子と有機EL素子の両方を紫外線に対する保護効果を発現できる観点から好ましいが、さらに発光体側のλ/4位相差フィルムも紫外線吸収機能を備えていると、より有機EL素子の劣化を抑制できて好ましい。 In addition, in the organic EL display device of the present invention, it is preferable that the circularly polarizing plate of the present invention has an ultraviolet absorption function in order to prevent deterioration due to ultraviolet rays. If the protective film on the viewing side has an ultraviolet absorbing function, both the polarizer and the organic EL element are preferable from the viewpoint of exhibiting the protective effect against ultraviolet rays, but the λ / 4 retardation film on the light emitter side also has an ultraviolet absorbing function. It is preferable that deterioration of the organic EL element can be further suppressed.
 《有機エレクトロルミネッセンス表示装置》
 本発明の有機エレクトロルミネッセンス表示装置は、本発明のλ/4位相差フィルムを有する円偏光板と、有機エレクトロルミネッセンス素子とを具備し、画面サイズが20インチ以上であることを特徴とする。
《Organic electroluminescence display device》
The organic electroluminescence display device of the present invention comprises a circularly polarizing plate having the λ / 4 retardation film of the present invention and an organic electroluminescence element, and has a screen size of 20 inches or more.
 図6に、本発明の有機EL表示装置の構成の一例を示すが、これに限定されるものではない。 FIG. 6 shows an example of the configuration of the organic EL display device of the present invention, but the present invention is not limited to this.
 ガラスやポリイミド等を用いた基板101上に、順に金属電極102、TFT103、有機発光層104、透明電極(ITO等)105、絶縁層106、封止層107、フィルム108(省略可)を有する有機EL素子B上に、偏光子110を本発明のλ/4位相差フィルム109と保護フィルム111によって挟持した本発明の円偏光板Cを設けて、有機EL表示装置Aを構成する。該保護フィルム111には硬化層112が積層されていることが好ましい。硬化層112は、有機EL表示装置の表面のキズを防止するだけではなく、円偏光板による反りを防止する効果を有する。更に、硬化層112上には、反射防止層113を有していてもよい。上記有機EL素子自体の厚さは1μm程度である。 An organic material having a metal electrode 102, a TFT 103, an organic light emitting layer 104, a transparent electrode (ITO, etc.) 105, an insulating layer 106, a sealing layer 107, and a film 108 (optional) on a substrate 101 made of glass, polyimide, or the like. On the EL element B, the circularly polarizing plate C of the present invention in which the polarizer 110 is sandwiched between the λ / 4 retardation film 109 of the present invention and the protective film 111 is provided to constitute the organic EL display device A. The protective film 111 is preferably laminated with a cured layer 112. The hardened layer 112 not only prevents scratches on the surface of the organic EL display device but also has an effect of preventing warpage due to the circularly polarizing plate. Furthermore, an antireflection layer 113 may be provided on the hardened layer 112. The thickness of the organic EL element itself is about 1 μm.
 一般に、有機EL表示装置は、透明基板上に金属電極と有機発光層と透明電極とを順に積層して発光体である素子(有機EL素子)を形成している。ここで、有機発光層は、種々の有機薄膜の積層体であり、例えば、トリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、及び電子注入層の積層体等、種々の組み合わせをもった構成が知られている。 Generally, in an organic EL display device, a metal electrode, an organic light emitting layer, and a transparent electrode are sequentially laminated on a transparent substrate to form a light emitting element (organic EL element). Here, the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, Or a structure having various combinations such as a laminate of such a light-emitting layer and an electron injection layer made of a perylene derivative, or a laminate of these hole injection layer, light-emitting layer, and electron injection layer. Are known.
 有機EL表示装置は、透明電極と金属電極に電圧を印加することによって、有機発光層に正孔と電子と注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物質あるいはリン光物質を励起し、励起された蛍光物質あるいはリン光物質が基底状態に戻るときに光(蛍光あるいはリン光)を放射する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。 In organic EL display devices, holes and electrons are injected into the organic light-emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by recombination of these holes and electrons becomes a fluorescent material or phosphorescent material. The light is emitted on the principle that when the excited fluorescent substance or phosphorescent substance returns to the ground state, light (fluorescence or phosphorescence) is emitted. The mechanism of recombination in the middle is the same as that of a general diode, and as can be predicted from this, the current and the emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
 有機EL表示装置においては、有機発光層での発光を取り出すために、少なくとも一方の電極が透明であることが必要であり、通常、酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いていることが好ましい。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg-Ag、Al-Liなどの金属電極を用いている。 In an organic EL display device, in order to take out light emitted from the organic light emitting layer, at least one of the electrodes needs to be transparent, and is usually a transparent electrode formed of a transparent conductor such as indium tin oxide (ITO). Is preferably used as the anode. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.
 本発明のλ/4位相差フィルムを有する円偏光板は、画面サイズが20インチ以上、即ち対角線距離が50.8cm以上の大型画面からなる有機EL表示装置に適用することが好ましい。 The circularly polarizing plate having the λ / 4 retardation film of the present invention is preferably applied to an organic EL display device having a large screen having a screen size of 20 inches or more, that is, a diagonal distance of 50.8 cm or more.
 このような構成の有機EL表示装置において、有機発光層は、厚さ10nm程度と、極めて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と有機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと放射されるため、外部から視認したとき、有機EL表示装置の表示面が鏡面のように観察される。 In the organic EL display device having such a configuration, the organic light emitting layer is formed of an extremely thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, the light incident from the surface of the transparent substrate when not emitting light, transmitted through the transparent electrode and the organic light emitting layer, and reflected by the metal electrode is radiated again to the surface side of the transparent substrate. When the display surface of the organic EL display device is observed as a mirror surface.
 電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、有機発光層の裏面側に金属電極を備えてなる有機EL素子を含む構成の有機EL表示装置において、透明電極の表面側(視認側)に偏光板を設けるとともに、これら透明電極と偏光板との間に位相差板を設けることができる。 In an organic EL display device including an organic EL element having a transparent electrode on the surface side of an organic light emitting layer that emits light by applying a voltage and a metal electrode on the back side of the organic light emitting layer, the surface side of the transparent electrode While providing a polarizing plate on the (viewing side), a retardation plate can be provided between the transparent electrode and the polarizing plate.
 位相差板及び偏光板は、外部から入射して金属電極で反射してきた光を偏光する作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させないという効果がある。特に、位相差板を1/4位相差フィルムで構成し、かつ偏光板と位相差板との偏光方向のなす角をπ/4に調整すれば、金属電極の鏡面を完全に遮蔽することができる。 Since the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarization action. In particular, if the retardation plate is composed of a ¼ retardation film and the angle formed by the polarization direction of the polarizing plate and the retardation plate is adjusted to π / 4, the mirror surface of the metal electrode can be completely shielded. it can.
 すなわち、この有機EL表示装置に入射する外部光は、偏光板により直線偏光成分のみが透過し、この直線偏光は位相差板により一般に楕円偏光となるが、特に、位相差板がλ/4位相差フィルムで、しかも偏光板と位相差板との偏光方向のなす角がπ/4のときには円偏光となる。 That is, the external light incident on the organic EL display device is transmitted only by the linearly polarized light component by the polarizing plate, and this linearly polarized light is generally elliptically polarized light by the phase difference plate. In particular, the phase difference plate has a λ / 4 position. When the angle formed by the polarization direction of the polarizing plate and the retardation plate is π / 4, it is circularly polarized.
 この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができる。 This circularly polarized light is transmitted through the transparent substrate, the transparent electrode, and the organic thin film, reflected by the metal electrode, is again transmitted through the organic thin film, the transparent electrode, and the transparent substrate, and becomes linearly polarized light again on the retardation plate. And since this linearly polarized light is orthogonal to the polarization direction of a polarizing plate, it cannot permeate | transmit a polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 《λ/4位相差フィルムの作製》
 〔λ/4位相差フィルム1の作製〕
 (微粒子分散液の調製)
 微粒子(アエロジル R812、一次粒子径:約7nm 日本アエロジル(株)製)                        11質量部
 エタノール                       89質量部
 以上をディゾルバーで50分間攪拌混合した後、高圧式分散機であるマントンゴーリン分散機を用いて分散を行い、微粒子分散液を調製した。
<< Production of λ / 4 retardation film >>
[Production of λ / 4 Retardation Film 1]
(Preparation of fine particle dispersion)
Fine particles (Aerosil R812, primary particle size: about 7 nm, made by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above is stirred and mixed with a dissolver for 50 minutes, and then dispersed using a high-pressure disperser Manton Gorin disperser To prepare a fine particle dispersion.
 (微粒子添加液1の調製)
 溶解タンクにメチレンクロライドを50質量部入れ、メチレンクロライドを十分に攪拌しながら、上記調製した微粒子分散液の50質量部をゆっくりと添加した。更に、二次粒子径が、所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過して、微粒子添加液1を調製した。
(Preparation of fine particle additive solution 1)
50 parts by mass of methylene chloride was placed in the dissolution tank, and 50 parts by mass of the fine particle dispersion prepared above was slowly added while sufficiently stirring the methylene chloride. Further, the particles were dispersed by an attritor so that the secondary particle diameter became a predetermined size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
 (ドープ1の調製)
 はじめに、加圧溶解タンクに下記に示すメチレンクロライドとエタノールを添加した。有機溶媒の入った加圧溶解タンクに、アセチル基置換度が2.45の下記セルロースエステルを攪拌しながら投入した。これを加熱及び攪拌しながら、完全に溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過して、主ドープを調製した。
(Preparation of dope 1)
First, methylene chloride and ethanol shown below were added to the pressure dissolution tank. The following cellulose ester having an acetyl group substitution degree of 2.45 was added to a pressurized dissolution tank containing an organic solvent while stirring. This was completely dissolved while being heated and stirred, and this was dissolved in Azumi filter paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. The main dope was prepared by filtration using 244.
 次いで、化合物(I)として例示化合物(I-2)、糖エステル化合物(平均置換度7.3のベンジルサッカロース)及び上記調製した微粒子添加液を下記の比率で、主溶解釜に投入し、密閉した後、攪拌しながら溶解してドープ1を調製した。 Subsequently, the exemplified compound (I-2), the sugar ester compound (benzyl saccharose having an average substitution degree of 7.3) as the compound (I) and the fine particle addition liquid prepared as described above were charged into the main dissolution vessel at the following ratio and sealed. Then, the dope 1 was prepared by dissolving with stirring.
 〈ドープ1の組成〉
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 セルロースエステル(CE-1、アセチル基置換度:2.45、プロピオニル基置換度:0、重量平均分子量約22万)       100質量部
 化合物(I):例示化合物(I-2)(側鎖のλmax=355nm、ΣABS/ΣABS=1.15、アスペクト比(AR)=1.37)
                              5質量部
 糖エステル化合物(平均置換度7.3のベンジルサッカロース)
                             10質量部
 微粒子添加液1                      2質量部
 (製膜)
 上記調製したドープ1を、ステンレスベルト支持体上で、流延(キャスト)し、フィルム中の残留溶媒量が75質量%になるまで溶媒を蒸発させた後、フィルムを、剥離張力130N/mで、ステンレスベルト支持体上から剥離した。
<Composition of dope 1>
Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose ester (CE-1, acetyl group substitution degree: 2.45, propionyl group substitution degree: 0, weight average molecular weight about 220,000) 100 parts by mass Compound (I): Exemplified compound ( I-2) (λmax y of side chain = 355 nm, ΣABS y / ΣABS x = 1.15, aspect ratio (AR) = 1.37)
5 parts by mass Sugar ester compound (benzyl saccharose with an average substitution degree of 7.3)
10 parts by mass Particulate additive liquid 1 2 parts by mass (film formation)
The prepared dope 1 is cast on a stainless steel belt support, and after the solvent is evaporated until the residual solvent amount in the film reaches 75% by mass, the film is peeled at a peeling tension of 130 N / m. Then, it was peeled from the stainless steel belt support.
 〈延伸工程〉
 次いで、剥離したフィルムに対し、図1に記載の延伸方法に従って延伸処理を施した。剥離したフィルムを185℃で加熱しながらテンターを用いて、幅手方向11(TD方向)にのみ、100%の延伸倍率で一軸延伸し、次いで、搬送方向13(MD方向)に27%収縮させた。延伸開始時の残留溶媒は15質量%であった。
<Extension process>
Next, the peeled film was stretched according to the stretching method described in FIG. Using a tenter while heating the peeled film at 185 ° C., the film was uniaxially stretched only in the width direction 11 (TD direction) at a stretch ratio of 100%, and then contracted 27% in the transport direction 13 (MD direction). It was. The residual solvent at the start of stretching was 15% by mass.
 次いで、乾燥ゾーンを多数のローラーを介して搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。 Next, drying was completed while the drying zone was conveyed through a number of rollers. The drying temperature was 130 ° C. and the transport tension was 100 N / m.
 以上のようにして、乾燥膜厚が60μmのロール状のλ/4位相差フィルム1を得た。なお、λ/4位相差フィルム1の配向角は、0°であった。 As described above, a roll-like λ / 4 retardation film 1 having a dry film thickness of 60 μm was obtained. The orientation angle of the λ / 4 retardation film 1 was 0 °.
 〔λ/4位相差フィルム2~24の作製〕
 上記λ/4位相差フィルム1の作製において、セルロースエステルの種類(アセチル基置換度、プロピオニル基置換度)、位相差調整剤として本発明に係る化合物(I)及び比較の化合物の種類と添加量、延伸条件(詳細は、表2に記載)、及び膜厚を、それぞれ表1に記載の組み合わせに変更した以外は同様にして、λ/4位相差フィルム2~24を作製した。
[Production of λ / 4 retardation films 2 to 24]
In the production of the λ / 4 retardation film 1, the type of cellulose ester (acetyl group substitution degree, propionyl group substitution degree), the compound (I) according to the present invention as a phase difference adjusting agent, and the kind and addition amount of the comparative compound. Λ / 4 retardation films 2 to 24 were produced in the same manner except that the stretching conditions (details are described in Table 2) and the film thicknesses were changed to the combinations shown in Table 1, respectively.
 〔フィルムの各特性値の測定〕
 上記作製した各λ/4位相差フィルムについて、23℃、55%RH環境下で、Axometrcs社製のAxoscanを用いて、450nm、550nm、650nmの波長での面内方向のリターデーションRo(450)、Ro(550)、Ro(650)を測定し、Ro(450)/Ro(550)、Ro(550)/Ro(650)を算出した。
[Measurement of each characteristic value of film]
For each of the λ / 4 retardation films prepared above, retardation Ro in the in-plane direction at wavelengths of 450 nm, 550 nm, and 650 nm using Axoscan manufactured by Axomercs under an environment of 23 ° C. and 55% RH. , Ro (550) and Ro (650) were measured, and Ro (450) / Ro (550) and Ro (550) / Ro (650) were calculated.
 また、配向角も、Axometrcs社製のAxoscanを用いて測定した。 The orientation angle was also measured using an Axoscan made by Axometrcs.
 また、フィルム膜厚は、市販のマイクロメーターを用いて測定した。 The film thickness was measured using a commercially available micrometer.
 以上により得られた各フィルムの特性値を、表1に示す。 Table 1 shows the characteristic values of each film obtained as described above.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 なお、表1に略称で記載した各延伸条件の詳細を表2に示す。 Table 2 shows details of each stretching condition described in abbreviations in Table 1.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2に記載の延伸条件において、条件(I)は、請求項4及び請求項7に係る延伸方法で、図1に示す方法で、遅相軸方向に100%延伸し、進相軸方向に27%の条件で収縮し、遅相軸方向の延伸倍率に対する進相軸方向の収縮倍率の比(収縮倍率/延伸倍率)の値が、0.27である。 In the stretching conditions shown in Table 2, the condition (I) is the stretching method according to claim 4 and claim 7, and is stretched 100% in the slow axis direction and stretched in the fast axis direction by the method shown in FIG. The film shrinks under the condition of 27%, and the ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the fast axis direction (shrinkage ratio / stretch ratio) is 0.27.
 また、条件(II)は、請求項6及び請求項9に係る延伸方法で、図3に示すようにフィルムの送り方向とフィルムの引取り方向とが斜交し、引取り方向に対して45°に遅相軸がある方法である。また、条件(III)は、請求項5及び請求項8に係る延伸方法で、図2A及び図2Bに示す方法で、フィルムの送り方向とフィルムの引取り方向とが一致しており、経路に速度差を施して斜め延伸する方法である。条件(IV)は、斜め延伸は行わずに、特開2007-197508号公報に記載の方法で、MD方向(フィルム搬送方向)にのみ一軸延伸を行う方法である。 The condition (II) is a stretching method according to claims 6 and 9, wherein the film feeding direction and the film take-off direction are obliquely crossed as shown in FIG. This method has a slow axis at °. In addition, the condition (III) is the stretching method according to claim 5 and claim 8, and the method shown in FIGS. 2A and 2B, the film feeding direction and the film take-up direction are the same, This is a method of obliquely stretching with a speed difference. Condition (IV) is a method in which uniaxial stretching is performed only in the MD direction (film transport direction) by the method described in JP-A-2007-197508 without performing oblique stretching.
 なお、表2に記載の配向角は、TD方向(幅手方向)を基準として表示してある。 The orientation angles shown in Table 2 are displayed with reference to the TD direction (width direction).
 《円偏光板101~124の作製》
 厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。
<< Production of circularly polarizing plates 101 to 124 >>
A 120 μm-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times).
 これをヨウ素0.075g、ヨウ化カリウム5g、及び水100gからなる水溶液に60秒間浸漬し、次いで、ヨウ化カリウム6g、ホウ酸7.5g、及び水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥して偏光子を得た。 This was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. consisting of 6 g of potassium iodide, 7.5 g of boric acid, and 100 g of water. This was washed with water and dried to obtain a polarizer.
 上記作製したλ/4位相差フィルム101~124の片面に、粘着剤として完全ケン化型ポリビニルアルコール5%水溶液を用いて、上記偏光子を貼合した。その際、偏光子の透過軸とλ/4位相差フィルムの遅相軸が45度となるよう貼合した。偏光子のもう一方の面に、下記保護フィルム1を、同様にアルカリケン化処理して貼り合わせて、λ/4位相差フィルム、偏光子及び保護フィルムから構成される円偏光板101~124を作製した。 The polarizer was bonded to one side of the produced λ / 4 retardation films 101 to 124 using a completely saponified polyvinyl alcohol 5% aqueous solution as an adhesive. At that time, bonding was performed such that the transmission axis of the polarizer and the slow axis of the λ / 4 retardation film were 45 degrees. The following protective film 1 is similarly alkali saponified and bonded to the other surface of the polarizer, and circularly polarizing plates 101 to 124 composed of a λ / 4 retardation film, a polarizer and a protective film are formed. Produced.
 (保護フィルム1の作製)
 〈エステル化合物1の調製〉
 1,2-プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中で230℃まで、撹拌しながら徐々に昇温した。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、エステル化合物1を得た。酸価は0.10mgKOH/g、数平均分子量は450であった。
(Preparation of protective film 1)
<Preparation of ester compound 1>
251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with thermometer, stirrer, and slow cooling tube The flask was charged and gradually heated to 230 ° C. in a nitrogen stream while stirring. The ester compound 1 was obtained by carrying out a dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction. The acid value was 0.10 mg KOH / g, and the number average molecular weight was 450.
 〈ドープAの調製〉
 セルロースエステル(アセチル基置換度2.88、重量平均分子量:約18万)                          90質量部
 エステル化合物1                    10質量部
 チヌビン928(BASFジャパン(株)製)      2.5質量部
 微粒子添加液1(前出)                  4質量部
 メチレンクロライド                  432質量部
 エタノール                       38質量部
 上記各構成材料を密閉容器に投入し、加熱及び撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープAを調製した。
<Preparation of dope A>
Cellulose ester (acetyl group substitution degree 2.88, weight average molecular weight: about 180,000) 90 parts by mass Ester compound 1 10 parts by mass Tinuvin 928 (manufactured by BASF Japan Ltd.) 2.5 parts by mass Fine particle additive solution 1 (supra) ) 4 parts by mass Methylene chloride 432 parts by mass Ethanol 38 parts by mass The above constituent materials were charged into a sealed container and completely dissolved while being heated and stirred, and Azumi Filter Paper No. Azumi Filter Paper No. 24 and filtered to prepare Dope A.
 (製膜)
 次に、ベルト流延装置を用い、ドープAをステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶媒量が100%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。セルロースエステルフィルムのウェブを35℃で溶媒を蒸発させ、1.65m幅にスリットし、160℃の熱をかけながらテンターでTD方向(フィルムの幅手方向)に30%(延伸倍率:1.30倍)、MD方向の延伸倍率は1%(延伸倍率:1.01倍)で延伸した。延伸を始めたときの残留溶媒量は20%であった。その後、120℃の乾燥装置内を多数のローラーで搬送させながら15分間乾燥させた後、1.49m幅にスリットし、フィルム両端に幅15mm、高さ10μmのナーリング加工を施し、巻芯に巻き取り、保護フィルム1を得た。保護フィルム1の残留溶媒量は0.2%であり、膜厚は40μm、巻長は3900mであった。
(Film formation)
Next, the dope A was uniformly cast on a stainless steel band support using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel band support was peeled off. The cellulose ester film web was evaporated at 35 ° C., slit to 1.65 m width, and 30% in the TD direction (film width direction) with a tenter while applying heat at 160 ° C. (stretch ratio: 1.30). The draw ratio in the MD direction was 1% (stretch ratio: 1.01). The residual solvent amount at the start of stretching was 20%. After drying for 15 minutes while transporting the inside of a drying device at 120 ° C. with many rollers, slitting to 1.49 m width, applying a knurling process with a width of 15 mm and a height of 10 μm at both ends of the film, and winding it around the core The protective film 1 was obtained. The residual solvent amount of the protective film 1 was 0.2%, the film thickness was 40 μm, and the winding length was 3900 m.
 保護フィルム1の配向角θは、王子計測器社製KOBRA-21ADHを用いて測定した結果、フィルム長手方向に対して90°±1°の範囲にあった。 The orientation angle θ of the protective film 1 was measured using KOBRA-21ADH manufactured by Oji Scientific Instruments, and as a result, it was in the range of 90 ° ± 1 ° with respect to the film longitudinal direction.
 《有機EL素子の作製》
 厚さ3mmの50インチ(127cm)用無アルカリガラスを用いて、下記の方法に従って、図4に記載した構成からなる有機EL素子を作製した。
<< Production of organic EL element >>
Using an alkali-free glass for 50 inches (127 cm) having a thickness of 3 mm, an organic EL device having the structure shown in FIG. 4 was produced according to the following method.
 図4に示すように、ガラスの透明基板1a上に蒸着法によりクロムからなる反射電極を形成し、形成した反射電極上に蒸着法により金属電極2a(陽極)としてITOを成膜した。次いで、陽極上に正孔輸送層として、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT:PSS)を、スパッタリング法により厚さ80nmで形成した。 As shown in FIG. 4, a reflective electrode made of chromium was formed by vapor deposition on a glass transparent substrate 1a, and ITO was formed as a metal electrode 2a (anode) by vapor deposition on the formed reflective electrode. Next, poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS) was formed as a hole transport layer on the anode with a thickness of 80 nm by a sputtering method.
 次いで、正孔輸送層上にシャドーマスクを用いて、図6に示すようにRGBそれぞれの発光層3aR、3aG、3aBを100nmの層厚で形成した。 Next, using a shadow mask on the hole transport layer, as shown in FIG. 6, RGB light emitting layers 3aR, 3aG, and 3aB were formed with a layer thickness of 100 nm.
 赤色発光層3aRは、ホスト化合物としてトリス(8-ヒドロキシキノリナート)アルミニウム(Alq)と、発光性化合物として[4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl)-4H-pyran](DCM)とを共蒸着(質量比99:1)して100nmの厚さで形成した。 The red light emitting layer 3aR includes tris (8-hydroxyquinolinate) aluminum (Alq 3 ) as a host compound and [4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran as a light emitting compound. (DCM) were co-evaporated (mass ratio 99: 1) to form a thickness of 100 nm.
 緑色発光層3aGは、ホスト化合物としてAlqと、発光性化合物としてクマリン6とを共蒸着(質量比99:1)して100nmの厚さで形成した。 The green light emitting layer 3aG was formed to a thickness of 100 nm by co-evaporating Alq 3 as a host compound and coumarin 6 as a light emitting compound (mass ratio 99: 1).
 青色発光層3aBは、ホスト化合物として下記BAlqと、発光性化合物としてPeryleneとを共蒸着(質量比90:10)して100nmの厚さで形成した。 The blue light emitting layer 3aB was formed to have a thickness of 100 nm by co-evaporation (mass ratio 90:10) of the following BAlq as a host compound and Perylene as a light emitting compound.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 さらに、発光層上に、電子が効率的に注入できるような仕事関数の低い第1の陰極として、カルシウムを真空蒸着法により4nmの厚さで成膜し、第1の陰極上に第2の陰極としてアルミニウムを2nmの厚さで形成した。ここで、第2の陰極として用いたアルミニウムは、その上に形成される透明電極4a(透明導電膜)をスパッタリング法により成膜する際に、第1の陰極であるカルシウムが化学的変質をすることを防ぐ役割がある。以上のようにして、有機発光層及び各陰極を形成した。 Further, as a first cathode having a low work function so that electrons can be efficiently injected, calcium is deposited in a thickness of 4 nm on the light emitting layer by a vacuum deposition method, and a second cathode is formed on the first cathode. Aluminum was formed with a thickness of 2 nm as a cathode. Here, when the transparent electrode 4a (transparent conductive film) formed on the aluminum used as the second cathode is formed by sputtering, the calcium serving as the first cathode is chemically altered. There is a role to prevent this. The organic light emitting layer and each cathode were formed as described above.
 次に、陰極上にスパッタリング法によって透明導電膜(透明電極)を80nmの厚さで成膜した。ここで透明導電膜としてはITOを用いた。さらに、透明導電膜上にCVD法によって窒化珪素を200nm成膜することで、絶縁膜5aとすることで有機EL素子11aを作製した。 Next, a transparent conductive film (transparent electrode) was formed with a thickness of 80 nm on the cathode by sputtering. Here, ITO was used as the transparent conductive film. Furthermore, 200 nm of silicon nitride was formed on the transparent conductive film by a CVD method, whereby the organic EL element 11a was manufactured by using the insulating film 5a.
 《有機EL表示装置の作製》
 上記作製した各円偏光板のλ/4位相差フィルムの表面に接着剤を塗工した後、上記作製した有機EL素子の視認側に貼合することで、有機EL表示装置101~124を作製した。
<< Production of organic EL display device >>
After the adhesive is applied to the surface of the λ / 4 retardation film of each of the circular polarizing plates prepared above, the organic EL display devices 101 to 124 are manufactured by pasting on the viewing side of the organic EL element prepared above. did.
 《λ/4位相差フィルム及び有機EL表示装置の評価》
 〔λ/4位相差フィルムの評価〕
 上記作製したλ/4位相差フィルムについて、下記評価を行った。
<< Evaluation of λ / 4 retardation film and organic EL display >>
[Evaluation of λ / 4 retardation film]
The following evaluation was performed on the produced λ / 4 retardation film.
 (散乱耐性の評価)
 上記作製した各位相差フィルムについて、下記の方法に従って内部ヘイズを測定した。
(Evaluation of scattering resistance)
About each produced said retardation film, the internal haze was measured in accordance with the following method.
 まず、位相差フィルム以外の測定器具のブランクヘイズ1(外部ヘイズ値)を測定した。 First, blank haze 1 (external haze value) of a measuring instrument other than the retardation film was measured.
 1)きれいに洗浄したスライドガラス上に、気泡が入らないように注意しながら、グリセリンを一滴(0.05ml)滴下した。 1) One drop (0.05 ml) of glycerin was dropped on a clean glass slide, taking care not to enter air bubbles.
 2)その上にカバーガラスを乗せて、カバーガラス全面にグリセリンを広げた。 2) A cover glass was placed thereon, and glycerin was spread over the entire surface of the cover glass.
 3)下記のヘイズメーターにセットし、ブランクヘイズ1(外部ヘイズ値)を測定した。 3) Set to the following haze meter and measure blank haze 1 (external haze value).
 次いで以下の手順で、位相差フィルムを含めたヘイズ2(全ヘイズ値)を測定した。 Then, haze 2 (total haze value) including the retardation film was measured by the following procedure.
 4)スライドガラス上にグリセリン0.05mlを滴下した。 4) 0.05 ml of glycerin was dropped on the slide glass.
 5)その上に測定する位相差フィルムを、気泡が入らないように乗せた。 5) The retardation film to be measured was placed thereon so that no bubbles would enter.
 6)位相差フィルム上にグリセリン0.05mlを滴下した。 6) 0.05 ml of glycerin was dropped on the retardation film.
 7)その上にカバーガラスを乗せた。 7) A cover glass was placed thereon.
 8)上記のように作製した積層体(上から、カバーガラス/グリセリン/位相差フィルム/グリセリン/スライドガラス)を、ヘイズメーターにセットしてヘイズ2を測定した。 8) The laminate produced as described above (from above, cover glass / glycerin / retardation film / glycerin / slide glass) was set on a haze meter, and haze 2 was measured.
 9)下式より内部ヘイズ値を求めた
   (ヘイズ2)-(ヘイズ1)=(位相差フィルムの内部ヘイズ値)
 なお、内部ヘイズは、23℃、55%RHの環境下で5時間以上調湿した位相差フィルムを用い、23℃、55%RHの環境下で測定した。
9) The internal haze value was obtained from the following formula. (Haze 2) − (Haze 1) = (Internal haze value of retardation film)
The internal haze was measured in a 23 ° C. and 55% RH environment using a retardation film conditioned for 5 hours or more in a 23 ° C. and 55% RH environment.
 また、上記測定に使用したヘイズメーター、ガラス、グリセリンを以下の通りである。 Moreover, the haze meter, glass, and glycerin used in the above measurement are as follows.
 ヘイズメーター:ヘイズメーター(濁度計)(型式:NDH 2000、日本電色(株)製)を用いて測定。光源は5V9Wハロゲン球、受光部はシリコンフォトセル(比視感度フィルター付き)で、測定はJIS K-7136に準じて測定した。 Haze meter: Measured using a haze meter (turbidity meter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.). The light source was a 5V9W halogen bulb, the light receiving part was a silicon photocell (with a relative visibility filter), and the measurement was performed according to JIS K-7136.
 スライドガラス:MICRO SLIDE GLASS S9213 MATSUNAMI
 カバーガラス:マツナミカバーグラス 24×50mm(KN3321827)
 グリセリン:関東化学製鹿特級(純度>99.0%)、屈折率1.47
 上記測定した各内部ヘイズを基にして、下記の基準に従って、各位相差フィルムの散乱耐性を評価した。
Glass slide: MICRO SLIDE GLASS S9213 MATUNAMI
Cover glass: Matsunami cover glass 24 × 50mm (KN33221827)
Glycerin: Kanto Chemical deer special grade (purity> 99.0%), refractive index 1.47
Based on each measured internal haze, the scattering resistance of each retardation film was evaluated according to the following criteria.
 ◎:内部ヘイズ値が、0.015未満である
 ○:内部ヘイズ値が、0.015以上、0.040未満である
 △:内部ヘイズ値が、0.040以上、0.060未満である
 ×:内部ヘイズ値が、0.060以上である
 (耐光性の評価)
 上記作製した各位相差フィルムについて、23℃、55%RHの環境下で、耐光試験機(アイスーパーUVテスター、岩崎電気株式会社製)により、紫外線を連続200時間照射した。
◎: Internal haze value is less than 0.015 ○: Internal haze value is 0.015 or more and less than 0.040 Δ: Internal haze value is 0.040 or more and less than 0.060 × : Internal haze value is 0.060 or more (light resistance evaluation)
Each of the prepared retardation films was irradiated with ultraviolet rays continuously for 200 hours with a light resistance tester (eye super UV tester, manufactured by Iwasaki Electric Co., Ltd.) in an environment of 23 ° C. and 55% RH.
 次いで、波長550nmにおける分光透過率を、紫外線処理前の位相差フィルムの分光透過率T(%)と、紫外線照射後の位相差フィルムの分光透過率T(%)を測定し、Tに対するTの透過率の低下幅ΔT(%)を求め、下記の基準に従って耐光性を評価した。 Next, the spectral transmittance T 1 (%) of the retardation film before ultraviolet treatment and the spectral transmittance T 2 (%) of the retardation film after ultraviolet irradiation were measured for the spectral transmittance at a wavelength of 550 nm, and T 1 The reduction width ΔT (%) of the transmittance of T 2 with respect to the film was obtained, and the light resistance was evaluated according to the following criteria.
 なお、分光透過率の測定は、分光光度計U-3400(日立製作所(株)製)を用い、350~700nmの波長領域で10nmおきに求めた分光透過率τ(λ)プロファイルから、波長550nmにおける透過率を求めた。 The spectral transmittance was measured using a spectrophotometer U-3400 (manufactured by Hitachi, Ltd.), and from a spectral transmittance τ (λ) profile obtained every 10 nm in a wavelength region of 350 to 700 nm, a wavelength of 550 nm. The transmittance was determined.
 ○:透過率の低下幅ΔTが、5%未満である
 △:透過率の低下幅ΔTが、5%以上、10%未満である
 ×:透過率の低下幅ΔTが、10%以上である
 (着色特性の評価)
 各λ/4位相差フィルムを30mm四方のサンプルとして断裁し、日立ハイテクノロジーズ社製の分光光度計U-3310を用いて、その吸収スペクトルを測定し、三刺激値X、Y、Zを算出した。この三刺激値X、Y、Zから、JIS-K7103、具体的には下式に従って、イエローインデックスYIを算出し、下記の基準に従って着色特性を評価した。
○: The transmittance decrease width ΔT is less than 5%. Δ: The transmittance decrease width ΔT is 5% or more and less than 10%. X: The transmittance decrease width ΔT is 10% or more. Evaluation of coloring characteristics)
Each λ / 4 retardation film was cut as a 30 mm square sample, its absorption spectrum was measured using a spectrophotometer U-3310 manufactured by Hitachi High-Technologies, and tristimulus values X, Y, and Z were calculated. . From these tristimulus values X, Y and Z, a yellow index YI was calculated according to JIS-K7103, specifically, the following equation, and the coloring characteristics were evaluated according to the following criteria.
 ◎:YIが、0.8未満である
 ○:YIが、0.8以上、1.0未満である
 △:YIが、1.0以上、2.0未満である
 ×:YIが、2.0以上である
 〔有機EL表示装置の評価〕
 上記作製した各有機EL表示装置について、下記の各評価を行った。
:: YI is less than 0.8 ○: YI is 0.8 or more and less than 1.0 Δ: YI is 1.0 or more and less than 2.0 ×: YI is 2. 0 or more [Evaluation of organic EL display device]
Each of the organic EL display devices produced above was evaluated as follows.
 (視認性の評価1:色味特性)
 23℃、55%RHの環境で、有機EL表示装置の最表面から5cm高い位置での照度が1000Lxとなる条件で、有機EL表示装置にBGRカラーチャート画像を表示した。
(Evaluation of visibility 1: color characteristics)
In an environment of 23 ° C. and 55% RH, a BGR color chart image was displayed on the organic EL display device under the condition that the illuminance at the position 5 cm higher than the outermost surface of the organic EL display device was 1000 Lx.
 次いで、表示したBGRカラーチャート画像について、有機EL表示装置の正面位置(面法線に対し0°)と、面法線に対し40°の斜め角度からの視認性を一般モニター10人で行い、下記の基準に従って、BGRカラー画像の視認性を評価した。本発明では、評価ランクが△以上であれば、実用上可と判断した。 Next, with respect to the displayed BGR color chart image, the front position of the organic EL display device (0 ° with respect to the surface normal) and visibility from an oblique angle of 40 ° with respect to the surface normal are performed by 10 general monitors, The visibility of the BGR color image was evaluated according to the following criteria. In the present invention, if the evaluation rank is Δ or more, it is judged practically acceptable.
 ◎:9人以上のモニターが良好なBGRカラー画像であると判定した
 ○:7~8人のモニターが良好なBGRカラー画像であると判定した
 △:5~6人のモニターが良好なBGRカラー画像であると判定した
 ×:良好なBGRカラー画像であると判定したモニターが、4人以下である
 (視認性の評価1:黒表示特性)
 23℃、55%RHの環境下で、有機EL表示装置の最表面から5cm高い位置での照度が1000Lxとなる条件で、有機EL表示装置に黒画像を表示した。
A: Nine or more monitors were determined to be good BGR color images. O: Seven to eight monitors were determined to be good BGR color images. Δ: Five to six monitors were good BGR colors. ×: The number of monitors determined to be good BGR color images is 4 or less (Visibility evaluation 1: black display characteristics)
In an environment of 23 ° C. and 55% RH, a black image was displayed on the organic EL display device under the condition that the illuminance at a position 5 cm higher than the outermost surface of the organic EL display device was 1000 Lx.
 次いで、表示した黒画像について、有機EL表示装置の正面位置(面法線に対し0°)と、面法線に対し40°の斜め角度からの視認性を一般モニター10人で行い、下記の基準に従って、黒画像の視認性を評価した。本発明では、評価ランクが△以上であれば、実用上可と判断した。 Next, with respect to the displayed black image, the visibility from a front position of the organic EL display device (0 ° with respect to the surface normal) and an oblique angle of 40 ° with respect to the surface normal is performed by 10 general monitors. The visibility of the black image was evaluated according to the standard. In the present invention, if the evaluation rank is Δ or more, it is judged practically acceptable.
 ◎:9人以上のモニターが、表示された画像が黒であると判定した
 ○:7~8人のモニターが、表示された画像が黒であると判定した
 △:5~6人のモニターが、表示された画像が黒であると判定した
 ×:表示された画像が黒であると判定したモニターが、4人以下である
 以上により得られた結果を、表3に示す。
◎: Nine or more monitors determined that the displayed image was black ○: Seven to eight monitors determined that the displayed image was black △: Five to six monitors The displayed image was determined to be black. ×: The number of monitors determined that the displayed image was black was 4 or less. Table 3 shows the results obtained as described above.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表3に記載の結果より明らかなように、本発明で規定する各特性値を備えた本発明のλ/4位相差フィルムは透明性、耐光性及び着色耐性に優れ、このλ/4位相差フィルムを有す円偏光板を具備した有機EL表示装置は、比較例に対し、表示した黒画像及びBGRカラー画像の画像表示性能(視認性)に優れていることが分かる。 As is apparent from the results shown in Table 3, the λ / 4 retardation film of the present invention having the characteristic values defined in the present invention is excellent in transparency, light resistance and coloring resistance. It can be seen that the organic EL display device including the circularly polarizing plate having a film is superior in the image display performance (visibility) of the displayed black image and BGR color image as compared with the comparative example.
 本発明のλ/4位相差フィルムは、広波長領域での位相差発現性が高く、薄膜で優れた逆波長分散特性を備え、低ヘイズで透明性が高く、耐光性及び着色耐性に優れた特性を備えており、円偏光板や有機エレクトロルミネッセンス表示装置に、好適に利用できる。 The λ / 4 retardation film of the present invention has a high retardation development property in a wide wavelength region, an excellent reverse wavelength dispersion characteristic in a thin film, a low haze, a high transparency, and an excellent light resistance and coloring resistance. It has characteristics and can be suitably used for a circularly polarizing plate and an organic electroluminescence display device.
 4 長尺フィルム原反
 5 延伸フィルム
 6 斜め延伸テンター
 7-1 外側のフィルム把持手段の軌跡
 7-2 内側のフィルム把持手段の軌跡
 8-1 外側のフィルム把持開始点、テンター入口部、
 8-2 内側のフィルム把持開始点、テンター入口部
 9-1 右側のフィルム把持終了点
 9-2 左側のフィルム把持終了点
 10-1、10-2 レールが拡幅を始める点
 11-3 拡幅が終了する点
 12-1、12-2 ガイドローラー
 14-1 フィルムの送り方向
 14-2 フィルムの延伸方向
 θi 屈曲角度(繰出し角度)
 111 延伸方向(TD方向)
 112 斜め延伸
 113 搬送方向
 114 遅相軸
 F セルロースアシレートフィルム
 1a 透明基盤
 2a 金属電極
 3aR 赤色発光層
 3aG 緑色発光層
 3aB 青色発光層
 4a 透明電極
 5a 絶縁膜
 6a 接着層
 7a λ/4板T2
 8a 偏光子
 9a 保護フィルム
 10a 円偏光板
 11a 有機EL素子
4 Long film original fabric 5 Stretched film 6 Diagonal stretch tenter 7-1 Trajectory of outer film gripping means 7-2 Trajectory of inner film gripping means 8-1 Outer film grip start point, tenter entrance,
8-2 Inner film grip start point, tenter entrance 9-1 Right film grip end point 9-2 Left film grip end point 10-1, 10-2 Point where rail starts widening 11-3 Widening ends Points 12-1, 12-2 Guide roller 14-1 Film feeding direction 14-2 Film stretching direction θi Bending angle (feeding angle)
111 Stretching direction (TD direction)
112 oblique stretching 113 transport direction 114 slow axis F cellulose acylate film 1a transparent substrate 2a metal electrode 3aR red light emitting layer 3aG green light emitting layer 3aB blue light emitting layer 4a transparent electrode 5a insulating film 6a adhesive layer 7a λ / 4 plate T2
8a Polarizer 9a Protective film 10a Circularly polarizing plate 11a Organic EL element

Claims (12)

  1.  熱可塑性樹脂と、少なくとも3箇所に連結部位を有する連結基で結合された化合物(I)とを含有するλ/4位相差フィルムであって、該化合物(I)における前記連結基とその2箇所の連結部位を介して連結された基を含み、200nm以上、280nm未満の波長域に極大吸収波長を有する化学構造部分X(主鎖)と、該連結基の他の連結部位のうち、少なくとも一つの連結部位を介して結合された基で、該化学構造部分X(主鎖)に対し分岐した構造の化学構造部分Y(側鎖)とを有し、該化合物(I)が下記(a)及び(b)で規定する条件を同時に満たし、波長分散特性が下記(c)及び(d)を同時に満たすことを特徴とするλ/4位相差フィルム。
     (a)前記化学構造部分Y(側鎖)が、280~380nmの波長域内に極大吸収波長を有する
     (b)25.0≧ΣABS/ΣABS≧1.01
     (c)DSP1;Ro(450)/Ro(550)=0.72~0.96
     (d)DSP2;Ro(550)/Ro(650)=0.83~0.98
    〔式中、ΣABSは、化合物(I)の化学構造部分X(主鎖)の総吸収強度を表し、ΣABSは、化合物(I)の化学構造部分Y(側鎖)の総吸収強度を表す。DSP1及びDSP2はそれぞれλ/4位相差フィルムの波長分散特性を表し、Ro(450)は波長450nmの光における面内リターデーション値であり、Ro(550)は波長550nmの光における面内リターデーション値であり、Ro(650)は波長650nmの光における面内リターデーション値である。なお、それぞれの面内リターデーション値は、23℃、55%RHの環境下で測定した値である。〕
    A λ / 4 retardation film containing a thermoplastic resin and a compound (I) bonded with a linking group having a linking site at least at three positions, the linking group in the compound (I) and the two positions A chemical structure moiety X (main chain) having a maximum absorption wavelength in a wavelength region of 200 nm or more and less than 280 nm, and at least one of the other linking sites of the linking group. A group bonded via two linking sites, and having a chemical structure portion Y (side chain) branched from the chemical structure portion X (main chain), and the compound (I) has the following (a) A λ / 4 retardation film characterized by satisfying the conditions defined in (b) and (c) and (d) below at the same time.
    (A) The chemical structure portion Y (side chain) has a maximum absorption wavelength in a wavelength range of 280 to 380 nm. (B) 25.0 ≧ ΣABS y / ΣABS x ≧ 1.01
    (C) DSP1; Ro (450) / Ro (550) = 0.72 to 0.96
    (D) DSP2; Ro (550) / Ro (650) = 0.83 to 0.98
    [In the formula, ΣABS x represents the total absorption intensity of the chemical structure portion X (main chain) of the compound (I), and ΣABS y represents the total absorption intensity of the chemical structure portion Y (side chain) of the compound (I). To express. DSP1 and DSP2 each represent the wavelength dispersion characteristic of a λ / 4 retardation film, Ro (450) is an in-plane retardation value for light having a wavelength of 450 nm, and Ro (550) is an in-plane retardation for light having a wavelength of 550 nm. Ro (650) is an in-plane retardation value for light having a wavelength of 650 nm. In addition, each in-plane retardation value is the value measured in the environment of 23 degreeC and 55% RH. ]
  2.  前記化合物(I)が、下記一般式(A)で表される化合物であることを特徴とする請求項1に記載のλ/4位相差フィルム。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、L及びLは各々独立に単結合又は2価の連結基を表す。R、R及びRは各々独立に置換基を表す。nは0から2までの整数を表す。Wa及びWbはそれぞれ水素原子又は置換基を表し、(I)Wa及びWbが互いに結合して環を形成する、(II)Wa及びWbの少なくとも一つが環構造を有する、又は(III)Wa及びWbの少なくとも一つがアルケニル基若しくはアルキニル基である。〕
    The λ / 4 retardation film according to claim 1, wherein the compound (I) is a compound represented by the following general formula (A).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, L 1 and L 2 each independently represent a single bond or a divalent linking group. R 1 , R 2 and R 3 each independently represent a substituent. n represents an integer of 0 to 2. Wa and Wb each represent a hydrogen atom or a substituent; (I) Wa and Wb are bonded to each other to form a ring; (II) at least one of Wa and Wb has a ring structure; or (III) Wa and Wb At least one of Wb is an alkenyl group or an alkynyl group. ]
  3.  前記化合物(I)のアスペクト比が、1.70未満であることを特徴とする請求項1又は請求項2に記載のλ/4位相差フィルム。 The aspect ratio of the compound (I) is less than 1.70, and the λ / 4 retardation film according to claim 1 or 2.
  4.  前記熱可塑性樹脂が、セルロースエステルであることを特徴とする請求項1から請求項3までのいずれか一項に記載のλ/4位相差フィルム。 The λ / 4 retardation film according to any one of claims 1 to 3, wherein the thermoplastic resin is a cellulose ester.
  5.  遅相軸方向に延伸し、進相軸方向に収縮されて作製され、該遅相軸方向の延伸倍率に対する該進相軸方向の収縮倍率の比率(収縮倍率/延伸倍率)が、0.05~0.70の範囲内であることを特徴とする請求項1から請求項4までのいずれか一項に記載のλ/4位相差フィルム。 It is produced by stretching in the slow axis direction and shrinking in the fast axis direction, and the ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the slow axis direction (shrinkage ratio / stretch ratio) is 0.05. The λ / 4 retardation film according to any one of claims 1 to 4, wherein the λ / 4 retardation film is in a range of ˜0.70.
  6.  遅相軸方向が、搬送方向に対し30~60°の角度範囲内で配向していることを特徴とする請求項1から請求項4までのいずれか一項に記載のλ/4位相差フィルム。 The λ / 4 retardation film according to any one of claims 1 to 4, wherein the slow axis direction is oriented within an angle range of 30 to 60 ° with respect to the transport direction. .
  7.  フィルムの送り方向とフィルムの引取り方向とが斜交し、かつ該フィルムの引取り方向に対して30~60°の角度範囲内に遅相軸があることを特徴とする請求項1から請求項4までのいずれか一項に記載のλ/4位相差フィルム。 The film feed direction and the film take-off direction are obliquely crossed, and the slow axis is in an angle range of 30 to 60 ° with respect to the film take-up direction. The λ / 4 retardation film according to any one of Items 4 to 4.
  8.  請求項1から請求項4までのいずれか一項に記載のλ/4位相差フィルムを製造するλ/4位相差フィルムの製造方法であって、遅相軸方向に延伸し、進相軸方向に収縮する延伸収縮工程を経て、該遅相軸方向の延伸倍率に対する該進相軸方向の収縮倍率の比率(収縮倍率/延伸倍率)が、0.05~0.70の範囲内となる条件で延伸して製造することを特徴とするλ/4位相差フィルムの製造方法。 It is a manufacturing method of (lambda) / 4 phase difference film which manufactures (lambda) / 4 phase difference film as described in any one of Claim 1- Claim 4, Comprising: It extends | stretches to a slow axis direction, A phase fast axis direction The ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the fast axis direction (shrinkage ratio / stretch ratio) is in the range of 0.05 to 0.70 through the stretching shrinkage step of shrinking into A method for producing a λ / 4 retardation film, wherein the film is produced by stretching the film.
  9.  請求項1から請求項4までのいずれか一項に記載のλ/4位相差フィルムを製造するλ/4位相差フィルムの製造方法であって、遅相軸方向が、搬送方向に対し30~60°の角度範囲内で配向する条件で製造することを特徴とするλ/4位相差フィルムの製造方法。 A method for producing a λ / 4 retardation film for producing a λ / 4 retardation film according to any one of claims 1 to 4, wherein a slow axis direction is 30 to A method for producing a λ / 4 retardation film, which is produced under the condition of orientation within an angle range of 60 °.
  10.  請求項1から請求項4までのいずれか一項に記載のλ/4位相差フィルムを製造するλ/4位相差フィルムの製造方法であって、延伸工程におけるフィルムの送り方向とフィルムの引取り方向とを斜交させ、該フィルムの引取り方向に対して30~60°の角度範囲内に遅相軸を設ける条件で製造することを特徴とするλ/4位相差フィルムの製造方法。 It is a manufacturing method of (lambda) / 4 phase difference film which manufactures (lambda) / 4 phase difference film as described in any one of Claim 1- Claim 4, Comprising: The feeding direction of a film in a extending process, and film take-up A method for producing a λ / 4 retardation film, characterized in that the film is produced under the condition that the direction is oblique and the slow axis is provided within an angle range of 30 to 60 ° with respect to the film take-off direction.
  11.  請求項1から請求項7までのいずれか一項に記載のλ/4位相差フィルムと偏光子とを具備することを特徴とする円偏光板。 A circularly polarizing plate comprising the λ / 4 retardation film according to any one of claims 1 to 7 and a polarizer.
  12.  請求項11に記載の円偏光板と、有機エレクトロルミネッセンス素子とを具備することを特徴とする有機エレクトロルミネッセンス表示装置。 An organic electroluminescence display device comprising the circularly polarizing plate according to claim 11 and an organic electroluminescence element.
PCT/JP2013/055037 2012-03-12 2013-02-27 Λ/4 phase difference film and method for producing same, circularly polarizing plate, and organic electroluminescent display device WO2013136977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020147023050A KR101662920B1 (en) 2012-03-12 2013-02-27 /4 phase difference film and method for producing same circularly polarizing plate and organic electroluminescent display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012053995 2012-03-12
JP2012-053995 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013136977A1 true WO2013136977A1 (en) 2013-09-19

Family

ID=49160893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055037 WO2013136977A1 (en) 2012-03-12 2013-02-27 Λ/4 phase difference film and method for producing same, circularly polarizing plate, and organic electroluminescent display device

Country Status (3)

Country Link
JP (1) JPWO2013136977A1 (en)
KR (1) KR101662920B1 (en)
WO (1) WO2013136977A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150323703A1 (en) * 2012-12-13 2015-11-12 Konica Minolta, Inc. Retardation film, polarizing plate and liquid crystal display
CN111972045A (en) * 2018-03-28 2020-11-20 大日本印刷株式会社 Display panel, display device, and method for screening phase difference layer of display panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193072B (en) 2016-03-15 2018-08-28 住友化学株式会社 Elliptical polarization plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249180A (en) * 2006-02-16 2007-09-27 Fujifilm Corp Optical film and its manufacturing method, polarizing plate using same, and liquid crystal display device
WO2009041273A1 (en) * 2007-09-26 2009-04-02 Zeon Corporation Process for producing stretched film, stretched film, polarizer, and liquid-crystal display
JP2009251288A (en) * 2008-04-07 2009-10-29 Nitto Denko Corp Elliptical polarization plate and method of manufacturing the same
JP2010254949A (en) * 2009-03-31 2010-11-11 Fujifilm Corp Cellulose composition, optical film, retardation plate, polarizing plate, and liquid crystal display

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792337B2 (en) 2006-06-27 2011-10-12 富士フイルム株式会社 Cellulose body film containing cellulose oligomer derivative, polarizing plate and liquid crystal display device using the same
JPWO2009025170A1 (en) 2007-08-23 2010-11-25 コニカミノルタオプト株式会社 Long retardation film, long elliptically polarizing film, elliptically polarizing plate, and image display device
JP5513054B2 (en) 2009-09-30 2014-06-04 富士フイルム株式会社 Cellulose acylate film, retardation plate, polarizing plate, and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249180A (en) * 2006-02-16 2007-09-27 Fujifilm Corp Optical film and its manufacturing method, polarizing plate using same, and liquid crystal display device
WO2009041273A1 (en) * 2007-09-26 2009-04-02 Zeon Corporation Process for producing stretched film, stretched film, polarizer, and liquid-crystal display
JP2009251288A (en) * 2008-04-07 2009-10-29 Nitto Denko Corp Elliptical polarization plate and method of manufacturing the same
JP2010254949A (en) * 2009-03-31 2010-11-11 Fujifilm Corp Cellulose composition, optical film, retardation plate, polarizing plate, and liquid crystal display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150323703A1 (en) * 2012-12-13 2015-11-12 Konica Minolta, Inc. Retardation film, polarizing plate and liquid crystal display
US9581728B2 (en) * 2012-12-13 2017-02-28 Konica Minolta, Inc. Retardation film, polarizing plate and liquid crystal display
CN111972045A (en) * 2018-03-28 2020-11-20 大日本印刷株式会社 Display panel, display device, and method for screening phase difference layer of display panel
CN111972045B (en) * 2018-03-28 2024-04-30 大日本印刷株式会社 Display panel, display device and screening method of phase difference layer of display panel

Also Published As

Publication number Publication date
KR101662920B1 (en) 2016-10-05
KR20140121446A (en) 2014-10-15
JPWO2013136977A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5979283B2 (en) Organic electroluminescence image display device
WO2014061215A1 (en) Phase difference film, circular polarization plate and organic el display manufactured using phase difference film
KR101677866B1 (en) Phase difference film, circularly polarizing plate, and image forming device
JP6102738B2 (en) ORGANIC ELECTROLUMINESCENCE DISPLAY DEVICE, MANUFACTURING METHOD FOR CIRCULAR POLARIZED PLATE, AND LONG λ / 4 PLATE
TWI507418B (en) A retardation film, an elongated circularly polarizing film and an organic LED display fabricated using the retardation film
JP6699655B2 (en) Method for producing obliquely stretched film
JP6048349B2 (en) Method for producing retardation film
WO2013136977A1 (en) Λ/4 phase difference film and method for producing same, circularly polarizing plate, and organic electroluminescent display device
JP6056758B2 (en) Organic EL display device
JP5601433B2 (en) λ / 4 retardation film and organic electroluminescence image display device
WO2013137123A1 (en) λ/4 PHASE DIFFERENCE FILM, CIRCULARLY POLARIZING PLATE, AND ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE
JP6136929B2 (en) Organic electroluminescence image display device
JP5724847B2 (en) Organic electroluminescence stereoscopic image display system
WO2014087593A1 (en) Retardation film, circularly polarizing plate, and image display device
JP5970781B2 (en) Organic electroluminescence display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504773

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147023050

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760381

Country of ref document: EP

Kind code of ref document: A1