[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013132546A1 - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
WO2013132546A1
WO2013132546A1 PCT/JP2012/004772 JP2012004772W WO2013132546A1 WO 2013132546 A1 WO2013132546 A1 WO 2013132546A1 JP 2012004772 W JP2012004772 W JP 2012004772W WO 2013132546 A1 WO2013132546 A1 WO 2013132546A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance value
communication
voltage
antenna
external power
Prior art date
Application number
PCT/JP2012/004772
Other languages
English (en)
French (fr)
Inventor
滋 森本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12870779.1A priority Critical patent/EP2824843B1/en
Priority to JP2013529488A priority patent/JP5352033B1/ja
Priority to CN201280027374.1A priority patent/CN104025464B/zh
Priority to US14/123,357 priority patent/US9337904B2/en
Publication of WO2013132546A1 publication Critical patent/WO2013132546A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0715Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including means to regulate power transfer to the integrated circuit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • G06K19/0726Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs the arrangement including a circuit for tuning the resonance frequency of an antenna on the record carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves

Definitions

  • the present invention relates to a communication device that communicates using proximity wireless communication.
  • the antenna matching conditions between the reader / writer and the RFID tag are fixed in advance. Therefore, when a reader / writer compatible with a plurality of communication standards communicates with an RFID tag, if the matching conditions are matched with one communication standard, there is a possibility that a communication distance cannot be sufficiently secured in another communication standard.
  • the communication distance between the reader / writer and the RFID tag varies depending on whether or not a voltage is applied from an external power source. Further, depending on the type of antenna of the reader / writer, the matching conditions may differ from those of the RFID tag antenna. Furthermore, there is a manufacturing variation in the RFID tag, and the resonance frequency changes due to this manufacturing variation, which affects the communication distance.
  • Patent Document 1 discloses that a variable capacitive element of a resonance circuit tuning system is adjusted in order to detect at least one of the current and voltage of an antenna coil and change the resonance impedance of the antenna coil based on the detection. Is disclosed.
  • the capacitive element is adjusted using the voltage value of the antenna coil.
  • the frequency of the carrier wave and the frequency of the data modulation signal are greatly different.
  • the RFID tag When the RFID tag is operated by applying a voltage from an external power source, the RFID tag operates with the energy of the carrier wave from the reader / writer. do not do. Therefore, the communication distance is often increased by adjusting the matching of the antenna of the RFID tag so that it resonates at the frequency of the data modulation signal instead of the frequency of the carrier wave at which the antenna coil voltage value is maximum. .
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a communication device that can be adjusted to an optimal communication distance.
  • a communication device includes an antenna that transmits and receives signals by proximity wireless communication, a signal processing circuit that processes signals transmitted and received by the antenna, and a serial connection between the antenna and the signal processing circuit.
  • a capacitive element disposed; and a control unit that controls a capacitance value of the capacitive element, wherein the control unit determines a capacitance of the capacitive element according to whether a voltage is applied from an external power source. Change the value.
  • the antenna transmits and receives signals by proximity wireless communication.
  • the signal processing circuit processes a signal transmitted and received by the antenna.
  • the capacitive element is arranged in series between the antenna and the signal processing circuit.
  • the control unit controls the capacitance value of the capacitive element.
  • a control part changes the capacitance value of a capacitive element according to whether the voltage is applied from the external power supply.
  • the capacitance value of the capacitive element is changed depending on whether or not a voltage is applied from an external power supply, the voltage is applied from the case where the voltage is applied from the external power supply and the voltage from the external power supply. It is possible to adjust the communication distance to the optimum when it is not.
  • FIG. 1 is a diagram showing an overall configuration of a communication system according to an embodiment of the present invention
  • FIG. 2 is a diagram showing a detailed configuration of a transmission / reception unit shown in FIG.
  • the communication system shown in FIG. 1 includes an RFID tag 1 and a reader / writer 2.
  • the reader / writer 2 is sometimes called an initiator, and the RFID tag 1 is sometimes called a target.
  • the RFID tag 1 and the reader / writer 2 transmit / receive signals to / from each other by proximity wireless communication.
  • the RFID tag 1 includes a transmission / reception unit 11, a signal processing unit 12, and an external power supply terminal 13. Signals are transmitted by magnetic flux coupling between the antenna coils of the RFID tag 1 and the reader / writer 2.
  • the transmission / reception unit 11 transmits a signal to the reader / writer 2 and receives a signal from the reader / writer 2.
  • the transmission signal is output from the signal processing unit 12 to the transmission / reception unit 11, and the reception signal is output from the transmission / reception unit 11 to the signal processing unit 12.
  • the transmission / reception unit 11 includes an antenna coil 111, a capacitive element 112, and a switch 113.
  • the antenna coil 111 includes a first antenna coil 111a and a second antenna coil 111b.
  • the second antenna coil 111b has an inductance different from that of the first antenna coil 111a.
  • RFID in the HF (High Frequency) band using the 13.56 MHz band is used as the proximity wireless communication.
  • the antenna coil 111 (the first antenna coil 111a or the second antenna coil 111b) receives a signal transmitted from the reader / writer 2.
  • the capacitive element 112 is a variable capacitor, for example, and is disposed in series between the antenna coil 111 (the first antenna coil 111a and the second antenna coil 111b) and the signal processing circuit 121.
  • the capacitive element 112 can change the capacitance value in accordance with a control signal from the control unit 122.
  • the switch 113 switches to one of the first antenna coil 111a and the second antenna coil 111b according to a control signal from the control unit 122, and either the first antenna coil 111a or the second antenna coil 111b,
  • the signal processing circuit 121 is connected.
  • the signal processing unit 12 includes a signal processing circuit 121, a control unit 122, a memory 123, and a voltage monitoring unit 124.
  • the external power supply terminal 13 is a terminal that receives supply of voltage from an external power supply.
  • the voltage monitor unit 124 monitors whether or not a voltage is applied to the external power supply terminal 13 from the outside.
  • the voltage monitoring unit 124 creates operation mode information indicating whether or not a voltage is applied to the external power supply terminal 13 from the outside, and outputs the operation mode information to the control unit 122.
  • the voltage monitor unit 124 monitors the voltage supplied from the external power supply terminal 13 to the signal processing circuit 121.
  • the voltage monitor unit 124 receives an operation mode read command from the control unit 122 and outputs operation mode information to the control unit 122 according to the received operation mode read command.
  • the voltage monitor unit 124 determines that the operation mode is an operation mode that operates by supplying a voltage from the external power source.
  • the voltage monitor unit 124 receives a magnetic field signal instead of the voltage supply from the external power source. It is determined that the operation mode is operated by the magnetic field energy from the transmission / reception unit 11.
  • the signal processing circuit 121 processes a signal transmitted and received by the transmission / reception unit 11.
  • the signal processing circuit 121 performs analog / digital conversion on the reception signal from the transmission / reception unit 11 and also performs digital / analog conversion on the transmission signal to the transmission / reception unit 11.
  • the signal processing circuit 121 operates in any one of an operation mode that operates by voltage supply from an external power supply and an operation mode that operates by magnetic field energy from the transmission / reception unit 11 that has received a magnetic field signal.
  • the memory 123 stores a reference table in which a capacitance value and an antenna coil are associated with whether or not a voltage is applied from an external power source and a plurality of communication standards.
  • the memory 123 stores a reference table in which a voltage value is applied from an external power source and a plurality of communication standards are associated with a capacitance value and an antenna coil. It is not limited to this.
  • the memory 123 may store a reference table in which a capacitance value and an antenna coil are associated with whether or not a voltage is applied from an external power source.
  • the memory 123 may store a reference table in which a capacitance value is associated with whether or not a voltage is applied from an external power source. Further, the memory 123 determines whether or not a voltage is applied from an external power source.
  • a reference table in which antenna coils are associated with each other may be stored.
  • the control unit 122 outputs a control signal for controlling the capacitance value of the capacitive element 112 to the transmission / reception unit 11. In addition, the control unit 122 outputs a control signal for switching the first and second antenna coils 111 a and 111 b having different inductances to the transmission / reception unit 11. The control unit 122 changes the capacitance value of the capacitive element 112 according to whether or not a voltage is applied from an external power source. The control unit 122 controls the switch 113 to switch to one of the plurality of antenna coils (the first antenna coil 111a and the second antenna coil 111b) depending on whether or not a voltage is applied from an external power source. .
  • the control unit 122 changes the capacitance value of the capacitive element 112 so that the communication distance is longer when the voltage is applied from the external power source than when the voltage is not applied from the external power source.
  • the control unit 122 switches the switch 113 to switch to one of the plurality of antenna coils so that the communication distance is longer when the voltage is applied from the external power supply than when the voltage is not applied from the external power supply.
  • the control unit 122 reads the capacitance value and antenna coil corresponding to the communication standard information included in the received signal and the operation mode information output by the voltage monitor unit 124 from the reference table, and reads the current value of the capacitive element 112. The capacitance value is changed to the read capacitance value, and the current antenna coil is switched to the read antenna coil.
  • the control unit 122 may read the capacitance value corresponding to the operation mode information output by the voltage monitor unit 124 from the reference table, and change the current capacitance value of the capacitive element 112 to the read capacitance value. . Further, the control unit 122 reads the capacitance value corresponding to the communication standard information included in the received signal and the operation mode information output by the voltage monitor unit 124 from the reference table, and the current capacity of the capacitive element 112 The value may be changed to the read capacitance value. Further, the control unit 122 reads the capacitance value and antenna coil corresponding to the operation mode information output by the voltage monitoring unit 124 from the reference table, and changes the current capacitance value of the capacitive element 112 to the read capacitance value. At the same time, the current antenna coil may be switched to the read antenna coil.
  • the signal processing circuit 121 receives the data signal while the control unit 122 changes the capacitance value. The operation is performed, and the control unit 122 controls the capacitive element 112 with the capacitance value at the time when the data signal is received.
  • the reader / writer 2 includes a transmission / reception unit 21, a signal processing unit 22, and an external power supply terminal 23.
  • the configurations of the transmission / reception unit 21, the signal processing unit 22, and the external power supply terminal 23 are the same as those of the transmission / reception unit 11, the signal processing unit 12, and the external power supply terminal 13 of the RFID tag 1, and thus description thereof is omitted.
  • the transmission / reception unit 11 shown in FIG. 2 includes the first and second antenna coils 111a and 111b, the capacitive element 112, and the switch 113, but the present invention is not particularly limited thereto.
  • the transmission / reception unit 11 may include one antenna coil 111 and a capacitive element 112.
  • FIG. 3 is a diagram showing a detailed configuration of the transmission / reception unit in a modification of the present embodiment.
  • the transmission / reception unit 11 ′ in the modification of the present embodiment includes an antenna coil 111 and a capacitive element 112.
  • the transmission / reception unit 11 ′ in the modification of the present embodiment can change the capacitance value of the capacitive element 112, but cannot switch the antenna coil.
  • the configuration of the transmission / reception unit 11 ′ in the modification of the present embodiment is the same as that of the transmission / reception unit 11 shown in FIG. 2 except that the antenna coil is not switched, and thus the description thereof is omitted.
  • the transmission / reception unit 11 of the present embodiment includes two antenna coils, the present invention is not particularly limited thereto, and may include three or more antenna coils.
  • the RFID tag 1 and the reader / writer 2 correspond to an example of a communication device
  • the antenna coil 111 corresponds to an example of an antenna
  • the signal processing circuit 121 corresponds to an example of a signal processing circuit
  • the capacitive element 112 corresponds to an example of a capacitive element
  • the control unit 122 corresponds to an example of a control unit
  • the first antenna coil 111a and the second antenna coil 111b correspond to an example of a plurality of antenna coils
  • the switch 113 corresponds to an example of a switch
  • the memory 123 corresponds to an example of a storage unit
  • the voltage monitor unit 124 corresponds to an example of a voltage monitor unit.
  • FIG. 4 is a diagram illustrating the input equivalent resistances of the transmission / reception unit and the signal processing unit illustrated in FIG. 1
  • FIG. 5 is a diagram illustrating the resonance characteristics of the transmission / reception unit illustrated in FIG. 1.
  • the vertical axis represents the current value I
  • the horizontal axis represents the frequency.
  • the configuration diagram shown in FIG. 4 shows a case where there is one antenna coil for the sake of simplicity.
  • the transmission / reception unit 11 is configured by an inductor (inductance L), a resistance (resistance value R), and a capacitive element (capacitance C). In terms of a circuit, it is composed of a load resistance (resistance value RL).
  • the selectivity Q value is RL (L / C) 0.5
  • the resonance frequency ⁇ 0 is 1 / (LC) 0.5 .
  • the inductance L increases, the resonance characteristics become steep and the current value peak I increases.
  • the inductance L becomes small, the resonance characteristics become gentle and the current value peak I becomes small.
  • the communication distance is shortened as compared with the case where the voltage is not applied from the external power source.
  • the communication distance varies depending on the presence / absence of a voltage from the external power supply, and communication is performed by changing the capacitance value of the capacitive element and the inductance of the antenna coil according to whether or not the voltage is applied from the external power supply. It is possible to increase the distance.
  • FIG. 6 is a diagram showing a spectrum when the communication standard is “Type F”
  • FIG. 7 is a diagram showing a spectrum when the communication standard is “Type B”.
  • the horizontal axis in FIGS. 6 and 7 represents the frequency.
  • the position of the modulation signal varies depending on the communication standard.
  • FIG. 8 is a diagram for explaining resonance characteristics when the communication standard is “Type F” and the capacitance value is changed.
  • FIG. 9 is a diagram illustrating the communication standard “Type F”, and the capacitance value and inductance. It is a figure for demonstrating the resonance characteristic in the case of changing.
  • a resonance characteristic 203 shown in FIG. 9 represents a resonance characteristic when no voltage is applied from an external power source, and a resonance characteristic 204 represents an example of a resonance characteristic when a voltage is applied from an external power source.
  • the control unit 122 when no voltage is applied from the external power supply, the control unit 122 sets the capacitance value of the capacitive element 112 so that the resonance characteristic 201 is maximized at the frequency of the carrier wave, and the voltage is applied from the external power supply. In this case, the control unit 122 can increase the communication distance by setting the capacitance value of the capacitive element 112 so that the resonance characteristic 202 is maximized at the frequency of the modulation signal in the vicinity of the carrier wave.
  • the control unit 122 when no voltage is applied from the external power source, the control unit 122 causes the capacitance value of the capacitive element 112 and the antenna coil to have a resonance characteristic 201 that is maximum and steep at the frequency of the carrier wave. Set the inductance. Further, when a voltage is applied from an external power supply, the control unit 122 causes the capacitance value of the capacitive element 112 and the inductance of the antenna coil so that the resonance characteristic 202 becomes maximum and gentle at the frequency of the modulation signal in the vicinity of the carrier wave. Set.
  • FIG. 10 is a diagram for explaining the antenna dependence characteristics of the communication distance when a voltage is applied from the external power supply
  • FIG. 11 is a diagram for explaining the antenna dependence characteristics of the communication distance when no voltage is applied from the external power supply. It is a figure for doing. 10 and 11, the vertical axis represents the communication distance (mm), and the horizontal axis represents the resonance frequency (MHz).
  • an antenna dependency characteristic 301 indicates an antenna dependency characteristic of an antenna coil having one turn
  • an antenna dependency characteristic 302 indicates an antenna dependency characteristic of an antenna coil having two turns
  • a characteristic 303 indicates an antenna dependence characteristic of the antenna coil having three turns.
  • an antenna dependency characteristic 311 indicates the antenna dependency characteristic of the antenna coil having one turn
  • an antenna dependency characteristic 312 indicates the antenna dependency characteristic of the antenna coil having two turns. Yes.
  • the communication distance of the antenna coil having one turn is the maximum when the resonance frequency is around 13.36 MHz.
  • the communication distance of the antenna coil having one turn is shorter than the communication distance of the antenna coil having two turns and the communication distance of the antenna coil having three turns.
  • the antenna dependence characteristic 303 of the antenna coil having 3 turns is gentler than the antenna dependence characteristic 301 of the antenna coil having 1 turn and the antenna dependence characteristic 302 of the antenna coil having 2 turns. It has become.
  • the communication distance of the antenna coil having one turn and the communication distance of the antenna coil having two turns have both resonance frequencies. It is the maximum when it is near 13.56 MHz. Further, the communication distance of the antenna coil having one turn is longer than the communication distance of the antenna coil having two turns. Furthermore, the antenna dependence characteristic 312 of the antenna coil having two turns is gentler than the antenna dependence characteristic 311 of the antenna coil having one turn.
  • the communication distance varies depending on the number of turns of the antenna coil, and the communication distance is affected by the number of turns of the antenna coil, that is, the inductance of the antenna coil. It can also be seen that the communication distance varies greatly depending on whether or not a voltage is applied from an external power source.
  • FIG. 12 is a sequence diagram for explaining the operation of the communication system in the present embodiment.
  • step S1 the transmission / reception unit 21 of the reader / writer 2 transmits a transmission permission request for requesting transmission of data to the RFID tag 1.
  • the transmission permission request includes standard information indicating which communication standard of the plurality of communication standards is used for transmission.
  • the transmission / reception unit 21 sequentially transmits a transmission permission request by a communication method corresponding to each communication standard until a transmission permission response is received. That is, for example, if the transmission receiving unit 21 transmits a transmission permission request by a communication method corresponding to the communication standard of “Type A” and receives a transmission permission response, communication corresponding to the communication standard of “Type A” is performed thereafter. Send data in the same way. On the other hand, if a transmission permission response is not received, a transmission permission request is transmitted by a communication method corresponding to the communication standard of “Type B”.
  • the transmission / reception unit 11 of the RFID tag 1 receives the transmission permission request transmitted by the transmission / reception unit 21.
  • the transmission receiving unit 11 outputs the received transmission permission request to the signal processing circuit 121.
  • the signal processing circuit 121 performs predetermined signal processing on the transmission permission request received by the transmission / reception unit 11.
  • the signal processing circuit 121 outputs communication standard information included in the received transmission permission request to the control unit 122.
  • step S2 the control unit 122 performs a process for changing the capacitance value of the capacitive element 112 and a process for switching the antenna coil.
  • control unit 122 outputs an operation mode read command for requesting operation mode information to the voltage monitor unit 124.
  • the voltage monitor unit 124 receives the operation mode read command from the control unit 122, the voltage monitor unit 124 outputs operation mode information indicating whether or not a voltage is applied from the external power source to the control unit 122.
  • control unit 122 acquires operation mode information from the voltage monitoring unit 124.
  • control unit 122 refers to the reference table stored in the memory 123, and the capacitance value corresponding to the communication standard information acquired from the signal processing circuit 121 and the operation mode information acquired from the voltage monitor unit 124. Read the antenna coil.
  • FIG. 13 is a diagram illustrating an example of a reference table stored in the memory 123.
  • the reference table associates a capacitance value and an inductor (antenna coil) with a plurality of communication standards and whether or not a voltage is applied from an external power source.
  • the capacitance value C1 and the inductor L1 are associated with the communication standard “Type A” and the external power supply “with application”, and the capacitance value C2 with the communication standard “Type B” and the external power supply “with application”.
  • the communication standard “Type F” and the external power supply “applied” are associated with the capacitance value C3 and the inductor L3, and the communication standard “Type A” and the external power supply “applied”.
  • “None” is associated with the capacitance value C4 and the inductor L4
  • the communication standard “Type B” and the external power supply “no application” are associated with the capacitance value C5 and the inductor L5.
  • the capacitance value C6 and the inductor L6 are associated with “Type F” and the external power supply “no application”.
  • the capacitance values C1 to C6 are different values.
  • the capacitance value C1 is larger than the capacitance value C4
  • the capacitance value C2 is larger than the capacitance value C5
  • Inductors L1 to L6 represent different inductors.
  • Control unit 122 selects antenna coils corresponding to inductors L1 to L6.
  • the inductances of the inductors L1 to L6 have the same relationship as the capacitance value of the capacitive element 112 described above. That is, when the capacitance value of the capacitive element 112 is fixed, the inductance of the inductor L1 is larger than the inductance of the inductor L4, the inductance of the inductor L2 is larger than the inductance of the inductor L5, and the inductance of the inductor L3 is the inductor L6. It is preferable that it is larger than the inductance.
  • the present invention is not particularly limited to this.
  • the transmission / reception unit 11 includes two antenna coils as illustrated in FIG. 2, the two inductors are associated with a plurality of communication standards and whether or not a voltage is applied from an external power source.
  • the capacitance value and the inductor are associated with the three communication standards and whether or not the voltage is applied from the external power supply, but the present invention is not particularly limited to this.
  • the capacitance value and the inductor may be associated only with whether or not a voltage is applied from an external power source.
  • the capacitance value and the inductor are associated with a plurality of communication standards and whether or not a voltage is applied from an external power supply, but the present invention is not particularly limited to this.
  • the inductor inductor (antenna coil) cannot be switched, only the capacitance value may be associated with a plurality of communication standards and whether or not a voltage is applied from an external power source.
  • control unit 122 outputs a control signal for changing the capacitance value of the capacitive element 112 to the read capacitance value to the transmission / reception unit 11, and transmits and receives a control signal for switching to the read antenna coil. To the unit 11.
  • the capacitive element 112 of the transmission / reception unit 11 changes the capacitance value based on the control signal output from the control unit 122.
  • the switch 113 of the transmission / reception unit 11 switches the antenna coil based on the control signal output from the control unit 122.
  • the process of changing the capacitance value of the capacitive element 112 and the process of switching the antenna coil are performed.
  • step S ⁇ b> 3 the control unit 122 outputs a control signal for transmitting a transmission permission response, which is a response signal to the transmission permission request, to the reader / writer 2 to the signal processing circuit 121.
  • the signal processing circuit 121 outputs a transmission permission response to the transmission / reception unit 11 based on the control signal output from the control unit 122.
  • the transmission / reception unit 11 transmits the transmission permission response output from the signal processing circuit 121 to the reader / writer 2.
  • the transmission / reception unit 21 of the reader / writer 2 receives the transmission permission response transmitted by the transmission / reception unit 11 of the RFID tag 1.
  • the transmission / reception unit 21 outputs the received transmission permission response to the signal processing unit 22.
  • step S4 when receiving the transmission permission response, the signal processing unit 22 starts data communication in accordance with the communication standard when the transmission permission request is transmitted.
  • the signal processing unit 22 outputs data to be transmitted to the RFID tag 1 to the transmission / reception unit 21, and the transmission / reception unit 21 transmits the data output from the signal processing unit 22 to the RFID tag 1.
  • the transmission / reception unit 11 of the RFID tag 1 receives the data transmitted by the transmission / reception unit 21 of the reader / writer 2 and outputs the received data to the signal processing circuit 121.
  • the signal processing circuit 121 performs predetermined signal processing on the data received by the transmission / reception unit 11.
  • the signal processing circuit 121 outputs the received data to the control unit 122.
  • the control unit 122 creates data to be transmitted to the reader / writer 2 based on the data output from the signal processing circuit 121 and outputs the data to the signal processing circuit 121.
  • the signal processing circuit 121 outputs the data output from the control unit 122 to the transmission / reception unit 11.
  • the transmission / reception unit 11 transmits the data output from the signal processing circuit 121 to the reader / writer 2.
  • the transmission / reception unit 21 of the reader / writer 2 performs a retry request for performing data communication again in step S5. Is transmitted to the RFID tag 1.
  • the control unit of the signal processing unit 22 of the reader / writer 2 determines that communication has been interrupted when there is no response from the RFID tag 1 even after a predetermined time has elapsed, and transmits and receives a retry request. 21 is instructed.
  • the transmission / reception unit 11 of the RFID tag 1 receives the retry request transmitted by the transmission / reception unit 21.
  • the transmission / reception unit 11 outputs the received retry request to the signal processing circuit 121.
  • the signal processing circuit 121 performs predetermined signal processing on the retry request received by the transmission / reception unit 11.
  • the signal processing circuit 121 outputs a control signal to the control unit 122 in response to the received retry request.
  • step S ⁇ b> 6 the controller 122 performs a search process for the capacitance value of the capacitive element 112.
  • FIG. 14 is a flowchart illustrating an example of search processing for the capacitance value of the capacitive element.
  • step S11 the control unit 122 sets the variable n to 0.
  • step S12 the control unit 122 increments the variable n.
  • step S13 the control unit 122 multiplies the negative coefficient ⁇ a (a is an integer), the variable n, and the change amount ⁇ C of the capacitance value, and sets the value to the set value of the current capacitance value.
  • the control value is calculated by adding.
  • step S14 the control unit 122 changes the capacitance value of the capacitive element 112 to the calculated capacitance value. That is, the control unit 122 outputs a control signal for changing the capacitance value of the capacitive element 112 to the calculated capacitance value to the transmission / reception unit 11.
  • the capacitive element 112 of the transmission / reception unit 11 changes the capacitance value based on the control signal output from the control unit 122.
  • step S15 the control unit 122 resumes data communication. That is, the control unit 122 outputs data that could not be transmitted to the reader / writer 2 to the signal processing circuit 121.
  • the signal processing circuit 121 outputs the data output from the control unit 122 to the transmission / reception unit 11.
  • the transmission / reception unit 11 transmits the data output from the signal processing circuit 121 to the reader / writer 2.
  • step S16 the control unit 122 determines whether data communication is possible. That is, after transmitting data, the control unit 122 determines whether data communication is possible by determining whether the data transmitted by the reader / writer 2 has been received. If the data from the reader / writer 2 is received, the control unit 122 determines that data communication is possible. Further, the control unit 122 determines that data communication is not possible when the data from the reader / writer 2 is not received and a predetermined time has elapsed.
  • control unit 122 continues data communication with the reader / writer 2 and ends the search process of the capacitance value of the capacitive element.
  • step S17 the control unit 122 increments the variable n.
  • step S18 the control unit 122 multiplies the positive coefficient + a (a is an integer), the variable n, and the change amount ⁇ C of the capacitance value, and adds the value to the set value of the current capacitance value. To calculate the control value.
  • step S19 the control unit 122 changes the capacitance value of the capacitive element 112 to the calculated capacitance value. That is, the control unit 122 outputs a control signal for changing the capacitance value of the capacitive element 112 to the calculated capacitance value to the transmission / reception unit 11.
  • the capacitive element 112 of the transmission / reception unit 11 changes the capacitance value based on the control signal output from the control unit 122.
  • step S20 the control unit 122 resumes data communication. That is, the control unit 122 outputs data that could not be transmitted to the reader / writer 2 to the signal processing circuit 121.
  • the signal processing circuit 121 outputs the data output from the control unit 122 to the transmission / reception unit 11.
  • the transmission / reception unit 11 transmits the data output from the signal processing circuit 121 to the reader / writer 2.
  • step S21 the control unit 122 determines whether data communication is possible. That is, after transmitting data, the control unit 122 determines whether data communication is possible by determining whether the data transmitted by the reader / writer 2 has been received. If the data from the reader / writer 2 is received, the control unit 122 determines that data communication is possible. In addition, the control unit 122 determines that data communication is not possible when the data from the reader / writer 2 is not received and a predetermined time has elapsed.
  • control unit 122 continues data communication with the reader / writer 2 and ends the search process of the capacitance value of the capacitive element.
  • control unit 122 returns to the process of step S12 and increments the variable n.
  • the search process for the capacitance value of the capacitive element is performed.
  • the negative coefficient ⁇ a (a is an integer) the variable n, and the change amount ⁇ C of the capacitance value, and adding the multiplied value to the current capacitance value
  • the reference carrier wave The resonance frequency can be moved in the direction in which the frequency decreases with respect to the frequency of.
  • the positive coefficient + a (a is an integer) the variable n, and the change amount ⁇ C of the capacity value, and adding the multiplied value to the current capacity value
  • the frequency of the reference carrier wave is increased.
  • the resonance frequency can be moved in the direction in which the frequency increases. Therefore, it is possible to adjust to the optimum communication distance by changing the capacity value.
  • the control unit 122 selects one antenna coil from the plurality of antenna coils after step S13 or S14 in FIG. 14 and switches to the switch 113 to switch to the selected antenna coil. Output a control signal.
  • the switch 113 switches the antenna coil based on a control signal from the control unit 122.
  • step S15 the control unit 122 resumes data communication.
  • the control unit 122 selects one antenna coil from the plurality of antenna coils after step S18 or S19 in FIG. 14, and switches to the selected antenna coil.
  • a control signal is output to the switch 113.
  • the change of the capacitance value and the switching of the antenna coil may be performed together, but only one of them may be performed.
  • the control unit 122 sequentially changes only the capacitance value, and when the capacitance value cannot be changed, the control unit 122 switches the antenna coil and sequentially changes the capacitance value again. By repeating this, the capacitance value is changed and the antenna coil is switched.
  • control unit 122 associates the changed current capacity value with whether or not a voltage is applied from an external power source and the communication standard. You may memorize
  • step S ⁇ b> 7 the transmission / reception unit 21 of the reader / writer 2 receives the data transmitted by the transmission / reception unit 11 of the RFID tag 1, and outputs the received data to the signal processing unit 22.
  • the signal processing unit 22 receives data from the RFID tag 1, the signal processing unit 22 resumes data communication.
  • the reader / writer 2 may perform the same processing as the capacitance value changing processing and the antenna coil switching processing in step S2 of FIG. That is, in step S8 of FIG. 12, the control unit of the signal processing unit 22 of the reader / writer 2 performs a process for changing the capacitance value of the capacitive element and a process for switching the antenna coil. Since the capacitance value changing process and the antenna coil switching process in the reader / writer 2 are the same as the capacitive element capacitance value changing process and the antenna coil switching process in the RFID tag 1, the description thereof will be omitted. .
  • step S9 of FIG. 12 the control unit of the signal processing unit 22 of the reader / writer 2 performs a capacitance value search process (and an antenna coil search process). Since the capacitance value search process (and the antenna coil search process) in the reader / writer 2 is the same as the capacitance value search process (and the antenna coil search process) in the RFID tag 1, description thereof will be omitted.
  • the capacitance value of the capacitive element 112 is changed depending on whether or not a voltage is applied from an external power supply.
  • the communication distance can be adjusted to the optimum when no voltage is applied from the power source.
  • the RFID tag 1 includes a capacitive element 112 arranged in series between the first and second antenna coils 111a and 111b and the signal processing circuit 121, and the first and second antennas.
  • the switch 113 for switching to one of the coils 111a and 111b is provided, the present invention is not particularly limited to this.
  • the capacitive element has a capacitance value different from that of the first capacitive element arranged in series between the first antenna coil 111a and the signal processing circuit 121, and the first capacitive element.
  • the RFID tag 1 further includes a switch for switching to one of the first and second capacitive elements, including a second capacitive element arranged in series between the coil 111b and the signal processing circuit 121. Also good.
  • the inductances of the first and second antenna coils 111a and 111b may be the same or different from each other.
  • the RFID tag 1 does not include a variable capacitive element, but includes a plurality of capacitive elements having different capacitance values arranged in series between the plurality of antenna coils and the signal processing circuit. You may prepare.
  • the control unit 122 may change the capacitance value of the capacitive element by switching a plurality of capacitive elements depending on whether or not a voltage is applied from an external power supply.
  • a communication device includes an antenna that transmits and receives signals by proximity wireless communication, a signal processing circuit that processes signals transmitted and received by the antenna, and a serial connection between the antenna and the signal processing circuit.
  • a capacitive element disposed; and a control unit that controls a capacitance value of the capacitive element, wherein the control unit determines a capacitance of the capacitive element according to whether a voltage is applied from an external power source. Change the value.
  • the antenna transmits and receives signals by proximity wireless communication.
  • the signal processing circuit processes a signal transmitted and received by the antenna.
  • the capacitive element is arranged in series between the antenna and the signal processing circuit.
  • the control unit controls the capacitance value of the capacitive element.
  • a control part changes the capacitance value of a capacitive element according to whether the voltage is applied from the external power supply.
  • the capacitance value of the capacitive element changes depending on whether or not voltage is applied from an external power supply, when voltage is applied from an external power supply and when voltage is not applied from an external power supply And can be adjusted to the optimum communication distance.
  • the antenna includes a plurality of antenna coils each having a different inductance, and further includes a switch for switching to any one of the plurality of antenna coils, and the control unit is applied with a voltage from an external power source. It is preferable to control the switch to switch to one of the plurality of antenna coils depending on whether or not the antenna coil is present.
  • the antenna includes a plurality of antenna coils each having a different inductance.
  • the switch switches to one of the plurality of antenna coils.
  • the control unit controls the switch to switch to one of the plurality of antenna coils depending on whether or not a voltage is applied from the external power source.
  • the antenna can be switched to one of a plurality of antenna coils having different inductances, so that the communication distance can be adjusted with higher accuracy.
  • the storage unit stores a reference table in which the capacitance value is associated with whether or not a voltage is applied from an external power source, and monitors whether or not a voltage is applied from the external power source.
  • a voltage monitor unit that outputs operation mode information indicating whether or not a voltage is applied from an external power source, and the control unit has a capacitance value corresponding to the operation mode information output by the voltage monitor unit Is read from the reference table, and the current capacitance value of the capacitive element is preferably changed to the read capacitance value.
  • the storage unit stores a reference table in which a capacitance value is associated with whether or not a voltage is applied from an external power source.
  • the voltage monitor unit monitors whether or not a voltage is applied from an external power source, and outputs operation mode information indicating whether or not a voltage is applied from the external power source.
  • the control unit reads the capacitance value corresponding to the operation mode information output by the voltage monitoring unit from the reference table, and changes the current capacitance value of the capacitive element to the read capacitance value.
  • the capacitance value corresponding to the operation mode information output by the voltage monitor unit is read from the reference table, and the current capacitance value of the capacitive element is changed to the read capacitance value.
  • the value can be changed.
  • the communication device performs communication according to a plurality of communication standards
  • the reference table corresponds to the capacity value according to whether a voltage is applied from an external power source and the plurality of communication standards.
  • the antenna receives a signal transmitted from another communication device including communication standard information for specifying a communication standard
  • the control unit includes the communication standard information included in the received signal.
  • a capacitance value corresponding to the operation mode information output by the voltage monitor unit is read from the reference table, and the current capacitance value of the capacitive element is changed to the read capacitance value.
  • the communication device performs communication according to a plurality of communication standards.
  • the reference table associates a capacitance value with whether or not a voltage is applied from an external power source and a plurality of communication standards.
  • the antenna receives a signal transmitted from another communication device including communication standard information for specifying the communication standard.
  • the control unit reads out the capacitance value corresponding to the communication standard information included in the received signal and the operation mode information output by the voltage monitoring unit from the reference table, and calculates the current capacitance value of the capacitive element, The read capacitance value is changed.
  • the capacity value can be changed depending on whether a voltage is applied from an external power source and what communication standard is used for close proximity wireless communication, and the communication distance can be adjusted to a more optimal communication distance. .
  • a storage unit that stores a reference table in which the capacitance value and the antenna coil are associated with each other depending on whether a voltage is applied from an external power source, and whether a voltage is applied from an external power source
  • a voltage monitor unit that outputs operation mode information indicating whether or not a voltage is applied from an external power source, and the control unit includes the operation mode information output by the voltage monitor unit.
  • the corresponding capacitance value and antenna coil are read from the reference table, the current capacitance value of the capacitive element is changed to the read capacitance value, and the current antenna coil is switched to the read antenna coil.
  • the storage unit stores the reference table in which the capacitance value and the antenna coil are associated with each other depending on whether a voltage is applied from the external power source.
  • the voltage monitor unit monitors whether or not a voltage is applied from an external power source, and outputs operation mode information indicating whether or not a voltage is applied from the external power source.
  • the control unit reads the capacitance value and the antenna coil corresponding to the operation mode information output by the voltage monitoring unit from the reference table, changes the current capacitance value of the capacitive element to the read capacitance value, The antenna coil is switched to the read antenna coil.
  • the capacitance value and antenna coil corresponding to the operation mode information output by the voltage monitor unit are read from the reference table, the current capacitance value of the capacitive element is changed to the read capacitance value, and the current Since the antenna coil is switched to the read antenna coil, the capacitance value can be easily changed, and the antenna coil can be easily switched.
  • the communication device performs communication according to a plurality of communication standards, and the reference table determines whether the voltage value is applied from an external power source and the plurality of communication standards and the capacity value and the
  • the antenna coil is associated, the antenna receives a signal transmitted from another communication device including communication standard information for specifying a communication standard, and the control unit is included in the received signal
  • a capacitance value and an antenna coil corresponding to the communication standard information and the operation mode information output by the voltage monitor unit are read from the reference table, and the current capacitance value of the capacitive element is set to the read capacitance value. It is preferable to change the current antenna coil to the read antenna coil.
  • the communication device performs communication according to a plurality of communication standards.
  • a voltage is applied from an external power source and a plurality of communication standards are associated with a capacitance value and an antenna coil.
  • the antenna receives a signal transmitted from another communication device including communication standard information for specifying the communication standard.
  • the control unit reads the capacitance value and antenna coil corresponding to the communication standard information included in the received signal and the operation mode information output by the voltage monitoring unit from the reference table, and reads the current capacity of the capacitive element.
  • the capacitance value is changed to the read capacitance value, and the current antenna coil is switched to the read antenna coil.
  • the capacity value can be changed and the antenna coil can be switched depending on whether a voltage is applied from an external power source and what communication standard is used for close proximity wireless communication. It is possible to adjust the communication distance.
  • the control unit when the communication is interrupted in the middle of the data communication, or when the data communication does not start even though the polling communication is successful, changes the capacity value while the signal is changed.
  • the processing circuit performs a data signal reception operation, and the control unit controls the capacitive element with the capacitance value at the time when the data signal is received.
  • the signal processing circuit changes the capacitance value while the control unit changes the capacitance value.
  • the receiving operation is performed.
  • the control unit controls the capacitive element with the capacitance value at the time when the data signal is received.
  • the optimal communication distance can be obtained by changing the capacitance value of the capacitive element again. The data communication can be resumed.
  • the communication device according to the present invention can be adjusted to an optimum communication distance, and is useful for a communication device that communicates using proximity wireless communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Near-Field Transmission Systems (AREA)
  • Power Engineering (AREA)

Abstract

 RFIDタグ(1)は、近接無線通信により信号を送受信するアンテナコイル(111)と、アンテナコイル(111)によって送受信される信号を処理する信号処理回路(121)と、アンテナコイル(111)と信号処理回路(121)との間に直列に配置された容量性素子(112)と、容量性素子(112)の容量値を制御する制御部(122)とを備え、制御部(122)は、外部電源から電圧が印加されているか否かに応じて、容量性素子(112)の容量値を変化させる。

Description

通信装置
 本発明は、近接無線通信を利用して通信する通信装置に関するものである。
 従来、RFID(Radio Frequency IDentification)などを用いて機器間で近接無線通信を行う技術が提案されている。このような近接無線通信において、リーダ/ライタとRFIDタグとの通信距離は、近接無線通信の通信規格によって異なる。近接無線通信の通信規格は、現在、Type A、Type B及びType Fの3種類があり、各通信規格で変調方式などが異なるため、最適なアンテナの整合条件が異なっている。
 通常、リーダ/ライタとRFIDタグとのアンテナの整合条件は予め固定されている。そのため、複数の通信規格に対応したリーダ/ライタとRFIDタグとが通信する場合、1つの通信規格に整合条件を合わせると、他の通信規格においては通信距離が充分に確保できないおそれがある。
 また、リーダ/ライタとRFIDタグとの通信距離は、外部電源から電圧を印加するか否かによっても異なる。さらに、リーダ/ライタのアンテナの種類によっては、RFIDタグのアンテナと整合条件が異なる場合がある。さらにまた、RFIDタグには、製造バラツキが存在し、この製造バラツキによって共振周波数が変化し、通信距離に影響を与える。
 例えば、特許文献1には、アンテナコイルの電流と電圧との少なくとも一方を検出し、検出に基づいてアンテナコイルの共振インピーダンスを変えるために、共振回路同調システムの可変の容量性素子を調整することが開示されている。
 特許文献1では、アンテナコイルの電圧値を利用して容量性素子を調整している。しかしながら、通信規格によっては搬送波の周波数とデータ変調信号の周波数とは大きく異なっており、RFIDタグが外部電源から電圧を印加されて動作する場合はRFIDタグがリーダ/ライタからの搬送波のエネルギーで動作しない。そのため、RFIDタグのアンテナの整合調整を、アンテナコイルの電圧値が最大になる搬送波の周波数ではなく、データ変調信号の周波数で共振するように調整することによって、通信距離がより増大する場合が多い。
特表2009-543442号公報
 本発明は、上記の問題を解決するためになされたもので、最適な通信距離に調整することができる通信装置を提供することを目的とするものである。
 本発明の一局面に係る通信装置は、近接無線通信により信号を送受信するアンテナと、前記アンテナによって送受信される信号を処理する信号処理回路と、前記アンテナと前記信号処理回路との間に直列に配置された容量性素子と、前記容量性素子の容量値を制御する制御部とを備え、前記制御部は、外部電源から電圧が印加されているか否かに応じて、前記容量性素子の容量値を変化させる。
 この構成によれば、アンテナは、近接無線通信により信号を送受信する。信号処理回路は、アンテナによって送受信される信号を処理する。容量性素子は、アンテナと信号処理回路との間に直列に配置される。制御部は、容量性素子の容量値を制御する。そして、制御部は、外部電源から電圧が印加されているか否かに応じて、容量性素子の容量値を変化させる。
 本発明によれば、外部電源から電圧が印加されているか否かに応じて、容量性素子の容量値が変化されるので、外部電源から電圧が印加されている場合と外部電源から電圧が印加されていない場合とで最適な通信距離に調整することができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態における通信システムの全体構成を示す図である。 図1に示す送信受信部の詳細な構成を示す図である。 本実施の形態の変形例における送信受信部の詳細な構成を示す図である。 図1に示す送信受信部及び信号処理部の入力等価抵抗を表す図である。 図1に示す送信受信部の共振特性を示す図である。 通信規格が“Type F”である場合のスペクトルを示す図である。 通信規格が“Type B”である場合のスペクトルを示す図である。 通信規格が“Type F”であり、容量値を変化させる場合の共振特性について説明するための図である。 通信規格が“Type F”であり、容量値及びインダクタンスを変化させる場合の共振特性について説明するための図である。 外部電源から電圧が印加される場合の通信距離のアンテナ依存特性について説明するための図である。 外部電源から電圧が印加されない場合の通信距離のアンテナ依存特性について説明するための図である。 本実施の形態における通信システムの動作について説明するためのシーケンス図である。 メモリに記憶されている参照テーブルの一例を示す図である。 容量性素子の容量値のサーチ処理の一例を示すフローチャートである。
 以下添付図面を参照しながら、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
 図1は、本発明の実施の形態における通信システムの全体構成を示す図であり、図2は、図1に示す送信受信部の詳細な構成を示す図である。図1に示す通信システムは、RFIDタグ1と、リーダ/ライタ2とを備える。なお、リーダ/ライタ2はイニシエータ、RFIDタグ1はターゲットといわれる場合もある。
 RFIDタグ1と、リーダ/ライタ2とは、近接無線通信により互いに信号を送受信する。
 RFIDタグ1は、送信受信部11、信号処理部12及び外部電源端子13を備える。RFIDタグ1及びリーダ/ライタ2の互いのアンテナコイルが磁束結合されることにより、信号が伝達される。
 送信受信部11は、リーダ/ライタ2へ信号を送信するとともに、リーダ/ライタ2から信号を受信する。なお、送信信号は、信号処理部12から送信受信部11へ出力され、受信信号は、送信受信部11から信号処理部12へ出力される。
 図2に示すように、送信受信部11は、アンテナコイル111、容量性素子112及びスイッチ113を備える。アンテナコイル111は、第1のアンテナコイル111a及び第2のアンテナコイル111bを含む。
 第2のアンテナコイル111bは、第1のアンテナコイル111aとはインダクタンスが異なる。本実施の形態では、近接無線通信として、13.56MHz帯を用いるHF(High Frequency)帯域のRFIDを用いる。アンテナコイル111(第1のアンテナコイル111a又は第2のアンテナコイル111b)は、リーダ/ライタ2から送信された信号を受信する。
 容量性素子112は、例えば可変コンデンサであり、アンテナコイル111(第1のアンテナコイル111a及び第2のアンテナコイル111b)と信号処理回路121との間に直列に配置される。容量性素子112は、制御部122からの制御信号に応じて容量値を変化させることが可能である。
 スイッチ113は、制御部122からの制御信号に応じて第1のアンテナコイル111a及び第2のアンテナコイル111bのいずれかに切り替え、第1のアンテナコイル111a及び第2のアンテナコイル111bのいずれかと、信号処理回路121とを接続する。
 信号処理部12は、信号処理回路121、制御部122、メモリ123及び電圧モニタ部124を備える。外部電源端子13は、外部電源からの電圧の供給を受け付ける端子である。
 電圧モニタ部124は、外部電源端子13に外部から電圧が印加されているか否かをモニタする。電圧モニタ部124は、外部電源端子13に外部から電圧が印加されているか否かを表す動作モード情報を作成し、制御部122へ出力する。電圧モニタ部124は、外部電源端子13から信号処理回路121へ供給される電圧をモニタする。電圧モニタ部124は、制御部122からの動作モード読み出し命令を受け取るとともに、受け取った動作モード読み出し命令に応じて動作モード情報を制御部122へ出力する。電圧モニタ部124は、電圧が検知された場合、外部電源からの電圧供給により動作する動作モードであると判断し、電圧が検知されない場合、外部電源からの電圧供給ではなく、磁界信号を受けた送信受信部11からの磁界エネルギーにより動作する動作モードであると判断する。
 信号処理回路121は、送信受信部11によって送受信される信号を処理する。信号処理回路121は、送信受信部11からの受信信号をアナログ/デジタル変換するとともに、送信受信部11への送信信号をデジタル/アナログ変換する。信号処理回路121は、外部電源からの電圧供給により動作する動作モードと、磁界信号を受けた送信受信部11からの磁界エネルギーにより動作する動作モードとのいずれかの動作モードにより動作する。
 メモリ123は、外部電源から電圧が印加されているか否かと複数の通信規格とに容量値及びアンテナコイルを対応付けた参照テーブルを記憶する。
 なお、本実施の形態では、メモリ123は、外部電源から電圧が印加されているか否かと複数の通信規格に容量値及びアンテナコイルを対応付けた参照テーブルを記憶しているが、本発明は特にこれに限定されない。RFIDタグ1が1つの通信規格にのみ対応している場合、メモリ123は、外部電源から電圧が印加されているか否かに容量値及びアンテナコイルを対応付けた参照テーブルを記憶してもよい。また、メモリ123は、外部電源から電圧が印加されているか否かに容量値を対応付けた参照テーブルを記憶してもよく、さらに、メモリ123は、外部電源から電圧が印加されているか否かにアンテナコイルを対応付けた参照テーブルを記憶してもよい。
 制御部122は、容量性素子112の容量値を制御するための制御信号を送信受信部11へ出力する。また、制御部122は、互いにインダクタンスの異なる第1及び第2のアンテナコイル111a,111bを切り替えるための制御信号を送信受信部11へ出力する。制御部122は、外部電源から電圧が印加されているか否かに応じて、容量性素子112の容量値を変化させる。制御部122は、外部電源から電圧が印加されているか否かに応じて、複数のアンテナコイル(第1のアンテナコイル111a及び第2のアンテナコイル111b)のいずれかに切り替えるようスイッチ113を制御する。
 制御部122は、外部電源から電圧が印加されている場合、外部電源から電圧が印加されていない場合よりも通信距離が長くなるように、容量性素子112の容量値を変化させる。また、制御部122は、外部電源から電圧が印加されている場合、外部電源から電圧が印加されていない場合よりも通信距離が長くなるように、複数のアンテナコイルのいずれかに切り替えるようスイッチ113を制御する。
 制御部122は、受信された信号に含まれる通信規格情報と、電圧モニタ部124によって出力された動作モード情報とに対応する容量値及びアンテナコイルを参照テーブルから読み出し、容量性素子112の現在の容量値を、読み出した容量値に変化させるとともに、現在のアンテナコイルを、読み出したアンテナコイルに切り替える。
 なお、制御部122は、電圧モニタ部124によって出力された動作モード情報に対応する容量値を参照テーブルから読み出し、容量性素子112の現在の容量値を、読み出した容量値に変化させてもよい。また、制御部122は、受信された信号に含まれる通信規格情報と、電圧モニタ部124によって出力された動作モード情報とに対応する容量値を参照テーブルから読み出し、容量性素子112の現在の容量値を、読み出した容量値に変化させてもよい。さらに、制御部122は、電圧モニタ部124によって出力された動作モード情報に対応する容量値及びアンテナコイルを参照テーブルから読み出し、容量性素子112の現在の容量値を、読み出した容量値に変化させるとともに、現在のアンテナコイルを、読み出したアンテナコイルに切り替えてもよい。
 さらに、データ通信途中に通信が途切れた場合、またはポーリング通信が成功したにもかかわらずデータ通信がスタートしない場合において、制御部122が容量値を変化させながら、信号処理回路121がデータ信号の受信動作を実施し、制御部122は、データ信号が受信された時点における容量値で容量性素子112を制御する。
 リーダ/ライタ2は、送信受信部21、信号処理部22及び外部電源端子23を備える。なお、送信受信部21、信号処理部22及び外部電源端子23の構成は、RFIDタグ1の送信受信部11、信号処理部12及び外部電源端子13と同じであるので説明を省略する。
 なお、図2に示す送信受信部11は、第1及び第2のアンテナコイル111a,111bと、容量性素子112と、スイッチ113とを備えているが、本発明は特にこれに限定されない。送信受信部11は、1つのアンテナコイル111と、容量性素子112とを備えてもよい。図3は、本実施の形態の変形例における送信受信部の詳細な構成を示す図である。
 図3に示すように、本実施の形態の変形例における送信受信部11’は、アンテナコイル111と、容量性素子112とを備える。本実施の形態の変形例における送信受信部11’は、容量性素子112の容量値を変更することは可能であるが、アンテナコイルを切り替えることはできない。
 本実施の形態の変形例における送信受信部11’の構成は、アンテナコイルを切り替えないこと以外は、図2に示す送信受信部11と同じ構成であるので、説明を省略する。
 また、本実施の形態の送信受信部11は、2つのアンテナコイルを備えているが、本発明は特にこれに限定されず、3つ以上のアンテナコイルを備えてもよい。
 なお、本実施の形態において、RFIDタグ1及びリーダ/ライタ2が通信装置の一例に相当し、アンテナコイル111がアンテナの一例に相当し、信号処理回路121が信号処理回路の一例に相当し、容量性素子112が容量性素子の一例に相当し、制御部122が制御部の一例に相当し、第1のアンテナコイル111a及び第2のアンテナコイル111bが複数のアンテナコイルの一例に相当し、スイッチ113がスイッチの一例に相当し、メモリ123が記憶部の一例に相当し、電圧モニタ部124が電圧モニタ部の一例に相当する。
 次に、図1に示す送信受信部11の共振特性について説明する。図4は、図1に示す送信受信部及び信号処理部の入力等価抵抗を表す図であり、図5は、図1に示す送信受信部の共振特性を示す図である。なお、図5において、縦軸は電流値Iを表し、横軸は周波数を表している。また、図4に示す構成図は、説明を簡単にするため、アンテナコイルが1つの場合について示している。
 図4に示すように、送信受信部11は、回路で表すと、インダクタ(インダクタンスL)と、抵抗(抵抗値R)と、容量性素子(容量C)とで構成され、信号処理部12は、回路で表すと、負荷抵抗(抵抗値RL)で構成される。
 この場合、選択度Q値は、RL(L/C)0.5であり、共振周波数ωは、1/(LC)0.5である。図5に示すように、インダクタンスLが大きくなると、共振特性は急峻になり、電流値ピークIは大きくなる。一方、インダクタンスLが小さくなると、共振特性はなだらかになり、電流値ピークIは小さくなる。
 通常、外部電源から電圧が印加されておらず、アンテナコイルの磁界エネルギーにより動作する場合、外部電源から電圧が印加されていない場合と比較して、通信距離は短くなる。このように、外部電源からの電圧の有無によって通信距離は変化し、外部電源から電圧が印加されている否かに応じて、容量性素子の容量値及びアンテナコイルのインダクタンスを変化させることによって通信距離を増大することが可能である。
 さらに、現在、近接無線通信には、“Type A”、“Type B”及び“Type F”の3種類の通信規格が存在している。これらの3つの通信規格は、それぞれアンテナの整合条件が異なっている。そのため、3つの通信規格のうちのいずれの通信規格の近接無線通信により通信が行われるかに応じて、容量性素子の容量値及びアンテナコイルのインダクタンスを変化させることによって通信距離を増大することが可能である。
 図6は、通信規格が“Type F”である場合のスペクトルを示す図であり、図7は、通信規格が“Type B”である場合のスペクトルを示す図である。なお、図6及び図7の横軸は周波数を表している。
 図6に示すように、通信規格が“Type F”である場合、13.56MHzの搬送波の近傍に変調信号が存在する。また、図7に示すように、通信規格が“Type B”である場合、13.56MHzの搬送波の2つの副搬送波の近傍に変調信号が存在する。
 このように、通信規格によって変調信号の位置は異なる。
 図8は、通信規格が“Type F”であり、容量値を変化させる場合の共振特性について説明するための図であり、図9は、通信規格が“Type F”であり、容量値及びインダクタンスを変化させる場合の共振特性について説明するための図である。
 図8に示す共振特性201は、外部電源から電圧が印加されない場合の共振特性を表し、共振特性202は、外部電源から電圧が印加される場合の共振特性の例を表している。また、図9に示す共振特性203は、外部電源から電圧が印加されない場合の共振特性を表し、共振特性204は、外部電源から電圧が印加される場合の共振特性の例を表している。
 図8では、外部電源から電圧が印加されない場合、制御部122は、共振特性201が搬送波の周波数で最大となるように、容量性素子112の容量値を設定し、外部電源から電圧が印加される場合、制御部122は、共振特性202が搬送波の近傍の変調信号の周波数で最大となるように、容量性素子112の容量値を設定することによって通信距離を増大することが可能である。
 また、図9に示すように、外部電源から電圧が印加されない場合、制御部122は、共振特性201が搬送波の周波数で最大かつ急峻となるように、容量性素子112の容量値及びアンテナコイルのインダクタンスを設定する。また、外部電源から電圧が印加される場合、制御部122は、共振特性202が搬送波の近傍の変調信号の周波数で最大かつなだらかとなるように、容量性素子112の容量値及びアンテナコイルのインダクタンスを設定する。
 続いて、通信距離のアンテナ依存性について説明する。図10は、外部電源から電圧が印加される場合の通信距離のアンテナ依存特性について説明するための図であり、図11は、外部電源から電圧が印加されない場合の通信距離のアンテナ依存特性について説明するための図である。なお、図10及び図11において、縦軸は通信距離(mm)を表し、横軸は共振周波数(MHz)を表す。
 図10において、アンテナ依存特性301は、巻き数が1ターンであるアンテナコイルのアンテナ依存特性を示し、アンテナ依存特性302は、巻き数が2ターンであるアンテナコイルのアンテナ依存特性を示し、アンテナ依存特性303は、巻き数が3ターンであるアンテナコイルのアンテナ依存特性を示している。
 また、図11において、アンテナ依存特性311は、巻き数が1ターンであるアンテナコイルのアンテナ依存特性を示し、アンテナ依存特性312は、巻き数が2ターンであるアンテナコイルのアンテナ依存特性を示している。
 図10に示すように、外部電源から電圧が印加される場合、巻き数が1ターンであるアンテナコイルの通信距離、巻き数が2ターンであるアンテナコイルの通信距離及び巻き数が3ターンであるアンテナコイルの通信距離は、いずれも共振周波数が13.36MHz近傍である場合に最大となっている。また、巻き数が1ターンであるアンテナコイルの通信距離は、巻き数が2ターンであるアンテナコイルの通信距離及び巻き数が3ターンであるアンテナコイルの通信距離よりも短くなっている。さらに、巻き数が3ターンであるアンテナコイルのアンテナ依存特性303は、巻き数が1ターンであるアンテナコイルのアンテナ依存特性301及び巻き数が2ターンであるアンテナコイルのアンテナ依存特性302よりもなだらかになっている。
 一方、図11に示すように、外部電源から電圧が印加されない場合、巻き数が1ターンであるアンテナコイルの通信距離及び巻き数が2ターンであるアンテナコイルの通信距離は、いずれも共振周波数が13.56MHz近傍である場合に最大となっている。また、巻き数が1ターンであるアンテナコイルの通信距離は、巻き数が2ターンであるアンテナコイルの通信距離よりも長くなっている。さらに、巻き数が2ターンであるアンテナコイルのアンテナ依存特性312は、巻き数が1ターンであるアンテナコイルのアンテナ依存特性311よりもなだらかになっている。
 このように、アンテナコイルの巻き数によって、通信距離は異なっており、通信距離は、アンテナコイルの巻き数、すなわち、アンテナコイルのインダクタンスに影響されることがわかる。また、通信距離は、外部電源から電圧が印加されているか否かによっても大きく異なることがわかる。
 次に、本実施の形態における通信システムの動作について説明する。図12は、本実施の形態における通信システムの動作について説明するためのシーケンス図である。
 まず、ステップS1において、リーダ/ライタ2の送信受信部21は、データを送信することを要求するための送信許可要求をRFIDタグ1へ送信する。なお、送信許可要求には、複数の通信規格のうちのどの通信規格で送信するかを表す規格情報が含まれる。
 リーダ/ライタ2が複数の通信規格に対応している場合、送信受信部21は、送信許可応答を受信するまで、各通信規格に対応した通信方式で送信許可要求を順次送信する。すなわち、送信受信部21は、例えば“Type A”の通信規格に対応した通信方式で送信許可要求を送信し、送信許可応答を受信すれば、以降、“Type A”の通信規格に対応した通信方式でデータを送信する。一方、送信許可応答を受信しなければ、“Type B”の通信規格に対応した通信方式で送信許可要求を送信する。
 次に、RFIDタグ1の送信受信部11は、送信受信部21によって送信された送信許可要求を受信する。送信受信部11は、受信した送信許可要求を信号処理回路121へ出力する。信号処理回路121は、送信受信部11によって受信された送信許可要求に所定の信号処理を施す。次に、信号処理回路121は、受信した送信許可要求に含まれる通信規格情報を制御部122へ出力する。
 次に、ステップS2において、制御部122は、容量性素子112の容量値の変更処理及びアンテナコイルの切り替え処理を行う。
 ここで、容量性素子112の容量値の変更処理及びアンテナコイルの切り替え処理について説明する。
 まず、制御部122は、動作モード情報を要求するための動作モード読み出し命令を電圧モニタ部124に出力する。電圧モニタ部124は、制御部122からの動作モード読み出し命令を受け取ると、外部電源から電圧が印加されているか否かを表す動作モード情報を制御部122へ出力する。
 次に、制御部122は、電圧モニタ部124から動作モード情報を取得する。次に、制御部122は、メモリ123に記憶されている参照テーブルを参照し、信号処理回路121から取得した通信規格情報と、電圧モニタ部124から取得した動作モード情報とに対応する容量値及びアンテナコイルを読み出す。
 図13は、メモリ123に記憶されている参照テーブルの一例を示す図である。
 図13に示すように、参照テーブルは、複数の通信規格と外部電源から電圧が印加されているか否かとに、容量値及びインダクタ(アンテナコイル)を対応付けている。例えば、通信規格“Type A”及び外部電源“印加あり”には、容量値C1及びインダクタL1が対応付けられており、通信規格“Type B”及び外部電源“印加あり”には、容量値C2及びインダクタL2が対応付けられており、通信規格“Type F”及び外部電源“印加あり”には、容量値C3及びインダクタL3が対応付けられており、通信規格“Type A”及び外部電源“印加なし”には、容量値C4及びインダクタL4が対応付けられており、通信規格“Type B”及び外部電源“印加なし”には、容量値C5及びインダクタL5が対応付けられており、通信規格“Type F”及び外部電源“印加なし”には、容量値C6及びインダクタL6が対応付けられている。
 容量値C1~C6は、それぞれ異なる値である。また、インダクタ(アンテナコイル)が固定されている場合、容量値C1は、容量値C4より大きく、容量値C2は、容量値C5より大きく、容量値C3は、容量値C6より大きい場合が多い。つまり、外部電源からの電圧が印加されない場合、外部電源からの電圧が印加される場合に比べて、共振周波数を高くしたほうがよい。そのため、f=1/{2π(LC)0.5}から、容量値C4が容量値C1より小さくなるように設定する。これにより、共振周波数を高くすることができる。
 また、インダクタL1~L6は、それぞれ異なるインダクタを表している。制御部122は、インダクタL1~L6に対応するアンテナコイルを選択する。インダクタL1~L6のインダクタンスは、上記の容量性素子112の容量値と同様の関係を有している。すなわち、容量性素子112の容量値が固定されている場合、インダクタL1のインダクタンスは、インダクタL4のインダクタンスより大きく、インダクタL2のインダクタンスは、インダクタL5のインダクタンスより大きく、インダクタL3のインダクタンスは、インダクタL6のインダクタンスより大きいことが好ましい。
 なお、図13の参照テーブルでは、6つのインダクタL1~L6が対応付けられているが、本発明は特にこれに限定されない。例えば、図2に示すように送信受信部11が2つのアンテナコイルを備える場合、2つのインダクタが、複数の通信規格と外部電源から電圧が印加されているか否かとに対応付けられる。
 また、図13の参照テーブルでは、3つの通信規格と外部電源から電圧が印加されているか否かとに容量値及びインダクタを対応付けているが、本発明は特にこれに限定されない。例えば、RFIDタグ1が1つの通信規格にのみ対応している場合、外部電源から電圧が印加されているか否かのみに容量値及びインダクタを対応付けてもよい。また、図13の参照テーブルでは、複数の通信規格と外部電源から電圧が印加されているか否かとに容量値及びインダクタを対応付けているが、本発明は特にこれに限定されない。例えば、インダクタ(アンテナコイル)の切り替えができない場合、複数の通信規格と外部電源から電圧が印加されているか否かとに容量値のみを対応付けてもよい。
 次に、制御部122は、読み出した容量値に容量性素子112の容量値を変更するための制御信号を送信受信部11へ出力するとともに、読み出したアンテナコイルに切り替えるための制御信号を送信受信部11へ出力する。
 次に、送信受信部11の容量性素子112は、制御部122から出力された制御信号に基づいて容量値を変更する。次に、送信受信部11のスイッチ113は、制御部122から出力された制御信号に基づいてアンテナコイルを切り替える。
 以上のようにして、容量性素子112の容量値の変更処理及びアンテナコイルの切り替え処理が行われる。
 続いて、ステップS3において、制御部122は、送信許可要求に対する応答信号である送信許可応答をリーダ/ライタ2へ送信するための制御信号を信号処理回路121へ出力する。次に、信号処理回路121は、制御部122から出力された制御信号に基づいて送信許可応答を送信受信部11へ出力する。次に、送信受信部11は、信号処理回路121から出力された送信許可応答をリーダ/ライタ2へ送信する。次に、リーダ/ライタ2の送信受信部21は、RFIDタグ1の送信受信部11によって送信された送信許可応答を受信する。次に、送信受信部21は、受信した送信許可応答を信号処理部22へ出力する。
 次に、ステップS4において、信号処理部22は、送信許可応答を受信すると、送信許可要求を送信した際の通信規格でデータ通信を開始する。
 すなわち、信号処理部22は、RFIDタグ1へ送信すべきデータを送信受信部21へ出力し、送信受信部21は、信号処理部22から出力されたデータをRFIDタグ1へ送信する。RFIDタグ1の送信受信部11は、リーダ/ライタ2の送信受信部21によって送信されたデータを受信し、受信したデータを信号処理回路121へ出力する。信号処理回路121は、送信受信部11によって受信されたデータに所定の信号処理を施す。次に、信号処理回路121は、受信したデータを制御部122へ出力する。制御部122は、信号処理回路121から出力されたデータに基づいて、リーダ/ライタ2へ送信すべきデータを作成し、信号処理回路121へ出力する。信号処理回路121は、制御部122から出力されたデータを送信受信部11へ出力する。送信受信部11は、信号処理回路121から出力されたデータをリーダ/ライタ2へ送信する。
 以上のように、リーダ/ライタ2とRFIDタグ1とのデータ通信が行われる。
 ここで、リーダ/ライタ2とRFIDタグ1とのデータ通信中に何らかの原因で通信が途切れた場合、リーダ/ライタ2の送信受信部21は、ステップS5において、再度データ通信を行うためのリトライ要求をRFIDタグ1へ送信する。例えば、リーダ/ライタ2の信号処理部22の制御部は、所定の時間が経過してもRFIDタグ1からの応答がない場合、通信が途切れたと判断し、リトライ要求を送信するよう送信受信部21に指示する。
 次に、RFIDタグ1の送信受信部11は、送信受信部21によって送信されたリトライ要求を受信する。送信受信部11は、受信したリトライ要求を信号処理回路121へ出力する。信号処理回路121は、送信受信部11によって受信されたリトライ要求に所定の信号処理を施す。次に、信号処理回路121は、受信したリトライ要求に応じて制御信号を制御部122へ出力する。
 次に、ステップS6において、制御部122は、容量性素子112の容量値のサーチ処理を行う。図14は、容量性素子の容量値のサーチ処理の一例を示すフローチャートである。
 まず、ステップS11において、制御部122は、変数nを0に設定する。
 次に、ステップS12において、制御部122は、変数nをインクリメントする。
 次に、ステップS13において、制御部122は、負の係数-a(aは整数)と、変数nと、容量値の変化量ΔCとを乗算し、その値を現在の容量値の設定値に加算して制御値を算出する。
 次に、ステップS14において、制御部122は、算出した容量値に容量性素子112の容量値を変更する。すなわち、制御部122は、算出した容量値に容量性素子112の容量値を変更するための制御信号を送信受信部11へ出力する。送信受信部11の容量性素子112は、制御部122から出力された制御信号に基づいて容量値を変更する。
 次に、ステップS15において、制御部122は、データ通信を再開する。すなわち、制御部122は、リーダ/ライタ2へ送信できなかったデータを信号処理回路121へ出力する。信号処理回路121は、制御部122から出力されたデータを送信受信部11へ出力する。送信受信部11は、信号処理回路121から出力されたデータをリーダ/ライタ2へ送信する。
 次に、ステップS16において、制御部122は、データ通信可能であるか否かを判断する。すなわち、制御部122は、データを送信した後、リーダ/ライタ2によって送信されたデータを受信したか否かを判断することにより、データ通信可能であるか否かを判断する。制御部122は、リーダ/ライタ2からのデータが受信されれば、データ通信可能であると判断する。また、制御部122は、リーダ/ライタ2からのデータが受信されず、所定の時間が経過した場合、データ通信可能ではないと判断する。
 ここで、データ通信可能であると判断された場合(ステップS16でYES)、制御部122は、リーダ/ライタ2とのデータ通信を継続し、容量性素子の容量値のサーチ処理を終了する。
 一方、データ通信可能ではないと判断された場合(ステップS16でNO)、ステップS17において、制御部122は、変数nをインクリメントする。
 次に、ステップS18において、制御部122は、正の係数+a(aは整数)と、変数nと、容量値の変化量ΔCとを乗算し、その値を現在の容量値の設定値に加算して制御値を算出する。
 次に、ステップS19において、制御部122は、算出した容量値に容量性素子112の容量値を変更する。すなわち、制御部122は、算出した容量値に容量性素子112の容量値を変更するための制御信号を送信受信部11へ出力する。送信受信部11の容量性素子112は、制御部122から出力された制御信号に基づいて容量値を変更する。
 次に、ステップS20において、制御部122は、データ通信を再開する。すなわち、制御部122は、リーダ/ライタ2へ送信できなかったデータを信号処理回路121へ出力する。信号処理回路121は、制御部122から出力されたデータを送信受信部11へ出力する。送信受信部11は、信号処理回路121から出力されたデータをリーダ/ライタ2へ送信する。
 次に、ステップS21において、制御部122は、データ通信可能であるか否かを判断する。すなわち、制御部122は、データを送信した後、リーダ/ライタ2によって送信されたデータを受信したか否かを判断することにより、データ通信可能であるか否かを判断する。制御部122は、リーダ/ライタ2からのデータが受信されれば、データ通信可能であると判断する。また、制御部122は、リーダ/ライタ2からのデータが受信されず、所定の時間が経過した場合、データ通信可能ではないと判断する。
 ここで、データ通信可能であると判断された場合(ステップS21でYES)、制御部122は、リーダ/ライタ2とのデータ通信を継続し、容量性素子の容量値のサーチ処理を終了する。
 一方、データ通信可能ではないと判断された場合(ステップS21でNO)、制御部122は、ステップS12の処理へ戻り、変数nをインクリメントする。
 以上のようにして、容量性素子の容量値のサーチ処理が行われる。上記のように、負の係数-a(aは整数)と、変数nと、容量値の変化量ΔCとを乗算し、乗算した値を現在の容量値に加算することにより、基準となる搬送波の周波数に対して、周波数が減少する方向へ共振周波数を移動させることができる。また、正の係数+a(aは整数)と、変数nと、容量値の変化量ΔCとを乗算し、乗算した値を現在の容量値に加算することにより、基準となる搬送波の周波数に対して、周波数が増加する方向へ共振周波数を移動させることができる。そのため、容量値を変化させることにより、最適な通信距離に調整することができる。
 なお、図14では、容量性素子の容量値のサーチ処理のみが行われているが、アンテナコイルのサーチ処理をさらに行ってもよい。アンテナコイルのサーチ処理を行う場合、制御部122は、図14のステップS13又はS14の後、複数のアンテナコイルの中から1つのアンテナコイルを選択し、選択したアンテナコイルに切り替えるようにスイッチ113へ制御信号を出力する。スイッチ113は、制御部122からの制御信号に基づいてアンテナコイルを切り替える。そして、ステップS15において、制御部122は、データ通信を再開する。同様に、アンテナコイルのサーチ処理を行う場合、制御部122は、図14のステップS18又はS19の後、複数のアンテナコイルの中から1つのアンテナコイルを選択し、選択したアンテナコイルに切り替えるようにスイッチ113へ制御信号を出力する。
 なお、容量値の変更とアンテナコイルの切り替えとはともに行われてもよいが、いずれか一方のみが行われてもよい。例えば、制御部122は、容量値のみを順次変更し、容量値の変更ができなくなった場合に、アンテナコイルを切り替え、再度容量値を順次変更する。これを繰り返すことにより、容量値の変更とアンテナコイルの切り替えとが行われる。
 また、ステップS16又はS21において、通信可能であると判断された場合、制御部122は、変更された現在の容量値を、外部電源から電圧が印加されているか否かと通信規格とに対応付けて参照テーブルに記憶してもよい。
 図12に戻って、ステップS7において、リーダ/ライタ2の送信受信部21は、RFIDタグ1の送信受信部11によって送信されたデータを受信し、受信したデータを信号処理部22へ出力する。信号処理部22は、RFIDタグ1からデータを受信すると、データ通信を再開する。
 なお、リーダ/ライタ2においても、図12のステップS2の容量値の変更処理及びアンテナコイルの切り替え処理と同じ処理が行われてもよい。すなわち、図12のステップS8において、リーダ/ライタ2の信号処理部22の制御部は、容量性素子の容量値の変更処理及びアンテナコイルの切り替え処理を行う。リーダ/ライタ2における容量性素子の容量値の変更処理及びアンテナコイルの切り替え処理は、RFIDタグ1における容量性素子の容量値の変更処理及びアンテナコイルの切り替え処理と同じであるので説明を省略する。
 また、リーダ/ライタ2においても、図12のステップS6の容量値のサーチ処理(及びアンテナコイルのサーチ処理)と同じ処理が行われる。すなわち、図12のステップS9において、リーダ/ライタ2の信号処理部22の制御部は、容量値のサーチ処理(及びアンテナコイルのサーチ処理)を行う。リーダ/ライタ2における容量値のサーチ処理(及びアンテナコイルのサーチ処理)は、RFIDタグ1における容量値のサーチ処理(及びアンテナコイルのサーチ処理)と同じであるので説明を省略する。
 このように、本実施の形態では、外部電源から電圧が印加されているか否かに応じて、容量性素子112の容量値が変化されるので、外部電源から電圧が印加されている場合と外部電源から電圧が印加されていない場合とで最適な通信距離に調整することができる。
 なお、本実施の形態におけるRFIDタグ1は、第1及び第2のアンテナコイル111a,111bと信号処理回路121との間に直列に配置された容量性素子112と、第1及び第2のアンテナコイル111a,111bのいずれかに切り替えるスイッチ113とを備えているが、本発明は特にこれに限定されない。容量性素子は、第1のアンテナコイル111aと信号処理回路121との間に直列に配置された第1の容量性素子と、第1の容量性素子とは容量値が異なり、第2のアンテナコイル111bと信号処理回路121との間に直列に配置された第2の容量性素子とを含み、RFIDタグ1は、第1及び第2の容量性素子のいずれかに切り替えるスイッチをさらに備えてもよい。この場合、第1及び第2のアンテナコイル111a,111bのインダクタンスは、互いに同じであっても、互いに異なっていてもよい。
 このように、RFIDタグ1は、可変の容量性素子を備えるのではなく、複数のアンテナコイルと信号処理回路との間に直列にそれぞれ配置された、容量値が互いに異なる複数の容量性素子を備えてもよい。制御部122は、外部電源から電圧が印加されているか否かに応じて、複数の容量性素子を切り替えることにより、容量性素子の容量値を変化させてもよい。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る通信装置は、近接無線通信により信号を送受信するアンテナと、前記アンテナによって送受信される信号を処理する信号処理回路と、前記アンテナと前記信号処理回路との間に直列に配置された容量性素子と、前記容量性素子の容量値を制御する制御部とを備え、前記制御部は、外部電源から電圧が印加されているか否かに応じて、前記容量性素子の容量値を変化させる。
 この構成によれば、アンテナは、近接無線通信により信号を送受信する。信号処理回路は、アンテナによって送受信される信号を処理する。容量性素子は、アンテナと信号処理回路との間に直列に配置される。制御部は、容量性素子の容量値を制御する。そして、制御部は、外部電源から電圧が印加されているか否かに応じて、容量性素子の容量値を変化させる。
 したがって、外部電源から電圧が印加されているか否かに応じて、容量性素子の容量値が変化されるので、外部電源から電圧が印加されている場合と外部電源から電圧が印加されていない場合とで最適な通信距離に調整することができる。
 また、上記の通信装置において、前記アンテナは、それぞれインダクタンスが異なる複数のアンテナコイルを含み、前記複数のアンテナコイルのいずれかに切り替えるスイッチをさらに備え、前記制御部は、外部電源から電圧が印加されているか否かに応じて、前記複数のアンテナコイルのいずれかに切り替えるよう前記スイッチを制御することが好ましい。
 この構成によれば、アンテナは、それぞれインダクタンスが異なる複数のアンテナコイルを含む。スイッチは、複数のアンテナコイルのいずれかに切り替える。制御部は、外部電源から電圧が印加されているか否かに応じて、複数のアンテナコイルのいずれかに切り替えるようスイッチを制御する。
 したがって、外部電源から電圧が印加されているか否かに応じて、それぞれインダクタンスが異なる複数のアンテナコイルのいずれかに切り替えられるので、さらに通信距離を精度よく調整することができる。
 また、上記の通信装置において、外部電源から電圧が印加されているか否かに前記容量値を対応付けた参照テーブルを記憶する記憶部と、外部電源から電圧が印加されているか否かをモニタし、外部電源から電圧が印加されているか否かを表す動作モード情報を出力する電圧モニタ部とをさらに備え、前記制御部は、前記電圧モニタ部によって出力された前記動作モード情報に対応する容量値を前記参照テーブルから読み出し、前記容量性素子の現在の容量値を、前記読み出した容量値に変化させることが好ましい。
 この構成によれば、記憶部は、外部電源から電圧が印加されているか否かに容量値を対応付けた参照テーブルを記憶する。電圧モニタ部は、外部電源から電圧が印加されているか否かをモニタし、外部電源から電圧が印加されているか否かを表す動作モード情報を出力する。制御部は、電圧モニタ部によって出力された動作モード情報に対応する容量値を参照テーブルから読み出し、容量性素子の現在の容量値を、読み出した容量値に変化させる。
 したがって、電圧モニタ部によって出力された動作モード情報に対応する容量値が参照テーブルから読み出され、容量性素子の現在の容量値が、読み出された容量値に変化されるので、容易に容量値を変更することができる。
 また、上記の通信装置において、前記通信装置は、複数の通信規格により通信を行い、前記参照テーブルは、外部電源から電圧が印加されているか否かと前記複数の通信規格とに前記容量値を対応付け、前記アンテナは、通信規格を特定するための通信規格情報を含む、他の通信装置から送信された信号を受信し、前記制御部は、受信された前記信号に含まれる前記通信規格情報と、前記電圧モニタ部によって出力された前記動作モード情報とに対応する容量値を前記参照テーブルから読み出し、前記容量性素子の現在の容量値を、前記読み出した容量値に変化させるが好ましい。
 この構成によれば、通信装置は、複数の通信規格により通信を行う。参照テーブルは、外部電源から電圧が印加されているか否かと複数の通信規格とに容量値を対応付けている。アンテナは、通信規格を特定するための通信規格情報を含む、他の通信装置から送信された信号を受信する。そして、制御部は、受信された信号に含まれる通信規格情報と、電圧モニタ部によって出力された動作モード情報とに対応する容量値を参照テーブルから読み出し、容量性素子の現在の容量値を、読み出した容量値に変化させる。
 したがって、外部電源から電圧が印加されているか否かと、近接無線通信がどのような通信規格であるかとに応じて、容量値を変更することができ、より最適な通信距離に調整することができる。
 また、上記の通信装置において、外部電源から電圧が印加されているか否かに前記容量値及び前記アンテナコイルを対応付けた参照テーブルを記憶する記憶部と、外部電源から電圧が印加されているか否かをモニタし、外部電源から電圧が印加されているか否かを表す動作モード情報を出力する電圧モニタ部とをさらに備え、前記制御部は、前記電圧モニタ部によって出力された前記動作モード情報に対応する容量値及びアンテナコイルを前記参照テーブルから読み出し、前記容量性素子の現在の容量値を、前記読み出した容量値に変化させるとともに、現在のアンテナコイルを、前記読み出したアンテナコイルに切り替えることが好ましい。
 この構成によれば、記憶部は、外部電源から電圧が印加されているか否かに容量値及びアンテナコイルを対応付けた参照テーブルを記憶する。電圧モニタ部は、外部電源から電圧が印加されているか否かをモニタし、外部電源から電圧が印加されているか否かを表す動作モード情報を出力する。そして、制御部は、電圧モニタ部によって出力された動作モード情報に対応する容量値及びアンテナコイルを参照テーブルから読み出し、容量性素子の現在の容量値を、読み出した容量値に変化させるとともに、現在のアンテナコイルを、読み出したアンテナコイルに切り替える。
 したがって、電圧モニタ部によって出力された動作モード情報に対応する容量値及びアンテナコイルが参照テーブルから読み出され、容量性素子の現在の容量値が、読み出した容量値に変化されるとともに、現在のアンテナコイルが、読み出したアンテナコイルに切り替えられるので、容易に容量値を変更することができ、容易にアンテナコイルを切り替えることができる。
 また、上記の通信装置において、前記通信装置は、複数の通信規格により通信を行い、前記参照テーブルは、外部電源から電圧が印加されているか否かと前記複数の通信規格とに前記容量値及び前記アンテナコイルを対応付け、前記アンテナは、通信規格を特定するための通信規格情報を含む、他の通信装置から送信された信号を受信し、前記制御部は、受信された前記信号に含まれる前記通信規格情報と、前記電圧モニタ部によって出力された前記動作モード情報とに対応する容量値及びアンテナコイルを前記参照テーブルから読み出し、前記容量性素子の現在の容量値を、前記読み出した容量値に変化させるとともに、現在のアンテナコイルを、前記読み出したアンテナコイルに切り替えることが好ましい。
 この構成によれば、通信装置は、複数の通信規格により通信を行う。参照テーブルは、外部電源から電圧が印加されているか否かと複数の通信規格とに容量値及びアンテナコイルを対応付けている。アンテナは、通信規格を特定するための通信規格情報を含む、他の通信装置から送信された信号を受信する。そして、制御部は、受信された前記信号に含まれる通信規格情報と、電圧モニタ部によって出力された動作モード情報とに対応する容量値及びアンテナコイルを参照テーブルから読み出し、容量性素子の現在の容量値を、読み出した容量値に変化させるとともに、現在のアンテナコイルを、読み出したアンテナコイルに切り替える。
 したがって、外部電源から電圧が印加されているか否かと、近接無線通信がどのような通信規格であるかとに応じて、容量値を変更することができるとともに、アンテナコイルを切り替えることができ、より最適な通信距離に調整することができる。
 また、上記の通信装置において、データ通信途中に通信が途切れた場合、またはポーリング通信が成功したにもかかわらずデータ通信がスタートしない場合において、前記制御部が前記容量値を変化させながら、前記信号処理回路がデータ信号の受信動作を実施し、前記制御部は、前記データ信号が受信された時点における前記容量値で前記容量性素子を制御することが好ましい。
 この構成によれば、データ通信途中に通信が途切れた場合、またはポーリング通信が成功したにもかかわらずデータ通信がスタートしない場合において、制御部が容量値を変化させながら、信号処理回路がデータ信号の受信動作を実施する。制御部は、データ信号が受信された時点における容量値で容量性素子を制御する。
 したがって、データ通信途中に通信が途切れた場合、またはポーリング通信が成功したにもかかわらずデータ通信がスタートしない場合であっても、容量性素子の容量値を再度変化させることにより、最適な通信距離に変更し、データ通信を再開させることができる。
 なお、発明を実施するための形態の項においてなされた具体的な実施態様または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。
 本発明に係る通信装置は、最適な通信距離に調整することができ、近接無線通信を利用して通信する通信装置に有用である。

Claims (7)

  1.  近接無線通信により信号を送受信するアンテナと、
     前記アンテナによって送受信される信号を処理する信号処理回路と、
     前記アンテナと前記信号処理回路との間に直列に配置された容量性素子と、
     前記容量性素子の容量値を制御する制御部とを備え、
     前記制御部は、外部電源から電圧が印加されているか否かに応じて、前記容量性素子の容量値を変化させることを特徴とする通信装置。
  2.  前記アンテナは、それぞれインダクタンスが異なる複数のアンテナコイルを含み、
     前記複数のアンテナコイルのいずれかに切り替えるスイッチをさらに備え、
     前記制御部は、外部電源から電圧が印加されているか否かに応じて、前記複数のアンテナコイルのいずれかに切り替えるよう前記スイッチを制御することを特徴とする請求項1記載の通信装置。
  3.  外部電源から電圧が印加されているか否かに前記容量値を対応付けた参照テーブルを記憶する記憶部と、
     外部電源から電圧が印加されているか否かをモニタし、外部電源から電圧が印加されているか否かを表す動作モード情報を出力する電圧モニタ部とをさらに備え、
     前記制御部は、前記電圧モニタ部によって出力された前記動作モード情報に対応する容量値を前記参照テーブルから読み出し、前記容量性素子の現在の容量値を、前記読み出した容量値に変化させることを特徴とする請求項1記載の通信装置。
  4.  前記通信装置は、複数の通信規格により通信を行い、
     前記参照テーブルは、外部電源から電圧が印加されているか否かと前記複数の通信規格とに前記容量値を対応付け、
     前記アンテナは、通信規格を特定するための通信規格情報を含む、他の通信装置から送信された信号を受信し、
     前記制御部は、受信された前記信号に含まれる前記通信規格情報と、前記電圧モニタ部によって出力された前記動作モード情報とに対応する容量値を前記参照テーブルから読み出し、前記容量性素子の現在の容量値を、前記読み出した容量値に変化させることを特徴とする請求項3記載の通信装置。
  5.  外部電源から電圧が印加されているか否かに前記容量値及び前記アンテナコイルを対応付けた参照テーブルを記憶する記憶部と、
     外部電源から電圧が印加されているか否かをモニタし、外部電源から電圧が印加されているか否かを表す動作モード情報を出力する電圧モニタ部とをさらに備え、
     前記制御部は、前記電圧モニタ部によって出力された前記動作モード情報に対応する容量値及びアンテナコイルを前記参照テーブルから読み出し、前記容量性素子の現在の容量値を、前記読み出した容量値に変化させるとともに、現在のアンテナコイルを、前記読み出したアンテナコイルに切り替えることを特徴とする請求項2記載の通信装置。
  6.  前記通信装置は、複数の通信規格により通信を行い、
     前記参照テーブルは、外部電源から電圧が印加されているか否かと前記複数の通信規格とに前記容量値及び前記アンテナコイルを対応付け、
     前記アンテナは、通信規格を特定するための通信規格情報を含む、他の通信装置から送信された信号を受信し、
     前記制御部は、受信された前記信号に含まれる前記通信規格情報と、前記電圧モニタ部によって出力された前記動作モード情報とに対応する容量値及びアンテナコイルを前記参照テーブルから読み出し、前記容量性素子の現在の容量値を、前記読み出した容量値に変化させるとともに、現在のアンテナコイルを、前記読み出したアンテナコイルに切り替えることを特徴とする請求項5記載の通信装置。
  7.  データ通信途中に通信が途切れた場合、またはポーリング通信が成功したにもかかわらずデータ通信がスタートしない場合において、前記制御部が前記容量値を変化させながら、前記信号処理回路がデータ信号の受信動作を実施し、前記制御部は、前記データ信号が受信された時点における前記容量値で前記容量性素子を制御することを特徴とする請求項1~6のいずれかに記載の通信装置。
PCT/JP2012/004772 2012-03-06 2012-07-26 通信装置 WO2013132546A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12870779.1A EP2824843B1 (en) 2012-03-06 2012-07-26 Communication apparatus
JP2013529488A JP5352033B1 (ja) 2012-03-06 2012-07-26 通信装置
CN201280027374.1A CN104025464B (zh) 2012-03-06 2012-07-26 通信装置
US14/123,357 US9337904B2 (en) 2012-03-06 2012-07-26 Communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-048992 2012-03-06
JP2012048992 2012-03-06

Publications (1)

Publication Number Publication Date
WO2013132546A1 true WO2013132546A1 (ja) 2013-09-12

Family

ID=49116062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004772 WO2013132546A1 (ja) 2012-03-06 2012-07-26 通信装置

Country Status (5)

Country Link
US (1) US9337904B2 (ja)
EP (1) EP2824843B1 (ja)
JP (1) JP5352033B1 (ja)
CN (1) CN104025464B (ja)
WO (1) WO2013132546A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9881250B2 (en) * 2013-06-07 2018-01-30 Fisher Controls International Llc Methods and apparatus for RFID communications in a process control system
US10303134B2 (en) * 2015-04-10 2019-05-28 Fisher Controls International Llc Methods and apparatus for multimode RFST communications in process control systems
CN105574456A (zh) * 2015-12-14 2016-05-11 谭焕玲 一种rfid阅读器
JP7392574B2 (ja) * 2020-05-27 2023-12-06 オムロン株式会社 Rfid通信ユニット、制御方法及びrfid通信プログラム
CN116031614A (zh) * 2022-09-16 2023-04-28 维沃移动通信有限公司 电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001344574A (ja) * 2000-05-30 2001-12-14 Mitsubishi Materials Corp 質問器のアンテナ装置
JP2007060632A (ja) * 2005-07-25 2007-03-08 Sony Corp 通信システム、通信装置および方法、並びにプログラム
JP2009543442A (ja) 2006-06-27 2009-12-03 センサーマティック・エレクトロニクス・コーポレーション 動的インピーダンス整合を有する共振回路同調システム
JP2011130062A (ja) * 2009-12-16 2011-06-30 Sony Corp 信号処理装置および方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362737B1 (en) * 1998-06-02 2002-03-26 Rf Code, Inc. Object Identification system with adaptive transceivers and methods of operation
US7456752B2 (en) * 2003-05-06 2008-11-25 Rcd Technology, Inc. Radio frequency identification sensor for fluid level
DE102004031092A1 (de) * 2004-06-28 2006-01-12 Giesecke & Devrient Gmbh Transpondereinheit
GB2419777B (en) * 2004-10-29 2010-02-10 Hewlett Packard Development Co Power transfer for transponder devices
US7274291B2 (en) * 2005-04-01 2007-09-25 Cisco Technology, Inc. Dynamic and hybrid RFID
US8116862B2 (en) * 2006-06-08 2012-02-14 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US7933553B2 (en) * 2007-12-06 2011-04-26 Oracle America, Inc. Tuneable radio-frequency identification tag reader and method of reading such a tag
US20090146787A1 (en) * 2007-12-10 2009-06-11 Electronics And Telecommunications Research Institute Method and device for setting rfid parameter
US20090231138A1 (en) * 2008-03-14 2009-09-17 Chung Nam Electronics Co. Ltd. RFID Technology
US8547227B2 (en) * 2008-09-10 2013-10-01 Avery Dennison Corporation RF communication device with energy enhancement
WO2010035256A2 (en) * 2008-09-23 2010-04-01 Powermat Ltd. Combined antenna and inductive power receiver
KR101083641B1 (ko) * 2009-04-30 2011-11-16 주식회사 하이닉스반도체 Rfid태그
JP2011028615A (ja) * 2009-07-28 2011-02-10 Ricoh Co Ltd 非接触通信デバイス、情報処理装置、通信方法及びプログラム
FR2948831B1 (fr) * 2009-07-31 2022-01-28 Jerome Gilbert Systeme universel pour recharger au moins un appareil portable
DE102010028991B4 (de) * 2009-12-03 2014-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Passiver Transponder für ein RFID-System und Verfahren zum Übertragen von Daten von/zu einer Datenquelle eines solchen passiven Transponders
US20110183629A1 (en) * 2010-01-26 2011-07-28 Broadcom Corporation Mobile Communication Devices Having Adaptable Features and Methods for Implementation
US8299648B2 (en) * 2010-03-04 2012-10-30 Toshiba International Corporation UPS at the recovery mode from the power failure
US9402278B2 (en) * 2010-11-26 2016-07-26 Wireless Dynamics, Inc. Multi-mode communication system for a mobile phone
US8764621B2 (en) * 2011-07-11 2014-07-01 Vascor, Inc. Transcutaneous power transmission and communication for implanted heart assist and other devices
US9673872B2 (en) * 2011-11-15 2017-06-06 Qualcomm Incorporated Multi-band transmit antenna
US9842684B2 (en) * 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001344574A (ja) * 2000-05-30 2001-12-14 Mitsubishi Materials Corp 質問器のアンテナ装置
JP2007060632A (ja) * 2005-07-25 2007-03-08 Sony Corp 通信システム、通信装置および方法、並びにプログラム
JP2009543442A (ja) 2006-06-27 2009-12-03 センサーマティック・エレクトロニクス・コーポレーション 動的インピーダンス整合を有する共振回路同調システム
JP2011130062A (ja) * 2009-12-16 2011-06-30 Sony Corp 信号処理装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2824843A4

Also Published As

Publication number Publication date
US9337904B2 (en) 2016-05-10
EP2824843A4 (en) 2015-03-25
EP2824843B1 (en) 2019-02-20
JP5352033B1 (ja) 2013-11-27
US20140104044A1 (en) 2014-04-17
CN104025464B (zh) 2016-08-17
CN104025464A (zh) 2014-09-03
EP2824843A1 (en) 2015-01-14
JPWO2013132546A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6258816B2 (ja) 無線送電装置及び無線電力伝送システム
JP5839629B1 (ja) 非接触通信装置、アンテナ回路、アンテナ駆動装置、非接触給電装置、チューニング方法、ディスカバリ方法、およびこれらの方法を実現するプログラム
US9634493B2 (en) Resonant frequency control method, electric power transmitting device, electric power receiving device in magnetic resonant type power transmission system
JP5238884B2 (ja) 無線電力伝送装置
US9787364B2 (en) Multi-use wireless power and data system
EP2525461B1 (en) Wireless power receiver and method for controlling the same
KR101991341B1 (ko) 무선 전력 수신 장치 및 무선 전력 전송 시스템
JP5352033B1 (ja) 通信装置
KR101304314B1 (ko) 임피던스 매칭이 가능한 무선 전력 송신장치
WO2015097809A1 (ja) 共振型送信電源装置及び共振型送信電源システム
US20120049791A1 (en) Method, apparatus, and computer-readable storage medium for contactless power supply and power control
US10090711B2 (en) Power transmission apparatus and power transmission method
JP2012147659A (ja) 給電装置および給電装置を備えた非接触給電システム
WO2016019139A1 (en) Multi-use wireless power and data system
KR102632024B1 (ko) 클래스 e2 증폭기
JP6262235B2 (ja) 可変容量回路、可変容量デバイス、及びそれを用いた共振回路、通信装置
JP6782820B2 (ja) 無線電力受信機を動作させる方法とそれを用いた無線電力受信機
JP5996753B2 (ja) ディスカバリ方法およびそのプログラム
JP4634215B2 (ja) 整合器
JP5808849B1 (ja) 制御方法、非接触通信装置、非接触給電装置、プログラム及び駆動回路
JP2011130372A (ja) 整合器
JP2010226599A (ja) 整合回路
KR20150055755A (ko) 공명 전력 신호 및 유도 전력 신호를 전송할 수 있는 하이브리드 무선 전력 전송 장치 및 이를 포함하는 하이브리드 무선 전력 전송 시스템
WO2014069147A1 (ja) 送電機器及び非接触電力伝送装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013529488

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012870779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14123357

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE