WO2013124969A1 - Radar device - Google Patents
Radar device Download PDFInfo
- Publication number
- WO2013124969A1 WO2013124969A1 PCT/JP2012/054113 JP2012054113W WO2013124969A1 WO 2013124969 A1 WO2013124969 A1 WO 2013124969A1 JP 2012054113 W JP2012054113 W JP 2012054113W WO 2013124969 A1 WO2013124969 A1 WO 2013124969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- reception
- phase
- radar
- transmission
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
- G01S7/032—Constructional details for solid-state radar subsystems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/358—Receivers using I/Q processing
Definitions
- the present invention relates to a radar apparatus that detects an object using a result of receiving a reflected wave from an object that reflects the radar wave.
- a radar device that detects an angle in the vertical direction of an object by arranging a plurality of element antennas arranged in the horizontal direction while being shifted from each other in the vertical direction is known (for example, see Patent Document 1).
- FIG. 1 is a configuration diagram of a radar apparatus 10 disclosed in Patent Document 1.
- the radar apparatus 10 is connected to a reception antenna 1 having element antennas # 1 to # 8 that are alternately shifted in the vertical direction, a transmission antenna 2 that operates with an oscillator 3, and element antennas # 1 to # 8 and the oscillator 3.
- Mixer unit 4 having mixers 4-1 to 4-8, and signal processing for performing fast Fourier transform processing (FFT processing) and digital beam forming processing (DBF processing) on the beat signal generated by mixer unit 4 Part 5.
- FFT processing fast Fourier transform processing
- DMF processing digital beam forming processing
- the signal processing unit 5 uses the result of DBF synthesis for the upper element antennas # 1, # 3, # 5, and # 7 and the result of DBF synthesis for the lower element antennas # 2, # 4, # 6, and # 8.
- the vertical angle of the object is calculated by the phase monopulse method.
- the lower element antenna is disposed between the adjacent upper element antennas, it is difficult to reduce the antenna interval between the adjacent upper element antennas (for example, the upper element antenna # 1). And the lower element antenna # 2 is arranged between # 3 and # 3). Similarly, since the upper element antenna is disposed between the adjacent lower element antennas, it is difficult to narrow the antenna interval between the adjacent lower element antennas.
- an object of the present invention is to provide a radar apparatus that can detect an angle in the vertical direction of an object and can easily expand a detectable range of the angle in the horizontal direction.
- the present invention provides: A transmission antenna that switches and transmits radar waves whose vertical phases are shifted from each other; A receiving antenna having an array antenna for receiving a reflected wave from an object reflecting the radar wave; A radar apparatus comprising: a detection unit that detects the object using a reception result of the reception antenna.
- the vertical angle of the object can be detected, and the detectable range of the horizontal angle can be easily expanded.
- FIG. 1 is a configuration diagram of a radar apparatus disclosed in Patent Document 1.
- FIG. It is a block diagram of the radar apparatus which concerns on one Embodiment. It is an example of a phase adjustment circuit. It is an example of an angle spectrum. It is an example of an angle spectrum. It is an operation example of a radar apparatus. It is a block diagram of the radar apparatus which concerns on one Embodiment.
- FIG. 2 is a configuration diagram of the radar apparatus 20 according to the first embodiment.
- the radar device 20 is mounted on a vehicle and is of an FMCW (Frequency Modulated Continuous Wave) method that can detect the distance and relative speed between the host vehicle and a target object around the host vehicle (for example, an object such as a vehicle in front of the host vehicle).
- FMCW Frequency Modulated Continuous Wave
- the radar device 20 when detecting a target ahead of the host vehicle, the radar device 20 is installed on the vehicle body so that the normal directions of the antenna surface of the transmission antenna 21 and the antenna surface of the reception antenna 22 coincide with the front-rear direction of the vehicle. It is good to be.
- the x-axis direction is parallel to the horizontal plane such as the road surface
- the x-axis direction is parallel to the horizontal plane
- the y-axis direction is the left-right direction of the vehicle (vehicle width direction).
- the vertical direction of the vehicle is the z-axis direction.
- the radar apparatus 20 includes an oscillator 23, a transmission antenna 21, a reception antenna 22, and an object detection unit 26.
- the oscillator 23 is a transmission signal generation unit that generates a transmission signal Ss whose frequency continuously increases and decreases according to a modulation signal Sm of a triangular wave.
- the frequency band of the transmission signal Ss is, for example, a millimeter wave band or a microwave band.
- the local signal L generated by the power distribution of the transmission signal Ss by the distributor is supplied to the mixer unit 24 of the object detection unit 26.
- the local signal L has the same frequency as the transmission signal Ss.
- the transmission antenna 21 is a transmission unit that transmits a radar wave based on the transmission signal Ss modulated by the modulation signal Sm, and switches and transmits radar waves whose phases in the vertical direction are shifted from each other.
- the transmission antenna 21 includes an element antenna 33, a phase adjustment circuit 31 that adjusts the phase of a radar wave transmitted from the element antenna 33, and two feeding points 11 and 12 of the element antenna 33.
- the transmission antenna 21 has, for example, a plurality of transmission channels in which the phases of radar waves transmitted from the common element antenna 33 are shifted from each other in the vertical direction, and transmits the radar waves by switching these transmission channels.
- a transmission channel 34 that transmits a radar wave from the element antenna 33 according to the transmission signal Ss supplied from the feeding point 11 via the phase adjustment circuit 31, and supplied from the feeding point 12 via the phase adjustment circuit 31.
- a transmission channel 35 that transmits a radar wave from the element antenna 33 according to the transmission signal Ss is illustrated.
- the transmission signal Ss is selectively input to the feeding points 11 and 12 via the switch 50.
- the switch 50 is a switching unit that selectively switches the supply destination of the transmission signal Ss generated by the oscillator 23 to the feeding point 11 or 12 in accordance with the switching control signal supplied from the signal processing unit 25 of the object detection unit 26.
- the element antenna 33 is connected to the two feeding points 11 and 12 via the phase adjustment circuit 31.
- the element antenna 33 includes, for example, a plurality of patch antennas 32 arranged vertically and horizontally as a radiating element that transmits a radar wave based on a transmission signal Ss selectively input to the feeding point 11 or 12. .
- Each patch antenna 32 is connected to two feeding points 11 and 12 via a phase adjustment circuit 31.
- the phase adjustment circuit 31 has directivity by shifting the phase of the radar wave transmitted from the common element antenna 33 in the vertical direction depending on the feeding point to which the common transmission signal Ss supplied from the oscillator 23 is input. This is a possible phase adjustment unit without change. That is, the phase adjustment circuit 31 receives the phase of the radar wave transmitted from the element antenna 33 when the transmission signal Ss is input to the feeding point 11 and the element antenna 33 when the transmission signal Ss is input to the feeding point 12. The phase of the transmitted radar wave can be shifted in the vertical direction.
- FIG. 3 is a specific example of a phase adjustment circuit that enables transmission of radio waves whose phases are shifted in the vertical direction from the element antenna.
- the phase adjustment circuit 54 is inserted between the three feeding points 51, 52, 53 and the element antenna 55.
- JP 2009-76986 A can be cited.
- the receiving antenna 22 includes an array antenna 43 that receives a reflected wave that arrives when a radar wave transmitted from the element antenna 33 of the transmitting antenna 21 is reflected by an object (not shown).
- the receiving unit outputs a corresponding received signal.
- the receiving antenna 22 is arranged on the same plane as the transmitting antenna 21.
- the receiving antenna 22 has an array antenna 43 including a plurality of element antennas A2 to An arranged in the left-right direction. The number of these element antennas may be arbitrary.
- Each of the element antennas A2 to An has a plurality of patch antennas 42 arranged in a line in the vertical direction.
- Each patch antenna 42 of the element antennas A2 to An is connected to a reception port for each of the element antennas A2 to An.
- the reception port P2 is a feeding point connected to each patch antenna 42 of the element antenna A2.
- the phase adjustment circuit 41 and the reception port P1 will be described later.
- the object detection unit 26 is a circuit that detects an object reflecting a radar wave transmitted from the transmission antenna 21 based on reception signals supplied from the array antenna 43 via the reception ports of the element antennas A2 to An. .
- the object detection unit 26 includes a mixer unit 24 and a signal processing unit 25.
- the mixer unit 24 outputs a beat signal for each of the element antennas A2 to An by mixing the local signal L supplied from the oscillator 23 with a reception signal supplied from each reception port of each of the element antennas A2 to An. It has mixers M1 to Mn.
- the signal processing unit 25 performs an FFT process on the beat signal supplied from the mixer unit 24, thereby detecting the frequency of the component at which the signal strength of the beat signal reaches a peak as the beat frequency.
- the signal processing unit 25 detects an object reflecting the radar wave transmitted from the transmission antenna 21 using the detected beat frequency, and calculates a distance and a relative speed between the detected object and the radar apparatus 20.
- the signal processing unit 25 performs DBF processing on the beat signal supplied from the mixer unit 24, thereby calculating the angle (azimuth) in the left-right direction of the detected object by scanning the antenna beam in the left-right direction, and detecting the detection.
- the vertical angle (elevation angle) of the object is calculated by the phase monopulse method.
- the radar apparatus 20 having such a configuration, it is possible to switch and transmit radar waves having different phases in the vertical direction from a single transmission antenna 21.
- the element antennas A2 to An constituting the receiving antenna 22 can be arranged without being shifted in the vertical direction. That is, the vertical positions of the element antennas A2 to An can be made the same height. Therefore, since the antenna distance in the left-right direction between adjacent element antennas in the element antennas A2 to An can be easily reduced, the detectable range of the angle in the left-right direction can be easily expanded.
- the radar apparatus 20 includes a transmission antenna 21 that switches and transmits radar waves having different phases in the vertical direction depending on the feeding point.
- the receiving antenna 22 can receive the reflected wave of the radar wave whose phase is shifted in the vertical direction. Therefore, the signal processing unit 25 of the object detection unit 26 can detect the vertical angle of the object based on the vertical phase shift received by the reception antenna 22.
- the signal processing unit 25 performs transmission control from the transmission antenna 21 by switching the feeding point to which the transmission signal Ss supplied from the oscillator 23 is input to the feeding point 11 or 12 by switching the switch 50. Shift the phase of the radar wave up and down.
- the signal processing unit 25 acquires beat signals for the element antennas A2 to An as reception results obtained from the reception antenna 22 by radar waves transmitted from the transmission antenna 21 when the transmission signal Ss is input to the feeding point 11. .
- the signal processing unit 25 performs DBF synthesis on the beat signals for the element antennas A2 to An when power is supplied to the power supply point 11, thereby performing a left-right angle spectrum as shown in FIG. "Angle spectrum").
- the signal processing unit 25 detects the azimuth ⁇ 1 at which the signal intensity of the first angle spectrum peaks, and detects the phase ⁇ 1 in the azimuth ⁇ 1.
- the signal processing unit 25 outputs a beat signal for each of the element antennas A2 to An as a reception result obtained from the reception antenna 22 by the radar wave transmitted from the transmission antenna 21 when the transmission signal Ss is input to the feeding point 12. get.
- the signal processing unit 25 performs DBF synthesis on the beat signals for each of the element antennas A2 to An when power is supplied to the power feeding point 12, thereby performing an angular spectrum in the horizontal direction as shown in FIG. "Angle spectrum").
- the signal processing unit 25 detects the azimuth ⁇ 2 at which the signal intensity of the second angle spectrum peaks, and detects the phase ⁇ 2 in the azimuth ⁇ 2.
- the signal processing unit 25 can detect the vertical angle of the detection object by the phase monopulse method based on the phase difference between the phase ⁇ 1 and the phase ⁇ 2 detected in this way.
- the feeding to the feeding point 11 or the feeding point 12 is switched with a time delay by the switch 50, there is a phase delay corresponding to the time when the feeding is switched between the feeding point 11 and the feeding point 12.
- the phase difference between the phase ⁇ 1 and the phase ⁇ 2 is included.
- the element antenna A2 constituting the array antenna 43 of the receiving antenna 22 Have a plurality of reception channels whose phases are shifted in the vertical direction.
- FIG. 2 shows a reception channel 44 for outputting a reception signal corresponding to the reflected wave received by the element antenna A2 from the reception port P2 via the phase adjustment circuit 41, and a reception signal corresponding to the reflection wave received by the element antenna A2.
- a reception channel 45 that outputs the signal from the reception port P1 via the phase adjustment circuit 41 is illustrated.
- the reception port P1 is another feeding point of the element antenna A2, which is different from the reception port P2.
- Each patch antenna 42 of the element antenna A2 is connected to the reception ports P1 and P2 via the phase adjustment circuit 41.
- the phase adjustment circuit 41 is a phase adjustment unit that can shift the vertical phase of the reflected wave received by the common element antenna A2. That is, the phase adjustment circuit 41 outputs the phase of the reception signal output from the reception port P1 according to the reflected wave received by the element antenna A2 and the output from the reception port P2 according to the reflected wave received by the element antenna A2. The phase of the received signal can be shifted in the vertical direction.
- the phase adjustment circuit 41 may be a circuit having the same phase adjustment characteristics as the phase adjustment circuit 31 of the transmission antenna 21 and may be the same circuit as the circuit illustrated in FIG.
- the phase adjustment circuit 41 allows the reception channel 45 to shift the phase of the reflected wave received from the reception channel 44 in a direction to return the vertical phase shift of the radar wave transmitted from the transmission antenna 21. At this time, the phase adjustment circuit 41 shifts the phase of the reflected wave received by the reception channel 45 from the phase of the reflected wave received by the reception channel 44 by the same amount as the phase shift in the vertical direction of the radar wave. Adjust it. Thereby, the phase lag corresponding to the switching time of the switch 50 is canceled, and the phase difference between the phase ⁇ 1 and the phase ⁇ 2 can be accurately corrected.
- FIG. 6 is a diagram illustrating an operation example of the radar apparatus 20 of FIG.
- step S ⁇ b> 11 the signal processing unit 25 switches the supply destination of the transmission signal Ss output from the oscillator 23 to the feeding point 11 by using the switch 50, and the transmission antenna 21 transmits to the feeding point 11 through the switch 50.
- a radar wave is transmitted according to the signal Ss.
- the signal processing unit 25 stores the azimuth ⁇ 1 and the phase ⁇ 1 measured using the reception ports P2 to Pn in the memory 27.
- the signal processing unit 25 performs an FFT process on the beat signal obtained for each of the reception ports P1 to Pn for each of the reception ports P1 to Pn, so that the frequency spectrum for each of the reception ports P1 to Pn (hereinafter referred to as “first frequency”). Spectrum)).
- the signal processing unit 25 performs a peak search of the signal intensity for the first frequency spectrum, and detects the frequency (beat frequency) and phase when the signal intensity is a peak for each of the reception ports P1 to Pn.
- the signal processing unit 25 performs DBF synthesis on the beat signals obtained from the reception ports P2 to Pn for each beat frequency detected based on the first frequency spectrum, so that the first angular spectrum illustrated in FIG. To get.
- the signal processing unit 25 detects the azimuth ⁇ 1 at which the signal intensity of the first angle spectrum peaks, and detects the phase ⁇ 1 in the azimuth ⁇ 1.
- step S15 the signal processing unit 25 stores the phase ⁇ 1 measured using the reception port P2 in the memory 27. That is, the signal processing unit 25 stores the phase at the peak detected based on the frequency spectrum of the reception port P2 in the first frequency spectrum in step S13 in the memory 27 as the phase ⁇ 1.
- step S ⁇ b> 17 the signal processing unit 25 switches the supply destination of the transmission signal Ss output from the oscillator 23 to the feeding point 12 by the switch 50, and the transmission antenna 21 transmits to the feeding point 12 through the switch 50.
- a radar wave is transmitted according to the signal Ss.
- the signal processing unit 25 stores the azimuth ⁇ 2 and the phase ⁇ 2 measured using the reception ports P2 to Pn in the memory 27.
- the signal processing unit 25 performs FFT processing on the beat signal obtained for each of the reception ports P1 to Pn for each of the reception ports P1 to Pn, so that the frequency spectrum for each of the reception ports P1 to Pn (hereinafter referred to as “second frequency”). Spectrum)).
- the signal processing unit 25 performs a peak search of the signal intensity for the second frequency spectrum, and detects a frequency (beat frequency) and a phase when the signal intensity is a peak for each of the reception ports P1 to Pn.
- the signal processing unit 25 performs DBF synthesis on the beat signals obtained from the reception ports P2 to Pn for each beat frequency detected based on the second frequency spectrum, thereby performing the second angular spectrum illustrated in FIG. To get.
- the signal processing unit 25 detects the azimuth ⁇ 2 at which the signal intensity of the second angle spectrum peaks, and detects the phase ⁇ 2 in the azimuth ⁇ 2.
- step S21 the signal processing unit 25 stores the phase ⁇ 2 measured using the reception port P1 in the memory 27. That is, the signal processing unit 25 stores, in the memory 27, the phase at the peak detected based on the frequency spectrum of the reception port P1 in the second frequency spectrum in Step S19 as the phase ⁇ 2.
- the signal processing unit 25 extracts detection objects having the same distance, the same speed, and the same direction.
- the signal processing unit 25 uses the beat frequency detected based on the first frequency spectrum to calculate the distance and relative velocity of the detected object in the azimuth ⁇ 1 according to a well-known arithmetic expression, and generates the second frequency spectrum.
- the beat frequency detected on the basis the distance and relative speed of the detected object in the azimuth ⁇ 2 are calculated according to a well-known arithmetic expression.
- the signal processing unit 25 extracts detection objects having the same distance, the same speed, and the same direction based on both the calculation results.
- step S25 the signal processing unit 25 subtracts the phase ⁇ 1 stored in the memory 27 in step S15 from the phase ⁇ 2 stored in the memory 27 in step S21 in order to cancel the phase delay caused by the switching time of the switch 50.
- the phase difference ⁇ is calculated.
- step S27 the signal processing unit 25 calculates elevation angle information such as an angle in the vertical direction of the detection object according to the following equation using ⁇ , ⁇ 1, and ⁇ 2 by the phase monopulse method.
- ⁇ is the angle in the vertical direction
- d is the distance in the vertical direction of the reception ports 1 and 2
- ⁇ is the wavelength of the radar wave.
- phase adjustment circuit is provided only for one element antenna that constitutes the array antenna is shown, but at least one of the element antennas that constitute the array antenna may have a phase adjustment circuit. .
- FIG. 7 is a configuration diagram of the radar apparatus 60 according to the second embodiment. A description of the same configuration as that of the above embodiment is omitted.
- the radar device 60 includes a transmission antenna 61 and a reception antenna 62.
- the transmission antenna 61 does not have a phase adjustment circuit for shifting the phase of the radar wave in the vertical direction.
- the receiving antenna 62 has an array antenna including a plurality of element antennas B1 to Bn arranged in the left-right direction.
- the element antenna B1 has a phase adjustment circuit U1 that can shift the vertical phase of the reflected wave received by the element antenna B1. All of the other element antennas B2 to Bn have the same phase adjustment circuits U2 to Un.
- the patch antennas of the element antennas B2 to Bn are connected via reception ports R1 to Rn and Q1 to Qn.
- the mixer unit 28 of the object detection unit 29 mixes the local signals supplied from the oscillator 23 with the reception signals supplied from the reception ports R1 to Rn and Q1 to Qn of the element antennas B1 to Bn. Mixers S1 to Sn and T1 to Tn for outputting beat signals for the antennas B1 to Bn are provided.
- the phase adjustment circuit U1 can generate a vertical phase difference between the reception signal output from the reception port Q1 and the reception signal output from the reception port R1. Therefore, the signal processing unit 25 can detect the vertical angle of the object detected by the element antenna B1 based on this phase difference by the phase monopulse method. The same applies to the other phase adjustment circuits U2 to Un. Therefore, the signal processor 25 can accurately detect the vertical angle of the detection object based on the phase difference between the reception ports of the element antennas B1 to Bn.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
A radar device comprising: a transmission antenna that switches between and transmits radar waves having phases in the vertical direction that are mutually offset; a reception antenna having an array antenna that receives reflected waves from an object that has reflected the radar waves; and a detection unit that detects the object, using the reception results of the reception antenna.
Description
本発明は、レーダ波を反射した物体からの反射波を受信した結果を用いて、その物体を検出する、レーダ装置に関する。
The present invention relates to a radar apparatus that detects an object using a result of receiving a reflected wave from an object that reflects the radar wave.
左右方向に配列された複数の素子アンテナを上下方向に互いにずらして配置することで、物体の上下方向の角度を検出するレーダ装置が知られている(例えば、特許文献1を参照)。
A radar device that detects an angle in the vertical direction of an object by arranging a plurality of element antennas arranged in the horizontal direction while being shifted from each other in the vertical direction is known (for example, see Patent Document 1).
図1は、特許文献1に開示されたレーダ装置10の構成図である。レーダ装置10は、上下方向に交互にずれた素子アンテナ#1~#8を有する受信アンテナ1と、発振器3で動作する送信アンテナ2と、素子アンテナ#1~#8及び発振器3に接続されるミキサ4-1~4-8を有するミキサ部4と、ミキサ部4によって生成されるビート信号に対して高速フーリエ変換処理(FFT処理)及びディジタル・ビーム・フォーミング処理(DBF処理)を行う信号処理部5とを備えている。
FIG. 1 is a configuration diagram of a radar apparatus 10 disclosed in Patent Document 1. The radar apparatus 10 is connected to a reception antenna 1 having element antennas # 1 to # 8 that are alternately shifted in the vertical direction, a transmission antenna 2 that operates with an oscillator 3, and element antennas # 1 to # 8 and the oscillator 3. Mixer unit 4 having mixers 4-1 to 4-8, and signal processing for performing fast Fourier transform processing (FFT processing) and digital beam forming processing (DBF processing) on the beat signal generated by mixer unit 4 Part 5.
信号処理部5は、上側素子アンテナ#1,#3,#5,#7についてDBF合成した結果と、下側素子アンテナ#2,#4,#6,#8についてDBF合成した結果とを用いて、物体の上下方向の角度を位相モノパルス方式で演算する。
The signal processing unit 5 uses the result of DBF synthesis for the upper element antennas # 1, # 3, # 5, and # 7 and the result of DBF synthesis for the lower element antennas # 2, # 4, # 6, and # 8. Thus, the vertical angle of the object is calculated by the phase monopulse method.
しかしながら、図1のような構成では、隣り合う上側素子アンテナ間に下側素子アンテナが配置されているため、隣り合う上側素子アンテナ間のアンテナ間隔を狭めることが難しい(例えば、上側素子アンテナ#1と#3との間に、下側素子アンテナ#2が配置されている)。同様に、隣り合う下側素子アンテナ間に上側素子アンテナが配置されているため、隣り合う下側素子アンテナ間のアンテナ間隔を狭めることが難しい。
However, in the configuration shown in FIG. 1, since the lower element antenna is disposed between the adjacent upper element antennas, it is difficult to reduce the antenna interval between the adjacent upper element antennas (for example, the upper element antenna # 1). And the lower element antenna # 2 is arranged between # 3 and # 3). Similarly, since the upper element antenna is disposed between the adjacent lower element antennas, it is difficult to narrow the antenna interval between the adjacent lower element antennas.
隣り合う素子アンテナ間のアンテナ間隔が狭いほど、左右方向の角度の検出可能範囲は広がるため、図1のような構成では、左右方向の角度の検出可能範囲を広げることは容易ではない。
1) As the antenna interval between adjacent element antennas is narrower, the detectable range of the angle in the left-right direction becomes wider, so it is not easy to widen the detectable range of the angle in the left-right direction with the configuration shown in FIG.
そこで、本発明は、物体の上下方向の角度を検出でき、左右方向の角度の検出可能範囲を容易に広げることができる、レーダ装置の提供を目的とする。
Therefore, an object of the present invention is to provide a radar apparatus that can detect an angle in the vertical direction of an object and can easily expand a detectable range of the angle in the horizontal direction.
上記目的を達成するため、本発明は、
上下方向の位相が互いにずれたレーダ波を切り替えて送信する送信アンテナと、
前記レーダ波を反射した物体からの反射波を受信するアレーアンテナを有する受信アンテナと、
前記受信アンテナの受信結果を用いて、前記物体を検出する検出部とを備える、レーダ装置を提供するものである。 In order to achieve the above object, the present invention provides:
A transmission antenna that switches and transmits radar waves whose vertical phases are shifted from each other;
A receiving antenna having an array antenna for receiving a reflected wave from an object reflecting the radar wave;
A radar apparatus comprising: a detection unit that detects the object using a reception result of the reception antenna.
上下方向の位相が互いにずれたレーダ波を切り替えて送信する送信アンテナと、
前記レーダ波を反射した物体からの反射波を受信するアレーアンテナを有する受信アンテナと、
前記受信アンテナの受信結果を用いて、前記物体を検出する検出部とを備える、レーダ装置を提供するものである。 In order to achieve the above object, the present invention provides:
A transmission antenna that switches and transmits radar waves whose vertical phases are shifted from each other;
A receiving antenna having an array antenna for receiving a reflected wave from an object reflecting the radar wave;
A radar apparatus comprising: a detection unit that detects the object using a reception result of the reception antenna.
本発明によれば、物体の上下方向の角度を検出でき、左右方向の角度の検出可能範囲を容易に広げることができる。
According to the present invention, the vertical angle of the object can be detected, and the detectable range of the horizontal angle can be easily expanded.
以下、本発明の実施形態を図面に従って説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図2は、第1の形態に係るレーダ装置20の構成図である。レーダ装置20は、車両に搭載され、自車と自車周辺の目標物(例えば、自車前方の車両などの物体)との距離及び相対速度を検出可能なFMCW(Frequency Modulated Continuous Wave)方式のレーダ装置である。
FIG. 2 is a configuration diagram of the radar apparatus 20 according to the first embodiment. The radar device 20 is mounted on a vehicle and is of an FMCW (Frequency Modulated Continuous Wave) method that can detect the distance and relative speed between the host vehicle and a target object around the host vehicle (for example, an object such as a vehicle in front of the host vehicle). Radar device.
レーダ装置20は、例えば自車の前方の目標物を検出する場合、送信アンテナ21のアンテナ面及び受信アンテナ22のアンテナ面の法線方向が車両の前後方向に一致するように車体に設置されているとよい。図2において、路面等の水平面に対して平行且つ車両の前後方向をx軸方向とし、水平面に対して平行且つ車両の左右方向(車幅方向)をy軸方向とし、水平面に対して垂直な車両の上下方向をz軸方向とする。
For example, when detecting a target ahead of the host vehicle, the radar device 20 is installed on the vehicle body so that the normal directions of the antenna surface of the transmission antenna 21 and the antenna surface of the reception antenna 22 coincide with the front-rear direction of the vehicle. It is good to be. In FIG. 2, the x-axis direction is parallel to the horizontal plane such as the road surface, the x-axis direction is parallel to the horizontal plane, and the y-axis direction is the left-right direction of the vehicle (vehicle width direction). The vertical direction of the vehicle is the z-axis direction.
レーダ装置20は、発振器23と、送信アンテナ21と、受信アンテナ22と、物体検出部26とを備えている。
The radar apparatus 20 includes an oscillator 23, a transmission antenna 21, a reception antenna 22, and an object detection unit 26.
発振器23は、三角波の変調信号Smに従って、周波数が連続的に増減する送信信号Ssを発生させる送信信号生成部である。送信信号Ssの周波数帯は、例えば、ミリ波帯、マイクロ波帯である。また、送信信号Ssが分配器によって電力分配されることによって生成されたローカル信号Lが、物体検出部26のミキサ部24に供給される。ローカル信号Lは、送信信号Ssと同じ周波数を有する。
The oscillator 23 is a transmission signal generation unit that generates a transmission signal Ss whose frequency continuously increases and decreases according to a modulation signal Sm of a triangular wave. The frequency band of the transmission signal Ss is, for example, a millimeter wave band or a microwave band. Further, the local signal L generated by the power distribution of the transmission signal Ss by the distributor is supplied to the mixer unit 24 of the object detection unit 26. The local signal L has the same frequency as the transmission signal Ss.
送信アンテナ21は、変調信号Smにより変調された送信信号Ssに基づいてレーダ波を送信する送信部であって、上下方向の位相が互いにずれたレーダ波を切り替えて送信するものである。送信アンテナ21は、素子アンテナ33と、素子アンテナ33から送信されるレーダ波の位相を調整する位相調整回路31と、素子アンテナ33の2つの給電点11,12とを有している。
The transmission antenna 21 is a transmission unit that transmits a radar wave based on the transmission signal Ss modulated by the modulation signal Sm, and switches and transmits radar waves whose phases in the vertical direction are shifted from each other. The transmission antenna 21 includes an element antenna 33, a phase adjustment circuit 31 that adjusts the phase of a radar wave transmitted from the element antenna 33, and two feeding points 11 and 12 of the element antenna 33.
送信アンテナ21は、例えば、共通の素子アンテナ33から送信されるレーダ波の位相が上下方向に互いにずれる複数の送信チャネルを有し、それらの送信チャネルを切り替えてレーダ波を送信する。図2には、給電点11から位相調整回路31を介して供給される送信信号Ssに従って素子アンテナ33からレーダ波を送信する送信チャネル34と、給電点12から位相調整回路31を介して供給される送信信号Ssに従って素子アンテナ33からレーダ波を送信する送信チャネル35が例示されている。
The transmission antenna 21 has, for example, a plurality of transmission channels in which the phases of radar waves transmitted from the common element antenna 33 are shifted from each other in the vertical direction, and transmits the radar waves by switching these transmission channels. In FIG. 2, a transmission channel 34 that transmits a radar wave from the element antenna 33 according to the transmission signal Ss supplied from the feeding point 11 via the phase adjustment circuit 31, and supplied from the feeding point 12 via the phase adjustment circuit 31. A transmission channel 35 that transmits a radar wave from the element antenna 33 according to the transmission signal Ss is illustrated.
給電点11,12には、送信信号Ssがスイッチ50を介して選択的に入力される。スイッチ50は、物体検出部26の信号処理部25から供給される切替制御信号に従って、発振器23によって生成される送信信号Ssの供給先を給電点11又は12に選択的に切り替える切替手段である。
The transmission signal Ss is selectively input to the feeding points 11 and 12 via the switch 50. The switch 50 is a switching unit that selectively switches the supply destination of the transmission signal Ss generated by the oscillator 23 to the feeding point 11 or 12 in accordance with the switching control signal supplied from the signal processing unit 25 of the object detection unit 26.
素子アンテナ33は、2つの給電点11,12に位相調整回路31を介して接続されている。素子アンテナ33は、給電点11又は12に選択的に入力される送信信号Ssに基づいてレーダ波を送信する放射素子として、例えば、上下左右に配列された複数のパッチアンテナ32を有している。各パッチアンテナ32は、2つの給電点11,12に位相調整回路31を介して接続されている。
The element antenna 33 is connected to the two feeding points 11 and 12 via the phase adjustment circuit 31. The element antenna 33 includes, for example, a plurality of patch antennas 32 arranged vertically and horizontally as a radiating element that transmits a radar wave based on a transmission signal Ss selectively input to the feeding point 11 or 12. . Each patch antenna 32 is connected to two feeding points 11 and 12 via a phase adjustment circuit 31.
位相調整回路31は、発振器23から供給される共通の送信信号Ssが入力される給電点の違いによって、共通の素子アンテナ33から送信されるレーダ波の上下方向の位相をずらすことが指向性を変えずに可能な位相調整部である。すなわち、位相調整回路31は、給電点11に送信信号Ssが入力されるときに素子アンテナ33から送信されるレーダ波の位相と給電点12に送信信号Ssが入力されるときに素子アンテナ33から送信されるレーダ波の位相とを互いに上下方向にずらすことができる。このような位相調整回路31を給電点11,12と素子アンテナ33との間に設けることによって、送信アンテナ21が一つであっても(素子アンテナ33が一つであっても)、上下方向の位置が物理的に互いにずれた2つの送信アンテナからレーダ波が送信されることと同様の効果が得られる。
The phase adjustment circuit 31 has directivity by shifting the phase of the radar wave transmitted from the common element antenna 33 in the vertical direction depending on the feeding point to which the common transmission signal Ss supplied from the oscillator 23 is input. This is a possible phase adjustment unit without change. That is, the phase adjustment circuit 31 receives the phase of the radar wave transmitted from the element antenna 33 when the transmission signal Ss is input to the feeding point 11 and the element antenna 33 when the transmission signal Ss is input to the feeding point 12. The phase of the transmitted radar wave can be shifted in the vertical direction. By providing such a phase adjustment circuit 31 between the feeding points 11 and 12 and the element antenna 33, even if there is only one transmission antenna 21 (even if there is only one element antenna 33), the vertical direction The same effect is obtained as when radar waves are transmitted from two transmitting antennas whose positions are physically shifted from each other.
図3は、上下方向に位相をずらした電波を素子アンテナから送信可能にする位相調整回路の具体例である。位相調整回路54は、3つの給電点51,52,53と素子アンテナ55との間に挿入されている。変調された送信信号が選択的に入力される給電点は複数あってもよく、その数に応じて、上下方向の位相が互いに異なるレーダ波の数を増減できる。なお、このような位相調整回路に関する先行技術文献として、例えば特開2009-76986号公報が挙げられる。
FIG. 3 is a specific example of a phase adjustment circuit that enables transmission of radio waves whose phases are shifted in the vertical direction from the element antenna. The phase adjustment circuit 54 is inserted between the three feeding points 51, 52, 53 and the element antenna 55. There may be a plurality of feeding points to which the modulated transmission signal is selectively input, and the number of radar waves having different vertical phases can be increased or decreased according to the number of feeding points. As a prior art document relating to such a phase adjustment circuit, for example, JP 2009-76986 A can be cited.
図2において、受信アンテナ22は、送信アンテナ21の素子アンテナ33から送信されたレーダ波が不図示の物体に反射して到来する反射波を受信するアレーアンテナ43を有し、受信した反射波に応じた受信信号を出力する受信部である。受信アンテナ22は、送信アンテナ21と同一平面上に配置されている。
In FIG. 2, the receiving antenna 22 includes an array antenna 43 that receives a reflected wave that arrives when a radar wave transmitted from the element antenna 33 of the transmitting antenna 21 is reflected by an object (not shown). The receiving unit outputs a corresponding received signal. The receiving antenna 22 is arranged on the same plane as the transmitting antenna 21.
受信アンテナ22は、左右方向に配列された複数の素子アンテナA2~Anを含んで構成されるアレーアンテナ43を有している。これらの素子アンテナの数は任意でよい。素子アンテナA2~Anは、それぞれ、上下方向に一列に配列された複数のパッチアンテナ42を有している。素子アンテナA2~Anの各パッチアンテナ42は、素子アンテナA2~An毎に受信ポートに接続されている。例えば、受信ポートP2は、素子アンテナA2の各パッチアンテナ42に接続された給電点である。受信ポートP3~Pnについても同様である。なお、位相調整回路41及び受信ポートP1については後述する。
The receiving antenna 22 has an array antenna 43 including a plurality of element antennas A2 to An arranged in the left-right direction. The number of these element antennas may be arbitrary. Each of the element antennas A2 to An has a plurality of patch antennas 42 arranged in a line in the vertical direction. Each patch antenna 42 of the element antennas A2 to An is connected to a reception port for each of the element antennas A2 to An. For example, the reception port P2 is a feeding point connected to each patch antenna 42 of the element antenna A2. The same applies to the reception ports P3 to Pn. The phase adjustment circuit 41 and the reception port P1 will be described later.
物体検出部26は、アレーアンテナ43から素子アンテナA2~Anの各受信ポートを介して供給される受信信号に基づいて、送信アンテナ21から送信されたレーダ波を反射した物体を検出する回路である。物体検出部26は、ミキサ部24と、信号処理部25とを有している。
The object detection unit 26 is a circuit that detects an object reflecting a radar wave transmitted from the transmission antenna 21 based on reception signals supplied from the array antenna 43 via the reception ports of the element antennas A2 to An. . The object detection unit 26 includes a mixer unit 24 and a signal processing unit 25.
ミキサ部24は、各素子アンテナA2~Anの各受信ポートから供給される受信信号に、発振器23から供給されるローカル信号Lを混合することによって、素子アンテナA2~An毎のビート信号を出力するミキサM1~Mnを有する。
The mixer unit 24 outputs a beat signal for each of the element antennas A2 to An by mixing the local signal L supplied from the oscillator 23 with a reception signal supplied from each reception port of each of the element antennas A2 to An. It has mixers M1 to Mn.
信号処理部25は、ミキサ部24から供給されるビート信号についてFFT処理を行うことによって、ビート信号の信号強度がピークとなる成分の周波数をビート周波数として検知する。信号処理部25は、検知したビート周波数を用いて、送信アンテナ21から送信されたレーダ波を反射した物体を検出し、その検出物体とレーダ装置20との距離及び相対速度を演算する。
The signal processing unit 25 performs an FFT process on the beat signal supplied from the mixer unit 24, thereby detecting the frequency of the component at which the signal strength of the beat signal reaches a peak as the beat frequency. The signal processing unit 25 detects an object reflecting the radar wave transmitted from the transmission antenna 21 using the detected beat frequency, and calculates a distance and a relative speed between the detected object and the radar apparatus 20.
また、信号処理部25は、ミキサ部24から供給されるビート信号についてDBF処理を行うことによって、アンテナビームを左右方向に走査して検出物体の左右方向の角度(方位)を演算し、その検出物体の上下方向の角度(仰角)を位相モノパルス方式で演算する。
Further, the signal processing unit 25 performs DBF processing on the beat signal supplied from the mixer unit 24, thereby calculating the angle (azimuth) in the left-right direction of the detected object by scanning the antenna beam in the left-right direction, and detecting the detection. The vertical angle (elevation angle) of the object is calculated by the phase monopulse method.
このような構成を有するレーダ装置20によれば、単一の送信アンテナ21から上下方向に位相が異なるレーダ波を切り替えて送信できる。これにより、上下方向の位相ずれを受信アンテナ22側で生成するために、受信アンテナ22を構成する素子アンテナA2~Anを上下方向でずらさずに配置できる。すなわち、素子アンテナA2~Anの上下方向の位置を同じ高さにすることができる。したがって、素子アンテナA2~Anにおいて隣り合う素子アンテナ間の左右方向のアンテナ間隔を容易に狭めることができるので、左右方向の角度の検出可能範囲を容易に広げることができる。
According to the radar apparatus 20 having such a configuration, it is possible to switch and transmit radar waves having different phases in the vertical direction from a single transmission antenna 21. Thereby, in order to generate a vertical phase shift on the receiving antenna 22 side, the element antennas A2 to An constituting the receiving antenna 22 can be arranged without being shifted in the vertical direction. That is, the vertical positions of the element antennas A2 to An can be made the same height. Therefore, since the antenna distance in the left-right direction between adjacent element antennas in the element antennas A2 to An can be easily reduced, the detectable range of the angle in the left-right direction can be easily expanded.
また、レーダ装置20は、給電点の違いによって上下方向に位相が異なるレーダ波を切り替えて送信する送信アンテナ21を備えている。これにより、受信アンテナ22は、上下方向に位相のずれたレーダ波の反射波を受信できる。したがって、物体検出部26の信号処理部25は、受信アンテナ22で受信された上下方向の位相のずれに基づいて、物体の上下方向の角度を検出できる。
Also, the radar apparatus 20 includes a transmission antenna 21 that switches and transmits radar waves having different phases in the vertical direction depending on the feeding point. Thereby, the receiving antenna 22 can receive the reflected wave of the radar wave whose phase is shifted in the vertical direction. Therefore, the signal processing unit 25 of the object detection unit 26 can detect the vertical angle of the object based on the vertical phase shift received by the reception antenna 22.
例えば、信号処理部25は、スイッチ50を切り替え制御することにより、発振器23から供給される送信信号Ssが入力される給電点を給電点11又は12に切り替えることによって、送信アンテナ21から送信されるレーダ波の位相を上下方向にずらす。
For example, the signal processing unit 25 performs transmission control from the transmission antenna 21 by switching the feeding point to which the transmission signal Ss supplied from the oscillator 23 is input to the feeding point 11 or 12 by switching the switch 50. Shift the phase of the radar wave up and down.
信号処理部25は、給電点11に送信信号Ssを入力したときに送信アンテナ21から送信されたレーダ波によって受信アンテナ22から得られる受信結果として、素子アンテナA2~An毎のビート信号を取得する。信号処理部25は、給電点11に給電したときの素子アンテナA2~An毎のビート信号に対してDBF合成することによって、図4に示されるような左右方向の角度スペクトラム(以下、「第1の角度スペクトラム」という)を取得する。信号処理部25は、第1の角度スペクトラムの信号強度がピークとなる方位θ1を検出し、方位θ1における位相φ1を検出する。
The signal processing unit 25 acquires beat signals for the element antennas A2 to An as reception results obtained from the reception antenna 22 by radar waves transmitted from the transmission antenna 21 when the transmission signal Ss is input to the feeding point 11. . The signal processing unit 25 performs DBF synthesis on the beat signals for the element antennas A2 to An when power is supplied to the power supply point 11, thereby performing a left-right angle spectrum as shown in FIG. "Angle spectrum"). The signal processing unit 25 detects the azimuth θ1 at which the signal intensity of the first angle spectrum peaks, and detects the phase φ1 in the azimuth θ1.
そして、信号処理部25は、給電点12に送信信号Ssを入力したときに送信アンテナ21から送信されたレーダ波によって受信アンテナ22から得られる受信結果として、素子アンテナA2~An毎のビート信号を取得する。信号処理部25は、給電点12に給電したときの素子アンテナA2~An毎のビート信号に対してDBF合成することによって、図5に示されるような左右方向の角度スペクトラム(以下、「第2の角度スペクトラム」という)を取得する。信号処理部25は、第2の角度スペクトラムの信号強度がピークとなる方位θ2を検出し、方位θ2における位相φ2を検出する。
Then, the signal processing unit 25 outputs a beat signal for each of the element antennas A2 to An as a reception result obtained from the reception antenna 22 by the radar wave transmitted from the transmission antenna 21 when the transmission signal Ss is input to the feeding point 12. get. The signal processing unit 25 performs DBF synthesis on the beat signals for each of the element antennas A2 to An when power is supplied to the power feeding point 12, thereby performing an angular spectrum in the horizontal direction as shown in FIG. "Angle spectrum"). The signal processing unit 25 detects the azimuth θ2 at which the signal intensity of the second angle spectrum peaks, and detects the phase φ2 in the azimuth θ2.
信号処理部25は、このように検出された位相φ1と位相φ2の位相差に基づいて、検出物体の上下方向の角度を位相モノパルス方式で検出できる。
The signal processing unit 25 can detect the vertical angle of the detection object by the phase monopulse method based on the phase difference between the phase φ1 and the phase φ2 detected in this way.
ところが、給電点11又は給電点12への給電はスイッチ50によって時間的な遅れを持って切り替えられているため、給電点11と給電点12との間で給電が切り替わる時間に応じた位相遅れが、位相φ1と位相φ2の位相差に含まれている。
However, since the feeding to the feeding point 11 or the feeding point 12 is switched with a time delay by the switch 50, there is a phase delay corresponding to the time when the feeding is switched between the feeding point 11 and the feeding point 12. The phase difference between the phase φ1 and the phase φ2 is included.
そこで、そのような位相遅れを相殺することにより上下方向の角度の検出精度を高めるため、図2に示されるように、受信アンテナ22のアレーアンテナ43を構成する素子アンテナA2は、受信した反射波の位相が上下方向に互いにずれる複数の受信チャネルを有している。図2には、素子アンテナA2で受信した反射波に応じた受信信号を位相調整回路41を介して受信ポートP2から出力する受信チャネル44と、素子アンテナA2で受信した反射波に応じた受信信号を位相調整回路41を介して受信ポートP1から出力する受信チャネル45が例示されている。
Therefore, in order to improve the detection accuracy of the angle in the vertical direction by canceling out such a phase delay, as shown in FIG. 2, the element antenna A2 constituting the array antenna 43 of the receiving antenna 22 Have a plurality of reception channels whose phases are shifted in the vertical direction. FIG. 2 shows a reception channel 44 for outputting a reception signal corresponding to the reflected wave received by the element antenna A2 from the reception port P2 via the phase adjustment circuit 41, and a reception signal corresponding to the reflection wave received by the element antenna A2. A reception channel 45 that outputs the signal from the reception port P1 via the phase adjustment circuit 41 is illustrated.
受信ポートP1は、受信ポートP2とは別の、素子アンテナA2のもう一つの給電点である。素子アンテナA2の各パッチアンテナ42は、受信ポートP1,P2に位相調整回路41を介して接続されている。
The reception port P1 is another feeding point of the element antenna A2, which is different from the reception port P2. Each patch antenna 42 of the element antenna A2 is connected to the reception ports P1 and P2 via the phase adjustment circuit 41.
位相調整回路41は、共通の素子アンテナA2で受信された反射波の上下方向の位相をずらすことが可能な位相調整部である。すなわち、位相調整回路41は、素子アンテナA2で受信された反射波に応じて受信ポートP1から出力される受信信号の位相と、素子アンテナA2で受信された反射波に応じて受信ポートP2から出力される受信信号の位相とを互いに上下方向にずらすことができる。位相調整回路41は、送信アンテナ21の位相調整回路31と同じ位相調整特性を有する回路であるとよく、図3に例示された回路と同じ回路でもよい。
The phase adjustment circuit 41 is a phase adjustment unit that can shift the vertical phase of the reflected wave received by the common element antenna A2. That is, the phase adjustment circuit 41 outputs the phase of the reception signal output from the reception port P1 according to the reflected wave received by the element antenna A2 and the output from the reception port P2 according to the reflected wave received by the element antenna A2. The phase of the received signal can be shifted in the vertical direction. The phase adjustment circuit 41 may be a circuit having the same phase adjustment characteristics as the phase adjustment circuit 31 of the transmission antenna 21 and may be the same circuit as the circuit illustrated in FIG.
位相調整回路41によって、受信チャネル45は、受信チャネル44よりも、受信した反射波の位相を、送信アンテナ21から送信されたレーダ波の上下方向の位相ずれを戻す方向にずらすことができる。このとき、位相調整回路41は、受信チャネル45で受信した反射波の位相を、受信チャネル44で受信した反射波の位相に対して、レーダ波の上下方向の位相ずれと同じ量だけずれるように調整するとよい。これにより、スイッチ50の切替時間に応じた位相遅れを相殺して、位相φ1と位相φ2の位相差を精度良く補正できる。
The phase adjustment circuit 41 allows the reception channel 45 to shift the phase of the reflected wave received from the reception channel 44 in a direction to return the vertical phase shift of the radar wave transmitted from the transmission antenna 21. At this time, the phase adjustment circuit 41 shifts the phase of the reflected wave received by the reception channel 45 from the phase of the reflected wave received by the reception channel 44 by the same amount as the phase shift in the vertical direction of the radar wave. Adjust it. Thereby, the phase lag corresponding to the switching time of the switch 50 is canceled, and the phase difference between the phase φ1 and the phase φ2 can be accurately corrected.
図6は、図2のレーダ装置20の一動作例を示した図である。
FIG. 6 is a diagram illustrating an operation example of the radar apparatus 20 of FIG.
ステップS11において、信号処理部25は、発振器23から出力される送信信号Ssの供給先をスイッチ50によって給電点11に切り替え、送信アンテナ21は、スイッチ50を介して給電点11に入力される送信信号Ssに従って、レーダ波を送信する。
In step S <b> 11, the signal processing unit 25 switches the supply destination of the transmission signal Ss output from the oscillator 23 to the feeding point 11 by using the switch 50, and the transmission antenna 21 transmits to the feeding point 11 through the switch 50. A radar wave is transmitted according to the signal Ss.
ステップS13において、信号処理部25は、受信ポートP2~Pnを用いて測定された方位θ1と位相φ1をメモリ27に記憶する。例えば、信号処理部25は、受信ポートP1~Pn毎に得られるビート信号を受信ポートP1~Pn毎にFFT処理することによって、受信ポートP1~Pn毎の周波数スペクトラム(以下、「第1の周波数スペクトラム」という)を取得する。そして、信号処理部25は、第1の周波数スペクトラムについて信号強度のピークサーチを行い、信号強度がピークのときの周波数(ビート周波数)及び位相を受信ポートP1~Pn毎に検出する。信号処理部25は、第1の周波数スペクトラムに基づいて検出されたビート周波数毎に、受信ポートP2~Pnから得られるビート信号についてDBF合成を行うことによって、図4に例示した第1の角度スペクトラムを取得する。信号処理部25は、第1の角度スペクトラムの信号強度がピークとなる方位θ1を検出し、方位θ1における位相φ1を検出する。
In step S13, the signal processing unit 25 stores the azimuth θ1 and the phase φ1 measured using the reception ports P2 to Pn in the memory 27. For example, the signal processing unit 25 performs an FFT process on the beat signal obtained for each of the reception ports P1 to Pn for each of the reception ports P1 to Pn, so that the frequency spectrum for each of the reception ports P1 to Pn (hereinafter referred to as “first frequency”). Spectrum)). Then, the signal processing unit 25 performs a peak search of the signal intensity for the first frequency spectrum, and detects the frequency (beat frequency) and phase when the signal intensity is a peak for each of the reception ports P1 to Pn. The signal processing unit 25 performs DBF synthesis on the beat signals obtained from the reception ports P2 to Pn for each beat frequency detected based on the first frequency spectrum, so that the first angular spectrum illustrated in FIG. To get. The signal processing unit 25 detects the azimuth θ1 at which the signal intensity of the first angle spectrum peaks, and detects the phase φ1 in the azimuth θ1.
ステップS15において、信号処理部25は、受信ポートP2を用いて測定された位相Φ1をメモリ27に記憶する。すなわち、信号処理部25は、ステップS13の第1の周波数スペクトラムのうち受信ポートP2の周波数スペクトラムに基づいて検出されたピーク時の位相を位相Φ1としてメモリ27に記憶する。
In step S15, the signal processing unit 25 stores the phase Φ1 measured using the reception port P2 in the memory 27. That is, the signal processing unit 25 stores the phase at the peak detected based on the frequency spectrum of the reception port P2 in the first frequency spectrum in step S13 in the memory 27 as the phase Φ1.
ステップS17において、信号処理部25は、発振器23から出力される送信信号Ssの供給先をスイッチ50によって給電点12に切り替え、送信アンテナ21は、スイッチ50を介して給電点12に入力される送信信号Ssに従って、レーダ波を送信する。
In step S <b> 17, the signal processing unit 25 switches the supply destination of the transmission signal Ss output from the oscillator 23 to the feeding point 12 by the switch 50, and the transmission antenna 21 transmits to the feeding point 12 through the switch 50. A radar wave is transmitted according to the signal Ss.
ステップS19において、信号処理部25は、受信ポートP2~Pnを用いて測定された方位θ2と位相φ2をメモリ27に記憶する。例えば、信号処理部25は、受信ポートP1~Pn毎に得られるビート信号を受信ポートP1~Pn毎にFFT処理することによって、受信ポートP1~Pn毎の周波数スペクトラム(以下、「第2の周波数スペクトラム」という)を取得する。そして、信号処理部25は、第2の周波数スペクトラムについて信号強度のピークサーチを行い、信号強度がピークのときの周波数(ビート周波数)及び位相を受信ポートP1~Pn毎に検出する。信号処理部25は、第2の周波数スペクトラムに基づいて検出されたビート周波数毎に、受信ポートP2~Pnから得られるビート信号についてDBF合成を行うことによって、図5に例示した第2の角度スペクトラムを取得する。信号処理部25は、第2の角度スペクトラムの信号強度がピークとなる方位θ2を検出し、方位θ2における位相φ2を検出する。
In step S19, the signal processing unit 25 stores the azimuth θ2 and the phase φ2 measured using the reception ports P2 to Pn in the memory 27. For example, the signal processing unit 25 performs FFT processing on the beat signal obtained for each of the reception ports P1 to Pn for each of the reception ports P1 to Pn, so that the frequency spectrum for each of the reception ports P1 to Pn (hereinafter referred to as “second frequency”). Spectrum)). Then, the signal processing unit 25 performs a peak search of the signal intensity for the second frequency spectrum, and detects a frequency (beat frequency) and a phase when the signal intensity is a peak for each of the reception ports P1 to Pn. The signal processing unit 25 performs DBF synthesis on the beat signals obtained from the reception ports P2 to Pn for each beat frequency detected based on the second frequency spectrum, thereby performing the second angular spectrum illustrated in FIG. To get. The signal processing unit 25 detects the azimuth θ2 at which the signal intensity of the second angle spectrum peaks, and detects the phase φ2 in the azimuth θ2.
ステップS21において、信号処理部25は、受信ポートP1を用いて測定された位相Φ2をメモリ27に記憶する。すなわち、信号処理部25は、ステップS19の第2の周波数スペクトラムのうち受信ポートP1の周波数スペクトラムに基づいて検出されたピーク時の位相を位相Φ2としてメモリ27に記憶する。
In step S21, the signal processing unit 25 stores the phase Φ2 measured using the reception port P1 in the memory 27. That is, the signal processing unit 25 stores, in the memory 27, the phase at the peak detected based on the frequency spectrum of the reception port P1 in the second frequency spectrum in Step S19 as the phase Φ2.
ステップS23において、信号処理部25は、同距離、同速度、同方位の検出物体を抽出する。例えば、信号処理部25は、第1の周波数スペクトラムに基づいて検出されたビート周波数を用いて、方位θ1における検出物体の距離及び相対速度を周知の演算式に従って演算し、第2の周波数スペクトラムに基づいて検出されたビート周波数を用いて、方位θ2における検出物体の距離及び相対速度を周知の演算式に従って演算する。信号処理部25は、これらの両演算結果に基づいて、同距離、同速度、同方位の検出物体を抽出する。
In step S23, the signal processing unit 25 extracts detection objects having the same distance, the same speed, and the same direction. For example, the signal processing unit 25 uses the beat frequency detected based on the first frequency spectrum to calculate the distance and relative velocity of the detected object in the azimuth θ1 according to a well-known arithmetic expression, and generates the second frequency spectrum. Using the beat frequency detected on the basis, the distance and relative speed of the detected object in the azimuth θ2 are calculated according to a well-known arithmetic expression. The signal processing unit 25 extracts detection objects having the same distance, the same speed, and the same direction based on both the calculation results.
ステップS25において、信号処理部25は、スイッチ50の切替時間によって生じる位相遅れを相殺するため、ステップS21でメモリ27に記憶された位相Φ2からステップS15でメモリ27に記憶された位相Φ1を減算することによって、位相差ΔΦを算出する。
In step S25, the signal processing unit 25 subtracts the phase Φ1 stored in the memory 27 in step S15 from the phase Φ2 stored in the memory 27 in step S21 in order to cancel the phase delay caused by the switching time of the switch 50. Thus, the phase difference ΔΦ is calculated.
ステップS27において、信号処理部25は、ΔΦ、φ1、φ2を用いて、位相モノパルス方式によって、下式に従って、検出物体の上下方向の角度等の仰角情報を演算する。
In step S27, the signal processing unit 25 calculates elevation angle information such as an angle in the vertical direction of the detection object according to the following equation using ΔΦ, φ1, and φ2 by the phase monopulse method.
ここで、ηは、上下方向の角度、dは、受信ポート1,2の上下方向の距離、λはレーダ波の波長を表す。
Here, η is the angle in the vertical direction, d is the distance in the vertical direction of the
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、また、上述した実施例は、他の実施例の一部又は全部との組み合わせや置換などの種々の変形を加えることができる。
The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and the above-described embodiments can be combined with some or all of the other embodiments. Various modifications such as substitution can be added.
例えば、上述の説明では、アレーアンテナを構成する一つの素子アンテナのみに位相調整回路を設けた構成を示したが、アレーアンテナを構成する素子アンテナの少なくとも一つに位相調整回路があってもよい。
For example, in the above description, the configuration in which the phase adjustment circuit is provided only for one element antenna that constitutes the array antenna is shown, but at least one of the element antennas that constitute the array antenna may have a phase adjustment circuit. .
また、図7は、第2の形態に係るレーダ装置60の構成図である。上述の形態と同様の構成についての説明は省略する。レーダ装置60は、送信アンテナ61と、受信アンテナ62とを有している。
FIG. 7 is a configuration diagram of the radar apparatus 60 according to the second embodiment. A description of the same configuration as that of the above embodiment is omitted. The radar device 60 includes a transmission antenna 61 and a reception antenna 62.
送信アンテナ61は、レーダ波の位相を上下方向に互いにずらすための位相調整回路を有していない。受信アンテナ62は、左右方向に配列された複数の素子アンテナB1~Bnを含んで構成されるアレーアンテナを有している。素子アンテナB1は、素子アンテナB1が受信した反射波の上下方向の位相をずらすことが可能な位相調整回路U1を有している。他の素子アンテナB2~Bnについても全て、同様の位相調整回路U2~Unを有している。素子アンテナB2~Bnの各パッチアンテナは、受信ポートR1~Rn,Q1~Qnを介して接続されている。
The transmission antenna 61 does not have a phase adjustment circuit for shifting the phase of the radar wave in the vertical direction. The receiving antenna 62 has an array antenna including a plurality of element antennas B1 to Bn arranged in the left-right direction. The element antenna B1 has a phase adjustment circuit U1 that can shift the vertical phase of the reflected wave received by the element antenna B1. All of the other element antennas B2 to Bn have the same phase adjustment circuits U2 to Un. The patch antennas of the element antennas B2 to Bn are connected via reception ports R1 to Rn and Q1 to Qn.
物体検出部29のミキサ部28は、各素子アンテナB1~Bnの各受信ポートR1~Rn,Q1~Qnから供給される受信信号に、発振器23から供給されるローカル信号を混合することによって、素子アンテナB1~Bn毎のビート信号を出力するミキサS1~Sn,T1~Tnを有する。
The mixer unit 28 of the object detection unit 29 mixes the local signals supplied from the oscillator 23 with the reception signals supplied from the reception ports R1 to Rn and Q1 to Qn of the element antennas B1 to Bn. Mixers S1 to Sn and T1 to Tn for outputting beat signals for the antennas B1 to Bn are provided.
したがって、位相調整回路U1は、受信ポートQ1から出力される受信信号と受信ポートR1から出力される受信信号との間に上下方向の位相差を発生させることができる。したがって、信号処理部25は、この位相差に基づいて、素子アンテナB1で検出された物体の上下方向の角度を位相モノパルス方式で検出できる。他の位相調整回路U2~Unについても同様である。したがって、信号処理部25は、各素子アンテナB1~Bnの受信ポート間の位相差に基づいて、検出物体の上下方向の角度を精度良く検出できる。
Therefore, the phase adjustment circuit U1 can generate a vertical phase difference between the reception signal output from the reception port Q1 and the reception signal output from the reception port R1. Therefore, the signal processing unit 25 can detect the vertical angle of the object detected by the element antenna B1 based on this phase difference by the phase monopulse method. The same applies to the other phase adjustment circuits U2 to Un. Therefore, the signal processor 25 can accurately detect the vertical angle of the detection object based on the phase difference between the reception ports of the element antennas B1 to Bn.
1,22,62 受信アンテナ
2,21,61 送信アンテナ
3,23 発振器
5,25 信号処理部
4,24,28 ミキサ部
10,20,60 レーダ装置
11,12,51,52,53 給電点
26,29 物体検出部
27 メモリ
31,41,54 位相調整回路
32,42 パッチアンテナ
33,55 素子アンテナ
34,35 送信チャネル
43 アレーアンテナ
44,45 受信チャネル
50 スイッチ
A*(*は数字) 素子アンテナ
P*(*は数字) 受信ポート 1, 22, 62 Reception antenna 2, 21, 61 Transmission antenna 3, 23 Oscillator 5, 25 Signal processing unit 4, 24, 28 Mixer unit 10, 20, 60 Radar device 11, 12, 51, 52, 53 Feed point 26 , 29 Object detection unit 27 Memory 31, 41, 54 Phase adjustment circuit 32, 42 Patch antenna 33, 55 Element antenna 34, 35 Transmission channel 43 Array antenna 44, 45 Reception channel 50 Switch A * (* is a number) Element antenna P * (* Is a number) Receive port
2,21,61 送信アンテナ
3,23 発振器
5,25 信号処理部
4,24,28 ミキサ部
10,20,60 レーダ装置
11,12,51,52,53 給電点
26,29 物体検出部
27 メモリ
31,41,54 位相調整回路
32,42 パッチアンテナ
33,55 素子アンテナ
34,35 送信チャネル
43 アレーアンテナ
44,45 受信チャネル
50 スイッチ
A*(*は数字) 素子アンテナ
P*(*は数字) 受信ポート 1, 22, 62
Claims (6)
- 上下方向の位相が互いにずれたレーダ波を切り替えて送信する送信アンテナと、
前記レーダ波を反射した物体からの反射波を受信するアレーアンテナを有する受信アンテナと、
前記受信アンテナの受信結果を用いて、前記物体を検出する検出部とを備える、レーダ装置。 A transmission antenna that switches and transmits radar waves whose vertical phases are shifted from each other;
A receiving antenna having an array antenna for receiving a reflected wave from an object reflecting the radar wave;
A radar apparatus comprising: a detection unit that detects the object using a reception result of the reception antenna. - 前記送信アンテナは、送信するレーダ波の位相が上下方向に互いにずれる複数の送信チャネルを有し、前記送信チャネルを切り替えてレーダ波を送信する、請求項1に記載のレーダ装置。 The radar apparatus according to claim 1, wherein the transmission antenna has a plurality of transmission channels in which phases of radar waves to be transmitted are shifted in the vertical direction, and transmits the radar waves by switching the transmission channels.
- 前記検出部は、前記複数の送信チャネルのうち第1の送信チャネルでレーダ波を送信したときの前記受信結果と、前記複数の送信チャネルのうち第2の送信チャネルでレーダ波を送信したときの前記受信結果とを用いて、前記物体を検出する、請求項2に記載のレーダ装置。 The detection unit is configured to transmit the radar wave on the first transmission channel among the plurality of transmission channels and the radar wave on the second transmission channel among the plurality of transmission channels. The radar apparatus according to claim 2, wherein the object is detected using the reception result.
- 前記アレーアンテナを構成する素子アンテナの少なくとも一つは、受信した反射波の位相が上下方向に互いにずれる複数の受信チャネルを有する、請求項1から3のいずれか一項に記載のレーダ装置。 The radar apparatus according to any one of claims 1 to 3, wherein at least one of the element antennas constituting the array antenna has a plurality of reception channels in which phases of received reflected waves are shifted from each other in the vertical direction.
- 前記複数の受信チャネルのうちの第1の受信チャネルは、前記複数の受信チャネルのうちの第2の受信チャネルよりも、受信した反射波の位相を、前記レーダ波の位相ずれを戻す方向にずらす、請求項4に記載のレーダ装置。 The first reception channel of the plurality of reception channels shifts the phase of the received reflected wave in a direction to return the phase shift of the radar wave relative to the second reception channel of the plurality of reception channels. The radar apparatus according to claim 4.
- 前記検出部は、前記第1の受信チャネルで受信した反射波の位相と前記第2の受信チャネルで受信した反射波の位相との位相差を用いて、前記物体の上下方向の角度を検出する、請求項5に記載のレーダ装置。 The detection unit detects an angle in the vertical direction of the object using a phase difference between the phase of the reflected wave received by the first reception channel and the phase of the reflected wave received by the second reception channel. The radar apparatus according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/054113 WO2013124969A1 (en) | 2012-02-21 | 2012-02-21 | Radar device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/054113 WO2013124969A1 (en) | 2012-02-21 | 2012-02-21 | Radar device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013124969A1 true WO2013124969A1 (en) | 2013-08-29 |
Family
ID=49005192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054113 WO2013124969A1 (en) | 2012-02-21 | 2012-02-21 | Radar device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013124969A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160033632A1 (en) * | 2014-03-05 | 2016-02-04 | Delphi Technologies, Inc. | Mimo antenna with elevation detection |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06317654A (en) * | 1993-05-10 | 1994-11-15 | Mitsubishi Electric Corp | Radio wave receiving device |
JPH07288417A (en) * | 1994-04-15 | 1995-10-31 | Hitachi Ltd | Directional variable antenna |
JP2000284047A (en) * | 1999-03-31 | 2000-10-13 | Denso Corp | Radar system |
JP2008060897A (en) * | 2006-08-31 | 2008-03-13 | Mitsubishi Electric Corp | Antenna system |
JP2008145230A (en) * | 2006-12-08 | 2008-06-26 | Nippon Hoso Kyokai <Nhk> | Imaging device |
JP2008151582A (en) * | 2006-12-15 | 2008-07-03 | Denso Corp | Radar system |
WO2010122860A1 (en) * | 2009-04-23 | 2010-10-28 | 三菱電機株式会社 | Radar device and antenna device |
JP2011027695A (en) * | 2009-07-29 | 2011-02-10 | Toyota Motor Corp | Radar device |
-
2012
- 2012-02-21 WO PCT/JP2012/054113 patent/WO2013124969A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06317654A (en) * | 1993-05-10 | 1994-11-15 | Mitsubishi Electric Corp | Radio wave receiving device |
JPH07288417A (en) * | 1994-04-15 | 1995-10-31 | Hitachi Ltd | Directional variable antenna |
JP2000284047A (en) * | 1999-03-31 | 2000-10-13 | Denso Corp | Radar system |
JP2008060897A (en) * | 2006-08-31 | 2008-03-13 | Mitsubishi Electric Corp | Antenna system |
JP2008145230A (en) * | 2006-12-08 | 2008-06-26 | Nippon Hoso Kyokai <Nhk> | Imaging device |
JP2008151582A (en) * | 2006-12-15 | 2008-07-03 | Denso Corp | Radar system |
WO2010122860A1 (en) * | 2009-04-23 | 2010-10-28 | 三菱電機株式会社 | Radar device and antenna device |
JP2011027695A (en) * | 2009-07-29 | 2011-02-10 | Toyota Motor Corp | Radar device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160033632A1 (en) * | 2014-03-05 | 2016-02-04 | Delphi Technologies, Inc. | Mimo antenna with elevation detection |
US9541639B2 (en) * | 2014-03-05 | 2017-01-10 | Delphi Technologies, Inc. | MIMO antenna with elevation detection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6770489B2 (en) | Imaging radar sensor with narrow antenna lobe and wide angle detection range | |
US10983193B2 (en) | Communication unit, integrated circuits and methods for cascading integrated circuits | |
JP5093298B2 (en) | Direction detection device | |
US7898460B2 (en) | Radar target detecting method, and apparatus using the target detecting method | |
JP5610983B2 (en) | Radar equipment | |
US20100075618A1 (en) | Signal processing apparatus and radar apparatus | |
US11079485B2 (en) | Antenna device | |
JP2008039719A (en) | Radar device | |
WO2007083479A1 (en) | Radar apparatus | |
CN102754278A (en) | Radar sensor | |
JP2007333656A (en) | Radar device | |
JP5450940B2 (en) | Radar apparatus and target detection method | |
JP2011226794A (en) | Radar device | |
JP2019060732A (en) | Radar device and phase compensation method | |
US20170016985A1 (en) | Positioning system | |
JP4615542B2 (en) | Millimeter wave radar equipment | |
US12123943B2 (en) | Radar device | |
JP2012168194A (en) | Radar device | |
JP2010175471A (en) | Radar apparatus | |
JP2010156708A (en) | On-vehicle millimeter-wave radar device | |
JP2009031185A (en) | Radar system and target detecting method | |
WO2013124969A1 (en) | Radar device | |
JP2019158543A (en) | Radar system | |
KR20190113159A (en) | Radar apparatus | |
JP4967384B2 (en) | Radar equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12869162 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12869162 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |