WO2013122252A1 - ショックアブソーバ - Google Patents
ショックアブソーバ Download PDFInfo
- Publication number
- WO2013122252A1 WO2013122252A1 PCT/JP2013/053846 JP2013053846W WO2013122252A1 WO 2013122252 A1 WO2013122252 A1 WO 2013122252A1 JP 2013053846 W JP2013053846 W JP 2013053846W WO 2013122252 A1 WO2013122252 A1 WO 2013122252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve body
- working fluid
- port
- damping force
- fluid chamber
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/06—Characteristics of dampers, e.g. mechanical dampers
- B60G17/08—Characteristics of fluid dampers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/44—Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
- F16F9/46—Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
- F16F9/464—Control of valve bias or pre-stress, e.g. electromagnetically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2202/00—Indexing codes relating to the type of spring, damper or actuator
- B60G2202/20—Type of damper
- B60G2202/24—Fluid damper
Definitions
- the present invention relates to a shock absorber.
- a motor vehicle, a motorcycle and the like are provided with a shock absorber (shock absorber) in order to attenuate vibrations generated in the vehicle.
- the shock absorber usually comprises a cylinder, in which a piston and a support shaft for supporting the piston are provided.
- the inside of the cylinder is separated into two oil chambers by the piston, and the piston moves according to the expansion and contraction of the shock absorber, whereby the oil moves between the two oil chambers.
- the oil movement path is provided with an orifice, valve, etc. with a relatively narrow flow passage area as a damping force generation part, and the damping force is generated by the fluid resistance when passing through these narrow flow passages. Dampen the vibrations generated by the vehicle.
- shock absorber As a conventional shock absorber, there is a shock absorber provided with a damping force control valve (variable orifice) whose opening degree can be adjusted by electronic control.
- damping force control valve variable orifice
- shock absorbers there are a shock absorber in which the valve is installed in the cylinder and a shock absorber in which the valve is installed outside the cylinder. In either case, the main damping force generating portion
- the damping force control valve is installed in the bypass to the valve, and the damping force can be controlled by adjusting the opening degree of the damping force control valve according to the traveling conditions.
- FIG. 7 is a longitudinal sectional view schematically showing a shock absorber 401 shown in Patent Document 1.
- FIG. 7 (a) shows the shock absorber 401 at the time of the hard characteristic (at the time of full closing),
- FIG. 7 (b) These show the shock absorber 401 at the time of a soft characteristic (refer FIG. 1 of patent document 1).
- the shock absorber 401 comprises a cylinder 402 with a piston 403.
- the space in the cylinder 402 is divided by the piston 403 into an upper cylinder chamber 402 a and a lower cylinder chamber 402 b.
- the piston 403 is provided with main fluid passages 407 and 408.
- Damping force generators 409 and 410 are provided in the main fluid passages 407 and 408, respectively.
- the bypass 412 is provided with a damping force generator 413 and a check valve 414.
- the flow path resistance of the damping force generating portion 413 is smaller than that of the damping force generating portions 409 and 410 of the main fluid passages 407 and 408.
- a cylindrical guide member 415 having an opening 416 is installed in the bypass 412.
- a shutter-shaped valve body 417 is provided inside the guide member 415.
- the valve body 417 is provided with passages 419 and 420.
- the valve body 417 is disposed on the rod 423.
- the rod 423 is supported by the support member 421 and linearly reciprocates by the solenoid actuator 424.
- damping force control in the bypass 412 is performed by adjusting the flow passage area of the bypass 412.
- the valve body 417 has a shutter shape, the range of controllable flow rate in the bypass 412 (the minimum value and the maximum value of the area of the communicating portion between the opening 416 and the passage 419 In order to widen the difference with the value, it is necessary to secure a wide area in which the valve body 417 and the guide member 415 are opposed in the radial direction. Therefore, the radial dimension of the valve body 417 can not but be increased.
- the rod 423 connecting the solenoid actuator 424 and the valve body 417 protrudes from the support member 421 so that the valve body 417 shuts off the oil passage (bypass 412).
- the spring 422 needs to be further strengthened, and the size of the solenoid actuator 424 is further increased.
- the installation space of the valve as much as possible because the installation space of the equipment is limited.
- the demand for weight reduction of the valve is also very strong. Therefore, enlargement of the valve should be avoided as much as possible.
- the present invention has been made in view of the above-described problems, and while ensuring good running performance even when the current can not be supplied, a wide range of small and controllable flow rates can be secured. It is to provide a shock absorber.
- the present invention adopts the following configuration in order to solve the problems described above.
- a shock absorber is A damping force generating unit that generates damping force by fluid resistance of the working fluid; And a damping force control valve disposed in a bypass to the damping force generation unit,
- the damping force control valve is A valve body linearly reciprocated by a solenoid;
- a first working fluid chamber including a guide hole through which the valve body is inserted, and a port formed at a position facing the end face of the valve body;
- a second working fluid chamber in which an end opposite to the end face of the valve body is exposed;
- An urging body that applies a force to the valve body along an axial direction of the valve body; And a passage communicating the first working fluid chamber with the second working fluid chamber.
- a gap between the end face of the valve body and the port is a flow passage through which the working fluid passes,
- the opening degree of the flow passage is changed by the position of the end face of the valve body, whereby the damping force is controlled,
- the valve body is separated from the port, and when the solenoid is not energized, the biasing body causes a force toward the port along the axial direction of the valve body by the biasing body. , Added to the valve body, thereby moving the valve body to the closed position.
- the end face of the valve body and the port face each other, and the gap between the end face of the valve body and the port is a flow path through which the working fluid passes.
- the degree of opening of the flow path is changed by the position of the end face of the valve body that linearly reciprocates in the axial direction, whereby the damping force is controlled.
- the amount of change in the flow passage area with respect to the stroke (displacement in the axial direction) of the valve body is large. Therefore, a wide controllable flow rate range can be secured in the bypass without increasing the diameter of the valve body.
- the distance between the end face of the opposite valve body and the port is a flow path through which the working fluid passes, so when adjusting the position of the end face of the valve body, the inside of the valve body and the first working fluid chamber It does not slide with the wall. Therefore, the increase in friction due to sliding can be avoided. In addition, since a sliding portion does not occur around the flow path through which the working fluid passes, the increase in friction due to the entrapment of minute foreign matter does not occur.
- the flow of the working fluid in the first working fluid chamber is discharged to the outside of the first working fluid chamber through the port.
- the pressure difference between the downstream end of the valve body and the opposite end of the downstream end is small based on the direction. Therefore, generation of a pressure difference between the first working fluid chamber and the second working fluid chamber can be suppressed. Therefore, there is no need to strengthen the biasing body as in the shock absorber shown in FIG. The enlargement of the solenoid can be avoided.
- the biasing body applies a force to the valve disc toward the port along the axial direction of the valve disc.
- the valve disc pushes away the working fluid in the first working fluid chamber and moves toward the port, but the pressure at that time propagates to the second working fluid chamber 40 through the passage, so the first working fluid
- the increase in pressure in the room can be suppressed.
- the increase in friction during movement of the valve body is prevented. Therefore, the gap between the end face of the valve body and the port can be quickly closed only by the biasing force of the biasing body.
- the shock absorber of (1) can ensure a wide range of compact and controllable flow rates while securing good running performance even when the current can not be supplied.
- the shock absorber of (1) The passage is provided along the axial direction of the valve body, and the first working fluid chamber and the second operation are operated when the solenoid is not energized and the space between the valve body and the port becomes narrow.
- the fluid chambers it is preferable to reduce the pressure difference between the two working fluid chambers by flowing the working fluid from the working fluid chamber on the high pressure side to the working fluid chamber on the low pressure side.
- the passage communicating the first working fluid chamber and the second working fluid chamber is relatively short. Therefore, when the space between the end face of the valve body and the port (flow path of the working fluid) is closed, pressure transmission between the first working fluid chamber and the second working fluid chamber occurs rapidly. Thereby, the generation of the pressure difference between the first working fluid chamber and the second working fluid chamber can be suppressed more effectively. Therefore, responsiveness can be further enhanced.
- the passage connecting the first working fluid chamber and the second working fluid chamber is further shortened, and the passage approaches the port when the distance between the valve body and the port narrows. Responsiveness can be improved.
- the passage since the passage is provided in the valve body, the space for forming the passage may not be secured outside the valve. Therefore, enlargement of the valve can be avoided.
- the biasing body is installed in the first working fluid chamber and applies a force to the valve body in the axial direction of the valve body toward the port.
- the valve body can be smoothly moved by pulling the valve body to the first working fluid chamber side by the biasing body, so that the positional stability of the valve body and Responsiveness is further improved.
- the shock absorber according to any one of (1) to (4),
- the biasing body is disposed at a position where a part of the biasing body overlaps the passage in the axial direction of the valve body, and the valve body is directed to the port along the axial direction of the valve body with respect to the valve body It is preferable to apply force.
- the damping force control valve can be miniaturized.
- the shock absorber according to any one of (1) to (4), The biasing body is disposed at a position where all of the biasing body overlaps the passage in the axial direction of the valve body, and a force directed to the port along the axial direction of the valve body with respect to the valve body
- the damping force control valve can be further miniaturized.
- FIG. 1 is a longitudinal sectional view schematically showing a damping force control valve 10 provided in a shock absorber 100 according to the present invention.
- FIG. 1 shows the closed state of the damping force control valve 10 when it is not energized.
- the direction in which the working fluid of the first working fluid chamber 30 is discharged through the first port 30a is referred to as the downstream direction D.
- a direction opposite to the downstream direction D along the axial direction S of the valve body 20 is referred to as an opposite direction U.
- the damping force control valve 10 includes a hollow cylindrical outer cylinder 11 (housing).
- the outer cylinder 11 includes an opening 11 a on the downstream direction D side and an opening 11 b on the opposite direction U side.
- the inner cylinder 12 is fitted into the opening 11 b of the outer cylinder 11.
- the opposite direction U side end of the outer cylinder 11 is bent inward and abuts against the inner cylinder 12 in the axial direction S, whereby the outer cylinder 11 and the inner cylinder 12 are fixed.
- the outer cylinder 11 has a flange portion 11 c that annularly protrudes toward the axial center at a substantially central portion in the axial direction S.
- the flange portion 11c has a cylindrical portion 11d extending toward the opening 11b at its inner edge.
- the cylindrical guide member 13 is inserted into the cylindrical portion 11 d.
- the guide member 13 has a flange portion 13a on the downstream direction D side.
- the flanges 11c and 13a are in contact with each other. Thereby, in the outer cylinder 11, the movement to the opposite direction U side of the guide member 13 is regulated.
- the guide member 13 is provided with a guide hole 13b.
- a hollow cylindrical valve body 20 is slidably inserted into the guide hole 13b.
- the valve body 20 has an end face 20a on the downstream direction D side and an end face 20b on the opposite direction U side.
- the valve body 20 is formed with a passage 21 extending from the end face 20a to the end face 20b.
- the passage 21 includes a large diameter portion 21 a including an end surface 20 a on the downstream direction D side, and a communication portion 21 b extending toward the second working fluid chamber 40 from the opposite direction U side end of the large diameter portion 21 a.
- the communicating portion 21 b is a columnar space, and the diameter is substantially constant.
- the opening area of the passage 21 (large diameter part 21a) at the end face 20a on the downstream direction D side of the valve body 20 is larger than the opening area of the communication part 21b.
- the diameter of the communication portion 21b is the smallest. That is, in the damping force control valve 10, the communication portion 21b is the smallest diameter portion in the passage 21.
- the boundary between the large diameter portion 21 a and the communication portion 21 b in the axial direction S is located in the first working fluid chamber 30.
- the end face 20 a on the downstream direction D side of the valve body 20 faces the first port 30 a of the first working fluid chamber 30.
- the end surface 20a does not abut on the wall surface (bottom surface 26a) of the first working fluid chamber 30.
- the valve body 20 is made of a nonmagnetic material.
- a hollow cylindrical support member 14 is installed on the opposite direction U side of the cylindrical portion 11 d.
- the support member 14 faces the cylindrical portion 11 d coaxially with the cylindrical portion 11 d.
- the supporting member 14 has an opening 14a formed on the downstream direction D side, an opening 14b formed on the opposite direction U side, and a guide portion 14c which annularly protrudes toward the axial center at a substantially central portion in the axial direction S Have.
- An annular bearing 20c is installed on the inner peripheral side of the guide portion 14c.
- the valve body 20 is inserted into the bearing 20c, and the bearing 20c slidably supports the valve body 20.
- a spring receiving member 15 is fixed on the inner peripheral surface of the support member 14 closer to the opening 14 b than the guide portion 14 c.
- An annular seal 16 (e.g., an O-ring) for sealing between the support member 14 and the spring receiving member 15 is provided on the outer peripheral surface of the spring receiving member 15.
- a cap 17 is provided at the opposite direction U side end of the support member 14. The cap 17 closes the opening 14 b.
- a second working fluid chamber 40 is formed between the guide portion 14 c and the spring receiving member 15.
- the end face 20 b of the valve body 20 is exposed in the second working fluid chamber 40.
- the coil spring 18 is supported by the end face 20 b of the valve body 20 and the spring receiving member 15.
- the coil spring 18 biases the valve body 20 in the downstream direction D.
- a cylindrical cylindrical member 19 is provided to connect the cylindrical portion 11 d and the support member 14.
- the cylindrical member 19 is made of a nonmagnetic material.
- a bobbin 22 is provided in the outer cylinder 11, a bobbin 22 is provided.
- the bobbin 22 covers the outer peripheral surface of the support member 14 and the outer peripheral surface of the cylindrical member 19.
- a solenoid coil 23 is wound around the bobbin 22.
- An annular plate-like cap 24 is attached between the bobbin 22 and the inner cylinder 12 on the inner peripheral surface of the outer cylinder 11.
- the cap 24 is made of a magnetic material (for example, iron).
- a cylindrical plunger 25 is fixed between the guide member 13 and the guide portion 14c.
- the inner diameter of the cylindrical portion 11 d is larger than the outer diameter of the plunger 25.
- the inner diameter of the portion closer to the opening 14 a than the guide portion 14 c is larger than the outer diameter of the plunger 25. Therefore, the plunger 25 can move in the axial direction S between the guide member 13 and the guide portion 14c.
- the damping force control valve 10 by adjusting the magnetic flux density of the magnetic field generated by the solenoid coil 23, the plunger 25 can be moved in the axial direction S between the guide member 13 and the guide portion 14c. Thereby, the valve body 20 moves in the axial direction S.
- the solenoid coil 23 and the coil spring 18 constitute a solenoid.
- the installation space 25 a of the plunger 25 is formed by the cylindrical portion 11 d, the guide member 13, the guide portion 14 c and the cylindrical member 19.
- the working fluid HO is also filled in the installation space 25a.
- the space 25 a communicates with the first working fluid chamber 30 via a gap between the outer peripheral surface of the valve body 20 and the inner peripheral surface of the guide member 13.
- the space 25 a communicates with the second working fluid chamber 40 through a gap between the outer peripheral surface of the valve body 20 and the inner peripheral surface of the guide portion 14 c.
- a substantially cylindrical valve head 26 with a bottom is disposed on the side of the opening 11 a in the outer cylinder 11 so as to contact the flange portion 13 a of the guide member 13.
- a first port 30 a is formed at the center of the bottom surface 26 a of the valve head 26.
- the first port 30 a is installed at a position facing the end face 20 a of the valve body 20.
- the working fluid path 31 extends from the first port 30a in the downstream direction D.
- the valve head 26 is provided with a second port 30 b on the outer peripheral wall 26 c of the valve head 26.
- the working fluid passage 32 extends radially from the second port 30b.
- a first working fluid chamber 30 is constituted by the valve head 26 and the guide member 13.
- the first working fluid chamber 30 is provided with a guide hole 13 b.
- the first working fluid chamber 30 and the second working fluid chamber 40 are disposed opposite to each other with the valve body 20 interposed therebetween.
- the end face 20 a of the valve body 20 is disposed on the first working fluid chamber 30 side.
- the first working fluid chamber 30 and the second working fluid chamber 40 are in communication via the passage 21 of the valve body 20.
- a space in the first working fluid chamber 30 is located around the outer peripheral surface of the valve body 20. The working fluid flows from the working fluid passage 32 along the radial direction of the valve body 20 into the first working fluid chamber 30.
- the guide hole 13b and the first port 30a are formed at mutually opposing positions across the space in the first working fluid chamber 30.
- the distance between the guide hole 13b and the first port 30a is longer than the distance between the first port 30a and the second port 30b.
- the distance between the guide hole 13b and the second port 30b is longer than the distance between the first port 30a and the second port 30b.
- the second port 30b is closer to the first port 30a than the guide hole 13b.
- the second port 30 b is provided between the guide hole 13 b and the first port 30 a.
- no member that slides on the valve body 20 is provided.
- the guide hole 13b and the valve body 20 slide, but the portion where the guide hole 13b and the valve body 20 slide is provided at a position separated from the first port 30a and the second port 30b. Therefore, it is possible to suppress an increase in friction due to minute foreign matter.
- a circlip 33 as a fixture is fixed to the outer periphery of the valve body 20.
- a fixing tool is not limited to a circlip.
- a coil spring 34 as a biasing body is installed between the circlip 33 and the bottom surface 26 a of the valve head 26 on the downstream direction D side of the circlip 33.
- the valve body 20 is inserted into the coil spring 34.
- the diameter of the coil spring 34 increases. Therefore, the flow of the working fluid from the working fluid passage 32 to the working fluid passage 31 via the first working fluid chamber 30 is less likely to be blocked by the coil spring 34.
- a coil spring 35 as an urging body is installed between the circlip 33 and the downstream side surface 13c of the guide member 13 on the opposite direction U side of the circlip 33 as a fixing tool.
- the valve body 20 is inserted through the coil spring 35. As the reverse direction U is approached, the diameter of the coil spring 35 increases.
- an urging body is not limited to a coil spring,
- conventionally well-known urging bodies such as a leaf
- FIG. 2 is a longitudinal sectional view schematically showing the damping force control valve shown in FIG. 1 in an open state (a), a minute open state (b) and a closed state (c).
- the damping force control valve 10 a part (approximately half) of the end face 20a (see FIG. 1) of the valve body 20 is subjected to slant processing.
- the end face 20a includes the flat portion 20d and the inclined portion 20e which is inclined in the opposite direction D from the flat portion 20d.
- FIG. 2B shows the valve body 20 moving in the downstream direction D.
- the flat portion 20d of the end face 20a of the valve body 20 has an axis. In the direction S, it exists at the same position as the first port 30a. There is a space between the slope 20e and the first port 30a. This interval is the flow path T of the working fluid. Since the large diameter portion 21a is formed in the valve body 20, when part of the working fluid that has passed through the flow path T of the working fluid flows in the opposite direction U, it forms a vortex and diffuses in the large diameter portion 21a. It becomes easy to go to the downstream direction D. Therefore, the generation of the pressure difference between the first working fluid chamber 30 and the second working fluid chamber 40 can be suppressed more efficiently.
- the flow path T is a part of the outer peripheral edge of the valve body 20 and the first It is a distance from a part of the outer peripheral edge of one port 30a. Therefore, the change in the opening area of the flow passage T with respect to the stroke (displacement amount in the axial direction S) of the valve body 20 is relatively small.
- the valve body 20 is further moved in the downstream direction D from the state shown in FIG. 2B by the coil springs 18, 34, 35, and stops at the position shown in FIG. 2C.
- This position is the closed position of the valve body 20.
- the closed position is the position on the most downstream direction D side where the valve body 20 is moved by the coil springs 18, 34, 35 when the solenoid coil 23 is not energized.
- the first port 30 a is preferably closed by the valve body 20. In other words, it is preferable that the first port 30 a be substantially fully closed by the valve body 20 when the valve body 20 is in the closed position.
- the term "substantially fully closed state” as used herein means that a case where a slight amount of opening occurs depending on the use state or the like is allowed.
- the first port 30 a may be completely closed by the valve body 20.
- the downstream direction D side end of the passage 21 enters the first port 30a, and the passage 21 communicates with the working fluid chamber 31.
- FIG. 3 is a longitudinal sectional view schematically showing an open state (a), a minute open state (b) and a closed state (c) of a damping force control valve according to another embodiment of the present invention.
- 3 is the same as FIG. 2 except for the shape of the downstream end D side end of the valve body 20, in FIG. 3, the same reference numerals are given to the same configuration as FIG. Omit or simplify.
- the end face 20 a ′ on the downstream direction D side of the valve body 20 is flat.
- the solenoid coil 23 is deenergized in the state shown in FIG. 3A
- the valve body 20 moves in the downstream direction D.
- the damping force control valve 10 becomes a minute opening degree.
- the flow path T is the distance between the entire outer peripheral edge of the valve body 20 and the fully open peripheral edge of the first port 30a.
- the valve body 20 is further moved in the downstream direction D, and as shown in FIG. 3C, the end face 20a 'of the valve body 20 and the first port 30a exist at the same position in the axial direction S.
- the end face 20a 'of the body 20 closes the first port 30a.
- the end face 20a 'of the valve body 20 is located at the closed position.
- FIG. 4 is a longitudinal sectional view schematically showing an open state (a), a minute opening degree state (b) and a closed state (c) of a damping force control valve according to another embodiment of the present invention.
- 4 is the same as FIG. 2 except for the shape of the downstream direction D side end of the valve body 20, in FIG. 4 the same reference numerals are given to the same configuration as FIG. , Omit or simplify the explanation.
- the valve body 20 includes the passage 21 penetrating the valve body 20 in the axial direction S, but the large diameter portion 21 a is not formed.
- the valve body 20 is provided with an annular end surface 20 a ′ ′.
- the end face 20a '' of the valve body 20 and the first port 30a exist at the same position in the axial direction S,
- the end face 20a 'of the valve body 20 closes the first port 30a.
- the end face 20a 'of the valve body 20 is located at the closed position.
- 5 and 6 are hydraulic circuit diagrams showing a shock absorber 100 provided with the damping force control valve 10 shown in FIG.
- the shock absorber 100 is provided with a hydraulic cylinder 112.
- a piston assembly 144 is installed in the hydraulic cylinder 112 in the hydraulic cylinder 112 .
- the hydraulic cylinder 112 is divided into two working fluid chambers 158 and 160 by a piston assembly 144.
- One end of the piston rod 162 is inserted into the hydraulic cylinder 112 from one end side of the hydraulic cylinder 112 and is fixed to the piston assembly 144.
- the other end of the piston rod 162 is connected to the vehicle body side (not shown) of the vehicle.
- the other end of the hydraulic cylinder 112 is connected to the wheel side (not shown) of the vehicle body.
- the piston assembly 144 as a damping force generator includes damping valves 148 and 150 with a plurality of shims.
- the damping valve 148 can flow the working fluid from the working fluid chamber 160 to the working fluid chamber 158, at which time a damping force is generated (elongation damping).
- the working fluid can not flow in the opposite direction.
- the damping valve 150 can flow the working fluid from the working fluid chamber 158 to the working fluid chamber 160, at which time a damping force is generated (shrinkage damping).
- the working fluid can not flow in the opposite direction.
- a damping force adjustment device 116 is installed between the working fluid chamber 158 and the reservoir tank 114.
- the damping force control valve 10 a damping valve 116b having a plurality of shims, and a check valve 116c are installed in parallel.
- the damping valve 116 b can flow the working fluid from the hydraulic cylinder 112 side to the reservoir tank 114 side, and can not flow the working fluid in the opposite direction.
- the check valve 116 c can flow the working fluid from the reservoir tank 114 side to the hydraulic cylinder 112 side.
- the working fluid can not flow in the opposite direction.
- the working fluid O and the gas G are contained in the reservoir tank 114, and the working fluid O and the gas G are in contact at the interface OS.
- the working fluid O is, for example, working oil or the like.
- the gas G is, for example, nitrogen gas or air.
- the damping force control valve 10 in the state shown in FIGS. 2 (a) and 2 (b), 3 (a) and 3 (b), and FIGS. 4 (a) and 4 (b), the working fluid It is possible to flow from 32 to the working fluid passage 31 via the first working fluid chamber 30.
- the damping force control valve 10 can also flow in the opposite direction. Further, as shown in FIGS. 5 and 6, the damping force control valve 10 is installed as a bypass for the damping valve 116b.
- the resistance when flowing through the damping force adjusting device 116 increases the pressure of the working fluid in the hydraulic cylinder 112 and resists the movement of the piston rod 162 in the X1 direction (cylinder The pressure of the working fluid (cross sectional area of the piston rod 162), that is, the compression damping force (1) is generated.
- the opening degree of the damping force control valve 10 is adjusted, the ratio of the flow rate between the damping valve 116 b and the damping force control valve 10 changes, so that the resistance of the damping valve 116 is adjusted and the compression acting on the piston rod 162 Damping force is adjusted.
- the working fluid flows from the working fluid chamber 158 toward the working fluid chamber 160 also in the damping valve 150 of the piston assembly 144, and the resistance at that time acts on the piston assembly 144 and the compression damping force (2) on the piston rod 162 Is added as
- the shock absorber 100 when the piston assembly 144 moves in the X2 direction, as shown in FIG. 6, the working fluid of the volume from which the piston rod 162 is withdrawn passes through the check valve 116 c without resistance and returns to the hydraulic cylinder 112.
- the damping force control valve 10 part of the damping force at the time of compression can be adjusted by the damping force control valve 10.
- the compression damping force (1) generated by the approach of the piston rod 162 in the damping forces during compression ie, the above-mentioned compression damping forces (1) and (2)
- the shock absorber 100 may be capable of adjusting all of the damping force at the time of compression by the damping force control valve 10.
- a check valve may be provided to flow the working fluid from the working fluid chamber 158 to the working fluid chamber 160.
- the shock absorber 100 configured as described above, when the piston assembly 144 moves in the X1 direction, the above-described compression damping force (1) is generated, but the above-described compression damping force (2) is not generated. Therefore, by adjusting the compression damping force (1), it is possible to adjust all of the damping forces at the time of compression.
- the end face 20a of the valve body 20 and the first port 30a face each other, and the gap between the entire outer peripheral edge of the end face 20a of the valve body 20 and the entire outer peripheral edge of the first port 30a is , Flow path T of the working fluid.
- the opening degree of the flow path T is changed by the position of the end face 20a of the valve body 20, whereby the damping force is controlled. Since the amount of change in the flow passage area with respect to the stroke of the valve body 20 is large, a wide controllable flow rate range can be secured in the bypass with respect to the damping valve 116b as the damping force generating portion without increasing the diameter of the valve body 20.
- the distance between the end face 20a of the valve body 20 and the first port 30a is the flow path T of the working fluid, so when adjusting the position of the end face 20a of the valve body 20, The inner wall surface of the working fluid chamber 30 does not slide. Therefore, the increase in friction due to sliding can be avoided. In addition, since a sliding portion does not occur around the flow path T of the working fluid, an increase in friction due to entrapment of minute foreign matter does not occur.
- first working fluid chamber 30 and the second working fluid chamber 40 communicate with each other through the passage 21 of the valve body 20, the end face 20a on the downstream direction D side of the valve body 20 and the opposite direction U side The pressure difference with the end face 20b is small. Therefore, the generation of the pressure difference between the first working fluid chamber 30 and the second working fluid chamber 40 can be suppressed. As a result, enlargement of the solenoid can be avoided.
- the coil springs 18, 34, 35 apply a force to the valve body 20 toward the first port 30a along the axial direction of the valve body 20.
- the valve body 20 displaces the working fluid in the first working fluid chamber 30 and moves toward the first port 30 a, but the pressure at that time propagates to the second working fluid chamber 40 via the passage 21.
- the pressure increase of the first working fluid chamber 30 is suppressed.
- the sliding movement between the valve body 20 and the other members does not occur in the first working fluid chamber 30, an increase in friction during movement of the valve body 20 is prevented.
- the gap between the end face 20a of the valve body 20 and the first port 30a can be quickly closed only by the biasing force of the coil springs 18, 34, 35.
- the responsiveness at the time of non-energization of the solenoid is excellent. Can quickly obtain hard characteristics. Therefore, the shock absorber 100 can ensure a wide range of small and controllable flow rates while securing good traveling performance even when the current can not be supplied.
- the passage 21 penetrates the valve body 20 along the axial direction of the valve body 20, the passage 21 is short. Therefore, when the solenoid coil 23 can not be energized and the distance between the valve body 20 and the first port 30a becomes narrow, the pressure difference between the first working fluid chamber 30 on the high pressure side and the second working fluid chamber 40 on the low pressure side It can be made smaller quickly and has excellent responsiveness. Further, since the passage 21 is provided in the valve body 20, the space for forming the passage 21 may not be secured outside the valve body 20. Therefore, enlargement of the valve can be avoided.
- the coil spring 34, 35 is disposed in the first working fluid chamber 30, and in order to apply a force toward the first port 30a along the axial direction of the valve body 20 to the valve body 20, One working fluid chamber 30 can be smoothly pulled out.
- the coils 34 and 35 are disposed at positions where the coils 34 and 35 overlap the passage 21 in the axial direction S of the valve body 20, and the first port along the axial direction S of the valve body 20 with respect to the valve body 20. Add force towards 30a. Therefore, since the coil springs 34 and 35 and the valve body 20 can be disposed more compactly, the damping force control valve 10 can be further miniaturized.
- the arrangement method of a damping force adjustment device is not limited to the above-mentioned example.
- the shock absorber 100 shown in FIGS. 5 and 6 is configured to allow the working fluid to flow in both directions with respect to the damping force control valve 10, the present invention is not limited to this example.
- the working fluid can be made to flow in a direction in which the working fluid is discharged from at least the first working fluid chamber 30 via the first port 30a.
- the shock absorber 100 may be configured to flow the working fluid in a direction to discharge the working fluid from the first working fluid chamber 30 via the first port 30a at the time of extension, and at the time of retraction, the first working fluid chamber 30 may be configured to flow the working fluid in the direction of discharging the working fluid via the first port 30a.
- a damping force adjustment device 116 is installed between the hydraulic cylinder 112 and the reservoir tank 114, and a check valve 116c as a damping force generation unit for generating a contraction damping force is provided in the damping force adjustment device 116.
- the damping force control valve 10 is installed in the bypass for the damping valve 116b. At the time of retraction, in the damping force adjustment device 116, the working fluid of the volume of the piston rod 162 entering the hydraulic cylinder 112 flows. A portion of the working fluid flows through the damping valve 116 b, and the remaining portion of the working fluid flows through the damping force control valve 10.
- the damping valve 116 b and the damping force control valve 10 are in a bypass relationship with each other.
- the present invention is not limited to this example.
- a damping valve as a damping force generation unit may be installed in the shock absorber 100.
- the damping force control valve 10 is installed in the bypass to the check valve 116c that generates the stretching damping force.
- the damping force adjustment device 116 the working fluid flows by the volume of the piston rod 162 which is withdrawn from the inside of the hydraulic cylinder 112. A portion of the working fluid flows through the damping valve, and the remaining portion of the working fluid flows through the damping force control valve 10.
- the damping valve and the damping force control valve 10 are in a bypass relationship with each other.
- the damping force control valve 10 may be installed outside the hydraulic cylinder 112 in a bypass for the damping force generating portion (the damping valve 116b) that generates the contraction damping force. It may be installed in the bypass for the damping force generating part to generate, and may be installed in both bypasses.
- damping force control valve 10 may be installed in a bypass to damping valve 150 in hydraulic cylinder 112. At the time of retraction, in the damping valve 150, the working fluid of the volume reduction of the working fluid chamber 158 flows. A portion of the working fluid flows through the damping valve 150, and the remaining portion of the working fluid flows through the damping force control valve 10. At this time, the damping valve 150 and the damping force control valve 10 are in a bypass relationship with each other. Furthermore, damping force control valve 10 may be installed in a bypass to damping valve 150 in hydraulic cylinder 112. At the time of extension, at the damping valve 148, the working fluid of the volume reduction of the working fluid chamber 160 flows. A portion of the working fluid flows through the damping valve 148, and the remaining portion of the working fluid flows through the damping force control valve 10. At this time, the damping valve 148 and the damping force control valve 10 are in a bypass relationship with each other.
- the damping force control valve 10 may be installed in the hydraulic cylinder 112 in a bypass to the damping force generating portion (damping valve 150) that generates the contraction damping force. It may be placed in a bypass for the damping force generating part (damping valve 148) to be generated, or it may be placed in both bypasses.
- the damping force control valve 10 may be installed in a bypass for the damping force generation unit, and the installation position and the installation mode of the damping force control valve 10 are not particularly limited.
- the passage 21 penetrates the valve body 20 in the axial direction S.
- the formation position of the passage 21 is not limited to this example.
- the passage may be formed on the outer peripheral side surface of the valve body 20 along the axial direction S.
- the passage may not be formed in the valve body 20.
- the passage may be formed in a member facing the outer peripheral side surface of the valve body 20 along the axial direction S.
- coil springs 34 and 35 as biasing members are installed in the first working fluid chamber 30.
- the coil spring 35 is an urging body that applies a force toward the first port 30 a to the valve body 20 when it is extended.
- the coil spring 34 is an urging body that applies a force toward the first port 30 a to the valve body 20 during retraction. In the present invention, any one of these two biasing members may be provided.
- valve body shape of a valve body is not limited to the above-mentioned example.
- the valve body may have a hollow rectangular tube shape.
- shape of the oil passage is not limited to the above example, and the cross section of the oil passage may be polygonal or elliptical.
- a proportional solenoid is used as the solenoid has been described.
- the present invention is not limited to this example, and an ON / OFF solenoid may be used as the solenoid, for example.
- damping force control valve 20 valve body 21 passage 21a large diameter portion 21b communicating portion 23 solenoid coil 26 valve bed 30 first working fluid chamber 30a first port 40 second working fluid chamber 100 shock absorber
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Vehicle Body Suspensions (AREA)
- Fluid-Damping Devices (AREA)
- Magnetically Actuated Valves (AREA)
Abstract
通電不能時の減衰力を大きく設定したショックアブソーバーを提供する。ショックアブソーバー100の減衰力発生部のバイパス中に、減衰力制御弁10を配置する。減衰力制御弁10は、ソレノイド23により往復動する弁体20と、ポート30aを備えた第一作動流体室30と、通路21と通じる第二作動流体室40と、コイルバネ35を備える。ソレノイド23への通電量が多いほど、弁体20がポート30aから離れ、バイパス中を流れる減衰媒体の流量が多くなる。コイルバネ35により、弁体20にはポート30aに向かう力が付与されているので、ソレノイド23の非通電時には弁体20がポート30aを閉じる位置に移動する。
Description
本発明は、ショックアブソーバに関する。
一般に、自動車および自動二輪車等には、車両において発生する振動を減衰するためにショックアブソーバ(緩衝器)が設けられている。ショックアブソーバは、通常、シリンダを備え、シリンダ内に、ピストンと、ピストンを支持する支持軸とが設けられている。シリンダ内は、ピストンによって、2つのオイル室に分離されており、ショックアブソーバの伸縮に合わせてピストンが動き、これにより、2つのオイル室の間でオイルが移動する。オイルの移動経路には、減衰力発生部として、比較的流路面積の狭いオリフィス、バルブ等が設けられており、これらの面積の狭い流路を通過するときの流体抵抗により、減衰力を発生させ、車両に発生する振動を減衰させる。
従来のショックアブソーバとして、電子制御により開度の調整が可能な減衰力制御弁(可変オリフィス)を備えたショックアブソーバが存在する。このようなショックアブソーバとしては、バルブがシリンダ内に設置されたショックアブソーバと、バルブがシリンダ外に設置されたショックアブソーバとが存在するが、いずれの場合であっても、主としての減衰力発生部に対するバイパス中に減衰力制御弁が設置され、走行条件に応じて減衰力制御弁の開度を調整することにより、減衰力を制御することができる。
従来の減衰力制御弁としては、ソレノイドを用いた流量制御弁で、断線等により通電不能となった場合には、弁が閉じてハード特性となり、良好な走行性能を確保しようとする弁がある(例えば、特許文献1参照)。
図7は、特許文献1に示すショックアブソーバ401を模式的に示す縦断面図であり、図7(a)は、ハード特性時(全閉時)のショックアブソーバ401を示し、図7(b)は、ソフト特性時のショックアブソーバ401を示す(特許文献1の図1参照)。
ショックアブソーバ401は、ピストン403を有するシリンダ402を備えている。シリンダ402内の空間は、ピストン403により、シリンダ上室402aと、シリンダ下室402bとに分けられている。ピストン403には、主油液通路407、408が設けられている。主油液通路407、408には、減衰力発生部409、410が設けられている。一方、バイパス412には、減衰力発生部413と逆止弁414とが設けられている。減衰力発生部413の流路抵抗は、主油液通路407、408の減衰力発生部409、410よりも小さい。
バイパス412には、開口部416を備えた筒状のガイド部材415が設置されている。ガイド部材415の内側に、シャッタ形状の弁体417が設けられている。弁体417には、通路419、420が設けられている。弁体417は、ロッド423に設置されている。ロッド423は、支持部材421に支持され、ソレノイドアクチュエータ424によって直線往復動する。これにより、開口部416と通路419との流路の開度が調整される。つまり、バイパス412における減衰力制御は、バイパス412の流路面積の調整により行われる。
図7(a)では、弁体417によりバイパス412が全閉となるので、減衰力特性がハード特性となる。一方、図7(b)では、弁体417によりバイパス412が開くので、減衰力特性がソフト特性となる。非通電時には、バイパス412が全閉となる。
図7に示すショックアブソーバ401では、弁体417が、シャッタ形状を有しているので、バイパス412において制御可能な流量の範囲(開口部416と通路419との連通部分の面積の最小値と最大値との差)を広くするためには、弁体417とガイド部材415とが径方向に対向する面積を広く確保する必要がある。そのため、弁体417の径方向寸法を大きくせざるを得ない。
そうすると、ガイド部材415と弁体417との摺動部分Fの面積が大きくなり、摩擦が大きくなる。しかも、広くなった摺動部分Fが油の流れの中に位置しているので、微小な異物が摺動部分に入り込み、更に摩擦が大きくなる。摩擦の増大への対応として弁体417が閉じる方向へ付勢するためのバネ422を強くする必要が生じる。バネ422が強くなると、弁体417を駆動するためのソレノイドアクチュエータ424も大型化してしまう。
また、通電不能となった際に、弁体417が油路(バイパス412)を遮断するために、ソレノイドアクチュエータ424と弁体417とを繋いでいるロッド423が支持部材421から突出する。このときに弁体417周囲の油圧が高いと、ロッド423の突出する動きが妨げられる。そこで、ロッド423の突出する動きがこの油圧に打ち勝つためには、更にバネ422を強くする必要があり、更にソレノイドアクチュエータ424の大型化を伴う。自動二輪車や自動車等の車両の分野では、機器の設置スペースが限られているので、弁の設置スペースをなるべく小さくしたいという要請が極めて強い。また、走行性能の向上の観点から、弁の軽量化の要請も非常に強い。従って、弁の大型化は極力避けなければならない。
本発明は、上述した課題に鑑みてなされたものであり、通電不能となった場合にも良好な走行性能を確保する構成としながら、小型であり、且つ制御可能な流量の範囲を広く確保できるショックアブソーバを提供することである。
本発明は、上述した課題を解決するために、以下の構成を採用する。
(1) ショックアブソーバであって、
前記ショックアブソーバは、
作動流体の流体抵抗により減衰力を発生させる減衰力発生部と、
前記減衰力発生部に対するバイパス中に配置された減衰力制御弁と
を備え、
前記減衰力制御弁は、
ソレノイドにより直線往復動する弁体と、
前記弁体が挿通されるガイド孔と、前記弁体の端面と対向する位置に形成されたポートとを備えた第一作動流体室と、
前記弁体の前記端面の反対側の端部が露出している第二作動流体室と、
前記弁体の軸線方向に沿って前記弁体に力を加える付勢体と、
前記第一作動流体室と前記第二作動流体室とを連通する通路と
を備え、
前記弁体の前記端面と前記ポートとの間隙は、作動流体が通過する流路であり、
前記流路の開度は、前記弁体の前記端面の位置によって変更され、これにより減衰力が制御され、
前記流路の開度が最大になるとき、前記弁体は前記ポートから離れる一方、前記ソレノイドの非通電時に、前記付勢体により、前記弁体の軸線方向に沿って前記ポートに向かう力が、前記弁体に加えられ、これにより、前記弁体が閉位置に移動する。
(1) ショックアブソーバであって、
前記ショックアブソーバは、
作動流体の流体抵抗により減衰力を発生させる減衰力発生部と、
前記減衰力発生部に対するバイパス中に配置された減衰力制御弁と
を備え、
前記減衰力制御弁は、
ソレノイドにより直線往復動する弁体と、
前記弁体が挿通されるガイド孔と、前記弁体の端面と対向する位置に形成されたポートとを備えた第一作動流体室と、
前記弁体の前記端面の反対側の端部が露出している第二作動流体室と、
前記弁体の軸線方向に沿って前記弁体に力を加える付勢体と、
前記第一作動流体室と前記第二作動流体室とを連通する通路と
を備え、
前記弁体の前記端面と前記ポートとの間隙は、作動流体が通過する流路であり、
前記流路の開度は、前記弁体の前記端面の位置によって変更され、これにより減衰力が制御され、
前記流路の開度が最大になるとき、前記弁体は前記ポートから離れる一方、前記ソレノイドの非通電時に、前記付勢体により、前記弁体の軸線方向に沿って前記ポートに向かう力が、前記弁体に加えられ、これにより、前記弁体が閉位置に移動する。
(1)の構成によれば、弁体の端面とポートとが対向しており、弁体の端面とポートとの間隙が、作動流体が通過する流路である。流路の開度は、軸方向に直線往復動する弁体の端面の位置によって変更され、これにより減衰力が制御される。図7に示すショックアブソーバと異なり、弁体のストローク(軸方向の変位)に対する流路面積の変化量が大きい。従って、弁体の径を大きくすることなく、バイパスにおいて制御可能な流量の範囲を広く確保できる。
また、第一作動流体室において、対向する弁体の端面とポートとの間隔が、作動流体の通過する流路なので、弁体の端面の位置調整時に、弁体と第一作動流体室の内壁面とが摺動しない。従って、摺動による摩擦の増大を避けることができる。また、作動流体の通過する流路の周囲に、摺動部分が生じないので、微小な異物の噛み込みによる摩擦の増大も生じない。
第一作動流体室と第二作動流体室とが弁体の通路を介して連通しているので、第一作動流体室内の作動流体がポートを介して第一作動流体室外へ排出される流れの向きを基準として、弁体の下流側端と、前記下流側端の反対側端との圧力差が小さい。そのため、第一作動流体室と第二作動流体室との圧力差の発生を抑制できる。従って、図7に示すショックアブソーバのように付勢体の強化の必要性が生じない。ソレノイドの大型化を避けることができる。
ソレノイドの非通電時には、付勢体により、弁体に対して、前記弁体の軸線方向に沿ってポートに向かう力が加えられる。このとき、弁体は、第一作動流体室内の作動流体を押し退けてポートに向けて移動するが、そのときの圧力が通路を介して第二作動流体室40に伝播するため、第一作動流体室内の圧力の上昇が抑えられる。また、上述したように、弁体の移動時の摩擦の増大が防止されている。従って、付勢体の付勢力のみによって、迅速に弁体の端面とポートとの間隔を閉じることができる。このように、弁体がポートに向けて移動するときの弁体に対する抵抗(摩擦及び圧力上昇)の発生が極力抑えられているので、ソレノイドの非通電時における応答性に優れており、迅速にハード特性を得ることができる。
従って、(1)のショックアブソーバは、通電不能となった場合にも良好な走行性能を確保しながら、小型であり、且つ制御可能な流量の範囲を広く確保できる。
(2) (1)のショックアブソーバであって、
前記通路は、前記弁体の軸線方向に沿って設けられており、前記ソレノイドが通電不能となり前記弁体と前記ポートとの間隔が狭くなるときに、前記第一作動流体室及び前記第二作動流体室のうち、高圧側の作動流体室から低圧側の作動流体室に作動流体を流すことにより、2つの作動流体室の間の圧力差を小さくすることが好ましい。
前記通路は、前記弁体の軸線方向に沿って設けられており、前記ソレノイドが通電不能となり前記弁体と前記ポートとの間隔が狭くなるときに、前記第一作動流体室及び前記第二作動流体室のうち、高圧側の作動流体室から低圧側の作動流体室に作動流体を流すことにより、2つの作動流体室の間の圧力差を小さくすることが好ましい。
(2)の構成によれば、第一作動流体室と第二作動流体室とを連通する通路が比較的短い。そのため、弁体の端面とポートとの間隔(作動流体の流路)を閉じるときに第一作動流体室と第二作動流体室との間の圧力伝達が速やかに生じる。これにより、第一作動流体室と第二作動流体室との圧力差の発生を、より効果的に抑制することができる。従って、更に応答性を高めることができる。
(3) (2)のショックアブソーバであって、
前記通路は、前記弁体の軸線方向に沿って前記弁体を貫通しており、前記ソレノイドが通電不能となり前記弁体と前記ポートとの間隔が狭くなるときに、前記第一作動流体室と前記第二作動流体室との圧力差を小さくするとともに、前記通路が前記ポートに近づく。。
前記通路は、前記弁体の軸線方向に沿って前記弁体を貫通しており、前記ソレノイドが通電不能となり前記弁体と前記ポートとの間隔が狭くなるときに、前記第一作動流体室と前記第二作動流体室との圧力差を小さくするとともに、前記通路が前記ポートに近づく。。
(3)の構成によれば、第一作動流体室と第二作動流体室とを連通する通路が更に短くなり、弁体とポートとの間隔が狭くなるときに通路がポートに近づくので、更に応答性を高めることができる。また、通路が弁体内に設けられるので、通路の形成スペースを弁体外に確保しなくてもよい。従って、弁の大型化を避けることができる。
(4) (1)~(3)のいずれか1のショックアブソーバであって、
前記付勢体は、前記第一作動流体室に設置され、前記弁体に対して、前記弁体の軸線方向に沿って前記ポートに向かう力を加えることが好ましい。
前記付勢体は、前記第一作動流体室に設置され、前記弁体に対して、前記弁体の軸線方向に沿って前記ポートに向かう力を加えることが好ましい。
(4)の構成によれば、前記付勢体により前記弁体を前記第一作動流体室側に引き出すことにより、前記弁体をスムーズに移動させることができるので、弁体の位置安定性及び応答性が更に向上する。
(5) (1)~(4)のいずれか1のショックアブソーバであって、
前記付勢体は、前記弁体の軸線方向において前記付勢体の一部が前記通路と重なる位置に設置され、前記弁体に対して、前記弁体の軸線方向に沿って前記ポートに向かう力を加えることが好ましい。
前記付勢体は、前記弁体の軸線方向において前記付勢体の一部が前記通路と重なる位置に設置され、前記弁体に対して、前記弁体の軸線方向に沿って前記ポートに向かう力を加えることが好ましい。
(5)の構成によれば、付勢体と弁体とをコンパクトに配置できるので、減衰力制御弁を小型化できる。
(6) (1)~(4)のいずれか1のショックアブソーバであって、
前記付勢体は、前記弁体の軸線方向において前記付勢体の全部が前記通路と重なる位置に設置され、前記弁体に対して、前記弁体の軸線方向に沿って前記ポートに向かう力を加える。
前記付勢体は、前記弁体の軸線方向において前記付勢体の全部が前記通路と重なる位置に設置され、前記弁体に対して、前記弁体の軸線方向に沿って前記ポートに向かう力を加える。
(6)の構成によれば、付勢体と弁体とを更にコンパクトに配置できるので、減衰力制御弁を更に小型化できる。
この発明の上述の目的およびその他の目的、特徴、局面および利点は、添付図面に関連して行われる以下のこの発明の実施形態の詳細な説明から一層明らかとなろう。
本発明によれば、通電不能となった場合にも良好な走行性能を確保する構成としながら、小型であり、且つ制御可能な流量の範囲を広く確保できる。
以下、図面を参照してこの発明の実施の形態について説明する。
先ず、本発明に係るショックアブソーバ100が備える減衰力制御弁10について説明する。
図1は、本発明のショックアブソーバ100が備える減衰力制御弁10を模式的に示す縦断面図である。
図1では、減衰力制御弁10の非通電時における閉状態の様子を示している。
以下の説明においては、第一作動流体室30の作動流体が第一ポート30aを介して排出される方向を、下流方向Dと称する。また、弁体20の軸線方向Sに沿って下流方向Dと反対の方向を、反対方向Uと称する。
先ず、本発明に係るショックアブソーバ100が備える減衰力制御弁10について説明する。
図1は、本発明のショックアブソーバ100が備える減衰力制御弁10を模式的に示す縦断面図である。
図1では、減衰力制御弁10の非通電時における閉状態の様子を示している。
以下の説明においては、第一作動流体室30の作動流体が第一ポート30aを介して排出される方向を、下流方向Dと称する。また、弁体20の軸線方向Sに沿って下流方向Dと反対の方向を、反対方向Uと称する。
減衰力制御弁10は、中空筒状の外筒11(ハウジング)を備える。外筒11は、下流方向D側に開口11aを備え、反対方向U側に開口11bを備える。外筒11の開口11bには、内筒12が嵌め込まれている。外筒11の反対方向U側端は、内側に曲げられ、軸線方向Sにおいて内筒12と当接しており、これにより、外筒11と内筒12とが固定されている。外筒11は、軸線方向Sにおける略中央部において軸心に向かって環状に突出するフランジ部11cを有する。フランジ部11cは、その内縁部において開口11bに向かって延びる筒状部11dを有する。筒状部11dには、筒状のガイド部材13が挿入される。ガイド部材13は、下流方向D側にフランジ部13aを有する。フランジ部11c、13aは、互いに当接している。これにより、外筒11内において、ガイド部材13の反対方向U側への移動が規制される。ガイド部材13は、ガイド孔13bを備えている。ガイド孔13bには、中空円筒状の弁体20が摺動可能に挿入されている。
弁体20は、下流方向D側の端面20aと、反対方向U側の端面20bとを有している。弁体20は、端面20aから端面20bまで延びる通路21が形成されている。通路21は、下流方向D側の端面20aを含む大径部21aと、大径部21aの反対方向U側端から第二作動流体室40に向けて延びる連通部21bとを含む。連通部21bは、柱状空間であり、径は略一定である。弁体20の下流方向D側の端面20aにおける通路21(大径部21a)の開口面積は、連通部21bの開口面積よりも大きい。通路21において、連通部21bの径が最も小さい。即ち、減衰力制御弁10において、連通部21bが、通路21内の最小径部である。軸線方向Sにおける大径部21aと連通部21bとの境界は、第一作動流体室30内に位置している。
弁体20の下流方向D側の端面20aは、第一作動流体室30の第一ポート30aと対向する。端面20aは、第一作動流体室30の壁面(底面26a)と当接しない。弁体20は、非磁性材料によって構成される。筒状部11dの反対方向U側に、中空筒状の支持部材14が設置されている。支持部材14は、筒状部11dと同軸上において筒状部11dと対向する。支持部材14は、下流方向D側に形成された開口14aと、反対方向U側に形成された開口14bと、軸線方向Sにおける略中央部において軸心に向かって環状に突出するガイド部14cとを有する。ガイド部14cの内周側には、円環状の軸受20cが設置されている。軸受20cには、弁体20が挿通されており、軸受20cは、弁体20を摺動可能に支持する。支持部材14の内周面において、ガイド部14cよりも開口14b側には、バネ受け部材15が固定されている。バネ受け部材15の外周面には、支持部材14とバネ受け部材15との間を密閉するための環状シール16(例えば、Oリング)が設けられている。支持部材14の反対方向U側端には、キャップ17が設けられている。キャップ17は、開口14bを塞いでいる。支持部材14内において、ガイド部14cとバネ受け部材15との間には、第二作動流体室40が形成されている。
第二作動流体室40内に弁体20の端面20bが露出している。第二作動流体室40内において、弁体20の端面20bと、バネ受け部材15とによって、コイルバネ18が支持される。コイルバネ18は、弁体20を下流方向Dに向けて付勢している。筒状部11dと支持部材14とを接続するように、筒状の筒部材19が設けられている。筒部材19は、非磁性材料によって構成される。外筒11内には、ボビン22が設けられている。ボビン22は、支持部材14の外周面、及び筒部材19の外周面を覆う。ボビン22には、ソレノイドコイル23が巻かれている。外筒11の内周面において、ボビン22と、内筒12との間には、円環板状のキャップ24が取り付けられている。キャップ24は、磁性材料(例えば鉄)によって構成される。
弁体20の外周面において、ガイド部材13と、ガイド部14cとの間には、筒状のプランジャ25が固定されている。筒状部11dの内径は、プランジャ25の外径よりも大きい。また、支持部材14において、ガイド部14cよりも開口14a側の部分の内径は、プランジャ25の外径よりも大きい。したがって、プランジャ25は、ガイド部材13とガイド部14cとの間において軸線方向Sに移動できる。減衰力制御弁10においては、ソレノイドコイル23によって発生される磁界の磁束密度を調整することによって、プランジャ25をガイド部材13とガイド部14cとの間で軸線方向Sに移動させることができる。それにより、弁体20が軸線方向Sに移動する。ソレノイドコイル23とコイルバネ18とはソレノイドを構成する。プランジャ25の設置空間25aは、筒状部11d、ガイド部材13、ガイド部14cおよび筒部材19によって形成される。設置空間25a内にも、作動流体HOが充填されている。空間25aは、弁体20の外周面とガイド部材13の内周面との隙間を介して第一作動流体室30に連通している。空間25aは、弁体20の外周面とガイド部14cの内周面との隙間を介して第二作動流体室40に連通している。
外筒11内において開口11a側には、ガイド部材13のフランジ部13aに接触するように、有底の略円筒形状のバルブヘッド26が設置されている。バルブヘッド26の底面26aの中央には、第一ポート30aが形成されている。第一ポート30aは、弁体20の端面20aと対向する位置に設置されている。バルブヘッド26では、第一ポート30aから下流方向Dに向けて、作動流体路31が延びている。バルブヘッド26は、バルブヘッド26の外周壁26cに、第二ポート30bを備えている。バルブヘッド26では、第二ポート30bから径方向に向けて、作動流体路32が延びている。
バルブヘッド26とガイド部材13とによって、第一作動流体室30が構成されている。第一作動流体室30は、ガイド孔13bを備えている。第一作動流体室30と第二作動流体室40とは、弁体20を挟んで対向配置されている。弁体20の端面20aは、第一作動流体室30側に配置されている。第一作動流体室30と第二作動流体室40とは、弁体20の通路21を介して連通している。弁体20の外周面の周囲には、第一作動流体室30内の空間が位置している。作動流体は、作動流体路32から弁体20の径方向に沿って第一作動流体室30内に流入する。
ショックアブソーバ100では、ガイド孔13bと第一ポート30aとが、第一作動流体室30内の空間を挟んで、互いに対向する位置に形成されている。ガイド孔13bと第一ポート30aとの距離は、第一ポート30aと第二ポート30bとの距離よりも長い。ガイド孔13bと第二ポート30bとの距離は、第一ポート30aと第二ポート30bとの距離よりも長い。軸線方向Sにおいて、第二ポート30bは、ガイド孔13bよりも第一ポート30aに近い。軸線方向Sにおいて、第二ポート30bは、ガイド孔13bと第一ポート30aとの間に設けられている。第一作動流体室30内には、弁体20と摺動する部材が設けられていない。
ショックアブソーバ100では、ガイド孔13bと弁体20とが摺動するが、ガイド孔13bと弁体20とが摺動する部分は、第一ポート30a及び第二ポート30bから離れた位置に設けられているので、微小な異物による摩擦の増加を抑制することができる。
ショックアブソーバ100では、ガイド孔13bと弁体20とが摺動するが、ガイド孔13bと弁体20とが摺動する部分は、第一ポート30a及び第二ポート30bから離れた位置に設けられているので、微小な異物による摩擦の増加を抑制することができる。
第一作動流体室30内では、ガイド部材13の下流側面13cと、バルブヘッド26の底面26aとが軸線方向Sに沿って対向している。第一作動流体室30内において、弁体20の外周には、固定具としてのサークリップ33が固定されている。なお、固定具はサークリップに限定されない。
サークリップ33の下流方向D側において、サークリップ33とバルブヘッド26の底面26aとの間に、付勢体としてのコイルバネ34が設置されている。コイルバネ34には、弁体20が挿通されている。下流方向Dに近づくにつれて、コイルバネ34の径は大きくなっている。従って、作動流体路32から第一作動流体室30を介して作動流体路31に至る作動流体の流れが、コイルバネ34によって妨げられ難い。
固定具としてのサークリップ33の反対方向U側において、サークリップ33とガイド部材13の下流側面13cとの間に、付勢体としてのコイルバネ35が設置されている。コイルバネ35には、弁体20が挿通されている。反対方向Uに近づくにつれて、コイルバネ35の径が大きくなっている。
コイルバネ18、34、35は、軸線方向Sに沿って、弁体20に対して力を加える。減衰力制御弁10では、ソレノイドコイル23の非通電時に、コイルバネ18、34、35によって、弁体20が移動し、弁体20が第一ポート30aを塞ぐ。なお、付勢体は、コイルバネに限定されず、例えば、板バネ等の従来公知の付勢体を採用できる。
次に、図2を用いて、減衰力制御弁10の動作について説明する。
図2は、図1に示す減衰力制御弁の開状態(a)、微小開度状態(b)、閉状態(c)の様子を模式的に示す縦断面図である。
図2は、図1に示す減衰力制御弁の開状態(a)、微小開度状態(b)、閉状態(c)の様子を模式的に示す縦断面図である。
減衰力制御弁10では、弁体20の端面20a(図1参照)の一部(略半分)に、スラント加工が施されている。これにより、端面20aは、平坦部20dと、平坦部20dから反対方向Dに向けて傾斜する傾斜部20eとからなる。ソレノイドコイル23に通電され、減衰力制御弁10が開状態であるときには、図2(a)に示すように、弁体20が第一ポート30aから離れている。弁体20と第一ポート30aとが離れているときには、弁体20の全外周縁と第一ポート30aの全外周縁との間隔が、作動流体の流路Tである。
図2(a)に示す状態において、ソレノイドコイル23への通電が遮断されると、コイルバネ18、34、35により、弁体20が下流方向D側に移動する。このとき、通路21も下流方向Dに向けて移動する。
図2(b)は、弁体20が下流方向D側に向けて移動しているときの様子を示しており、図2(b)では、弁体20の端面20aの平坦部20dが、軸線方向Sにおいて、第一ポート30aと同位置に存在している。傾斜部20eと第一ポート30aとの間には間隔が空いている。この間隔が、作動流体の流路Tである。弁体20には大径部21aが形成されているので、作動流体の流路Tを通過した作動流体の一部が反対方向Uに流れるときに、大径部21aにおいて渦を成して拡散して下流方向Dに向かい易くなる。従って、第一作動流体室30と第二作動流体室40との圧力差の発生をより効率良く抑制できる。
また、図2(b)に示すように、弁体20の外周縁の一部が第一ポート30a内に位置しているとき、流路Tは、弁体20の外周縁の一部と第一ポート30aの外周縁の一部との間隔である。従って、弁体20のストローク(軸線方向Sの変位量)に対する流路Tの開口面積の変化が比較的小さい。
弁体20は、コイルバネ18、34、35により、図2(b)に示す状態から、更に下流方向Dに移動し、図2(c)に示す位置で停止する。この位置が、弁体20の閉位置である。閉位置は、ソレノイドコイル23の非通電時にコイルバネ18、34、35により弁体20が移動する最も下流方向D側の位置である。弁体20が閉位置にあるとき、第一ポート30aは、弁体20によって閉じられていることが好ましい。言い換えると、弁体20が閉位置にあるとき、第一ポート30aが、弁体20によって実質的に全閉状態となっていることが好ましい。ここでいう実質的に全閉状態とは、使用状態等によって若干量の開きが生じる場合が許容されることを意味している。第一ポート30aは、弁体20によって完全に全閉状態となってもよい。ショックアブソーバ100では、弁体20が閉位置に位置するとき、通路21の下流方向D側端が第一ポート30a内に入り、通路21が作動流体室31と連通する。
弁体20には、第一作動流体室30と第二作動流体室40とを連通する通路21が形成されているので、図2(a)~図2(c)に示すように、減衰力制御弁10が開状態から閉状態に移行するとき、第一作動流体室30内の作動流体の圧力が第二作動流体室40に伝わるので、第一作動流体室30と第二作動流体室40との圧力差の発生を抑制することができる。従って、ソレノイドの非通電時にコイルバネ18、34、35によって弁体20を迅速に閉位置まで移動させることができる。
次に、減衰力制御弁の他の実施形態について説明する。
図3は、本発明における他の実施形態に係る減衰力制御弁の開状態(a)、微小開度状態(b)、閉状態(c)を模式的に示す縦断面図である。図3は、弁体20の下流方向D側端の形状を除いて、図2と同じであるから、図3においては、図2と同一の構成に対して同一の符号を付し、その説明を省略又は簡略化する。
図3は、本発明における他の実施形態に係る減衰力制御弁の開状態(a)、微小開度状態(b)、閉状態(c)を模式的に示す縦断面図である。図3は、弁体20の下流方向D側端の形状を除いて、図2と同じであるから、図3においては、図2と同一の構成に対して同一の符号を付し、その説明を省略又は簡略化する。
図3に示す減衰力制御弁10では、弁体20の下流方向D側の端面20a´が平坦である。図3(a)に示す状態においてソレノイドコイル23が非通電状態となると、弁体20が下流方向Dに移動する。これにより、減衰力制御弁10が微小開度になる。このとき、図3(b)に示すように、流路Tは、弁体20の全外周縁と第一ポート30aの全開周縁との間隔である。その後、弁体20は、更に下流方向Dに移動し、図3(c)に示すように、弁体20の端面20a´と第一ポート30aとが軸線方向Sにおいて同位置に存在し、弁体20の端面20a´によって第一ポート30aが閉じられる。このとき、弁体20の端面20a´は、閉位置に位置している。
次に、本発明の他の実施形態について説明する。
図4は、本発明の他の実施形態に係る減衰力制御弁の開状態(a)、微小開度状態(b)、閉状態(c)を模式的に示す縦断面図である。なお、図4は、弁体20の下流方向D側端の形状を除いて、図2と同じであるから、図4においては、図2と同一の構成に対してっ同一の符号を付し、その説明を省略又は簡略化する。
図4は、本発明の他の実施形態に係る減衰力制御弁の開状態(a)、微小開度状態(b)、閉状態(c)を模式的に示す縦断面図である。なお、図4は、弁体20の下流方向D側端の形状を除いて、図2と同じであるから、図4においては、図2と同一の構成に対してっ同一の符号を付し、その説明を省略又は簡略化する。
図4に示す減衰力制御弁10では、弁体20は、軸線方向Sに弁体20を貫通する通路21を備えているが、大径部21aは形成されていない。弁体20は、円環形状の端面20a´´を備えている。図4(a)に示す状態においてソレノイドコイル23が非通電状態となると、弁体20が下流方向Dに移動する。これにより、減衰力制御弁10が微小開度になる。このとき、図4(b)に示すように、流路Tは、弁体20の全外周縁と第一ポート30aの全開周縁との間隔である。その後、弁体20は、更に下流方向Dに移動し、図4(c)に示すように、弁体20の端面20a´´と第一ポート30aとが軸線方向Sにおいて同位置に存在し、弁体20の端面20a´によって第一ポート30aが閉じられる。このとき、弁体20の端面20a´は、閉位置に位置している。
図3及び図4に示す減衰力制御弁10においても、通路21によって、第一作動流体室30と第二作動流体室40との作動流体の圧力差の発生を抑制できるので、弁体20を速やかに閉位置に移動させることができる。
次に、本発明の一実施形態に係るショックアブソーバ100について説明する。
図5及び図6は、図1に示す減衰力制御弁10を備えたショックアブソーバ100を示す油圧回路図である。
図5及び図6は、図1に示す減衰力制御弁10を備えたショックアブソーバ100を示す油圧回路図である。
ショックアブソーバ100は、油圧シリンダ112を備える。油圧シリンダ112内には、ピストンアセンブリ144が設置されている。油圧シリンダ112内は、ピストンアセンブリ144によって、2つの作動流体室158、160に区画されている。ピストンロッド162の一端は、油圧シリンダ112の一端側から、油圧シリンダ112内に挿入されており、ピストンアセンブリ144に固定されている。ピストンロッド162の他端は、車両の車体側(図示せず)に接続されている。また、油圧シリンダ112の他端は、車体の車輪側(図示せず)に接続されている。
減衰力発生部としてのピストンアセンブリ144は、複数枚のシムを備えた減衰バルブ148、150を備えている。減衰バルブ148は、作動流体室160から作動流体室158へ作動流体を流すことができ、このときに減衰力が発生する(伸び減衰)。その逆方向には作動流体を流すことはできない。減衰バルブ150は、作動流体室158から作動流体室160へ作動流体を流すことができ、このときに減衰力が発生する(縮み減衰)。その逆方向に作動流体を流すことはできない。
作動流体室158と、リザーバタンク114との間には、減衰力調整装置116が設置されている。減衰力調整装置116では、減衰力制御弁10と、複数枚のシムを備えた減衰バルブ116bと、チェックバルブ116cとが並列に設置されている。減衰バルブ116bは、油圧シリンダ112側からリザーバタンク114側に作動流体を流すことができ、その逆方向には作動流体を流すことができない。チェックバルブ116cは、リザーバタンク114側から油圧シリンダ112側に作動流体を流すことができる。その逆方向には作動流体を流すことができない。リザーバタンク114内には、作動流体Oと気体Gとが収容されており、作動流体Oと気体Gとが界面OSで接触している。作動流体Oは、例えば、作動油等である。気体Gは、例えば、窒素ガスや空気等である。
減衰力制御弁10は、図2(a)、(b)、図3(a)、(b)、及び図4(a)、(b)に示す状態においては、作動流体を、作動流体路32から第一作動流体室30を介して作動流体路31に向かう方向に流すことができる。また、減衰力制御弁10は、その逆方向に流すことも可能である。また、減衰力制御弁10は、図5及び図6に示すように、減衰バルブ116bに対するバイパスとして設置されている。
ピストンアセンブリ144がX1方向に移動するとき、油圧シリンダ112内に入ったピストンロッド162の体積分の作動流体が、油圧シリンダ112から排出され、リザーバタンク114に移動する。減衰力制御弁10と減衰バルブ116bとは互いにバイパスの関係にあり、油圧シリンダ112から排出された作動流体HOは、図5に示すように、減衰力制御弁10および減衰バルブ116bを通過してリザーバタンク114に流入する。減衰力制御弁10では、作動流体が第一作動流体室30から第一ポート30aを介して排出される向きに流れる。減衰力調整装置116(減衰バルブ116b及び減衰力制御弁10)を流れる時の抵抗が、油圧シリンダ112内の作動流体の圧力を増大させ、ピストンロッド162のX1方向の移動に抵抗する力(シリンダ内の作動流体の圧力×ピストンロッド162の断面積)、即ち圧縮減衰力(1)が発生する。ここで減衰力制御弁10の開度を調整すると、減衰バルブ116bと減衰力制御弁10との流量の割合が変化するので、減衰バルブ116の抵抗が調整されて、ピストンロッド162に作用する圧縮減衰力が調整される。また、ピストンアセンブリ144の減衰バルブ150にも作動流体室158から作動流体室160の方向に作動流体が流れ、そのときの抵抗がピストンアセンブリ144に作用し、ピストンロッド162に圧縮減衰力(2)として付加される。
一方、ピストンアセンブリ144がX2方向に移動するとき、図6に示すように、ピストンロッド162が退出した体積分の作動流体が、チェックバルブ116cを抵抗なく通過して油圧シリンダ112に戻る。
このように、ショックアブソーバ100では、圧縮時の減衰力の一部を減衰力制御弁10により調整可能である。具体的には、ショックアブソーバ100では、圧縮時の減衰力(即ち、上記の圧縮減衰力(1)及び(2))のうち、ピストンロッド162の進入により発生する圧縮減衰力(1)を調整することができる。
なお、本発明は、この例に限定されず、ショックアブソーバ100は、例えば、圧縮時の減衰力の全部を減衰力制御弁10により調整可能であってもよい。具体的には、図6及び図7に示す例において、減衰バルブ150に代えて、作動流体室158から作動流体室160に作動流体を流すチェックバルブが設けられていてもよい。このように構成されたショックアブソーバ100では、ピストンアセンブリ144がX1方向に移動するとき、上記の圧縮減衰力(1)が生じるが、上記の圧縮減衰力(2)が生じない。従って、圧縮減衰力(1)を調整することにより、圧縮時の減衰力の全部を調整することができる。
このように、ショックアブソーバ100では、圧縮時の減衰力の一部を減衰力制御弁10により調整可能である。具体的には、ショックアブソーバ100では、圧縮時の減衰力(即ち、上記の圧縮減衰力(1)及び(2))のうち、ピストンロッド162の進入により発生する圧縮減衰力(1)を調整することができる。
なお、本発明は、この例に限定されず、ショックアブソーバ100は、例えば、圧縮時の減衰力の全部を減衰力制御弁10により調整可能であってもよい。具体的には、図6及び図7に示す例において、減衰バルブ150に代えて、作動流体室158から作動流体室160に作動流体を流すチェックバルブが設けられていてもよい。このように構成されたショックアブソーバ100では、ピストンアセンブリ144がX1方向に移動するとき、上記の圧縮減衰力(1)が生じるが、上記の圧縮減衰力(2)が生じない。従って、圧縮減衰力(1)を調整することにより、圧縮時の減衰力の全部を調整することができる。
以上、ショックアブソーバ100によれば、弁体20の端面20aと第一ポート30aとが対向しており、弁体20の端面20aの全外周縁と第一ポート30aの全外周縁との間隙が、作動流体の流路Tである。流路Tの開度は、弁体20の端面20aの位置によって変更され、これにより減衰力が制御される。弁体20のストロークに対する流路面積の変化量が大きいので、弁体20の径を大きくすることなく、減衰力発生部としての減衰バルブ116bに対するバイパスにおいて制御可能な流量の範囲を広く確保できる。
また、第一作動流体室30において、弁体20の端面20aと第一ポート30aとの間隔が、作動流体の流路Tなので、弁体20の端面20aの位置調整時に、弁体20と第一作動流体室30の内壁面とが摺動しない。従って、摺動による摩擦の増大を避けることができる。また、作動流体の流路Tの周囲に、摺動部分が生じないので、微小な異物の噛み込みによる摩擦の増大も生じない。
また、第一作動流体室30と第二作動流体室40とが弁体20の通路21を介して連通しているので、弁体20の下流方向D側の端面20aと、反対方向U側の端面20bとの圧力差が小さい。そのため、第一作動流体室30と第二作動流体室40との圧力差の発生を抑制できる。その結果、ソレノイドの大型化を避けることができる。
ソレノイドの非通電時には、コイルバネ18、34、35により、弁体20に対して、弁体20の軸線方向に沿って第一ポート30aに向かう力が加えられる。このとき、弁体20は、第一作動流体室30内の作動流体を押し退けて第一ポート30aに向けて移動するが、そのときの圧力が通路21を介して第二作動流体室40に伝播するため、第一作動流体室30の圧力の上昇が抑えられる。また、第一作動流体室30内では弁体20と他部材との摺動が発生しないので、弁体20の移動時の摩擦の増大が防止されている。従って、コイルバネ18、34、35の付勢力のみによって、迅速に弁体20の端面20aと第一ポート30aとの間隔を閉じることができる。このように、弁体20が第一ポート30aに向けて移動するときの弁体20に対する抵抗(摩擦及び圧力上昇)の発生が極力抑えられているので、ソレノイドの非通電時における応答性に優れており、迅速にハード特性を得ることができる。従って、ショックアブソーバ100は、通電不能となった場合にも良好な走行性能を確保しながら、小型であり、且つ制御可能な流量の範囲を広く確保できる。
また、通路21が弁体20の軸線方向に沿って弁体20を貫通しているので、通路21が短い。従って、ソレノイドコイル23が通電不能となり弁体20と第一ポート30aとの間隔が狭くなるときに、高圧側の第一作動流体室30と低圧側の第二作動流体室40との圧力差を速やかに小さくすることができ、応答性に優れる。また、通路21が弁体20内に設けられるので、通路21の形成スペースを弁体20外に確保しなくてもよい。従って、弁の大型化を避けることができる。
また、コイルバネ34、35が、第一作動流体室30に設置され、弁体20に対して、弁体20の軸線方向に沿って第一ポート30aに向かう力を加えるため、弁体20を第一作動流体室30側にスムーズに引き出すことができる。
さらに、コイル34、35は、弁体20の軸線方向Sにおいてコイル34、35が通路21と重なる位置に設置され、弁体20に対して、弁体20の軸線方向Sに沿って第一ポート30aに向かう力を加える。従って、コイルバネ34、35と弁体20とを更にコンパクトに配置できるので、減衰力制御弁10を更に小型化できる。
上述の実施形態では、減衰力制御弁10を油圧シリンダ112に接続する場合について説明したが、減衰力調整装置の配置方法は上述の例に限定されない。図5及び図6に示すショックアブソーバ100は、減衰力制御弁10に対して作動流体を両方向に流すことができるように構成されていたが、本発明は、この例に限定されない。本発明では、少なくとも第一作動流体室30から第一ポート30aを介して作動流体を排出する方向に作動流体を流すことができるように構成されていることが好ましい。また、ショックアブソーバ100は、伸長時に第一作動流体室30から第一ポート30aを介して作動流体を排出する方向に作動流体を流すように構成されていてもよく、縮退時に第一作動流体室30から第一ポート30aを介して作動流体を排出する方向に作動流体を流すように構成されていてもよい。
ショックアブソーバ100では、油圧シリンダ112とリザーバタンク114との間に、減衰力調整装置116が設置され、減衰力調整装置116内に、縮み減衰力を発生させる減衰力発生部としてのチェックバルブ116cが設置されており、減衰バルブ116bに対するバイパス内に減衰力制御弁10が設置されている。縮退時に、減衰力調整装置116では、油圧シリンダ112内に進入するピストンロッド162の体積分の作動流体が流れる。この作動流体の一部は、減衰バルブ116bを流れ、作動流体の残部は、減衰力制御弁10を流れる。このとき、減衰バルブ116bと減衰力制御弁10とは互いにバイパスの関係にある。なお、本発明は、この例に限定されない。例えば、ショックアブソーバ100において、チェックバルブ116cに代えて、減衰力発生部としての減衰バルブが設置されていてもよい。この場合、減衰力制御弁10は、伸び減衰力を発生させるチェックバルブ116cに対するバイパス内に設置されていることになる。伸長時に、減衰力調整装置116では、油圧シリンダ112内から退出するピストンロッド162の体積分の作動流体が流れる。この作動流体の一部は、減衰バルブを流れ、作動流体の残部は、減衰力制御弁10を流れる。このとき、減衰バルブと減衰力制御弁10とは互いにバイパスの関係にある。
このように、本発明では、減衰力制御弁10が、油圧シリンダ112外において、縮み減衰力を発生させる減衰力発生部(減衰バルブ116b)に対するバイパス中に設置されてもよく、伸び減衰力を発生させる減衰力発生部に対するバイパス中に設置されてもよく、両方のバイパス中に設置されてもよい。
また、減衰力制御弁10は、油圧シリンダ112内の減衰バルブ150に対するバイパス内に設置されてもよい。縮退時に、減衰バルブ150では、作動流体室158の体積減少分の作動流体が流れる。この作動流体の一部は、減衰バルブ150を流れ、作動流体の残部は、減衰力制御弁10を流れる。このとき、減衰バルブ150と減衰力制御弁10とは互いにバイパスの関係にある。さらに、減衰力制御弁10は、油圧シリンダ112内の減衰バルブ150に対するバイパス内に設置されてもよい。伸長時に、減衰バルブ148では、作動流体室160の体積減少分の作動流体が流れる。この作動流体の一部は、減衰バルブ148を流れ、作動流体の残部は、減衰力制御弁10を流れる。このとき、減衰バルブ148と減衰力制御弁10とは互いにバイパスの関係にある。
このように、本発明では、減衰力制御弁10が、油圧シリンダ112内において、縮み減衰力を発生させる減衰力発生部(減衰バルブ150)に対するバイパス中に設置されてもよく、伸び減衰力を発生させる減衰力発生部(減衰バルブ148)に対するバイパス中に設置されてもよく、両方のバイパス中に設置されてもよい。本発明において、減衰力制御弁10は、減衰力発生部に対するバイパス中に設置されていればよく、減衰力制御弁10の設置位置及び設置態様は、特に限定されない。
また、ショックアブソーバ100では、通路21が、弁体20を軸線方向Sに貫通している。しかし、本発明において、通路21の形成位置は、この例に限定されない。例えば、通路は、軸線方向Sに沿って弁体20の外周側面に形成されていてもよい。また、通路は、弁体20に形成されていなくてもよい。例えば、通路が、軸線方向Sに沿って、弁体20の外周側面に対向する部材に形成されていてもよい。
また、ショックアブソーバ100では、第一作動流体室30に、付勢体としてのコイルバネ34、35が設置されている。コイルバネ35は、伸長時に弁体20に対して第一ポート30aに向かう力を加える付勢体である。コイルバネ34は、縮退時に弁体20に対して第一ポート30aに向かう力を加える付勢体である。本発明では、これら2つの付勢体のいずれか一方が設けられていてもよい。
上述の実施形態では、円筒状の弁体について説明したが、弁体の形状は上記の例に限定されない。たとえば、弁体が中空角筒形状を有していてもよい。また、油路の形状も上述の例に限定されず、油路の断面が多角形状であってもよく、楕円形状であってもよい。また、本実施形態では、ソレノイドとして、比例ソレノイドが用いられる場合について説明した。但し、本発明は、この例に限定されず、ソレノイドとして、例えば、ON/OFFソレノイドが用いられてもよい。
以上、この発明の好ましい実施形態について説明されたが、この発明の範囲および精神を逸脱しない限りにおいて種々の変更が可能であることは明らかである。この発明の範囲は、添付された請求の範囲のみによって限定される。
10 減衰力制御弁
20 弁体
21 通路
21a 大径部
21b 連通部
23 ソレノイドコイル
26 バルブベッド
30 第一作動流体室
30a 第一ポート
40 第二作動流体室
100 ショックアブソーバ
20 弁体
21 通路
21a 大径部
21b 連通部
23 ソレノイドコイル
26 バルブベッド
30 第一作動流体室
30a 第一ポート
40 第二作動流体室
100 ショックアブソーバ
Claims (6)
- ショックアブソーバであって、
前記ショックアブソーバは、
作動流体の流体抵抗により減衰力を発生させる減衰力発生部と、
前記減衰力発生部に対するバイパス中に配置された減衰力制御弁と
を備え、
前記減衰力制御弁は、
ソレノイドにより直線往復動する弁体と、
前記弁体が挿通されるガイド孔と、前記弁体の端面と対向する位置に形成されたポートとを備えた第一作動流体室と、
前記弁体の前記端面の反対側の端部が露出している第二作動流体室と
前記弁体の軸線方向に沿って前記弁体に力を加える付勢体と、
前記第一作動流体室と前記第二作動流体室とを連通する通路と
を備え、
前記弁体の前記端面と前記ポートとの間隙は、作動流体が通過する流路であり、
前記流路の開度は、前記弁体の前記端面の位置によって変更され、これにより減衰力が制御され、
前記流路の開度が最大になるとき、前記弁体は前記ポートから離れる一方、前記ソレノイドの非通電時に、前記付勢体により、前記弁体の軸線方向に沿って前記ポートに向かう力が、前記弁体に加えられ、これにより、前記弁体が閉位置に移動する。 - 請求項1に記載のショックアブソーバであって、
前記通路は、前記弁体の軸線方向に沿って設けられており、前記ソレノイドが通電不能となり前記弁体と前記ポートとの間隔が狭くなるときに、前記第一作動流体室及び前記第二作動流体室のうち、高圧側の作動流体室から低圧側の作動流体室に作動流体を流すことにより、2つの作動流体室の間の圧力差を小さくする。 - 請求項2に記載のショックアブソーバであって、
前記通路は、前記弁体の軸線方向に沿って前記弁体を貫通しており、前記ソレノイドが通電不能となり前記弁体と前記ポートとの間隔が狭くなるときに、前記第一作動流体室と前記第二作動流体室との圧力差を小さくするとともに、前記通路が前記ポートに近づく。 - 請求項1~3のいずれか1に記載のショックアブソーバであって、
前記付勢体は、前記第一作動流体室に設置され、前記弁体に対して、前記弁体の軸線方向に沿って前記ポートに向かう力を加える。 - 請求項1~4のいずれか1に記載のショックアブソーバであって、
前記付勢体は、前記弁体の軸線方向において前記付勢体の一部が前記通路と重なる位置に設置され、前記弁体に対して、前記弁体の軸線方向に沿って前記ポートに向かう力を加える。 - 請求項1~4のいずれか1に記載のショックアブソーバであって、
前記付勢体は、前記弁体の軸線方向において前記付勢体の全部が前記通路と重なる位置に設置され、前記弁体に対して、前記弁体の軸線方向に沿って前記ポートに向かう力を加える。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-033435 | 2012-02-17 | ||
JP2012033435A JP2013170602A (ja) | 2012-02-17 | 2012-02-17 | ショックアブソーバ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013122252A1 true WO2013122252A1 (ja) | 2013-08-22 |
Family
ID=48984359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/053846 WO2013122252A1 (ja) | 2012-02-17 | 2013-02-18 | ショックアブソーバ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013170602A (ja) |
WO (1) | WO2013122252A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111196116A (zh) * | 2018-11-16 | 2020-05-26 | 爱信精机株式会社 | 减震器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0579527A (ja) * | 1991-05-17 | 1993-03-30 | Tokico Ltd | 減衰力調整式油圧緩衝器 |
WO2011078317A1 (ja) * | 2009-12-25 | 2011-06-30 | ヤマハ発動機株式会社 | ショックアブソーバ |
-
2012
- 2012-02-17 JP JP2012033435A patent/JP2013170602A/ja active Pending
-
2013
- 2013-02-18 WO PCT/JP2013/053846 patent/WO2013122252A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0579527A (ja) * | 1991-05-17 | 1993-03-30 | Tokico Ltd | 減衰力調整式油圧緩衝器 |
WO2011078317A1 (ja) * | 2009-12-25 | 2011-06-30 | ヤマハ発動機株式会社 | ショックアブソーバ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111196116A (zh) * | 2018-11-16 | 2020-05-26 | 爱信精机株式会社 | 减震器 |
CN111196116B (zh) * | 2018-11-16 | 2024-04-09 | 株式会社爱信 | 减震器 |
Also Published As
Publication number | Publication date |
---|---|
JP2013170602A (ja) | 2013-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102374626B1 (ko) | 누가 감쇠력 특성곡선을 갖는 감쇠 밸브 장치 | |
US20130001030A1 (en) | Bi-stable shock absorber assembly | |
US8066105B2 (en) | Hydraulic suspension damper | |
JP2018091393A (ja) | 減衰力調整機構 | |
JP7377036B2 (ja) | ソレノイド、電磁弁、及び緩衝器 | |
WO2012014618A1 (ja) | 緩衝器の減衰バルブ | |
WO2011078317A1 (ja) | ショックアブソーバ | |
WO2017073218A1 (ja) | 緩衝器及び緩衝器の組立方法 | |
WO2018016132A1 (ja) | 減衰力調整式緩衝器 | |
US5551540A (en) | Vibration damper and a vibration damper with a valve actuation device | |
JP4682086B2 (ja) | Mr流体バルブ | |
JP7079213B2 (ja) | 電磁緩衝器 | |
KR102587418B1 (ko) | 감쇠력 조정식 완충기 | |
CN111989506B (zh) | 缓冲器 | |
WO2018163444A1 (ja) | 圧力緩衝装置 | |
JP4728862B2 (ja) | 磁気粘性流体ダンパ | |
JP2012002336A (ja) | 緩衝器 | |
WO2013122252A1 (ja) | ショックアブソーバ | |
EP2770227A2 (en) | Damping force control valve and shock absorber | |
JP2007255705A (ja) | 可変減衰力ダンパー | |
JP2020125779A (ja) | 電磁緩衝器 | |
WO2013122250A1 (ja) | 減衰力制御弁及びショックアブソーバ | |
KR20150082844A (ko) | 감쇠력 가변밸브 조립체 및 상기 감쇠력 가변밸브 조립체를 가지는 감쇠력 가변식 쇽업소버 | |
WO2013122251A1 (ja) | 減衰力制御弁及びショックアブソーバ | |
JP7297693B2 (ja) | バルブ機構および圧力緩衝装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13749376 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13749376 Country of ref document: EP Kind code of ref document: A1 |