[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013131407A1 - 双验证人脸防伪方法及装置 - Google Patents

双验证人脸防伪方法及装置 Download PDF

Info

Publication number
WO2013131407A1
WO2013131407A1 PCT/CN2013/000228 CN2013000228W WO2013131407A1 WO 2013131407 A1 WO2013131407 A1 WO 2013131407A1 CN 2013000228 W CN2013000228 W CN 2013000228W WO 2013131407 A1 WO2013131407 A1 WO 2013131407A1
Authority
WO
WIPO (PCT)
Prior art keywords
face
image
target
target face
verification
Prior art date
Application number
PCT/CN2013/000228
Other languages
English (en)
French (fr)
Inventor
李子青
张志炜
雷震
易东
Original Assignee
无锡中科奥森科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡中科奥森科技有限公司 filed Critical 无锡中科奥森科技有限公司
Publication of WO2013131407A1 publication Critical patent/WO2013131407A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • G06V40/45Detection of the body part being alive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions

Definitions

  • the invention relates to a face anti-counterfeiting method and device, in particular to a double-verification face anti-counterfeiting method and device, belonging to the technical field of image processing and pattern recognition.
  • the face anti-counterfeiting technology is related to the security of the face recognition authentication and authorization system. If there is no face anti-counterfeiting function, the face recognition authentication and authorization system is vulnerable to false face attacks, which may cause serious security problems. For example, an attacker can obtain a face image of a specific target (ie, a designated person) by some means and make a photo, video, or mask, etc., presented to the system in order to obtain illegal rights. Therefore, face anti-counterfeiting technology is receiving more and more attention.
  • the existing international face anti-counterfeiting technology is mainly based on human-computer interaction strategy: The system issues specific instructions, requiring the user to make specific actions such as blinking and pronunciation, and then judge the activity of the input face.
  • the second is based on moving body detection, and the related literature on the disclosure includes: 1) K. Kollreider, H. Fronthaler and J. Bigun. Evaluating Liveness by Face Images and the Structure Tensor, IEEE Workshop on Automatic Identification Advanced Technologies, 2005, 2) Wei Bao, Hong Li, Nan Li and Wei Jiang. A Liveness Detection Method for Face Recognition Based on Optical Flow Field, International Conference on Image Analysis and Signal Processing, 2009.
  • the third is biometric detection based on speech and mouth movements.
  • the related documents of the technology are: G. Chetty and M. Wagner. Liveness Verification in Audio-Video Speaker Authentication. In 10th Australian Int. Conference on Speech Science and Technology, 2004.
  • This method based on human-computer interaction requires a user to express a specific behavior, so the user is burdened, the user experience is poor, and the time required is long.
  • the face anti-counterfeiting method described above can also be used as a living body detection technique because they only judge whether the target face is biologically active.
  • face anti-counterfeiting technology should not only include live detection.
  • the above methods generally have shortcomings such as heavy user burden, long human-computer interaction time, and low accuracy. Therefore, it is imperative to develop an accurate, fast, and wide-ranging face anti-counterfeiting method.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a dual verification face anti-counterfeiting method and device, which improves recognition accuracy, is convenient, safe and reliable.
  • a dual verification face anti-counterfeiting method comprising: - Step 1, performing a living body detection on the collected target face to determine whether the target face has biological activity, if the target face is identified With living characteristics, go to step 2;
  • Step 2 If it is in the face recognition application, calculate the similarity between the collected target face and the face corresponding to the recognition result. If it is greater than a certain threshold, the target face is considered to be a true and effective person. Face
  • the similarity between the collected target face and the face corresponding to the claimed identity of the target face is calculated, and if it is greater than a certain threshold, the target face is considered to be true and effective.
  • Step 1 is not related to the designated person.
  • Step 2 is related to the designated person.
  • the target face is verified by steps 1 and 2 at the same time, it can be regarded as a true and effective face, otherwise it is considered to be a false face.
  • step 1 further includes: Step 101: Performing a living body detection on the target face, first collecting a large number of real and false face samples, and extracting various texture features on the target face. , training the living body detection texture classifier, if the target face is recognized as a real face by the living body detection texture classifier, proceed to step 2, otherwise it is determined as a false face;
  • Step 102 Determine the validity of the target face by human-computer interaction, wherein the system issues an instruction, and the user is required to perform a certain action, and then the system continuously detects whether the target face performs a corresponding action, and if the action is detected within a certain time, If it occurs, it is judged that the target face is a real face, otherwise it is a false face;
  • Step 2 further includes:
  • Step 201 first collecting a large number of real face images, extracting texture features for each face image; step 202, and then subtracting the feature vectors of all the collected face images by two or two, according to whether the two images belong to the same person,
  • the subtracted feature vectors are divided into two categories: intra-class and inter-class.
  • the machine learning algorithm is used to train a two-class classifier.
  • the trained classifier can determine whether the two input feature vectors belong to the same person.
  • Step 203 if it is in the face recognition application, if the target face image and the face image corresponding to the recognition result are determined by the classifier in step 202 to belong to the same person, the target face is considered to be true and valid, otherwise it is false. human face;
  • the face image corresponding to the claimed designated person identity is identified by the classifier in step 202 as belonging to the same person, and the target face is considered to be true. Effect, otherwise it is a false face.
  • step 1 further includes: Step 101: roughly determine the biological activity of the target human face, wherein the judging is performed according to one or more of the following manners: Infrared determines the temperature of the target face, determines whether it is close to 37 degrees; determines the depth information of the face through the 3D image to determine whether the face is a 3D object; analyzes the ultrasonic reflectance of the target face by ultrasonic reflection, and determines whether the ultrasonic reflectance of the skin is Similar to the real face; multi-spectral imaging to analyze the reflectivity of the target face in different spectra, to determine whether the multi-spectral reflectance of the skin is similar to the real face, if the target face is judged by one or more of the above methods The information indicator is similar to the real face, then proceeds to step 102;
  • Step 102 accurately determine the biological activity of the target face, and use the mutual image algorithm to accurately determine the living body.
  • the mutual business image algorithm comprises the following steps - step 1021, collecting multi-spectral imaging of a large number of real human faces and false human faces at different distances to form a training data set, and performing pixel-level phase on any two images of different spectra of the same individual.
  • the mutual image group is composed, assuming that two spectra are selected arbitrarily, and the images of the same face in the two spectra are sum, and the mutual image is defined as follows:
  • represents the reflectivity of the face
  • represents the intensity of the light source at the surface of the face
  • represents the distance of the face from the light source
  • (x, y) represents the coordinates on the face image
  • Step 1022 For all mutual business images, divide into multiple overlapping or non-overlapping small blocks on multiple scales, extract feature vectors of each small block, and combine feature vectors of all small blocks as global features.
  • Step 1023 Based on the statistical learning method, the classifier is trained on the training data set to distinguish between true and false faces.
  • Step 2 further includes: Step 201, collecting a plurality of multi-modal images of real faces, extracting texture features for each image; Step 202, subtracting the feature vectors of the images by two or two, according to whether the two images belong to the same person, The subtracted feature vectors are divided into two categories: intra-class and inter-class.
  • the machine learning algorithm is used to train a two-class classifier.
  • the trained classifier can determine whether the two input feature vectors belong to the same person.
  • Step 203 if it is in the face recognition application, if the target face image and the face image corresponding to the recognition result are determined by the classifier in step 202 to belong to the same person, the target face is considered to be true and valid, otherwise it is false. human face;
  • the target face is considered to be true and effective, otherwise False face.
  • imaging types include visible light imaging, near infrared Imaging, near-ultraviolet imaging, thermal infrared imaging or ultrasound imaging.
  • a dual verification face anti-counterfeiting device comprising:
  • Inductive unit for sensing the presence of a human face by means of real-time monitoring using one or more of a near-infrared, ultrasonic, radio frequency or visible light camera;
  • a multimodal source comprising one or more of an active source in multiple spectra, a 3D structured light for 3D imaging, or an ultrasonic generator;
  • Multi-modal data acquisition device for collecting multi-spectral imaging of a human face, thermal infrared light imaging by the human body itself, one or more of a 3D image of a human face or ultrasound imaging;
  • a multi-modal face detecting unit configured to detect a face position in the multi-modal image, and send the detected face image to the multi-modal double-verification face anti-counterfeiting unit;
  • the multi-modal dual verification face anti-counterfeiting unit is used to verify whether the target face is a real and effective face; the display unit is configured to display the face anti-counterfeiting result,
  • the multi-modal dual-authentication face anti-counterfeiting unit further includes: a multi-modal human face detection unit for performing living body detection on the target face; and a multi-modal face verification unit for authenticating the target face .
  • the multi-modal human face living body detecting unit performs the living body detection on the target face, firstly, the biological activity of the target face is roughly judged, wherein the judgment is performed according to one or more of the following modes: determining the target by thermal infrared The temperature of the face is judged to be close to 37 degrees; the depth information of the face is judged by the 3D image to determine whether the face is a 3D object; the ultrasonic reflectance of the target face is analyzed by ultrasonic reflection, and whether the ultrasonic reflectance of the skin is determined with the real person The face is similar; the multi-spectral imaging is used to analyze the reflectivity of the target face under different spectra, and it is judged whether the multi-spectral reflectance of the skin is similar to the real face. If the target information of the target face is judged by one or more of the above methods, If the real faces are similar, the biological activity of the target face will continue to be accurately determined, and the acquired multi-spectral face images will be accurately determined by using the mutual business image algorithm.
  • the mutual business image algorithm includes the following steps: collecting multi-spectral imaging of a large number of real human faces and false human faces at different distances to form a training data set, and performing pixel-level division of images of any two different spectra of the same person, composing Mutual quotient image group, assuming that the two spectra are arbitrarily selected and the images of the same human face in the two spectra are sum, and the mutual quotient image is defined as follows:
  • f represents the intensity of the light source at the surface of the face
  • Z represents the distance of the face from the light source
  • ( ⁇ , y) represents the coordinates on the face image
  • the multi-modal face verification unit authenticates the target face, firstly collect a multi-modal image of a large number of real faces, and extract texture features for each image; secondly, subtract the feature vectors of the images by two, according to Whether the two images belong to the same person, the subtracted feature vectors are divided into two categories: intra-class and inter-class.
  • the machine learning algorithm is used to train a two-class classifier.
  • the trained classifier can determine whether the two input feature vectors belong to The same person; if it is in the face recognition application, if the face image corresponding to the recognition result of the target face image is recognized as belonging to the same person by the above two types of classifiers, the target face is considered to be true and effective, otherwise it is a false person Face; if it is in the face verification application, if the face image corresponding to the claimed person's identity is identified as belonging to the same person by the above two types of classifiers, the target face is considered to be true and effective, otherwise For a false face.
  • imaging types include visible light imaging, near-infrared imaging, near-ultraviolet imaging, thermal infrared imaging, or ultrasound imaging.
  • FIG. 1 is a flowchart of a dual verification face anti-counterfeiting method under visible light according to the present invention
  • FIG. 2 is a flow chart of a dual verification face spoofing method in a multi-modal mode according to the present invention
  • FIG. 3 is a structural block diagram of a dual-verification face anti-counterfeiting device in a multi-modal state according to the present invention
  • FIG. 4 is a flowchart of a dual-verification face anti-counterfeiting device in a multi-modal mode according to the present invention
  • M 6 is a schematic diagram of the relationship between the gray mean value of the face region image and the distance of the face distance gathering device in the example of the dual verification face anti-counterfeiting device proposed by the present invention
  • Figure 7 is a schematic diagram of the human face reflectance curves of black and white in a certain spectral range
  • FIG. 8 is a schematic diagram of a reflectance curve of several common fake faces in a certain spectral range
  • FIG. 9 is a schematic diagram of a panel of a multi-modal acquisition device in an example of a dual-verification face anti-counterfeiting device according to the present invention
  • Figure 10 is a schematic diagram of face imaging of three different spectra, from left to right: visible light, 850 nm near-infrared light and 400 nm purple light;
  • Figure 11 is a schematic diagram of thermal infrared imaging of a human face
  • Figure 12 is a schematic diagram of 3D imaging of a human face
  • Figure 13 is a schematic diagram of the reflected wave of the ultrasonic wave on the human face.
  • the basic principle of the face anti-counterfeiting method proposed by the present invention is based on the idea of double verification.
  • the so-called double verification face anti-counterfeiting includes the following two steps: Step 1: Performing a living, non-living judgment on the input face, this step has nothing to do with the identity of the person, that is, the designated person has nothing to do; Step 2, performing the input face image Face authentication, only when the input face image matches the corresponding identity, is determined to be a true and effective face, and this step is related to the designated person. Only the input face that is judged by the above two steps is considered to be a valid and true face.
  • step 1 the face biometric detection technology is used, that is, the living face and the non-living body are judged on the face to identify whether it is a real human face;
  • Step 2 is actually verifying the face by a designated person or a non-designated person.
  • the recognition result is the identity corresponding to the target face, and only if the similarity between the two is greater than a certain threshold, the verification is performed by the step, and the threshold can be determined by the manager according to actual needs.
  • the identity corresponding to the target face is the identity claimed by the target face, and the similarity between the input face image and the corresponding identity face image must be greater than a certain threshold.
  • Step 2 is a classification of the image of the designated person and the non-designated person.
  • the method of the present invention uses the above steps 1 and 2 at the same time, because in practical applications, the potential false face type cannot be predicted, and the simple living body detection cannot always maintain high accuracy.
  • the false face passes the in vivo detection, there is reason to believe that there is a certain difference between the fake face and the counterfeit designated person's face, so the face can be further enhanced by extracting and identifying the difference.
  • the traditional face anti-counterfeiting research still stays on the face detection, and ignores the verification of the input face.
  • the face biometric detection in step 1 has nothing to do with the designated person; and the face identity verification in step 2 is for the identity verification of the designated person.
  • the face anti-counterfeiting technology of the invention combined with face authentication and living body detection, can effectively improve the reliability of face anti-counterfeiting.
  • the dual verification face anti-counterfeiting method under visible light is suitable for the traditional visible light face recognition and face verification system, and the face anti-counterfeiting task can be completed without additional hardware.
  • a false face image can be regarded as an image obtained by a real face image after some sort of post-processing, so that the image quality will be somewhat lost compared to the real image.
  • the apparent features of the target face on the skin texture details can be fully exploited, and further classified according to pre-set evaluation criteria.
  • the accuracy can be further enhanced by introducing a traditional human-computer interaction process.
  • the multi-modality is further used to fully exploit the facial features.
  • Existing face recognition and face verification techniques only rely on obtaining a face image using a modality such as visible light or near infrared.
  • a multi-modality face anti-counterfeiting device under multi-modality is proposed and designed.
  • the device includes multi-spectral imaging devices, thermal infrared imaging devices, ultrasonic imaging devices, and the like in different spectra, and fully exploits the physical physical characteristics of human skin from different levels. By carefully analyzing the characteristics of the human face and the typical false face in different modes, the appropriate modal combination is selected to provide the most discriminative features for the subsequent face anti-counterfeiting algorithm.
  • the dual verification face anti-counterfeiting method under visible light can accurately judge the authenticity of the target face by analyzing the skin texture details and/or the movement of the face without relying on additional hardware.
  • the multi-modal dual verification face anti-counterfeiting method proposed by the invention can not only defend against more attack types, but also has less time and user body than the existing face detection algorithm. Good test and high accuracy.
  • the face information obtained by multi-modality can provide richer face information, fully exploit the essential features of the face, and increase the discrimination between the real face and the false face, which can effectively solve the anti-counterfeiting problem of the face.
  • FIG. 1 is a flow chart of a specific application of the dual verification face anti-counterfeiting method in visible light according to the present invention.
  • a face living body detecting strategy combining skin texture and facial motion is used.
  • the identity corresponding to the target face (the claimed identity in the face verification application, the identity corresponding to the recognition result in the face recognition application) is verified, and if the matching similarity is greater than a certain threshold, It is considered to be a real face, otherwise it is a false face. Only the target face passed the 101 and 102 steps at the same time to identify the target face as a real face.
  • the living body detecting step 101 further includes a step 1011 and a step 1012: Step 1011, first extracting various texture features, such as LBP (Local Binary Pattern) > HOG (Histograms of Oriented Gradients) features, etc., and then authenticating through the collection.
  • the face sample is trained by a machine learning algorithm (such as support vector machine SVM) to obtain a skin texture based living body detector. If it is judged to be a real face, go to step 1012.
  • a machine learning algorithm such as support vector machine SVM
  • An example of step 1011 is to filter the target face image by using LBP descriptors of different scales, for example, ⁇ , ⁇ , ⁇ , and then multi-scale the image, for example, into small blocks of 1 x1, 3x3, and 5x5.
  • the histograms of the three LBP descriptors are counted, and all the histograms are linked together as the texture features of the target face.
  • a large number of images of real and false faces are collected, for example, a real face image of 50 people is collected, and then a face image of different sizes is created using the face image, and then the photo image is acquired again. Remove the face area and extract the features as described in the previous step. Then use the SVM algorithm to train to get a classifier.
  • the biological activity of the target face is further detected using human-computer interaction.
  • an instruction to blink the user or shake the head can be given by the face recognition system.
  • facial motion estimation can be performed using motion estimation or template matching algorithms.
  • the motion vector of the target human eye region can be calculated by the optical flow method to determine whether a blinking motion has occurred.
  • a template matching algorithm pre-training a blinking, closed-eye classifier, and then performing motion detection.
  • An example of a human-computer interaction is that the face recognition system gives instructions to ask the user to blink for a certain period of time, for example 5 seconds.
  • the trained human eye state classifier Through the trained human eye state classifier, it is detected whether a blinking-closing eye-blinking process occurs during the period of time. If it appears, it is considered to be a real face, otherwise it is considered a false face, and proceeds to step 1021.
  • the above-mentioned human eye state classifier can collect a large number of blinking and closed eye images in advance, and then use the SVM classifier to train a classifier for eye state for the above-described blink detection.
  • features eg, LBP and Gabor features
  • the machine learning algorithm is used to train a two-class classifier.
  • the trained classifier can determine whether the two input feature vectors belong to the same person.
  • the similarity between facial features belonging to the same person should be greater than that of different people.
  • the similarity between features By setting a reasonable threshold, it can be used for authentication: if at step
  • the similarity between the target face and its claimed identity is greater than the threshold, and it is considered to have passed the authentication; otherwise it fails.
  • Figure 2 is a flow chart of the application of the dual verification face anti-counterfeiting method in multi-modal form.
  • the method uses multi-modality as a carrier to collect multi-modal face images.
  • the multi-modal information fusion is designed to be reasonable. Reliable dual verification face anti-counterfeiting algorithm.
  • the dual verification face anti-counterfeiting method in the multi-modal form includes a biometric verification step 201 and an authentication step 202.
  • biometric information verification 201 a two-step strategy from coarse to fine is employed.
  • a rough judgment is made on the living characteristics of the input face.
  • An example is: First, the temperature is detected by the thermal infrared image. If the temperature range of the real human body is met (for example, whether it is 37 degrees or less), the face depth information is judged by the 3D face image, and if the input face is judged to be a three-dimensional image The object continues to use the ultrasonic reflected wave to measure the ultrasonic reflectivity of the input face. If the reflectance is similar to that of a real person's face, check whether the average image brightness of the multispectral is within a reasonable range. If it is reasonable, it is judged to be true. Face, otherwise it is a false face. In this step, the facial living characteristics as a rough judgment can be dynamically selected according to a specific face modality.
  • the present invention proposes a face detection algorithm based on mutual business image, which gives more accurate and precise results.
  • the detection result if the mutual image algorithm determines that the face is a real face, the input face is biologically active. If it is judged as a real person face in the second step 2012, it is a real person face, otherwise it is a false face.
  • an accurate face detection is performed using a mutual business image algorithm.
  • a cross-commercial image is an image obtained by dividing an image of any two spectra by dividing a pixel value at a corresponding position (Mutual Quotient Image, MQI).
  • MQI Magnetic Quotient Image
  • the mutual business image can reflect the relationship between the reflection of the face in the two bands and is independent of the shape of the face. According to the definition of the mutual business image, it is assumed that two spectra are randomly selected ⁇ the same person face is in two lights
  • P represents the reflectivity of the face
  • represents the intensity of the light source at the surface of the face
  • Z represents the distance between the face and the light source
  • (x, y) represents the coordinates on the face image.
  • the ratio of the intensities of the two sources is about 1 in the appropriate distance range, so (4) can be approximately equal to
  • the mutual quotient image reflects the ratio of the reflectivity of the face in the two spectra of 44, so it is a feature that can reflect the essential characteristics of the face and can be used to design the living body detection algorithm.
  • Feature vector extraction can use a variety of methods, such as: intensity histogram, Gabor filter, etc., Likelihood Ratio.
  • the mutual business image can be segmented and multi-scale processed, and the face mutual business image feature vector at different scales and different positions can be obtained, and then the real and false face samples can be collected in large quantities and utilized.
  • the Boosting algorithm trains the biometric classifier.
  • Figure 7 illustrates the human face reflectance curves for blacks and whites in multiple spectra.
  • Figure 8 illustrates the reflectance curves for several common fake faces in multiple spectra, including two different silica gels and photographs. According to these two curves, it can provide a basis for spectral selection in multimodal human face detection.
  • the classifier is trained on the training data set, such as: SVM (Support Vector Machine), LDA (Linear Discriminant Analysis), Boosting, and the like.
  • SVM Small Vector Machine
  • LDA Linear Discriminant Analysis
  • Boosting Linear Discriminant Analysis
  • the cross-commercial image algorithm of the living body detecting step 2012 is further illustrated by way of example below.
  • ⁇ imaging with two light sources of 480 nm and 940 nm and the obtained face images are respectively ⁇ 8 . , 94 . . Then specify 4S .
  • MQi m , m ⁇ y) ⁇ y) ' i m ⁇ y).
  • the present invention is hereby given by way of example only for the two bands, and the light source of any of a plurality of bands can be selected according to the actual situation.
  • the 128x 128 MQI image is preprocessed for multi-scale processing and is divided into five scales, which are 128x128 pixels, 64x64 pixels, 32x32 pixels, 16x16 pixels, and 8x8 pixels.
  • the probability model obtained by statistical learning on the training set, for each point on the mutual quotient image, it can be regarded as the likelihood of living and non-living, _ ⁇ , ⁇ ⁇ ), ⁇ ( ⁇ ⁇ ⁇ ), where G represents The image comes from a living body,
  • all local likelihood ratios may constitute a living feature vector with a dimension of 21824.
  • the in vivo feature extraction algorithm uses Boosting for feature selection, and selects the most discriminative 3000-dimensional features from the original high-dimensional features. Then collect a large number of true and false face samples, form a training database, perform feature extraction according to the above-mentioned Boosting selected feature labels, and use the Support Vector Machine (SVM) method to learn a two-class classifier for The input feature vector is used for living and non-living judgments.
  • Boosting for feature selection, and selects the most discriminative 3000-dimensional features from the original high-dimensional features. Then collect a large number of true and false face samples, form a training database, perform feature extraction according to the above-mentioned Boosting selected feature labels, and use the Support Vector Machine (SVM) method to learn a two-class classifier for The input feature vector is used for living and non-living judgments.
  • SVM Support Vector Machine
  • the similarity verification of the input face and the corresponding identity is required.
  • the specific verification algorithm is similar to the verification method 102 under visible light, except that the input features are the sum of all features on the multimodal image.
  • the input face is judged by the face anti-counterfeiting.
  • the face verification algorithm in the authentication step 202 is further illustrated by an example, wherein the face verification application is taken as an example.
  • each person has N different modal images.
  • the positive samples are the difference of the multi-spectral feature vectors F belonging to the same person, and the negative samples are the differences of the multi-spectral feature vectors F that do not belong to the same person.
  • the Boosting algorithm is used to select features to obtain a feature subset.
  • feature extraction is performed according to the sample selected by Boosting, and the discriminant analysis is performed by using the LDA algorithm.
  • the similarity between facial features belonging to the same person should be greater than the similarity of facial features between different people. If the similarity between the target face and its claimed identity is greater than the threshold in step 202, then authentication is considered to have passed; otherwise, it fails.
  • FIG. 3 is a structural block diagram of a multi-modality double face verification device according to the present invention.
  • 4 is a flow chart showing the operation of the multi-modal dual verification face anti-counterfeiting device of the present invention.
  • the multi-modality includes one or more of modes such as multi-spectroscopy, 3D, and ultrasonic. Since the human skin has different reflectances under different spectra, the present invention introduces a multi-spectral face imaging system for collecting and analyzing the imaging of human faces in different spectra, and fully exploiting the essential characteristics of the human face, thereby Subsequent face anti-counterfeiting provides rich facial features.
  • the choice of spectrum may include near-infrared light, mid-infrared light, far-infrared (thermal infrared), near-violet light, etc., to reflect the different reflection characteristics of the human face as much as possible.
  • the thermal infrared image refers to the infrared light image emitted by the body's own heat, which is related to the individual's physical and biological characteristics, and has significant individual differences, and is suitable for use as a basis for face anti-counterfeiting.
  • the above light sources require a multi-spectral acquisition system to provide an active light source.
  • the invention simultaneously introduces a 3D face image, and ultrasonic imaging, together with the multi-spectral image, to form a multi-modal face image acquisition system.
  • the depth information of the face part obtained by the 3D image is an important basis for the anti-counterfeiting of the face, and can resist attacks of common false faces, such as photos, videos, and the like.
  • the method of ultrasonic imaging by measuring the reflectivity of the human face to the ultrasonic wave, can provide another measure of the physical characteristics of the human face skin, and furthermore the need for assisting the detection of the human face.
  • the multi-modal dual verification face anti-counterfeiting device of the present invention comprises a sensing unit 301, a multi-modality generating source 302, a multi-modal data collecting device 303, a multi-modal face detecting unit 304, The multi-modal dual verification face security unit 305 (including a multi-modal face living body detecting unit 3051, a multi-modal face authentication unit 3052), a control unit 306, and a display unit 307.
  • the sensing unit 301 is used for biometric sensing using near-infrared, ultrasonic, or radio frequency, or real-time monitoring using a visible light camera.
  • the unit is for sensing the presence of a human face in a specific sensing area, and if a human face is sensed, signals the presence of the object to the control unit 306. In fact, the sensing unit 301 cannot judge that the face is sensed, and as long as an object appears in the sensing area, it is considered to be a human face.
  • the sensing unit 301 can perform face sensing using near-infrared, ultrasonic, or radio frequency, or simply use a visible light camera for real-time monitoring.
  • the size and position of the particular sensing area is preferably set to capture the entire face.
  • the sensing unit 301 senses the presence of a human face, and performs the following operations: Step 1. If the face is not detected yet, the loop detection is continued; if the presence of the face is detected, the process proceeds to step 2; Step 2, wait After a certain period of time, the face is detected again. If the face still exists, it is considered to be a valid face, and a signal is sent to the control unit 306. If the face no longer exists, it is considered to be an invalid face, and the process proceeds to step 1 to restart. Detection.
  • sensing unit 301 is a visible light camera that performs face sensing in a monitored manner.
  • the visible light camera loops through the image and detects the presence of a human face. If there is no face, continue to collect visible light images for face detection; if there is a face, wait 0.5 seconds to collect the image again and detect the face. If the face still exists at this time, it means that a stable and effective face appears, and then sends a signal to the control unit 306 to start the corresponding image collection work; if the face disappears after waiting, the face is likely not to be performed. The face of multimodal image acquisition is considered to be noise and ignored. Continue to collect visible light images and detect the presence of a human face.
  • the multimodal generation source 302 can include, but is not limited to, one or more of the following: active light sources in multiple spectra (providing the illumination required for multispectral imaging), 3D structured light required for 3D imaging, Ultrasonic generator (to emit ultrasonic waves).
  • the spectral combination may include visible light (in which case a visible light source is not required), but must include a combination of one or more non-visible light sources, the spectral range of the source may be in the near infrared (740mn-4000nm), or Near-ultraviolet (360-400nm) o can also include thermal infrared imaging, where hot infrared rays are emitted by the human body, eliminating the need to erect additional light sources.
  • the spectral combination should not include light that is harmful to the human body, such as medium-ultraviolet light (290-320 nm wavelength) or near-ultraviolet light (200 nm-290 nm wavelength).
  • the 3D structured light can be configured according to actual needs, such as line laser or 3DMR structured light.
  • the frequency of the ultrasonic generator is set according to actual needs, for example, it can be set to 50 kHz.
  • the light emitted by the light source should conform to two principles: 1. In the proper distance range, in the plane directly in front of the multi-mode generating source 302, the light should be kept in a certain area. As shown in Fig. 5, at a certain distance (d) directly in front of the collecting device, the light intensity within a certain area (circular in the figure) should be kept uniform. 2. The luminous intensity should be kept within a reasonable range, so that the imaging device can be collected clearly. To the face image, it is not too strong for the user's discomfort.
  • the multi-modal data acquisition device 303 is configured to collect multi-spectral light that is irradiated on the human face by the active light source and then reflected, and is also used for collecting hot infrared light emitted by the human body, a 3D image of the human face, and an ultrasonic wave of the human face.
  • Imaging includes but is not limited to one or more of the following device units: a camera that responds to light from each source, a receiver or photodiode that responds to each spectral light, a thermal infrared sensor or sensor, a 3D image acquisition device, an ultrasound imaging device Or receiver.
  • the multi-modality data acquisition unit 303 first includes an imaging device corresponding to each spectrum in 302 for collecting multi-spectral light reflected by the face, including the imaging device and the corresponding filter, and further includes thermal infrared, 3D, ultrasonic imaging device or induction. Device.
  • the multispectral imaging device preferably prefers a camera that responds well to the light of the multispectral source, at which point the return data type is an image. If the conditions are limited, other receiving devices, such as receivers that respond to multi-spectral light, photodiodes, etc., can be used.
  • the return data type is the reflection intensity scalar.
  • One of the multi-spectral sources can correspond to a single camera, or it can respond to multiple bands of multi-spectral sources with a single camera.
  • the camera should have a high sensitivity at the spectrum it responds to.
  • the frequency should be the same as that of the ultrasonic generator in 302; if the conditions do not allow, the ultrasonic receiver can also be used.
  • thermal infrared a thermal infrared camera is preferred, and a sensor that senses temperature can also be used.
  • a 3D camera an image reflecting the depth information of the face is acquired.
  • a filter corresponding to the band is required to eliminate interference of ambient light and other bands of light to the band.
  • the filter should be placed in front of the imaging device of the appropriate segment and attached to the camera lens or receiving device to prevent stray light from entering.
  • the sensing unit multi-modal face detecting unit 304 is configured to preprocess the face image collected by the multi-modal image forming device, and then detect the pre-processed face image, when all face images are detected. In the case of the face and eyes, it is considered that the face is detected.
  • the multi-modal dual-verification face anti-counterfeiting unit 305 includes two sub-units: multi-modal human face detection 3051 and multi-modal face verification 3052.
  • multi-modal human face detection 3051 a suitable multi-modal face biometric classifier is designed by using the coarse-to-fine two-step strategy mentioned above; the multi-modal face authentication unit 3052, from more The morphological face image extracts information that can determine the target identity for face authentication.
  • the multi-modal human face detection unit 3051 and the multi-modal face authentication unit 3052 jointly constitute an implementation unit 305 of the multi-modal dual verification face anti-counterfeiting algorithm of the present invention.
  • the control unit 306 is configured to control the working state of each unit, the information communication between the units, and the like.
  • the display unit 307 is configured to display the intermediate result on the output medium, which is convenient for the user to query.
  • the control unit 306 is configured to implement the operating state of the multimodal generation source 302 and the control of the multimodal data acquisition unit 303. It can be controlled by a single-chip microcomputer or connected by a PC.
  • the control unit 306 is controlled by: after receiving the face presence signal sent by the sensing unit 301, first giving a control signal, turning on the light source of the spectrum 1, and then waiting for a certain time to give the camera exposure.
  • the image signal corresponding to the camera of Spectrum 1 is then acquired and then the source of Spectrum 1 is turned off.
  • the signal is then given, the source of spectrum 2 is turned on, a certain exposure time is awaited, the image signal corresponding to the camera of spectrum 2 is accommodated and acquired, then the source of spectrum 2 is turned off, and so on, until the image data of all spectra is acquired.
  • the control unit 306 is composed of PC software of the host computer. After receiving the signal sent by the sensing unit 301, the control unit 306 first gives an open command of the light source 1, waits for 50 ms and then gives an acquisition command of the camera (or receiving tube) corresponding to the light source 1, which is collected by the camera (or receiving tube). data. Then let the light source 1 go out, give the light source 2 open command, wait for 50ms, and let the light source 2 camera (or receiving tube) perform data acquisition. And so on, until the cameras of all the light sources collect data. Then, when collecting thermal infrared and 3D images, you can directly collect them without waiting. The ultrasonic transmitter is then turned on and the echo is received and imaged by the ultrasound imaging device. Then, the control unit 306 sends the image data collected by each camera to the multi-modal face detecting unit 304.
  • the display unit 307 is configured to display the face image collected by the multi-modal data acquisition unit 303, and give various intermediate results or feedback information to facilitate human-computer interaction.
  • FIG. 9 shows a schematic diagram of a multimodal generation source and a multimodal data acquisition unit by way of example.
  • the multi-modal image acquisition device panel 804 functions as a device frame.
  • the panel is divided into upper and lower parts, the upper part is a multi-modal generation source 901 and a multi-modal data acquisition unit 902, and the lower part is a display unit 905, which is composed of an LCD screen with a visible light camera between the two parts. 903, used as a sensing unit.
  • the three multimode sources are an 800 nm multispectral light source, a 3D structured light source, and an ultrasonic source.
  • the three sources are arranged in a crosswise arrangement and form a rectangle, which ensures that each source can form a uniform hook distribution within a certain range in front of the device.
  • imaging devices or receiving devices
  • multi-spectral imaging devices the filters in the corresponding bands are covered in front of the camera to prevent interference from visible light or other spectral light
  • thermal infrared cameras for collecting heat
  • 3D and ultrasound imaging equipment When testing, the face should face the collection device face to face.
  • the control unit is not included in the panel of the multispectral collector, but is a separate part (either a microcontroller or a PC software) connected to the multispectral acquisition panel via a control signal line.
  • the multi-modal face detection unit and the multi-modal double-verification face anti-counterfeiting unit are applications of the upper computer, and after receiving the collected multi-modal face images, respectively, are sent to the above two units, and given Corresponding results.
  • FIG. 4 The workflow of the above multi-modal dual verification face anti-counterfeiting device is shown in FIG. 4 .
  • the presence of the face is first sensed by the sensing unit 401; if there is no face, the loop detection is continued, and in fact, the sensing unit 401 cannot determine that the detected face is, but only detects that an object exists.
  • the sensing unit 401 cannot determine that the detected face is, but only detects that an object exists.
  • the control unit 402 issues a control command to guide the multi-modal generation source 403 to turn on, off, and multi-modal data acquisition.
  • Unit 404 collects data; then enters multimodal face detection unit 405 for face detection, If no face is detected in any of the images, the display unit 407 is signaled. Outputting the information of the detection failure, and returning to the sensing unit 401 to perform image acquisition again; if all the modal images detect the human face, enter the multi-modal double verification face anti-counterfeiting unit 406, and send a signal to the display unit 407 for output.
  • the face detection information or the displayed face image is captured; after entering the multi-modal double verification face security unit 406, the face living body detection determination 4061 and the face identity verification 4062 are performed, and if it is a fake face, the display unit 407 is passed.
  • the information about the failure of the corresponding living body detection is given, and the sensing unit 401 is returned to perform a new round of image acquisition; if it is a real human face, it is also given by the display unit 407, and then waits for a period of time, and returns to the sensing unit 401 to start a new round. Face detection.
  • the multi-modal face detection unit 405 is an application of the PC of the host computer for invoking a corresponding face detection classifier for face detection for each image acquired by the multi-modal data acquisition device 403. If a face is detected in all the images, a certain face image is sent to the display unit 407 for display (for example, a face image under visible light is selected), and the detected face images of all the spectra are input to the multi-modality. Double verification face security unit 406. If not all of the faces are detected, the result of the delivery detection failure is displayed to the display unit 407, and returned to the sensing unit 401 to restart the image sensing.
  • the present invention has to be pointed out that with the dual verification face anti-counterfeiting method and device thereof provided by the present invention, the user can adapt to different biological modes according to his own needs, such as a face, an iris, and the like. And the modal combination can be freely selected according to the actual situation. For example, different spectral combinations can be selected separately, or combined with thermal infrared light, 3D image or ultrasonic imaging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Collating Specific Patterns (AREA)

Abstract

本发明涉及一种双验证人脸防伪方法及装置,该方法包括:步骤1,对采集的目标人脸进行活体检测,判断目标人脸是否具有生物活性,如果目标人脸被认定具有活体特性,则转入步骤2;步骤2,如果是在人脸识别应用中,则计算采集到的目标人脸与识别结果对应的人脸之间的相似度,若大于某一阈值,则认为该目标人脸是真实有效的人脸;如果是在人脸验证应用中,则计算采集到的目标人脸与目标人脸所声称的身份对应的人脸之间的相似度,若大于某一阈值,则认为该目标人脸是真实有效的人脸。利用本发明的方法,通过活体检测与身份验证的结合,提供准确、可靠的人脸防伪检测结果。

Description

双验证人脸防伪方法及装置
技术领域
本发明涉及一种人脸防伪方法及装置, 尤其是一种双验证人脸防伪方法及 装置, 属于图像处理与模式识别的技术领域。
背景技术
人脸防伪技术关系到人脸识别认证授权系统的安全性, 如果没有人脸防伪 功能, 人脸识别认证授权系统易受到虛假人脸的攻击, 进而可能引发严重的安 全问题。 例如, 攻击者可以通过某种手段获取某一特定目标 (即指定人) 的人 脸图像并制成照片、 视频、 或面具等, 呈现在系统面前, 以期获得非法权限。 因此, 人脸防伪技术受到越来越多的关注。 目前国际上现有的人脸防伪技术, 主要基于人机交互策略: 系统发出特定指令, 要求用户作出眨眼、 发音等特定 行为, 进而判断输入人脸的活性。 根据常见的动作可以划分为以下三种方式- 第一种是基于眨眼的活体检测,公开该技术的文献有: 1 ) Gang Pan, Lin Sun, Zhaohui Wu and Shilong Lao. Eyeblink-based Anti-Spoofmg in Face Recognition from a Generic Webcamera, International Conference on Computer Vision, 2007, 2) K. Kollreider, H. Fronthaler and J. Bigun. Verifying Liveness by Multiple Experts in Face Biometrics, IEEE Conference on Computer Vision and Pattern Recognition Workshop, 2008, 3 )专利号为 ZL200710178088.6, 发明名称为"一种基于人脸生 理性运动的活体检测方法及系统"的专利文献。 第二种是基于摇头的活体检测, 公开该技术的相关文献包括: 1 ) K. Kollreider, H. Fronthaler and J. Bigun. Evaluating Liveness by Face Images and the Structure Tensor, IEEE Workshop on Automatic Identification Advanced Technologies, 2005, 2) Wei Bao, Hong Li, Nan Li and Wei Jiang. A Liveness Detection Method for Face Recognition Based on Optical Flow Field, International Conference on Image Analysis and Signal Processing, 2009。 第三种是基于语音及嘴部动作的活体检测, 公幵该技术的相关文献有: G. Chetty and M. Wagner. Liveness Verification in Audio-Video Speaker Authentication. In 10th Australian Int. Conference on Speech Science and Technology, 2004。
这种基于人机交互的方法由于要求使用者表现特定行为, 因此用户负担较 重、 用户体验不佳、 所需时间较长。
另外, 有的研究者从多光谱的角度入手, 通过分析皮肤在不同光谱下的反 射率进行活体检测,相关文献有: 1 ) loannis PavHdis, Peter Symosek, The Imaging Issue in an Automatic Face/Disguise Detection System, IEEE workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications, 2000。 2) Youngshin Kim, Jaekeun Na, Seongbeak Yoon, and Juneho Yi. Masked fake face detection using radiance measurements, J. Opt, Soc. Am, vol. 26, no.4, April 2009。但该种方法目前 还很粗糙, 精度上也并不理想, 还有很大的改进空间。
以上所述的人脸防伪方法, 亦可以成为活体检测技术, 因为他们都只判断 目标人脸是否具有生物活性。 然而, 实际应用中, 有可能出现真实人员去仿冒 攻击指定人的情况, 此时目标人脸确实为真实人脸, 但是仍然属于攻击人脸识 别系统的行为。 因此人脸防伪技术不应仅仅包含活体检测。 并且上述方法普遍 存在用户负担重、 人机交互时间长、 准确度不高等缺点, 因此开发准确、 快速、 适用范围广的人脸防伪方法势在必行。
发明内容
本发明的目的是克服现有技术中存在的不足, 提供一种双验证人脸防伪方 法及装置, 其提高识别精确度, 方便, 安全可靠。
按照本发明提供的技术方案, 一种双验证人脸防伪方法, 所述方法包括- 步骤 1,对采集的目标人脸进行活体检测,判断目标人脸是否具有生物活性, 如果目标人脸被认定具有活体特性, 则转入步骤 2;
步骤 2, 如果是在人脸识别应用中, 则计算采集到的目标人脸与识别结果对 应的人脸之间的相似度, 若大于某一阈值, 则认为该目标人脸是真实有效的人 脸;
如果是在人脸验证应用中, 则计算采集到的目标人脸与目标人脸所声称的 身份对应的人脸之间的相似度, 若大于某一阈值, 则认为该目标人脸是真实有 效的人脸,
其中步骤 1与指定人无关, 步骤 2与指定人有关, 当目标人脸同时通过步 骤 1和步骤 2的验证之后, 才能被认定为是真实有效的人脸, 否则被认定为是 虚假人脸。
如果所述双验证人脸防伪方法是基于可见光, 则步骤 1迸一步包括: 步骤 101, 对目标人脸进行活体检测, 首先采集大量真实、 虚假人脸样本, 对目标人脸提取各种纹理特征, 训练活体检测纹理分类器, 若目标人脸被活体 检测紋理分类器认定为真实人脸, 则进入步骤 2, 否则认定为虚假人脸;
步骤 102, 通过人机交互确定目标人脸的有效性, 其中系统发出指令, 要求 用户做出一定的动作, 然后系统不断检测目标人脸是否做出相应动作, 若在一 定时间内检测到上述动作的发生, 则判断目标人脸为真实人脸, 否则为虚假人 脸;
只有目标人脸同时通过步骤 101和 102, 才被认为通过步骤 1的活体检测。 步骤 2进一步包括:
步骤 201, 首先采集大量真实人脸图像, 对每张人脸图像提取其纹理特征; 步骤 202, 然后将采集的所有人脸图像的特征向量两两相减, 根据两图像是 否属于同一个人, 将相减后的特征向量分为类内、 类间两类, 利用机器学习算 法训练一个两类分类器, 由此训练得到的分类器可以判断输入的两个特征向量 是否属于同一个人;
步骤 203, 如果是在人脸识别应用中, 若目标人脸图像与识别结果对应的人 脸图像, 被步骤 202中的分类器认定为属于同一人, 则认为目标人脸真实有效, 否则为虚假人脸;
如果是在人脸验证应用中, 则目标人脸图像与所声称的指定人身份对应的 人脸图像, 被步骤 202 中的分类器认定为属于同一人, 则认为目标人脸真实有 效, 否则为虚假人脸。
如果所述双验证人脸防伪方法是基于多模态, 则步骤 1进一步包括: 步骤 101, 粗略判断目标人脸的生物活性, 其中按照下面的方式中的一种或 多种进行判断: 通过热红外判断目标人脸的温度,判断是否接近 37度;通过 3D 图像判断人脸的深度信息, 判断面部是否为 3D物体; 通过超声波反射分析目标 人脸的超声波反射率, 判断皮肤的超声波反射率是否与真实人脸相似; 通过多 光谱成像分析目标人脸在不同光谱下的反射率, 判断皮肤的多光谱反射率是否 与真实人脸相似, 如果通过上述一种或多种方式判断目标人脸的信息指标与真 实人脸相似, 则进入步骤 102;
步骤 102, 精确判断目标人脸的生物活性, 将采集到的多光谱人脸图像, 利 用互商图像算法进行准确的活体判断,
只有目标人脸同时通过步骤 101和 102, 才被认为通过步骤 1的活体检测。 互商图像算法包括如下步骤- 步骤 1021 , 采集大量真人人脸和虚假人脸在不同距离下的多光谱成像构成 训练数据集, 对于同一个人的任意两张不同光谱下的图像进行像素级的相除, 组成互商图像组, 假设任意选定两个光谱 ¾4, 同一个人脸在两个光谱下的图像 为 和 , 其互商图像定义如下:
其中, ρ表示人脸的反射率, κ代表光源在人脸表面处的强度, ζ代表人脸 距离光源的距离, (x, y) 代表人脸图像上的坐标;
步骤 1022, 对于所有的互商图像, 在多个尺度上划分为多个重叠或不重叠 的小块, 提取每个小块的特征向量, 将所有小块的特征向量进行组合, 作为全 局的特征向量;
步骤 1023, 基于统计学习方法, 在训练数据集上训练分类器, 用于区分真 实、 虚假人脸。
步骤 2进一步包括- 步骤 201, 采集大量真实人脸的多模态图像, 对每张图像提取其纹理特征; 步骤 202, 将图像的特征向量两两相减, 根据两图像是否属于同一个人, 将 相减后的特征向量分为类内、 类间两类, 利用机器学习算法训练一个两类分类 器, 训练得到的分类器能够判断输入的两个特征向量是否属于同一个人;
步骤 203, 如果是在人脸识别应用中, 若目标人脸图像与识别结果对应的人 脸图像, 被步骤 202中的分类器认定为属于同一人, 则认为目标人脸真实有效, 否则为虚假人脸;
如果是在人脸验证应用中, 若目标人脸图像与所声称的指定人身份对应的 人脸图像, 被步骤 202 中的分类器认定为属于同一人, 则认为目标人脸真实有 效, 否则为虚假人脸。
每种不同的成像类型被称为一个模态, 成像类型包括可见光成像, 近红外 成像, 近紫外成像, 热红外成像或超声波成像。
一种双验证人脸防伪装置, 该装置包括:
感应单元, 用于使用近红外、 超声波、 射频方式或可见光摄像头中的一种 或多种, 通过实时监控的方式, 感应人脸的存在;
多模态发生源, 包含多个光谱下的主动光源、 用于 3D成像所需的 3D结构 光或者超声波发生器中的一种或多种;
多模态数据采集设备, 用于采集人脸的多光谱成像, 人体本身所发出的热 红外光成像, 人脸的 3D图像或超声波成像中的一种或多种;
多模态人脸检测单元, 用于检测多模态图像中的人脸位置, 并将检测到的 人脸图像发送到多模态双验证人脸防伪单元;
多模态双验证人脸防伪单元, 用亍验证目标人脸是否为真实有效的人脸; 显示单元, 用于显示人脸防伪结果,
其中, 多模态双验证人脸防伪单元进一步包括: 多模态人脸活体检测单元, 用于对目标人脸进行活体检测; 多模态人脸验证单元, 用于对目标人脸进行身 份验证。
所述多模态人脸活体检测单元对目标人脸进行活体检测时, 首先, 粗略判 断目标人脸的生物活性, 其中按照下面的方式中的一种或多种进行判断: 通过 热红外判断目标人脸的温度, 判断是否接近 37度; 通过 3D图像判断人脸的深 度信息,判断面部是否为 3D物体; 通过超声波反射分析目标人脸的超声波反射 率, 判断皮肤的超声波反射率是否与真实人脸相似; 通过多光谱成像分析目标 人脸在不同光谱下的反射率, 判断皮肤的多光谱反射率是否与真实人脸相似, 如果通过上述一种或多种方式判断目标人脸的信息指标与真实人脸相似, 则继 续精确判断目标人脸的生物活性, 将采集到的多光谱人脸图像, 利用互商图像 算法进行准确的活体判断。
互商图像算法包括如下步骤- 采集大量真人人脸和虚假人脸在不同距离下的多光谱成像构成训练数据 集, 对于同一个人的任意两张不同光谱下的图像进行像素级的相除, 组成互商 图像组,假设任意选定两个光谱 ^ 同一个人脸在两个光谱下的图像为 和 , 其互商图像定义如下:
其中, 表示人脸的反射率, f代表光源在人脸表面处的强度, Z代表人脸 距离光源的距离, (χ, y) 代表人脸图像上的坐标;
对于所有的互商图像, 在多个尺度上划分为多个重叠或不重叠的小块, 提 取每个小块的特征向量, 将所有小块的特征向量进行组合, 作为全局的特征向 基于统计学习方法, 在训练数据集上训练分类器, 用于区分真实、 虚假人 脸。 多模态人脸验证单元对目标人脸进行身份验证时, 首先采集大量真实人脸 的多模态图像, 对每张图像提取其纹理特征; 其次, 将图像的特征向量两两相 减, 根据两图像是否属于同一个人, 将相减后的特征向量分为类内、 类间两类, 利用机器学习算法训练一个两类分类器, 训练得到的分类器能够判断输入的两 个特征向量是否属于同一个人; 如果是在人脸识别应用中, 若目标人脸图像与 识别结果对应的人脸图像, 被上述两类分类器认定为属于同一人, 则认为目标 人脸真实有效, 否则为虚假人脸; 如果是在人脸验证应用中, 若目标人脸图像 与所声称的指定人身份对应的人脸图像, 被上述两类分类器认定为属于同一人, 则认为目标人脸真实有效, 否则为虚假人脸。
每种不同的成像类型被称为一个模态, 成像类型包括可见光成像, 近红外 成像, 近紫外成像, 热红外成像或超声波成像。
本发明的优点: 通过活体检测与身份验证的结合, 提供准确、 可靠的人脸 防伪检测结果。
附图说明
图 1为本发明提出的在可见光下的双验证人脸防伪方法流程图;
图 2为本发明提出的在多模态下的双验证人脸放伪方法流程图;
图 3为本发明提出的在多模态下的双验证人脸防伪装置结构框图; 图 4为本发明提出的在多模态下的双验证人脸防伪装置的工作流程图; 图 5 为本发明提出的在多模态下的双验证人脸防伪装置的光源覆盖范围示 意图;
m 6为本发明提出的双验证人脸防伪装置一实例中人脸区域图像灰度均值 与人脸距釆集装置距离之间的关系示意图;
图 7为在一定光谱范围内黑人和白人的人脸反射率曲线示意图;
图 8为在一定光谱范围内几种常见造假人脸的反射率曲线示意图; 图 9为本发明提出的双验证人脸防伪装置一实例中多模态采集装置的面板 示意图;
图 10为三种不同光谱的人脸成像示意图,从左到右依次为:可见光、 850nm 近红外光和 400nm紫光;
图 11为人脸热红外成像示意图;
图 12为人脸 3D成像示意图;
图 13为超声波在人脸上的反射波示意图。
具体实施方式
下面结合具体附图和实施例对本发明作进一步说明。
本发明提出的人脸防伪方法的基本原理是基于双验证的思想。 所谓双验证 人脸防伪, 包括如下两个步骤: 步骤 1, 对输入人脸进行活体、 非活体的判断, 此步骤与人的身份无关, 即指定人无关; 步骤 2, 对输入人脸图像进行人脸身份 验证, 只有当输入人脸图像与所对应的身份相匹配时, 才认定为真实有效的人 脸, 该步骤与指定人相关。 只有同时通过以上两步判断的输入人脸才被认为是 有效、 真实的人脸。 步骤 1 中使用的是人脸活体检测技术, 即对人脸进行活体、 非活体判断, 鉴别是否为真人活体人脸; 步骤 2 实际上是对人脸进行指定人、 非指定人的验 证。 其中在步骤 2 中, 如果是做人脸识别应用, 则识别结果即为目标人脸所对 应的身份, 只有两者的相似度大于一定阈值, 才通过该步验证, 阈值可由管理 人员根据实际需求自行设定; 如果是做人脸验证应用, 则目标人脸所对应的身 份为目标人脸所声称的身份, 输入人脸图像与对应身份人脸图像之间的相似度 须大于一定阈值, 才认为通过人脸身份认证。 步骤 2 是对指定人与非指定人图 像的分类。 通过融合步骤 1和步骤 2的信息, 达到可靠的防伪的目的。
本发明的方法之所以同时采用上述步骤 1和步骤 2, 是因为在实际应用中, 潜在的虚假人脸类型无法预估, 单纯的活体检测无法一直保持高准确率。 而在 另一方面, 即使虚假人脸通过了活体检测, 也有理由相信该虚假人脸与所仿冒 的指定人人脸之间存在一定的差异, 因此可以通过提取、 鉴别该差异, 进一步 增强人脸防伪的精度。 因此提出输入的人脸图像需要同时通过人脸活体检测和 人脸身份验证, 才能认定为真实有效的人脸。
传统的人脸防伪研究还停留在人脸活体检测上, 而忽略了对输入人脸的验 证。 事实上, 步骤 1 的人脸活体检测, 与指定人无关; 而步骤 2的人脸身份验 证则是针对指定人的身份验证。 本发明的人脸防伪技术, 结合人脸身份验证与 活体检测, 可以有效提高人脸防伪的可靠性。
在本发明的双验证人脸防伪方法中, 进一步提出了在可见光下的具体应用 形式和在多模态下的具体应用形式。
可见光下的双验证人脸防伪方法适用于传统的可见光人脸识别、 人脸验证 系统, 无需额外硬件即可完成人脸防伪任务。 虚假人脸图像可以看作是真实人 脸图像在经过某种后处理之后得到的图像, 因此相比真实图像其图像质量将有 一定损失。 通过对捕捉到的目标人脸提取多种类型的紋理信息, 可以充分挖掘 目标人脸在皮肤纹理细节上的表观特征, 进而根据预先设定好的评估标准进行 进一步的分类。 此外, 也可以通过引入传统的人机交互过程, 进一步增强其准 确度。
对于本发明提出的多模态下的双验证人脸防伪方法, 则进一步采用多种模 态充分挖掘人脸本质特征。 现有的人脸识别、 人脸验证技术还仅停留在利用一 种模态 (例如可见光或近红外) 获取人脸图像。 我们认为这种数据采集方式并 不能充分挖掘人脸的皮肤特性, 也不能达到较高的防伪精度, 因此提出并设计 了多模态下的双验证人脸防伪装置。 该装置包括不同光谱下的多光谱成像装置、 热红外成像装置、 超声波成像装置等等, 从不同的层面充分挖掘人脸皮肤的本 质物理特性。 通过仔细分析真人人脸与典型虚假人脸在不同模态下的特性, 选 取合适的模态组合, 为后续的人脸防伪算法提供最具鉴别力的特征。
本发明提出的可见光下的双验证人脸防伪方法, 可以在不依赖额外硬件的 基础上, 通过对皮肤纹理细节的分析和 /或人脸的运动, 对目标人脸的真伪进行 准确判断。 而本发明提出的基于多模态的双验证人脸防伪方法, 相对于现有的 人脸活体检测算法, 不仅可以防御更多的攻击类型, 而且具有用时少、 用户体 验良好、 准确率高等特点。 通过多模态获取的人脸信息可以提供更丰富的人脸 信息, 充分挖掘人脸的本质特征, 增大真人人脸与虚假人脸的区分度, 可以有 效解决人脸的防伪难题。
图 1 为本发明提出的双验证人脸防伪方法在可见光下的具体应用流程图。 参照图 1, 在活体检测步骤 101中, 使用皮肤紋理与面部运动相结合的人脸活体 检测策略。 在身份验证步骤 102 中, 对目标人脸所对应的身份 (人脸验证应用 中为所声称的身份, 人脸识别应用中为识别结果对应的身份) 进行验证, 若匹 配相似度大于一定阈值, 则认为是真实人脸, 否则为虚假人脸。 只有目标人脸 同时通过了 101和 102两步才认定目标人脸为真实人脸。
活体检测步骤 101进一步包括步骤 1011和步骤 1012: 步骤 1011 , 首先对 目标人脸提取各种紋理特征,例如 LBP(Local Binary Pattern ) > HOG ( Histograms of Oriented Gradients)特征等, 然后通过釆集真实虚假人脸样本通过机器学习算 法(如支持向量机 SVM) 训练得到基于皮肤紋理的活体检测器。 如果判断是真 实人脸, 进入步骤 1012。
步骤 1011 的一个实例是, 利用不同尺度的 LBP 描述子, 例如 ^ ,^ ,^ 对目标人脸图像进行滤波, 然后对图像进行多尺度的划分, 例 如划分成 1 x1, 3x3 , 5x5的小块,在每一块里面统计三种 LBP描述子的直方图, 把所有的直方图链接在一起作为目标人脸的紋理特征。
然后采集大量真实、 虚假人脸的图像, 例如, 采集 50人的真实人脸图像, 然后利用其人脸图像制作成不同大小的照片, 然后再次采集照片图像。 取出人 脸区域,按照上一步的操作抽取特征。然后利用 SVM算法训练得到一个分类器。
在步骤 1012, 利用人机交互进一步检测目标人脸的生物活性。 例如, 可以 通过人脸识别系统给出让用户眨眼、 或摇头的指令。 通过检测目标人脸是否做 出了相应动作, 从而判断目标人脸是否为真实人脸。 在该步骤中, 可以利用运 动估计或模板匹配算法进行面部运动估计。 例如, 若采用眨眼的形式, 可以利 用光流法计算目标人脸眼睛区域的运动矢量, 进而判断是否发生了眨眼动作。 或者模板匹配算法, 预先训练好一个睁眼、 闭眼的分类器, 然后进行运动检测。
一个人机交互的实例是, 人脸识别系统给出指令要求用户在一定时间内, 例如 5秒, 进行眨眼。 通过训练好的人眼状态分类器, 检测在该段时间内是否 出现了睁眼-闭眼-睁眼的过程。 若出现, 则认为是真实人脸, 否则则认为是虚假 人脸, 进入步骤 1021。 其中上面提到的人眼状态分类器, 可以预先收集大量睁 眼、 闭眼图像, 然后利用 SVM分类器训练得到眼睛状态的分类器, 用于上述的 眨眼检测。
在身份验证步骤 102中, 对数据库中的人脸图像抽取特征 (例如, LBP和 Gabor特征), 然后将采集的所有人脸图像的特征向量两两相减, 根据两图像是 否属于同一个人, 将相减后的特征向量分为类内、 类间两类, 利用机器学习算 法训练一个两类分类器, 由此训练得到的分类器可以判断输入的两个特征向量 是否属于同一个人;
经过以上步骤, 属于同一人的人脸特征之间的相似度应该大于不同人的人脸 特征之间的相似度。 通过设定一个合理的阈值, 可以用于身份验证: 若在步骤
102中目标人脸与其所声称的身份之间的相似度大于阈值,则认为通过了身份验 证; 否则失败。
图 2 为双验证人脸防伪方法在多模态的形式下的应用流程图。 该方法采用 多模态作为载体, 采集多模态人脸图像, 利用多模态图像所提供的丰富信息和 利用不同生物特征具有不同物理特性的特点, 通过多模态信息融合, 设计了合 理、 可靠的双验证人脸防伪算法。
在多模态形式下的双验证人脸防伪方法包括活体验证步骤 201 与身份验证 步骤 202两步。
在活体信息验证 201中, 采用由粗到精的两步策略。
首先在第一步 2011, 利用所获取的多模态人脸信息, 对输入人脸的活体特 性进行粗略判断。 一个实例是: 首先通过热红外图像进行温度检测, 如果符合 真实人体的温度范围(例如是否为 37度), 则通过 3D人脸图像进行人脸深度信 息的判断, 如果判断输入人脸是一个三维物体, 则继续利用超声波反射波测量 输入人脸的超声波反射率, 若反射率与真人人脸相似, 则验査其多光谱的平均 图像亮度是否在合理范围内, 若合理, 则判断为真人人脸, 否则为虚假人脸。 在该步骤中, 可以根据特定的人脸模态动态选取作为粗略判断的人脸活体特性。
当第一步 2011认定为真人人脸之后, 在第二步 2012中, 针对人脸的多模 态成像, 本发明提出基于互商图像的人脸活体检测算法, 给出更为准确、 精细 的检测结果; 若互商图像算法判断此人脸为真人人脸, 则说明输入人脸具有生 物活性。如果在第二步 2012判断为真人人脸, 则为真人人脸, 否则为虚假人脸。
在步骤 2012中, 利用互商图像算法进行精确的人脸活体检测。 互商图像是 指任意两个光谱下的图像进行相应位置像素值做除法所得到的图像 (Mutual Quotient Image, MQI)。互商图像能反映拍摄人脸在两个波段反射率之间的关系, 而且与人脸的形状无关。 根据互商图像的定义, 假设任意选定两个光谱 ^ 同 一个人脸在两个光
Figure imgf000010_0001
其中, P表示人脸的反射率, κ代表光源在人脸表面处的强度, Z代表人脸 离光源之间的距离, (x, y ) 代表人脸图像上的坐标。
如果保证 ^两个光谱的光源发光功率一致,则在合适的距离范围内, 两种光源的强度之比约等为 1, 因此 (4) 式可以约等于
1 ~ ½0,
Figure imgf000010_0002
可以看出, 此时互商图像反映了人脸在 44两种光谱下的反射率之比, 因此 是一个可以反映人脸本质特性的特征, 可以用来设计活体检测算法。
在公式 (5 ) 的推导中, 假设在合适的距离范围内, ^两种光源的强度之 比约等为 1。通过合理设计光源, 可以在实际中满足这一假设。 例如, 本发明采 集了 480nm和 850nm两种光源在发光功率一致的情况下, 在距离光源 40cm到 90cm之间, 同一个人的人脸图像灰度均值的变化情况,如图 6所示,可以看出, 两种光源的强度之比约等为 1的假设是合理的。
基于多模态的人脸活体检测算法中, 在获取了任意两个光谱的互商图像之 后, 可以设计合理特征, 以便进行活体检测。 特征向量提取可以采用多种方法, 如: 强度直方图、 Gabor滤波器等、 似然比 (Likelihood Ratio)等。 在选定特征 类型之后, 可以对互商图像进行分块, 并做多尺度的处理, 得到不同尺度上、 不同位置的人脸互商图像特征向量,然后大量采集真、假人脸样本,利用 Boosting 算法进行活体检测分类器的训练。
基于多模态的人脸活体检测算法中, 应充分考虑真实、 造假人脸的反射率 差异, 进行光源选择。 图 7例示了多光谱下黑人和白人的人脸反射率曲线。 图 8 例示了多光谱下几种常见造假人脸的反射率曲线, 包括两种不同的硅胶和照片。 依据这两幅曲线, 可以为多模态人脸活体检测中的光谱选择提供依据。
基于互商图像的人脸活体检测算法的具体流程如下:
( 1 )、 采集大量真人人脸和造假人脸在不同距离下的反射强度数据构成训 练数据集, 对于同一个人的任意两张不同光谱下的图像进行 MQI计算。
( 2 )、在所有的 MQI图像上,在多个尺度上划分为多个小块 (重叠或不重叠), 提取每个小块的特征向量, 将所有小块的特征向量进行组合, 作为全局的特征 向量。
( 3 )、 基于统计学习方法, 在训练数据集上训练分类器, 如: SVM (支持 向量机)、 LDA (线性判别分析)、 Boosting等。
下面通过举例来进一步说明活体检测步骤 2012的互商图像算法。
例如, 釆用 480nm和 940nm的两种光源进行成像, 获得的人脸图像分别为 Λ8。, 94。。 然后规定 4S。为参考图像, 计算这两个波段下的互商图像为
MQim,m^y) = ^y) ' im^y)。 本发明在此仅以举例的方式给出了两种波段的 情况, 也可根据实际情况选择任意多种波段的光源。
128x 128的 MQI图像经过预处理后进行多尺度处理, 分为 5个尺度, 其大 小分别是 128x 128像素、 64x64像素、 32x32像素、 16x 16像素、 8x8像素。 基 于在训练集上通过统计学习得到的概率模型, 对于互商图像上的每一点, 可以 算其属于活体和非活体的似然 ,_ν,σ ^),Ρ(^σ^), 其中 G代表图像来自活体,
5代表图像来自非活体, (x, y) 为图像坐标。 将这两个量相除, 可以得到互商 图像的局部似然比:
r(X)y,a) = ^wl£2 ( 6 ) 对于上述多分辨率的互商图像, 所有的局部似然比可以构成一个活体特征 向量, 其维度为 21824。
为了使特征更具有区分度和具有更高的运算效率, 活体特征提取算法利用 Boosting进行特征选择,从原始的高维度特征中挑选最具鉴别力的 3000维特征。 然后采集大量真、 假人脸样本, 组建训练数据库, 按照上述 Boosting挑选 后的特征标号进行特征抽取, 并利用支持向量机器 (Support Vector Machine, SVM) 方法学习得到一个两类分类器, 用于对输入的特征向量进行活体、 非活 体的判断。
在身份验证步骤 202 中, 需要对输入人脸与所其所对应的身份进行相似度 验证。 具体的验证算法与可见光下的验证方法 102类似, 不同之处在于输入的 特征为多模态图像上所有特征的总和。
只有当活体信息验证和身份验证两步都认定输入人脸为真人人脸, 输入人 脸才算通过人脸防伪判断。
下面通过举例来进一步说明身份验证步骤 202 中的人脸验证算法, 其中以 人脸验证应用为例。
假设每个人都有 N张不同模态的图像, 首先对每张人脸图像进行 LBP特征 和 Gabor特征抽取, 组成该张图像的特征向量 /t = l : N。
然后将属于同一个多模态图像组合内的每张图像的特征向量串接成组成统 一的特征向量 = [/i;...; ], 则 为每一个人的多模态特征向量。
在人脸验证分类器的训练过程中, 正样本为属于同一个人的多光谱特征向 量 F之差, 负样本为不属于同一个人的多光谱特征向量 F之差。 利用 Boosting 算法进行特征挑选, 得到一个特征子集。
对训练数据集中的每个人的多模态图像, 按照 Boosting选择出的样本进行 特征抽取, 并利用 LDA算法进行判别分析。
经过以上步骤, 属于同一人的人脸特征之间的相似度应该大于不同人之间 的人脸特征相似度。 若在步骤 202 中目标人脸与其所声称的身份之间的相似度 大于阈值, 则认为通过了身份验证; 否则失败。
本发明还提出了一种双验证人脸防伪装置。 图 3 为本发明基于多模态的双 验证人脸防伪装置的结构框图。 图 4为本发明的基于多模态的双验证人脸防伪 装置的工作流程图。
在本发明的基于多模态的双验证人脸防伪装置中, 其中的多模态包括多光 谱、 3D、 超声波等模态中的一种或多种。 由于人脸皮肤在不同的光谱下具有不 同的反射率, 因此本发明引入多光谱人脸成像系统, 用于采集、 分析人脸在不 同光谱下的成像, 充分挖掘人脸的本质特性, 从而为后续的人脸防伪提供丰富 的人脸特征。 光谱的选取可包括近红外光、 中红外光、 远红外 (热红外)、 近紫 外光等等, 以尽量反映人脸的不同反射特性。 特别的, 热红外图像指人体自身 热量所散发出的红外光成像, 与个人的体质、 生物组织特性有关, 具显著个体 差异性, 适合用作人脸防伪的依据。 以上光源除热红外线外, 都需要多光谱采 集系统提供主动光源。
本发明同时引入 3D人脸图像, 以及超声波成像, 与多光谱图像一起, 共同 构成了多模态的人脸图像获取系统。 通过 3D图像获取的人脸部位的深度信息, 是人脸防伪的重要依据, 可以抵御常见虚假人脸的攻击, 例如照片、 视频等。 超声波成像的方法, 通过测量人脸皮肤对于超声波的反射率, 可以提供另外一 种人脸皮肤的物理特性度量手段, 进一歩辅助人脸活体检测的需求。
结合图 3和图 4,本发明的基于多模态的双验证人脸防伪装置包括感应单元 301 , 多模态发生源 302、 多模态数据采集设备 303, 多模态人脸检测单元 304、 多模态双验证人脸防伪单元 305 (包括多模态人脸活体检测单元 3051, 多模态 人脸身份验证单元 3052), 控制单元 306以及显示单元 307。
感应单元 301, 用于使用近红外、 超声波、 或射频方式进行生物特征感应, 或者使用可见光摄像头进行实时监控。 该单元用以在特定感应区域内感应人脸 的存在, 若感应到有人脸, 则向控制单元 306发出物体存在的信号。 事实上, 感应单元 301 并不能判断感应到的是人脸, 只要有物体出现在感应区内, 就认 为是感应到了人脸。 感应单元 301 可以使用近红外、 超声波、 或射频等方式进 行人脸感应, 也可以简单的使用可见光摄像头进行实时监控。 特定感应区域的 大小和位置优选地设定为可以捕获整个人脸。
感应单元 301 感应到人脸的存在, 具体执行以下操作: 步骤 1.如果当前未 检测到人脸存在, 则继续循环检测; 如果检测到人脸的存在, 则转入步骤 2; 步 骤 2, 等待一定时间, 然后再次检测人脸, 如果人脸依旧存在, 则认为是有效人 脸, 并发送信号给控制单元 306; 如果人脸不再存在, 则认为是无效人脸, 转入 步骤 1重新开始检测。
在一实例中,感应单元 301为可见光摄像头,其以监控的方式进行人脸感应。 可见光摄像头循环采集图像并检测是否存在人脸。 如果不存在人脸, 则继续采 集可见光图像进行人脸检测; 如果存在人脸, 则等待 0.5秒钟再次采集图像并检 测人脸。 如果此时人脸还存在, 则说明有稳定、 有效的人脸出现, 然后发送信 号给控制单元 306, 开始相应的图像采集工作; 如果等待之后人脸消失, 说明此 人脸很有可能不是进行多模态图像采集的人脸, 认为是噪声而不予理会。 继续 采集可见光图像并检测是否存在人脸。
多模态发生源 302可以包括 (但不限于) 如下一种或多种设备: 多个光谱 下的主动光源 (提供多光谱成像所需的光照), 用于 3D成像所需的 3D结构光, 超声波发生器 (用以发射超声波)。 在多光谱光源中, 光谱组合可以包括可见光 (此时不需要提供可见光光源), 但必须包含一个或一个以上的非可见光光源的 组合, 光源光谱范围可以为近红外波段 ( 740mn-4000nm ), 或近紫外波段 (360-400nm) o 也可以包括热红外成像, 此时热红外线由人体发出, 不必再架 设额外光源。 但光谱组合不应该包括对人体有害的光线, 例如中紫外光 (290-320nm波长) 或近紫外光 (200nm-290nm波长)。 3D结构光可以根据实 际需求配置, 例如线激光或 3DMR结构光。 超声波发生器的频率根据实际需求 进行设定, 例如, 可以设为 50kHz。
对于其中的多光谱光源, 光源发出的光应符合两个原则: 1、 在合适距离范 围内, 在多模态发生源 302正前方平面中, 一定面积内应保持光强大致均勾。 如图 5所示,在采集设备正前方一定距离 (d)处,一定面积内 (图中所示圆形)光强 应保持均匀。 2、 发光强度应保持在合理范围内, 使得成像装置既能清晰的采集 到人脸图像, 又不至于光强太大而引起用户的不舒适。
多模态数据采集设备 303,用于采集主动光源照射在人脸上然后反射的多光 谱光线, 另外也用于采集人体本身所发出的热红外光, 人脸的 3D图像, 以及人 脸的超声波成像。 该采集设备包括但不局限于如下一个或多个设备单元: 响应 各个光源光线的摄像头、 响应各个光谱光线的接收管或光敏二极管、 热红外感 应摄像头或感应器、 3D图像采集设备、 超声波成像设备或接收器。
多模态数据采集单元 303首先包括对应于 302中各个光谱的成像设备用以 采集人脸反射的多光谱光线, 包括成像设备以及相应滤片, 此外还包括热红外、 3D、 超声波成像设备或感应器。 多光谱成像设备优选良好响应多光谱光源光线 的摄像头, 此时返回数据类型为图像。 如果条件有限, 也可以使用其他的接收 设备, 例如响应多光谱光线的接收管、 光敏二极管等, 此时返回数据类型为反 射强度标量。 多光谱光源中的一种光源可以对应一个摄像头, 也可以利用单一 摄像头响应多个波段的多光谱光源。 摄像头应在所响应的光谱处有较高的灵敏 度。 对于超声波成像设备, 应与 302 中的超声波发生器保持频率一致; 若条件 不允许, 也可以选用超声波接收器。 对于热红外, 优选热红外摄像头, 也可以 选用可以感应温度的感应器。对于 3D摄像头而言, 则采集到的是反映人脸深度 信息的图像。
在多模态数据采集单元 303 的多光谱成像设备中, 需要配备对应波段的滤 片, 用以消除环境光以及其他波段光线对本波段的干扰。 滤片应放置在相应波 段的成像设备前面, 并紧贴摄像头镜头或接收设备, 以防止杂光进入。
感应单元多模态人脸检测单元 304,用于对多模态图像成像设备采集的人脸 图像进行预处理, 然后对经过预处理的人脸图像进行检测, 当所有人脸图像都 被检测到人脸和眼睛的情况下认为检测到的是人脸。
多模态的双验证人脸防伪单元 305, 包括多模态人脸活体检测 3051与多模 态人脸验证 3052两个子单元。 其中在多模态人脸活体检测 3051中, 采用上文 中提到的由粗到精的两步策略设计合适的多模态人脸活体分类器; 多模态人脸 身份验证单元 3052, 从多模态人脸图像中提取能确定目标身份的信息进行人脸 身份验证。 其中, 多模态人脸活体检测单元 3051 和多模态人脸身份验证单元 3052, 共同组成了本发明的基于多模态的双验证人脸防伪算法的实现单元 305。
控制单元 306,用于控制各个单元的工作状态、单元之间的信息通信等工作; 显示单元 307, 用于在输出介质上显示中间结果, 方便用户査询。
控制单元 306用以实现多模态发生源 302的工作状态以及多模态数据采集 单元 303的控制。 可以用单片机控制, 也可以采用 PC机连接控制。
参照图 3和图 4, 控制单元 306的控制方式为: 在接收到感应单元 301发送 的人脸存在信号之后, 首先给出控制信号, 打开光谱 1 的光源, 然后等待一定 的时间给予摄像头曝光, 然后采集对应于光谱 1 的摄像头的图像信号, 然后关 闭光谱 1 的光源。 然后给出信号, 打开光谱 2的光源, 等待一定的曝光时间, 容纳和采集对应于光谱 2的摄像头的图像信号, 然后关闭光谱 2的光源, 依次 类推, 直到所有光谱的图像数据采集完毕。 如果某一个光谱下没有使用摄像头, 而是使用了其他的接收设备, 如接收管、 光敏二极管等, 则读取相应的接收强 度数值。 然后控制热红外摄像头进行图像采集。在热红外之后, 控制 3D摄像机 进行 3D人脸图像釆集。然后控制超声波发射超声波, 并用超声波成像设备进行 成像。
一个实例为: 控制单元 306由上位机 PC端软件组成。控制单元 306在接收 到感应单元 301发送的信号之后, 首先给出光源 1的开启命令, 等待 50ms然后 给出对应光源 1 的摄像头 (或接收管) 的采集命令, 由摄像头 (或接收管) 采 集数据。 然后令光源 1熄灭, 给出光源 2的开启命令, 等待 50ms, 令光源 2的 摄像头 (或接收管) 进行数据采集。 依次类推, 直至所有光源的摄像头都釆集 到数据为止。然后采集热红外以及 3D图像时, 此时不需要等待可以直接进行采 集。 然后开启超声波发射器, 并通过超声波成像设备对回波进行接收和成像。 然后控制单元 306 会将各摄像头采集到的图像数据送入多模态人脸检测单元 304
显示单元 307用以显示由多模态数据采集单元 303采集的人脸图像, 并给 出各种中间结果或反馈信息, 方便人机交互。
值得注意的是, 若上述的某种模态, 没有相应的图像数据釆集设备, 也可 以用其他的非图像式感应仪器代替。
图 9 以举例的方式给出了多模态发生源和多模态数据采集单元的示意图。 其中, 多模态图像采集装置面板 804起到装置框架的作用。 面板分为上下两个 部分, 上半部分为多模态发生源 901和多模态数据采集单元 902, 下半部分为显 示单元 905, 由一块 LCD屏幕组成, 在两部分之间为一个可见光摄像头 903, 作为感应单元使用。 在上半部分中, 三个多模态发射源分别为 800nm多光谱光 源、 3D结构光源和超声波发射源。 三种发射源交叉排列, 并组成矩形, 这样可 以保证每个发射源在装置前方一定范围内都可以形成均勾分布。 在发射源源中 央为四个成像设备 (或接收设备), 包括多光谱成像设备 (摄像头前方都覆盖相 应波段的滤片, 以防止可见光或其他光谱光线的干扰)、 热红外摄像头 (用于采 集热红外图像)、 3D 以及超声波成像设备。 进行测试时, 人脸应正面面对该采 集装置。 控制单元并不包含在多光谱釆集装置的面版上, 而是独立成一个部分 (可以是单片机, 也可以是上位机软件), 与多光谱采集装置面板通过控制信号 线相连接。
多模态人脸检测单元、 多模态双验证人脸防伪单元均为上位机的应用程序, 在接收到采集到的多模态人脸图像后, 分别送至以上两个单元, 并给出相应的 结果。
上述基于多模态的双验证人脸防伪装置的工作流程如图 4所示。 参照图 4, 首先由感应单元 401 感应人脸的存在; 如果不存在人脸, 则继续循环检测, 而 事实上, 感应单元 401 并不能判断检测到的是人脸, 只是在感应到有物体存在 的时候, 即认为是感应到人脸; 如果存在人脸, 则发出命令给控制单元 402, 由 控制单元 402发出控制命令, 指导多模态发生源 403幵启、 关闭, 以及多模态 数据采集单元 404采集数据; 然后进入多模态人脸检测单元 405进行人脸检测, 如果有的图像中没检测到人脸,则发信号给显示单元 407。输出检测失败的信息, 并返回感应单元 401, 重新进行图像采集; 如果所有模态图像都检测到人脸, 则 进入多模态双验证人脸防伪单元 406, 并发信号给显示单元 407, 以便输出人脸 检测信息或显示捕获的某张人脸图像; 进入多模态双验证人脸防伪单元 406之 后进行人脸活体检测判断 4061以及人脸身份验证 4062,如果为造假人脸则通过 显示单元 407给出相应活体检测失败的信息, 并返回感应单元 401, 进行新一轮 的图像采集; 如果为真人人脸也由显示单元 407给出, 然后等待一段时间, 返 回感应单元 401, 开始新一轮的人脸检测。
在一实例中, 多模态人脸检测单元 405为上位机 PC端的应用程序, 用于对 多模态数据采集装置 403 采集到的每张图像调用相应的人脸检测分类器进行人 脸检测。 如果全部图像都检测到人脸, 输送某张人脸图像给显示单元 407用于 显示 (例如, 选用可见光下的人脸图像), 并将检测到的所有光谱下的人脸图像 输入至多模态双验证人脸防伪单元 406。若没有全部检测到人脸, 则输送检测失 败的结果给显示单元 407显示, 并返回感应单元 401, 重新幵始图像感应。
最后, 本发明须指出, 利用本发明提出的双验证人脸防伪方法及其装置, 用户可以根据自己的需要来适用于不同的生物模态, 例如人脸、 虹膜等。 并且 可以根据实际情况自由选择模态组合, 例如, 可以单独选用不同的光谱组合, 也可以结合热红外光、 3D图像或超声波成像联合使用。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进行了进 一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施例而已, 并不 用于限制本发明, 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种双验证人脸防伪方法, 其特征是, 所述方法包括:
步骤 1,对采集的目标人脸进行活体检测,判断目标人脸是否具有生物活性, 如果目标人脸被认定具有活体特性, 则转入步骤 2;
步骤 2, 如果是在人脸识别应用中, 则计算采集到的目标人脸与识别结果对 应的人脸之间的相似度, 若大于某一阈值, 则认为该目标人脸是真实有效的人 脸;
如果是在人脸验证应用中, 则计算采集到的目标人脸与目标人脸所声称的 身份对应的人脸之间的相似度, 若大于某一阈值, 则认为该目标人脸是真实有 效的人脸,
其中步骤 1与指定人无关, 步骤 2与指定人有关, 当目标人脸同时通过步 骤 1和步骤 2的验证之后, 才能被认定为是真实有效的人脸, 否则被认定为是 虚假人脸。
2、 根据权利要求 1 所述的双验证人脸防伪方法, 其特征是, 如果所述双验 证人脸防伪方法是基于可见光, 则步骤 1进一步包括:
步骤 101, 对目标人脸进行活体检测, 首先采集大量真实、 虚假人脸样本, 对目标人脸提取各种纹理特征, 训练活体检测紋理分类器, 若目标人脸被活体 检测纹理分类器认定为真实人脸, 则进入步骤 2, 否则认定为虚假人脸;
步骤 102, 通过人机交互确定目标人脸的有效性, 其中系统发出指令, 要求 用户做出一定的动作, 然后系统不断检测目标人脸是否做出相应动作, 若在一 定时间内检测到上述动作的发生, 则判断目标人脸为真实人脸, 否则为虚假人 脸;
只有目标人脸同时通过步骤 101和 102, 才被认为通过步骤 1的活体检测。
3、 根据权利要求 2所述的双验证人脸防伪方法, 其特征是, 步骤 2进一步 包括:
步骤 201, 首先采集大量真实人脸图像, 对每张人脸图像提取其纹理特征; 步骤 202, 然后将采集的所有人脸图像的特征向量两两相减, 根据两图像是 否属于同一个人, 将相减后的特征向量分为类内、 类间两类, 利用机器学习算 法训练一个两类分类器, 由此训练得到的分类器可以判断输入的两个特征向量 是否属于同一个人;
步骤 203 , 如果是在人脸识别应用中,若目标人脸图像与识别结果对应的人 脸图像, 被步骤 202中的分类器认定为属于同一人, 则认为目标人脸真实有效, 否则为虚假人脸;
如果是在人脸验证应用中, 则目标人脸图像与所声称的指定人身份对应的 人脸图像, 被步骤 202 中的分类器认定为属于同一人, 则认为目标人脸真实有 效, 否则为虚假人脸。
4、 根据权利要求 1所述的双验证人脸防伪方法, 其特征是, 如果所述双验 证人脸防伪方法是基于多模态, 则步骤 1进一步包括- 步骤 101, 粗略判断目标人脸的生物活性, 其中按照下面的方式中的一种或 多种进行判断:通过热红外判断目标人脸的温度,判断是否接近 37度;通过 3D 图像判断人脸的深度信息, 判断面部是否为 3D物体; 通过超声波反射分析目标 人脸的超声波反射率, 判断皮肤的超声波反射率是否与真实人脸相似; 通过多 光谱成像分析目标人脸在不同光谱下的反射率, 判断皮肤的多光谱反射率是否 与真实人脸相似, 如果通过上述一种或多种方式判断目标人脸的信息指标与真 实人脸相似, 则进入步骤 102;
步骤 102, 精确判断目标人脸的生物活性, 将采集到的多光谱人脸图像, 利 用互商图像算法进行准确的活体判断,
只有目标人脸同时通过步骤 101和 102, 才被认为通过步骤 1的活体检测。
5、 根据权利要求 4所述的双验证人脸防伪方法, 其特征是, 互商图像算法 包括如下步骤:
步骤 1021, 采集大量真人人脸和虚假人脸在不同距离下的多光谱成像构成 训练数据集, 对于同一个人的任意两张不同光谱下的图像进行像素级的相除, 组成互商图像组, 假设任意选定两个光谱 i^, 同一个人脸在两个光谱下的图像 为 和 , 其互商图像定义如下-
其中, p表示人脸的反射率, r代表光源在人脸表面处的强度, z代表人脸 距离光源的距离, (x, y) 代表人脸图像上的坐标;
步骤 1022, 对于所有的互商图像, 在多个尺度上划分为多个重叠或不重叠 的小块, 提取每个小块的特征向量, 将所有小块的特征向量进行组合, 作为全 局的特征向量;
步骤 1023, 基于统计学习方法, 在训练数据集上训练分类器, 用于区分真 实、 虚假人脸。
6、 根据权利要求 4所述的双验证人脸防伪方法, 其特征是, 步骤 2进一步 包括:
步骤 201, 采集大量真实人脸的多模态图像, 对每张图像提取其紋理特征; 步骤 202, 将图像的特征向量两两相减, 根据两图像是否属于同一个人, 将 相减后的特征向量分为类内、 类间两类, 利用机器学习算法训练一个两类分类 器, 训练得到的分类器能够判断输入的两个特征向量是否属于同一个人;
步骤 203, 如果是在人脸识别应用中, 若目标人脸图像与识别结果对应的人 脸图像, 被步骤 202中的分类器认定为属于同一人, 则认为目标人脸真实有效, 否则为虚假人脸;
如果是在人脸验证应用中, 若目标人脸图像与所声称的指定人身份对应的 人脸图像, 被步骤 202 中的分类器认定为属于同一人, 则认为目标人脸真实有 效, 否则为虚假人脸。
7、 根据权利要求 4所述的双验证人脸防伪方法, 其特征是, 每种不同的成 像类型被称为一个模态, 成像类型包括可见光成像, 近红外成像, 近紫外成像, 热红外成像或超声波成像。
8、 一种双验证人脸防伪装置, 该装置包括- 感应单元, 用于使用近红外、 超声波、 射频方式或可见光摄像头中的一种 或多种, 通过实时监控的方式, 感应人脸的存在;
多模态发生源, 包含多个光谱下的主动光源、 用于 3D成像所需的 3D结构 光或者超声波发生器中的一种或多种;
多模态数据采集设备, 用于采集人脸的多光谱成像, 人体本身所发出的热 红外光成像, 人脸的 3D图像或超声波成像中的一种或多种;
多模态人脸检测单元, 用于检测多模态图像中的人脸位置, 并将检测到的 人脸图像发送到多模态双验证人脸防伪单元;
多模态双验证人脸防伪单元, 用于验证目标人脸是否为真实有效的人脸; 显示单元, 用于显示人脸防伪结果,
其中, 多模态双验证人脸防伪单元进一步包括: 多模态人脸活体检测单元, 用于对目标人脸进行活体检测; 多模态人脸验证单元, 用于对目标人脸进行身 份验证。
9、 根据权利要求 8所述的双验证人脸防伪装置, 其特征是, 所述多模态人 脸活体检测单元对目标人脸进行活体检测时, 首先, 粗略判断目标人脸的生物 活性, 其中按照下面的方式中的一种或多种进行判断: 通过热红外判断目标人 脸的温度, 判断是否接近 37度; 通过 3D图像判断人脸的深度信息, 判断面部 是否为 3D物体; 通过超声波反射分析目标人脸的超声波反射率, 判断皮肤的超 声波反射率是否与真实人脸相似; 通过多光谱成像分析目标人脸在不同光谱下 的反射率, 判断皮肤的多光谱反射率是否与真实人脸相似, 如果通过上述一种 或多种方式判断目标人脸的信息指标与真实人脸相似, 则继续精确判断目标人 脸的生物活性, 将采集到的多光谱人脸图像, 利用互商图像算法进行准确的活 体判断。
10、 根据权利要求 9所述的双验证人脸防伪装置, 其特征是, 互商图像算 法包括如下步骤:
采集大量真人人脸和虚假人脸在不同距离下的多光谱成像构成训练数据 集, 对于同一个人的任意两张不同光谱下的图像进行像素级的相除, 组成互商 图像组,假设任意选定两个光谱 4,同一个人脸在两个光谱下的图像为 和 , 其互商图像定义如下: ρλ2 (χ,γ)κλ2(∑)
其中, Ρ表示人脸的反射率, κ代表光源在人脸表面处的强度, ζ代表人脸 距离光源的距离, (x, y) 代表人脸图像上的坐标;
对于所有的互商图像, 在多个尺度上划分为多个重叠或不重叠的小块, 提 取每个小块的特征向量, 将所有小块的特征向量进行组合, 作为全局的特征向 基于统计学习方法, 在训练数据集上训练分类器, 用于区分真实、 虚假人 脸。
11、 根据权利要求 9所述的双验证人脸防伪装置, 其特征是, 多模态人脸 验证单元对目标人脸进行身份验证时, 首先采集大量真实人脸的多模态图像, 对每张图像提取其纹理特征; 其次, 将图像的特征向量两两相减, 根据两图像 是否属于同一个人, 将相减后的特征向量分为类内、 类间两类, 利用机器学习 算法训练一个两类分类器, 训练得到的分类器能够判断输入的两个特征向量是 否属于同一个人; 如果是在人脸识别应用中, 若目标人脸图像与识别结果对应 的人脸图像, 被上述两类分类器认定为属于同一人, 则认为目标人脸真实有效, 否则为虚假人脸; 如果是在人脸验证应用中, 若目标人脸图像与所声称的指定 人身份对应的人脸图像, 被上述两类分类器认定为属于同一人, 则认为目标人 脸真实有效, 否则为虚假人脸。
12、 根据权利要求 9-11任一项所述的双验证人脸防伪装置, 其特征是: 每 种不同的成像类型被称为一个模态, 成像类型包括可见光成像, 近红外成像, 近紫外成像, 热红外成像或超声波成像。
PCT/CN2013/000228 2012-03-08 2013-03-05 双验证人脸防伪方法及装置 WO2013131407A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100594547A CN102622588B (zh) 2012-03-08 2012-03-08 双验证人脸防伪方法及装置
CN201210059454.7 2012-03-08

Publications (1)

Publication Number Publication Date
WO2013131407A1 true WO2013131407A1 (zh) 2013-09-12

Family

ID=46562498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000228 WO2013131407A1 (zh) 2012-03-08 2013-03-05 双验证人脸防伪方法及装置

Country Status (2)

Country Link
CN (1) CN102622588B (zh)
WO (1) WO2013131407A1 (zh)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9251427B1 (en) 2014-08-12 2016-02-02 Microsoft Technology Licensing, Llc False face representation identification
CN105868677A (zh) * 2015-01-19 2016-08-17 阿里巴巴集团控股有限公司 一种活体人脸检测方法及装置
CN106372615A (zh) * 2016-09-19 2017-02-01 厦门中控生物识别信息技术有限公司 一种人脸防伪识别方法以及装置
CN108268839A (zh) * 2018-01-05 2018-07-10 北京万相融通科技股份有限公司 一种活体验证方法及其系统
JP2018524072A (ja) * 2015-06-16 2018-08-30 アイベリファイ インコーポレイテッド スプーフ検出およびライブネス分析のためのシステムおよび方法
CN109543541A (zh) * 2018-10-23 2019-03-29 北京的卢深视科技有限公司 一种活体检测方法及装置
CN109598242A (zh) * 2018-12-06 2019-04-09 中科视拓(北京)科技有限公司 一种新型的活体检测方法
CN109684899A (zh) * 2017-10-18 2019-04-26 大猩猩科技股份有限公司 一种基于在线学习的人脸辨识方法与系统
CN109902604A (zh) * 2019-02-18 2019-06-18 天津麒麟信息技术有限公司 一种基于飞腾平台的高安全性人脸比对系统及其方法
CN110298335A (zh) * 2019-07-09 2019-10-01 中控华运(厦门)集成电路有限公司 人脸识别系统及人脸识别方法
CN110462630A (zh) * 2019-05-27 2019-11-15 深圳市汇顶科技股份有限公司 用于人脸识别的光学传感器、装置、方法和电子设备
CN110909695A (zh) * 2017-07-29 2020-03-24 Oppo广东移动通信有限公司 防伪处理方法及相关产品
CN110929557A (zh) * 2019-09-25 2020-03-27 四川大学锦城学院 一种基于活体检测的智能安防方法、系统及处理装置
CN111008651A (zh) * 2019-11-13 2020-04-14 科大国创软件股份有限公司 一种基于多特征融合的图像翻拍检测方法
CN111191519A (zh) * 2019-12-09 2020-05-22 同济大学 一种用于移动供电装置用户接入的活体检测方法
CN111259698A (zh) * 2018-11-30 2020-06-09 百度在线网络技术(北京)有限公司 用于获取图像的方法及装置
CN111259814A (zh) * 2020-01-17 2020-06-09 杭州涂鸦信息技术有限公司 一种活体检测方法及系统
CN111259757A (zh) * 2020-01-13 2020-06-09 支付宝实验室(新加坡)有限公司 一种基于图像的活体识别方法、装置及设备
CN111339958A (zh) * 2020-02-28 2020-06-26 山东笛卡尔智能科技有限公司 一种基于单目视觉的人脸活体检测方法及系统
CN111382592A (zh) * 2018-12-27 2020-07-07 杭州海康威视数字技术股份有限公司 活体检测方法和设备
CN111739046A (zh) * 2020-06-19 2020-10-02 百度在线网络技术(北京)有限公司 用于模型更新和检测图像的方法、装置、设备和介质
CN111783647A (zh) * 2020-06-30 2020-10-16 北京百度网讯科技有限公司 人脸融合模型的训练方法、人脸融合方法、装置及设备
CN111832464A (zh) * 2020-07-08 2020-10-27 福建捷宇电脑科技有限公司 一种基于近红外摄像头的活体检测方法及装置
CN111968152A (zh) * 2020-07-15 2020-11-20 桂林远望智能通信科技有限公司 一种动态身份识别方法及装置
CN111967296A (zh) * 2020-06-28 2020-11-20 北京中科虹霸科技有限公司 虹膜活体检测方法、门禁控制方法及装置
CN112001262A (zh) * 2020-07-28 2020-11-27 山东师范大学 一种生成可以影响人脸认证的配饰的方法
CN112036238A (zh) * 2020-07-24 2020-12-04 支付宝实验室(新加坡)有限公司 人脸数据处理方法、装置、电子设备及存储介质
CN112215136A (zh) * 2020-10-10 2021-01-12 北京奇艺世纪科技有限公司 一种目标人物识别方法、装置、电子设备及存储介质
CN112232109A (zh) * 2020-08-31 2021-01-15 深圳奥比中光科技有限公司 一种活体人脸检测方法及系统
CN112395929A (zh) * 2019-08-19 2021-02-23 扬州盛世云信息科技有限公司 一种基于红外图像lbp直方图特征的人脸活体检测方法
CN112651348A (zh) * 2017-03-17 2021-04-13 北京旷视科技有限公司 身份认证方法和装置及存储介质
CN113158818A (zh) * 2021-03-29 2021-07-23 青岛海尔科技有限公司 用于识别伪造视频的方法、装置和设备
CN113297976A (zh) * 2021-05-26 2021-08-24 中国铁塔股份有限公司大连市分公司 一种基于深度学习的基站入侵检测方法和系统
CN113316781A (zh) * 2019-01-17 2021-08-27 电装波动株式会社 认证系统、认证装置及认证方法
US11200333B2 (en) 2019-08-13 2021-12-14 International Business Machines Corporation File exposure to an intended recipient
WO2022084824A1 (en) * 2020-10-21 2022-04-28 Gopi Yadavaprasath System and method for face anti-counterfeiting
CN114596614A (zh) * 2022-03-03 2022-06-07 清华大学 一种反照片攻击人脸识别系统及方法
CN114882548A (zh) * 2022-04-08 2022-08-09 国网江苏省电力有限公司 基于改进3d动态图卷积的调度员身份认证方法
CN114896575A (zh) * 2022-04-28 2022-08-12 西安电子科技大学 一种基于虚假属性检测的可信身份辨识方法及装置
CN114894337A (zh) * 2022-07-11 2022-08-12 深圳市大树人工智能科技有限公司 一种用于室外人脸识别测温方法及装置
US11443527B2 (en) 2021-01-13 2022-09-13 Ford Global Technologies, Llc Material spectroscopy
US11657589B2 (en) 2021-01-13 2023-05-23 Ford Global Technologies, Llc Material spectroscopy
US11741747B2 (en) 2021-01-13 2023-08-29 Ford Global Technologies, Llc Material spectroscopy
CN111723651B (zh) * 2020-05-09 2023-10-10 熵基科技股份有限公司 一种人脸识别方法、人脸识别装置及终端设备
CN117877098A (zh) * 2024-03-07 2024-04-12 深圳百沃彰世科技有限公司 基于大数据和多维特征的异常通讯行为识别方法及系统
US12019722B2 (en) 2019-01-17 2024-06-25 Denso Wave Incorporated System, device and method for authentication with use of information code

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622588B (zh) * 2012-03-08 2013-10-09 无锡中科奥森科技有限公司 双验证人脸防伪方法及装置
US9032510B2 (en) * 2012-09-11 2015-05-12 Sony Corporation Gesture- and expression-based authentication
CN103036680A (zh) * 2012-12-10 2013-04-10 中国科学院计算机网络信息中心 基于生物特征识别的域名认证系统及方法
CN103198294B (zh) * 2013-02-22 2016-05-11 广州市朗辰电子科技有限公司 一种视频或图像视点类型的识别方法
CN104683302A (zh) * 2013-11-29 2015-06-03 国际商业机器公司 认证方法、认证装置、终端设备、认证服务器及系统
CN103634120A (zh) * 2013-12-18 2014-03-12 上海市数字证书认证中心有限公司 基于人脸识别的实名认证方法及系统
CN103793690B (zh) * 2014-01-27 2017-08-18 天津科技大学 一种基于皮下血流探测的人体生物活体检测方法及应用
EP3118811B1 (en) 2014-03-13 2023-05-03 Nec Corporation Detecting device, detecting method, and recording medium
CN103886301B (zh) * 2014-03-28 2017-01-18 北京中科奥森数据科技有限公司 一种人脸活体检测方法
MY191329A (en) 2014-04-07 2022-06-16 Eyeverify Inc Bio leash for user authentication
CN103984941B (zh) * 2014-06-10 2017-04-12 深圳市赛为智能股份有限公司 人脸识别考勤方法及其装置
US9639765B2 (en) * 2014-09-05 2017-05-02 Qualcomm Incorporated Multi-stage liveness determination
CN105472296B (zh) * 2014-09-09 2019-02-05 联想(北京)有限公司 实时性校验方法和装置
CN110276250B (zh) * 2015-01-12 2023-06-02 创新先进技术有限公司 一种人脸活体检测方法和装置
WO2016147272A1 (ja) * 2015-03-13 2016-09-22 日本電気株式会社 生体検知装置、生体検知方法、および、記録媒体
CN105447441B (zh) * 2015-03-19 2019-03-29 北京眼神智能科技有限公司 人脸认证方法和装置
CN104794386A (zh) * 2015-04-08 2015-07-22 天脉聚源(北京)传媒科技有限公司 一种基于人脸识别的数据处理的方法及装置
WO2016172872A1 (zh) * 2015-04-29 2016-11-03 北京旷视科技有限公司 用于验证活体人脸的方法、设备和计算机程序产品
US10242441B2 (en) * 2015-05-21 2019-03-26 Koninklijke Philips N.V. Identifying living skin tissue in a video sequence using color and spatial similarities
US10621454B2 (en) 2015-06-29 2020-04-14 Beijing Kuangshi Technology Co., Ltd. Living body detection method, living body detection system, and computer program product
CN105119723A (zh) * 2015-09-15 2015-12-02 重庆智韬信息技术中心 基于人眼识别的身份认证及其授权方法
CN106557726B (zh) * 2015-09-25 2020-06-09 北京市商汤科技开发有限公司 一种带静默式活体检测的人脸身份认证系统及其方法
CN111144293A (zh) * 2015-09-25 2020-05-12 北京市商汤科技开发有限公司 带交互式活体检测的人脸身份认证系统及其方法
CN106341380B (zh) * 2015-10-15 2018-02-16 收付宝科技有限公司 一种用于对用户进行远程身份认证的方法、装置和系统
CN105426815A (zh) * 2015-10-29 2016-03-23 北京汉王智远科技有限公司 活体检测方法及装置
EP3369036A4 (en) * 2015-10-30 2019-05-22 Microsoft Technology Licensing, LLC DETECTION OF MANIPULATED FACES
CN105488486B (zh) * 2015-12-07 2018-10-30 清华大学 防止照片攻击的人脸识别方法及装置
CN105512632B (zh) * 2015-12-09 2019-04-05 北京旷视科技有限公司 活体检测方法及装置
CN106897658B (zh) * 2015-12-18 2021-12-14 腾讯科技(深圳)有限公司 人脸活体的鉴别方法和装置
WO2017113083A1 (zh) * 2015-12-29 2017-07-06 厦门中控生物识别信息技术有限公司 一种虹膜识别方法及装置
WO2017113286A1 (zh) * 2015-12-31 2017-07-06 深圳先进技术研究院 一种认证方法及装置
CN105447483B (zh) * 2015-12-31 2019-03-22 徐州旷视数据科技有限公司 活体检测方法及装置
US9619723B1 (en) * 2016-02-17 2017-04-11 Hong Kong Applied Science and Technology Research Institute Company Limited Method and system of identification and authentication using facial expression
WO2017151747A1 (en) 2016-03-02 2017-09-08 EyeVerify Inc. Spoof detection using proximity sensors
CN105912908A (zh) * 2016-04-14 2016-08-31 苏州优化智能科技有限公司 基于红外的真人活体身份验证方法
CN105893828A (zh) * 2016-05-05 2016-08-24 南京甄视智能科技有限公司 基于移动终端的人脸验证驾考系统与方法
CN106096519A (zh) * 2016-06-01 2016-11-09 腾讯科技(深圳)有限公司 活体鉴别方法及装置
CN106127103B (zh) 2016-06-12 2019-06-25 广州广电运通金融电子股份有限公司 一种离线身份认证的方法和装置
CN106203320A (zh) * 2016-07-06 2016-12-07 惠州Tcl移动通信有限公司 一种基于移动终端的人脸识别优化方法及系统
US9965610B2 (en) * 2016-07-22 2018-05-08 Nec Corporation Physical system access control
CN106407914B (zh) * 2016-08-31 2019-12-10 北京旷视科技有限公司 用于检测人脸的方法、装置和远程柜员机系统
US10417473B2 (en) * 2016-09-07 2019-09-17 Mei-Yen Lee Optical imaging system with variable light field for biometrics application
CN106446855A (zh) * 2016-09-30 2017-02-22 深圳市商汤科技有限公司 一种实名认证装置
CN106599772B (zh) * 2016-10-31 2020-04-28 北京旷视科技有限公司 活体验证方法和装置及身份认证方法和装置
CN106682578B (zh) * 2016-11-21 2020-05-05 北京交通大学 基于眨眼检测的弱光人脸识别方法
CN106845915A (zh) * 2016-11-30 2017-06-13 浙江水马环保科技有限公司 一种净水器智能pc考勤管理系统
CN106651302A (zh) * 2016-11-30 2017-05-10 浙江水马环保科技有限公司 一种净水器智能pc考勤管理及状态监控方法
CN106845917A (zh) * 2016-11-30 2017-06-13 浙江水马环保科技有限公司 一种基于净水器的智能app考勤管理系统
CN106845916A (zh) * 2016-11-30 2017-06-13 浙江水马环保科技有限公司 一种基于净水器的智能app考勤管理及状态监控方法
CN106778559A (zh) * 2016-12-01 2017-05-31 北京旷视科技有限公司 活体检测的方法及装置
CN106845345A (zh) * 2016-12-15 2017-06-13 重庆凯泽科技股份有限公司 活体检测方法及装置
CN108875473A (zh) * 2017-06-29 2018-11-23 北京旷视科技有限公司 活体验证方法、装置和系统及存储介质
CN106682607A (zh) * 2016-12-23 2017-05-17 山东师范大学 一种基于低功耗嵌入式和红外触发的离线人脸识别系统及方法
CN106650666A (zh) * 2016-12-26 2017-05-10 北京旷视科技有限公司 活体检测的方法及装置
CN108229325A (zh) 2017-03-16 2018-06-29 北京市商汤科技开发有限公司 人脸检测方法和系统、电子设备、程序和介质
CN106980836B (zh) * 2017-03-28 2020-07-03 北京小米移动软件有限公司 身份验证方法及装置
CN107273794A (zh) * 2017-04-28 2017-10-20 北京建筑大学 一种人脸识别过程中的活体鉴别方法及装置
US10303932B2 (en) 2017-07-05 2019-05-28 Midea Group Co., Ltd. Face recognition in a residential environment
CN107506696A (zh) 2017-07-29 2017-12-22 广东欧珀移动通信有限公司 防伪处理方法及相关产品
CN107454335B (zh) * 2017-08-31 2020-03-27 Oppo广东移动通信有限公司 图像处理方法、装置、计算机可读存储介质和移动终端
CN107563329B (zh) * 2017-09-01 2021-03-30 Oppo广东移动通信有限公司 图像处理方法、装置、计算机可读存储介质和移动终端
CN107679538B (zh) * 2017-09-05 2020-12-04 深圳大学 高光谱图像局部特征描述子的形成方法及形成系统
CN107590473B (zh) * 2017-09-19 2021-06-22 杭州登虹科技有限公司 一种人脸活体检测方法、介质和相关装置
CN107729820B (zh) * 2017-09-27 2020-07-21 五邑大学 一种基于多尺度hog的手指静脉识别方法
CN107808115A (zh) * 2017-09-27 2018-03-16 联想(北京)有限公司 一种活体检测方法、装置及存储介质
CN107844763A (zh) * 2017-10-27 2018-03-27 努比亚技术有限公司 一种人脸识别方法、移动终端及计算机可读存储介质
CN107844764B (zh) * 2017-10-31 2020-05-12 Oppo广东移动通信有限公司 图像处理方法、装置、电子设备和计算机可读存储介质
CN107992811A (zh) * 2017-11-27 2018-05-04 北京小米移动软件有限公司 人脸识别方法及装置
CN107895155A (zh) * 2017-11-29 2018-04-10 五八有限公司 一种人脸识别方法及装置
CN107909063B (zh) * 2017-12-22 2021-05-04 天津科技大学 基于灰度变化的生物识别视频回放攻击检测方法
CN108171834A (zh) * 2017-12-25 2018-06-15 深圳禾思众成科技有限公司 一种智能门禁系统
CN108197558A (zh) * 2017-12-28 2018-06-22 广东欧珀移动通信有限公司 人脸识别方法、装置、存储介质和电子设备
CN109993024A (zh) * 2017-12-29 2019-07-09 技嘉科技股份有限公司 身份验证装置、身份验证方法、及电脑可读储存介质
CN108509857A (zh) * 2018-03-06 2018-09-07 达闼科技(北京)有限公司 人脸活体检测方法、电子设备和计算机程序产品
CN108564033A (zh) * 2018-04-12 2018-09-21 Oppo广东移动通信有限公司 基于结构光的安全验证方法、装置及终端设备
CN108596061A (zh) * 2018-04-12 2018-09-28 Oppo广东移动通信有限公司 人脸识别方法、装置及移动终端、存储介质
EP3576016A4 (en) * 2018-04-12 2020-03-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. FACIAL RECOGNITION METHOD AND APPARATUS, MOBILE TERMINAL AND STORAGE MEDIUM
CN108595942B (zh) * 2018-04-12 2019-12-10 Oppo广东移动通信有限公司 应用程序的安全控制方法、装置及移动终端、存储介质
US10956714B2 (en) 2018-05-18 2021-03-23 Beijing Sensetime Technology Development Co., Ltd Method and apparatus for detecting living body, electronic device, and storage medium
CN108764091B (zh) * 2018-05-18 2020-11-17 北京市商汤科技开发有限公司 活体检测方法及装置、电子设备和存储介质
CN108470169A (zh) * 2018-05-23 2018-08-31 国政通科技股份有限公司 人脸识别系统及方法
CN108830058A (zh) * 2018-05-23 2018-11-16 平安科技(深圳)有限公司 安全认证方法、认证服务器及计算机可读存储介质
CN108647365A (zh) * 2018-05-29 2018-10-12 青岛九维华盾科技研究院有限公司 一种基于人工判读的目标伪装效果评估方法及系统
CN108764189A (zh) * 2018-06-04 2018-11-06 梁平 一种活体识别装置
WO2019233199A1 (zh) * 2018-06-06 2019-12-12 Oppo广东移动通信有限公司 验证方法、验证装置及计算机可读存储介质
US11836984B2 (en) 2018-06-29 2023-12-05 Logistics and Supply Chain MultiTech R&D Centre Limited Electronic device and method for counting objects
CN109389794A (zh) * 2018-07-05 2019-02-26 北京中广通业信息科技股份有限公司 一种智能化视频监控方法和系统
CN109117752A (zh) * 2018-07-24 2019-01-01 广州市国锐科技有限公司 一种基于灰度及rgb的面部识别方法
CN109147116A (zh) * 2018-07-25 2019-01-04 深圳市飞瑞斯科技有限公司 智能锁及控制智能锁开启的方法
CN109086718A (zh) * 2018-08-02 2018-12-25 深圳市华付信息技术有限公司 活体检测方法、装置、计算机设备及存储介质
CN109165614A (zh) * 2018-08-31 2019-01-08 杭州行开科技有限公司 基于3d摄像头的人脸识别系统
CN109151205A (zh) * 2018-09-04 2019-01-04 信利光电股份有限公司 一种接通来电的方法、装置、通讯设备及可读存储介质
US20200082160A1 (en) * 2018-09-12 2020-03-12 Kneron (Taiwan) Co., Ltd. Face recognition module with artificial intelligence models
CN111046703B (zh) 2018-10-12 2023-04-18 杭州海康威视数字技术股份有限公司 人脸防伪检测方法、装置及多目相机
CN111476072A (zh) * 2019-01-24 2020-07-31 大白科技发展(上海)有限公司 一种基于人脸识别的实时客流量分析系统
CN109902597A (zh) * 2019-01-31 2019-06-18 杭州创匠信息科技有限公司 基于活体血管的防伪方法、装置和系统
CN109829434A (zh) * 2019-01-31 2019-05-31 杭州创匠信息科技有限公司 基于活体纹理的防伪方法和装置
CN110110582A (zh) * 2019-03-14 2019-08-09 广州市金其利信息科技有限公司 结合3d结构光、红外光及可见光的人脸识别方法及系统
CN109934191A (zh) * 2019-03-20 2019-06-25 北京字节跳动网络技术有限公司 信息处理方法和装置
CN110020520B (zh) * 2019-03-26 2021-03-26 华中科技大学 一种基于声音信号的人脸识别辅助认证方法和系统
CN110110597B (zh) * 2019-04-02 2021-08-27 北京旷视科技有限公司 活体检测方法、装置及活体检测终端
CN110059624B (zh) * 2019-04-18 2021-10-08 北京字节跳动网络技术有限公司 用于检测活体的方法和装置
CN110059638A (zh) * 2019-04-19 2019-07-26 中控智慧科技股份有限公司 一种身份识别方法及装置
CN110249339A (zh) * 2019-04-24 2019-09-17 深圳市汇顶科技股份有限公司 一种人脸注册方法、人脸注册装置、服务器和可存储介质
CN110268419A (zh) * 2019-05-08 2019-09-20 深圳市汇顶科技股份有限公司 一种人脸识别方法、人脸识别装置和计算机可读存储介质
WO2020237483A1 (zh) * 2019-05-27 2020-12-03 深圳市汇顶科技股份有限公司 用于人脸识别的光学传感器、装置、方法和电子设备
CN110276313B (zh) * 2019-06-25 2022-04-22 杭州网易智企科技有限公司 身份认证方法、身份认证装置、介质和计算设备
CN110411570B (zh) * 2019-06-28 2020-08-28 武汉高德智感科技有限公司 基于人体检测和人体跟踪技术的红外人体温度筛查方法
CN110532907B (zh) * 2019-08-14 2022-01-21 中国科学院自动化研究所 基于面象和舌象双模态特征提取的中医人体体质分类方法
WO2021046773A1 (zh) * 2019-09-11 2021-03-18 深圳市汇顶科技股份有限公司 人脸防伪检测方法、装置、芯片、电子设备和计算机可读介质
CN112733575B (zh) * 2019-10-14 2024-07-19 北京字节跳动网络技术有限公司 图像处理方法、装置、电子设备及存储介质
CN113051982B (zh) * 2019-12-28 2024-04-02 浙江宇视科技有限公司 人脸活体检测方法、装置、设备和存储介质
CN111222433B (zh) * 2019-12-30 2023-06-20 新大陆数字技术股份有限公司 自动人脸稽核方法、系统、设备及可读存储介质
CN113128320B (zh) * 2020-01-16 2023-05-16 浙江舜宇智能光学技术有限公司 基于tof相机的人脸活体检测方法、检测装置及电子设备
CN111242090B (zh) * 2020-01-22 2023-06-23 腾讯科技(深圳)有限公司 基于人工智能的人脸识别方法、装置、设备及介质
CN111368665B (zh) * 2020-02-25 2022-08-02 西华大学 一种基于竞争与协作机制的高抗哄骗多模态身份验证方法
CN111414831B (zh) * 2020-03-13 2022-08-12 深圳市商汤科技有限公司 监测方法及系统、电子设备和存储介质
CN111460419B (zh) * 2020-03-31 2020-11-27 深圳市微网力合信息技术有限公司 物联网人工智能人脸验证方法及物联网云服务器
TWI722872B (zh) * 2020-04-17 2021-03-21 技嘉科技股份有限公司 人臉辨識裝置以及人臉辨識方法
CN111858625A (zh) * 2020-05-14 2020-10-30 深圳力维智联技术有限公司 住户居住状态监测方法、装置、设备及可读存储介质
CN111368811B (zh) * 2020-05-26 2020-09-18 腾讯科技(深圳)有限公司 活体检测方法、装置、设备及存储介质
CN111695509A (zh) * 2020-06-12 2020-09-22 云从科技集团股份有限公司 一种身份验证方法、装置、机器可读介质及设备
TWI790459B (zh) * 2020-07-09 2023-01-21 立普思股份有限公司 紅外線人體辨識方法
CN112001240B (zh) * 2020-07-15 2021-08-17 浙江大华技术股份有限公司 活体检测方法、装置、计算机设备和存储介质
CN112052759B (zh) * 2020-08-25 2022-09-09 腾讯科技(深圳)有限公司 一种活体检测方法和装置
CN112487921B (zh) * 2020-11-25 2023-09-08 奥比中光科技集团股份有限公司 一种用于活体检测的人脸图像预处理方法及系统
CN113657293B (zh) * 2021-08-19 2023-11-24 北京神州新桥科技有限公司 活体检测方法、装置、电子设备、介质及程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770613A (zh) * 2010-01-19 2010-07-07 北京智慧眼科技发展有限公司 基于人脸识别和活体检测的社保身份认证方法
CN101964056A (zh) * 2010-10-26 2011-02-02 徐勇 一种具有活体检测功能的双模态人脸认证方法和系统
US20110299741A1 (en) * 2010-06-08 2011-12-08 Microsoft Corporation Distinguishing Live Faces from Flat Surfaces
CN102622588A (zh) * 2012-03-08 2012-08-01 无锡数字奥森科技有限公司 双验证人脸防伪方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702198B (zh) * 2009-11-19 2011-11-23 浙江大学 基于背景比对的视频和活体人脸的鉴别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770613A (zh) * 2010-01-19 2010-07-07 北京智慧眼科技发展有限公司 基于人脸识别和活体检测的社保身份认证方法
US20110299741A1 (en) * 2010-06-08 2011-12-08 Microsoft Corporation Distinguishing Live Faces from Flat Surfaces
CN101964056A (zh) * 2010-10-26 2011-02-02 徐勇 一种具有活体检测功能的双模态人脸认证方法和系统
CN102622588A (zh) * 2012-03-08 2012-08-01 无锡数字奥森科技有限公司 双验证人脸防伪方法及装置

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016025355A1 (en) * 2014-08-12 2016-02-18 Microsoft Technology Licensing, Llc False face representation identification
US9582724B2 (en) 2014-08-12 2017-02-28 Microsoft Technology Licensing, Llc False face representation identification
US10007839B2 (en) 2014-08-12 2018-06-26 Microsoft Technology Licensing, Llc False face representation identification
US9251427B1 (en) 2014-08-12 2016-02-02 Microsoft Technology Licensing, Llc False face representation identification
CN105868677B (zh) * 2015-01-19 2022-08-30 创新先进技术有限公司 一种活体人脸检测方法及装置
CN105868677A (zh) * 2015-01-19 2016-08-17 阿里巴巴集团控股有限公司 一种活体人脸检测方法及装置
JP2018524072A (ja) * 2015-06-16 2018-08-30 アイベリファイ インコーポレイテッド スプーフ検出およびライブネス分析のためのシステムおよび方法
CN106372615A (zh) * 2016-09-19 2017-02-01 厦门中控生物识别信息技术有限公司 一种人脸防伪识别方法以及装置
CN112651348A (zh) * 2017-03-17 2021-04-13 北京旷视科技有限公司 身份认证方法和装置及存储介质
CN110909695A (zh) * 2017-07-29 2020-03-24 Oppo广东移动通信有限公司 防伪处理方法及相关产品
CN110909695B (zh) * 2017-07-29 2023-08-18 Oppo广东移动通信有限公司 防伪处理方法及相关产品
CN109684899A (zh) * 2017-10-18 2019-04-26 大猩猩科技股份有限公司 一种基于在线学习的人脸辨识方法与系统
CN108268839A (zh) * 2018-01-05 2018-07-10 北京万相融通科技股份有限公司 一种活体验证方法及其系统
CN109543541B (zh) * 2018-10-23 2024-03-08 合肥的卢深视科技有限公司 一种活体检测方法及装置
CN109543541A (zh) * 2018-10-23 2019-03-29 北京的卢深视科技有限公司 一种活体检测方法及装置
CN111259698A (zh) * 2018-11-30 2020-06-09 百度在线网络技术(北京)有限公司 用于获取图像的方法及装置
CN111259698B (zh) * 2018-11-30 2023-10-13 百度在线网络技术(北京)有限公司 用于获取图像的方法及装置
CN109598242A (zh) * 2018-12-06 2019-04-09 中科视拓(北京)科技有限公司 一种新型的活体检测方法
CN109598242B (zh) * 2018-12-06 2023-04-18 中科视拓(北京)科技有限公司 一种活体检测方法
CN111382592B (zh) * 2018-12-27 2023-09-29 杭州海康威视数字技术股份有限公司 活体检测方法和设备
CN111382592A (zh) * 2018-12-27 2020-07-07 杭州海康威视数字技术股份有限公司 活体检测方法和设备
CN113316781A (zh) * 2019-01-17 2021-08-27 电装波动株式会社 认证系统、认证装置及认证方法
US12019722B2 (en) 2019-01-17 2024-06-25 Denso Wave Incorporated System, device and method for authentication with use of information code
CN109902604B (zh) * 2019-02-18 2023-05-02 麒麟软件有限公司 一种基于飞腾平台的高安全性人脸比对系统及其方法
CN109902604A (zh) * 2019-02-18 2019-06-18 天津麒麟信息技术有限公司 一种基于飞腾平台的高安全性人脸比对系统及其方法
CN110462630A (zh) * 2019-05-27 2019-11-15 深圳市汇顶科技股份有限公司 用于人脸识别的光学传感器、装置、方法和电子设备
CN110298335A (zh) * 2019-07-09 2019-10-01 中控华运(厦门)集成电路有限公司 人脸识别系统及人脸识别方法
US11200333B2 (en) 2019-08-13 2021-12-14 International Business Machines Corporation File exposure to an intended recipient
CN112395929A (zh) * 2019-08-19 2021-02-23 扬州盛世云信息科技有限公司 一种基于红外图像lbp直方图特征的人脸活体检测方法
CN110929557A (zh) * 2019-09-25 2020-03-27 四川大学锦城学院 一种基于活体检测的智能安防方法、系统及处理装置
CN111008651B (zh) * 2019-11-13 2023-04-28 科大国创软件股份有限公司 一种基于多特征融合的图像翻拍检测方法
CN111008651A (zh) * 2019-11-13 2020-04-14 科大国创软件股份有限公司 一种基于多特征融合的图像翻拍检测方法
CN111191519B (zh) * 2019-12-09 2023-11-24 同济大学 一种用于移动供电装置用户接入的活体检测方法
CN111191519A (zh) * 2019-12-09 2020-05-22 同济大学 一种用于移动供电装置用户接入的活体检测方法
CN111259757A (zh) * 2020-01-13 2020-06-09 支付宝实验室(新加坡)有限公司 一种基于图像的活体识别方法、装置及设备
CN111259757B (zh) * 2020-01-13 2023-06-20 支付宝实验室(新加坡)有限公司 一种基于图像的活体识别方法、装置及设备
CN111259814A (zh) * 2020-01-17 2020-06-09 杭州涂鸦信息技术有限公司 一种活体检测方法及系统
CN111259814B (zh) * 2020-01-17 2023-10-31 杭州涂鸦信息技术有限公司 一种活体检测方法及系统
CN111339958B (zh) * 2020-02-28 2023-08-29 南京鑫之派智能科技有限公司 一种基于单目视觉的人脸活体检测方法及系统
CN111339958A (zh) * 2020-02-28 2020-06-26 山东笛卡尔智能科技有限公司 一种基于单目视觉的人脸活体检测方法及系统
CN111723651B (zh) * 2020-05-09 2023-10-10 熵基科技股份有限公司 一种人脸识别方法、人脸识别装置及终端设备
CN111739046A (zh) * 2020-06-19 2020-10-02 百度在线网络技术(北京)有限公司 用于模型更新和检测图像的方法、装置、设备和介质
CN111967296B (zh) * 2020-06-28 2023-12-05 北京中科虹霸科技有限公司 虹膜活体检测方法、门禁控制方法及装置
CN111967296A (zh) * 2020-06-28 2020-11-20 北京中科虹霸科技有限公司 虹膜活体检测方法、门禁控制方法及装置
CN111783647A (zh) * 2020-06-30 2020-10-16 北京百度网讯科技有限公司 人脸融合模型的训练方法、人脸融合方法、装置及设备
CN111783647B (zh) * 2020-06-30 2023-11-03 北京百度网讯科技有限公司 人脸融合模型的训练方法、人脸融合方法、装置及设备
CN111832464A (zh) * 2020-07-08 2020-10-27 福建捷宇电脑科技有限公司 一种基于近红外摄像头的活体检测方法及装置
CN111968152B (zh) * 2020-07-15 2023-10-17 桂林远望智能通信科技有限公司 一种动态身份识别方法及装置
CN111968152A (zh) * 2020-07-15 2020-11-20 桂林远望智能通信科技有限公司 一种动态身份识别方法及装置
CN112036238A (zh) * 2020-07-24 2020-12-04 支付宝实验室(新加坡)有限公司 人脸数据处理方法、装置、电子设备及存储介质
CN112001262A (zh) * 2020-07-28 2020-11-27 山东师范大学 一种生成可以影响人脸认证的配饰的方法
CN112001262B (zh) * 2020-07-28 2022-07-29 山东师范大学 一种生成可以影响人脸认证的配饰的方法
CN112232109A (zh) * 2020-08-31 2021-01-15 深圳奥比中光科技有限公司 一种活体人脸检测方法及系统
CN112232109B (zh) * 2020-08-31 2024-06-04 奥比中光科技集团股份有限公司 一种活体人脸检测方法及系统
CN112215136A (zh) * 2020-10-10 2021-01-12 北京奇艺世纪科技有限公司 一种目标人物识别方法、装置、电子设备及存储介质
CN112215136B (zh) * 2020-10-10 2023-09-05 北京奇艺世纪科技有限公司 一种目标人物识别方法、装置、电子设备及存储介质
WO2022084824A1 (en) * 2020-10-21 2022-04-28 Gopi Yadavaprasath System and method for face anti-counterfeiting
US11657589B2 (en) 2021-01-13 2023-05-23 Ford Global Technologies, Llc Material spectroscopy
US11443527B2 (en) 2021-01-13 2022-09-13 Ford Global Technologies, Llc Material spectroscopy
US11741747B2 (en) 2021-01-13 2023-08-29 Ford Global Technologies, Llc Material spectroscopy
CN113158818B (zh) * 2021-03-29 2023-04-07 青岛海尔科技有限公司 用于识别伪造视频的方法、装置和设备
CN113158818A (zh) * 2021-03-29 2021-07-23 青岛海尔科技有限公司 用于识别伪造视频的方法、装置和设备
CN113297976B (zh) * 2021-05-26 2023-06-23 中国铁塔股份有限公司大连市分公司 一种基于深度学习的基站入侵检测方法和系统
CN113297976A (zh) * 2021-05-26 2021-08-24 中国铁塔股份有限公司大连市分公司 一种基于深度学习的基站入侵检测方法和系统
CN114596614A (zh) * 2022-03-03 2022-06-07 清华大学 一种反照片攻击人脸识别系统及方法
CN114882548A (zh) * 2022-04-08 2022-08-09 国网江苏省电力有限公司 基于改进3d动态图卷积的调度员身份认证方法
CN114896575B (zh) * 2022-04-28 2024-04-16 西安电子科技大学 一种基于虚假属性检测的可信身份辨识方法及装置
CN114896575A (zh) * 2022-04-28 2022-08-12 西安电子科技大学 一种基于虚假属性检测的可信身份辨识方法及装置
CN114894337A (zh) * 2022-07-11 2022-08-12 深圳市大树人工智能科技有限公司 一种用于室外人脸识别测温方法及装置
CN117877098A (zh) * 2024-03-07 2024-04-12 深圳百沃彰世科技有限公司 基于大数据和多维特征的异常通讯行为识别方法及系统
CN117877098B (zh) * 2024-03-07 2024-05-28 深圳百沃彰世科技有限公司 基于大数据和多维特征的异常通讯行为识别方法及系统

Also Published As

Publication number Publication date
CN102622588B (zh) 2013-10-09
CN102622588A (zh) 2012-08-01

Similar Documents

Publication Publication Date Title
WO2013131407A1 (zh) 双验证人脸防伪方法及装置
CN104933344B (zh) 基于多生物特征模态的移动终端用户身份认证装置及方法
CN101196987B (zh) 在线掌纹、手掌静脉图像身份识别方法及其专用采集仪
Zhang et al. Face liveness detection by learning multispectral reflectance distributions
CN100492400C (zh) 手指静脉特征提取与匹配识别方法
CN100361135C (zh) 一种获取人脸图像的方法及人脸识别方法与系统
Chen et al. Liveness detection for iris recognition using multispectral images
CN109101871A (zh) 一种基于深度和近红外信息的活体检测装置、检测方法及其应用
US20130129164A1 (en) Identity recognition system and method based on hybrid biometrics
CN107392187B (zh) 一种基于梯度方向直方图的人脸活体检测方法
KR101172898B1 (ko) 얼굴 인식 시스템에서의 위조 검출 방법
CN111462379A (zh) 一种含掌静脉和人脸识别的门禁管理方法、系统及介质
CN111582197A (zh) 一种基于近红外和3d摄像技术的活体以及人脸识别系统
CN112232163B (zh) 指纹采集方法及装置、指纹比对方法及装置、设备
CN101477622A (zh) 手指静脉识别系统
CN105224906A (zh) 掌静脉识别智能系统
CN112232155A (zh) 非接触指纹识别的方法、装置、终端及存储介质
Anthony et al. A review of face anti-spoofing methods for face recognition systems
CN107909063B (zh) 基于灰度变化的生物识别视频回放攻击检测方法
CN112232159B (zh) 指纹识别的方法、装置、终端及存储介质
CN107862298B (zh) 一种基于红外摄像装置下眨眼的活体检测方法
Li et al. Hand-based multimodal biometric fusion: A review
JP5851108B2 (ja) 画像監視装置
WO2020073169A1 (zh) 生物特征识别的方法、装置和电子设备
JP2012212968A (ja) 画像監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758069

Country of ref document: EP

Kind code of ref document: A1