[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013125454A1 - Polyester resin for surface-mounted led reflective plate - Google Patents

Polyester resin for surface-mounted led reflective plate Download PDF

Info

Publication number
WO2013125454A1
WO2013125454A1 PCT/JP2013/053639 JP2013053639W WO2013125454A1 WO 2013125454 A1 WO2013125454 A1 WO 2013125454A1 JP 2013053639 W JP2013053639 W JP 2013053639W WO 2013125454 A1 WO2013125454 A1 WO 2013125454A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polyester resin
mol
temperature
glycol
Prior art date
Application number
PCT/JP2013/053639
Other languages
French (fr)
Japanese (ja)
Inventor
戸川 惠一朗
浩尚 佐々木
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2013509766A priority Critical patent/JP6048832B2/en
Priority to KR1020147021563A priority patent/KR101848970B1/en
Priority to CN201380010667.3A priority patent/CN104136487B/en
Publication of WO2013125454A1 publication Critical patent/WO2013125454A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a polyester resin that can be used as a material suitable for a reflector for a surface-mounted LED having excellent moldability, fluidity, dimensional stability, low water absorption, solder heat resistance, surface reflectance, and the like. Furthermore, this invention relates to the polyester resin which can be used for the material suitable for the reflector for surface mount type LED which is excellent in gold
  • LEDs light-emitting diodes
  • LEDs are used for lighting fixtures, optical elements, mobile phones, backlights for liquid crystal displays, automobile console panels, traffic lights, etc. by utilizing features such as low power consumption, long life, high brightness, and miniaturization. It is applied to display boards.
  • surface mounting technology is used to achieve lightness, thinness, and miniaturization.
  • a surface-mounted LED is generally composed of a light-emitting LED chip, a lead wire, a reflector that also serves as a case, and a sealing resin.
  • each component In order to join the entire component mounted on an electronic board with lead-free solder
  • each component must be formed of a material that can withstand the soldering reflow temperature of 260 ° C.
  • the melting point (melting peak temperature) of the material is required to be 280 ° C. or higher.
  • the reflector in addition to these heat resistances, surface reflectivity for efficiently extracting light and durability against heat and ultraviolet rays are required. From this point of view, various heat-resistant plastic materials such as ceramics, semi-aromatic polyamides, liquid crystal polymers, and thermosetting silicones have been studied.
  • high refractive fillers such as titanium oxide are dispersed in semi-aromatic polyamides and polyesters.
  • the resin made has a good balance of mass productivity, heat resistance, surface reflectance, etc., and is most commonly used.
  • Patent Documents 1 and 2 have been proposed as polyester resin compositions for LED reflectors.
  • a dicarboxylic acid component comprising from 0 to 10 mol% of an aromatic dicarboxylic acid residue; and (b) i) a 2,2,4,4-tetramethyl-1,3-cyclobutanediol residue from 1 to 99 mol%; and ii)
  • Disclosed is a glycol component containing 1-99 mol% 1,4-cyclohexanedimethanol residues (wherein the total mol% of dicarboxylic acid component is 100 mol% and the total mol% of glycol component is 100 mol%)
  • the mechanical properties tend to be good, there are problems in moldability and light
  • Patent Document 3 (A) 100 parts by mass of a polyester resin, (B) 2 to 50 parts by mass of a phosphinate whose anion portion is a calcium salt or aluminum salt of phosphinic acid, and (C) titanium dioxide 0.5
  • a flame retardant polyester resin composition for a reflector of an illuminating device using a semiconductor light emitting element as a light source characterized in that it contains 0.01 to 3 parts by mass of (D) a polyolefin resin having a polar group (D).
  • D a polyolefin resin having a polar group
  • Patent Document 4 100 parts by mass of wholly aromatic thermotropic liquid crystal polyester, 97 to 85% by mass of titanium oxide obtained by a production method including a roasting step, 3 to 15% by mass of aluminum oxide (including hydrate) (Total of 100% by mass of both) comprising 8 to 42 parts by mass of titanium oxide particles surface-treated, 25 to 50 parts by mass of glass fibers, and 0 to 8 parts by mass of other inorganic fillers.
  • Resin composition obtained through a melt-kneading step including a step of supplying at least a part of the glass fiber from a position 30% or more downstream with respect to the total length of the cylinder of the biaxial kneader using a shaft kneader.
  • Patent Document 5 discloses a dry unsaturated polyester resin composition containing at least an unsaturated polyester resin, a polymerization initiator, an inorganic filler, a white pigment, a release agent, and a reinforcing material, wherein the unsaturated polyester resin is The total amount of the inorganic filler and the white pigment is in the range of 44 to 74% by mass with respect to the total amount of the composition. The proportion of the white pigment in the total amount of the inorganic filler and the white pigment is 30% by mass or more, and the unsaturated polyester resin is mixed with the unsaturated alkyd resin and the crosslinking agent.
  • polyesters and polyamides are used while having problems in heat-resistant coloring, light resistance and moldability.
  • the required melting point of the polyester resin that can be used for the surface mount LED reflector is 280 ° C. or higher, preferably 290 ° C. or higher, and the aromatic ring concentration is high.
  • the required melting point of the polyester resin that can be used for the surface mount LED reflector is 280 ° C. or higher, preferably 290 ° C. or higher, and the aromatic ring concentration is high.
  • no polyester resin that can be used for a surface mount LED reflector satisfying these requirements has been reported so far.
  • An object of the present invention is to provide a polyester resin that can be used as a material suitable for a reflector for a surface-mounted LED having excellent light resistance. Furthermore, an object of the present invention is to provide a high melting point that can be applied to a gold / tin eutectic soldering process and to ensure a long-term reliability, and a low water absorption for reducing swelling of a molded product due to moisture in the soldering process. Another object of the present invention is to provide a polyester resin that can be used as a material suitable for a reflector for a surface mount LED that has achieved light resistance during outdoor use or long-term use.
  • the present inventor can advantageously perform injection molding and reflow soldering processes while satisfying the characteristics as an LED reflector, and further, gold / tin eutectic solder heat resistance, low water absorption As a result of intensive studies on the composition of polyester having excellent properties and light resistance, the present invention has been completed.
  • the present invention has the following configuration.
  • a polyester resin for a surface-mounted LED reflector comprising an acid component composed of 4,4′-biphenyldicarboxylic acid and another dicarboxylic acid and a glycol component as constituent components and a melting point of 280 ° C. or higher.
  • the other dicarboxylic acid constituting the polyester resin is terephthalic acid and / or 2,6-naphthalenedicarboxylic acid.
  • Polyester resin comprising an acid component composed of 4,4′-biphenyldicarboxylic acid and another dicarboxylic acid and a glycol component as constituent components and a melting point of 280 ° C. or higher.
  • the polyester resin for surface-mounted LED reflectors according to any one of (3), wherein the difference between the melting point (Tm) and the temperature-falling crystallization temperature (Tc2) of the polyester resin is 40 ° C.
  • the polyester resin of the present invention is excellent in workability such as moldability at the time of injection molding and solder heat resistance in addition to high heat resistance and low water absorption when used in a material used for a reflector for a surface mount LED. Therefore, it is possible to industrially advantageously manufacture a reflector for a surface mount LED that highly satisfies all necessary characteristics.
  • the polyester resin of the present invention has a high melting point and excellent heat resistance, it can be applied to a gold / tin eutectic solder process, and furthermore, since the aromatic ring concentration is high, it has heat resistance, toughness, and weather resistance. It is possible to exhibit characteristics such as excellent properties and excellent adhesion to the sealing material.
  • the polyester resin of the present invention is intended to be used for a material used for a reflector for a surface mount LED.
  • the surface mount type LED includes a chip LED type using a printed wiring board, a gull wing type using a lead frame, a PLCC type, and the like.
  • the polyester resin of the present invention is formed by injection molding all these reflectors. Can be manufactured.
  • the polyester resin of the present invention is a polyester resin for a surface-mounted LED reflector having an acid component composed of 4,4′-biphenyldicarboxylic acid and other dicarboxylic acid and a glycol component as constituent components and a melting point of 280 ° C. or higher. .
  • the polyester resin of the present invention realizes excellent light resistance in addition to high melting point and low water absorption in order to impart high reliability.
  • 4,4′-biphenyldicarboxylic acid and other dicarboxylic acids An acid component and a glycol component consisting of the above are used as constituent components, and the melting point is 280 ° C. or higher.
  • the polyester resin can have a melting point of 280 ° C. or higher by having the following configuration.
  • the melting point of the polyester resin is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 310 ° C. or higher.
  • the upper limit of the melting point of the polyester resin is not particularly set, but is 340 ° C. or lower due to the limitation of the raw material components that can be used.
  • the polyester resin preferably contains 4,4′-biphenyldicarboxylic acid in an amount of 30 mol% or more, more preferably 4,4′-biphenyldicarboxylic acid in an amount of 50 mol% or more, still more preferably 60 mol% or more. Particularly preferred is 63 mol% or more, and most preferred is 70 mol% or more. If 4,4′-biphenyldicarboxylic acid is less than 30 mol% of the total acid component, moldability, solder heat resistance, and light resistance tend to be lowered. The amount of 4,4′-biphenyldicarboxylic acid is preferably 90 mol% or less of the total acid component.
  • dicarboxylic acids are aromatic dicarboxylic acids such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, diphenoxyethane dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′-diphenyl ketone dicarboxylic acid, etc.
  • Aliphatic dicarboxylic acids such as acid, adipic acid, sebacic acid, succinic acid, glutaric acid and dimer acid, hexahydroterephthalic acid, hexahydroisophthalic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 , 4-cyclohexanedicarboxylic acid and the like, and among them, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or a mixture thereof is preferable from the viewpoint of polymerizability, cost, and heat resistance. .
  • polyoxycarboxylic acids such as p-oxybenzoic acid and oxycaproic acid, trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid, biphenylsulfonetetracarboxylic acid, biphenyltetracarboxylic acid, and anhydrides thereof You may use together.
  • the acid component constituting the polyester resin the total of 4,4′-biphenyldicarboxylic acid and other dicarboxylic acids is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, 97 mol% or more is particularly preferable, and may be 100 mol%.
  • glycol component of the polyester resin examples include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 3-methyl-1,5-pentanediol, 2-methyl-1,5-pentanediol, 2-methyl-1 , 3-propanediol, 2 Ethyl-1,3-propanediol, neopentyl
  • one or two selected from ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butanediol are considered due to heat resistance, polymerizability, molding, cost, and the like.
  • a mixture of species or more is preferred. More preferably, it is at least one selected from ethylene glycol and 1,4-butanediol.
  • diethylene glycol may be produced as a by-product during the production of the polyester resin to become a copolymer component.
  • diethylene glycol as a by-product is about 1 to 5 mol% with respect to ethylene glycol incorporated in the polyester resin, although it depends on production conditions.
  • polyhydric polyols such as a trimethylol ethane, a trimethylol propane, glycerol, and a pentaerythritol.
  • the polyester resin of the present invention is preferably 160 mol% or more, more preferably 180 mol% or more, even more preferably the total of the above-mentioned dicarboxylic acid component and glycol component when the total components are 200 mol%. Is 190 mol% or more and may be 200 mol% (in this case, 100 mol% of dicarboxylic acid component and 100 mol% of glycol component).
  • 4,4′-biphenyldicarboxylic acid is preferably 63 mol% or more, more preferably 70 mol% or more as the acid component. Further, in this case, in order to achieve a more desirable high melting point, it is more preferable that 4,4′-biphenyldicarboxylic acid is 75 mol% or more as an acid component, and 80 mol% or more is particularly preferable.
  • metal salts such as 5-sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5- [4-sulfophenoxy] isophthalic acid, or 2-sulfo-1,4-butanediol, 2,5 -A dicarboxylic acid or diol containing a sulfonic acid metal base such as a metal salt such as dimethyl-3-sulfo-2,5-hexanediol may be used in the total acid component or in a range of 20 mol% or less of the total diol component. Good.
  • At least 1 type of compound chosen from the compound of Ge, Sb, Ti, Al, Mn, or Mg is used. These compounds are added to the reaction system as powders, aqueous solutions, ethylene glycol solutions, ethylene glycol slurries and the like.
  • Examples of the Ge compound include amorphous germanium dioxide, crystalline germanium dioxide powder or ethylene glycol slurry, a solution obtained by heating and dissolving crystalline germanium dioxide in water, or a solution obtained by adding ethylene glycol to this and heat treatment.
  • a solution in which germanium dioxide is dissolved by heating in water or a solution in which ethylene glycol is added and heated.
  • compounds such as germanium tetroxide, germanium hydroxide, germanium oxalate, germanium chloride, germanium tetraethoxide, germanium tetra-n-butoxide, and germanium phosphite can also be used.
  • the amount used is preferably 10 to 150 ppm, more preferably 13 to 100 ppm, still more preferably 15 to 70 ppm, most preferably 15 as the residual amount of Ge in the polyester based on the mass of the polyester resin. It is in the range of ⁇ 50 ppm.
  • Ti compounds include tetraalkyl titanates such as tetraethyl titanate, tetraisopropyl titanate, tetra-n-propyl titanate, tetra-n-butyl titanate, and partial hydrolysates thereof, titanium acetate, titanyl oxalate, titanyl ammonium oxalate, titanyl oxalate Sodium, titanyl oxalate, titanyl calcium oxalate, titanyl succinate, titanyl succinate, titanium trimellitic acid, titanium sulfate, titanium chloride, titanium halide hydrolyzate, titanium oxalate, titanium fluoride, titanium hexafluoride Potassium acid, ammonium hexafluorotitanate, cobalt hexafluorotitanate, manganese hexafluorotitanate, titanium acetylacetonate, hydroxy polycarboxylic acid or nitrogen-
  • Sb compound examples include antimony trioxide, antimony acetate, antimony tartrate, antimony potassium tartrate, antimony oxychloride, antimony glycolate, antimony pentoxide, and triphenylantimony.
  • the amount of Sb remaining in the produced polymer is preferably 50 to 300 ppm, more preferably 50 to 250 ppm, still more preferably 50 to 200 ppm, and most preferably 50 to 180 ppm, based on the mass of the polyester resin. Add as follows.
  • Al compounds include aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum carbonate, aluminum phosphate, aluminum phosphonate, and other inorganic acid salts, aluminum n-propoxide, aluminum iso-propoxide
  • Aluminum alkoxides such as aluminum n-butoxide and aluminum t-butoxide
  • aluminum chelate compounds such as aluminum acetylacetonate, aluminum acetylacetate, aluminum ethylacetoacetate, aluminum ethylacetoacetate diiso-propoxide, trimethylaluminum, triethylaluminum, etc.
  • the Al compound is preferably in the range of 5 to 200 ppm, more preferably 10 to 100 ppm, still more preferably 10 to 50 ppm, and most preferably 12 to 30 ppm, based on the mass of the polyester resin, as the residual amount of Al in the produced polymer. Add as follows.
  • an alkali metal compound or an alkaline earth metal compound may be used in combination as necessary.
  • the alkali metal or alkaline earth metal is preferably at least one selected from Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba, and the use of an alkali metal or a compound thereof is preferable. More preferred. When using an alkali metal or a compound thereof, use of Li, Na, K is particularly preferable.
  • alkali metal and alkaline earth metal compounds examples include saturated aliphatic carboxylates such as formic acid, acetic acid, propionic acid, butyric acid, and succinic acid, and unsaturated aliphatic carboxylates such as acrylic acid and methacrylic acid.
  • Aromatic carboxylates such as benzoic acid, halogen-containing carboxylates such as trichloroacetic acid, hydroxycarboxylates such as lactic acid, citric acid and salicylic acid, carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen carbonate, phosphorus Inorganic acid salts such as acid hydrogen, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid and bromic acid, organic sulfonates such as 1-propanesulfonic acid, 1-pentanesulfonic acid and naphthalenesulfonic acid , Organic sulfates such as lauryl sulfate, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert- Alkoxides such as butoxy, chelate compounds and the like acetylacetonate, hydr
  • the alkali metal compound or alkaline earth metal compound is added to the reaction system as a powder, an aqueous solution, an ethylene glycol solution, or the like.
  • the alkali metal compound or alkaline earth metal compound is added so that the residual amount of these elements in the produced polymer is preferably in the range of 1 to 50 ppm with respect to the mass of the polyester resin.
  • the polyester resin according to the present invention is at least one selected from the group consisting of silicon, manganese, iron, cobalt, zinc, gallium, strontium, zirconium, niobium, molybdenum, indium, tin, hafnium, thallium, tungsten.
  • These metal compounds include saturated aliphatic carboxylates such as acetates of these elements, unsaturated aliphatic carboxylates such as acrylates, aromatic carboxylates such as benzoic acid, and halogens such as trichloroacetic acid.
  • Hydroxycarboxylates such as carboxylates and lactates
  • inorganic acid salts such as carbonates
  • organic sulfonates such as 1-propanesulfonate
  • organic sulfates such as lauryl sulfate
  • oxides oxides
  • hydroxides chlorides Products, alkoxides, acetylacetonates, and the like
  • metal compounds are added so that the residual amount of these metal compound elements per ton of the produced polymer is preferably in the range of 0.05 to 3.0 mol.
  • These metal compounds can be added at any stage of the polyester formation reaction step.
  • phosphoric acid phosphoric acid esters such as polyphosphoric acid and trimethyl phosphate, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, phosphine compounds
  • at least one phosphorus compound selected from the group consisting of: Specific examples include phosphoric acid, phosphoric acid trimethyl ester, phosphoric acid triethyl ester, phosphoric acid tributyl ester, phosphoric acid triphenyl ester, phosphoric acid monomethyl ester, phosphoric acid dimethyl ester, phosphoric acid monobutyl ester, phosphoric acid dibutyl ester, Phosphoric acid, phosphorous acid trimethyl ester, phosphorous acid triethyl ester, phosphorous acid tributyl ester, methylphosphonic acid, methylphosphonic acid dimethyl ester, ethylphosphonic acid dimethyl ester, ethylphosphonic acid dimethyl ester
  • the P compound is preferably in the range of 5 to 100 ppm, more preferably 10 to 90 ppm, still more preferably 10 to 80 ppm, and most preferably 20 to 70 ppm, based on the mass of the polyester resin, as the residual amount of P in the produced polymer. Add as follows.
  • an Al compound When used as the polycondensation catalyst, it is preferably used in combination with a phosphorus compound, and is preferably used as a solution or slurry in which an aluminum compound and a phosphorus compound are previously mixed in a solvent.
  • a more preferable phosphorus compound is at least one selected from the group consisting of phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, and phosphine compounds. It is a phosphorus compound.
  • a phosphonic acid compound is preferable because of its great effect of improving physical properties and improving catalytic activity.
  • the use of a compound having an aromatic ring structure is preferable because the physical property improving effect and the catalytic activity improving effect are great.
  • the solution, slurry, etc. of the catalyst and stabilizer described above are bubbled with an inert gas having an oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, most preferably 1 ppm or less at the time of preparation or after preparation.
  • an inert gas having an oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, most preferably 1 ppm or less at the time of preparation or after preparation.
  • the acid value of the polyester resin of the present invention is preferably 1 to 40 eq / ton.
  • the acid value exceeds 40 eq / ton, light resistance tends to decrease.
  • the acid value is less than 1 eq / ton, the polycondensation reactivity tends to decrease and the productivity tends to deteriorate.
  • the polyester resin of the present invention has a melting point (Tm) in DSC measurement of 280 ° C. or higher, preferably 290 ° C. or higher, more preferably 300 ° C. or higher, particularly preferably 310 ° C. or higher, and most preferably 320 ° C. or higher. .
  • the upper limit of Tm of the polyester resin of the present invention is preferably 340 ° C. or lower for the following reason. When Tm exceeds the above upper limit, the processing temperature required for injection molding the composition using the polyester resin of the present invention becomes extremely high, so that the polyester resin decomposes during processing, and the desired physical properties and appearance are obtained. It may not be possible.
  • Tm when Tm is less than the above lower limit, the crystallization rate is slow, and in some cases, molding may be difficult, and further, solder heat resistance may be reduced.
  • a Tm of 310 ° C. or higher is preferable because it satisfies the reflow solder heat resistance of 280 ° C. and can be applied to a gold / tin eutectic solder process.
  • the polyester resin of the present invention preferably has a difference between the melting point (Tm) and the cooling crystallization temperature (Tc2) in DSC measurement of 40 ° C. or less, more preferably 35 ° C. or less, and most preferably 30 ° C. or less. is there.
  • the temperature-falling crystallization temperature (Tc2) is a temperature at which crystallization starts when the temperature is lowered from a temperature higher by 10 ° C. or more than the melting point in DSC measurement.
  • the melting point (Tm) and the cooling crystallization temperature (Tc2) are measured by the methods described in the Examples section below. When the difference between the melting point (Tm) and the temperature-falling crystallization temperature (Tc2) is 40 ° C.
  • the intrinsic viscosity (IV) of the polyester resin of the present invention is preferably 0.10 to 0.70 dl / g, more preferably 0.20 to 0.65 dl / g, still more preferably 0.25 to 0.00. 60 dl / g.
  • the polyester resin of the present invention has an excellent balance of low water absorption and fluidity in addition to a high melting point and moldability, and also has excellent weather resistance. For this reason, the polyester resin composition obtained from such a polyester resin has a high melting point of 280 ° C. or higher in the molding of a reflector for a surface-mounted LED, so that it has heat resistance, crystallinity (moldability), heat yellowing, It is a polyester resin composition suitable for a reflector for a surface-mounted LED having excellent weather resistance and low water absorption.
  • the polyester resin of the present invention can be produced by a conventionally known production method.
  • a direct esterification method in which an acid component composed of 4,4′-biphenyldicarboxylic acid and another dicarboxylic acid is directly reacted with a glycol component to distill water to esterify, followed by polycondensation under reduced pressure, or 4 It is produced by a transesterification method in which an acid component consisting of dimethyl 4,4'-biphenyldicarboxylate and other dimethyl dicarboxylate and a glycol component are reacted to distill methyl ester by diesterification, followed by polycondensation under reduced pressure.
  • the polyester resin of the present invention By blending the polyester resin of the present invention with titanium oxide, a reinforcing material, a non-fibrous or non-needle filler, and making a polyester resin composition, the material is suitable for a reflector for a surface mount LED. I can do it. When blended, mechanical strength and weather resistance tend to be improved.
  • Titanium oxide is blended to increase the surface reflectance of the reflector.
  • Dititanium trioxide (Ti 2 O 3 ), and the like, and particularly rutile titanium dioxide (TiO 2 ) is preferably used.
  • the average particle size of titanium oxide is generally in the range of 0.05 to 2.0 ⁇ m, preferably 0.15 to 0.5 ⁇ m, and may be used alone or in combination with titanium oxides having different particle sizes. May be used.
  • the titanium oxide component concentration is 90% or more, preferably 95% or more, and more preferably 97% or more.
  • titanium oxide that has been surface-treated with a metal oxide such as silica, alumina, zinc oxide, zirconia, a coupling agent, an organic acid, an organic polyhydric alcohol, or siloxane can be used.
  • the proportion of titanium oxide is preferably 0.5 to 100 parts by mass, more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the polyester resin.
  • the ratio of titanium oxide is less than the above lower limit, the surface reflectance is lowered, and when it exceeds the upper limit, molding processability may be lowered, such as a significant decrease in physical properties and fluidity.
  • the reinforcing material is blended in order to improve the moldability of the polyester resin composition and the strength of the molded product, and at least one selected from a fibrous reinforcing material and a needle-shaped reinforcing material is used.
  • a fibrous reinforcing material include glass fiber, carbon fiber, boron fiber, ceramic fiber, and metal fiber.
  • the acicular reinforcing material include potassium titanate whisker, aluminum borate whisker, zinc oxide whisker, and carbonic acid. Calcium whiskers, magnesium sulfate whiskers, wollastonite and the like can be mentioned.
  • glass fibers chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used.
  • a glass fiber having a circular cross section and a non-circular cross section can be used as the cross-sectional shape of the glass fiber.
  • the diameter of the circular cross-section glass fiber is 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • a glass fiber having a non-circular cross section is preferred from the viewpoint of physical properties and fluidity.
  • Non-circular cross-section glass fibers include those that are substantially oval, substantially oval, or substantially bowl-shaped in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8. It is preferable.
  • the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. It is the ratio of major axis / minor axis.
  • the thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 ⁇ m and the major axis is about 2 to 100 ⁇ m. Further, glass fibers are preferably used in the form of chopped strands which are formed into fiber bundles and cut to a fiber length of about 1 to 20 mm.
  • the difference in refractive index from the copolyester resin is large, so use a material whose refractive index is increased by changing the glass composition or surface treatment. It is preferable to do.
  • the proportion of the reinforcing material is preferably 0 to 100 parts by mass, more preferably 5 to 100 parts by mass, and further preferably 10 to 60 parts by mass with respect to 100 parts by mass of the polyester resin.
  • the reinforcing material is not an essential component, but if the proportion is 5 parts by mass or more, the mechanical strength of the molded product is preferably improved. When the ratio of the reinforcing material exceeds the above upper limit, the surface reflectance and the moldability tend to be lowered.
  • non-fibrous or non-needle fillers include reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, thermal conductive fillers, thermal yellowing suppression fillers, etc., specifically glass. Beads, glass flakes, glass balloons, silica, talc, kaolin, mica, alumina, hydrotalcite, montmorillonite, graphite, carbon nanotubes, fullerene, indium oxide, tin oxide, iron oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide , Calcium hydroxide, red phosphorus, calcium carbonate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, barium sulfate, and non-acicular wollastonite, potassium titanate, aluminum borate , Magnesium sulfate, acetate Neshiumu, zinc oxide, calcium carbonate, and the like.
  • fillers may be used not only alone but also in combination of several kinds. Among these, talc is preferable because Tc1 is lowered and moldability is improved.
  • the addition amount of the filler may be selected as an optimum amount, but it is possible to add a maximum of 50 parts by mass with respect to 100 parts by mass of the polyester resin, but from the viewpoint of the mechanical strength of the resin composition, it is 0.
  • the amount is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass.
  • the fibrous reinforcing material and the filler are preferably used after being treated with an organic treatment or a coupling agent, or used in combination with a coupling agent at the time of melt compounding.
  • the ring agent any of a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent may be used, and among them, an aminosilane coupling agent and an epoxy silane coupling agent are particularly preferable.
  • additives of the conventional polyester resin composition for LED reflectors can be used for the said polyester resin composition.
  • Additives include stabilizers, impact modifiers, flame retardants, mold release agents, slidability improvers, colorants, fluorescent brighteners, plasticizers, crystal nucleating agents, thermoplastic resins other than polyester, and the like.
  • the above-mentioned polyester resin composition can be produced by blending the above-described constituent components by a conventionally known method. Examples include a method in which each component is added during the polycondensation reaction of the polyester resin, a polyester resin and other components are dry blended, or each component is melt-kneaded using a twin screw type extruder. be able to.
  • the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
  • the measured value described in the Example is measured by the following method.
  • the temperature was raised at a rate of temperature rise of 20 ° C./minute, held at 330 ° C. for 3 minutes, and then cooled from 330 ° C. to 130 ° C. at a rate of 10 ° C./minute.
  • the peak temperature of the melting peak observed when the temperature was raised was defined as the melting point (Tm), and the peak temperature of the crystallization peak observed when the temperature was decreased was the lowered crystallization temperature (Tc2).
  • Preheating was performed. Thereafter, the temperature was raised to a predetermined set temperature at a rate of 100 ° C./min, held at the predetermined temperature for 10 seconds, and then cooled. The set temperature was increased from 240 ° C. every 5 ° C., and the highest set temperature at which the surface did not swell or deformed was defined as the reflow heat resistant temperature, which was used as an index of solder heat resistance.
  • Reflow heat resistant temperature is 260 ° C or higher and lower than 280 ° C.
  • X Reflow heat resistant temperature is lower than 260 ° C.
  • test piece for evaluation was prepared. This test piece was irradiated with UV light at an illuminance of 50 mW / cm 2 in an environment of 63 ° C. and 50% RH using a super accelerated weathering tester “I Super UV Tester SUV-F11”. The light reflectance at a wavelength of 460 nm of the test piece was measured before irradiation and 60 hours after irradiation.
  • the retention rate of the light reflectivity of the post-irradiation test piece relative to the light reflectivity of the pre-irradiation test piece was evaluated according to the following criteria. ⁇ : Retention rate 90% or more ⁇ : Retention rate less than 90% to 85% or more ⁇ : Retention rate less than 85%
  • the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm.
  • the intrinsic viscosity of the obtained polyester was 0.60 dl / g, and the resin composition was 65 mol% of 4,4′-biphenyldicarboxylic acid, 35 mol% of terephthalic acid, and 98 of ethylene glycol according to 1 H-NMR measurement. 0.2 mol% and diethylene glycol were 1.8 mol%.
  • the characteristic values of the obtained polyester resin are shown in Table 1.
  • polyester resin was obtained in the same manner as in the polymerization of the polyester resin of Synthesis Example 1 except that the amount and type of raw materials used were changed. Table 1 shows the characteristic values of the obtained polyester resins.
  • Diethylene glycol is a by-product of condensation of ethylene glycol.
  • Synthesis Example 8 In a 20 liter stainless steel autoclave with a stirrer, 3542 g of dimethyl 4,4'-biphenyldicarboxylate, 1400 g of high purity dimethyl terephthalic acid, ethylene glycol, manganese acetate 2 g, and 0.86 g of germanium dioxide in an amount three times the acid component.
  • the intrinsic viscosity of the obtained polyester was 0.60 dl / g, and the resin composition was 65 mol% of 4,4′-biphenyldicarboxylic acid, 35 mol% of terephthalic acid, and 98 of ethylene glycol according to 1 H-NMR measurement. 0.2 mol% and diethylene glycol were 1.8 mol%.
  • the characteristic values of the obtained polyester resin are shown in Table 1.
  • the pressure in the reaction system was gradually decreased to 13.3 Pa (0.1 Torr) while the temperature was raised to 280 ° C. over 60 minutes, and a polycondensation reaction was further performed at 280 ° C. and 13.3 Pa. Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm.
  • the obtained PET had an IV of 0.61 dl / g, and the resin composition was 100 mol% terephthalic acid, 98.0 mol% ethylene glycol, and 2.0 mol% diethylene glycol, as determined by 1 H-NMR. It was.
  • the characteristic values of the obtained polyester resin are shown in Table 2.
  • the autoclave was pressurized to 22 kg / cm 2 .
  • the reaction was continued for 1 hour, and then the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours.
  • the reaction was carried out while gradually removing water vapor and maintaining the pressure at 22 kg / cm 2 .
  • the pressure was reduced to 10 kg / cm 2 over 30 minutes and the reaction was further continued for 1 hour to obtain a prepolymer having an intrinsic viscosity [ ⁇ ] of 0.25 dl / g. This was dried at 100 ° C. under reduced pressure for 12 hours and pulverized to a size of 2 mm or less.
  • a white polyamide having a melting point of 310 ° C., an intrinsic viscosity [ ⁇ ] of 1.33 dl / g, and a terminal sealing rate of 90% was obtained by solid-phase polymerization at 230 ° C. and 0.1 mmHg for 10 hours. Obtained.
  • Examples 1 to 8, Comparative Examples 1 to 5 Using the polyester resin and polyamide resin obtained in the above synthesis examples and comparative synthesis examples, using the twin-screw extruder STS-35 manufactured by Coperion Co., Ltd. with the components and mass ratios shown in Tables 3 and 4, the melting point of the resin Melting and kneading was performed at + 15 ° C. to obtain a resin composition for evaluation.
  • the materials used other than the resin are as follows.
  • Titanium oxide manufactured by Ishihara Sangyo Co., Ltd., Taipei CR-60, rutile TiO 2 , average particle size 0.2 ⁇ m
  • Reinforcing material Glass fiber (manufactured by Nitto Boseki Co., Ltd., CS-3J-324)
  • Mold release agent Magnesium stearate Stabilizer: Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by Ciba Specialty Chemicals)
  • polyester resin compositions and polyamide resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 5 were subjected to evaluation of various properties. The results are shown in Tables 3 and 4.
  • the melting point of the polyester resin by DSC is 280 ° C or higher, it can be applied to the reflow soldering process, and if the melting point exceeds 310 ° C, the reflow heat resistance temperature is 280 ° C or higher.
  • the reflow heat resistance temperature is 280 ° C or higher.
  • it has excellent adhesion with sealing materials, which are important characteristics for LED applications, and surface reflectance.
  • moldability, fluidity It was confirmed that the dimensional stability, low water absorption, and excellent light resistance were excellent.
  • the polyamide resin of Comparative Example 5 has a high melting point, the reflow heat resistant temperature could not satisfy 280 ° C. or higher due to water absorption due to the amide structure.
  • the polyester resin of the present invention is excellent in workability such as moldability at the time of injection molding and solder heat resistance in addition to high heat resistance and low water absorption when used in a material used for a reflector for a surface mount LED. Therefore, the surface-mounted LED reflector can be industrially advantageously produced while highly satisfying the required characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention is capable of providing a polyester resin able to be used in a suitable material for a reflective plate for a surface-mounted LED, said resin having excellent heat resistance, excellent moldability during injection molding, excellent low water absorbability and excellent surface reflectivity, and being a polyester resin for a surface-mounted LED reflective plate having: as the constituent components thereof a 4, 4'-biphenyldicarboxylic acid, an acid component comprising other dicarboxylic acids, and a glycol component; a fusion point of at least 280°C; and ideally at least 30 mol% of the total acid component being the 4, 4'-biphenyldicarboxylic acid, and the other dicarboxylic acids being terephthalic acid and/or 2,6-naphthalenedicarboxylic acid.

Description

表面実装型LED反射板用ポリエステル樹脂Polyester resin for surface mount LED reflector
 本発明は、成形性、流動性、寸法安定性、低吸水性、ハンダ耐熱性、表面反射率等に優れる表面実装型LED用反射板に好適な材料に使用可能なポリエステル樹脂に関する。さらには、本発明は、金/錫ハンダ耐熱性、耐光性、低吸水性に優れる表面実装型LED用反射板に好適な材料に使用可能なポリエステル樹脂に関する。 The present invention relates to a polyester resin that can be used as a material suitable for a reflector for a surface-mounted LED having excellent moldability, fluidity, dimensional stability, low water absorption, solder heat resistance, surface reflectance, and the like. Furthermore, this invention relates to the polyester resin which can be used for the material suitable for the reflector for surface mount type LED which is excellent in gold | metal / tin solder heat resistance, light resistance, and low water absorption.
 近年、LED(発光ダイオード)は、低消費電力、長寿命、高輝度、小型化可能などの特徴を活用して、照明器具、光学素子、携帯電話、液晶ディスプレイ用バックライト、自動車コンソールパネル、信号機、表示板などに応用されている。また、意匠性、携帯性を重視する用途では、軽薄短小化を実現するために表面実装技術が使用されている。 In recent years, LEDs (light-emitting diodes) are used for lighting fixtures, optical elements, mobile phones, backlights for liquid crystal displays, automobile console panels, traffic lights, etc. by utilizing features such as low power consumption, long life, high brightness, and miniaturization. It is applied to display boards. In applications where design and portability are important, surface mounting technology is used to achieve lightness, thinness, and miniaturization.
 表面実装型LEDは一般に、発光するLEDチップ、リード線、ケースを兼ねた反射板、封止樹脂から構成されているが、電子基板上に実装された部品全体を非鉛化ハンダで接合するために、各部品がハンダ付けリフロー温度260℃に耐えられる材料で形成されることが必要である。材料の融点(融解ピーク温度)としては、280℃以上が必要とされる。特に反射板に関しては、これら耐熱性に加え、光を効率的に取り出すための表面反射率、熱や紫外線に対する耐久性が求められる。かかる観点から、セラミックや半芳香族ポリアミド、液晶ポリマー、熱硬化性シリコーン等の種々の耐熱プラスチック材料が検討されており、なかでも、半芳香族ポリアミドやポリエステルに酸化チタン等の高屈折フィラーを分散させた樹脂は量産性、耐熱性、表面反射率などのバランスが良く、最も汎用的に使用されている。最近では、LEDの汎用化にともない、反射板には加工性や信頼性のさらなる向上が必要となっており、長期の耐熱着色性、耐光性の向上が求められている。 A surface-mounted LED is generally composed of a light-emitting LED chip, a lead wire, a reflector that also serves as a case, and a sealing resin. In order to join the entire component mounted on an electronic board with lead-free solder In addition, each component must be formed of a material that can withstand the soldering reflow temperature of 260 ° C. The melting point (melting peak temperature) of the material is required to be 280 ° C. or higher. In particular, regarding the reflector, in addition to these heat resistances, surface reflectivity for efficiently extracting light and durability against heat and ultraviolet rays are required. From this point of view, various heat-resistant plastic materials such as ceramics, semi-aromatic polyamides, liquid crystal polymers, and thermosetting silicones have been studied. Among them, high refractive fillers such as titanium oxide are dispersed in semi-aromatic polyamides and polyesters. The resin made has a good balance of mass productivity, heat resistance, surface reflectance, etc., and is most commonly used. Recently, with the generalization of LEDs, it is necessary to further improve the workability and reliability of the reflector, and long-term heat-resistant coloring and light resistance are required to be improved.
 LED反射板用のポリエステル樹脂組成物としては、例えば特許文献1~2が提案されている。
 特許文献1,2では、(a)i)テレフタル酸残基70~100モル%;ii)炭素数20以下の芳香族ジカルボン酸残基0~30モル%;及びiii)炭素数16以下の脂肪族ジカルボン酸残基0~10モル%を含むジカルボン酸成分;並びに(b)i)2,2,4,4-テトラメチル-1,3-シクロブタンジオール残基1~99モル%;及びii)1,4-シクロヘキサンジメタノール残基1~99モル%を含むグリコール成分(ここでジカルボン酸成分の総モル%は100モル%であり、グリコール成分の総モル%は100モル%である)が開示されているが、機械物性が良好傾向にあるものの、成形性、耐光性に問題がある。また、特許文献3では(A)ポリエステル樹脂100質量部に対し、(B)アニオン部分がホスフィン酸のカルシウム塩又はアルミニウム塩であるホスフィン酸塩2~50質量部、(C)二酸化チタン0.5~30質量部、及び(D)極性基を有するポリオレフィン樹脂0.01~3質量部を配合したことを特徴とする、半導体発光素子を光源とする照明装置反射板用難燃性ポリエステル樹脂組成物が開示されているが、金/錫ハンダ耐熱性、耐熱性、耐光性に問題がある。また、特許文献4では、全芳香族サーモトロピック液晶ポリエステル100質量部、焙焼工程を含む製法で得られた酸化チタン97~85質量%を酸化アルミニウム(水和物を含む)3~15質量%(両者を合わせて100質量%とする。)で表面処理してなる酸化チタン粒子8~42質量部、ガラス繊維25~50質量部、およびその他の無機充填材0~8質量部からなり、二軸混練機を使用して、前記ガラス繊維の少なくとも一部を、二軸混練機のシリンダーの全長に対して30%以上下流側の位置から供給する工程を含む溶融混練工程を経て得られる樹脂組成物が開示されているが、耐熱性、耐候性に問題がある。
 また、特許文献5では、不飽和ポリエステル樹脂、重合開始剤、無機充填剤、白色顔料、離型剤、及び補強材を少なくとも含む乾式不飽和ポリエステル樹脂組成物であって、前記不飽和ポリエステル樹脂が、前記組成物全体量に対して14~40質量%の範囲内であり、前記無機充填剤と前記白色顔料の配合量の合計が、前記組成物全体量に対して44~74質量%の範囲内であり、前記無機充填剤と前記白色顔料の配合量の合計に占める前記白色顔料の割合が30質量%以上であり、前記不飽和ポリエステル樹脂が、不飽和アルキッド樹脂と架橋剤が混合されたものであることを特徴とするLEDリフレクター用不飽和ポリエステル樹脂組成物が開示されているが、成形性、耐光性に問題がある。また、これまで表面実装型LED用反射板としては、各種ポリアミドが使用されてきたが、耐熱着色性、耐光性、吸水性に問題があった。
For example, Patent Documents 1 and 2 have been proposed as polyester resin compositions for LED reflectors.
In Patent Documents 1 and 2, (a) i) terephthalic acid residues 70 to 100 mol%; ii) aromatic dicarboxylic acid residues 0 to 30 mol% having 20 or less carbon atoms; and iii) fats having 16 or less carbon atoms A dicarboxylic acid component comprising from 0 to 10 mol% of an aromatic dicarboxylic acid residue; and (b) i) a 2,2,4,4-tetramethyl-1,3-cyclobutanediol residue from 1 to 99 mol%; and ii) Disclosed is a glycol component containing 1-99 mol% 1,4-cyclohexanedimethanol residues (wherein the total mol% of dicarboxylic acid component is 100 mol% and the total mol% of glycol component is 100 mol%) However, although the mechanical properties tend to be good, there are problems in moldability and light resistance. Further, in Patent Document 3, (A) 100 parts by mass of a polyester resin, (B) 2 to 50 parts by mass of a phosphinate whose anion portion is a calcium salt or aluminum salt of phosphinic acid, and (C) titanium dioxide 0.5 A flame retardant polyester resin composition for a reflector of an illuminating device using a semiconductor light emitting element as a light source, characterized in that it contains 0.01 to 3 parts by mass of (D) a polyolefin resin having a polar group (D). However, there are problems in the heat resistance, heat resistance, and light resistance of gold / tin solder. In Patent Document 4, 100 parts by mass of wholly aromatic thermotropic liquid crystal polyester, 97 to 85% by mass of titanium oxide obtained by a production method including a roasting step, 3 to 15% by mass of aluminum oxide (including hydrate) (Total of 100% by mass of both) comprising 8 to 42 parts by mass of titanium oxide particles surface-treated, 25 to 50 parts by mass of glass fibers, and 0 to 8 parts by mass of other inorganic fillers. Resin composition obtained through a melt-kneading step including a step of supplying at least a part of the glass fiber from a position 30% or more downstream with respect to the total length of the cylinder of the biaxial kneader using a shaft kneader. Although a product is disclosed, there are problems in heat resistance and weather resistance.
Patent Document 5 discloses a dry unsaturated polyester resin composition containing at least an unsaturated polyester resin, a polymerization initiator, an inorganic filler, a white pigment, a release agent, and a reinforcing material, wherein the unsaturated polyester resin is The total amount of the inorganic filler and the white pigment is in the range of 44 to 74% by mass with respect to the total amount of the composition. The proportion of the white pigment in the total amount of the inorganic filler and the white pigment is 30% by mass or more, and the unsaturated polyester resin is mixed with the unsaturated alkyd resin and the crosslinking agent. Although the unsaturated polyester resin composition for LED reflectors characterized by being is disclosed, there exists a problem in a moldability and light resistance. In addition, various polyamides have been used as surface mount LED reflectors, but there are problems with heat-resistant coloring, light resistance, and water absorption.
 以上のように、従来提案されているポリエステルやポリアミドでは、耐熱着色性、耐光性、成形性に課題を抱えながら使用している実情がある。 As described above, conventionally proposed polyesters and polyamides are used while having problems in heat-resistant coloring, light resistance and moldability.
 さらに、近年では、照明用途への展開も積極的に行われている。照明用途への展開を考えた場合、コストダウンやハイパワー化、寿命の向上、長期信頼性の向上がさらに求められている。そのため、信頼性の向上策として、リードフレームとLEDチップの接合には、従来のエポキシ樹脂/銀ペーストではなく、劣化が少なく、熱伝導率の高い金/錫共晶ハンダが使用されつつある。しかしながら、金/錫共晶ハンダの加工には、280℃以上290℃未満の温度がかかるため、使用される樹脂には、工程に耐えるために290℃以上の融点が求められる。また、金/錫共晶ハンダの加工時においても、樹脂中の水分による成型品の表面に膨れ(ブリスター)の発生を防ぐために、樹脂には低吸水であることが求められる。 Furthermore, in recent years, it has been actively developed for lighting applications. When considering the development of lighting applications, further cost reduction, higher power, longer life, and long-term reliability are required. Therefore, as a measure for improving the reliability, gold / tin eutectic solder having a low deterioration and a high thermal conductivity is being used instead of the conventional epoxy resin / silver paste for bonding the lead frame and the LED chip. However, since processing of gold / tin eutectic solder requires a temperature of 280 ° C. or higher and lower than 290 ° C., the resin to be used is required to have a melting point of 290 ° C. or higher in order to withstand the process. Further, even when processing gold / tin eutectic solder, the resin is required to have low water absorption in order to prevent blisters from occurring on the surface of the molded product due to moisture in the resin.
 以上の通り、表面実装型LED用反射板に使用可能なポリエステル樹脂としては、必要とされる融点が280℃以上、好ましくは290℃以上と高く、かつ芳香環濃度が高いことが好ましい。しかしながら、これらを満足した表面実装型LED用反射板に使用可能なポリエステル樹脂は、これまで報告されていない。 As described above, it is preferable that the required melting point of the polyester resin that can be used for the surface mount LED reflector is 280 ° C. or higher, preferably 290 ° C. or higher, and the aromatic ring concentration is high. However, no polyester resin that can be used for a surface mount LED reflector satisfying these requirements has been reported so far.
特表2008-544030号公報Special table 2008-544030 gazette 特表2008-544031号公報Special table 2008-54031 特開2010-270177号公報JP 2010-270177 A 特開2008-231368号公報JP 2008-231368 A 特許4844699号公報Japanese Patent No. 4844699
 本発明は、上記の従来技術の問題点に鑑み創案されたものであり、その目的は、射出成形時の成形性、流動性、寸法安定性、低吸水性、ハンダ耐熱性、表面反射率、耐光性に優れる表面実装型LED用反射板に好適な材料に使用可能なポリエステル樹脂を提供することにある。さらには、本発明の目的は、長期的な信頼性を確保すべく、金/錫共晶ハンダ工程が適応可能な高融点、ハンダ工程での水分による成型品の膨らみ低減のための低吸水性、屋外使用や長期使用時の耐光性を達成した表面実装型LED用反射板に好適な材料に使用可能なポリエステル樹脂を提供することにある。 The present invention was devised in view of the above-mentioned problems of the prior art, and its purpose is moldability during injection molding, fluidity, dimensional stability, low water absorption, solder heat resistance, surface reflectance, An object of the present invention is to provide a polyester resin that can be used as a material suitable for a reflector for a surface-mounted LED having excellent light resistance. Furthermore, an object of the present invention is to provide a high melting point that can be applied to a gold / tin eutectic soldering process and to ensure a long-term reliability, and a low water absorption for reducing swelling of a molded product due to moisture in the soldering process. Another object of the present invention is to provide a polyester resin that can be used as a material suitable for a reflector for a surface mount LED that has achieved light resistance during outdoor use or long-term use.
 本発明者は、上記目的を達成するために、LED反射板としての特性を満たしながら射出成形やリフローハンダ工程を有利に行うことができ、さらには、金/錫共晶ハンダ耐熱性、低吸水性、耐光性にも優れたポリエステルの組成を鋭意検討した結果、本発明の完成に至った。 In order to achieve the above object, the present inventor can advantageously perform injection molding and reflow soldering processes while satisfying the characteristics as an LED reflector, and further, gold / tin eutectic solder heat resistance, low water absorption As a result of intensive studies on the composition of polyester having excellent properties and light resistance, the present invention has been completed.
 即ち、本発明は、以下の構成を有するものである。
(1)4,4’-ビフェニルジカルボン酸とその他のジカルボン酸からなる酸成分とグリコール成分を構成成分とし、融点が280℃以上であることを特徴とする表面実装型LED反射板用ポリエステル樹脂。
(2)ポリエステル樹脂を構成する全酸成分の30モル%以上が、4,4’-ビフェニルジカルボン酸であることを特徴とする(1)に記載の表面実装型LED反射板用ポリエステル樹脂。
(3)ポリエステル樹脂を構成するその他のジカルボン酸が、テレフタル酸及び/又は2,6-ナフタレンジカルボン酸であることを特徴とする(1)又は(2)に記載の表面実装型LED反射板用ポリエステル樹脂。
(4)ポリエステル樹脂を構成する全酸成分の30~90モル%が4,4’-ビフェニルジカルボン酸であり、その他のジカルボン酸がテレフタル酸及び/又は2,6-ナフタレンジカルボン酸であり、グリコール成分がエチレングリコール、1,4-シクロヘキサンジメタノール、1,3-プロパンジオール、ネオペンチルグリコール、1,4-ブタンジオールから選ばれる一種または二種以上であることを特徴とする(1)~(3)のいずれかに記載の表面実装型LED反射板用ポリエステル樹脂
(5)ポリエステル樹脂の融点(Tm)と降温結晶化温度(Tc2)の差が、40℃以下であることを特徴とする(1)~(4)のいずれかに記載の表面実装型LED反射板用ポリエステル樹脂。
(6)ポリエステル樹脂の酸価が、1~40eq/tであることを特徴とする(1)~(5)のいずれかに記載の表面実装型LED反射板用ポリエステル樹脂。
That is, the present invention has the following configuration.
(1) A polyester resin for a surface-mounted LED reflector, comprising an acid component composed of 4,4′-biphenyldicarboxylic acid and another dicarboxylic acid and a glycol component as constituent components and a melting point of 280 ° C. or higher.
(2) The polyester resin for a surface-mounted LED reflector as described in (1), wherein 30 mol% or more of all acid components constituting the polyester resin is 4,4′-biphenyldicarboxylic acid.
(3) The other dicarboxylic acid constituting the polyester resin is terephthalic acid and / or 2,6-naphthalenedicarboxylic acid. (1) or (2) Polyester resin.
(4) 30 to 90 mol% of the total acid component constituting the polyester resin is 4,4′-biphenyldicarboxylic acid, the other dicarboxylic acid is terephthalic acid and / or 2,6-naphthalenedicarboxylic acid, glycol The component is one or more selected from ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, 1,4-butanediol (1) to ( 3) The polyester resin for surface-mounted LED reflectors according to any one of (3), wherein the difference between the melting point (Tm) and the temperature-falling crystallization temperature (Tc2) of the polyester resin is 40 ° C. or less ( 1) A polyester resin for a surface-mounted LED reflector according to any one of (4).
(6) The polyester resin for surface-mounted LED reflectors according to any one of (1) to (5), wherein the acid value of the polyester resin is 1 to 40 eq / t.
 本発明のポリエステル樹脂は、表面実装型LED用反射板に使用する材料に用いた場合、高い耐熱性、低い吸水性に加えて、射出成形時の成形性やハンダ耐熱性など加工性に優れているので、全ての必要な特性を高度に満足する表面実装型LED用反射板を工業的に有利に製造することができる。 The polyester resin of the present invention is excellent in workability such as moldability at the time of injection molding and solder heat resistance in addition to high heat resistance and low water absorption when used in a material used for a reflector for a surface mount LED. Therefore, it is possible to industrially advantageously manufacture a reflector for a surface mount LED that highly satisfies all necessary characteristics.
 また、本発明のポリエステル樹脂は、高融点で耐熱性にも優れるため、金/錫共晶ハンダ工程にも適応可能であり、さらには、芳香環濃度が高いので、耐熱性、強靭性、耐候性に優れるとともに、封止材との密着性にも優れるなどの特徴を示すことができる。 In addition, since the polyester resin of the present invention has a high melting point and excellent heat resistance, it can be applied to a gold / tin eutectic solder process, and furthermore, since the aromatic ring concentration is high, it has heat resistance, toughness, and weather resistance. It is possible to exhibit characteristics such as excellent properties and excellent adhesion to the sealing material.
 本発明のポリエステル樹脂は、表面実装型LED用反射板に使用する材料に用いることを意図するものである。表面実装型LEDには、プリント配線板を用いたチップLED型、リードフレームを用いたガルウィング型、PLCC型などが挙げられるが、本発明のポリエステル樹脂は、これらの全ての反射板を射出成形により製造することができる。 The polyester resin of the present invention is intended to be used for a material used for a reflector for a surface mount LED. The surface mount type LED includes a chip LED type using a printed wiring board, a gull wing type using a lead frame, a PLCC type, and the like. The polyester resin of the present invention is formed by injection molding all these reflectors. Can be manufactured.
 本発明のポリエステル樹脂は、4,4’-ビフェニルジカルボン酸とその他のジカルボン酸からなる酸成分とグリコール成分を構成成分とし、融点が280℃以上である表面実装型LED反射板用ポリエステル樹脂である。 The polyester resin of the present invention is a polyester resin for a surface-mounted LED reflector having an acid component composed of 4,4′-biphenyldicarboxylic acid and other dicarboxylic acid and a glycol component as constituent components and a melting point of 280 ° C. or higher. .
 本発明のポリエステル樹脂は、高い信頼性を付与するために、高融点、低吸水性に加えて、優れた耐光性を実現するものであり、4,4’-ビフェニルジカルボン酸とその他のジカルボン酸からなる酸成分とグリコール成分を構成成分とし、融点が280℃以上であることを特徴とする。ポリエステル樹脂は、下記の構成を有することにより、融点を280℃以上にすることができる。ポリエステル樹脂の融点は、好ましくは290℃以上、より好ましくは300℃以上、さらに好ましくは310℃以上である。ポリエステル樹脂の融点の上限は特に設定しないが、使用できる原料成分の制限より、340℃以下である。 The polyester resin of the present invention realizes excellent light resistance in addition to high melting point and low water absorption in order to impart high reliability. 4,4′-biphenyldicarboxylic acid and other dicarboxylic acids An acid component and a glycol component consisting of the above are used as constituent components, and the melting point is 280 ° C. or higher. The polyester resin can have a melting point of 280 ° C. or higher by having the following configuration. The melting point of the polyester resin is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 310 ° C. or higher. The upper limit of the melting point of the polyester resin is not particularly set, but is 340 ° C. or lower due to the limitation of the raw material components that can be used.
 ポリエステル樹脂は、4,4’-ビフェニルジカルボン酸が全酸成分の30モル%以上含むことが好ましく、より好ましくは4,4’-ビフェニルジカルボン酸が50モル%以上、更に好ましくは60モル%以上、特に好ましくは63モル%以上、最も好ましくは70モル%以上である。4,4’-ビフェニルジカルボン酸が全酸成分の30モル%未満では、成形性、ハンダ耐熱性、耐光性が低下する傾向にある。4,4’-ビフェニルジカルボン酸は、全酸成分の90モル%以下であることが好ましい。90モル%を超えると、ポリエステル樹脂の融点が高くなり過ぎ、重合条件の設定が難しくなる傾向にある。
 その他のジカルボン酸とは、テレフタル酸、2、6-ナフタレンジカルボン酸、イソフタル酸、ジフェノキシエタンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルケトンジカルボン酸等の芳香族ジカルボン酸、アジピン酸、セバシン酸、コハク酸、グルタル酸、ダイマー酸等の脂肪族ジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸などが挙げられ、これらの中では、重合性、コスト、耐熱性の点からテレフタル酸、2、6-ナフタレンジカルボン酸、またはこれらの混合物が好ましい。また、p-オキシ安息香酸、オキシカプロン酸等のオキシ酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ビフェニルテトラカルボン酸などの多価カルボン酸及びその無水物を併用しても構わない。ポリエステル樹脂を構成する酸成分としては、4,4’-ビフェニルジカルボン酸とその他のジカルボン酸の合計で、80モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましく、97モル%以上が特に好ましく、100モル%であっても構わない。
The polyester resin preferably contains 4,4′-biphenyldicarboxylic acid in an amount of 30 mol% or more, more preferably 4,4′-biphenyldicarboxylic acid in an amount of 50 mol% or more, still more preferably 60 mol% or more. Particularly preferred is 63 mol% or more, and most preferred is 70 mol% or more. If 4,4′-biphenyldicarboxylic acid is less than 30 mol% of the total acid component, moldability, solder heat resistance, and light resistance tend to be lowered. The amount of 4,4′-biphenyldicarboxylic acid is preferably 90 mol% or less of the total acid component. If it exceeds 90 mol%, the melting point of the polyester resin becomes too high, and the setting of the polymerization conditions tends to be difficult.
Other dicarboxylic acids are aromatic dicarboxylic acids such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, diphenoxyethane dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′-diphenyl ketone dicarboxylic acid, etc. Aliphatic dicarboxylic acids such as acid, adipic acid, sebacic acid, succinic acid, glutaric acid and dimer acid, hexahydroterephthalic acid, hexahydroisophthalic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 , 4-cyclohexanedicarboxylic acid and the like, and among them, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or a mixture thereof is preferable from the viewpoint of polymerizability, cost, and heat resistance. . Also, polyoxycarboxylic acids such as p-oxybenzoic acid and oxycaproic acid, trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid, biphenylsulfonetetracarboxylic acid, biphenyltetracarboxylic acid, and anhydrides thereof You may use together. As the acid component constituting the polyester resin, the total of 4,4′-biphenyldicarboxylic acid and other dicarboxylic acids is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, 97 mol% or more is particularly preferable, and may be 100 mol%.
 また、ポリエステル樹脂のグリコ-ル成分としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、3-メチル-1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-エチル-1,3-プロパンジオール、ネオペンチルグリコール、2-エチル-2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-n-ブチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2-エチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジ-n-ヘキシル-1,3-プロパンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、トリエチレングリコール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール、ポリプロピレングリコールなどの脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物などの芳香族グリコールなどが挙げられる。これらの中では、耐熱性、重合性、成形、コストなどからエチレングリコール、1,4-シクロヘキサンジメタノール、1,3-プロパンジオール、ネオペンチルグリコール、1,4-ブタンジオールから選ばれる一種または二種以上の混合物が好ましい。更に好ましくは、エチレングリコール、1,4-ブタンジオールから選ばれる一種以上である。なお、グリコール成分にエチレングリコールを用いた場合、ポリエステル樹脂の製造時に、ジエチレングリコールが副生し、共重合成分となることがある。この場合、副生するジエチレングリコールは、製造条件にもよるがポリエステル樹脂に組み込まれるエチレングリコールに対して1~5モル%程度である。また、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価ポリオールを併用しても構わない。
 本発明のポリエステル樹脂は、全構成成分を200モル%としたとき、上記のジカルボン酸成分とグリコール成分の合計で、160モル%以上であることが好ましく、より好ましくは180モル%以上、さらに好ましくは190モル%以上であり、200モル%(このとき、ジカルボン酸成分100モル%、グリコール成分100モル%)であっても構わない。
Examples of the glycol component of the polyester resin include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 3-methyl-1,5-pentanediol, 2-methyl-1,5-pentanediol, 2-methyl-1 , 3-propanediol, 2 Ethyl-1,3-propanediol, neopentyl glycol, 2-ethyl-2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-n-butyl 1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, 2-ethyl-2-n- Hexyl-1,3-propanediol, 2,2-di-n-hexyl-1,3-propanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, triethylene glycol , Aliphatic glycols such as polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, polypropylene glycol, hydroquinone, , 4'-dihydroxybisphenol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-bis (β-hydroxyethoxyphenyl) sulfone, bis (p-hydroxyphenyl) ether, bis (p-hydroxyphenyl) Examples thereof include aromatic glycols such as sulfone, bis (p-hydroxyphenyl) methane, 1,2-bis (p-hydroxyphenyl) ethane, bisphenol A, and alkylene oxide adducts of bisphenol A. Among these, one or two selected from ethylene glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butanediol are considered due to heat resistance, polymerizability, molding, cost, and the like. A mixture of species or more is preferred. More preferably, it is at least one selected from ethylene glycol and 1,4-butanediol. In addition, when ethylene glycol is used for the glycol component, diethylene glycol may be produced as a by-product during the production of the polyester resin to become a copolymer component. In this case, diethylene glycol as a by-product is about 1 to 5 mol% with respect to ethylene glycol incorporated in the polyester resin, although it depends on production conditions. Moreover, you may use together polyhydric polyols, such as a trimethylol ethane, a trimethylol propane, glycerol, and a pentaerythritol.
The polyester resin of the present invention is preferably 160 mol% or more, more preferably 180 mol% or more, even more preferably the total of the above-mentioned dicarboxylic acid component and glycol component when the total components are 200 mol%. Is 190 mol% or more and may be 200 mol% (in this case, 100 mol% of dicarboxylic acid component and 100 mol% of glycol component).
 ポリエステル樹脂のグリコ-ル成分として全量、エチレングリコールを用いる場合、酸成分として4,4’-ビフェニルジカルボン酸を63モル%以上とすることが好ましく、70モル%以上とすることがより好ましい。また、この場合、より望ましい高融点を達成するためには、酸成分として4,4’-ビフェニルジカルボン酸を75モル%以上とすることがさらに好ましく、80モル%以上とすることが特に好ましい。 When the total amount of ethylene glycol is used as the glycol component of the polyester resin, 4,4′-biphenyldicarboxylic acid is preferably 63 mol% or more, more preferably 70 mol% or more as the acid component. Further, in this case, in order to achieve a more desirable high melting point, it is more preferable that 4,4′-biphenyldicarboxylic acid is 75 mol% or more as an acid component, and 80 mol% or more is particularly preferable.
 また、5-スルホイソフタル酸、4-スルホナフタレン-2,7-ジカルボン酸、5-[4-スルホフェノキシ]イソフタル酸等の金属塩、または2-スルホ-1,4-ブタンジオール、2,5-ジメチル-3-スルホ-2,5-ヘキサンジオール等の金属塩などのスルホン酸金属塩基を含有するジカルボン酸またはジオールを全酸成分または全ジオール成分の20モル%以下の範囲で使用してもよい。 Further, metal salts such as 5-sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5- [4-sulfophenoxy] isophthalic acid, or 2-sulfo-1,4-butanediol, 2,5 -A dicarboxylic acid or diol containing a sulfonic acid metal base such as a metal salt such as dimethyl-3-sulfo-2,5-hexanediol may be used in the total acid component or in a range of 20 mol% or less of the total diol component. Good.
 ポリエステル樹脂を製造するに際に使用する触媒として、特に限定がされないが、Ge、Sb、Ti、Al、MnまたはMgの化合物から選ばれる少なくとも一種の化合物が用いられることが好ましい。これらの化合物は、粉体、水溶液、エチレングリコール溶液、エチレングリコールのスラリー等として反応系に添加される。 Although it does not specifically limit as a catalyst used when manufacturing a polyester resin, It is preferable that at least 1 type of compound chosen from the compound of Ge, Sb, Ti, Al, Mn, or Mg is used. These compounds are added to the reaction system as powders, aqueous solutions, ethylene glycol solutions, ethylene glycol slurries and the like.
 Ge化合物としては、無定形二酸化ゲルマニウム、結晶性二酸化ゲルマニウム粉末またはエチレングリコールのスラリー、結晶性二酸化ゲルマニウムを水に加熱溶解した溶液またはこれにエチレングリコールを添加加熱処理した溶液等が使用されるが、特に本発明で用いるポリエステルを得るには二酸化ゲルマニウムを水に加熱溶解した溶液、またはこれにエチレングリコールを添加加熱した溶液を使用するのが好ましい。また、四酸化ゲルマニウム、水酸化ゲルマニウム、蓚酸ゲルマニウム、塩化ゲルマニウム、ゲルマニウムテトラエトキシド、ゲルマニウムテトラ-n-ブトキシド、亜リン酸ゲルマニウム等の化合物も用いることが出来る。これらの重縮合触媒はエステル化工程中に添加することができる。Ge化合物を使用する場合、その使用量はポリエステル中のGe残存量として、ポリエステル樹脂の質量に対して好ましくは10~150ppm、より好ましくは13~100ppm、さらに好ましくは15~70ppm、最も好ましくは15~50ppmの範囲である。 Examples of the Ge compound include amorphous germanium dioxide, crystalline germanium dioxide powder or ethylene glycol slurry, a solution obtained by heating and dissolving crystalline germanium dioxide in water, or a solution obtained by adding ethylene glycol to this and heat treatment. In particular, in order to obtain the polyester used in the present invention, it is preferable to use a solution in which germanium dioxide is dissolved by heating in water, or a solution in which ethylene glycol is added and heated. In addition, compounds such as germanium tetroxide, germanium hydroxide, germanium oxalate, germanium chloride, germanium tetraethoxide, germanium tetra-n-butoxide, and germanium phosphite can also be used. These polycondensation catalysts can be added during the esterification step. When a Ge compound is used, the amount used is preferably 10 to 150 ppm, more preferably 13 to 100 ppm, still more preferably 15 to 70 ppm, most preferably 15 as the residual amount of Ge in the polyester based on the mass of the polyester resin. It is in the range of ˜50 ppm.
 Ti化合物としては、テトラエチルチタネート、テトライソプロピルチタネート、テトラ-n-プロピルチタネート、テトラ-n-ブチルチタネート等のテトラアルキルチタネートおよびそれらの部分加水分解物、酢酸チタン、蓚酸チタニル、蓚酸チタニルアンモニウム、蓚酸チタニルナトリウム、蓚酸チタニルカリウム、蓚酸チタニルカルシウム、蓚酸チタニルストロンチウム等の蓚酸チタニル化合物、トリメリット酸チタン、硫酸チタン、塩化チタン、チタンハロゲン化物の加水分解物、シュウ化チタン、フッ化チタン、六フッ化チタン酸カリウム、六フッ化チタン酸アンモニウム、六フッ化チタン酸コバルト、六フッ化チタン酸マンガン、チタンアセチルアセトナート、ヒドロキシ多価カルボン酸または含窒素多価カルボン酸とのチタン錯体物、チタンおよびケイ素あるいはジルコニウムからなる複合酸化物、チタンアルコキサイドとリン化合物の反応物、チタンアルコキサイドと芳香族多価カルボン酸又はその酸無水物と特定のリン化合物との反応生成物等が挙げられる。Ti化合物は、生成ポリマー中のTi残存量として、ポリエステル樹脂の質量に対して好ましくは0.1~50ppm、より好ましくは0.5~10ppmの範囲になるように添加する。 Examples of Ti compounds include tetraalkyl titanates such as tetraethyl titanate, tetraisopropyl titanate, tetra-n-propyl titanate, tetra-n-butyl titanate, and partial hydrolysates thereof, titanium acetate, titanyl oxalate, titanyl ammonium oxalate, titanyl oxalate Sodium, titanyl oxalate, titanyl calcium oxalate, titanyl succinate, titanyl succinate, titanium trimellitic acid, titanium sulfate, titanium chloride, titanium halide hydrolyzate, titanium oxalate, titanium fluoride, titanium hexafluoride Potassium acid, ammonium hexafluorotitanate, cobalt hexafluorotitanate, manganese hexafluorotitanate, titanium acetylacetonate, hydroxy polycarboxylic acid or nitrogen-containing polycarboxylic acid Complex compounds comprising titanium and silicon or zirconium, reaction products of titanium alkoxide and phosphorus compound, reaction of titanium alkoxide with aromatic polycarboxylic acid or acid anhydride thereof and specific phosphorus compound Product etc. are mentioned. The Ti compound is added so that the amount of Ti remaining in the produced polymer is preferably in the range of 0.1 to 50 ppm, more preferably 0.5 to 10 ppm with respect to the mass of the polyester resin.
 Sb化合物としては、三酸化アンチモン、酢酸アンチモン、酒石酸アンチモン、酒石酸アンチモンカリ、オキシ塩化アンチモン、アンチモングリコレート、五酸化アンチモン、トリフェニルアンチモン等が挙げられる。Sb化合物は、生成ポリマー中のSb残存量として、ポリエステル樹脂の質量に対して好ましくは50~300ppm、より好ましくは50~250ppm、さらに好ましくは50~200ppm,最も好ましくは50~180ppmの範囲になるように添加する。 Examples of the Sb compound include antimony trioxide, antimony acetate, antimony tartrate, antimony potassium tartrate, antimony oxychloride, antimony glycolate, antimony pentoxide, and triphenylantimony. The amount of Sb remaining in the produced polymer is preferably 50 to 300 ppm, more preferably 50 to 250 ppm, still more preferably 50 to 200 ppm, and most preferably 50 to 180 ppm, based on the mass of the polyester resin. Add as follows.
 Al化合物としては、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、炭酸アルミニウム、リン酸アルミニウム、ホスホン酸アルミニウムなどの無機酸塩、アルミニウムn-プロポキサイド、アルミニウムiso-プロポキサイド、アルミニウムn-ブトキサイド、アルミニウムt-ブトキサイドなどアルミニウムアルコキサイド、アルミニウムアセチルアセトネート、アルミニウムアセチルアセテート、アルミニウムエチルアセトアセテート、アルミニウムエチルアセトアセテートジiso-プロポキサイドなどのアルミニウムキレート化合物、トリメチルアルミニウム、トリエチルアルミニウムなどの有機アルミニウム化合物およびこれらの部分加水分解物、酸化アルミニウムなどが挙げられる。これらのうち酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウムおよびアルミニウムアセチルアセトネートがとくに好ましい。Al化合物は、生成ポリマー中のAl残存量として、ポリエステル樹脂の質量に対して好ましくは5~200ppm、より好ましくは10~100ppm、さらに好ましくは10~50ppm、最も好ましくは12~30ppmの範囲になるように添加する。 Examples of Al compounds include aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum carbonate, aluminum phosphate, aluminum phosphonate, and other inorganic acid salts, aluminum n-propoxide, aluminum iso-propoxide Aluminum alkoxides such as aluminum n-butoxide and aluminum t-butoxide, aluminum chelate compounds such as aluminum acetylacetonate, aluminum acetylacetate, aluminum ethylacetoacetate, aluminum ethylacetoacetate diiso-propoxide, trimethylaluminum, triethylaluminum, etc. Organoaluminum compounds and their partial hydrolysates, aluminum oxides Bromide and the like. Of these, aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetylacetonate are particularly preferred. The Al compound is preferably in the range of 5 to 200 ppm, more preferably 10 to 100 ppm, still more preferably 10 to 50 ppm, and most preferably 12 to 30 ppm, based on the mass of the polyester resin, as the residual amount of Al in the produced polymer. Add as follows.
 また、アルカリ金属化合物またはアルカリ土類金属化合物を必要に応じて併用してもよい。アルカリ金属、アルカリ土類金属としては、Li,Na,K,Rb,Cs,Be,Mg,Ca,Sr,Baから選択される少なくとも1種であることが好ましく、アルカリ金属ないしその化合物の使用がより好ましい。アルカリ金属ないしその化合物を使用する場合、特にLi,Na,Kの使用が好ましい。 Further, an alkali metal compound or an alkaline earth metal compound may be used in combination as necessary. The alkali metal or alkaline earth metal is preferably at least one selected from Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba, and the use of an alkali metal or a compound thereof is preferable. More preferred. When using an alkali metal or a compound thereof, use of Li, Na, K is particularly preferable.
 アルカリ金属やアルカリ土類金属の化合物としては、例えば、これら金属のギ酸、酢酸、プロピオン酸、酪酸、蓚酸などの飽和脂肪族カルボン酸塩、アクリル酸、メタクリル酸などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩、トリクロロ酢酸などのハロゲン含有カルボン酸塩、乳酸、クエン酸、サリチル酸などのヒドロキシカルボン酸塩、炭酸、硫酸、硝酸、リン酸、ホスホン酸、炭酸水素、リン酸水素、硫化水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸などの無機酸塩、1-プロパンスルホン酸、1-ペンタンスルホン酸、ナフタレンスルホン酸などの有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、tert-ブトキシなどのアルコキサイド、アセチルアセトネートなどとのキレート化合物、水素化物、酸化物、水酸化物などが挙げられる。 Examples of the alkali metal and alkaline earth metal compounds include saturated aliphatic carboxylates such as formic acid, acetic acid, propionic acid, butyric acid, and succinic acid, and unsaturated aliphatic carboxylates such as acrylic acid and methacrylic acid. , Aromatic carboxylates such as benzoic acid, halogen-containing carboxylates such as trichloroacetic acid, hydroxycarboxylates such as lactic acid, citric acid and salicylic acid, carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen carbonate, phosphorus Inorganic acid salts such as acid hydrogen, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid and bromic acid, organic sulfonates such as 1-propanesulfonic acid, 1-pentanesulfonic acid and naphthalenesulfonic acid , Organic sulfates such as lauryl sulfate, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert- Alkoxides such as butoxy, chelate compounds and the like acetylacetonate, hydrides, oxides, and hydroxides and the like.
 前記のアルカリ金属化合物またはアルカリ土類金属化合物は、粉体、水溶液、エチレングリコール溶液等として反応系に添加される。アルカリ金属化合物またはアルカリ土類金属化合物は、生成ポリマー中のこれらの元素の残存量として、ポリエステル樹脂の質量に対して好ましくは1~50ppmの範囲になるように添加する。 The alkali metal compound or alkaline earth metal compound is added to the reaction system as a powder, an aqueous solution, an ethylene glycol solution, or the like. The alkali metal compound or alkaline earth metal compound is added so that the residual amount of these elements in the produced polymer is preferably in the range of 1 to 50 ppm with respect to the mass of the polyester resin.
 さらにまた、本発明に係るポリエステル樹脂は、ケイ素、マンガン、鉄、コバルト、亜鉛、ガリウム、ストロンチウム、ジルコニウム、ニオブ、モリブデン、インジウム、錫、ハフニウム、タリウム、タングステンからなる群から選ばれた少なくとも1種の元素を含む金属化合物を含有してもよい。これらの金属化合物としては、これら元素の酢酸塩等の飽和脂肪族カルボン酸塩、アクリル酸塩などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩、トリクロロ酢酸などのハロゲン含有カルボン酸塩、乳酸塩などのヒドロキシカルボン酸塩、炭酸塩などの無機酸塩、1-プロパンスルホン酸塩などの有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、酸化物、水酸化物、塩化物、アルコキサイド、アセチルアセトナート等とのキレ-ト化合物があげられ、粉体、水溶液、エチレングリコール溶液、エチレングリコールのスラリー等として反応系に添加される。これらの金属化合物は、生成ポリマー1トン当りのこれらの金属化合物の元素の残存量として、好ましくは0.05~3.0モルの範囲になるように添加する。これらの金属化合物は、前記のポリエステル生成反応工程の任意の段階で添加することができる。 Furthermore, the polyester resin according to the present invention is at least one selected from the group consisting of silicon, manganese, iron, cobalt, zinc, gallium, strontium, zirconium, niobium, molybdenum, indium, tin, hafnium, thallium, tungsten. You may contain the metal compound containing these elements. These metal compounds include saturated aliphatic carboxylates such as acetates of these elements, unsaturated aliphatic carboxylates such as acrylates, aromatic carboxylates such as benzoic acid, and halogens such as trichloroacetic acid. Hydroxycarboxylates such as carboxylates and lactates, inorganic acid salts such as carbonates, organic sulfonates such as 1-propanesulfonate, organic sulfates such as lauryl sulfate, oxides, hydroxides, chlorides Products, alkoxides, acetylacetonates, and the like, and are added to the reaction system as powders, aqueous solutions, ethylene glycol solutions, ethylene glycol slurries, and the like. These metal compounds are added so that the residual amount of these metal compound elements per ton of the produced polymer is preferably in the range of 0.05 to 3.0 mol. These metal compounds can be added at any stage of the polyester formation reaction step.
 また、安定剤として、燐酸、ポリ燐酸やトリメチルフォスフェート等の燐酸エステル類、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる少なくとも一種のリン化合物を使用するのが好ましい。具体例としてはリン酸、リン酸トリメチルエステル、リン酸トリエチルエステル、リン酸トリブチルエステル、リン酸トリフェニルエステル、リン酸モノメチルエステル、リン酸ジメチルエステル、リン酸モノブチルエステル、リン酸ジブチルエステル、亜リン酸、亜リン酸トリメチルエステル、亜リン酸トリエチルエステル、亜リン酸トリブチルエステル、メチルホスホン酸、メチルホスホン酸ジメチルエステル、エチルホスホン酸ジメチルエステル、フェニールホスホン酸ジメチルエステル、フェニールホスホン酸ジエチルエステル、フェニールホスホン酸ジフェニールエステル等である。これらの安定剤はテレフタル酸とエチレングリコールのスラリー調合槽からエステル化反応工程中に添加することができる。P化合物は、生成ポリマー中のP残存量として、ポリエステル樹脂の質量に対して好ましくは5~100ppm、より好ましくは10~90ppm、さらに好ましくは10~80ppm、最も好ましくは20~70ppmの範囲になるように添加する。 Further, as stabilizers, phosphoric acid, phosphoric acid esters such as polyphosphoric acid and trimethyl phosphate, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, phosphine compounds It is preferable to use at least one phosphorus compound selected from the group consisting of: Specific examples include phosphoric acid, phosphoric acid trimethyl ester, phosphoric acid triethyl ester, phosphoric acid tributyl ester, phosphoric acid triphenyl ester, phosphoric acid monomethyl ester, phosphoric acid dimethyl ester, phosphoric acid monobutyl ester, phosphoric acid dibutyl ester, Phosphoric acid, phosphorous acid trimethyl ester, phosphorous acid triethyl ester, phosphorous acid tributyl ester, methylphosphonic acid, methylphosphonic acid dimethyl ester, ethylphosphonic acid dimethyl ester, phenylphosphonic acid dimethylester, phenylphosphonic acid diethylester, phenylphosphonic acid Diphenyl ester and the like. These stabilizers can be added during the esterification reaction step from a slurry preparation tank of terephthalic acid and ethylene glycol. The P compound is preferably in the range of 5 to 100 ppm, more preferably 10 to 90 ppm, still more preferably 10 to 80 ppm, and most preferably 20 to 70 ppm, based on the mass of the polyester resin, as the residual amount of P in the produced polymer. Add as follows.
 重縮合触媒としてAl化合物を用いる場合は、リン化合物と併用することが好ましく、アルミニウム化合物およびリン化合物が予め溶媒中で混合された溶液またはスラリーとして用いることが好ましい。Al化合物の場合、より好ましいリン化合物は、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる少なくとも一種のリン化合物である。これらのリン化合物を用いることで触媒活性の向上効果が見られるとともに、ポリエステルの熱安定性等の物性が改善する効果が見られる。これらの中でも、ホスホン酸系化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好ましい。 When an Al compound is used as the polycondensation catalyst, it is preferably used in combination with a phosphorus compound, and is preferably used as a solution or slurry in which an aluminum compound and a phosphorus compound are previously mixed in a solvent. In the case of an Al compound, a more preferable phosphorus compound is at least one selected from the group consisting of phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, and phosphine compounds. It is a phosphorus compound. By using these phosphorus compounds, an effect of improving the catalytic activity is seen, and an effect of improving physical properties such as thermal stability of the polyester is seen. Among these, use of a phosphonic acid compound is preferable because of its great effect of improving physical properties and improving catalytic activity. Among the above-described phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the physical property improving effect and the catalytic activity improving effect are great.
 また、前記の触媒や安定剤などの溶液、スラリー等は、調合時または調合後、酸素濃度が5ppm以下、好ましくは3ppm以下、さらに好ましくは2ppm以下、最も好ましくは1ppm以下の不活性気体でバブリングさせるか、あるいは、同様にして不活性気体でバブリング後気相中に同様の不活性気体を流通させておくことが望ましい。 Further, the solution, slurry, etc. of the catalyst and stabilizer described above are bubbled with an inert gas having an oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, most preferably 1 ppm or less at the time of preparation or after preparation. Alternatively, it is desirable that the same inert gas be circulated in the gas phase after bubbling with the inert gas in the same manner.
 本発明のポリエステル樹脂の酸価としては、1~40eq/tonであることが好ましい。酸価が40eq/tonを超えると、耐光性が低下する傾向にある。また、酸価が1eq/ton未満では、重縮合反応性が低下して生産性が悪くなる傾向にある。 The acid value of the polyester resin of the present invention is preferably 1 to 40 eq / ton. When the acid value exceeds 40 eq / ton, light resistance tends to decrease. On the other hand, when the acid value is less than 1 eq / ton, the polycondensation reactivity tends to decrease and the productivity tends to deteriorate.
 本発明のポリエステル樹脂は、DSC測定における融点(Tm)が280℃以上であり、好ましくは、290℃以上、更に好ましくは300℃以上、特に好ましくは310℃以上、最も好ましくは320℃以上である。本発明のポリエステル樹脂のTmの上限は、次の理由により340℃以下であることが好ましい。Tmが上記上限を超える場合、本発明のポリエステル樹脂を用いた組成物を射出成形する際に必要となる加工温度が極めて高くなるため、加工時にポリエステル樹脂が分解し、目的の物性や外観が得られない場合がある。逆に、Tmが上記下限未満の場合、結晶化速度が遅くなり、いずれも成形が困難になる場合があり、さらには、ハンダ耐熱性の低下を招く恐れがある。Tmが310℃以上であると、280℃のリフローハンダ耐熱性を満足し、金/錫共晶ハンダ工程にも適応可能になるので好ましい。 The polyester resin of the present invention has a melting point (Tm) in DSC measurement of 280 ° C. or higher, preferably 290 ° C. or higher, more preferably 300 ° C. or higher, particularly preferably 310 ° C. or higher, and most preferably 320 ° C. or higher. . The upper limit of Tm of the polyester resin of the present invention is preferably 340 ° C. or lower for the following reason. When Tm exceeds the above upper limit, the processing temperature required for injection molding the composition using the polyester resin of the present invention becomes extremely high, so that the polyester resin decomposes during processing, and the desired physical properties and appearance are obtained. It may not be possible. On the other hand, when Tm is less than the above lower limit, the crystallization rate is slow, and in some cases, molding may be difficult, and further, solder heat resistance may be reduced. A Tm of 310 ° C. or higher is preferable because it satisfies the reflow solder heat resistance of 280 ° C. and can be applied to a gold / tin eutectic solder process.
 さらに、本発明のポリエステル樹脂は、DSC測定において融点(Tm)と降温結晶化温度(Tc2)差が、40℃以下であることが好ましく、更に好ましくは35℃以下、最も好ましくは30℃以下である。降温結晶化温度(Tc2)とは、DSC測定に於いて、融点より10℃以上高い温度から降温させた際に、結晶化し始める温度である。融点(Tm)と降温結晶化温度(Tc2)は、下記実施例の項に記載された方法で測定される。融点(Tm)と降温結晶化温度(Tc2)差が40℃以下では、容易に結晶化が進行し、寸法安定性や物性などを十分に発揮することができる。一方、融点(Tm)と昇温結晶化温度(Tc2)差が40℃を超える場合、LED用反射板は射出成形の短いサイクルで成形するため十分に結晶化が進まないことがあり、離型不足等の成形難を引き起こしたり、十分に結晶化が終了していないため、後工程の加熱時に変形や結晶収縮が発生し、封止材やリードフレームから剥離する問題が発生し、信頼性に欠ける。 Furthermore, the polyester resin of the present invention preferably has a difference between the melting point (Tm) and the cooling crystallization temperature (Tc2) in DSC measurement of 40 ° C. or less, more preferably 35 ° C. or less, and most preferably 30 ° C. or less. is there. The temperature-falling crystallization temperature (Tc2) is a temperature at which crystallization starts when the temperature is lowered from a temperature higher by 10 ° C. or more than the melting point in DSC measurement. The melting point (Tm) and the cooling crystallization temperature (Tc2) are measured by the methods described in the Examples section below. When the difference between the melting point (Tm) and the temperature-falling crystallization temperature (Tc2) is 40 ° C. or less, crystallization easily proceeds and dimensional stability and physical properties can be sufficiently exhibited. On the other hand, when the difference between the melting point (Tm) and the temperature rising crystallization temperature (Tc2) exceeds 40 ° C., the LED reflector is molded in a short cycle of injection molding, so that the crystallization may not proceed sufficiently. Insufficient molding, etc., or crystallization has not been completed sufficiently, causing deformation and crystal shrinkage during heating in the subsequent process, causing problems of peeling from the sealing material and lead frame, resulting in increased reliability Lack.
 本発明のポリエステル樹脂の極限粘度(IV)は、0.10~0.70dl/gであることが好ましく、より好ましくは0.20~0.65dl/g、さらに好ましくは0.25~0.60dl/gである。 The intrinsic viscosity (IV) of the polyester resin of the present invention is preferably 0.10 to 0.70 dl / g, more preferably 0.20 to 0.65 dl / g, still more preferably 0.25 to 0.00. 60 dl / g.
 本発明のポリエステル樹脂は、高融点や成形性に加え、低吸水性や流動性のバランスに優れ、さらには耐候性に優れる。このため、かかるポリエステル樹脂から得られるポリエステル樹脂組成物は、表面実装型LEDの反射板の成形においては、280℃以上の高融点であるため耐熱性、結晶性(成形性)、耐熱黄変性、耐候性、低吸水性に優れる表面実装型LED用反射板に好適なポリエステル樹脂組成物である。 The polyester resin of the present invention has an excellent balance of low water absorption and fluidity in addition to a high melting point and moldability, and also has excellent weather resistance. For this reason, the polyester resin composition obtained from such a polyester resin has a high melting point of 280 ° C. or higher in the molding of a reflector for a surface-mounted LED, so that it has heat resistance, crystallinity (moldability), heat yellowing, It is a polyester resin composition suitable for a reflector for a surface-mounted LED having excellent weather resistance and low water absorption.
 本発明のポリエステル樹脂は、従来公知の製造方法によって製造することができる。4,4’-ビフェニルジカルボン酸とその他のジカルボン酸からなる酸成分とグリコール成分を直接反応させて、水を留出しエステル化した後、減圧下に重縮合を行う直接エステル化法、または、4,4’-ビフェニルジカルボン酸ジメチルとその他のジカルボン酸ジメチルからなる酸成分とグリコール成分を反応させて、メチルアルコールを留出しエステル交換させた後、減圧下に重縮合を行うエステル交換法により製造される。 The polyester resin of the present invention can be produced by a conventionally known production method. A direct esterification method in which an acid component composed of 4,4′-biphenyldicarboxylic acid and another dicarboxylic acid is directly reacted with a glycol component to distill water to esterify, followed by polycondensation under reduced pressure, or 4 It is produced by a transesterification method in which an acid component consisting of dimethyl 4,4'-biphenyldicarboxylate and other dimethyl dicarboxylate and a glycol component are reacted to distill methyl ester by diesterification, followed by polycondensation under reduced pressure. The
 本発明のポリエステル樹脂に、酸化チタン、強化材、非繊維状又は非針状充填材を配合して、ポリエステル樹脂組成物とすることにより、表面実装型LED用反射板に好適な材料とすることが出来る。配合することで機械強度や耐候性が向上する傾向にある。 By blending the polyester resin of the present invention with titanium oxide, a reinforcing material, a non-fibrous or non-needle filler, and making a polyester resin composition, the material is suitable for a reflector for a surface mount LED. I can do it. When blended, mechanical strength and weather resistance tend to be improved.
 酸化チタンは、反射板の表面反射率を高めるために配合されるものであり、例えば硫酸法や塩素法により作製されたルチル型およびアナターゼ型の二酸化チタン(TiO)、一酸化チタン(TiO)、三酸化二チタン(Ti)などが挙げられるが、特にルチル型の二酸化チタン(TiO)が好ましく使用される。酸化チタンの平均粒径は、一般に0.05~2.0μm、好ましくは0.15~0.5μmの範囲であり、1種で使用しても良いし、異なる粒径を有する酸化チタンを組み合わせて使用しても良い。酸化チタン成分濃度としては、90%以上、好ましくは95%以上、さらに好ましくは97%以上である。また、酸化チタンは、シリカ、アルミナ、酸化亜鉛、ジルコニア等の金属酸化物、カップリング剤、有機酸、有機多価アルコール、シロキサン等で表面処理を施されたものを使用することができる。 Titanium oxide is blended to increase the surface reflectance of the reflector. For example, rutile and anatase titanium dioxide (TiO 2 ) and titanium monoxide (TiO) produced by the sulfuric acid method or the chlorine method. , Dititanium trioxide (Ti 2 O 3 ), and the like, and particularly rutile titanium dioxide (TiO 2 ) is preferably used. The average particle size of titanium oxide is generally in the range of 0.05 to 2.0 μm, preferably 0.15 to 0.5 μm, and may be used alone or in combination with titanium oxides having different particle sizes. May be used. The titanium oxide component concentration is 90% or more, preferably 95% or more, and more preferably 97% or more. Further, titanium oxide that has been surface-treated with a metal oxide such as silica, alumina, zinc oxide, zirconia, a coupling agent, an organic acid, an organic polyhydric alcohol, or siloxane can be used.
 酸化チタンの割合は、ポリエステル樹脂100質量部に対して、好ましくは0.5~100質量部、より好ましくは10~80質量部である。酸化チタンの割合が上記下限未満であると、表面反射率が低下し、上記上限を超えると、物性の大幅な低下や流動性が低下するなど成形加工性が低下するおそれがある。 The proportion of titanium oxide is preferably 0.5 to 100 parts by mass, more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the polyester resin. When the ratio of titanium oxide is less than the above lower limit, the surface reflectance is lowered, and when it exceeds the upper limit, molding processability may be lowered, such as a significant decrease in physical properties and fluidity.
 強化材は、ポリエステル樹脂組成物の成形性と成形品の強度を向上するために配合されるものであり、繊維状強化材及び針状強化材から選択される少なくとも1種を使用する。繊維状強化材としては、例えばガラス繊維、炭素繊維、ホウ素繊維、セラミック繊維、金属繊維などが挙げられ、針状強化材としては、例えばチタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、酸化亜鉛ウィスカー、炭酸カルシウムウィスカー、硫酸マグネシウムウィスカー、ワラストナイトなどが挙げられる。ガラス繊維としては、0.1mm~100mmの長さを有するチョップドストランドまたは連続フィラメント繊維を使用することが可能である。ガラス繊維の断面形状としては、円形断面及び非円形断面のガラス繊維を用いることができる。円形断面ガラス繊維の直径は20μm以下、好ましくは15μm以下、さらに好ましくは10μm以下である。また、物性面や流動性より非円形断面のガラス繊維が好ましい。非円形断面のガラス繊維としては、繊維長の長さ方向に対して垂直な断面において略楕円形、略長円形、略繭形であるものをも含み、偏平度が1.5~8であることが好ましい。ここで偏平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径としたときの、長径/短径の比である。ガラス繊維の太さは特に限定されるものではないが、短径が1~20μm、長径2~100μm程度である。また、ガラス繊維は繊維束となって、繊維長1~20mm程度に切断されたチョップドストランド状のものが好ましく使用できる。さらには、ポリエステル樹脂組成物の表面反射率を高めるためには、共重合ポリエステル樹脂との屈折率差が大きいことが好ましいため、ガラス組成の変更や表面処理により、屈折率を高めたものを使用することが好ましい。 The reinforcing material is blended in order to improve the moldability of the polyester resin composition and the strength of the molded product, and at least one selected from a fibrous reinforcing material and a needle-shaped reinforcing material is used. Examples of the fibrous reinforcing material include glass fiber, carbon fiber, boron fiber, ceramic fiber, and metal fiber. Examples of the acicular reinforcing material include potassium titanate whisker, aluminum borate whisker, zinc oxide whisker, and carbonic acid. Calcium whiskers, magnesium sulfate whiskers, wollastonite and the like can be mentioned. As glass fibers, chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a circular cross section and a non-circular cross section can be used. The diameter of the circular cross-section glass fiber is 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less. Further, a glass fiber having a non-circular cross section is preferred from the viewpoint of physical properties and fluidity. Non-circular cross-section glass fibers include those that are substantially oval, substantially oval, or substantially bowl-shaped in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8. It is preferable. Here, the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. It is the ratio of major axis / minor axis. The thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 20 μm and the major axis is about 2 to 100 μm. Further, glass fibers are preferably used in the form of chopped strands which are formed into fiber bundles and cut to a fiber length of about 1 to 20 mm. Furthermore, in order to increase the surface reflectance of the polyester resin composition, it is preferable that the difference in refractive index from the copolyester resin is large, so use a material whose refractive index is increased by changing the glass composition or surface treatment. It is preferable to do.
 強化材の割合は、ポリエステル樹脂100質量部に対して、好ましくは0~100質量部、より好ましくは5~100質量部、さらに好ましくは10~60質量部である。強化材は必須成分ではないが、その割合が5質量部以上であると、成形品の機械的強度が向上して好ましい。強化材の割合が上記上限を超えると、表面反射率、成形加工性が低下する傾向がある。 The proportion of the reinforcing material is preferably 0 to 100 parts by mass, more preferably 5 to 100 parts by mass, and further preferably 10 to 60 parts by mass with respect to 100 parts by mass of the polyester resin. The reinforcing material is not an essential component, but if the proportion is 5 parts by mass or more, the mechanical strength of the molded product is preferably improved. When the ratio of the reinforcing material exceeds the above upper limit, the surface reflectance and the moldability tend to be lowered.
 非繊維状又は非針状充填材としては、目的別には強化用フィラーや導電性フィラー、磁性フィラー、難燃フィラー、熱伝導フィラー、熱黄変抑制用フィラーなどが挙げられ、具体的にはガラスビーズ、ガラスフレーク、ガラスバルーン、シリカ、タルク、カオリン、マイカ、アルミナ、ハイドロタルサイト、モンモリロナイト、グラファイト、カーボンナノチューブ、フラーレン、酸化インジウム、酸化錫、酸化鉄、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、赤燐、炭酸カルシウム、チタン酸ジルコン酸鉛、チタン酸バリウム、窒化アルミニウム、窒化ホウ素、ホウ酸亜鉛、硫酸バリウム、および針状ではないワラストナイト、チタン酸カリウム、ホウ酸アルミニウム、硫酸マグネシウム、酢酸マグネシウム、酸化亜鉛、炭酸カルシウム等が挙げられる。これら充填材は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。これらの中では、タルクがTc1を低下させ成形性が向上することから好ましい。充填材の添加量は最適な量を選択すれば良いが、ポリエステル樹脂100質量部に対して最大50質量部を添加することが可能であるが、樹脂組成物の機械的強度の観点から、0.1~20質量部が好ましく、より好ましくは1~10質量部である。また、繊維状強化材、充填材はポリエステル樹脂との親和性を向上させるため、有機処理やカップリング剤処理したものを使用するか、または溶融コンパウンド時にカップリング剤と併用することが好ましく、カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤のいずれを使用しても良いが、その中でも、特にアミノシランカップリング剤、エポキシシランカップリング剤が好ましい。 Examples of non-fibrous or non-needle fillers include reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, thermal conductive fillers, thermal yellowing suppression fillers, etc., specifically glass. Beads, glass flakes, glass balloons, silica, talc, kaolin, mica, alumina, hydrotalcite, montmorillonite, graphite, carbon nanotubes, fullerene, indium oxide, tin oxide, iron oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide , Calcium hydroxide, red phosphorus, calcium carbonate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, barium sulfate, and non-acicular wollastonite, potassium titanate, aluminum borate , Magnesium sulfate, acetate Neshiumu, zinc oxide, calcium carbonate, and the like. These fillers may be used not only alone but also in combination of several kinds. Among these, talc is preferable because Tc1 is lowered and moldability is improved. The addition amount of the filler may be selected as an optimum amount, but it is possible to add a maximum of 50 parts by mass with respect to 100 parts by mass of the polyester resin, but from the viewpoint of the mechanical strength of the resin composition, it is 0. The amount is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass. In order to improve the affinity with the polyester resin, the fibrous reinforcing material and the filler are preferably used after being treated with an organic treatment or a coupling agent, or used in combination with a coupling agent at the time of melt compounding. As the ring agent, any of a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent may be used, and among them, an aminosilane coupling agent and an epoxy silane coupling agent are particularly preferable.
 前記のポリエステル樹脂組成物には、従来のLED反射板用ポリエステル樹脂組成物の各種添加剤を使用することができる。添加剤としては、安定剤、衝撃改良材、難燃剤、離型剤、摺動性改良材、着色剤、蛍光増白剤、可塑剤、結晶核剤、ポリエステル以外の熱可塑性樹脂などが挙げられる。 The various additives of the conventional polyester resin composition for LED reflectors can be used for the said polyester resin composition. Additives include stabilizers, impact modifiers, flame retardants, mold release agents, slidability improvers, colorants, fluorescent brighteners, plasticizers, crystal nucleating agents, thermoplastic resins other than polyester, and the like. .
 上記のポリエステル樹脂組成物は、上述の各構成成分を従来公知の方法で配合することにより製造されることができる。例えば、ポリエステル樹脂の重縮合反応時に各成分を添加したり、ポリエステル樹脂とその他の成分をドライブレンドしたり、または、二軸スクリュー型の押出機を用いて各構成成分を溶融混練する方法を挙げることができる。 The above-mentioned polyester resin composition can be produced by blending the above-described constituent components by a conventionally known method. Examples include a method in which each component is added during the polycondensation reaction of the polyester resin, a polyester resin and other components are dry blended, or each component is melt-kneaded using a twin screw type extruder. be able to.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In addition, the measured value described in the Example is measured by the following method.
(1)ポリエステル樹脂の極限粘度(IV)
 1,1,2,2-テトラクロルエタン/フェノ-ル(2:3重量比)混合溶媒中、30℃での溶液粘度から求めた。
(2)酸価
 ポリエステル樹脂0.1gをベンジルアルコール10mlに加熱溶解した後、0.1NのNaOHのメタノール/ベンジルアルコール(1/9容積比)の溶液を使用して滴定して求めた。
(3)ポリエステル樹脂の融点(Tm)および降温結晶化温度(Tc2)
 セイコ-電子工業株式会社製の示差熱分析計(DSC)、RDC-220で測定。昇温速度20度C/分で昇温し、330℃で3分間保持したのち、330℃から130℃までを10℃/分で降温した。昇温時に観察される融解ピ-クの頂点温度を融点(Tm)、降温時に観察される結晶化ピ-クの頂点温度を降温結晶化温度(Tc2)とした。
(1) Intrinsic viscosity of polyester resin (IV)
The viscosity was determined from the solution viscosity at 30 ° C. in a 1,1,2,2-tetrachloroethane / phenol (2: 3 weight ratio) mixed solvent.
(2) Acid value The polyester resin (0.1 g) was dissolved by heating in 10 ml of benzyl alcohol, and then titrated with a 0.1N NaOH methanol / benzyl alcohol (1/9 volume ratio) solution.
(3) Melting point (Tm) and temperature-falling crystallization temperature (Tc2) of the polyester resin
Measured with a differential thermal analyzer (DSC), RDC-220, manufactured by Seiko Electronics Industry Co., Ltd. The temperature was raised at a rate of temperature rise of 20 ° C./minute, held at 330 ° C. for 3 minutes, and then cooled from 330 ° C. to 130 ° C. at a rate of 10 ° C./minute. The peak temperature of the melting peak observed when the temperature was raised was defined as the melting point (Tm), and the peak temperature of the crystallization peak observed when the temperature was decreased was the lowered crystallization temperature (Tc2).
(4)成形性および寸法安定性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は120℃に設定し、フィルムゲートを有する縦100mm、横100mm、厚み1mmtの平板作成用金型を使用し、射出成形を実施した。射出速度50mm/秒、保圧30MPa、射出時間10秒、冷却時間10秒で成型を行い、成形性の良悪は以下のような評価を行った。
 ○:問題なく成型品が得られる。
 △:時々スプルーが金型に残る。
 ×:離型性が不十分であり、成型品が金型に貼り付いたり変形する。
 さらに、得られた成型品の寸法安定性の評価を行うために、上記成型品を180℃で1時間加熱した。加熱前後における、流動方向に垂直な方向の寸法を測定し、寸法変化量は以下のように求めた。
 寸法変化量(%)={加熱前の寸法(mm)-加熱後の寸法(mm)}/加熱前の寸法(mm)×100
 寸法安定性の良悪は以下のような評価を行った。
 〇:寸法変化量が0.2%未満
 ×:寸法変化量が0.2%以上
(4) Formability and dimensional stability Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C., the mold temperature is set to 120 ° C., and the film gate is 100 mm long, 100 mm wide, Injection molding was performed using a flat plate forming mold having a thickness of 1 mm. Molding was performed at an injection speed of 50 mm / sec, a holding pressure of 30 MPa, an injection time of 10 seconds, and a cooling time of 10 seconds. The quality of the moldability was evaluated as follows.
○: A molded product can be obtained without problems.
Δ: Sprue sometimes remains in the mold.
X: The releasability is insufficient, and the molded product sticks to the mold or deforms.
Furthermore, in order to evaluate the dimensional stability of the obtained molded product, the molded product was heated at 180 ° C. for 1 hour. The dimension in the direction perpendicular to the flow direction before and after heating was measured, and the amount of dimensional change was determined as follows.
Dimensional change (%) = {Dimension before heating (mm) −Dimension after heating (mm)} / Dimension before heating (mm) × 100
Dimensional stability was evaluated as follows.
○: Dimensional change is less than 0.2% ×: Dimensional change is 0.2% or more
(5)拡散反射率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片を用いて、日立製作所製の自記分光光度計「U3500」に同社製の積分球を設置し、350nmから800nmの波長の反射率を測定した。反射率の比較には460nmの波長における拡散反射率を求めた。リファレンスには硫酸バリウムを用いた。
(5) Diffuse reflectance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate 100mm long, 100mm wide and 2mm thick is injection molded. Then, a test piece for evaluation was produced. Using this test piece, an integrating sphere manufactured by Hitachi, Ltd. was installed in a self-recording spectrophotometer “U3500” manufactured by Hitachi, Ltd., and the reflectance at wavelengths from 350 nm to 800 nm was measured. For comparison of reflectance, diffuse reflectance at a wavelength of 460 nm was obtained. Barium sulfate was used as a reference.
(6)ハンダ耐熱性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、長さ127mm、幅12.6mm、厚み0.8mmtのUL燃焼試験用テストピースを射出成形し、試験片を作製した。試験片は85℃、85%RH(相対湿度)の雰囲気中に72時間放置した。試験片はエアリフロー炉中(エイテック製 AIS-20-82C)、室温から150℃まで60秒かけて昇温させ予備加熱を行った後、190℃まで0.5℃/分の昇温速度でプレヒートを実施した。その後、100℃/分の速度で所定の設定温度まで昇温し、所定の温度で10秒間保持した後、冷却を行った。設定温度は240℃から5℃おきに増加させ、表面の膨れや変形が発生しなかった最高の設定温度をリフロー耐熱温度とし、ハンダ耐熱性の指標として用いた。
 ◎:リフロー耐熱温度が280℃以上
 ○:リフロー耐熱温度が260℃以上280℃未満
 ×:リフロー耐熱温度が260℃未満
(6) Solder heat resistance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C., the mold temperature is set to 140 ° C., the length is 127 mm, the width is 12.6 mm, and the thickness is 0.8 mm. The test piece for the UL combustion test was injection molded to produce a test piece. The test piece was left in an atmosphere of 85 ° C. and 85% RH (relative humidity) for 72 hours. The specimen was heated in an air reflow furnace (AIS-20-82C manufactured by ATEC) from room temperature to 150 ° C over 60 seconds, preheated, and then heated to 190 ° C at a rate of 0.5 ° C / min. Preheating was performed. Thereafter, the temperature was raised to a predetermined set temperature at a rate of 100 ° C./min, held at the predetermined temperature for 10 seconds, and then cooled. The set temperature was increased from 240 ° C. every 5 ° C., and the highest set temperature at which the surface did not swell or deformed was defined as the reflow heat resistant temperature, which was used as an index of solder heat resistance.
A: Reflow heat resistant temperature is 280 ° C or higher. ○: Reflow heat resistant temperature is 260 ° C or higher and lower than 280 ° C. X: Reflow heat resistant temperature is lower than 260 ° C.
(7)飽和吸水率
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み1mmの平板を射出成形し、評価用試験片を作製した。この試験片を80℃熱水中に50時間浸漬させ、飽和吸水時及び乾燥時の重量から以下の式より飽和吸水率を求めた。
 飽和吸水率(%)={(飽和吸水時の重量-乾燥時の重量)/乾燥時の重量}×100
(7) Saturated water absorption Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm length, 100mm width and 1mm thickness is injection molded. Then, a test piece for evaluation was produced. This test piece was immersed in hot water at 80 ° C. for 50 hours, and the saturated water absorption was determined from the following equation from the weight at the time of saturated water absorption and drying.
Saturated water absorption (%) = {(weight at saturated water absorption−weight at drying) / weight at drying} × 100
(8)流動性
 東芝機械製射出成形機IS-100を用い、シリンダー温度は330℃、金型温度は120℃に設定し、射出圧設定値40%、射出速度設定値40%、計量35mm、射出時間6秒、冷却時間10秒の条件で、幅1mm、厚み0.5mmの流動長測定用金型で射出成形し、評価用試験片を作製した。流動性の評価として、この試験片の流動長さ(mm)を測定した。
(8) Fluidity Using Toshiba Machine's injection molding machine IS-100, cylinder temperature is set to 330 ° C, mold temperature is set to 120 ° C, injection pressure set value is 40%, injection speed set value is 40%, weighing is 35mm, Under the conditions of an injection time of 6 seconds and a cooling time of 10 seconds, injection molding was performed with a flow length measuring mold having a width of 1 mm and a thickness of 0.5 mm to prepare an evaluation test piece. As an evaluation of fluidity, the flow length (mm) of this test piece was measured.
(9)シリコーン密着性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片の片面に、シリコーン封止材(信越シリコーン社製、ASP-1110、封止材硬度D60)をコーティング厚み約100μmになるようにコーティングし、100℃×1時間のプレヒーティング後、150℃×4時間の硬化処理をして試験片の片面に封止材皮膜を形成させた。
 次いで、試験片上の封止材皮膜に対して、JIS K5400に基づく碁盤目試験(1mm幅クロスカット100マス)で密着性を評価した。
 ○:剥離マス目数10以下
 ×:剥離試験前のマス目形成時に剥離あり
(9) Adhesion of silicone Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm length, 100mm width and 2mm thickness is injection molded. Then, a test piece for evaluation was produced. One side of this test piece was coated with a silicone sealing material (Shin-Etsu Silicone Co., ASP-1110, sealing material hardness D60) to a coating thickness of about 100 μm, and after preheating at 100 ° C. for 1 hour, A curing treatment was performed at 150 ° C. for 4 hours to form a sealing material film on one side of the test piece.
Next, the adhesiveness of the sealing material film on the test piece was evaluated by a cross-cut test based on JIS K5400 (100 mm of 1 mm width crosscut).
○: No more than 10 peeling cells ×: There is peeling when forming the cells before the peeling test
(10)耐光性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片について、超促進耐候試験機「アイスーパーUVテスターSUV-F11」を用い、63℃50%RHの環境下、50mW/cmの照度でUV照射を実施した。試験片の波長460nmの光反射率を、照射前と照射60時間後に測定した。照射前試験片の光反射率に対する、照射後試験片の光反射率の保持率を下記の基準で評価した。
 ○:保持率90%以上
 △:保持率90%未満~85%以上
 ×:保持率85%未満
(10) Light resistance Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate 100mm long, 100mm wide and 2mm thick is injection molded. A test piece for evaluation was prepared. This test piece was irradiated with UV light at an illuminance of 50 mW / cm 2 in an environment of 63 ° C. and 50% RH using a super accelerated weathering tester “I Super UV Tester SUV-F11”. The light reflectance at a wavelength of 460 nm of the test piece was measured before irradiation and 60 hours after irradiation. The retention rate of the light reflectivity of the post-irradiation test piece relative to the light reflectivity of the pre-irradiation test piece was evaluated according to the following criteria.
○: Retention rate 90% or more △: Retention rate less than 90% to 85% or more ×: Retention rate less than 85%
(11)耐熱黄変性
 東芝機械製射出成形機EC-100を用い、シリンダー温度は樹脂の融点+20℃、金型温度は140℃に設定し、縦100mm、横100mm、厚み2mmの平板を射出成形し、評価用試験片を作製した。この試験片を用いて、熱風乾燥機にて150℃で2時間処理して、目視にて黄変性を確認した。
 ○:変化なし
 △:若干黄変する
 ×:黄変する
(11) Heat-resistant yellowing Using Toshiba Machine's injection molding machine EC-100, the cylinder temperature is set to the melting point of the resin + 20 ° C, the mold temperature is set to 140 ° C, and a flat plate of 100mm length, 100mm width and 2mm thickness is injection molded. Then, a test piece for evaluation was produced. Using this test piece, it processed for 2 hours at 150 degreeC with the hot air dryer, and confirmed yellowing visually.
○: No change △: Slightly yellow ×: Yellowish
<合成例1>
 攪拌機付き20リッターステンレス製オートクレーブに、4,4’-ビフェニルジカルボン酸ジメチルを3542g、高純度ジメチルテレフタル酸を1409g、酸成分の3倍モル量のエチレングリコール、酢酸マンガン2g、二酸化ゲルマニウム0.86gを仕込みエステル交換後、60分間かけて300℃まで昇温しつつ、反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに310℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを水中にストランド状に吐出して冷却後、カッターで切断して長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。得られたポリエステルの極限粘度は、0.60dl/g、樹脂組成は、H-NMR測定により、4,4’-ビフェニルジカルボン酸が65モル%、テレフタル酸が35モル%、エチレングリコールが98.2モル%、ジエチレングリコールが1.8モル%であった。得られたポリエステル樹脂の特性値などを表1に示す。
<Synthesis Example 1>
In a 20-liter stainless steel autoclave with a stirrer, 3542 g of dimethyl 4,4′-biphenyldicarboxylate, 1409 g of high-purity dimethyl terephthalic acid, ethylene glycol in an amount 3 times the acid component, manganese acetate 2 g, and germanium dioxide 0.86 g After the transesterification, while the temperature was raised to 300 ° C. over 60 minutes, the pressure of the reaction system was gradually reduced to 13.3 Pa (0.1 Torr), and a polycondensation reaction was further performed at 310 ° C. and 13.3 Pa. . Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The intrinsic viscosity of the obtained polyester was 0.60 dl / g, and the resin composition was 65 mol% of 4,4′-biphenyldicarboxylic acid, 35 mol% of terephthalic acid, and 98 of ethylene glycol according to 1 H-NMR measurement. 0.2 mol% and diethylene glycol were 1.8 mol%. The characteristic values of the obtained polyester resin are shown in Table 1.
(合成例2~7)
 使用する原料の量や種類を変更する以外は、合成例1のポリエステル樹脂の重合と同様にして、各ポリエステル樹脂を得た。得られた各ポリエステル樹脂の特性値などを表1に示す。なお、ジエチレングリコールは、エチレングリコールが縮合して副生したものである。
(合成例8)
 攪拌機付き20リッターステンレス製オートクレーブに、4,4’-ビフェニルジカルボン酸ジメチルを3542g、高純度ジメチルテレフタル酸を1400g、酸成分の3倍モル量のエチレングリコール、酢酸マンガン2g、二酸化ゲルマニウム0.86gを仕込みエステル交換後、高純度テレフタル酸を8g添加して、60分間かけて300℃まで昇温後しつつ、反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに310℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを水中にストランド状に吐出して冷却後、カッターで切断して長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。得られたポリエステルの極限粘度は、0.60dl/g、樹脂組成は、H-NMR測定により、4,4’-ビフェニルジカルボン酸が65モル%、テレフタル酸が35モル%、エチレングリコールが98.2モル%、ジエチレングリコールが1.8モル%であった。得られたポリエステル樹脂の特性値などを表1に示す。
(Synthesis Examples 2 to 7)
Each polyester resin was obtained in the same manner as in the polymerization of the polyester resin of Synthesis Example 1 except that the amount and type of raw materials used were changed. Table 1 shows the characteristic values of the obtained polyester resins. Diethylene glycol is a by-product of condensation of ethylene glycol.
(Synthesis Example 8)
In a 20 liter stainless steel autoclave with a stirrer, 3542 g of dimethyl 4,4'-biphenyldicarboxylate, 1400 g of high purity dimethyl terephthalic acid, ethylene glycol, manganese acetate 2 g, and 0.86 g of germanium dioxide in an amount three times the acid component. After the transesterification, 8 g of high-purity terephthalic acid was added, and the temperature of the reaction system was gradually decreased to 13.3 Pa (0.1 Torr) while increasing the temperature to 300 ° C. over 60 minutes. The polycondensation reaction was carried out at 13.3 Pa. Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The intrinsic viscosity of the obtained polyester was 0.60 dl / g, and the resin composition was 65 mol% of 4,4′-biphenyldicarboxylic acid, 35 mol% of terephthalic acid, and 98 of ethylene glycol according to 1 H-NMR measurement. 0.2 mol% and diethylene glycol were 1.8 mol%. The characteristic values of the obtained polyester resin are shown in Table 1.
(比較合成例1)
 攪拌機付き20リッターステンレス製オートクレーブに、高純度テレフタル酸とその2倍モル量のエチレングリコールを仕込み、トリエチルアミンを酸成分に対して0.3モル%加え、0.25MPaの加圧下250℃にて水を系外に留去しながらエステル化反応を行い、エステル化率が約95%のビス(2-ヒドロキシエチル)テレフタレートおよびオリゴマーの混合物(以下BHET混合物という)を得た。このBHET混合物に重合触媒として、二酸化ゲルマニウム(Geとして100ppm)を加え、次いで、窒素雰囲気下、常圧にて250℃で10分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに280℃、13.3Paで重縮合反応を実施した。放圧に続き、微加圧下のレジンを水中にストランド状に吐出して冷却後、カッターで切断して長さ約3mm、直径約2mmのシリンダー形状のペレットを得た。得られたPETのIVは0.61dl/gで、樹脂組成は、H-NMR測定により、テレフタル酸が100モル%、エチレングリコールが98.0モル%、ジエチレングリコールが2.0モル%であった。得られたポリエステル樹脂の特性値などを表2に示す。
(Comparative Synthesis Example 1)
A 20-liter stainless steel autoclave with a stirrer is charged with high-purity terephthalic acid and twice its amount of ethylene glycol, and 0.3 mol% of triethylamine is added to the acid component, and water is added at 250 ° C. under a pressure of 0.25 MPa. The esterification reaction was carried out while distilling out of the system to obtain a mixture of bis (2-hydroxyethyl) terephthalate and oligomer (hereinafter referred to as BHET mixture) having an esterification rate of about 95%. To this BHET mixture, germanium dioxide (100 ppm as Ge) was added as a polymerization catalyst, and then stirred at 250 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure. Thereafter, the pressure in the reaction system was gradually decreased to 13.3 Pa (0.1 Torr) while the temperature was raised to 280 ° C. over 60 minutes, and a polycondensation reaction was further performed at 280 ° C. and 13.3 Pa. Subsequent to releasing the pressure, the resin under slight pressure was discharged into water as a strand, cooled, and then cut with a cutter to obtain a cylindrical pellet having a length of about 3 mm and a diameter of about 2 mm. The obtained PET had an IV of 0.61 dl / g, and the resin composition was 100 mol% terephthalic acid, 98.0 mol% ethylene glycol, and 2.0 mol% diethylene glycol, as determined by 1 H-NMR. It was. The characteristic values of the obtained polyester resin are shown in Table 2.
(比較合成例2~4)
 使用する原料の種類を変更する以外は、比較合成例1のポリエステル樹脂の重合と同様にして、各ポリエステル樹脂を得た。得られた各ポリエステル樹脂の特性値などを表2に示す。
(Comparative Synthesis Examples 2 to 4)
Each polyester resin was obtained in the same manner as in the polymerization of the polyester resin of Comparative Synthesis Example 1 except that the type of raw material used was changed. Table 2 shows the characteristic values of the obtained polyester resins.
(比較合成例5:ポリアミド樹脂)
 テレフタル酸3272.9g(19.70モル)、1,9-ノナンジアミン2849.2g(18.0モル)、2-メチル-1,8-オクタンジアミン316.58g(2.0モル)、安息香酸73.27g(0.60モル)、次亜リン酸ナトリウム一水和物6.5g(原料に対して0.1重量%)および蒸留水6リットルを内容積20リットルのオートクレーブに入れ、窒素置換した。100℃で30分間撹拌し、2時間かけて内部温度を210℃に昇温した。この時、オートクレーブは22kg/cmまで昇圧した。そのまま1時間反応を続けた後230℃に昇温し、その後2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を22kg/cmに保ちながら反応させた。次に、30分かけて圧力を10kg/cmまで下げ、更に1時間反応させて、極限粘度[η]が0.25dl/gのプレポリマーを得た。これを、100℃、減圧下で12時間乾燥し、2mm以下の大きさまで粉砕した。これを230℃、0.1mmHg下にて、10時間固相重合し、融点が310℃、極限粘度[η]が1.33dl/g、末端の封止率が90%である白色のポリアミドを得た。
(Comparative Synthesis Example 5: Polyamide resin)
Terephthalic acid 3272.9 g (19.70 mol), 1,9-nonanediamine 2849.2 g (18.0 mol), 2-methyl-1,8-octanediamine 316.58 g (2.0 mol), benzoic acid 73 .27 g (0.60 mol), 6.5 g of sodium hypophosphite monohydrate (0.1% by weight based on the raw material) and 6 liters of distilled water were placed in an autoclave having an internal volume of 20 liters and purged with nitrogen. . The mixture was stirred at 100 ° C. for 30 minutes, and the internal temperature was raised to 210 ° C. over 2 hours. At this time, the autoclave was pressurized to 22 kg / cm 2 . The reaction was continued for 1 hour, and then the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours. The reaction was carried out while gradually removing water vapor and maintaining the pressure at 22 kg / cm 2 . Next, the pressure was reduced to 10 kg / cm 2 over 30 minutes and the reaction was further continued for 1 hour to obtain a prepolymer having an intrinsic viscosity [η] of 0.25 dl / g. This was dried at 100 ° C. under reduced pressure for 12 hours and pulverized to a size of 2 mm or less. A white polyamide having a melting point of 310 ° C., an intrinsic viscosity [η] of 1.33 dl / g, and a terminal sealing rate of 90% was obtained by solid-phase polymerization at 230 ° C. and 0.1 mmHg for 10 hours. Obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1~8、比較例1~5)
 上記合成例、比較合成例で得たポリエステル樹脂、ポリアミド樹脂を用い、表3、4に記載の成分と質量割合で、コペリオン(株)製二軸押出機STS-35を用いて、樹脂の融点+15℃で溶融混練し、評価用の樹脂組成物を得た。表3、4中、樹脂以外の使用材料は以下の通りである。
 酸化チタン:石原産業(株)製 タイペークCR-60、ルチル型TiO、平均粒径0.2μm
 強化材:ガラス繊維(日東紡績(株)製、CS-3J-324)
 離型剤:ステアリン酸マグネシウム
 安定剤:ペンタエリスリチル・テトラキス[3-(3、5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャリティーケミカルズ製、イルガノックス1010)
(Examples 1 to 8, Comparative Examples 1 to 5)
Using the polyester resin and polyamide resin obtained in the above synthesis examples and comparative synthesis examples, using the twin-screw extruder STS-35 manufactured by Coperion Co., Ltd. with the components and mass ratios shown in Tables 3 and 4, the melting point of the resin Melting and kneading was performed at + 15 ° C. to obtain a resin composition for evaluation. In Tables 3 and 4, the materials used other than the resin are as follows.
Titanium oxide: manufactured by Ishihara Sangyo Co., Ltd., Taipei CR-60, rutile TiO 2 , average particle size 0.2 μm
Reinforcing material: Glass fiber (manufactured by Nitto Boseki Co., Ltd., CS-3J-324)
Mold release agent: Magnesium stearate Stabilizer: Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by Ciba Specialty Chemicals)
 実施例1~8、比較例1~5で得られたポリエステル樹脂組成物、ポリアミド樹脂組成物を各種特性の評価に供した。その結果を表3、4に示す。 The polyester resin compositions and polyamide resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 5 were subjected to evaluation of various properties. The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1及び3から、ポリエステル樹脂のDSCによる融点が280℃以上の場合は、リフローハンダ工程に適応可能であり、さらに融点が310℃を超える場合は、リフロー耐熱温度が280℃以上であることから、金/錫共晶ハンダ工程にも適応可能なハンダ耐熱性を示すとともに、LED用途で重要な特性である封止材との密着性、表面反射率に優れ、さらには成形性、流動性、寸法安定性、低吸水性、耐光性にも優れるという、格別な効果が確認できた。一方、表2及び4から、比較例では、これら特性を全て満足させることはできなかった。比較例5のポリアミド樹脂は高融点であるが、アミド構造に起因する吸水性のため、リフロー耐熱温度が280℃以上を満足できなかった。 From Tables 1 and 3, if the melting point of the polyester resin by DSC is 280 ° C or higher, it can be applied to the reflow soldering process, and if the melting point exceeds 310 ° C, the reflow heat resistance temperature is 280 ° C or higher. In addition to exhibiting solder heat resistance that can also be applied to gold / tin eutectic soldering processes, it has excellent adhesion with sealing materials, which are important characteristics for LED applications, and surface reflectance. Furthermore, moldability, fluidity, It was confirmed that the dimensional stability, low water absorption, and excellent light resistance were excellent. On the other hand, from Tables 2 and 4, in the comparative example, all of these characteristics could not be satisfied. Although the polyamide resin of Comparative Example 5 has a high melting point, the reflow heat resistant temperature could not satisfy 280 ° C. or higher due to water absorption due to the amide structure.
 本発明のポリエステル樹脂は、表面実装型LED用反射板に使用する材料に用いた場合、高い耐熱性、低い吸水性に加えて、射出成形時の成形性やハンダ耐熱性など加工性に優れているので、必要な特性を高度に満足しながら、表面実装型LED反射板を工業的に有利に製造することができる。 The polyester resin of the present invention is excellent in workability such as moldability at the time of injection molding and solder heat resistance in addition to high heat resistance and low water absorption when used in a material used for a reflector for a surface mount LED. Therefore, the surface-mounted LED reflector can be industrially advantageously produced while highly satisfying the required characteristics.

Claims (6)

  1.  4,4’-ビフェニルジカルボン酸とその他のジカルボン酸からなる酸成分とグリコール成分を構成成分とし、融点が280℃以上であることを特徴とする表面実装型LED反射板用ポリエステル樹脂。 A polyester resin for a surface-mounted LED reflector, characterized by comprising an acid component composed of 4,4'-biphenyldicarboxylic acid and other dicarboxylic acid and a glycol component as constituent components and a melting point of 280 ° C or higher.
  2.  ポリエステル樹脂を構成する全酸成分の30モル%以上が、4,4’-ビフェニルジカルボン酸であることを特徴とする請求項1に記載の表面実装型LED反射板用ポリエステル樹脂。 2. The polyester resin for a surface-mounted LED reflector according to claim 1, wherein 30 mol% or more of the total acid component constituting the polyester resin is 4,4′-biphenyldicarboxylic acid.
  3.  ポリエステル樹脂を構成するその他のジカルボン酸が、テレフタル酸及び/又は2,6-ナフタレンジカルボン酸であることを特徴とする請求項1又は2に記載の表面実装型LED反射板用ポリエステル樹脂。 3. The polyester resin for a surface-mounting type LED reflector according to claim 1, wherein the other dicarboxylic acid constituting the polyester resin is terephthalic acid and / or 2,6-naphthalenedicarboxylic acid.
  4.  ポリエステル樹脂を構成する全酸成分の30~90モル%が4,4’-ビフェニルジカルボン酸であり、その他のジカルボン酸がテレフタル酸及び/又は2,6-ナフタレンジカルボン酸であり、グリコール成分がエチレングリコール、1,4-シクロヘキサンジメタノール、1,3-プロパンジオール、ネオペンチルグリコール、1,4-ブタンジオールから選ばれる一種または二種以上であることを特徴とする請求項1~3のいずれかに記載の表面実装型LED反射板用ポリエステル樹脂。 30 to 90 mol% of the total acid component constituting the polyester resin is 4,4′-biphenyldicarboxylic acid, the other dicarboxylic acid is terephthalic acid and / or 2,6-naphthalenedicarboxylic acid, and the glycol component is ethylene. 4. One or more kinds selected from glycol, 1,4-cyclohexanedimethanol, 1,3-propanediol, neopentyl glycol, and 1,4-butanediol, The polyester resin for surface mount type LED reflectors described in 1.
  5.  ポリエステル樹脂の融点(Tm)と降温結晶化温度(Tc2)の差が、40℃以下であることを特徴とする請求項1~4のいずれかに記載の表面実装型LED反射板用ポリエステル樹脂。 The polyester resin for a surface-mounted LED reflector according to any one of claims 1 to 4, wherein the difference between the melting point (Tm) of the polyester resin and the temperature-falling crystallization temperature (Tc2) is 40 ° C or less.
  6.  ポリエステル樹脂の酸価が、1~40eq/tであることを特徴とする請求項1~5のいずれかに記載の表面実装型LED反射板用ポリエステル樹脂。
     
    6. The polyester resin for a surface-mounted LED reflector according to claim 1, wherein the acid value of the polyester resin is 1 to 40 eq / t.
PCT/JP2013/053639 2012-02-24 2013-02-15 Polyester resin for surface-mounted led reflective plate WO2013125454A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013509766A JP6048832B2 (en) 2012-02-24 2013-02-15 Polyester resin for surface mount LED reflector
KR1020147021563A KR101848970B1 (en) 2012-02-24 2013-02-15 Polyester resin for surface-mounted led reflective plate
CN201380010667.3A CN104136487B (en) 2012-02-24 2013-02-15 Surface mounting LED reflector vibrin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012038691 2012-02-24
JP2012-038691 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013125454A1 true WO2013125454A1 (en) 2013-08-29

Family

ID=49005641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053639 WO2013125454A1 (en) 2012-02-24 2013-02-15 Polyester resin for surface-mounted led reflective plate

Country Status (5)

Country Link
JP (1) JP6048832B2 (en)
KR (1) KR101848970B1 (en)
CN (1) CN104136487B (en)
TW (1) TWI554543B (en)
WO (1) WO2013125454A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093943A (en) * 2013-11-13 2015-05-18 東洋紡株式会社 Polyester resin composition for led reflector
JP2015138194A (en) * 2014-01-23 2015-07-30 パナソニックIpマネジメント株式会社 Light reflector forming material, light reflector and luminaire
JP2016536405A (en) * 2013-11-12 2016-11-24 エスケー ケミカルズ カンパニー リミテッド Polycyclohexylenedimethylene terephthalate resin composition
US20220049049A1 (en) * 2018-10-16 2022-02-17 Toyobo Co., Ltd. Polyester resin for heat-shrinkable film, heat-shrinkable film, heat-shrinkable label, and packaged product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762071A (en) * 1993-06-15 1995-03-07 Nippon Petrochem Co Ltd Wholly aromatic polyester and its composition
JP2001527144A (en) * 1997-12-30 2001-12-25 ディーエスエム エヌ.ブイ. Copolyester goods
JP2004285510A (en) * 2003-03-20 2004-10-14 Toyobo Co Ltd Copolyester fiber
JP2004300622A (en) * 2003-03-31 2004-10-28 Toyobo Co Ltd Copolyester fiber
JP2005179566A (en) * 2003-12-22 2005-07-07 Toyobo Co Ltd Biaxially oriented polyester film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188124A (en) * 1989-12-18 1991-08-16 Toray Ind Inc Wholly aromatic polyester
JPH0488014A (en) * 1990-07-30 1992-03-19 Toray Ind Inc Melt moldable aromatic polyester resin
JPH06508860A (en) * 1991-07-25 1994-10-06 アルテヴァ・テクノロジーズ・ソシエタ・アベール・レスポンサビリタ・リミタータ Copolyesters for high modulus fibers
CN101955576A (en) * 2009-07-13 2011-01-26 东丽纤维研究所(中国)有限公司 Polyester film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762071A (en) * 1993-06-15 1995-03-07 Nippon Petrochem Co Ltd Wholly aromatic polyester and its composition
JP2001527144A (en) * 1997-12-30 2001-12-25 ディーエスエム エヌ.ブイ. Copolyester goods
JP2004285510A (en) * 2003-03-20 2004-10-14 Toyobo Co Ltd Copolyester fiber
JP2004300622A (en) * 2003-03-31 2004-10-28 Toyobo Co Ltd Copolyester fiber
JP2005179566A (en) * 2003-12-22 2005-07-07 Toyobo Co Ltd Biaxially oriented polyester film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536405A (en) * 2013-11-12 2016-11-24 エスケー ケミカルズ カンパニー リミテッド Polycyclohexylenedimethylene terephthalate resin composition
JP2015093943A (en) * 2013-11-13 2015-05-18 東洋紡株式会社 Polyester resin composition for led reflector
JP2015138194A (en) * 2014-01-23 2015-07-30 パナソニックIpマネジメント株式会社 Light reflector forming material, light reflector and luminaire
US20220049049A1 (en) * 2018-10-16 2022-02-17 Toyobo Co., Ltd. Polyester resin for heat-shrinkable film, heat-shrinkable film, heat-shrinkable label, and packaged product
US12134679B2 (en) * 2018-10-16 2024-11-05 Toyobo Co., Ltd. Polyester resin for heat-shrinkable film, heat-shrinkable film, heat-shrinkable label, and packaged product

Also Published As

Publication number Publication date
KR101848970B1 (en) 2018-04-13
CN104136487B (en) 2016-03-02
JP6048832B2 (en) 2016-12-21
TWI554543B (en) 2016-10-21
TW201343711A (en) 2013-11-01
JPWO2013125454A1 (en) 2015-07-30
KR20140138120A (en) 2014-12-03
CN104136487A (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP6048833B2 (en) Polyester resin composition used for reflector for surface mount LED
JP6260085B2 (en) Polyester resin composition for LED reflector
JP5915948B2 (en) Polyester resin and polyester resin composition for surface mounted LED reflector using the same
TWI570173B (en) A resin resin composition for LED reflector and a method for producing a
KR102276849B1 (en) Polycyclohexylenedimethylene terephthalate resin composition
JP6048832B2 (en) Polyester resin for surface mount LED reflector
JP6492078B2 (en) RESIN COMPOSITION FOR REFLECTOR AND REFLECTOR CONTAINING THE SAME
KR20180038026A (en) POLYESTER RESIN COMPOSITION, METHOD OF MANUFACTURING REFLECTOR, AND METHOD OF MANUFACTURING LIGHT EMITTING DIODE
JP2019127545A (en) Polyester resin composition for reflection material and reflection material
JP2020019914A (en) Polyester resin composition for reflector and reflector
JP6042271B2 (en) Polyester resin composition for reflector and reflector
JP6221662B2 (en) Polyester resin composition for LED reflector
KR20170008779A (en) Polyester resin composition for reflective materials and reflection plate containing same
KR101786192B1 (en) Thermoplastic resin composition and molded article using the same
JP5378276B2 (en) Method for manufacturing light emitting device
JP2014132053A (en) Polyester resin composition for molding led light reflector and led light reflector

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013509766

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147021563

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752185

Country of ref document: EP

Kind code of ref document: A1