[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013132596A1 - Wavelength multiplexed photo-transmission system, photo-relay device, and light intensity control method - Google Patents

Wavelength multiplexed photo-transmission system, photo-relay device, and light intensity control method Download PDF

Info

Publication number
WO2013132596A1
WO2013132596A1 PCT/JP2012/055691 JP2012055691W WO2013132596A1 WO 2013132596 A1 WO2013132596 A1 WO 2013132596A1 JP 2012055691 W JP2012055691 W JP 2012055691W WO 2013132596 A1 WO2013132596 A1 WO 2013132596A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
intensity
filter
target value
Prior art date
Application number
PCT/JP2012/055691
Other languages
French (fr)
Japanese (ja)
Inventor
十倉 俊之
杉原 隆嗣
和行 石田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/055691 priority Critical patent/WO2013132596A1/en
Publication of WO2013132596A1 publication Critical patent/WO2013132596A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/2942Signal power control in a multiwavelength system, e.g. gain equalisation using automatic gain control [AGC]

Definitions

  • the present invention relates to a wavelength division multiplexing optical transmission system, an optical repeater, and an optical intensity control method.
  • Patent Document 1 discloses a method for controlling the signal light power of each wavelength to a predetermined value even when the number of multiplexed wavelengths is intentionally or suddenly changed. .
  • the present invention has been made in view of the above, and a wavelength division multiplexing optical transmission system capable of controlling optical power to a predetermined value while suppressing an increase in circuit scale even when the number of multiplexed wavelengths is large.
  • An object of the present invention is to obtain an optical repeater and a light intensity control method.
  • the present invention provides an upstream device that transmits wavelength-multiplexed light in which a plurality of optical signals having different wavelengths are wavelength-multiplexed, receives the wavelength-multiplexed light, and receives the wavelength-multiplexed light.
  • An optical repeater that amplifies and outputs multiplexed light
  • the optical repeater comprising: an optical amplifier that amplifies the wavelength-multiplexed light; A variable attenuator for attenuating the intensity of the wavelength multiplexed light after amplification by an amplifier; a target value setting unit for setting a target value of the intensity of the wavelength multiplexed light after amplification; passing through the optical amplifier and the variable attenuator A control unit that controls the variable attenuator so that the intensity of the later wavelength multiplexed light becomes the target value; a total intensity detecting unit that detects the total intensity of the received wavelength multiplexed light; and the received wavelength multiplexed light of A light extraction filter that extracts a signal in a part of the wavelength band, and an extraction signal intensity detection unit that detects the intensity of the extraction signal extracted by the light extraction filter, and the target value setting unit includes the total value Whether to maintain or reset the target value is determined based on whether or not the intensity change ratio and the intensity change ratio of the extracted signal
  • the wavelength division multiplexing optical transmission apparatus has an effect that the optical power can be controlled to a predetermined value while suppressing an increase in circuit scale even when the number of multiplexed wavelengths is large.
  • FIG. 1 is a diagram illustrating a configuration example of the wavelength division multiplexing optical transmission system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of an optical spectrum of wavelength multiplexed light.
  • FIG. 3 is a diagram illustrating an optical signal after extraction by the light extraction filter.
  • FIG. 4 is a diagram illustrating a configuration example of a wavelength division multiplexing optical transmission system according to the fourth embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of a reception node in the case where a duplexer is arranged upstream of the optical amplifier.
  • FIG. 6 is a diagram illustrating a configuration example of the wavelength division multiplexing optical transmission system according to the fifth embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a wavelength division multiplexing optical transmission system according to the sixth embodiment.
  • FIG. 1 is a diagram showing a configuration example of Embodiment 1 of a wavelength division multiplexing optical transmission system according to the present invention.
  • the wavelength division multiplexing optical transmission system of the present embodiment receives an upstream transmission node 2 (upstream apparatus) that transmits wavelength division multiplexed light to a transmission line optical fiber 3, and receives wavelength division multiplexed light to be transmitted.
  • a receiving node 1 that controls the power (intensity) to a predetermined value.
  • the receiving node 1 will be described as an example of the optical repeater according to the present invention.
  • the receiving node 1 amplifies and repeats the wavelength multiplexed light transmitted from the upstream transmitting node 2.
  • the upstream transmission node 2 includes an optical amplifier 4 that amplifies wavelength multiplexed light.
  • the reception node 1 includes branching filters 5 and 6, a light extraction filter 7, photodiodes (PD) 8 and 9, log amplifiers (Log) 10 and 11, a subtraction circuit 12, a target value setting circuit (target A value setting unit) 13, a control circuit (control unit) 14, a variable attenuator (VOA) 15, and an optical amplifier 16.
  • the demultiplexer 5 is a demultiplexer that branches a part of power in order to monitor wavelength multiplexed light. For example, an optical coupler that demultiplexes at a ratio of 10: 1, 20: 1, or the like can be applied.
  • the demultiplexer 6 is a demultiplexer 6 that further demultiplexes the wavelength multiplexed light demultiplexed by the demultiplexer 5.
  • the light extraction filter 7 blocks light in some wavelength bands from the wavelength multiplexed light demultiplexed by the demultiplexer 6 and extracts only light in other wavelength bands.
  • the light extraction filter 7 extracts supervisory control light for transmitting a low-speed signal in order to extract signal light of a part of the wavelength of multiplexed signal light, or to monitor or control a wavelength division multiplexing optical transmission system. For example, the case of extracting only the wavelength of the noise, or the case of extracting only the noise light that does not include any of the signal light and the monitoring control light is conceivable.
  • the photodiode 8 detects the total light power not passing through the light extraction filter 7. That is, the photodiode 8 monitors the total power including signal light, supervisory control light, noise light, etc. without extracting only a part of the wavelength band, and outputs an electric signal corresponding to the total power.
  • the photodiode 9 is a detection unit for monitoring the power of the light in the wavelength band extracted by the light extraction filter 7 and determines the optical power of the light in the wavelength band extracted by the light extraction filter 7. A corresponding electrical signal is output.
  • the log amplifiers 10 and 11 respectively convert the electrical signals output from the photodiodes 8 and 9 into electrical signals proportional to the logarithm (when the input is X). log amplifier for outputting a signal proportional to logX).
  • the log amplifiers 10 and 11 are not essential, an example in which the log amplifiers 10 and 11 are used will be described here.
  • the subtraction circuit 12 subtracts signals output from the log amplifiers 10 and 11.
  • the subtracting circuit 12 obtains a signal proportional to the logarithm of the ratio between the total power and the power obtained by extracting some wavelengths.
  • the target value setting circuit 13 is a circuit that sets a target value for controlling the total power.
  • the control circuit 14 is a circuit that controls the total power of the wavelength multiplexed light to approach the target value by changing the attenuation amount of the variable attenuator 15.
  • the optical amplifier 16 is an optical amplifier that amplifies the wavelength-division multiplexed light whose power is adjusted, and gain constant control is performed so as to amplify with a constant gain.
  • FIG. 2 is a diagram illustrating an example of an optical spectrum of wavelength multiplexed light.
  • FIG. 2 In this example, signal light of 10 wavelengths and monitoring control light (OSC light) for transmitting a low-speed signal for monitoring or controlling the wavelength multiplexing optical transmission system are multiplexed.
  • OSC light monitoring control light
  • FIG. 2 is an example, and the number of wavelengths multiplexed in the wavelength division multiplexed light is not limited to this, and the monitoring control light may not be multiplexed.
  • FIG. 2 (a) shows a state in which the noise light generated in the optical amplifier 4 or the like exists in the same wavelength band as the signal light.
  • FIG. 2B shows a case where the loss of the transmission line optical fiber 3 is increased by 10 dB from the state of FIG. 2A (the state before change) for some reason.
  • the rate of change with time of all powers of signal light, supervisory control light, and noise light is the same, and the power is reduced to 1/10 due to an increase in loss.
  • the loss amount of the variable attenuator 15 is quickly reduced so that the monitor value of the total power that is lower than the control target value is recovered, and the power of the signal light becomes a predetermined value before the loss increase. Need to be controlled.
  • FIG. 2 (c) shows a case where the number of wavelengths transmitted from the upstream has decreased from 10 waves to 1 wave for some reason from the state of FIG. 2 (a). In this case, the monitor value of the total power is reduced to 1/10. However, since the power (channel power) per wave does not change and the predetermined power is maintained, the loss amount of the variable attenuator 15 is There is no need to change. Therefore, it is necessary to control the variable attenuator 15 after changing the total power control target value to a value corresponding to the number of wavelengths of one wave.
  • the total power P (output from the demultiplexer 6) including all the wavelength multiplexed signal light and the power P filter (light that extracts light in a part of the wavelength band of the transmitted light)
  • the output from the extraction filter 7) is monitored. Then, by comparing the change ratios of the two monitor values, it is determined whether the change is due to loss fluctuation as shown in FIG. 2B or the change due to wavelength number fluctuation as shown in FIG.
  • FIG. 3A shows an example of an extracted optical signal when signal light having a part of the wavelength is extracted from the signal light wavelength-multiplexed by the light extraction filter 7.
  • filters are extracted so that 5 waves in the long wavelength band pass.
  • the number of wavelengths to be extracted is not limited to five waves.
  • the wavelength to be extracted is not limited to the long wavelength band, but may be near the center or in the low wavelength band.
  • the total power P and the light power P filter after extraction by the light extraction filter 7 are both 1/10, and the change ratio is the same. is there.
  • the number of wavelengths is reduced from 10 waves to 1 wave as shown in FIG. 2C
  • the total power P is reduced to 1/10, but the light power P after being extracted by the light extraction filter 7 is reduced.
  • the filter is monitored for power for five wavelengths before the change, but only for one wavelength after the change, and is reduced to one fifth. Therefore, the change ratio differs between the total power P and the light power P filter after being extracted by the light extraction filter 7.
  • the change ratio P filter / P filter ′ of P filter when the monitor value is P filter ′ is compared. If they are the same, the power fluctuation caused by the loss fluctuation, and if they are different, the fluctuation in the number of wavelengths It can be determined that the power fluctuation is caused, and the variable attenuator can be appropriately controlled in each case.
  • the target value setting circuit 13 uses the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P filter ′ respectively before a predetermined time to generate P / P ′ And P filter / P filter ′ are obtained, and based on whether or not P / P ′ and P filter / P filter ′ are substantially the same value, the power fluctuation caused by the loss fluctuation or the wavelength number fluctuation is determined. .
  • the target value setting circuit 13 does not change the target value Pt when it is determined that the fluctuation is a loss fluctuation. On the other hand, if it is determined that the power fluctuation is caused by the fluctuation in the number of wavelengths, the target value setting circuit 13 resets the target value Pt. .
  • the value after the resetting is a value corresponding to the number of wavelengths of one wave (number of wavelengths) when it is assumed that the power including all of the wavelength multiplexed signal light becomes the target value Pt.
  • the value after resetting can be obtained based on, for example, the difference or ratio between P / P ′ and P filter / P filter ′.
  • the control circuit 14 can control the wavelength multiplexed light to a predetermined power by controlling the loss amount of the variable attenuator 15 according to these target values.
  • log amplifiers 10 and 11 that convert the total power P and the power P filter extracted by the light extraction filter 7 into signals proportional to the logarithm are used.
  • P / P ′ and P filter / P filter ′ are compared by comparing (logP ⁇ logP ′) and (logP filter ⁇ logP filter ′). If they are different, it is determined that the number of wavelengths varies.
  • P / P ′ and P filter / P filter ′ is (logP ⁇ logP ′) ⁇ (logP filter ⁇ logP filter ′) zero? You may determine whether.
  • the method for obtaining P / P ′ and P filter / P filter ′ is not limited to such a configuration using a log amplifier.
  • P / P is obtained by using the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P filter ′ before each predetermined time.
  • 'And P filter / P filter ' are obtained, and based on whether P / P 'and P filter / P filter ' are substantially the same value, the power fluctuation caused by the loss fluctuation or the wavelength number fluctuation is determined. And according to the judgment result, the value of the target value Pt for controlling the optical attenuator 15 was set. For this reason, even when the number of multiplexed wavelengths is large, the optical power can be controlled to a predetermined value while suppressing an increase in circuit scale.
  • Embodiment 2 an optical power control method according to the second embodiment of the present invention will be described.
  • the configuration of the wavelength division multiplexing optical transmission system of the present embodiment is the same as that of the first embodiment.
  • the example in which the light extraction filter 7 extracts a part of the wavelength multiplexed light is described.
  • the light extraction filter 7 extracts the monitoring control light.
  • Embodiment 1 a different part from Embodiment 1 is demonstrated.
  • the light extraction filter 7 extracts supervisory control light (OSC light) that transmits a low-speed signal for monitoring and control of the wavelength division multiplexing optical transmission system.
  • OSC light supervisory control light
  • the total power P and the power P filter extracted by the light extraction filter 7 are both 1/10, and the change ratios of both are the same.
  • the supervisory control light (OSC light) extracted by the light extraction filter does not change, and the change ratios of the two are different.
  • the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P filter ′ before the predetermined time are used to obtain P / P ′.
  • P filter / P filter ′, and based on whether P / P ′ and P filter / P filter ′ are substantially the same value it is possible to determine the power fluctuation caused by the loss fluctuation or the wavelength number fluctuation. it can.
  • the operations of the present embodiment other than those described above are the same as those of the first embodiment.
  • the monitoring control light is extracted by the light extraction filter 7, and the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P before each predetermined time are obtained.
  • filter P ′, and P / P ′ and P filter / P filter ′ are obtained.
  • the loss variation Judgment was made on power fluctuations caused by wavelength fluctuations. For this reason, even when the number of multiplexed wavelengths is large, the optical power can be controlled to a predetermined value while suppressing an increase in circuit scale.
  • Embodiment 3 an optical power control method according to the third embodiment of the present invention will be described.
  • the configuration of the wavelength division multiplexing optical transmission system of the present embodiment is the same as that of the first embodiment.
  • the example in which the light extraction filter 7 extracts a part of the wavelength multiplexed light is described.
  • the light extraction filter 7 is either a signal light or a monitoring control light. Noise light is extracted.
  • Embodiment 1 a different part from Embodiment 1 is demonstrated.
  • the light extraction filter 7 extracts noise light that does not include either signal light or monitoring control light. That is, a signal in a wavelength band that is neither the wavelength of the signal light nor the wavelength of the monitoring control light is extracted.
  • the loss increases by 10 dB as shown in FIG. 2B the total power P and the power P filter extracted by the light extraction filter are both 1/10, and the change ratios of both are the same.
  • the supervisory control light (OSC light) extracted by the light extraction filter when the number of wavelengths decreases from 10 waves to 1 wave as shown in FIG. 2C, the total power P decreases to 1/10, but the supervisory control light (OSC light) extracted by the light extraction filter.
  • the power P filter does not change, and the change ratios of the two are different.
  • the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P filter ′ before the predetermined time are used to obtain P / P ′.
  • P filter / P filter ′, and based on whether P / P ′ and P filter / P filter ′ are substantially the same value it is possible to determine the power fluctuation caused by the loss fluctuation or the wavelength number fluctuation. it can.
  • the operations of the present embodiment other than those described above are the same as those of the first embodiment.
  • noise light is extracted by the light extraction filter 7, and the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P filter before each predetermined time are obtained.
  • ′, P / P ′ and P filter / P filter ′ are obtained, and based on whether P / P ′ and P filter / P filter ′ are substantially the same value, the loss variation or the number of wavelengths The power fluctuation caused by the fluctuation was judged. For this reason, even when the number of multiplexed wavelengths is large, the optical power can be controlled to a predetermined value while suppressing an increase in circuit scale.
  • FIG. 4 is a diagram showing a configuration example of a wavelength division multiplexing optical transmission system according to a fourth embodiment of the present invention.
  • the wavelength division multiplexing optical transmission system of the present embodiment includes an upstream transmission node 2 and a reception node 1a similar to those of the first embodiment.
  • the wavelength multiplexed light transmitted from the upstream transmission node 2 is received by the reception node 1a via the transmission line optical fiber 3.
  • the configuration of the reception node 1a is the same as that of the reception node 1 of the first embodiment except that the arrangement of the optical amplifier 16 is changed and the optical amplifier 16 is arranged in front of the variable attenuator 15.
  • Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • the optical power control method similar to that of the first to third embodiments can also be applied when the optical amplifier 16 is arranged in front of the variable attenuator 15.
  • the power fluctuation caused by the loss fluctuation or the wavelength number fluctuation is determined by the same method as in the first and second embodiments. Can do.
  • noise light is extracted by the light extraction filter 7 that does not include either signal light or supervisory control light as in the third embodiment, the total power P and the light are output when a large loss fluctuation occurs.
  • the change ratio of the power P filter extracted by the extraction filter 7 is different, and it may be erroneously determined that the number of wavelengths varies.
  • FIG. 5 is a diagram illustrating a configuration example of the reception node 1b when the duplexer 5 is arranged upstream of the optical amplifier 16. An erroneous determination can be avoided by using the receiving node 1b instead of the receiving node 1a.
  • the duplexer 5 is arranged upstream of the optical amplifier 16 to monitor the total power and the power extracted by the light extraction filter.
  • the branching filter 5 and the subtraction circuit 12 are arranged in front of the optical amplifier 16, and the branching filter 19, the photodiode (PD) 17 and the log amplifier (Log) ) 18 is added.
  • the monitor value by the photodiodes 8 and 9 does not include the power of the noise light generated by the optical amplifier 16, so that even when the loss greatly increases, the total power P and the light extraction filter 7 are used for extraction.
  • the change ratio of the power P filter does not change, and the loss fluctuation and the wavelength number fluctuation can be accurately discriminated.
  • the power of the output light of the variable attenuator 15 is demultiplexed by the demultiplexer 19, and the light demultiplexed by the demultiplexer 19 is monitored by the photodiode 17. Then, by inputting to the control circuit 14 via the log amplifier 18, the loss amount of the variable optical attenuator 15 is controlled according to the target value.
  • a noise light removal filter 24 is added to the upstream transmission node 2a.
  • the noise light removal filter 24 is an optical device having a characteristic of blocking a wavelength band for monitoring noise light.
  • the noise light removal filter 24 may be an optical filter designed to cut off the corresponding wavelength, or may be a wavelength selective switch (WSS) having a characteristic to cut off other than the signal band, for example. .
  • the upstream transmission node 2a can be used to compare the change ratio more accurately. However, when the influence of noise other than the optical amplifier 4 is small, the upstream transmission node 2 is used instead of the upstream transmission node 2a. Also good.
  • the optical power control method similar to that of the first to third embodiments can also be applied to the configuration example in which the optical amplifier 16 is arranged in the preceding stage of the variable attenuator 15. Further, by arranging the branching filter 5 and the subtracting circuit 12 upstream from the optical amplifier 16, even when noise light is extracted by the light extraction filter 7, it is more accurately caused by loss fluctuation or wavelength number fluctuation. It can be determined whether the power fluctuation. Further, by adding the noise light removal filter 24 to the upstream transmission node 2a, it is possible to more accurately determine whether the fluctuation is a loss fluctuation or a power fluctuation caused by a wavelength number fluctuation.
  • FIG. FIG. 6 is a diagram showing a configuration example of the fifth embodiment of the wavelength division multiplexing optical transmission system according to the present invention.
  • the wavelength division multiplexing optical transmission system of the present embodiment includes an upstream transmission node 2a and a reception node 1c similar to those of the fourth embodiment.
  • the wavelength multiplexed light transmitted from the upstream transmission node 2 a is received by the reception node 1 c via the transmission line fiber 3.
  • the upstream transmission node 2 of the first embodiment may be used instead of the upstream transmission node 2a.
  • An excitation LD (Laser Diode) 21 is an excitation light source that outputs excitation light (Raman excitation light) for Raman amplification of signal light by the transmission line optical fiber 3.
  • the pumping light is sent to the transmission line optical fiber 3 through the Raman pumping light multiplexer 20.
  • the constant gain control circuit 22 is a circuit that controls the power of pumping light so as to keep the gain of Raman amplification constant.
  • the total power monitored by the photodiode 8 is used for control. Any method may be used as a method for controlling the gain of Raman amplification to be constant.
  • the methods described in Japanese Patent No. 4040044 and Japanese Patent No. 4046602 can be used, and a monitor circuit is appropriately used. And control circuit.
  • the duplexer 6 inputs the demultiplexed light to the photodiode 8, the light extraction filter 7a, and the light extraction filter 7b.
  • the light extraction filter 7a extracts noise light in the excitation light band
  • the light extraction filter 7b generates noise light (in the signal light and monitoring control light bands) between the excitation light band and the signal light and monitoring control light bands. , Noise light not including the wavelengths of the signal light and the monitoring control light).
  • the photodiodes 9a and 9b convert the light extracted by the light extraction filters 7a and 7b into electric signals, respectively.
  • the log amplifiers 11a and 11b convert the electrical signals output from the photodiodes 9a and 9b into electrical signals proportional to the logarithm.
  • the correction circuit 25 estimates noise light from the band of the signal light and the monitoring control light based on the output from the log amplifier 11a and the output from 11b.
  • the change rate of the total power P and the power P filter extracted by the light extraction filter is compared with the output of the correction circuit 25 as P filter extracted by the light extraction filter.
  • the light extraction filters 7a and 7b extract the noise light.
  • a part of the signal light or the monitoring control light may be extracted. .
  • the pumping light output fluctuation detecting circuit (pumping light output fluctuation detecting unit) 23 is a circuit that detects the fluctuation of the pumping light power that is controlled by the constant gain control circuit 22.
  • the constant gain control circuit 22 operates to increase the Raman pumping light power in order to suppress a decrease in the gain of Raman amplification. That is, the power of the Raman pumping light changes according to the fluctuation of loss.
  • the optical power when combined with Raman amplification, it is determined whether or not there is a loss variation based on the presence or absence of a change in Raman pumping light power.
  • the optical power when combined with Raman amplification, the optical power can be controlled to a predetermined value while suppressing an increase in circuit scale even when the number of multiplexed wavelengths is large.
  • FIG. 7 is a diagram showing a configuration example of the sixth embodiment of the wavelength division multiplexing optical transmission system according to the present invention.
  • the wavelength division multiplexing optical transmission system of the present embodiment includes an upstream transmission node 2a and a reception node 1d similar to those of the fourth embodiment.
  • the receiving node 1d receives the optical amplifier 16 in the preceding stage of the variable attenuator 15 and adds the duplexer 19, the photodiode 17 and the log amplifier 18 similar to those in the fourth embodiment. The same as the node 1c.
  • the optical amplifier 16 is arranged on the input side of the variable attenuator 15 when combined with Raman amplification.
  • the demultiplexer 5 is arranged on the input side of the optical amplifier 16 in order to correctly determine the wavelength number variation and the loss variation even when the input level of the optical amplifier 16 is greatly reduced. is doing.
  • the total power is monitored by the photodiode 17 via the duplexer 19.
  • Embodiment 7 FIG. Next, a method for resetting the control target value Pt of the seventh embodiment of the wavelength division multiplexing optical transmission system according to the present invention will be described.
  • the configuration of the present embodiment is the same as that of any of the first to sixth embodiments.
  • the target value setting circuit 13 resets the control target value Pt of the total power P when detecting the change in the number of wavelengths.
  • An example of the resetting method will be described.
  • the upstream transmission node 2 is monitoring the total power in its own node, and the upstream transmission node 2 transmits information on the monitor value of the total power in its own node to the reception node.
  • the target value setting circuit 13 can reset the control target value in accordance with the received monitor value of the total power in the upstream transmission node 2.
  • the monitor value of the total power transmitted from the upstream transmission node 2 changes according to the number of wavelengths. Therefore, by setting a target value for controlling the total power according to the monitor value of the total power transmitted from the upstream transmitting node 2, the power per wavelength can be controlled to a predetermined value regardless of the number of wavelengths. it can.
  • Embodiment 8 FIG. Next, a method for resetting the control target value Pt according to the eighth embodiment of the wavelength division multiplexing optical transmission system of the present invention will be described.
  • the configuration of the present embodiment is the same as that of any of the first to sixth embodiments.
  • the target value setting circuit 13 resets the control target value Pt of the total power P when detecting the change in the number of wavelengths.
  • a second example of the resetting method will be described.
  • the upstream transmission node 2 knows the information on the number of wavelengths multiplexed in the wavelength multiplexed light transmitted from the own node, and the upstream transmission node 2 sends the information on the number of multiplexed wavelengths to the reception node. Send.
  • the target value setting circuit 13 can reset the control target value in accordance with the number of received wavelengths. By setting a target value for controlling the total power in accordance with the number of wavelengths transmitted from the upstream transmission node 2, the power per wavelength can be controlled to a predetermined value regardless of the number of wavelengths.
  • Embodiment 9 FIG. Next, a method for resetting the control target value Pt of the ninth embodiment of the wavelength division multiplexing optical transmission system according to the present invention will be described.
  • the configuration of the present embodiment is the same as that of any of the first to sixth embodiments.
  • the target value setting circuit 13 resets the control target value Pt of the total power P when detecting the change in the number of wavelengths.
  • a third example of the resetting method will be described.
  • the target value setting circuit 13 detects the fluctuation in the number of wavelengths, and then sets the monitor value of the total power P including all of the wavelength multiplexed signal light as a new control target value Pt, thereby changing the number of wavelengths after the change. Control to maintain the signal light power is performed. As a result, the signal light power per wavelength can be kept at the same value as before the number of wavelengths is changed.
  • Embodiment 10 FIG. Next, a method for resetting the control target value Pt according to the tenth embodiment of the wavelength division multiplexing optical transmission system of the present invention will be described.
  • the configuration of the present embodiment is the same as that of any of the first to sixth embodiments.
  • the target value setting circuit 13 resets the control target value Pt of the total power P when detecting the change in the number of wavelengths.
  • a fourth example of the resetting method will be described.
  • the target after resetting It is conceivable to set the value Pt. For example, it sets so that the following formula
  • Pt Pt ′ ⁇ (P / P filter ) / (P ′ / P filter ′) (1) That is, it sets so that the following formula
  • logPt logPt ′ + (logP ⁇ logP filter ) ⁇ (logP′ ⁇ logP filter ′) (2)
  • the target value Pt can be changed by the ratio at which the total power P has changed with reference to the power P filter from which light in a part of the wavelength band is extracted, and the signal light power per wavelength can be changed by the number of wavelengths. Can keep the same as before.
  • the total power P including all the wavelength multiplexed signal light includes the power of all the wavelength multiplexed signal lights and the power of the noise light existing in the same band.
  • the total power P may or may not include the power of the supervisory control light. Either case is within the scope of the present invention.
  • the wavelength division multiplexing optical transmission system, the optical repeater, and the light intensity control method according to the present invention are useful for an optical repeater transmission system, and are particularly suitable for a system having a large number of multiplexed wavelengths. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Provided is a wavelength multiplexed photo-transmission system comprising a receiving node (1) which receives, amplifies, and outputs wavelength multiplexed light. The receiving node (1) further comprises: a photo-amplifier (16) which amplifies wavelength multiplexed light; a variable attenuator (15) which attenuates the intensity of the wavelength multiplexed light; a target value setting unit (13) which sets a target value of the post-amplification wavelength multiplexed light intensity; a control circuit (14) which controls the variable attenuator (15) such that the wavelength multiplexed light intensity reaches a target value after passing through the photo-amplifier (16) and the variable attenuator (15); a PD (8) which detects the total power of the wavelength multiplexed light; a photo-extraction filter (7) which extracts a signal of a portion of a waveband of the wavelength multiplexed light; and a PD (9) which detects the intensity of the extracted signal which is extracted by the photo-extraction filter (7). A determination is made, on the basis of whether the ratio of change of the total power and the ratio of change of the intensity of the extracted signal approximately match, whether to preserve or reset the target value.

Description

波長多重光伝送システム、光中継装置および光強度制御方法Wavelength multiplexing optical transmission system, optical repeater, and light intensity control method
 本発明は、波長多重光伝送システム、光中継装置および光強度制御方法に関する。 The present invention relates to a wavelength division multiplexing optical transmission system, an optical repeater, and an optical intensity control method.
 光中継伝送システムでは、従来から、中継局間の光ファイバ、あるいは送信局、中継局、受信局の各局内における光ファイバに、環境温度、振動、曲げなどにより損失が変動した場合であっても良好な伝送特性を維持するため、光ファイバの損失のばらつきや変動を吸収し、光ファイバ内における信号光パワーを所定値に維持するような制御が行われている。 Conventionally, in an optical repeater transmission system, even if the optical fiber between repeater stations or the optical fiber in each station of the transmitter station, repeater station, and receiver station is subject to fluctuations due to environmental temperature, vibration, bending, etc. In order to maintain good transmission characteristics, control is performed to absorb variations and fluctuations in the loss of the optical fiber and maintain the signal light power in the optical fiber at a predetermined value.
 さらに、光中継伝送システムが波長多重伝送システムの場合には、多重化される信号光の波長数に関わらず、各波長の信号光パワーを所定値に制御する必要がある。例えば、下記特許文献1には、多重化されている波長数が意図的、あるいは、突発的に変動した場合でも、各波長の信号光パワーを所定値に制御するための方法が開示されている。 Furthermore, when the optical repeater transmission system is a wavelength division multiplexing transmission system, it is necessary to control the signal light power of each wavelength to a predetermined value regardless of the number of wavelengths of the multiplexed signal light. For example, Patent Document 1 below discloses a method for controlling the signal light power of each wavelength to a predetermined value even when the number of multiplexed wavelengths is intentionally or suddenly changed. .
特許第4724226号公報Japanese Patent No. 4724226
 しかしながら、上記従来の技術によれば、波長多重されているすべての波長の信号光パワーを高速にモニタする必要がある。このため、パワーをするモニタ回路と、モニタしたパワー値から波長数を計数してパワー制御に反映する回路と、が複雑化・大規模化するという問題があった。特に、波長多重数が百を超えるような、大規模な光伝送システムでは、回路部品の実装容積、演算処理回路の高速化、コストの面で現実的でなくなるという問題が大きい。 However, according to the above conventional technique, it is necessary to monitor the signal light powers of all wavelengths that are wavelength-multiplexed at high speed. For this reason, there is a problem that the monitor circuit that performs power and the circuit that counts the number of wavelengths from the monitored power value and reflects them in power control are complicated and large-scale. In particular, in a large-scale optical transmission system in which the number of wavelength multiplexing exceeds 100, there is a large problem that it is not realistic in terms of mounting volume of circuit components, speeding up of arithmetic processing circuits, and cost.
 本発明は、上記に鑑みてなされたものであって、多重化されている波長数が多い場合にも回路規模の増大を抑えて光パワーを所定値に制御することができる波長多重光伝送システム、光中継装置および光強度制御方法を得ることを目的とする。 The present invention has been made in view of the above, and a wavelength division multiplexing optical transmission system capable of controlling optical power to a predetermined value while suppressing an increase in circuit scale even when the number of multiplexed wavelengths is large. An object of the present invention is to obtain an optical repeater and a light intensity control method.
 上述した課題を解決し、目的を達成するために、本発明は、波長の異なる複数の光信号が波長多重された波長多重光を送信する上流装置と、前記波長多重光を受信し、前記波長多重光を増幅して出力する光中継装置と、を備える波長多重光伝送システムであって、前記光中継装置は、前記波長多重光を増幅する光増幅器と、前記光増幅器による増幅前または前記光増幅器による増幅後の前記波長多重光の強度を減衰させる可変減衰器と、増幅後の前記波長多重光の強度の目標値を設定する目標値設定部と、前記光増幅器および前記可変減衰器を通過後の前記波長多重光の強度が前記目標値となるよう前記可変減衰器を制御する制御部と、受信した前記波長多重光のトータル強度を検出するトータル強度検出部と、受信した前記波長多重光のうち一部の波長帯の信号を抽出する光抽出フィルタと、前記光抽出フィルタにより抽出された抽出信号の強度を検出する抽出信号強度検出部と、を備え、前記目標値設定部は、前記トータル強度の変化比率と前記抽出信号の強度の変化比率とが略同一であるか否かに基づいて、前記目標値を維持するか再設定するかを決定することを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides an upstream device that transmits wavelength-multiplexed light in which a plurality of optical signals having different wavelengths are wavelength-multiplexed, receives the wavelength-multiplexed light, and receives the wavelength-multiplexed light. An optical repeater that amplifies and outputs multiplexed light, the optical repeater comprising: an optical amplifier that amplifies the wavelength-multiplexed light; A variable attenuator for attenuating the intensity of the wavelength multiplexed light after amplification by an amplifier; a target value setting unit for setting a target value of the intensity of the wavelength multiplexed light after amplification; passing through the optical amplifier and the variable attenuator A control unit that controls the variable attenuator so that the intensity of the later wavelength multiplexed light becomes the target value; a total intensity detecting unit that detects the total intensity of the received wavelength multiplexed light; and the received wavelength multiplexed light of A light extraction filter that extracts a signal in a part of the wavelength band, and an extraction signal intensity detection unit that detects the intensity of the extraction signal extracted by the light extraction filter, and the target value setting unit includes the total value Whether to maintain or reset the target value is determined based on whether or not the intensity change ratio and the intensity change ratio of the extracted signal are substantially the same.
 本発明にかかる波長多重光伝送装置は、多重化されている波長数が多い場合にも回路規模の増大を抑えて光パワーを所定値に制御することができるという効果を奏する。 The wavelength division multiplexing optical transmission apparatus according to the present invention has an effect that the optical power can be controlled to a predetermined value while suppressing an increase in circuit scale even when the number of multiplexed wavelengths is large.
図1は、実施の形態1の波長多重光伝送システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of the wavelength division multiplexing optical transmission system according to the first embodiment. 図2は、波長多重光の光スペクトルの一例示す図である。FIG. 2 is a diagram illustrating an example of an optical spectrum of wavelength multiplexed light. 図3は、光抽出フィルタによる抽出後の光信号を示す図である。FIG. 3 is a diagram illustrating an optical signal after extraction by the light extraction filter. 図4は、実施の形態4の波長多重光伝送システムの構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of a wavelength division multiplexing optical transmission system according to the fourth embodiment. 図5は、光増幅器より上流に分波器を配置する場合の受信ノードの構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of a reception node in the case where a duplexer is arranged upstream of the optical amplifier. 図6は、実施の形態5の波長多重光伝送システムの構成例を示す図である。FIG. 6 is a diagram illustrating a configuration example of the wavelength division multiplexing optical transmission system according to the fifth embodiment. 図7は、実施の形態6の波長多重光伝送システムの構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a wavelength division multiplexing optical transmission system according to the sixth embodiment.
 以下に、本発明にかかる波長多重光伝送システム、光中継装置および光強度制御方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a wavelength division multiplexing optical transmission system, an optical repeater, and a light intensity control method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかる波長多重光伝送システムの実施の形態1の構成例を示す図である。図1に示すように、本実施の形態の波長多重光伝送システムは、波長多重光を伝送路光ファイバ3へ送出する上流送信ノード2(上流装置)と、伝送される波長多重光を受信して、そのパワー(強度)を所定値に制御する受信ノード1と、を備える。本実施の形態では、本発明にかかる光中継装置として受信ノード1を例に説明する。受信ノード1は、上流送信ノード2から伝送された波長多重光を増幅して中継する。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of Embodiment 1 of a wavelength division multiplexing optical transmission system according to the present invention. As shown in FIG. 1, the wavelength division multiplexing optical transmission system of the present embodiment receives an upstream transmission node 2 (upstream apparatus) that transmits wavelength division multiplexed light to a transmission line optical fiber 3, and receives wavelength division multiplexed light to be transmitted. And a receiving node 1 that controls the power (intensity) to a predetermined value. In the present embodiment, the receiving node 1 will be described as an example of the optical repeater according to the present invention. The receiving node 1 amplifies and repeats the wavelength multiplexed light transmitted from the upstream transmitting node 2.
 上流送信ノード2は、波長多重光を増幅する光増幅器4を備える。受信ノード1は、分波器5,6と、光抽出フィルタ7と、フォトダイオード(PD)8,9と、ログアンプ(Log)10,11と、減算回路12と、目標値設定回路(目標値設定部)13と、制御回路(制御部)14と、可変減衰器(VOA;Variable Optical Attenuator)15と、光増幅器16と、を備える。 The upstream transmission node 2 includes an optical amplifier 4 that amplifies wavelength multiplexed light. The reception node 1 includes branching filters 5 and 6, a light extraction filter 7, photodiodes (PD) 8 and 9, log amplifiers (Log) 10 and 11, a subtraction circuit 12, a target value setting circuit (target A value setting unit) 13, a control circuit (control unit) 14, a variable attenuator (VOA) 15, and an optical amplifier 16.
 分波器5は、波長多重光をモニタするために、一部のパワーを分岐する分波器であり、例えば、10:1、20:1などの比率で分波する光カプラが適用できる。分波器6は、分波器5により分波された波長多重光をさらに分波する分波器6である。 The demultiplexer 5 is a demultiplexer that branches a part of power in order to monitor wavelength multiplexed light. For example, an optical coupler that demultiplexes at a ratio of 10: 1, 20: 1, or the like can be applied. The demultiplexer 6 is a demultiplexer 6 that further demultiplexes the wavelength multiplexed light demultiplexed by the demultiplexer 5.
 光抽出フィルタ7は、分波器6により分波された波長多重光に対して、一部の波長帯の光を遮断して、それ以外の波長帯の光だけを抽出する。光抽出フィルタ7は、多重されている信号光のうち一部の波長の信号光のみを抽出する場合、または、波長多重光伝送システムを監視あるいは制御するために、低速信号を伝送する監視制御光の波長のみを抽出する場合、または、信号光、監視制御光のいずれも含まない、雑音光のみを抽出する場合などが考えられる。 The light extraction filter 7 blocks light in some wavelength bands from the wavelength multiplexed light demultiplexed by the demultiplexer 6 and extracts only light in other wavelength bands. The light extraction filter 7 extracts supervisory control light for transmitting a low-speed signal in order to extract signal light of a part of the wavelength of multiplexed signal light, or to monitor or control a wavelength division multiplexing optical transmission system. For example, the case of extracting only the wavelength of the noise, or the case of extracting only the noise light that does not include any of the signal light and the monitoring control light is conceivable.
 フォトダイオード8(トータル強度検出部)は、光抽出フィルタ7を経由していないトータルの光のパワーを検出する。すなわち、フォトダイオード8は、一部の波長帯のみを抽出することなく、信号光、監視制御光、雑音光などを含んだトータルパワーをモニタし、トータルパワーに応じた電気信号を出力する。フォトダイオード9(抽出信号強度検出部)は、光抽出フィルタ7で抽出した波長帯の光のパワーをモニタするための検出部であり、光抽出フィルタ7で抽出した波長帯の光の光パワーに応じた電気信号を出力する。 The photodiode 8 (total intensity detection unit) detects the total light power not passing through the light extraction filter 7. That is, the photodiode 8 monitors the total power including signal light, supervisory control light, noise light, etc. without extracting only a part of the wavelength band, and outputs an electric signal corresponding to the total power. The photodiode 9 (extracted signal intensity detection unit) is a detection unit for monitoring the power of the light in the wavelength band extracted by the light extraction filter 7 and determines the optical power of the light in the wavelength band extracted by the light extraction filter 7. A corresponding electrical signal is output.
 ログアンプ10,11(第1のログアンプ,第2のログアンプ)は、それぞれ、フォトダイオード8,9から出力される電気信号を対数に比例する電気信号に変換する(入力をXとするときlogXに比例する信号を出力する)ためのログアンプである。ログアンプ10,11は、必須ではないが、ここではログアンプ10,11を使用する例を説明する。 The log amplifiers 10 and 11 (first log amplifier and second log amplifier) respectively convert the electrical signals output from the photodiodes 8 and 9 into electrical signals proportional to the logarithm (when the input is X). log amplifier for outputting a signal proportional to logX). Although the log amplifiers 10 and 11 are not essential, an example in which the log amplifiers 10 and 11 are used will be described here.
 減算回路12は、ログアンプ10,11から出力される信号を減算する。減算回路12により、トータルパワーと一部波長を抽出したパワーとの比の対数に比例する信号が得られる。目標値設定回路13は、トータルパワーの制御の目標値を設定する回路である。制御回路14は、可変減衰器15の減衰量を変化させることによって、波長多重光のトータルパワーを目標値に近づけるように制御する回路である。光増幅器16は、パワーを調整された波長多重光を増幅する光増幅器であり、一定の利得で増幅するように、利得一定制御が施されている。 The subtraction circuit 12 subtracts signals output from the log amplifiers 10 and 11. The subtracting circuit 12 obtains a signal proportional to the logarithm of the ratio between the total power and the power obtained by extracting some wavelengths. The target value setting circuit 13 is a circuit that sets a target value for controlling the total power. The control circuit 14 is a circuit that controls the total power of the wavelength multiplexed light to approach the target value by changing the attenuation amount of the variable attenuator 15. The optical amplifier 16 is an optical amplifier that amplifies the wavelength-division multiplexed light whose power is adjusted, and gain constant control is performed so as to amplify with a constant gain.
 次に、本実施の形態の動作を説明する。図2は、波長多重光の光スペクトルの一例示す図である。図2この例では、10波長の信号光と、波長多重光伝送システムを監視あるいは制御するために低速信号を伝送する監視制御光(OSC光)と、が多重されている。なお、図2は、一例であり、波長多重光に多重される波長数はこれに限定されず、また監視制御光が多重されていなくてもよい。 Next, the operation of this embodiment will be described. FIG. 2 is a diagram illustrating an example of an optical spectrum of wavelength multiplexed light. FIG. 2 In this example, signal light of 10 wavelengths and monitoring control light (OSC light) for transmitting a low-speed signal for monitoring or controlling the wavelength multiplexing optical transmission system are multiplexed. Note that FIG. 2 is an example, and the number of wavelengths multiplexed in the wavelength division multiplexed light is not limited to this, and the monitoring control light may not be multiplexed.
 図2(a)は、光増幅器4等で発生する雑音光が、信号光と同一の波長帯に存在している状態を示されている。図2(b)は、図2(a)の状態(変化前の状態とする)から、何らかの原因で、伝送路光ファイバ3の損失が10dB増加した場合を示している。信号光、監視制御光、雑音光のすべてのパワーの時間変化の変化比率は同じであり、損失の増加により、いずれもパワーが10分の1に低下している。この場合は、制御目標値よりも低くなったトータルパワーのモニタ値を回復させるように、可変減衰器15の損失量を速やかに減らして、信号光のパワーが損失増加前の所定の値となるように制御する必要がある。 FIG. 2 (a) shows a state in which the noise light generated in the optical amplifier 4 or the like exists in the same wavelength band as the signal light. FIG. 2B shows a case where the loss of the transmission line optical fiber 3 is increased by 10 dB from the state of FIG. 2A (the state before change) for some reason. The rate of change with time of all powers of signal light, supervisory control light, and noise light is the same, and the power is reduced to 1/10 due to an increase in loss. In this case, the loss amount of the variable attenuator 15 is quickly reduced so that the monitor value of the total power that is lower than the control target value is recovered, and the power of the signal light becomes a predetermined value before the loss increase. Need to be controlled.
 図2(c)は、図2(a)の状態から、何らかの原因で、上流から伝送される波長数が10波から1波に減少した場合を示している。この場合は、トータルパワーのモニタ値が10分の1に減少するが、1波当たりのパワー(チャンネルパワー)は変化せず所定のパワーを維持しているので、可変減衰器15の損失量は変化させる必要が無い。したがって、トータルパワーの制御目標値を、1波という波長数に応じた値に変更してから、可変減衰器15の制御を行う必要がある。 FIG. 2 (c) shows a case where the number of wavelengths transmitted from the upstream has decreased from 10 waves to 1 wave for some reason from the state of FIG. 2 (a). In this case, the monitor value of the total power is reduced to 1/10. However, since the power (channel power) per wave does not change and the predetermined power is maintained, the loss amount of the variable attenuator 15 is There is no need to change. Therefore, it is necessary to control the variable attenuator 15 after changing the total power control target value to a value corresponding to the number of wavelengths of one wave.
 このように、トータルパワーが変化した際には、図2(b)のように損失変動による変化か、あるいは、図2(c)のように波長数変動による変化かを判断して、可変減衰器の損失量を即座に変化させてトータルパワーを一定に維持するか、あるいは、可変減衰器の損失量を変化させる前に速やかに制御の目標値を変化させる必要がある。そのために、特許文献1に記載されたような従来技術では、波長多重された信号光を1波長ずつに分波して、各波長のパワーをモニタし、多重されている波長数を高速で計数することによって、可変減衰器の制御を行っていた。 In this way, when the total power changes, it is determined whether the change is due to the loss fluctuation as shown in FIG. 2B or the change due to the wavelength number fluctuation as shown in FIG. It is necessary to change the loss amount of the filter immediately to keep the total power constant, or to change the control target value quickly before changing the loss amount of the variable attenuator. For this purpose, in the prior art as described in Patent Document 1, the wavelength-multiplexed signal light is demultiplexed into one wavelength, the power of each wavelength is monitored, and the number of multiplexed wavelengths is counted at high speed. By doing so, the variable attenuator was controlled.
 しかしながら、このような従来の方法では、波長多重されているすべての波長の信号光パワーを高速にモニタする必要があり、パワーをモニタするモニタ回路と、モニタしたパワー値から波長数を計数してパワー制御に反映する回路と、が複雑化・大規模化するという問題があった。特に、昨今のように、波長多重数が百を超えるほど光伝送システムが大規模化すると、回路部品の実装容積、演算処理回路の高速化、コストの面で現実的でない。 However, in such a conventional method, it is necessary to monitor the signal light power of all wavelengths that are wavelength-multiplexed at high speed, and the number of wavelengths is counted from the monitored power value and the monitored power value. There is a problem that the circuit reflected in power control becomes complicated and large-scale. In particular, as in recent years, when the optical transmission system becomes larger as the number of wavelength divisions exceeds 100, it is not realistic in terms of mounting volume of circuit components, speeding up of an arithmetic processing circuit, and cost.
 一方、本実施の形態では、波長多重信号光をすべて含んだトータルパワーP(分波器6からの出力)と、伝送される光の一部の波長帯の光を抽出したパワーPfilter(光抽出フィルタ7からの出力)と、の2つをモニタする。そして、この2つのモニタ値の変化比率を比較することで、図2(b)のような損失変動による変化か、あるいは、図2(c)のような波長数変動による変化かを判断する。 On the other hand, in the present embodiment, the total power P (output from the demultiplexer 6) including all the wavelength multiplexed signal light and the power P filter (light that extracts light in a part of the wavelength band of the transmitted light) The output from the extraction filter 7) is monitored. Then, by comparing the change ratios of the two monitor values, it is determined whether the change is due to loss fluctuation as shown in FIG. 2B or the change due to wavelength number fluctuation as shown in FIG.
 以下、図2(b)、(c)のいずれの場合でも、トータルパワーPは、10分の1に減少する。図3(a)は、光抽出フィルタ7で波長多重された信号光のうち、一部の波長の信号光を抽出した場合の抽出後の光信号の一例を示し、この例では、波長多重光の10波長のうち、長波長帯の5波が通過するようにフィルタ抽出している。なお、抽出する波長の数は5波に限定されない。また、抽出する波長は、長波長帯でなく、中央付近や低波長帯でもよい。 Hereinafter, in both cases of FIGS. 2B and 2C, the total power P decreases to 1/10. FIG. 3A shows an example of an extracted optical signal when signal light having a part of the wavelength is extracted from the signal light wavelength-multiplexed by the light extraction filter 7. Of these 10 wavelengths, filters are extracted so that 5 waves in the long wavelength band pass. Note that the number of wavelengths to be extracted is not limited to five waves. Further, the wavelength to be extracted is not limited to the long wavelength band, but may be near the center or in the low wavelength band.
 図2(b)のように損失が10dB増加した場合には、トータルパワーP、光抽出フィルタ7で抽出した後の光のパワーPfilterは、ともに10分の1になり、変化比率は同じである。一方、図2(c)のように波長数が10波から1波に減少した場合は、トータルパワーPは10分の1に減少するが、光抽出フィルタ7で抽出した後の光のパワーPfilterは、変化前は5波長分のパワーがモニタされるのに対して、変化後は1波長分だけとなり、5分の1に減少する。したがって、トータルパワーPと光抽出フィルタ7で抽出した後の光のパワーPfilterとでは、変化比率は異なる。つまり、トータルパワーPの所定時間前のモニタ値をP´とするときのトータルパワーPの変化比率P/P´と、光抽出フィルタ7で抽出した後の光のパワーPfilterの所定時間前のモニタ値をPfilter´とするときのPfilterの変化比率Pfilter/Pfilter´と、を比較して、同じであれば、損失変動に起因するパワー変動、異なっていれば、波長数変動に起因するパワー変動と判断することがでて、それぞれの場合に適切な可変減衰器の制御を行うことができる。なお、P/P´とPfilter/Pfilter´が同じであるか否かの判断では、誤差等により生じる一定量の余裕をみこみ、P/P´とPfilter/Pfilter´の差が一定値以上である場合に、P/P´とPfilter/Pfilter´が異なると判断してもよい。 When the loss increases by 10 dB as shown in FIG. 2B, the total power P and the light power P filter after extraction by the light extraction filter 7 are both 1/10, and the change ratio is the same. is there. On the other hand, when the number of wavelengths is reduced from 10 waves to 1 wave as shown in FIG. 2C, the total power P is reduced to 1/10, but the light power P after being extracted by the light extraction filter 7 is reduced. The filter is monitored for power for five wavelengths before the change, but only for one wavelength after the change, and is reduced to one fifth. Therefore, the change ratio differs between the total power P and the light power P filter after being extracted by the light extraction filter 7. That is, the change ratio P / P ′ of the total power P when the monitor value of the total power P a predetermined time before is P ′, and the power P filter of the light after being extracted by the light extraction filter 7 a predetermined time before. The change ratio P filter / P filter ′ of P filter when the monitor value is P filter ′ is compared. If they are the same, the power fluctuation caused by the loss fluctuation, and if they are different, the fluctuation in the number of wavelengths It can be determined that the power fluctuation is caused, and the variable attenuator can be appropriately controlled in each case. In determining whether P / P ′ and P filter / P filter ′ are the same, a certain amount of margin caused by an error or the like is taken in, and the difference between P / P ′ and P filter / P filter ′ is constant. When the value is equal to or greater than the value, it may be determined that P / P ′ and P filter / P filter ′ are different.
 本実施の形態では、目標値設定回路13は、トータルパワーP、光抽出フィルタ7で抽出したパワーPfilterと、それぞれの所定時間前のモニタ値P´、Pfilter´を用いて、P/P´とPfilter/Pfilter´を求め、P/P´とPfilter/Pfilter´が実質同じ値であれるか否かに基づいて、損失変動か波長数変動に起因するパワー変動を判断する。目標値設定回路13は、損失変動と判断した場合は目標値Ptを変更しない、一方、波長数変動に起因するパワー変動と判断した場合、目標値設定回路13は、目標値Ptを再設定する。この再設定後の値は、波長多重信号光をすべて含んだパワーが目標値Ptとなるように想定した場合の1波(波長数)の波長数に応じた値である。再設定後の値は、例えば、P/P´とPfilter/Pfilter´の差や比率に基づいて求めることができる。なお、制御回路14は、これらの目標値に応じて可変減衰器15の損失量を制御することで、波長多重光を所定のパワーに制御することができる。 In the present embodiment, the target value setting circuit 13 uses the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P filter ′ respectively before a predetermined time to generate P / P ′ And P filter / P filter ′ are obtained, and based on whether or not P / P ′ and P filter / P filter ′ are substantially the same value, the power fluctuation caused by the loss fluctuation or the wavelength number fluctuation is determined. . The target value setting circuit 13 does not change the target value Pt when it is determined that the fluctuation is a loss fluctuation. On the other hand, if it is determined that the power fluctuation is caused by the fluctuation in the number of wavelengths, the target value setting circuit 13 resets the target value Pt. . The value after the resetting is a value corresponding to the number of wavelengths of one wave (number of wavelengths) when it is assumed that the power including all of the wavelength multiplexed signal light becomes the target value Pt. The value after resetting can be obtained based on, for example, the difference or ratio between P / P ′ and P filter / P filter ′. The control circuit 14 can control the wavelength multiplexed light to a predetermined power by controlling the loss amount of the variable attenuator 15 according to these target values.
 なお、図1では、トータルパワーP、光抽出フィルタ7で抽出したパワーPfilterと、をそれぞれ対数に比例する信号に変換するログアンプ10,11を使用している。この場合は、(logP-logP´)と(logPfilter-logPfilter´) とを比較することによりP/P´とPfilter/Pfilter´を比較し、これらが実質同じであれば損失変動、異なっていれば、波長数変動と判断している。また、無論、P/P´とPfilter/Pfilter´を比較し、これらが実質同じであるかを判断する代わりに、(logP-logP´)-(logPfilter-logPfilter´)がゼロかどうかを判定してもよい。ログアンプを用いることで、割り算回路が不要になることから、回路実装が容易となり、ダイナミックレンジを広くできるという利点もある。なお、P/P´とPfilter/Pfilter´の求め方はこのようなログアンプを用いた構成に限定されない。 In FIG. 1, log amplifiers 10 and 11 that convert the total power P and the power P filter extracted by the light extraction filter 7 into signals proportional to the logarithm are used. In this case, P / P ′ and P filter / P filter ′ are compared by comparing (logP−logP ′) and (logP filter −logP filter ′). If they are different, it is determined that the number of wavelengths varies. Of course, instead of comparing P / P ′ and P filter / P filter ′ to determine whether they are substantially the same, is (logP−logP ′) − (logP filter −logP filter ′) zero? You may determine whether. Use of the log amplifier eliminates the need for a division circuit, so that circuit mounting is facilitated and the dynamic range can be widened. The method for obtaining P / P ′ and P filter / P filter ′ is not limited to such a configuration using a log amplifier.
 以上のように、本実施の形態では、トータルパワーP、光抽出フィルタ7で抽出したパワーPfilterと、それぞれの所定時間前のモニタ値P´、Pfilter´と、を用いて、P/P´とPfilter/Pfilter´を求め、P/P´とPfilter/Pfilter´が実質同じ値であるか否かに基づいて、損失変動か波長数変動に起因するパワー変動を判断する。そして、その判断結果に応じて、光減衰器15を制御するための目標値Ptの値を設定するようにした。このため、多重化されている波長数が多い場合にも回路規模の増大を抑えて光パワーを所定値に制御することができる。 As described above, in the present embodiment, P / P is obtained by using the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P filter ′ before each predetermined time. 'And P filter / P filter ' are obtained, and based on whether P / P 'and P filter / P filter ' are substantially the same value, the power fluctuation caused by the loss fluctuation or the wavelength number fluctuation is determined. And according to the judgment result, the value of the target value Pt for controlling the optical attenuator 15 was set. For this reason, even when the number of multiplexed wavelengths is large, the optical power can be controlled to a predetermined value while suppressing an increase in circuit scale.
実施の形態2.
 次に、本発明にかかる実施の形態2の光パワー制御方法について説明する。本実施の形態の波長多重光伝送システムの構成は実施の形態1と同様である。実施の形態1では、光抽出フィルタ7が波長多重光の信号光のうちの一部を抽出する例について説明したが、本実施の形態では、光抽出フィルタ7が監視制御光を抽出する。以下、実施の形態1と異なる部分を説明する。
Embodiment 2. FIG.
Next, an optical power control method according to the second embodiment of the present invention will be described. The configuration of the wavelength division multiplexing optical transmission system of the present embodiment is the same as that of the first embodiment. In the first embodiment, the example in which the light extraction filter 7 extracts a part of the wavelength multiplexed light is described. However, in this embodiment, the light extraction filter 7 extracts the monitoring control light. Hereinafter, a different part from Embodiment 1 is demonstrated.
 図3(b)に示すように、本実施の形態では、光抽出フィルタ7は、波長多重光伝送システムの監視や制御のための低速信号を伝送する監視制御光(OSC光)を抽出する。図2(b)のように損失が10dB増加した場合には、トータルパワーP、光抽出フィルタ7で抽出したパワーPfilterは、ともに10分の1になり、両者の変化比率は同じである。一方、図2(c)のように波長数が10波から1波に減少した場合は、トータルパワーPは10分の1に減少するが、光抽出フィルタで抽出した監視制御光(OSC光)のパワーPfilterは変化せず、両者の変化比率が異なる。 As shown in FIG. 3B, in this embodiment, the light extraction filter 7 extracts supervisory control light (OSC light) that transmits a low-speed signal for monitoring and control of the wavelength division multiplexing optical transmission system. When the loss increases by 10 dB as shown in FIG. 2B, the total power P and the power P filter extracted by the light extraction filter 7 are both 1/10, and the change ratios of both are the same. On the other hand, when the number of wavelengths decreases from 10 waves to 1 wave as shown in FIG. 2C, the total power P decreases to 1/10, but the supervisory control light (OSC light) extracted by the light extraction filter. The power P filter does not change, and the change ratios of the two are different.
 したがって、実施の形態1と同様に、トータルパワーP、光抽出フィルタ7で抽出したパワーPfilterと、それぞれの所定時間前のモニタ値P´、Pfilter´と、を用いて、P/P´とPfilter/Pfilter´を求め、P/P´とPfilter/Pfilter´が実質同じ値であるか否かに基づいて、損失変動か波長数変動に起因するパワー変動を判断することができる。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。 Accordingly, as in the first embodiment, the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P filter ′ before the predetermined time are used to obtain P / P ′. And P filter / P filter ′, and based on whether P / P ′ and P filter / P filter ′ are substantially the same value, it is possible to determine the power fluctuation caused by the loss fluctuation or the wavelength number fluctuation. it can. The operations of the present embodiment other than those described above are the same as those of the first embodiment.
 このように、本実施の形態では、光抽出フィルタ7により監視制御光を抽出し、トータルパワーP、光抽出フィルタ7で抽出したパワーPfilterと、それぞれの所定時間前のモニタ値P´、Pfilter´と、を用いて、P/P´とPfilter/Pfilter´を求め、P/P´とPfilter/Pfilter´が実質同じ値であれるか否かに基づいて、損失変動か波長数変動に起因するパワー変動かを判断するようにした。このため、多重化されている波長数が多い場合にも回路規模の増大を抑えて光パワーを所定値に制御することができる。 As described above, in this embodiment, the monitoring control light is extracted by the light extraction filter 7, and the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P before each predetermined time are obtained. filter P ′, and P / P ′ and P filter / P filter ′ are obtained. Based on whether P / P ′ and P filter / P filter ′ are substantially the same value or not, the loss variation Judgment was made on power fluctuations caused by wavelength fluctuations. For this reason, even when the number of multiplexed wavelengths is large, the optical power can be controlled to a predetermined value while suppressing an increase in circuit scale.
実施の形態3.
 次に本発明にかかる実施の形態3の光パワー制御方法について説明する。本実施の形態の波長多重光伝送システムの構成は実施の形態1と同様である。実施の形態1では、光抽出フィルタ7が波長多重光の信号光のうちの一部を抽出する例について説明したが、本実施の形態では、光抽出フィルタ7が信号光、監視制御光のいずれも含まない、雑音光を抽出する。以下、実施の形態1と異なる部分を説明する。
Embodiment 3 FIG.
Next, an optical power control method according to the third embodiment of the present invention will be described. The configuration of the wavelength division multiplexing optical transmission system of the present embodiment is the same as that of the first embodiment. In the first embodiment, the example in which the light extraction filter 7 extracts a part of the wavelength multiplexed light is described. However, in this embodiment, the light extraction filter 7 is either a signal light or a monitoring control light. Noise light is extracted. Hereinafter, a different part from Embodiment 1 is demonstrated.
 図3(c)に示すように、本実施の形態では、光抽出フィルタ7は、信号光、監視制御光のいずれも含まない、雑音光を抽出する。すなわち、信号光の波長、監視制御光の波長のいずれでもない波長帯の信号を抽出する。図2(b)のように損失が10dB増加した場合には、トータルパワーP、光抽出フィルタで抽出したパワーPfilterは、ともに10分の1になり、両者の変化比率は同じである。一方、図2(c)のように波長数が10波から1波に減少した場合は、トータルパワーPは10分の1に減少するが、光抽出フィルタで抽出した監視制御光(OSC光)のパワーPfilterは変化せず、両者の変化比率が異なる。 As shown in FIG. 3C, in the present embodiment, the light extraction filter 7 extracts noise light that does not include either signal light or monitoring control light. That is, a signal in a wavelength band that is neither the wavelength of the signal light nor the wavelength of the monitoring control light is extracted. When the loss increases by 10 dB as shown in FIG. 2B, the total power P and the power P filter extracted by the light extraction filter are both 1/10, and the change ratios of both are the same. On the other hand, when the number of wavelengths decreases from 10 waves to 1 wave as shown in FIG. 2C, the total power P decreases to 1/10, but the supervisory control light (OSC light) extracted by the light extraction filter. The power P filter does not change, and the change ratios of the two are different.
 したがって、実施の形態1と同様に、トータルパワーP、光抽出フィルタ7で抽出したパワーPfilterと、それぞれの所定時間前のモニタ値P´、Pfilter´と、を用いて、P/P´とPfilter/Pfilter´を求め、P/P´とPfilter/Pfilter´が実質同じ値であるか否かに基づいて、損失変動か波長数変動に起因するパワー変動を判断することができる。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。 Accordingly, as in the first embodiment, the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P filter ′ before the predetermined time are used to obtain P / P ′. And P filter / P filter ′, and based on whether P / P ′ and P filter / P filter ′ are substantially the same value, it is possible to determine the power fluctuation caused by the loss fluctuation or the wavelength number fluctuation. it can. The operations of the present embodiment other than those described above are the same as those of the first embodiment.
 このように、本実施の形態では、光抽出フィルタ7により雑音光を抽出し、トータルパワーP、光抽出フィルタ7で抽出したパワーPfilterと、それぞれの所定時間前のモニタ値P´、Pfilter´と、を用いて、P/P´とPfilter/Pfilter´を求め、P/P´とPfilter/Pfilter´が実質同じ値であるか否かに基づいて、損失変動か波長数変動に起因するパワー変動かを判断するようにした。このため、多重化されている波長数が多い場合にも回路規模の増大を抑えて光パワーを所定値に制御することができる。 As described above, in this embodiment, noise light is extracted by the light extraction filter 7, and the total power P, the power P filter extracted by the light extraction filter 7, and the monitor values P ′ and P filter before each predetermined time are obtained. ′, P / P ′ and P filter / P filter ′ are obtained, and based on whether P / P ′ and P filter / P filter ′ are substantially the same value, the loss variation or the number of wavelengths The power fluctuation caused by the fluctuation was judged. For this reason, even when the number of multiplexed wavelengths is large, the optical power can be controlled to a predetermined value while suppressing an increase in circuit scale.
実施の形態4.
 図4は、本発明にかかる波長多重光伝送システムの実施の形態4の構成例を示す図である。図4に示すように、本実施の形態の波長多重光伝送システムは、実施の形態1と同様の上流送信ノード2と、受信ノード1aと、を備える。上流送信ノード2から送信された波長多重光は伝送路光ファイバ3を経由して受信ノード1aで受信される。
Embodiment 4 FIG.
FIG. 4 is a diagram showing a configuration example of a wavelength division multiplexing optical transmission system according to a fourth embodiment of the present invention. As shown in FIG. 4, the wavelength division multiplexing optical transmission system of the present embodiment includes an upstream transmission node 2 and a reception node 1a similar to those of the first embodiment. The wavelength multiplexed light transmitted from the upstream transmission node 2 is received by the reception node 1a via the transmission line optical fiber 3.
 受信ノード1aの構成は、光増幅器16の配置を変更して光増幅器16を可変減衰器15の前段に配置する以外は実施の形態1の受信ノード1と同様である。実施の形態1と同様の機能を有する構成要素は実施の形態1と同一の符号を付して重複する説明を省略する。 The configuration of the reception node 1a is the same as that of the reception node 1 of the first embodiment except that the arrangement of the optical amplifier 16 is changed and the optical amplifier 16 is arranged in front of the variable attenuator 15. Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
 図4に示すように、光増幅器16を可変減衰器15の前段に配置する場合にも、実施の形態1~3と同様の光パワー制御方法を適用することができる。 As shown in FIG. 4, the optical power control method similar to that of the first to third embodiments can also be applied when the optical amplifier 16 is arranged in front of the variable attenuator 15.
 図4の構成例において、伝送路光ファイバ3における損失が大きく増加したときの動作を考える。伝送路光ファイバ3で20dBの損失増加が生じた場合、光増幅器16に入力する信号光と雑音光のパワーは、ともに20dBだけ低下する。光増幅器16から出力される信号光も20dBだけ低下するが、出力される雑音光は、低下量が20dBより小さくなる。これは、光増幅器16自身で発生する雑音光のパワーが、入力する信号パワーにかかわらず一定値であるためである。 Consider the operation when the loss in the transmission line optical fiber 3 greatly increases in the configuration example of FIG. When a loss increase of 20 dB occurs in the transmission line optical fiber 3, the power of the signal light and noise light input to the optical amplifier 16 both decreases by 20 dB. The signal light output from the optical amplifier 16 is also reduced by 20 dB, but the output amount of the noise light is smaller than 20 dB. This is because the power of the noise light generated by the optical amplifier 16 itself is a constant value regardless of the input signal power.
 この場合も、光抽出フィルタ7で信号光の一部または監視制御光を抽出する場合は、実施の形態1、2と同様の方法で損失変動か波長数変動に起因するパワー変動を判断することができる。一方、実施の形態3のように、光抽出フィルタ7で、信号光、監視制御光のいずれも含まない、雑音光を抽出する場合、大きな損失変動が生じた際には、トータルパワーPと光抽出フィルタ7で抽出したパワーPfilterの変化比率が異なることになり、波長数変動であると誤って判断してしまうことがある。 Also in this case, when a part of the signal light or the monitoring control light is extracted by the light extraction filter 7, the power fluctuation caused by the loss fluctuation or the wavelength number fluctuation is determined by the same method as in the first and second embodiments. Can do. On the other hand, when noise light is extracted by the light extraction filter 7 that does not include either signal light or supervisory control light as in the third embodiment, the total power P and the light are output when a large loss fluctuation occurs. The change ratio of the power P filter extracted by the extraction filter 7 is different, and it may be erroneously determined that the number of wavelengths varies.
 このような誤判断が生じる可能性がある場合には、図5に示す構成とすることで、誤判断を回避することができる。図5は、光増幅器16よりも上流に分波器5を配置する場合の受信ノード1bの構成例を示す図である。受信ノード1bを受信ノード1aの代わりに用いることで誤判断を回避することができる。図5の例では、光増幅器16よりも上流に分波器5を配置して、トータルパワーと、光抽出フィルタで抽出したパワーと、のモニタを行う。図5の例では、図4の構成例に対して、分波器5以降減算回路12までを光増幅器16の前段に配置し、分波器19、フォトダイオード(PD)17およびログアンプ(Log)18を追加している。 When such a misjudgment may occur, the misjudgment can be avoided by adopting the configuration shown in FIG. FIG. 5 is a diagram illustrating a configuration example of the reception node 1b when the duplexer 5 is arranged upstream of the optical amplifier 16. An erroneous determination can be avoided by using the receiving node 1b instead of the receiving node 1a. In the example of FIG. 5, the duplexer 5 is arranged upstream of the optical amplifier 16 to monitor the total power and the power extracted by the light extraction filter. In the example of FIG. 5, with respect to the configuration example of FIG. 4, the branching filter 5 and the subtraction circuit 12 are arranged in front of the optical amplifier 16, and the branching filter 19, the photodiode (PD) 17 and the log amplifier (Log) ) 18 is added.
 図5の例では、フォトダイオード8,9によるモニタ値には光増幅器16で生ずる雑音光のパワーは含まれないため、損失が大きく増加したときにも、トータルパワーPと光抽出フィルタ7で抽出したパワーPfilterの変化比率が変化することがなく、正確に損失変動と波長数変動を判別可能である。可変減衰器15の出力光のパワーは、分波器19で分波され、分波器19で分波された光をフォトダイオード17によりモニタする。そして、ログアンプ18を経て制御回路14に入力することにより、目標値に応じて可変光減衰器15の損失量を制御する。 In the example of FIG. 5, the monitor value by the photodiodes 8 and 9 does not include the power of the noise light generated by the optical amplifier 16, so that even when the loss greatly increases, the total power P and the light extraction filter 7 are used for extraction. The change ratio of the power P filter does not change, and the loss fluctuation and the wavelength number fluctuation can be accurately discriminated. The power of the output light of the variable attenuator 15 is demultiplexed by the demultiplexer 19, and the light demultiplexed by the demultiplexer 19 is monitored by the photodiode 17. Then, by inputting to the control circuit 14 via the log amplifier 18, the loss amount of the variable optical attenuator 15 is controlled according to the target value.
 また、図5の例では、上流送信ノード2aに雑音光除去フィルタ24を追加している。このように、上流送信ノード2aに雑音光除去フィルタ24を追加することにより、上流送信ノード2aからの雑音光パワーの変化の影響によって、トータルパワーPと光抽出フィルタで抽出したパワーPfilterの変化比率が変動を低減することができる。これにより、光増幅器4で発生した雑音光のみを、受信ノード1bのフォトダイオード9でモニタすることになり、トータルパワーPと光抽出フィルタ7で抽出したパワーPfilterの変化比率を正確に比較することができる。なお、雑音光除去フィルタ24は、雑音光をモニタする波長帯を遮断する特性のある光デバイスである。雑音光除去フィルタ24は、該当波長を遮断するように設計された光フィルタでもよいし、例えば、信号帯域以外を遮断する特性を持つ波長選択スイッチ(WSS;Wavelength Selective Switch)等を用いてもよい。なお、上流送信ノード2aを用いるとより正確に変化比率を比較することができるが、光増幅器4以外の雑音の影響が少ない場合等には上流送信ノード2aの代わりに上流送信ノード2を用いてもよい。 In the example of FIG. 5, a noise light removal filter 24 is added to the upstream transmission node 2a. Thus, by adding the noise light removal filter 24 to the upstream transmission node 2a, the change in the total power P and the power P filter extracted by the light extraction filter due to the influence of the change in the noise light power from the upstream transmission node 2a. The ratio can reduce fluctuations. As a result, only the noise light generated by the optical amplifier 4 is monitored by the photodiode 9 of the reception node 1b, and the change ratio between the total power P and the power P filter extracted by the light extraction filter 7 is accurately compared. be able to. The noise light removal filter 24 is an optical device having a characteristic of blocking a wavelength band for monitoring noise light. The noise light removal filter 24 may be an optical filter designed to cut off the corresponding wavelength, or may be a wavelength selective switch (WSS) having a characteristic to cut off other than the signal band, for example. . The upstream transmission node 2a can be used to compare the change ratio more accurately. However, when the influence of noise other than the optical amplifier 4 is small, the upstream transmission node 2 is used instead of the upstream transmission node 2a. Also good.
 以上のように、光増幅器16を可変減衰器15の前段に配置する構成例においても、実施の形態1~3と同様の光パワー制御方法を適用することができる。さらに、光増幅器16よりも上流に分波器5以降減算回路12までを配置することにより、光抽出フィルタ7で雑音光を抽出する場合にも、より正確に損失変動か波長数変動に起因するパワー変動であるかを判断することができる。さらに、上流送信ノード2aに雑音光除去フィルタ24を追加することにより、より正確に損失変動か波長数変動に起因するパワー変動であるかを判断することができる。 As described above, the optical power control method similar to that of the first to third embodiments can also be applied to the configuration example in which the optical amplifier 16 is arranged in the preceding stage of the variable attenuator 15. Further, by arranging the branching filter 5 and the subtracting circuit 12 upstream from the optical amplifier 16, even when noise light is extracted by the light extraction filter 7, it is more accurately caused by loss fluctuation or wavelength number fluctuation. It can be determined whether the power fluctuation. Further, by adding the noise light removal filter 24 to the upstream transmission node 2a, it is possible to more accurately determine whether the fluctuation is a loss fluctuation or a power fluctuation caused by a wavelength number fluctuation.
実施の形態5.
 図6は、本発明にかかる波長多重光伝送システムの実施の形態5の構成例を示す図である。図6に示すように、本実施の形態の波長多重光伝送システムは、実施の形態4と同様の上流送信ノード2aと、受信ノード1cと、を備える。上流送信ノード2aから送信された波長多重光は伝送路ファイバ3を経由して受信ノード1cで受信される。なお、上流送信ノード2aの代わりに実施の形態1の上流送信ノード2を用いてもよい。
Embodiment 5. FIG.
FIG. 6 is a diagram showing a configuration example of the fifth embodiment of the wavelength division multiplexing optical transmission system according to the present invention. As shown in FIG. 6, the wavelength division multiplexing optical transmission system of the present embodiment includes an upstream transmission node 2a and a reception node 1c similar to those of the fourth embodiment. The wavelength multiplexed light transmitted from the upstream transmission node 2 a is received by the reception node 1 c via the transmission line fiber 3. Note that the upstream transmission node 2 of the first embodiment may be used instead of the upstream transmission node 2a.
 本実施の形態では、ラマン増幅を組み合わせる場合の構成および動作について説明する。励起LD(Laser Diode)21は、伝送路光ファイバ3で信号光をラマン増幅するための励起光(ラマン励起光)を出力する励起光源である。励起光は、ラマン励起光合波器20を経て、伝送路光ファイバ3へ送出される。利得一定制御回路22は、ラマン増幅の利得を一定に保つように励起光のパワーを制御する回路である。この例では、フォトダイオード8でモニタしたトータルパワーを参照して制御に用いている。ラマン増幅の利得を一定に制御する方法としてはどのような方法を用いてもよいが、例えば、特許第4040044号公報、特許第4046602号公報に記載された方法を用いることができ、適宜モニタ回路や制御回路を併用する。 In the present embodiment, the configuration and operation in the case of combining Raman amplification will be described. An excitation LD (Laser Diode) 21 is an excitation light source that outputs excitation light (Raman excitation light) for Raman amplification of signal light by the transmission line optical fiber 3. The pumping light is sent to the transmission line optical fiber 3 through the Raman pumping light multiplexer 20. The constant gain control circuit 22 is a circuit that controls the power of pumping light so as to keep the gain of Raman amplification constant. In this example, the total power monitored by the photodiode 8 is used for control. Any method may be used as a method for controlling the gain of Raman amplification to be constant. For example, the methods described in Japanese Patent No. 4040044 and Japanese Patent No. 4046602 can be used, and a monitor circuit is appropriately used. And control circuit.
 本実施の形態では、分波器6は分波した光をフォトダイオード8と光抽出フィルタ7aと光抽出フィルタ7bとに入力する。光抽出フィルタ7aは、励起光の帯域の雑音光を抽出し、光抽出フィルタ7bは、励起光の帯域と信号光および監視制御光の帯域との雑音光(信号光および監視制御光の帯域で、信号光および監視制御光の波長を含まない雑音光)を抽出する。フォトダイオード9a,9bは、それぞれ光抽出フィルタ7a,7bにより抽出された光を電気信号に変換する。ログアンプ11a,11bは、フォトダイオード9a,9bから出力される電気信号を対数に比例する電気信号に変換する。補正回路25は、ログアンプ11aからの出力と11bからの出力とに基づいて、信号光および監視制御光の帯域との雑音光を推定する。本実施の形態では、補正回路25の出力を光抽出フィルタで抽出したPfilterとして、トータルパワーPと光抽出フィルタで抽出したパワーPfilterの変化比率の比較を行う。 In the present embodiment, the duplexer 6 inputs the demultiplexed light to the photodiode 8, the light extraction filter 7a, and the light extraction filter 7b. The light extraction filter 7a extracts noise light in the excitation light band, and the light extraction filter 7b generates noise light (in the signal light and monitoring control light bands) between the excitation light band and the signal light and monitoring control light bands. , Noise light not including the wavelengths of the signal light and the monitoring control light). The photodiodes 9a and 9b convert the light extracted by the light extraction filters 7a and 7b into electric signals, respectively. The log amplifiers 11a and 11b convert the electrical signals output from the photodiodes 9a and 9b into electrical signals proportional to the logarithm. The correction circuit 25 estimates noise light from the band of the signal light and the monitoring control light based on the output from the log amplifier 11a and the output from 11b. In the present embodiment, the change rate of the total power P and the power P filter extracted by the light extraction filter is compared with the output of the correction circuit 25 as P filter extracted by the light extraction filter.
 なお、ここでは、光抽出フィルタ7a、7bは、雑音光を抽出するようにしたが、実施の形態1、2と同様に、信号光または監視制御光の一部を抽出するようにしてもよい。 Here, the light extraction filters 7a and 7b extract the noise light. However, as in the first and second embodiments, a part of the signal light or the monitoring control light may be extracted. .
 励起光出力変動検出回路(励起光出力変動検出部)23は、利得一定制御回路22の制御対象である励起光パワーの変動を検出する回路である。伝送路光ファイバ3における損失の変動が増加した場合に、励起光の減衰量が増加すると、ラマン利得が低下する。この場合、利得一定制御回路22は、ラマン増幅の利得の低下を抑えるために、ラマン励起光パワーを高くするように動作する。すなわち、損失の変動に応じて、ラマン励起光のパワーが変化する。 The pumping light output fluctuation detecting circuit (pumping light output fluctuation detecting unit) 23 is a circuit that detects the fluctuation of the pumping light power that is controlled by the constant gain control circuit 22. When the fluctuation of loss in the transmission line optical fiber 3 increases, the Raman gain decreases as the attenuation of the pumping light increases. In this case, the constant gain control circuit 22 operates to increase the Raman pumping light power in order to suppress a decrease in the gain of Raman amplification. That is, the power of the Raman pumping light changes according to the fluctuation of loss.
 したがって、トータルパワーPと光抽出フィルタで抽出したパワーPfilterの変化比率の比較結果に関わらず、ラマン励起光パワーの変化を検出したときには、損失変動が生じたと判断すればよい。トータルパワーPと光抽出フィルタで抽出したパワーPfilterの変化比率の比較と合わせると、ラマン励起光パワーの変化を検出した場合、およびトータルパワーPと光抽出フィルタで抽出したパワーPfilterの変化比率の比較結果が一致する場合は、損失変動が生じたと判断する。一方、ラマン励起光パワーの変化を検出せず(ラマン励起光パワーが変化せず)、かつトータルパワーPと光抽出フィルタで抽出したパワーPfilterの変化比率が異なる場合には、波長数変動に起因するパワー変動であると判断する。 Therefore, regardless of the comparison result of the change ratio between the total power P and the power P filter extracted by the light extraction filter, it may be determined that a loss fluctuation has occurred when a change in Raman pumping light power is detected. Combined with the comparison of the change ratio of the total power P and the power P filter extracted with light extraction filter, when detecting a change in the Raman pumping light power, and total power P and the change ratio of the power P filter extracted with light extraction filter If the comparison results match, it is determined that loss fluctuation has occurred. On the other hand, when the change in the Raman pumping light power is not detected (the Raman pumping light power does not change) and the change ratio between the total power P and the power Pfilter extracted by the light extraction filter is different, the number of wavelengths varies. It is determined that the power fluctuation is caused.
 以上のように、本実施の形態では、ラマン増幅と組み合わせる場合に、ラマン励起光パワーの変化の有無に基づいて損失変動であるか否かを判断するようにした。これにより、ラマン増幅と組み合わせる場合に、多重化されている波長数が多い場合にも回路規模の増大を抑えて光パワーを所定値に制御することができる。 As described above, in this embodiment, when combined with Raman amplification, it is determined whether or not there is a loss variation based on the presence or absence of a change in Raman pumping light power. As a result, when combined with Raman amplification, the optical power can be controlled to a predetermined value while suppressing an increase in circuit scale even when the number of multiplexed wavelengths is large.
実施の形態6.
 図7は、本発明にかかる波長多重光伝送システムの実施の形態6の構成例を示す図である。図7に示すように、本実施の形態の波長多重光伝送システムは、実施の形態4と同様の上流送信ノード2aと、受信ノード1dと、を備える。受信ノード1dは、光増幅器16を可変減衰器15の前段に配置し、実施の形態4と同様の分波器19、フォトダイオード17およびログアンプ18を追加する以外は、実施の形態5の受信ノード1cと同様である。
Embodiment 6 FIG.
FIG. 7 is a diagram showing a configuration example of the sixth embodiment of the wavelength division multiplexing optical transmission system according to the present invention. As shown in FIG. 7, the wavelength division multiplexing optical transmission system of the present embodiment includes an upstream transmission node 2a and a reception node 1d similar to those of the fourth embodiment. The receiving node 1d receives the optical amplifier 16 in the preceding stage of the variable attenuator 15 and adds the duplexer 19, the photodiode 17 and the log amplifier 18 similar to those in the fourth embodiment. The same as the node 1c.
 本実施の形態では、ラマン増幅と組み合わせる場合に、光増幅器16を可変減衰器15の入力側に配置する例について説明する。この場合も、図5の例と同様に、光増幅器16の入力レベルが大きく低下した場合でも波長数変動と損失変動を正しく判断するために、分波器5を光増幅器16の入力側に配置している。可変減衰器15の出力パワーを一定に制御するために、分波器19を経てフォトダイオード17でトータルパワーをモニタする構成となっている。以上述べた以外の本実施の形態の動作は、実施の形態5と同様である。 In the present embodiment, an example in which the optical amplifier 16 is arranged on the input side of the variable attenuator 15 when combined with Raman amplification will be described. Also in this case, as in the example of FIG. 5, the demultiplexer 5 is arranged on the input side of the optical amplifier 16 in order to correctly determine the wavelength number variation and the loss variation even when the input level of the optical amplifier 16 is greatly reduced. is doing. In order to control the output power of the variable attenuator 15 to be constant, the total power is monitored by the photodiode 17 via the duplexer 19. The operations of the present embodiment other than those described above are the same as those of the fifth embodiment.
実施の形態7.
 次に、本発明にかかる波長多重光伝送システムの実施の形態7の制御目標値Ptを再設定方法について説明する。本実施の形態の構成は、実施の形態1~6のいずれかと同様である。
Embodiment 7 FIG.
Next, a method for resetting the control target value Pt of the seventh embodiment of the wavelength division multiplexing optical transmission system according to the present invention will be described. The configuration of the present embodiment is the same as that of any of the first to sixth embodiments.
 実施の形態1~6で説明した例において、目標値設定回路13は、波長数の変動を検出した際に、トータルパワーPの制御目標値Ptを再設定するが、本実施の形態では、この際の再設定方法の一例を説明する。 In the example described in the first to sixth embodiments, the target value setting circuit 13 resets the control target value Pt of the total power P when detecting the change in the number of wavelengths. An example of the resetting method will be described.
 上流送信ノード2では、自ノードにおけるトータルパワーをモニタしているとし、上流送信ノード2は、自ノードにおけるトータルパワーのモニタ値の情報を、受信ノードに送信する。目標値設定回路13は、受信した上流送信ノード2におけるトータルパワーのモニタ値に応じて制御の目標値を再設定することができる。多重する波長数が変化する場合、上流送信ノード2から送信されているトータルパワーのモニタ値は、波長数に応じて変化する。したがって、上流送信ノード2から送信されているトータルパワーのモニタ値に応じてトータルパワーの制御の目標値を設定することで、波長数に関わらず1波長当たりのパワーを所定値に制御することができる。 The upstream transmission node 2 is monitoring the total power in its own node, and the upstream transmission node 2 transmits information on the monitor value of the total power in its own node to the reception node. The target value setting circuit 13 can reset the control target value in accordance with the received monitor value of the total power in the upstream transmission node 2. When the number of multiplexed wavelengths changes, the monitor value of the total power transmitted from the upstream transmission node 2 changes according to the number of wavelengths. Therefore, by setting a target value for controlling the total power according to the monitor value of the total power transmitted from the upstream transmitting node 2, the power per wavelength can be controlled to a predetermined value regardless of the number of wavelengths. it can.
実施の形態8.
 次に、本発明にかかる波長多重光伝送システムの実施の形態8の制御目標値Ptを再設定方法について説明する。本実施の形態の構成は、実施の形態1~6のいずれかと同様である。
Embodiment 8 FIG.
Next, a method for resetting the control target value Pt according to the eighth embodiment of the wavelength division multiplexing optical transmission system of the present invention will be described. The configuration of the present embodiment is the same as that of any of the first to sixth embodiments.
 実施の形態1~6で説明した例において、目標値設定回路13は、波長数の変動を検出した際に、トータルパワーPの制御目標値Ptを再設定するが、本実施の形態では、この際の再設定方法の2つめの例を説明する。 In the example described in the first to sixth embodiments, the target value setting circuit 13 resets the control target value Pt of the total power P when detecting the change in the number of wavelengths. A second example of the resetting method will be described.
 上流送信ノード2では、自ノードから送信する波長多重光に多重されている波長の数の情報を把握しているとし、上流送信ノード2は、多重されている波長数の情報を、受信ノードに送信する。目標値設定回路13は、受信した波長数に応じて制御の目標値を再設定することができる。上流送信ノード2から送信されている波長数に応じてトータルパワーの制御の目標値を設定することで、波長数に関わらず1波長当たりのパワーを所定値に制御することができる。 The upstream transmission node 2 knows the information on the number of wavelengths multiplexed in the wavelength multiplexed light transmitted from the own node, and the upstream transmission node 2 sends the information on the number of multiplexed wavelengths to the reception node. Send. The target value setting circuit 13 can reset the control target value in accordance with the number of received wavelengths. By setting a target value for controlling the total power in accordance with the number of wavelengths transmitted from the upstream transmission node 2, the power per wavelength can be controlled to a predetermined value regardless of the number of wavelengths.
実施の形態9.
 次に、本発明にかかる波長多重光伝送システムの実施の形態9の制御目標値Ptを再設定方法について説明する。本実施の形態の構成は、実施の形態1~6のいずれかと同様である。
Embodiment 9 FIG.
Next, a method for resetting the control target value Pt of the ninth embodiment of the wavelength division multiplexing optical transmission system according to the present invention will be described. The configuration of the present embodiment is the same as that of any of the first to sixth embodiments.
 実施の形態1~6で説明した例において、目標値設定回路13は、波長数の変動を検出した際に、トータルパワーPの制御目標値Ptを再設定するが、本実施の形態では、この際の再設定方法の3つめの例を説明する。 In the example described in the first to sixth embodiments, the target value setting circuit 13 resets the control target value Pt of the total power P when detecting the change in the number of wavelengths. A third example of the resetting method will be described.
 目標値設定回路13は、波長数の変動を検出した後、波長多重信号光をすべて含んだトータルパワーPのモニタ値を、新たな制御目標値Ptとすることで、波長数が変化した後の信号光パワーを維持する制御を行う。これによって、1波長当たりの信号光パワーを波長数が変化する前と同じ値に保つことができる。 The target value setting circuit 13 detects the fluctuation in the number of wavelengths, and then sets the monitor value of the total power P including all of the wavelength multiplexed signal light as a new control target value Pt, thereby changing the number of wavelengths after the change. Control to maintain the signal light power is performed. As a result, the signal light power per wavelength can be kept at the same value as before the number of wavelengths is changed.
実施の形態10.
 次に、本発明にかかる波長多重光伝送システムの実施の形態10の制御目標値Ptを再設定方法について説明する。本実施の形態の構成は、実施の形態1~6のいずれかと同様である。
Embodiment 10 FIG.
Next, a method for resetting the control target value Pt according to the tenth embodiment of the wavelength division multiplexing optical transmission system of the present invention will be described. The configuration of the present embodiment is the same as that of any of the first to sixth embodiments.
 実施の形態1~6で説明した例において、目標値設定回路13は、波長数の変動を検出した際に、トータルパワーPの制御目標値Ptを再設定するが、本実施の形態では、この際の再設定方法の4つめの例を説明する。 In the example described in the first to sixth embodiments, the target value setting circuit 13 resets the control target value Pt of the total power P when detecting the change in the number of wavelengths. A fourth example of the resetting method will be described.
 波長多重信号光をすべて含んだパワーPと、一部の波長帯の光を抽出したパワーPfilterと、それらの所定時間前のモニタ値P´、Pfilter´に基づいて、再設定後の目標値Ptを設定することが考えられる。例えば、以下の式(1)を満たすように設定する。
 Pt=Pt´×(P/Pfilter)/(P´/Pfilter´)      …(1)
 すなわち、以下の式(2)を満たすように設定する。
 logPt=
  logPt´+(logP-logPfilter)-(logP´-logPfilter´)…(2)
Based on the power P including all the wavelength multiplexed signal light, the power P filter obtained by extracting light in a part of the wavelength band, and the monitor values P ′ and P filter ′ before the predetermined time, the target after resetting It is conceivable to set the value Pt. For example, it sets so that the following formula | equation (1) may be satisfy | filled.
Pt = Pt ′ × (P / P filter ) / (P ′ / P filter ′) (1)
That is, it sets so that the following formula | equation (2) may be satisfy | filled.
logPt =
logPt ′ + (logP−logP filter ) − (logP′−logP filter ′) (2)
 これによって、一部の波長帯の光を抽出したパワーPfilterを基準として、トータルパワーPが変化した比率だけ、目標値Ptを変化させることができ、1波長当たりの信号光パワーを波長数変化前と同じに保つことができる。 As a result, the target value Pt can be changed by the ratio at which the total power P has changed with reference to the power P filter from which light in a part of the wavelength band is extracted, and the signal light power per wavelength can be changed by the number of wavelengths. Can keep the same as before.
 以上説明した実施の形態では、一部の例を挙げて説明をしているが、本発明はこの例に限定されるものではない。 In the embodiment described above, a part of examples are described, but the present invention is not limited to this example.
 また、以上の実施の形態において、波長多重信号光をすべて含んだトータルパワーPには、波長多重されているすべての信号光のパワーと、同じ帯域に存在する雑音光のパワーが含まれている。光伝送システムを監視制御するための監視制御光が多重伝送されている場合に、トータルパワーPにこの監視制御光のパワーを含んでも良いし、あるいは、含まなくても良い。いずれの場合も、本発明の範囲内である。 In the above embodiment, the total power P including all the wavelength multiplexed signal light includes the power of all the wavelength multiplexed signal lights and the power of the noise light existing in the same band. . When supervisory control light for supervisory control of the optical transmission system is multiplexed and transmitted, the total power P may or may not include the power of the supervisory control light. Either case is within the scope of the present invention.
 以上のように、本発明にかかる波長多重光伝送システム、光中継装置および光強度制御方法は、光中継伝送システムに有用であり、特に、多重化されている波長数が多いシステムに適している。 As described above, the wavelength division multiplexing optical transmission system, the optical repeater, and the light intensity control method according to the present invention are useful for an optical repeater transmission system, and are particularly suitable for a system having a large number of multiplexed wavelengths. .
 1,1a,1b,1c,1d 受信ノード
 2,2a 上流送信ノード
 3 伝送路光ファイバ
 4,16 光増幅器
 5,6,19 分波器
 7,7a,7b 光抽出フィルタ
 8,8a,8b,9,9a,9b,17 フォトダイオード(PD)
 10,11,11a,11b,18 ログアンプ(Log)
 12 減算回路
 13 目標値設定回路
 14 制御回路
 15 可変減衰器(VOA)
 20 ラマン励起光合波器
 21 励起LD
 22 利得一定制御回路
 23 励起光出力変動検出回路
 24 雑音光除去フィルタ
 25 補正回路
1, 1a, 1b, 1c, 1d Reception node 2, 2a Upstream transmission node 3 Transmission path optical fiber 4, 16 Optical amplifier 5, 6, 19 Demultiplexer 7, 7a, 7b Light extraction filter 8, 8a, 8b, 9 , 9a, 9b, 17 Photodiode (PD)
10, 11, 11a, 11b, 18 Log amplifier (Log)
12 Subtraction circuit 13 Target value setting circuit 14 Control circuit 15 Variable attenuator (VOA)
20 Raman excitation light multiplexer 21 Excitation LD
22 constant gain control circuit 23 excitation light output fluctuation detection circuit 24 noise light removal filter 25 correction circuit

Claims (19)

  1.  波長の異なる複数の光信号が波長多重された波長多重光を送信する上流装置と、前記波長多重光を受信し、前記波長多重光を増幅して出力する光中継装置と、を備える波長多重光伝送システムであって、
     前記光中継装置は、
     前記波長多重光を増幅する光増幅器と、
     前記光増幅器による増幅前または前記光増幅器による増幅後の前記波長多重光の強度を減衰させる可変減衰器と、
     増幅後の前記波長多重光の強度の目標値を設定する目標値設定部と、
     前記光増幅器および前記可変減衰器を通過後の前記波長多重光の強度が前記目標値となるよう前記可変減衰器を制御する制御部と、
     受信した前記波長多重光のトータル強度を検出するトータル強度検出部と、
     受信した前記波長多重光のうち一部の波長帯の信号を抽出する光抽出フィルタと、
     前記光抽出フィルタにより抽出された抽出信号の強度を検出する抽出信号強度検出部と、
     を備え、
     前記目標値設定部は、前記トータル強度の変化比率と前記抽出信号の強度の変化比率とが略同一であるか否かに基づいて、前記目標値を維持するか再設定するかを決定することを特徴とする波長多重光伝送システム。
    Wavelength multiplexed light comprising: an upstream device that transmits wavelength multiplexed light in which a plurality of optical signals having different wavelengths are wavelength multiplexed; and an optical repeater that receives the wavelength multiplexed light and amplifies and outputs the wavelength multiplexed light A transmission system,
    The optical repeater is
    An optical amplifier for amplifying the wavelength multiplexed light;
    A variable attenuator for attenuating the intensity of the wavelength multiplexed light before amplification by the optical amplifier or after amplification by the optical amplifier;
    A target value setting unit for setting a target value of the intensity of the wavelength multiplexed light after amplification;
    A control unit that controls the variable attenuator so that the intensity of the wavelength multiplexed light after passing through the optical amplifier and the variable attenuator becomes the target value;
    A total intensity detector that detects the total intensity of the received wavelength multiplexed light;
    A light extraction filter for extracting a signal in a part of the wavelength band of the received wavelength multiplexed light;
    An extracted signal intensity detector for detecting the intensity of the extracted signal extracted by the light extraction filter;
    With
    The target value setting unit determines whether to maintain or reset the target value based on whether or not the change ratio of the total intensity and the intensity change ratio of the extracted signal are substantially the same. A wavelength division multiplexing optical transmission system.
  2.  前記トータル強度の検出値をPとし、所定時間前の前記トータル強度の検出値をP´とし、前記抽出信号の強度の検出値をPfilterとし、前記所定時間前の前記抽出信号の強度の検出値をPfilter´とし、
     前記目標値設定部は、P/P´とPfilter/Pfilter´が略同一である場合、前記目標値を変更せず、P/P´とPfilter/Pfilter´が異なる場合、前記波長多重光に多重された波長数が変化したと判断して、前記目標値を再設定することを特徴とする請求項1に記載の波長多重光伝送システム。
    The detected value of the total intensity is P, the detected value of the total intensity before a predetermined time is P ′, the detected value of the intensity of the extracted signal is P filter, and the intensity of the extracted signal before the predetermined time is detected. Let the value be P filter ′,
    The target value setting unit does not change the target value when P / P ′ and P filter / P filter ′ are substantially the same, and when P / P ′ and P filter / P filter ′ are different, 2. The wavelength division multiplexing optical transmission system according to claim 1, wherein the target value is reset by judging that the number of wavelengths multiplexed in the multiplexed light has changed.
  3.  前記トータル強度の検出値をPとし、所定時間前の前記トータル強度の検出値をP´とし、前記抽出信号の強度の検出値をPfilterとし、前記所定時間前の前記抽出信号の強度の検出値をPfilter´とし、
     logPに比例する信号を出力する第1のログアンプと、
     logPfilterに比例する信号を出力する第2のログアンプと、
     を備え、
     前記目標値設定部は、(logP-logP´)と(logPfilter-logPfilter´)が略同一である場合、前記目標値を変更せず、(logP-logP´)と(logPfilter-logPfilter´)が異なる場合、前記目標値を、前記波長多重光に多重された波長数が変化したと判断して、変化後の波長数に応じた目標値に再設定することを特徴とする請求項1に記載の波長多重光伝送システム。
    The detected value of the total intensity is P, the detected value of the total intensity before a predetermined time is P ′, the detected value of the intensity of the extracted signal is P filter, and the intensity of the extracted signal before the predetermined time is detected. Let the value be P filter ′,
    a first log amplifier that outputs a signal proportional to log P;
    a second log amplifier that outputs a signal proportional to the logP filter ;
    With
    The target value setting unit does not change the target value when (logP−logP ′) and (logP filter −logP filter ′) are substantially the same, and (logP−logP ′) and (logP filter −logP filter). 2), the target value is reset to a target value corresponding to the number of wavelengths after the change by determining that the number of wavelengths multiplexed in the wavelength multiplexed light has changed. 2. The wavelength division multiplexing optical transmission system according to 1.
  4.  前記光抽出フィルタは、前記波長多重光に多重されている信号光のうちの一部を含む波長帯の信号を抽出することを特徴とする請求項1、2または3に記載の波長多重光伝送システム。 4. The wavelength division multiplexing optical transmission according to claim 1, wherein the light extraction filter extracts a signal in a wavelength band including a part of the signal light multiplexed on the wavelength division multiplexed light. system.
  5.  前記波長多重光には、信号光と監視または制御のための低速信号を伝送する監視制御光とが多重され、
     前記光抽出フィルタは、前記波長多重光に多重されている前記監視制御光を含む波長帯の信号を抽出することを特徴とする請求項1、2または3に記載の波長多重光伝送システム。
    The wavelength multiplexed light is multiplexed with signal light and supervisory control light that transmits a low-speed signal for monitoring or control,
    4. The wavelength division multiplexing optical transmission system according to claim 1, wherein the light extraction filter extracts a signal in a wavelength band including the supervisory control light multiplexed on the wavelength division multiplexed light.
  6.  前記光抽出フィルタは、信号光を含まずかつ雑音光を含む波長帯の信号を抽出することを特徴とする請求項1、2または3に記載の波長多重光伝送システム。 4. The wavelength division multiplexing optical transmission system according to claim 1, wherein the light extraction filter extracts a signal in a wavelength band not including signal light and including noise light.
  7.  前記波長多重光には、信号光と監視または制御のための低速信号を伝送する監視制御光とが多重され、
     前記光抽出フィルタは、前記信号光および前記監視制御光の両方を含まずかつ雑音光を含む波長帯の信号を抽出することを特徴とする請求項1、2または3に記載の波長多重光伝送システム。
    The wavelength multiplexed light is multiplexed with signal light and supervisory control light that transmits a low-speed signal for monitoring or control,
    4. The wavelength division multiplexing optical transmission according to claim 1, wherein the light extraction filter extracts a signal in a wavelength band not including both the signal light and the supervisory control light and including noise light. system.
  8.  前記上流装置は、信号光が存在しない帯域の雑音光を除去する雑音光除去フィルタ、を備えることを特徴とする請求項7に記載の波長多重光伝送システム。 The wavelength division multiplexing optical transmission system according to claim 7, wherein the upstream device includes a noise light removal filter that removes noise light in a band in which no signal light exists.
  9.  前記光増幅器より前段に前記可変減衰器が配置され、
     前記トータル強度検出部および前記光抽出フィルタは、前記可変減衰器を通過後、かつ前記光増幅器への入力前の前記波長多重光を入力とすることを特徴とする請求項1~8のいずれか1つに記載の波長多重光伝送システム。
    The variable attenuator is disposed before the optical amplifier,
    9. The wavelength-multiplexed light after passing through the variable attenuator and before being input to the optical amplifier is input to the total intensity detector and the light extraction filter. The wavelength division multiplexing optical transmission system according to one.
  10.  前記光増幅器より後段に前記可変減衰器が配置され、
     前記トータル強度検出部および前記光抽出フィルタは、前記光増幅器への入力前の前記波長多重光を入力とすることを特徴とする請求項1~8のいずれか1つに記載の波長多重光伝送システム。
    The variable attenuator is disposed downstream of the optical amplifier,
    The wavelength division multiplexing optical transmission according to any one of claims 1 to 8, wherein the total intensity detection unit and the light extraction filter receive the wavelength division multiplexed light before being input to the optical amplifier. system.
  11.  ラマン励起光を前記波長多重光の送信方向と逆方向に送出する励起光源と、
     前記ラマン励起光によって得られるラマン増幅利得を一定に保つように前記ラマン励起光の強度を制御する利得一定ラマン増幅器と、
     前記励起光の強度の変動を検出する励起光出力変動検出部と、
     を前記光増幅器の入力側に備え、
     前記目標値設定部は、前記トータル強度の変化比率と前記抽出信号の強度の変化比率とが略同一であるか、または前記励起光出力変動検出部により前記励起光の強度の変動が検出された場合、前記目標値を変更せず、前記トータル強度の変化比率と前記抽出信号の強度の変化比率とが異なり、かつ前記励起光出力変動検出部により前記励起光の強度の変動が検出されない場合、前記波長多重光に多重された波長数が変化したと判断して、前記目標値を再設定することを特徴とする請求項1~10のいずれか1つに記載の波長多重光伝送システム。
    A pumping light source for sending Raman pumping light in a direction opposite to the transmission direction of the wavelength multiplexed light;
    A constant gain Raman amplifier that controls the intensity of the Raman pumping light so as to keep the Raman amplification gain obtained by the Raman pumping light constant;
    An excitation light output fluctuation detector for detecting fluctuations in the intensity of the excitation light;
    On the input side of the optical amplifier,
    In the target value setting unit, the change rate of the total intensity and the change rate of the intensity of the extracted signal are substantially the same, or a change in the intensity of the excitation light is detected by the excitation light output fluctuation detection unit. If the target value is not changed, the change ratio of the total intensity is different from the change ratio of the intensity of the extraction signal, and the excitation light output fluctuation detector does not detect the fluctuation of the intensity of the excitation light, The wavelength division multiplexing optical transmission system according to any one of claims 1 to 10, wherein the target value is reset by judging that the number of wavelengths multiplexed in the wavelength division multiplexed light has changed.
  12.  前記光増幅器は、利得一定制御が施されることを特徴とする請求項1~11のいずれか1つに記載の波長多重光伝送システム。 The wavelength division multiplexing optical transmission system according to any one of claims 1 to 11, wherein the optical amplifier is subjected to constant gain control.
  13.  前記目標値設定部は、再設定後の目標値を、前記上流装置から送出される前記波長多重光の強度情報に基づいて決定することを特徴とする請求項1~12のいずれか1つに記載の波長多重光伝送システム。 The target value setting unit determines the target value after resetting based on intensity information of the wavelength multiplexed light transmitted from the upstream device. The wavelength division multiplexing optical transmission system described.
  14.  前記目標値設定部は、再設定後の目標値を、前記上流装置から送出される前記波長多重光に多重された波長数情報に基づいて決定することを特徴とする請求項1~12のいずれか1つに記載の波長多重光伝送システム。 The target value setting unit determines the target value after resetting based on information on the number of wavelengths multiplexed in the wavelength multiplexed light transmitted from the upstream device. The wavelength division multiplexing optical transmission system according to any one of the above.
  15.  前記目標値設定部は、再設定後の目標値を、前記トータル強度の検出値とすることを特徴とする請求項1~12のいずれか1つに記載の波長多重光伝送システム。 The wavelength division multiplexing optical transmission system according to any one of claims 1 to 12, wherein the target value setting unit sets the target value after resetting as the detected value of the total intensity.
  16.  前記トータル強度の検出値をPとし、所定時間前の前記トータル強度の検出値をP´とし、前記抽出信号の強度の検出値をPfilterとし、前記所定時間前の前記抽出信号の強度の検出値をPfilter´とし、
     前記目標値設定部は、再設定後の目標値を、P、P´、PfilterおよびPfilter´に基づいて決定することを特徴とする請求項1~12のいずれか1つに記載の波長多重光伝送システム。
    The detected value of the total intensity is P, the detected value of the total intensity before a predetermined time is P ′, the detected value of the intensity of the extracted signal is P filter, and the intensity of the extracted signal before the predetermined time is detected. Let the value be P filter ′,
    The wavelength according to any one of claims 1 to 12, wherein the target value setting unit determines a target value after resetting based on P, P ', P filter and P filter '. Multiplex optical transmission system.
  17.  前記目標値設定部は、再設定前の目標値をPt´とし、再設定後の目標値をPtとするとき、Pt=Pt´×(P/Pfilter)/(P´/Pfilter´)またはlogPt=logPt´+(logP-logPfilter)-(logP´-logPfilter´)を満たすようにPtを決定することを特徴とする請求項16に記載の波長多重光伝送システム。 When the target value before resetting is Pt ′ and the target value after resetting is Pt, the target value setting unit Pt = Pt ′ × (P / P filter ) / (P ′ / P filter ′) 17. The wavelength division multiplexing optical transmission system according to claim 16, wherein Pt is determined so as to satisfy logPt = logPt ′ + (logP−logP filter ) − (logP′−logP filter ′).
  18.  波長の異なる複数の光信号が波長多重された波長多重光を受信し、前記波長多重光を増幅して出力する光中継装置であって、
     前記波長多重光を増幅する光増幅器と、
     前記光増幅器による増幅前または前記光増幅器による増幅後の前記波長多重光の強度を減衰させる可変減衰器と、
     増幅後の前記波長多重光の強度の目標値を設定する目標値設定部と、
     前記光増幅器および前記可変減衰器を通過後の前記波長多重光の強度が前記目標値となるよう前記可変減衰器を制御する制御部と、
     受信した前記波長多重光のトータル強度を検出するトータル強度検出部と、
     受信した前記波長多重光のうち一部の波長帯の信号を抽出する光抽出フィルタと、
     前記光抽出フィルタにより抽出された抽出信号の強度を検出する抽出信号強度検出部と、
     を備え、
     前記目標値設定部は、前記トータル強度の変化比率と前記抽出信号の強度の変化比率とが略同一であるか否かに基づいて、前記目標値を維持するか再設定するかを決定することを特徴とする光中継装置。
    An optical repeater that receives wavelength-multiplexed light in which a plurality of optical signals having different wavelengths are wavelength-multiplexed, amplifies the wavelength-multiplexed light, and outputs the amplified light.
    An optical amplifier for amplifying the wavelength multiplexed light;
    A variable attenuator for attenuating the intensity of the wavelength multiplexed light before amplification by the optical amplifier or after amplification by the optical amplifier;
    A target value setting unit for setting a target value of the intensity of the wavelength multiplexed light after amplification;
    A control unit that controls the variable attenuator so that the intensity of the wavelength multiplexed light after passing through the optical amplifier and the variable attenuator becomes the target value;
    A total intensity detector that detects the total intensity of the received wavelength multiplexed light;
    A light extraction filter for extracting a signal in a part of the wavelength band of the received wavelength multiplexed light;
    An extracted signal intensity detector for detecting the intensity of the extracted signal extracted by the light extraction filter;
    With
    The target value setting unit determines whether to maintain or reset the target value based on whether or not the change ratio of the total intensity and the intensity change ratio of the extracted signal are substantially the same. An optical repeater characterized by.
  19.  波長の異なる複数の光信号が波長多重された波長多重光を受信し、前記波長多重光を増幅して出力する光中継装置における光強度制御方法であって、
     前記光中継装置は、
     前記波長多重光を増幅する光増幅器と、
     前記光増幅器による増幅前または前記光増幅器による増幅後の前記波長多重光の強度を減衰させる可変減衰器と、
     を備え、
     増幅後の前記波長多重光の強度の目標値を設定する目標値設定ステップと、
     前記光増幅器および前記可変減衰器を通過後の前記波長多重光の強度が前記目標値となるよう前記可変減衰器を制御する制御ステップと、
     受信した前記波長多重光のトータル強度を検出するトータル強度検出ステップと、
     受信した前記波長多重光のうち一部の波長帯の信号を抽出する光抽出ステップと、
     前記光抽出ステップにより抽出された抽出信号の強度を検出する抽出信号強度検出ステップと、
     前記トータル強度の変化比率と前記抽出信号の強度の変化比率とが略同一であるか否かに基づいて、前記目標値を維持するか再設定するかを決定する判断ステップと、
     を含むことを特徴とする光強度制御方法。
    A light intensity control method in an optical repeater that receives wavelength multiplexed light in which a plurality of optical signals having different wavelengths are wavelength multiplexed and amplifies and outputs the wavelength multiplexed light,
    The optical repeater is
    An optical amplifier for amplifying the wavelength multiplexed light;
    A variable attenuator for attenuating the intensity of the wavelength multiplexed light before amplification by the optical amplifier or after amplification by the optical amplifier;
    With
    A target value setting step for setting a target value of the intensity of the wavelength multiplexed light after amplification;
    A control step for controlling the variable attenuator so that the intensity of the wavelength multiplexed light after passing through the optical amplifier and the variable attenuator becomes the target value;
    A total intensity detecting step for detecting the total intensity of the received wavelength multiplexed light;
    A light extraction step of extracting a signal in a part of the wavelength band of the received wavelength multiplexed light;
    An extraction signal intensity detection step for detecting the intensity of the extraction signal extracted by the light extraction step;
    A determination step for determining whether to maintain or reset the target value based on whether the change ratio of the total intensity and the change ratio of the intensity of the extracted signal are substantially the same;
    The light intensity control method characterized by including.
PCT/JP2012/055691 2012-03-06 2012-03-06 Wavelength multiplexed photo-transmission system, photo-relay device, and light intensity control method WO2013132596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055691 WO2013132596A1 (en) 2012-03-06 2012-03-06 Wavelength multiplexed photo-transmission system, photo-relay device, and light intensity control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055691 WO2013132596A1 (en) 2012-03-06 2012-03-06 Wavelength multiplexed photo-transmission system, photo-relay device, and light intensity control method

Publications (1)

Publication Number Publication Date
WO2013132596A1 true WO2013132596A1 (en) 2013-09-12

Family

ID=49116112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055691 WO2013132596A1 (en) 2012-03-06 2012-03-06 Wavelength multiplexed photo-transmission system, photo-relay device, and light intensity control method

Country Status (1)

Country Link
WO (1) WO2013132596A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023155451A1 (en) * 2022-02-17 2023-08-24 华为技术有限公司 Method, station, and system for adjusting optical power

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138649A1 (en) * 2006-05-25 2007-12-06 Mitsubishi Electric Corporation Optical relay device and optical relay transmission system
WO2009016695A1 (en) * 2007-07-27 2009-02-05 Fujitsu Limited Optical amplifier, and optical transmission system including the same
JP2009165166A (en) * 2009-04-13 2009-07-23 Hitachi Communication Technologies Ltd Optical transmission apparatus
JP2010123698A (en) * 2008-11-18 2010-06-03 Fujitsu Ltd Optical amplifier and optical reception module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138649A1 (en) * 2006-05-25 2007-12-06 Mitsubishi Electric Corporation Optical relay device and optical relay transmission system
WO2009016695A1 (en) * 2007-07-27 2009-02-05 Fujitsu Limited Optical amplifier, and optical transmission system including the same
JP2010123698A (en) * 2008-11-18 2010-06-03 Fujitsu Ltd Optical amplifier and optical reception module
JP2009165166A (en) * 2009-04-13 2009-07-23 Hitachi Communication Technologies Ltd Optical transmission apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023155451A1 (en) * 2022-02-17 2023-08-24 华为技术有限公司 Method, station, and system for adjusting optical power

Similar Documents

Publication Publication Date Title
JP4727485B2 (en) Optical transmission equipment
JP5863172B2 (en) Optical receiver
JP6485189B2 (en) Optical transmission system and optical transmission device
US9166679B2 (en) Optical amplification apparatus, method for controlling same, optical receiver station, and optical transmission system
JP2008278182A (en) Controller of node for transferring signal light
US8861965B2 (en) Optical transmission apparatus
US10911137B2 (en) Optical amplifier apparatus, optical communications station, and optical communications system
JP2010130270A (en) Optical wavelength multiplexed transmission apparatus, and optical wavelength multiplexed transmission method
JP3938270B2 (en) Optical repeater amplifier
US8050574B2 (en) Optical receiving apparatus and optical level adjusted quantity setting method therefor
CN108604926B (en) Signal light interruption detection device, optical amplifier, optical wavelength division multiplexing transmission device, and optical wavelength division multiplexing transmission system
US8922878B2 (en) Optical amplifier and method
US9520694B2 (en) Optical amplifier with loss adjustment unit based on gain
WO2013132596A1 (en) Wavelength multiplexed photo-transmission system, photo-relay device, and light intensity control method
JP5188512B2 (en) Optical transmission system and repeater
US9001413B2 (en) Control circuit, control method, and transmission system
US8553318B2 (en) Optical amplifying device, gain control method, optical transmission device, and gain control device
JP5617510B2 (en) Optical node and optical communication method
JP6366257B2 (en) Optical amplification apparatus, optical communication system, and optical amplification method
US20110311236A1 (en) Optical amplifier, control method therefor, and optical transmission system
JP7535915B2 (en) Optical Transmission Equipment
JP5375991B2 (en) Signal input detection device for detecting presence / absence of optical signal input
JP6132595B2 (en) Raman amplifier, optical repeater, optical communication system, Raman amplification control method, and program
JP6019704B2 (en) Optical transceiver
JP2012034102A (en) Wavelength multiplex signal light receiving apparatus and light wavelength multiplex transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP