[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013122110A1 - 圧電素子、アクチュエータ素子、アクチュエータ、発電素子、発電デバイス及び可撓性シート - Google Patents

圧電素子、アクチュエータ素子、アクチュエータ、発電素子、発電デバイス及び可撓性シート Download PDF

Info

Publication number
WO2013122110A1
WO2013122110A1 PCT/JP2013/053426 JP2013053426W WO2013122110A1 WO 2013122110 A1 WO2013122110 A1 WO 2013122110A1 JP 2013053426 W JP2013053426 W JP 2013053426W WO 2013122110 A1 WO2013122110 A1 WO 2013122110A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
dielectric layer
power generation
flexible sheet
electrode layer
Prior art date
Application number
PCT/JP2013/053426
Other languages
English (en)
French (fr)
Inventor
秀之 加藤
大高 秀夫
野中 敬三
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2013522048A priority Critical patent/JP5308603B1/ja
Priority to US14/376,677 priority patent/US20150008798A1/en
Priority to EP13748909.2A priority patent/EP2816724A4/en
Publication of WO2013122110A1 publication Critical patent/WO2013122110A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based

Definitions

  • the present invention relates to a piezoelectric element, an actuator element, an actuator, a power generation element, a power generation device, and a flexible sheet.
  • an actuator having a structure in which an elastomeric dielectric layer is sandwiched by a pair of elastic electrode layers is known.
  • this actuator when a voltage is applied to the electrode layer, the dielectric layer made of elastomer expands in the plane direction by an electric field between the electrode layers.
  • this actuator is an expandable actuator that contracts when no voltage is applied and expands when a voltage is applied. Must be applied in advance. Since such an extension type actuator is always in a deformed state rather than a prototype state, the electrode layer and the dielectric layer made of elastomer are liable to deteriorate, and this voltage is constantly applied to the electrode layer. However, since it is necessary to take care not to adversely affect the surroundings and the electric energy is lost, there is a disadvantage in that the cost is increased as a result.
  • a plurality of first electrode layers and second electrode layers having elasticity are alternately arranged at a predetermined interval, and an elastomeric dielectric layer is arranged between the first electrode layer and the second electrode layer.
  • a contraction-type actuator is also known (see JP 2011-103713 A).
  • this contraction type actuator when a voltage is applied to the first electrode layer and the second electrode layer, each elastomeric dielectric layer expands in the plane direction, and contracts in the stacking thickness direction.
  • the contraction type actuator having such a structure needs to electrically connect a plurality of first electrode layers and second electrode layers, and its wiring structure is complicated. In particular, in order to increase the contraction amount and the contraction force, it is necessary to stack a large number of electrode layers. In this case, the wiring structure becomes more complicated, resulting in poor electrical connection and product defects. There is a fear.
  • an actuator in which an electrode tape is held by a rigid plate-like member, a pair of electrode tapes are crossed and overlapped, and a plurality of plate-like members are laminated so as to have a certain gap (air layer).
  • This actuator has a structure in which a plate-like member, one electrode tape, a plate-like member, an air layer (gap), a plate-like member, the other electrode tape, a plate-like member, and an air layer are sequentially laminated.
  • a force acts in a direction in which the electrode tapes approach each other due to electrostatic force.
  • this force narrows the gap between the plate-like members and shrinks in the stacking thickness direction as a whole.
  • a gap air layer
  • the actuator acts on the electrode tape. The electrostatic force is reduced. That is, this actuator has the disadvantage that the contraction force decreases when the gap is increased in order to increase the contraction amount, and the contraction amount decreases when the clearance is decreased in order to increase the contraction force.
  • a mechanism for holding the plate-like members so as to be movable in the stacking thickness direction is required. May increase.
  • a power generation element having a sheet structure in which an elastomeric dielectric layer is sandwiched between a pair of stretchable electrode layers is known (see Japanese Patent Application Publication No. 2003-505865 and Japanese Patent Application Laid-Open No. 2010-263750).
  • This power generation element generates electric power by utilizing a change in electrostatic capacitance caused by a series of deformations (extension / contraction) that are expanded in a plane direction and then restored (contracted).
  • the power generation amount J by one expansion and contraction of the power generation element is represented by the following formula (1).
  • C1 is an electrostatic capacity in the extended state
  • C2 is an electrostatic capacity in the contracted state
  • V1 is a bias voltage applied in the extended state
  • the capacitance C is expressed by the following formula (2).
  • ⁇ 0 is the permittivity of free space
  • is the relative permittivity of the elastomeric dielectric layer
  • A is the electrode area
  • t is the distance between the electrodes (the thickness of the elastomeric dielectric layer).
  • B is the volume between the electrodes (volume of the dielectric layer made of elastomer)
  • b A ⁇ t.
  • the electrostatic capacitance C1 in the expanded state and the electrostatic capacitance C2 in the contracted state are expressed by Expression (3) and Expression (4).
  • A1 is the electrode area in the stretched state
  • t1 is the distance between the electrodes in the stretched state (the thickness of the elastomeric dielectric layer)
  • b1 is the volume between the electrodes in the stretched state (the dielectric layer made of the elastomer).
  • A2 is the electrode area in the contracted state
  • t2 is the distance between the electrodes in the contracted state (thickness of the dielectric layer made of elastomer)
  • b2 is the volume between the electrodes in the contracted state (volume of the dielectric layer made of elastomer).
  • b2 A2 ⁇ t2.
  • the power generation amount J is proportional to the square of the bias voltage V1 and the square of the thickness ratio t2 / t1.
  • a to C are conceivable in order to increase the power generation amount J by one expansion and contraction.
  • A. The capacitance C1 at the time of expansion is increased.
  • B. The ratio C1 / C2 of the expanded state capacitance to the contracted state capacitance is increased. That is, it is conceivable to increase the change in thickness by giving the power generating element a large elongation.
  • C. Increase the bias voltage V1.
  • the conventional power generation element has only a pair of electrodes, a sufficient amount of power generation cannot be obtained even if the methods A to C are employed. Further, in order to extend, a member for gripping the sheet-like end portion of the power generating element is necessary, and stress concentrates on the gripped portion, which may cause damage to the electrode layer or the like.
  • Japanese Patent Application Laid-Open No. 2010-263750 discloses an example in which a sheet is formed in a cylindrical shape. However, when the cylindrical sheet is extended in the axial direction, the distance between the electrode layers in the central portion is short. As a result, the occurrence of dielectric breakdown cannot be prevented accurately.
  • JP 2010-263750 A discloses a sheet having a three-layer structure of a pair of electrode layers and an elastomeric dielectric layer as described above, and another elastomeric dielectric layer and another electrode layer.
  • a power generation device in which is laminated is also disclosed.
  • three electrode layers are formed.
  • electrical connection is made so that a potential of a pole different from that of the central electrode layer is applied to the front electrode layer and the back electrode layer. Become.
  • electrical connection (wiring) becomes difficult.
  • JP 2011-103713 A JP 2010-57321 A Special table 2003-505865 gazette JP 2010-263750 A
  • the present invention has been made on the basis of the above circumstances.
  • An object of the present invention is to provide a relatively simple structure that is easy to manufacture and has a high piezoelectric effect (the actuator element has a large contracting force and power generation). It is an object of the present invention to provide a piezoelectric element capable of obtaining a large amount of power generation as an element.
  • the subject of this invention is providing the flexible sheet
  • the piezoelectric element according to the present invention includes: A plurality of strip-shaped flexible sheets having a dielectric layer made of an elastomer and an electrode layer having elasticity and laminated on the dielectric layer, A plurality of flexible sheets are overlapped with each other and alternately folded into a bellows shape.
  • an electrode layer of another flexible sheet is laminated on one surface of an electrode layer of one flexible sheet via an elastomeric dielectric layer, and the electrode layer of the other flexible sheet
  • the electrode layer of the one flexible sheet that is folded back through an elastomer dielectric layer is laminated on one surface.
  • the piezoelectric element when used as, for example, an actuator element, an electrostatic force is generated between the electrode layers by applying a voltage to each flexible sheet (hereinafter sometimes referred to as a voltage application state). And by this electrostatic force, a dielectric layer and an electrode layer are extended in a plane direction, and a flexible sheet is shrunk in a layer thickness direction. For this reason, it can be set as a contracted state in a voltage application state. Further, when the applied voltage is removed, the dielectric layer and the electrode layer contract in the planar direction, and the flexible sheet expands in the layer thickness direction (hereinafter sometimes referred to as no voltage application state). For this reason, it can be set as the expansion
  • the piezoelectric element when used as, for example, a power generation element, a load is applied to the laminated portion of the electrode layer and the dielectric layer made of elastomer, and when the piezoelectric layer is compressed in the layer thickness direction, the dielectric layer and the electrode layer Extends in the plane direction. Then, when the load applied to the laminated portion is removed, it is restored by the elastic restoring force of the dielectric layer made of elastomer, that is, the laminated portion extends in the layer thickness direction. The distance between the electrode layers is changed along with the compression / extension of the laminated portion, and the capacitance changes. Therefore, it is possible to generate electric power using the capacitance change.
  • the power generation element since the power generation element generates power by compressing and expanding the laminated portion of the flexible sheet as described above, the power generation element grips the flexible sheet unlike the conventional power generation by expansion / contraction. There is no need to do so, and the flexible sheet is unlikely to deteriorate.
  • the distance between the electrode layers during compression tends to be constant in the planar direction, and dielectric breakdown is less likely to occur. Since the power generation element has a structure as described above and has a structure in which at least four electrode layers are laminated, it is possible to increase the amount of power generation as compared with a conventional power generation device.
  • the piezoelectric element can be easily manufactured because it has a simple configuration in which a plurality of flexible sheets are crossed and overlapped and folded alternately in a bellows shape as described above.
  • a flexible sheet having an electrode layer is folded and a plurality of electrodes are constituted by one electrode layer, wiring for each electrode is unnecessary like conventional actuator elements and power generation elements, The wiring structure is simple.
  • the piezoelectric element has a structure in which a plurality of flexible sheets are overlapped, and is easier to structure than a conventional actuator element having a gap between plate-like members, and is made of an elastomer between electrode layers. Therefore, when the piezoelectric element is used as an actuator element, the electrostatic force acting between the electrode layers is large, and the contraction force is large.
  • the piezoelectric element When the piezoelectric element is used as an actuator element as described above, a pair of dielectric layers in which at least one flexible sheet among the plurality of flexible sheets is laminated on the front surface side and the back surface side of the electrode layer is provided. It is preferable to provide.
  • the sandwich structure is formed by folding a flexible sheet having a structure in which the electrode layer is sandwiched between a pair of dielectric dielectric layers (hereinafter, also referred to as a sandwich structure type flexible sheet) in a bellows shape. Between the electrode layer of the type flexible sheet and the electrode layer of the other flexible sheet, an elastomeric dielectric layer of the sandwich type flexible sheet is necessarily interposed.
  • the pair of flexible sheets are overlapped so as to intersect at substantially right angles and are alternately folded in a bellows shape. That is, in the actuator element, a pair of flexible sheets can be overlapped with each other at, for example, 60 °. In this case, the pair of flexible sheets are overlapped. The area to be reduced becomes smaller. On the other hand, by overlapping the pair of flexible sheets so as to intersect at a substantially right angle, the overlapping area of the pair of flexible sheets can be increased, and the elastomer dielectric layer is deformed. Becomes wider.
  • the crossing angle of a pair of flexible sheets means the angle which the centerline of a pair of flexible sheets makes, and a substantially right angle is 80 degrees or more, Preferably it is 85 degrees or more.
  • the pair of flexible sheets is overlapped by 10 layers or more and 10,000 layers or less.
  • the actuator element may have a four-layer structure (two flexible sheets each) by alternately folding a pair of flexible sheets and folding them in a bellows shape. In this four-layer structure, there is a possibility that a sufficient amount of shrinkage cannot be obtained.
  • a pair of flexible sheets are overlapped by 10 layers or more and 10000 layers or less (each flexible sheet is overlapped by 5 layers or more and 5000 layers or less), so that a sufficient amount of shrinkage is achieved. can get.
  • the average thickness of the dielectric layer made of elastomer is preferably 10 ⁇ m or more and 100 ⁇ m or less. Thereby, the dielectric layer made of an elastomer can be accurately extended in the plane direction (shrinkage in the layer thickness direction).
  • the average thickness of the electrode layer is preferably 1/10 or less of the average thickness of the dielectric layer made of elastomer.
  • the ratio (layer thickness) of the elastomeric dielectric layer to the electrode layer can be increased, and the elastomeric dielectric layer can be accurately elongated in the plane direction (shrinkage in the layer thickness direction).
  • An actuator according to the present invention includes the actuator element having the above-described configuration, a first rigid member joined to one surface side of the actuator element, and a second rigid member joined to the other surface side of the actuator element. Is provided.
  • the actuator by applying a voltage to each flexible sheet, the actuator element contracts in the layer thickness direction, and the distance between the first rigid member and the second rigid member can be reduced.
  • the actuator includes a plurality of the actuator elements, the first rigid member is bonded to one surface side of the plurality of actuator elements, and the second rigid member is disposed on the other surface side of the plurality of actuator elements. It is preferable that it is joined. As a result, the distance between the first rigid member and the second rigid member can be reduced by a plurality of actuator elements, and only the first actuator element is brought into a contracted state, whereby the first rigid member and the second rigid member And can be inclined.
  • the piezoelectric element When the piezoelectric element is used as an actuator element as described above, a pair of dielectric layers in which at least one flexible sheet among the plurality of flexible sheets is laminated on the front surface side and the back surface side of the electrode layer is provided. It is preferable to provide. As a result, the sandwich structure type flexible sheet is folded in a bellows shape so that the sandwich structure type flexible sheet can be sandwiched between the electrode layer of the sandwich structure type flexible sheet and the electrode layer of another flexible sheet. An elastomeric dielectric layer of the flexible sheet is always present.
  • the pair of flexible sheets are overlapped so as to intersect at substantially right angles and are alternately folded in a bellows shape.
  • a pair of flexible sheets can be stacked, for example, intersecting at 60 °, but in this case, the pair of flexible sheets are overlapped.
  • the area to be reduced becomes smaller.
  • the area where the pair of flexible sheets are overlapped can be increased, the capacitance is increased, and the power generation amount is increased. Can be increased.
  • the pair of flexible sheets is overlapped by 10 layers or more and 10,000 layers or less.
  • the power generating element can have a four-layer structure (two flexible sheets each) by alternately overlapping a pair of flexible sheets and folding them in a bellows shape. In this four-layer structure, there is a possibility that a sufficient amount of power generation cannot be obtained.
  • a pair of flexible sheets are overlapped by 10 layers or more and 10,000 layers or less (each flexible sheet is overlapped by 5 layers or more and 5000 layers or less). can get.
  • the average thickness of the dielectric layer made of elastomer is preferably 10 ⁇ m or more and 100 ⁇ m or less. Thereby, the dielectric layer made of an elastomer can be accurately extended in the plane direction (compressed in the layer thickness direction).
  • the average thickness of the electrode layer is preferably 1/10 or less of the average thickness of the elastomeric dielectric layer.
  • the power generation device includes the power generation element having the above configuration, a first rigid member bonded to one surface side of the power generation element, and a second rigid member bonded to the other surface side of the power generation element.
  • the power generation element contracts in the layer thickness direction, and the distance between the first rigid member and the second rigid member can be reduced.
  • the power generation device includes a plurality of the actuator elements, the first rigid member is bonded to one surface side of the plurality of power generation elements, and the second rigid member is connected to the other surface side of the plurality of power generation elements. It is preferable that it is joined. As a result, the distance between the first rigid member and the second rigid member can be reduced by the plurality of power generation elements, and only one power generation element is brought into a contracted state, whereby the first rigid member and the second rigid member And can be inclined.
  • the flexible sheet according to the present invention is a belt-like flexible sheet, and has a stretchable electrode layer and a pair of elastomer dielectric layers laminated on the front side and the back side of the electrode layer.
  • the piezoelectric element having the above-described advantages can be manufactured by crossing and overlapping with another belt-shaped flexible sheet and alternately folding the flexible sheet into a bellows shape.
  • the “average thickness of the dielectric layer made of elastomer” and the “average thickness of the electrode layer” refer to a state in which no voltage is applied to the electrode layer and no voltage is applied to the laminated portion (no compression is applied). No) Means the thickness under no load.
  • the piezoelectric element according to the present invention is easy to manufacture with a relatively simple structure and can obtain a large piezoelectric effect. Moreover, the flexible sheet
  • FIG. 1 is a schematic front view in which a part of the actuator according to the first embodiment of the present invention is omitted.
  • FIG. 2 is a schematic plan view of an actuator element of the actuator of FIG. 3A and 3B are explanatory views of the flexible sheet of the actuator element of FIG. 2, in which FIG. 3A is a schematic side view in which a main part is enlarged, and FIG. 3B is a schematic front sectional view.
  • FIG. 4 is a schematic front end view for explaining the relationship between a pair of flexible sheets in the actuator element of FIG. 2.
  • FIG. 5 is a schematic front view of an actuator according to another embodiment of the present invention (illustration of a specific structure of the actuator is omitted).
  • FIG. 6 is a schematic front view of an actuator according to another embodiment of the present invention (illustration of a specific structure of the actuator is omitted).
  • FIG. 7 is an enlarged schematic front cross-sectional view of a main part of a flexible sheet according to another embodiment of the present invention.
  • FIG. 8 is a schematic front view of an actuator element according to another embodiment of the present invention.
  • FIG. 9 is a schematic front view of an actuator element according to another embodiment of the present invention.
  • FIG. 10 is a graph showing the relationship between the applied voltage and the contraction rate in the example of the actuator of the present invention.
  • FIG. 11 is a schematic front view in which a part of the power generation device according to the second embodiment of the present invention is omitted.
  • FIG. 12 is a schematic plan view of a power generation element of the power generation device of FIG.
  • FIG. 13 is a schematic front end view for explaining the relationship between a pair of flexible sheets in the power generation element of FIG. 12.
  • FIG. 14 is a schematic front view of a power generation device according to another embodiment of the present invention (illustration of a specific structure of the power generation device is omitted).
  • FIG. 15 is a schematic front view of a power generation device according to another embodiment of the present invention (illustration of a specific structure of the power generation device is omitted).
  • FIG. 16 is a table showing the relationship between the compression rate and the bias voltage and the generated energy in the example of the power generation device of the present invention.
  • ⁇ Actuator 1> 1 includes an actuator element 10, a first rigid member 20 joined to one surface side of the actuator element 10, and a second rigid member 30 joined to the other surface side of the actuator element 10.
  • the first rigid member 20 and the second rigid member 30 are constituted by plate-like members, and the retractable actuator element 10 is interposed between the first rigid member 20 and the second rigid member 30. ing.
  • the actuator element 10 includes a plurality of flexible sheets 100 having an electrode layer 110 and an elastomeric dielectric layer 120 as shown in FIG. 2, and the electrode layers 110 are end portions of the flexible sheet 100. It has the connection part 111 projected from.
  • the actuator 1 has a control circuit 40 that is electrically connected to the electrode layer 110 as shown in FIG. A voltage is applied to the electrode layer 110 via the control circuit 40.
  • the actuator element 10 is folded such that a plurality of strip-shaped flexible sheets 100 are provided with an elastomeric dielectric layer 120 between the electrode layers 110 and 110. Specifically, as shown in FIGS. 1 and 2, a pair of flexible sheets 100 are overlapped so as to intersect at substantially right angles and are alternately folded in a bellows shape. The pair of flexible sheets 100 uses the same configuration.
  • the pair of flexible sheets 100 is preferably overlapped by 10 to 10,000 layers, more preferably 30 to 1000 layers, and more preferably 50 to 100 layers. More preferably. If it is less than the above lower limit, the height of the actuator element 10 is so low that a sufficient amount of contraction may not be obtained. When the above upper limit is exceeded, the length of the flexible sheet 100 becomes too long, and there is a risk of causing a defect in the flexible sheet 100, which may cause a dielectric breakdown.
  • the flexible sheet 100 includes a stretchable electrode layer 110 and a pair of elastomer dielectric layers 120 laminated on the front side and the back side of the electrode layer 110. Yes.
  • the pair of front and back dielectric layers 120 made of elastomer have the same configuration.
  • the flexible sheet 100 preferably has an average thickness of 20 ⁇ m to 200 ⁇ m, and more preferably 40 ⁇ m to 140 ⁇ m. Further, the width (length in the short direction) of the flexible sheet 100 can be appropriately changed according to the application of the actuator 1 used, and can be set to 1 cm, for example. Furthermore, the length (length in the longitudinal direction) of the flexible sheet 100 can be appropriately changed depending on the number of times of overlapping, the width of the sheet, and the like, but can be set to 80 cm, for example.
  • the dielectric layer 120 is an elastically deformable layer.
  • the dielectric layer 120 made of elastomer includes natural rubber, isoprene rubber, nitrile rubber (NBR), ethylene propylene rubber (EPDM), styrene-butadiene rubber (SBR), butadiene rubber (BR), chlorobrene rubber (CR), silicone. It can be composed of rubber, fluorine rubber, acrylic rubber, hydrogenated nitrile rubber, urethane rubber or the like.
  • the dielectric layer 120 made of elastomer is made of a hydrophobic rubber (for example, natural rubber, isoprene rubber, ethylene propylene rubber, butadiene rubber, silicone rubber, acrylic rubber, etc.) having high insulation strength and low hygroscopicity. It is preferable to configure.
  • the dielectric layer 120 is preferably an elastomer having a polyrotaxane structure, particularly an elastomer having a hydrophobic polyrotaxane structure, so that even if the elastic compressibility is reduced, the compressive deformation strain does not become too large.
  • the dielectric layer 120 is formed with substantially the same thickness as the other dielectric layers 120 made of elastomer.
  • the substantially same thickness means that the ratio of the average thickness of the dielectric layer 120 made of the other elastomer to the average thickness of the dielectric layer 120 made of the other elastomer is 0.95 or more and 1.05 or less.
  • the average thickness (T1) of the dielectric layer 120 (one layer) made of elastomer is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 20 ⁇ m or more and 70 ⁇ m or less, and particularly preferably 30 ⁇ m or more and 50 ⁇ m or less. If it is less than the above lower limit, the dielectric layer 120 made of elastomer becomes too thin, and the dielectric layer 120 made of elastomer may break down, and the height of the actuator element 10 (the length in the stacking thickness direction) is sufficient. For this reason, the number of the flexible sheets 100 to be stacked increases so that the manufacturing cost may increase. On the other hand, when the above upper limit is exceeded, the electrodes are excessively separated from each other when they are used as the actuator 1, and the electrostatic capacity may be reduced, and the contraction force may be reduced.
  • the dielectric layer 120 made of an elastomer preferably has a compressive modulus of 0.1 MPa to 1.5 MPa, and more preferably 0.3 MPa to 0.7 MPa. If it is less than the above lower limit value, the dielectric layer 120 made of elastomer may be too soft, and the compressive deformation strain may be too large. On the other hand, when the above upper limit is exceeded, the dielectric layer 120 made of elastomer may be too hard to easily shrink in the layer thickness direction.
  • the compression modulus is a compression modulus when 10% strain is applied in accordance with a low deformation compression test of JIS-K6254.
  • the dielectric constant of the dielectric dielectric layer 120 is preferably 2 or more, 9 or less, more preferably 3 or more and 8 or less, and further preferably 4 or more and 7 or less. If it is less than the above lower limit, the capacitance becomes small, and there is a possibility that sufficient contraction force cannot be obtained when used as the actuator 1. On the other hand, when the relative dielectric constant exceeds the above upper limit value, it is necessary to add a large amount of dielectric filler, and the elastomeric dielectric layer becomes hard and difficult to deform.
  • the dielectric layer 120 made of elastomer is formed to have substantially the same width as the dielectric layer 120 made of other elastomer.
  • the substantially same width means that the ratio of the width of the other dielectric layer 120 to the width of the other dielectric layer 120 is 0.95 or more and 1.05 or less.
  • the width (W1) of the dielectric layer 120 made of elastomer can be appropriately changed in design according to the application of the actuator 1 used, and can be set to 1 cm, for example.
  • the electrode layer 110 is preferably composed of a conductive layer made of an elastomer having elasticity that can follow the expansion and contraction of the dielectric layer 120.
  • This conductive layer made of elastomer contains a conductive filler in the elastomer.
  • a material that can be bonded to the dielectric layer 120 made of an elastomer is preferably used as the elastomer of the conductive layer.
  • a material similar to the dielectric layer 120 made of an elastomer can be used.
  • the electrode layer 110 is thinner than the dielectric layer 120 made of elastomer, and the average thickness (T2) of the electrode layer 110 is 1/30 or more of the average thickness (T1) of the dielectric layer 120 made of elastomer (one layer). / 10 or less, more preferably 1/20 or more and 1/15 or less. If the upper limit is exceeded, the ratio (layer thickness) of the electrode layer 110 in the actuator element 10 increases, and the ratio of the dielectric layer 120 made of elastomer decreases, so that the actuator element 10 may not be sufficiently contracted. On the other hand, if it is less than the lower limit, the elastomer conductive layer becomes too thin and the resistance value of the electrode layer 110 may increase.
  • the average thickness (T2) of the electrode layer 110 is preferably 50 nm or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less. If the upper limit is exceeded, the ratio (layer thickness) of the electrode layer 110 in the actuator element 10 increases, and the ratio of the dielectric layer 120 made of elastomer decreases, so that the actuator element 10 may not be sufficiently contracted. On the other hand, if it is less than the lower limit, the elastomer conductive layer becomes too thin and the resistance value of the electrode layer 110 may increase.
  • the electrode layer 110 preferably has a compressive modulus of 0.1 MPa to 1.5 MPa, and more preferably 0.3 MPa to 0.7 MPa. If it is less than the lower limit, the electrode layer 110 may be too soft and the compressive deformation strain may be too large. On the other hand, if the upper limit value is exceeded, the electrode layer 110 is too hard and the flexible sheet 100 becomes difficult to deform, and it is necessary to apply a high voltage to deform it. There is a risk of causing dielectric breakdown of the layer 120.
  • the electrode layer 110 is formed to be narrower than the dielectric layer 120 made of elastomer. That is, the dielectric layer 120 made of elastomer has a sleeve 121 that extends outward from the electrode layer 110, and prevents a short circuit at the end face of the electrode layer 110.
  • the width of the sleeve 121 is preferably 1/100 times or more and 1/20 times or less, and more preferably 1/50 times or more and 1/30 times or less the width (W1) of the dielectric layer 120 made of elastomer. More preferably. If it is less than the lower limit, the short-circuit prevention effect may not be sufficiently obtained. On the other hand, when the above upper limit is exceeded, the width of the electrode layer 110 is narrowed, the area of the region where the planar view electrodes overlap is narrowed, and sufficient contraction force may not be obtained.
  • the electrode layer 110 has the connection part 111 protruding from the dielectric layer 120 made of elastomer at both ends of the flexible sheet 100, and the actuator element 10 is connected to the other part via the connection part 111. It is electrically connected to the member (control circuit 40).
  • the flexible sheet 100 is folded back an odd number so that the connecting portions 111 at both ends are on the same side (right side in FIG. 1) of the actuator element 10.
  • various conductive fillers can be used for the electrode layer 110, such as conductive carbon black, carbon nanotubes (single-walled carbon nanotubes or multi-walled carbon nanotubes), conductive metal fillers, and the like. is there.
  • the conductive filler of the electrode layer 110 it is preferable to employ carbon nanotubes having a large aspect ratio in consideration of maintaining the conductivity even by expansion and contraction.
  • the flexible sheet 100 can be manufactured by various methods, an example of which is shown below.
  • an elastomeric dielectric layer forming material is layered by a technique such as printing or coating, and the elastomeric dielectric layer forming material is dried to form the elastomeric dielectric layer 120.
  • the dielectric layer 120 made of elastomer can also be formed by an extrusion method or the like.
  • An electrode layer forming material in which conductive fillers are dispersed is laminated on the surface of the elastomeric dielectric layer 120 by means such as printing or coating, and another elastomeric dielectric layer is formed on the surface of the laminated electrode layer forming material.
  • the flexible sheet 100 having a three-layer structure is formed by stacking 120 and drying the electrode layer forming material.
  • the method for dispersing the conductive filler in the electrode layer forming material may be solid layer dispersion or liquid phase dispersion.
  • the actuator element 10 has an elastomer dielectric layer 120 on the upper side of the flexible sheet 100 and the other flexible layer on the upper surface of the electrode layer 110 of the lower flexible sheet 100.
  • the electrode layer 110 of the other flexible sheet 100 is laminated via the elastomer dielectric layer 120 on the lower side of the sheet 100. For this reason, when a voltage is applied to the electrode layers 110 of the pair of flexible sheets 100, the dielectric layer 120 made of elastomer expands in the plane direction, so that the dielectric layer 120 made of elastomer contracts in the layer thickness direction.
  • the electrostatic force P generated at this time is expressed by the following equation.
  • ⁇ 0 is the permittivity of free space
  • is the relative permittivity of the dielectric layer 120 made of elastomer
  • E is the electric field strength between the pair of electrode layers 110
  • V is the potential difference between the pair of electrode layers 110 ( Applied voltage)
  • T1 is the average thickness of the dielectric layer 120 made of elastomer.
  • the elastomeric dielectric layer 120 contracts in the plane direction, and the flexible sheet 100 extends in the layer thickness direction. That is, the elastomeric dielectric layer 120 is restored.
  • the actuator 1 Since the actuator 1 has a simple configuration in which the pair of flexible sheets 100 are crossed and overlapped and folded alternately in a bellows shape as described above, the actuator 1 can be easily manufactured. In particular, since the flexible sheet 100 having the electrode layer 110 is folded and a plurality of electrodes are formed by one electrode layer 110, wiring for each electrode is not required unlike the conventional actuator element 10. The wiring structure is simple.
  • the actuator 1 has a structure in which a plurality of flexible sheets 100 are overlapped.
  • the actuator 1 is easier to structure than the conventional one having a gap between plate-like members, and between the electrode layers 110. Since the elastomeric dielectric layer 120 is interposed, the electrostatic force acting between the electrode layers 110 is increased, and the contraction force is large.
  • the actuator 1 uses the flexible sheet 100 having a three-layer structure in which a pair of elastomeric dielectric layers 120 are laminated on the front surface side and the back surface side of the electrode layer 110, the flexible sheet 100 is used as a bellows.
  • the dielectric layer 120 made of an elastomer of the flexible sheet 100 is necessarily interposed between the electrode layers 110 of the pair of flexible sheets 100, and can be easily manufactured.
  • the actuator 1 since the actuator 1 includes a pair of flexible sheets 100 that intersect and overlap each other at a substantially right angle, the area where the pair of flexible sheets 100 are superimposed can be increased, and the actuator 1 is made of an elastomer. The region where the dielectric layer 120 is deformed is widened, and the amount of contraction and contraction force are large.
  • the actuator of the above embodiment has been described as having one actuator, it is possible to appropriately change the design to include a plurality of actuator elements 10 and 10.
  • the first rigid member 20 is joined to one surface side (upper surface side) of the plural (two in the illustrated example) actuator elements 10, 10, and the second rigid member 30 is The structure joined to the other surface side (lower surface side) of the plurality of actuator elements 10, 10 can be employed.
  • the first rigid member 20, the second rigid member 30, and the third rigid member 50 are arranged in parallel to each other. It is also possible to adopt a configuration in which the actuator elements 10 are disposed between the first rigid member 20 and the third rigid member 50.
  • the pair of elastomeric dielectric layers 120 have the same width, but the present invention is not limited to this, and the width of the pair of elastomeric dielectric layers 120 is different. Are within the intended scope of the present invention. Further, even in this case, it is preferable that at least one of the pair of dielectric dielectric layers 120 has a sleeve 121 that is provided wider than the electrode layer 110 and extends outward from the electrode layer 110. . Specifically, for example, as shown in FIG. 7, the width of the elastomeric dielectric layer 120 on one side of the electrode layer 110 is the same width as that of the electrode layer 110, and the elastomeric dielectric layer on the other side of the electrode layer 110 is used.
  • the width of the layer 120 is wider than that of the electrode layer 110 and the sleeve portion 121 is formed.
  • the electrode layer 110 forming material is laminated on the surface of the wide elastomeric dielectric layer 120, and the electrode layer 110 forming material is dried to dry the electrode layer. 110, and then, an elastomeric dielectric layer 120 forming material is laminated on the surface of the electrode layer 110, and the laminated elastomeric dielectric layer 120 forming material is dried to form an elastomeric dielectric layer 120 having the same width. It is possible to adopt the manufacturing method to form.
  • the pair of dielectric dielectric layers 120 has the same thickness.
  • the present invention is not limited to this, and the thickness of the pair of elastomer dielectric layers 120 is different. Also within the intended range of the flexible sheet 100 according to the present invention.
  • the total average thickness of the pair of dielectric layers 120 is preferably 20 ⁇ m or more and 200 ⁇ m or less, more preferably 40 ⁇ m or more and 140 ⁇ m or less, and particularly preferably 60 ⁇ m or more and 100 ⁇ m or less. preferable.
  • the dielectric layer 120 made of elastomer becomes too thin, and the dielectric layer 120 made of elastomer may break down, and the height of the actuator element 10 (length in the stacking direction) is sufficient. Therefore, the number of the flexible sheets 100 to be stacked increases so that the manufacturing cost may increase.
  • the electrodes are excessively separated when they are overlapped, and the electrostatic capacity may be reduced and the contraction force may be reduced.
  • the flexible sheet 100 is described as having a three-layer structure, but the present invention is not limited to this.
  • a flexible sheet 100 having a two-layer structure of an electrode layer 110 and an elastomeric dielectric layer 120 can be used as shown in FIG.
  • the actuator element 10 shown in FIG. 8 has a structure in which each flexible sheet 100 is folded once and overlapped so that the electrode layers 110 do not contact each other and are alternately folded in a bellows shape.
  • the flexible sheet preferably has a structure of three or more layers having an electrode layer and a pair of dielectric layers made of elastomer laminated on the front side and the back side of the electrode layer, whereby, the short circuit between electrode layers can be prevented easily and manufacture of an actuator element becomes easy.
  • a flexible sheet 100 having a structure of four or more layers. Specifically, as shown in FIG. 9, the electrode layer 110, the dielectric layer 120 made of elastomer, the electrode layer 110, the dielectric layer 120 made of elastomer, and the electrode layer 110 are laminated in this order in a flexible manner. It is also possible to employ the adhesive sheet 100. However, it is preferable that the flexible sheet is provided with an elastomeric dielectric layer on the outermost layer (outermost surface and outermost surface), which can prevent a short circuit of the electrode layer accurately.
  • the pair of flexible sheets 100 has the same structure.
  • the present invention is not limited to this, and a pair of flexible sheets 100 can be used as shown in FIG.
  • the use of the flexible sheet 100 having a structure different from that of the flexible sheet 100 can be changed as appropriate.
  • the flexible sheet 100 demonstrated taking the case of the flexible sheet 100 for actuator elements used for the actuator element 10, the flexible sheet 100 which concerns on this invention is limited to this. It is not a thing. That is, the flexible sheet 100 according to the present invention can be used for, for example, a power generation element or the like as in a second embodiment described later.
  • the present invention is not limited to this, for example, an actuator element in which two pairs of flexible sheets are folded.
  • the pair of flexible sheets 100 having the same configuration is used and the flexible sheet 100 having a pair of front and back dielectric layers 120 made of an elastomer has been described. It is not limited to this, and it is also possible to change the design as appropriate, such as adopting a flexible sheet having a different configuration, or using a flexible sheet having a different dielectric layer made of elastomer on the front and back sides.
  • the outermost surfaces of the pair of flexible sheets are made of the same material and have a self-adhesive layer, so that the form of the actuator element having a laminated structure can be easily maintained without using an adhesive.
  • Example 10 As the flexible sheet of the example, a sheet having a three-layer structure including an electrode layer 110 having an average thickness of 10 ⁇ m and an elastomer dielectric layer having an average thickness of 45 ⁇ m laminated on the front and back surfaces of the electrode layer 110 was used.
  • the dielectric layer is made by adding 30 parts by mass of a plasticizer to 100 parts by mass of Esprene (manufactured by Sumitomo Chemical Co., Ltd.), and further adding barium titanate having an average particle size of 0.5 ⁇ m as a dielectric filler to the entire volume. The formation material was added so as to be 25% by volume.
  • the electrode layer is prepared by adding 30 parts by mass of a plasticizer to 100 parts by mass of Esprene (manufactured by Sumitomo Chemical Co., Ltd.), and further adding 2.8% by volume of carbon nanotubes as a conductive filler to the entire volume It was formed with the added forming material.
  • the dielectric dielectric layer and the electrode layer are cross-linked and used.
  • the relative dielectric constant of the dielectric layer was 6.5.
  • the hardness (duro A) was 6 degrees. It was. Further, when the dielectric layer was measured at 20 ° C. using a type C durometer in accordance with JIS-K7312 “Type C hardness test”, the hardness (duro C) was 32 degrees.
  • the elongation modulus (M10) at 10% elongation is 0.01 MPa
  • the elongation modulus (M50) at 50% elongation is 0.07 MPa
  • 100 The elongation modulus (M100) at% elongation was 0.12 MPa
  • the elongation modulus (M400) at 400% elongation was 0.49 MPa.
  • the elongation modulus was measured using a dumbbell type test piece (JIS No. 3) according to JIS-K7312.
  • the tensile strength of the flexible sheet was measured according to “8.2 Tensile Test” of JIS-K6323 and found to be 2.2 MPa. Further, when the elongation at break of the flexible sheet was measured according to JIS-K6732, it was 1079%.
  • the compression elastic modulus of the flexible sheet was determined in accordance with JIS-K-6254, Method A, and found to be 0.5 MPa. Specifically, a specimen having a thickness of 12.5 ⁇ 0.5 mm and a diameter of 29.0 ⁇ 0.5 mm is compressed at a speed of 10 ⁇ 1 mm / min until reaching a strain of 25%, and immediately removed at the same speed. This operation was repeated three more times, the strain and force were recorded, 10% and 20% compression forces were obtained from the fourth curve, and the compression modulus was calculated according to the formula.
  • the dielectric breakdown strength (DC) of the flexible sheet was measured in accordance with JIS-C2110-1,2, and found to be 37.4 kV / mm.
  • the pressure increasing method, the short-time test, and the electrode shape were set to a ⁇ 20 mm spherical / ⁇ 25 mm flat plate and a test thickness of 1 mm or less.
  • An actuator element was manufactured by crossing a pair of the above flexible sheets, overlapping them, and alternately folding them in a bellows shape.
  • the number of folding times of each flexible sheet was set to 7 times, and the actuator element 10 in which each flexible sheet 100 was laminated in a total of 16 layers was manufactured.
  • FIG. 10 shows the result of measuring the amount of contraction by applying a voltage to the electrode layer of the actuator element.
  • a DC high-voltage power source manufactured by Matsusada Precision Co., Ltd. was used as a power source
  • a laser displacement meter manufactured by OMRON Corporation was used to measure the amount of contraction
  • a data logger NR-500 manufactured by Keyence Corporation was used for data storage.
  • the actuator element contracts when a voltage is applied, and can extend by a restoring force when the voltage application is stopped.
  • a power generation device 201 in FIG. 11 includes a power generation element 210 having a flexible sheet 100 for a power generation element having a configuration similar to that of the first embodiment, and a first rigid member 220 joined to one surface side of the power generation element 210. And a second rigid member 230 joined to the other surface side of the power generation element 210.
  • the first rigid member 220 and the second rigid member 230 are constituted by plate-like members, and a contractible power generation element 210 is interposed between the first rigid member 220 and the second rigid member 230. ing.
  • the power generating element 210 includes a plurality of flexible sheets 100 having an electrode layer 110 and an elastomeric dielectric layer 120 as shown in FIG. 12, and the electrode layers 110 are end portions of the flexible sheet 100. It has the connection part 111 projected from. And the said electric power generation device 201 has the control circuit 240 electrically connected to the electrode layer 110, as shown in FIG. Further, the power generation device 201 includes a bias voltage circuit 250 for applying a bias voltage to the control circuit 240. A bias voltage is applied to the electrode layer 110 via the control circuit 240, and the power generated by the power generation element 210 is taken out via the control circuit 240.
  • the power generation element 210 is folded such that a plurality of strip-shaped flexible sheets 100 are provided with an elastomeric dielectric layer 120 between the electrode layers 110 and 110. Specifically, as shown in FIGS. 11 and 12, the pair of flexible sheets 100 are overlapped so as to intersect at substantially right angles and are alternately folded into a bellows shape. The pair of flexible sheets 100 uses the same configuration.
  • the pair of flexible sheets 100 is preferably overlapped by 10 to 10,000 layers, more preferably 30 to 1000 layers, and more preferably 50 to 100 layers. More preferably. If it is less than the above lower limit value, the flexible sheet 100 is difficult to extend in the plane direction during compression, and a sufficient amount of power generation may not be obtained. When the above upper limit is exceeded, the length of the flexible sheet 100 becomes too long, and there is a risk of causing a defect in the flexible sheet 100, which may cause a dielectric breakdown.
  • ⁇ Flexible sheet 100> the same flexible sheet 100 as in the first embodiment is used as described above. That is, as the flexible sheet 100, as shown in FIG. 3, a stretchable electrode layer 110, and a pair of dielectric layers 120 made of an elastomer laminated on the front side and the back side of the electrode layer 110, It has.
  • the pair of front and back dielectric layers 120 made of elastomer has the same configuration.
  • the flexible sheet 100 in the power generation element 210 also preferably has an average thickness of 20 ⁇ m to 200 ⁇ m, and more preferably 40 ⁇ m to 140 ⁇ m.
  • the width (length in the short direction) of the flexible sheet 100 can be appropriately changed according to the application of the power generation device 201 used, and can be set to 1 cm, for example.
  • the length (length in the longitudinal direction) of the flexible sheet 100 can be appropriately changed depending on the number of times of overlapping, the width of the sheet, and the like, but can be set to 80 cm, for example.
  • the dielectric layer 120 is an elastically deformable layer, and the material of the dielectric layer 120 made of elastomer is the same as that of the first embodiment, and thus detailed description thereof is omitted.
  • the dielectric layer 120 is formed with substantially the same thickness as the other dielectric layers 120 made of elastomer.
  • the substantially same thickness means that the ratio of the average thickness of the dielectric layer 120 made of the other elastomer to the average thickness of the dielectric layer 120 made of the other elastomer is 0.95 or more and 1.05 or less.
  • the average thickness (T1) of the dielectric layer 120 (one layer) made of elastomer is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 20 ⁇ m or more and 70 ⁇ m or less, and particularly preferably 30 ⁇ m or more and 50 ⁇ m or less. If it is less than the lower limit, the dielectric layer 120 made of elastomer becomes too thin, and the dielectric layer 120 made of elastomer may break down, and the height of the power generating element 210 (the length in the stacking thickness direction) is sufficient. For this reason, the number of the flexible sheets 100 to be stacked increases so that the manufacturing cost may increase. On the other hand, when the upper limit is exceeded, the electrodes are excessively separated from each other when they are used as the power generation device 201, and the electrostatic capacity may be reduced and the power generation amount may be reduced.
  • the dielectric layer 120 made of an elastomer preferably has a compressive modulus of 0.1 MPa to 1.5 MPa, and more preferably 0.3 MPa to 0.7 MPa. If it is less than the above lower limit value, the dielectric layer 120 made of elastomer may be too soft, and the compressive deformation strain may be too large. On the other hand, if the upper limit is exceeded, the dielectric layer 120 made of elastomer may be too hard and difficult to compress in the layer thickness direction.
  • the compression modulus is a compression modulus when 10% strain is applied in accordance with a low deformation compression test of JIS-K6254.
  • the dielectric constant of the dielectric dielectric layer 120 is preferably 2 or more, 9 or less, more preferably 3 or more and 8 or less, and further preferably 4 or more and 7 or less. If it is less than the lower limit, the electrostatic capacity becomes small, and there is a possibility that a sufficient amount of power generation cannot be obtained when used as the power generation device 201. On the other hand, when the relative dielectric constant exceeds the above upper limit value, it is necessary to add a large amount of dielectric filler, and the elastomeric dielectric layer becomes hard and difficult to deform.
  • the dielectric layer 120 made of elastomer is formed to have substantially the same width as the dielectric layer 120 made of other elastomer.
  • the substantially same width means that the ratio of the width of the other dielectric layer 120 to the width of the other dielectric layer 120 is 0.95 or more and 1.05 or less.
  • the width (W1) of the dielectric layer 120 made of an elastomer can be appropriately changed in design according to the application of the power generation device 201 used, and can be set to 1 cm, for example.
  • the electrode layer 110 is preferably composed of a conductive layer made of an elastomer having elasticity that can follow the expansion and contraction of the dielectric layer 120.
  • This conductive layer made of elastomer contains a conductive filler in the elastomer.
  • a material that can be bonded to the dielectric layer 120 made of an elastomer is preferably used as the elastomer of the conductive layer.
  • a material similar to the dielectric layer 120 made of an elastomer can be used.
  • the electrode layer 110 is thinner than the dielectric layer 120 made of elastomer, and the average thickness (T2) of the electrode layer 110 is 1/30 or more of the average thickness (T1) of the dielectric layer 120 made of elastomer (one layer). / 10 or less, more preferably 1/20 or more and 1/15 or less.
  • the ratio (layer thickness) of the electrode layer 110 in the power generation element 210 increases and the ratio of the dielectric layer 120 made of elastomer decreases, so there is a possibility that the power generation amount of the power generation element 210 cannot be obtained sufficiently. is there.
  • the elastomer conductive layer becomes too thin and the resistance value of the electrode layer 110 may increase.
  • the average thickness (T2) of the electrode layer 110 is preferably 50 nm or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less. If the above upper limit is exceeded, the ratio (layer thickness) of the electrode layer 110 in the power generation element 210 is increased, and the ratio of the dielectric layer 120 made of elastomer is decreased. is there. On the other hand, if it is less than the lower limit, the elastomer conductive layer becomes too thin and the resistance value of the electrode layer 110 may increase.
  • the electrode layer 110 preferably has a compressive modulus of 0.1 MPa to 1.5 MPa, and more preferably 0.3 MPa to 0.7 MPa. If it is less than the lower limit, the electrode layer 110 may be too soft and the compressive deformation strain may be too large. On the other hand, when the above upper limit is exceeded, the electrode layer 110 is too hard and may not follow the dielectric layer 120 made of elastomer.
  • the electrode layer 110 is formed to be narrower than the dielectric layer 120 made of elastomer. That is, the dielectric layer 120 made of elastomer has a sleeve 121 that extends outward from the electrode layer 110, and prevents a short circuit at the end face of the electrode layer 110.
  • the width of the sleeve 121 is preferably 1/100 times or more and 1/20 times or less, and more preferably 1/50 times or more and 1/30 times or less the width (W1) of the dielectric layer 120 made of elastomer. More preferably. If it is less than the lower limit, the short-circuit prevention effect may not be sufficiently obtained. On the other hand, when the above upper limit is exceeded, the width of the electrode layer 110 is narrowed, the area of the region where the planar view electrodes overlap is narrowed, and sufficient contraction force may not be obtained.
  • the electrode layer 110 has the connection part 111 protruding from the dielectric layer 120 made of elastomer at both ends of the flexible sheet 100, and the power generation element 210 is connected to another element via the connection part 111. It is electrically connected to the member (control circuit 240).
  • seat 100 is folded back odd-numbered so that the connection part 111 of this both ends may become the same side (FIG. 1 right side) of the electric power generation element 210.
  • the conductive filler of the electrode layer 110 various types can be adopted.
  • the same one as described in the first embodiment can be adopted. Description is omitted.
  • the power generating element 210 is described from the lower side.
  • an elastomer dielectric layer on the upper side of the one flexible sheet 100 On the upper surface of the electrode layer 110 of one flexible sheet 100, an elastomer dielectric layer on the upper side of the one flexible sheet 100.
  • the electrode layer 110 of the other flexible sheet 100 is laminated via the elastomer dielectric layer 120 on the lower side of 120 and the other flexible sheet 100.
  • an elastomer dielectric layer 120 on the upper side of the other flexible sheet 100 and below the folded one flexible sheet 100.
  • the electrode layer 110 of the one flexible sheet 100 is laminated via the elastomer dielectric layer 120 on the side.
  • an elastomer dielectric layer 120 on the upper side of the one flexible sheet 100 and the other flexible sheet that has been folded are formed on the upper surface of the electrode layer 110 of the folded one flexible sheet 100.
  • the electrode layer 110 of the other flexible sheet 100 is laminated via a dielectric layer 120 made of an elastomer on the lower side of 100.
  • a bias voltage is applied between the electrode layers 110 of the pair of flexible sheets 100, and a load is applied to the laminated portion (the overlapped portion) of the flexible sheets 100. Compress (press) in the layer thickness direction.
  • the elastic sheet is restored by the elastic restoring force of the flexible sheet 100 (the elastomeric dielectric layer 120 and the electrode layer 110 thereof), that is, extends in the layer thickness direction. Since the distance between the electrode layers is changed during the compression and expansion, and the capacitance changes, it is possible to generate electric power using the capacitance change.
  • the electric energy ⁇ J generated between the one electrode layer 110 and the one electrode layer 110 facing the one electrode layer 110 with the dielectric layer 120 made of elastomer interposed therebetween is expressed by the following equation (7).
  • the ⁇ J (1/2) ⁇ ⁇ C1 ⁇ V1 2 ⁇ ( ⁇ C1 / ⁇ C2-1) (7)
  • ⁇ C1 is a capacitance in the expanded state
  • ⁇ C2 is a capacitance in the compressed state
  • V1 is a bias voltage applied in the compressed state.
  • each electrostatic capacitance (DELTA) C1, (DELTA) C2 is represented by the following formula
  • ⁇ 0 is the permittivity of free space
  • is the relative permittivity of the dielectric layer made of elastomer.
  • A1 is the electrode area in the extended state
  • T1 is the thickness of the dielectric layer 120 made of elastomer in the extended state
  • b1 is the volume between the electrodes in the extended state
  • b1 A1 ⁇ 2T1.
  • A2 is the electrode area in the compressed state
  • T1 ' is the distance between the electrodes in the compressed state (the thickness of the elastomeric dielectric layer)
  • b2 is the volume between the electrodes in the compressed state (the volume of the elastomeric dielectric layer).
  • b2 A2 ⁇ 2T1 ′.
  • the power generation amount J of the power generation element is expressed by the formula (12).
  • J (1/2) ⁇ ⁇ 0 ⁇ ⁇ ⁇ A1 / 2T1 ⁇ V1 2 ⁇ (T1' 2 / T1 2 -1) ⁇ (X-1) ⁇ (12)
  • the power generation element 210 may obtain a power generation amount proportional to the number of layers of the flexible sheet 100, and the power generation amount is larger than that of the conventional power generation element.
  • the power generation element 210 since the power generation element 210 generates power by compressing and expanding the laminated portion of the flexible sheet 100 as described above, the power generation element 210 is different from the conventional power generation by expansion and contraction. There is no need to grip 100 and the flexible sheet 100 is unlikely to deteriorate. In addition, as compared with a conventional power generation device that expands and contracts, the distance between the electrode layers 120 during compression is likely to be constant in the planar direction, and dielectric breakdown is less likely to occur.
  • the power generation element 210 has a simple configuration in which a plurality of flexible sheets 100 are crossed and overlapped and folded alternately in a bellows shape as described above, it can be easily manufactured.
  • the flexible sheet 100 having the electrode layer 110 is folded and a plurality of electrodes are formed by one electrode layer 110, wiring for each electrode is unnecessary, and the wiring structure is simple.
  • the power generation device 201 uses a flexible sheet 100 having a three-layer structure in which a pair of elastomeric dielectric layers 120 are laminated on the front surface side and the back surface side of the electrode layer 110, the flexible sheet 100 is used.
  • the dielectric layer 120 made of elastomer of the flexible sheet 100 is necessarily interposed between the electrode layers 110 of the pair of flexible sheets 100, and can be easily manufactured.
  • the pair of flexible sheets 100 are overlapped so as to intersect at substantially right angles, so that the area where the pair of flexible sheets 100 are overlapped can be increased.
  • the amount is large.
  • the apparatus volume can be significantly reduced as compared with the conventional method in which power is generated by stretching a single layer or a multi-layered film.
  • the power generation device 201 of the second embodiment has been described as including one power generation element 210, it is possible to appropriately change the design to include a plurality of power generation elements 210 and 210 as with the actuator of the first embodiment. It is. Specifically, as shown in FIG. 14, the first rigid member 220 is joined to one surface side (upper surface side) of a plurality (two in the illustrated example) of power generation elements 210 and 210, and the second rigid member 230 is The structure joined to the other surface side (lower surface side) of the plurality of power generating elements 210 and 210 can be employed. Further, as shown in FIG. 15, the first rigid member 220, the second rigid member 230, and the third rigid member 260 are arranged in parallel with each other. It is also possible to adopt a configuration in which the power generation elements 210 and 210 are disposed between the first rigid member 220 and the third rigid member 260.
  • the pair of dielectric dielectric layers 120 having the same width is described.
  • the present invention is not limited to this, and the power generating element 210
  • the pair of elastomeric dielectric layers 120 are described as having the same thickness.
  • the total average thickness of the pair of dielectric layers 120 can also be in the same range as in the first embodiment. That is, the total average thickness of the dielectric layer 120 made of elastomer is preferably 20 ⁇ m or more and 200 ⁇ m or less, more preferably 40 ⁇ m or more and 140 ⁇ m or less, and particularly preferably 60 ⁇ m or more and 100 ⁇ m or less.
  • the dielectric layer 120 made of elastomer becomes too thin, and the dielectric layer 120 made of elastomer may break down, and the height of the power generating element 210 (the length in the stacking direction) is sufficient. Therefore, the number of the flexible sheets 100 to be stacked increases so that the manufacturing cost may increase.
  • the electrodes may be separated too much when they are overlapped, and the electrostatic capacity may be reduced and the amount of power generation may be reduced.
  • the example in which the flexible sheets 100 are laminated in a multilayer manner has been described.
  • a pair of flexible sheets as shown in FIG. It is also possible to adopt a power generating element 210 having the sheet 100 folded once, crossed and overlapped and alternately folded into a bellows shape, and having four layers of flexible sheets 100 as a whole.
  • the flexible sheet 100 is described as having a three-layer structure, but the present invention is not limited to this.
  • a flexible sheet 100 having a two-layer structure of an electrode layer 110 and an elastomeric dielectric layer 120 can be used as shown in FIG.
  • seat 100 demonstrated what has the same structure, this invention is not limited to this, As mentioned above similarly to 1st embodiment.
  • the use of a flexible sheet 100 having a different structure from the pair of flexible sheets 100 can be changed as appropriate.
  • the folding of the pair of flexible sheets 100 has been described.
  • the present invention is not limited to this.
  • the power generation is performed by folding two pairs of flexible sheets. It is also possible to employ elements, and specifically, it is also possible to employ power generation elements in which the flexible sheets are crossed at approximately 45 ° and overlapped and folded alternately in a bellows shape.
  • the present invention is not limited to this, and it is possible to appropriately change the design by adopting a flexible sheet having a different configuration or using a flexible sheet having different dielectric layers made of elastomer on the front and back sides.
  • the outermost surfaces of the pair of flexible sheets are made of the same material and have a self-adhesive layer, so that the form of the power generation element having a laminated structure can be easily maintained without using an adhesive.
  • Example 2 As the flexible sheet of the example, a sheet having a three-layer structure including an electrode layer 110 having an average thickness of 10 ⁇ m and an elastomer dielectric layer having an average thickness of 45 ⁇ m laminated on the front and back surfaces of the electrode layer 110 was used.
  • the dielectric layer is made by adding 30 parts by mass of a plasticizer to 100 parts by mass of Esprene (manufactured by Sumitomo Chemical Co., Ltd.), and further adding barium titanate having an average particle size of 0.5 ⁇ m as a dielectric filler to the entire volume. The formation material was added so as to be 25% by volume.
  • the electrode layer is prepared by adding 30 parts by mass of a plasticizer to 100 parts by mass of Esprene (manufactured by Sumitomo Chemical Co., Ltd.), and further adding 2.8% by volume of carbon nanotubes as a conductive filler to the entire volume It was formed with the added forming material.
  • the dielectric dielectric layer and the electrode layer are cross-linked and used.
  • the relative dielectric constant of the dielectric layer was 6.5.
  • the hardness (duro A) was 6 degrees. It was. Further, when the dielectric layer was measured at 20 ° C. using a type C durometer in accordance with JIS-K7312 “Type C hardness test”, the hardness (duro C) was 32 degrees.
  • the elongation modulus (M10) at 10% elongation is 0.01 MPa
  • the elongation modulus (M50) at 50% elongation is 0.07 MPa
  • 100 The elongation modulus (M100) at% elongation was 0.12 MPa
  • the elongation modulus (M400) at 400% elongation was 0.49 MPa.
  • the elongation modulus was measured using a dumbbell type test piece (JIS No. 3) according to JIS-K7312.
  • the tensile strength of the flexible sheet was measured according to “8.2 Tensile Test” of JIS-K6323 and found to be 2.2 MPa. Further, when the elongation at break of the flexible sheet was measured according to JIS-K6732, it was 1079%.
  • the compression elastic modulus of the flexible sheet was determined in accordance with JIS-K-6254, Method A, and found to be 0.5 MPa. Specifically, a specimen having a thickness of 12.5 ⁇ 0.5 mm and a diameter of 29.0 ⁇ 0.5 mm is compressed at a speed of 10 ⁇ 1 mm / min until reaching a strain of 25%, and immediately removed at the same speed. This operation was repeated three more times, the strain and force were recorded, 10% and 20% compression forces were obtained from the fourth curve, and the compression modulus was calculated according to the formula.
  • the dielectric breakdown strength (DC) of the flexible sheet was measured according to JIS-C2110-1, 2 and found to be 37.4 kV / mm.
  • the pressure increasing method, the short-time test, and the electrode shape were set to a ⁇ 20 mm spherical / ⁇ 25 mm flat plate and a test thickness of 1 mm or less.
  • a pair of the flexible sheets were crossed and overlapped, and alternately folded into a bellows shape to produce a power generation element.
  • the number of folding times of each flexible sheet was set to 7 times, and the power generating element 210 in which each flexible sheet 100 was laminated in a total of 16 layers was manufactured.
  • FIG. 16 shows the result of measuring the generated energy by changing the bias voltage and the compression rate.
  • the power generating element is effectively generated by compressing the laminated portion.
  • the piezoelectric element of the present invention can be used as an actuator element or a power generation element.
  • a contracted state can be obtained by applying a voltage, it can be applied to a wide range of fields such as an artificial muscle as an actuator, and compresses a laminated portion. Therefore, the power generation element can be applied to a wide range of fields that convert kinetic energy into electric power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本発明の課題は、比較的簡易な構造で製造が容易であるとともに大きな圧電効果を得ることのできる圧電素子を提供することにある。本発明の圧電素子は、エラストマー製の誘電層(120)と、伸縮性を有するとともに上記誘電層に積層される電極層(110)とを有する複数の帯状の可撓性シート(100)を備え、複数の可撓性シート(100)が、交差して重ねあわされ、交互に蛇腹状に折り畳まれている構成を有する。複数の可撓性シート(100)のうち少なくとも一つの可撓性シート(100)が、電極層(110)の表面側及び裏面側に積層される一対の上記誘電層(120)を備えることが好ましい。一対の上記可撓性シート(100)が、略直角に交差して重ねあわされていることが好ましい。可撓性シート(100)の積層数は10層以上10000層以下であることが好ましい。

Description

圧電素子、アクチュエータ素子、アクチュエータ、発電素子、発電デバイス及び可撓性シート
 本発明は、圧電素子、アクチュエータ素子、アクチュエータ、発電素子、発電デバイス及び可撓性シートに関する。
 従来、アクチュエータとして、伸縮性を有する一対の電極層によってエラストマー製の誘電層をサンドした構造のものが公知である。このアクチュエータは、電極層に電圧を印加させると、電極層間の電界によってエラストマー製の誘電層が面方向に伸長するものである。つまり、このアクチュエータは、電圧無印加状態で収縮し、電圧印加状態で伸長する伸長型アクチュエータであり、通常時に伸長状態で必要に応じて収縮させたい部位に用いる場合には、常時電極層に電圧を印加しておく必要がある。このような伸長型アクチュエータにあっては、常時原型状態ではなく変形状態にあるので、電極層及びエラストマー製の誘電層の劣化が生じやすく、また電極層に常時電圧が印加されているのでこの電圧が周囲に悪影響を及ぼさないよう配慮する必要があるとともに上記電気エネルギーをロスするので、結果的にコスト高を招くという不都合を有する。
 また、伸縮性を有する複数の第一電極層及び第二電極層を交互に所定間隔をもって配設し、この第一電極層と第二電極層との間にエラストマー製の誘電層を配設した収縮型のアクチュエータも公知である(特開2011-103713号公報参照)。この収縮型のアクチュエータは、第一電極層と第二電極層とに電圧を印加すると、各エラストマー製の誘電層が平面方向に伸長することで、積層厚方向に収縮するものである。しかし、このような構造の収縮型のアクチュエータは、複数の第一電極層及び第二電極層をそれぞれ電気的に接続する必要があり、その配線構造が複雑である。特に、収縮量及び収縮力を増加させるためには、多数の電極層を積層する必要があり、この場合には配線構造がより複雑化してしまい、電気的接続の不備や製品としての欠陥が生ずるおそれがある。
 なお、剛性を有する板状部材によって電極テープを保持させて、一対の電極テープを交差して重ね合せるとともに複数の板状部材を一定の隙間(空気層)を有するように積層したアクチュエータも公知である(特開2010-57321号公報参照)。このアクチュエータは、板状部材、一方の電極テープ、板状部材、空気層(隙間)、板状部材、他方の電極テープ、板状部材、空気層と順次積層された構造からなる。このアクチュエータは、一対の電極テープに電圧を印加することで、静電力により電極テープ同士が近接する方向に力が作用する。そして、この力により板状部材間の隙間が狭くなって、全体として積層厚方向に収縮する。しかしながら、このアクチュエータにあっては、収縮を許容するために板状部材間に隙間(空気層)が必要であるが、この隙間の存在によって電極テープ同士の間隔が広くなるので電極テープに作用する静電力が小さくなる。つまり、このアクチュエータは、収縮量を大きくするために隙間を大きくすると収縮力が小さくなり、逆に収縮力を大きくするために隙間を小さくすると、収縮量が小さくなるという不都合を有している。また、板状部材間に隙間が存在するため、板状部材を積層厚方向に移動可能に保持する機構が必要となり、的確に力を取り出すためにはその機構の精密さが要求され、製品コストの増大を招くおそれもある。
 また、発電素子として、伸縮性を有する一対の電極層によってエラストマー製の誘電層をサンドしたシート構造のものが公知である(特表2003-505865号公報及び特開2010-263750号公報参照)。この発電素子は、平面方向に伸長させ、その後復元(収縮)させる一連の変形(伸長収縮)によって生ずる静電容量の変化を利用して発電するものである。この発電素子の一回の伸長及び収縮による発電量Jは、以下の式(1)で表される。
J=(1/2)×C1×V1×(C1/C2-1)・・・式(1)
ここで、C1は伸長状態での静電容量で、C2は収縮状態での静電容量、V1は伸長状態で与えられるバイアス電圧である。
 上記静電容量Cは、以下の式(2)で表される。
C=ε×ε×A/t=ε×ε×b/t・・・式(2)
ここで、εは自由空間の誘電率、εはエラストマー製の誘電層の比誘電率、Aは電極面積、tは電極間の距離(エラストマー製の誘電層の厚み)である。また、bは、電極間の体積(エラストマー製の誘電層の体積)であり、b=A×tである。
 また、伸長状態での静電容量C1及び収縮状態での静電容量C2は式(3)及び式(4)で表される。
C1=ε×ε×A1/t1=ε×ε×b1/t1・・・式(3)
C2=ε×ε×A2/t2=ε×ε×b2/t2・・・式(4)
ここで、A1は伸長状態での電極面積、t1は伸長状態での電極間の距離(エラストマー製の誘電層の厚み)、b1は、伸長状態での電極間の体積(エラストマー製の誘電層の体積)であり、b1=A1×t1である。また、A2は収縮状態での電極面積、t2は収縮状態での電極間の距離(エラストマー製の誘電層の厚み)、b2は、収縮状態での電極間の体積(エラストマー製の誘電層の体積)であり、b2=A2×t2である。
 なお、ポアソン比が0.5のエラストマーの理想状態では、伸長状態の体積と収縮状態の体積は一定であり(b1=b2)、静電容量は厚みtの二乗に反比例することになる。このため、伸長状態での静電容量C1及び収縮状態での静電容量C2は式(5)の関係を満たす。
C1/C2=t2/t1・・・式(5)
 この式(5)及び式(3)によって式(1)は以下の式(6)のように書き直すことができる。
J=(1/2)×ε×ε×A1/t1×V1×(t2/t1-1)・・・式(6)
 この式(6)においてε、A1、t1は初期状態で一定であるとすると、発電量Jは、バイアス電圧V1の二乗、及び厚み比t2/t1の二乗に比例する。
 これらのことから、一回の伸長及び収縮による発電量Jを大きくするためには、以下のA~Cの手法が考えられる。
A.伸長時の静電容量C1を大きくする。このためには、比誘電率の大きいエラストマー製の誘電層を採用し、伸長状態の厚みt1を小さくし、電極の面積A1を大きくすることが考えられる。
B.収縮状態の静電容量に対する伸長状態の静電容量の比C1/C2を大きくする。つまり、発電素子に大きな伸長を与えて、厚みの変化を大きくすることが考えられる。
C.バイアス電圧V1を大きくする。
 しかし、上記従来の発電素子にあっては、一対の電極しか有さないので、上記A~Cのような手法をとったとしても十分な発電量が得られない。また、伸長するためには発電素子のシート状の端部を把持する部材が必要であり、この把持部分に応力が集中してしまい、電極層等の破損を招くおそれがある。
 なお、特開2010-263750号公報には、シートを筒状にした例が開示されているが、この筒状のシートを軸心方向に伸長した際に、中央部分の電極層間の距離が短くなり、結果として絶縁破壊の発生を的確に防止できない。
 また、特開2010-263750号公報には、既述のような一対の電極層とエラストマー製の誘電層との三層構造のシートに、さらに他のエラストマー製の誘電層と他の電極層とを積層した発電デバイスも開示されている。この場合、電極層が三層形成されることになるが、例えば表面側の電極層及び裏面側の電極層に、中央の電極層と異なる極の電位を与えるよう電気的接続がなされることになる。このため、仮に発電量を大きくするために電極層及びエラストマー製の誘電層の層を多数にした場合には、その電気的接続(配線)が困難となる。
特開2011-103713号公報 特開2010-57321号公報 特表2003-505865号公報 特開2010-263750号公報
 本発明は、以上のような事情に基づいてなされたものであり、本発明の課題は、比較的簡易な構造で製造が容易であるとともに高い圧電効果(アクチュエータ素子としては大きな収縮力、また発電素子としては大きい発電量)を得ることのできる圧電素子を提供することを課題とする。また、本発明の課題は、上記のような圧電素子を容易に製造することのできる可撓性シートを提供することにある。
 本発明は、上記課題を解決するためになされたものであり、本発明に係る圧電素子は、
 エラストマー製の誘電層と、伸縮性を有するとともに上記誘電層に積層される電極層とを有する複数の帯状の可撓性シートを備え、
 複数の可撓性シートが、交差して重ねあわされ、交互に蛇腹状に折り畳まれている構成を有する。
 当該圧電素子は、一の可撓性シートの電極層の一方の面にエラストマー製の誘電層を介して他の可撓性シートの電極層が積層され、この他の可撓性シートの電極層の一方の面にエラストマー製の誘電層を介して折り返された上記一の可撓性シートの電極層が積層される構造となる。
 このため、当該圧電素子を例えばアクチュエータ素子として用いた場合、各可撓性シートにそれぞれ電圧を印加する(以下、電圧印加状態ということがある)ことによって、電極層間に静電力が発生する。そして、この静電力によって、誘電層及び電極層が平面方向に伸長し、可撓性シートが層厚方向に収縮する。このため、電圧印加状態において収縮状態とすることができる。また、印加している電圧をなくすと、誘電層及び電極層が平面方向に収縮し、可撓性シートが層厚方向に伸長する(以下、電圧無印加状態ということがある)。このため、電圧無印加状態において伸長状態とすることができる。
 一方、当該圧電素子を例えば発電素子として用いた場合、上記電極層及びエラストマー製の誘電層の積層された積層部分に負荷がかけられ、層厚方向に圧縮されると、誘電層及び電極層が平面方向に伸長する。そして、上記積層部分にかけられていた負荷が除かれると、エラストマー製の誘電層の弾性復元力によって復元し、つまり積層部分が層厚方向に伸長する。この積層部分の圧縮・伸長に伴って電極層間の距離が変更され、静電容量の変化が生じるので、この静電容量の変化を利用して発電することが可能となる。また、当該発電素子は、上述のように可撓性シートの積層部分を圧縮・伸長することによって発電するものであるので、従来の伸長・収縮によって発電するものと異なり、可撓性シートを把持する必要性がなく、可撓性シートが劣化し難い。また、従来の伸長・収縮させる発電デバイスと比較して、圧縮時における電極層間の距離が平面方向一定になり易く、絶縁破壊が起こりにくい。当該発電素子は、上述のような構造からなり少なくとも四層の電極層が積層された構造であるため、従来の発電デバイスに比べて発電量を大きくすることが可能である。
 また、当該圧電素子は、上記のように複数の可撓性シートを交差して重ね合せ交互に蛇腹状に折り畳む簡易な構成であるため、容易に製造することが可能である。特に、電極層を有する可撓性シートが折り畳まれ、一つの電極層によって複数の電極が構成されることになるため、従来のアクチュエータ素子及び発電素子のように電極ごとの配線が不要であり、配線構造が簡易である。
 さらに、当該圧電素子は、複数の可撓性シートが重ねあわされた構造であり、板状部材間に隙間を有する従来のアクチュエータ素子に比べて、構造が容易であるとともに、電極層間にエラストマー製の誘電層が介在されるので当該圧電素子をアクチュエータ素子として用いた場合に電極層間に作用する静電力が大きくなり、収縮力が大きい。
 上述のように当該圧電素子をアクチュエータ素子として用いた場合、複数の可撓性シートのうち少なくとも一つの可撓性シートが、電極層の表面側及び裏面側に積層される一対の上記誘電層を備えることが好ましい。これにより、この電極層が一対のエラストマー製の誘電層に挟まれた構造の可撓性シート(以下、サンドイッチ構造型可撓性シートということがある)を蛇腹状に折り畳むことによって、このサンドイッチ構造型可撓性シートの電極層と、他の可撓性シートの電極層との間にはサンドイッチ構造型可撓性シートのエラストマー製の誘電層が必ず介在することになる。
 また、当該アクチュエータ素子にあっては、一対の上記可撓性シートが、略直角に交差して重ねあわされ、交互に蛇腹状に折り畳まれていることが好ましい。つまり、当該アクチュエータ素子にあっては、一対の可撓性シートが例えば60°に交差して重ね合せたものとすることも可能であるが、この場合には一対の可撓性シートの重ねあわされる面積が小さくなってしまう。これに対して、一対の可撓性シートを略直角に交差して重ね合せることによって、一対の可撓性シートの重ね合わされる面積を大きくすることができ、エラストマー製の誘電層が変形する領域が広くなる。なお、一対の可撓性シートの交差角度は、一対の可撓性シートの中心線同士のなす角度を意味し、略直角とは、80°以上、好ましくは85°以上である。
 当該アクチュエータ素子は、上記一対の可撓性シートが10層以上10000層以下で重畳されていることが好ましい。つまり、当該アクチュエータ素子は、一対の可撓性シートが交差して重ねあわされ交互に蛇腹状に折り畳まれて4層構造(各可撓性シートが2層ずつ)とすることも可能であるが、この4層構造では十分な収縮量が得られないおそれがある。これに対して、一対の可撓性シートが10層以上10000層以下で重畳されている(各可撓性シートが5層以上5000層以下で重畳されている)ことにより、十分な収縮量が得られる。
 当該アクチュエータ素子は、エラストマー製の誘電層の平均厚みが10μm以上100μm以下であることが好ましい。これにより、エラストマー製の誘電層が的確に平面方向に伸長(層厚方向に収縮)することができる。
 当該アクチュエータ素子は、電極層の平均厚みが、エラストマー製の誘電層の平均厚みの1/10以下であることが好ましい。これにより、電極層に対するエラストマー製の誘電層の割合(層厚)を大きくすることができ、エラストマー製の誘電層が的確に平面方向に伸長(層厚方向に収縮)することができる。
 また、本発明に係るアクチュエータは、上記構成からなる当該アクチュエータ素子と、上記アクチュエータ素子の一面側に接合される第一剛性部材と、上記アクチュエータ素子の他面側に接合される第二剛性部材とを備える。
 当該アクチュエータは、各可撓性シートにそれぞれ電圧を印加することによって、アクチュエータ素子が層厚方向に収縮し、第一剛性部材と第二剛性部材との距離を縮めることができる。
 また、当該アクチュエータは、複数の上記アクュエータ素子を備え、上記第一剛性部材が、上記複数のアクチュエータ素子の一面側に接合され、上記第二剛性部材が、上記複数のアクチュエータ素子の他面側に接合されていることが好ましい。これにより、第一剛性部材と第二剛性部材との距離を複数のアクチュエータ素子によって縮めることが可能であるとともに、一方のアクチュエータ素子のみを収縮状態とすることによって第一剛性部材と第二剛性部材とを傾斜状態とすることも可能である。
 上述のように当該圧電素子をアクチュエータ素子として用いた場合、複数の可撓性シートのうち少なくとも一つの可撓性シートが、電極層の表面側及び裏面側に積層される一対の上記誘電層を備えることが好ましい。これにより、このサンドイッチ構造型可撓性シートを蛇腹状に折り畳むことによって、このサンドイッチ構造型可撓性シートの電極層と、他の可撓性シートの電極層との間にはサンドイッチ構造型可撓性シートのエラストマー製の誘電層が必ず介在することになる。
 また、当該発電素子にあっては、一対の上記可撓性シートが、略直角に交差して重ねあわされ、交互に蛇腹状に折り畳まれていることが好ましい。つまり、当該発電素子にあっては、一対の可撓性シートが例えば60°に交差して重ねあわせたものとすることも可能であるが、この場合には一対の可撓性シートの重ねあわされる面積が小さくなってしまう。これに対して、一対の可撓性シートを略直角に交差して重ねあわせることによって、一対の可撓性シートの重ねあわされる面積を大きくすることができ、静電容量が大きくなり、発電量を大きくすることができる。
 当該発電素子は、上記一対の可撓性シートが10層以上10000層以下で重畳されていることが好ましい。つまり、当該発電素子は、一対の可撓性シートが交差して重ねあわされ交互に蛇腹状に折り畳まれて4層構造(各可撓性シートが2層ずつ)とすることも可能であるが、この4層構造では十分な発電量が得られないおそれがある。これに対して、一対の可撓性シートが10層以上10000層以下で重畳されている(各可撓性シートが5層以上5000層以下で重畳されている)ことにより、十分な発電量が得られる。
 当該発電素子は、エラストマー製の誘電層の平均厚みが10μm以上100μm以下であることが好ましい。これにより、エラストマー製の誘電層を的確に平面方向に伸長(層厚方向に圧縮)させることができる。
 当該発電素子は、電極層の平均厚みが、エラストマー製の誘電層の平均厚みの1/10以下であることが好ましい。これにより、電極層に対するエラストマー製の誘電層の割合(層厚)を大きくすることができ、エラストマー製の誘電層を的確に平面方向に伸長(層厚方向に圧縮)させることができる。
 また、本発明に係る発電デバイスは、上記構成からなる当該発電素子と、上記発電素子の一面側に接合される第一剛性部材と、上記発電素子の他面側に接合される第二剛性部材とを備える。
 当該発電デバイスは、各可撓性シートにそれぞれ電圧を印加することによって、発電素子が層厚方向に収縮し、第一剛性部材と第二剛性部材との距離を縮めることができる。
 また、当該発電デバイスは、複数の上記アクチュエータ素子を備え、上記第一剛性部材が、上記複数の発電素子の一面側に接合され、上記第二剛性部材が、上記複数の発電素子の他面側に接合されていることが好ましい。これにより、第一剛性部材と第二剛性部材との距離を複数の発電素子によって縮めることが可能であるとともに、一方の発電素子のみを収縮状態とすることによって第一剛性部材と第二剛性部材とを傾斜状態とすることも可能である。
 また、本発明に係る可撓性シートは、帯状の可撓性シートであって、伸縮性を有する電極層と、この電極層の表面側及び裏面側に積層される一対のエラストマー製の誘電層とを備える。
 当該可撓性シートによれば、例えば他の帯状の可撓性シートと交差して重ねあわせ、交互に蛇腹状に折り畳むことによって、既述の利点を奏する当該圧電素子を製造することができる。
 なお、「エラストマー製の誘電層の平均厚み」及び「電極層の平均厚み」とは、電極層に電圧をかけない電圧無印加状態で、かつ上記積層部分に負荷をかけていない(圧縮していない)無負荷状態の厚みを意味する。
 以上説明したように、本発明に係る圧電素子は、比較的簡易な構造で製造が容易であるとともに大きな圧電効果を得ることができる。また、本発明に係る可撓性シートは、上記利点を有する圧電素子を備えつつ、容易に製造することができる。
図1は、本発明の第一実施形態のアクチュエータの一部省略した概略的正面図である。 図2は、図1のアクチュエータのアクチュエータ素子の概略的平面図である。 図3は、図2のアクチュエータ素子の可撓性シートの説明図で、(A)は要部を拡大した概略的側面図で、(B)は概略的正面断面図である。 図4は、図2のアクチュエータ素子における一対の可撓性シートの関係を説明するための概略的正面端面図である。 図5は、本発明の他の実施形態のアクチュエータの概略的正面図(アクチュエータの具体的構造の図示は省略)である。 図6は、本発明の他の実施形態のアクチュエータの概略的正面図(アクチュエータの具体的構造の図示は省略)である。 図7は、本発明の他の実施形態の可撓性シートの要部を拡大した概略的正面断面図である。 図8は、本発明の他の実施形態のアクチュエータ素子の概略的正面図である。 図9は、本発明の他の実施形態のアクチュエータ素子の概略的正面図である。 図10は、本発明のアクチュエータの実施例の印加電圧と収縮率との関係を示すグラフである。 図11は、本発明の第二実施形態の発電デバイスの一部省略した概略的正面図である。 図12は、図11の発電デバイスの発電素子の概略的平面図である。 図13は、図12の発電素子における一対の可撓性シートの関係を説明するための概略的正面端面図である。 図14は、本発明の他の実施形態の発電デバイスの概略的正面図(発電デバイスの具体的構造の図示は省略)である。 図15は、本発明の他の実施形態の発電デバイスの概略的正面図(発電デバイスの具体的構造の図示は省略)である。 図16は、本発明の発電デバイスの実施例の圧縮率及びバイアス電圧と発生エネルギーとの関係を示す表である。
 以下、本発明の実施の形態について、図面を参酌しつつ説明する。
[第一実施形態]
 まず、本発明に係る圧電素子の第一実施形態として、図1に示すアクチュエータ1に用いられるアクチュエータ素子10を例にとり説明する。
<アクチュエータ1>
 図1のアクチュエータ1は、アクチュエータ素子10と、アクチュエータ素子10の一面側に接合される第一剛性部材20と、アクチュエータ素子10の他面側に接合される第二剛性部材30とを備える。図示例では、第一剛性部材20と第二剛性部材30とは板状の部材から構成され、この第一剛性部材20と第二剛性部材30との間に収縮可能なアクチュエータ素子10が介在されている。
 上記アクチュエータ素子10は、図2に示すように電極層110及びエラストマー製の誘電層120を有する複数の可撓性シート100を有しており、この電極層110は可撓性シート100の端部から突設された接続部111を有している。そして、当該アクチュエータ1は、図1に示すように電極層110に電気的に接続される制御回路40を有している。なお、電極層110は制御回路40を介して電圧が印加される。
<アクチュエータ素子10>
 当該アクチュエータ素子10は、複数の帯状の可撓性シート100が電極層110,110同士の間にエラストマー製の誘電層120が配設されるよう折り畳まれている。具体的には、図1及び図2に示すように、一対の可撓性シート100が、略直角に交差して重ねあわされ、交互に蛇腹状に折り畳まれている。この一対の可撓性シート100は、同一構成のものを使用している。
 また、一対の可撓性シート100は、10層以上10000層以下で重畳されていることが好ましく30層以上1000層以下で重畳されていることがより好ましく、50層以上100層以下で重畳されていることがさらに好ましい。上記下限値未満であると、アクチュエータ素子10の高さが低く十分な収縮量が得られないおそれがある。上記上限値を超えると、可撓性シート100の長さが長くなり過ぎ、可撓性シート100に欠陥を生ずるおそれがあり、この欠陥によって絶縁破壊が生ずるおそれがある。
<可撓性シート100>
 当該可撓性シート100は、図3に示すように、伸縮性を有する電極層110と、この電極層110の表面側及び裏面側に積層される一対のエラストマー製の誘電層120とを備えている。表裏一対のエラストマー製の誘電層120は同一構成を有している。
 当該可撓性シート100は、平均厚みが20μm以上200μm以下であることが好ましく、40μm以上140μm以下であることがより好ましい。また、当該可撓性シート100の幅(短手方向の長さ)は、用いられるアクチュエータ1の用途等に応じて適宜設計変更可能であり、例えば1cmとすることが可能である。さらに、当該可撓性シート100の長さ(長手方向の長さ)は、重畳する回数やシートの幅等により適宜設計変更可能であるが、例えば80cmとすることが可能である。
 上記誘電層120は、弾性変形可能な層である。このエラストマー製の誘電層120は、天然ゴム、イソプレンゴム、ニトリルゴム(NBR)、エチレンプロピレンゴム(EPDM)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロブレンゴム(CR)、シリコーンゴム、フッ素ゴム、アクリルゴム、水素添加ニトリルゴム、ウレタンゴム等から構成することが可能である。なお、エラストマー製の誘電層120としては、高い絶縁強度を有し、吸湿性も少ない疎水性ゴム(例えば、天然ゴム、イソプレンゴム、エチレンプロビレンゴム、ブタジエンゴム、シリコーンゴム、アクリルゴム等)から構成することが好ましい。特に、弾性圧縮率を小さくしても圧縮変形ひずみが大きくなり過ぎないように、上記誘電層120は、ポリロタキタン構造を有するエラストマー、特に疎水性のポリロタキサン構造を有するエラストマーであることが好ましい。
 上記誘電層120は、他のエラストマー製の誘電層120と略同一厚みで形成されている。なお、略同一厚みとは、一方のエラストマー製の誘電層120の平均厚みに対する他方のエラストマー製の誘電層120の平均厚みの比が0.95以上1.05以下であることを意味する。
 このエラストマー製の誘電層120(一層)の平均厚み(T1)は、10μm以上100μm以下であることが好ましく、20μm以上70μm以下であることがより好ましく、30μm以上50μm以下であることが特に好ましい。上記下限値未満であると、エラストマー製の誘電層120が薄くなり過ぎ、エラストマー製の誘電層120が絶縁破壊するおそれが生ずるとともに、アクチュエータ素子10の高さ(積層厚方向の長さ)を十分なものとするために当該可撓性シート100の積層数が多くなり過ぎ、製造コストの増大を招くおそれがある。一方、上記上限値を超えると、重ね合せてアクチュエータ1として利用した際に電極同士の間が離間し過ぎ、静電容量が小さくなり、収縮力が小さくなるおそれがある。
 また、エラストマー製の誘電層120は、圧縮弾性率が、0.1MPa以上1.5MPa以下であることが好ましく、0.3MPa以上0.7MPa以下であることがより好ましい。上記下限値未満であると、エラストマー製の誘電層120が軟らかすぎ、圧縮変形ひずみが大きくなり過ぎるおそれがある。一方、上記上限値を超えると、エラストマー製の誘電層120が硬すぎ、層厚方向に収縮し難いおそれがある。上記圧縮弾性率は、JIS-K6254の低変形圧縮試験に準拠して、10%歪を与えた場合の圧縮弾性率である。
 さらに、エラストマー製の誘電層120の比誘電率は、2以上9以下が好ましく、3以上8以下がより好ましく、4以上7以下がさらに好ましい。上記下限値未満であると、静電容量が小さくなり、アクチュエータ1として利用した際に十分な収縮力が得られないおそれがある。一方、比誘電率が上記上限値を超えると、誘電性フィラーを大量に添加する必要がありエラストマー製の誘電層が硬くなり変形しにくくなる。
 また、エラストマー製の誘電層120は他のエラストマー製の誘電層120と略同一幅で形成されている。なお、略同一幅とは、一方のエラストマー製の誘電層120の幅に対する他方のエラストマー製の誘電層120の幅の比が0.95以上1.05以下であることを意味する。このエラストマー製の誘電層120の幅(W1)は、用いられるアクチュエータ1の用途等に応じて適宜設計変更可能であり、例えば1cmとすることが可能である。
 上記電極層110は、上記誘電層120の伸縮に追従可能な伸縮性を有するエラストマー製の導電層から構成することが好ましい。このエラストマー製の導電層は、エラストマーに導電性フィラーが含有されている。ここで、導電層のエラストマーとしては、エラストマー製の誘電層120と接着可能なものが好適に用いられ、例えばエラストマー製の誘電層120と同様の素材のものを用いることが可能である。
 また、電極層110はエラストマー製の誘電層120よりも薄く設けられ、電極層110の平均厚み(T2)は、エラストマー製の誘電層120(一層)の平均厚み(T1)の1/30以上1/10以下であることが好ましく、1/20以上1/15以下であることがより好ましい。上記上限値を超えると、アクチュエータ素子10における電極層110の割合(層厚)が大きくなり、エラストマー製の誘電層120の割合が小さくなるので、アクチュエータ素子10が十分に収縮できないおそれがある。一方、上記下限値未満であると、エラストマー製の導電層が薄くなり過ぎ、電極層110の抵抗値が大きくなるおそれがある。
 また、電極層110の平均厚み(T2)は、50nm以上50μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。上記上限値を超えると、アクチュエータ素子10における電極層110の割合(層厚)が大きくなり、エラストマー製の誘電層120の割合が小さくなるので、アクチュエータ素子10が十分に収縮できないおそれがある。一方、上記下限値未満であると、エラストマー製の導電層が薄くなり過ぎ、電極層110の抵抗値が大きくなるおそれがある。
 さらに、電極層110は、圧縮弾性率が、0.1MPa以上1.5MPa以下であることが好ましく、0.3MPa以上0.7MPa以下であることがより好ましい。上記下限値未満であると、電極層110が軟らかすぎ、圧縮変形ひずみが大きくなり過ぎるおそれがある。一方、上記上限値を超えると、電極層110が硬すぎ、当該可撓性シート100が変形しにくくなり、変形させるためには高い電圧を印加する必要が生じ、この高い電圧によってエラストマー製の誘電層120の絶縁破壊を招くおそれがある。
 また、電極層110は、エラストマー製の誘電層120よりも幅狭に形成されている。つまり、エラストマー製の誘電層120は、電極層110よりも外側に延出した袖部121を有しており、電極層110の端面での短絡等を防止している。ここで、この袖部121の幅(W3=(W1-W2)/2)は、電極層110の平均厚み(T2)に対して5倍以上100倍以下であることが好ましく、10倍以上50倍以下であることがより好ましい。また、袖部121の幅は、エラストマー製の誘電層120の幅(W1)に対して1/100倍以上1/20倍以下であることが好ましく、1/50倍以上1/30倍以下であることがより好ましい。上記下限値未満であると短絡防止効果が十分に得られないおそれがある。一方、上記上限値を超えると、電極層110の幅が狭くなり、平面視電極が重なっている領域の面積が狭くなり、十分な収縮力が得られないおそれがある。
 さらに、電極層110は、可撓性シート100の両端部において、エラストマー製の誘電層120よりも突出した上記接続部111を有し、当該アクチュエータ素子10は、この接続部111を介して他の部材(制御回路40)と電気的に接続されている。なお、この両端部の接続部111がアクチュエータ素子10の同一の側(図1では右側)となるよう、可撓性シート100は奇数回折り返されていることが好ましい。
 さらに、上記電極層110の導電性フィラーとしては、種々のものが採用可能であり、例えば導電性カーボンブラック、カーボンナノチューブ(単層カーボンナノチューブ又は多層カーボンナノチューブ)、導電性金属フィラー等を採用可能である。特に、電極層110の導電性フィラーとしては、伸縮によっても通電性が維持されることを考慮すると、アスペクト比の大きいカーボンナノチューブを採用することが好ましい。
<当該可撓性シート100の製造方法>
 当該可撓性シート100は種々の方法によって製造可能であるが、その一例を以下に示す。
 まず、印刷やコーティング等の手法によってエラストマー製の誘電層形成材料を層状にして、このエラストマー製の誘電層形成材料を乾燥させてエラストマー製の誘電層120を形成する。なお、エラストマー製の誘電層120の形成は、押出し成形法等によって形成することも可能である。
 エラストマー製の誘電層120の表面に、印刷やコーティング等の手段によって導電性フィラーが分散された電極層形成材料を積層し、この積層された電極層形成材料の表面に他のエラストマー製の誘電層120を積層し、この電極層形成材料を乾燥させることによって、三層構造の可撓性シート100が形成される。なお、導電性フィラーを電極層形成材料中で分散させる手法は、固層分散であっても液相分散であっても良い。
<利点>
 当該アクチュエータ素子10は、図4に示すように、下側の可撓性シート100の電極層110の上面に、この可撓性シート100の上側のエラストマー製の誘電層120及び他方の可撓性シート100の下側のエラストマー製の誘電層120を介して、この他方の可撓性シート100の電極層110が積層された構造となる。このため、一対の可撓性シート100の電極層110に電圧を印加すると、エラストマー製の誘電層120が平面方向に伸長することによってエラストマー製の誘電層120が層厚方向に収縮する。このときの発生する静電力Pは、次式で表される。
P=ε×ε×E
E=V/(T1+T1)
ここで、εは自由空間の誘電率、εはエラストマー製の誘電層120の比誘電率、Eは一対の電極層110間の電界強度であり、Vは一対の電極層110間の電位差(印加電圧)、T1はエラストマー製の誘電層120の平均厚みである。
 一方、印加している電圧をなくすと、エラストマー製の誘電層120が平面方向に収縮し、可撓性シート100が層厚方向に伸長する。つまり、エラストマー製の誘電層120が復元する。
 このように、電圧無印加状態において伸長状態とし、電圧印加状態において収縮状態とすることができる。
 当該アクチュエータ1は、上記のように一対の可撓性シート100を交差して重ね合せ交互に蛇腹状に折り畳む簡易な構成であるため、容易に製造することが可能である。特に、電極層110を有する可撓性シート100が折り畳まれ、一つの電極層110によって複数の電極が構成されることになるため、従来のアクチュエータ素子10のように電極ごとの配線が不要であり、配線構造が簡易である。
 さらに、当該アクチュエータ1は、複数の可撓性シート100が重ねあわされた構造であり、板状部材間に隙間を有する従来のものに比べて、構造が容易であるとともに、電極層110間にエラストマー製の誘電層120が介在されるので電極層110間に作用する静電力が大きくなり、収縮力が大きい。
 しかも、当該アクチュエータ1は、電極層110の表面側及び裏面側に一対のエラストマー製の誘電層120が積層された三層構造の可撓性シート100を用いるため、この可撓性シート100を蛇腹状に折り畳むことによって、一対の可撓性シート100の電極層110同士の間には可撓性シート100のエラストマー製の誘電層120が必ず介在し、容易に製造することができる。
 また、当該アクチュエータ1は、一対の可撓性シート100が、略直角に交差して重ねあわされているので、一対の可撓性シート100の重ね合わされる面積を大きくすることができ、エラストマー製の誘電層120が変形する領域が広くなり、収縮量及び収縮力が大きい。
<当該アクチュエータ、アクチュエータ素子及び可撓性シートの変形例(他実施形態)>
 なお、本発明は上記実施形態の他、種々の変更、改良を施した形態で実施することができる。
 つまり、上記実施形態のアクチュエータは一つのアクチュエータを備えるものについて説明したが、複数のアクチュエータ素子10,10を備えることも適宜設計変更可能である。具体的には、図5に示すように、第一剛性部材20が、複数(図示例では2つ)のアクチュエータ素子10,10の一面側(上面側)に接合され、第二剛性部材30が、上記複数のアクチュエータ素子10,10の他面側(下面側)に接合されている構成を採用可能である。さらに、図6に示すように、互いに平行に配された第一剛性部材20、第二剛性部材30及び第三剛性部材50を有し、この第一剛性部材20と第二剛性部材30との間及び第一剛性部材20と第三剛性部材50との間のそれぞれにアクチュエータ素子10,10が配設された構成を採用することも可能である。
 また、上記実施形態においては、一対のエラストマー製の誘電層120が同一幅のものについて説明したが、本発明はこれに限定されるものではなく、一対のエラストマー製の誘電層120の幅が異なるものも本発明の意図する範囲内である。さらに、この場合にあっても、一対のエラストマー製の誘電層120の少なくとも一方が、電極層110よりも幅広に設けられ、電極層110よりも外側に延出した袖部121を有することが好ましい。具体的には、例えば図7に示すように、電極層110の一方の面のエラストマー製の誘電層120の幅が電極層110と同一幅で、電極層110の他方の面のエラストマー製の誘電層120の幅が電極層110よりも幅広で袖部121が形成された構成を採用することも可能である。なお、この可撓性シート100を製造する場合には、幅広のエラストマー製の誘電層120の表面に電極層110形成材料を積層し、この積層された電極層110形成材料を乾燥させて電極層110を形成し、次いで電極層110の表面にエラストマー製の誘電層120形成材料を積層し、この積層されたエラストマー製の誘電層120形成材料を乾燥させて同一幅のエラストマー製の誘電層120を形成する製造方法を採用することが可能である。
 また、上記実施形態においては、一対のエラストマー製の誘電層120が同一厚みのものについて説明したが、本発明はこれに限定されるものではなく、一対のエラストマー製の誘電層120の厚みが異なるものも本発明に係る可撓性シート100の意図する範囲内である。なお、この場合には、一対の上記誘電層120の平均厚みの合計は、20μm以上200μm以下であることが好ましく、40μm以上140μm以下であることがより好ましく、60μm以上100μm以下であることが特に好ましい。上記下限値未満であると、エラストマー製の誘電層120が薄くなり過ぎ、エラストマー製の誘電層120が絶縁破壊するおそれが生ずるとともに、アクチュエータ素子10の高さ(積層方向の長さ)を十分なものとするために当該可撓性シート100の積層数が多くなり過ぎ、製造コストの増大を招くおそれがある。一方、上記上限値を超えると、重ねあわせた際に電極同士の間が離間し過ぎ、静電容量が小さくなり、収縮力が小さくなるおそれがある。
 さらに、上記実施形態においては、可撓性シート100が多層に積層された例について説明したが、本発明に係るアクチュエータ素子10にあっては、図8に示すように一対の可撓性シート100が一回折り返されて、交差して重ねあわされ交互に蛇腹状に折り畳まれ、全体として四層の可撓性シート100を有するアクチュエータ素子10を採用することも可能である。
 また、上記実施形態においては、可撓性シート100として三層構造のものについて説明したが、本発明はこれに限定されない。例えば、本発明に係るアクチュエータ素子10として、図8に示すように電極層110とエラストマー製の誘電層120との二層構造の可撓性シート100を用いることも可能である。この図8のアクチュエータ素子10は、各可撓性シート100が一回折り返され、電極層110同士が接触しないように重ねあわされ交互に蛇腹状に折り畳まれた構造を有している。但し、当該可撓性シートにあっては、電極層と、この電極層の表面側及び裏面側に積層される一対のエラストマー製の誘電層とを有する三層以上の構造であることが好ましく、これにより電極層同士の短絡を容易に防止でき、アクチュエータ素子の製造が容易となる。
 さらに、当該可撓性シート100として四層以上の構造を有するものを採用することも可能である。具体的には、図9に示すように、電極層110、エラストマー製の誘電層120、電極層110、エラストマー製の誘電層120、電極層110がこの順で積層された五層構造の可撓性シート100を採用することも可能である。但し、当該可撓性シートは、最外層(最表面及び最裏面)にエラストマー製の誘電層が配設されることが好ましく、これにより電極層の短絡を的確に防止することができる。
 また、上記実施形態においては、一対の可撓性シート100が同一構造を有するものについて説明したが、本発明はこれに限定されるものではなく、既述の図9に示すように一対の可撓性シート100が異なる構造の可撓性シート100を用いることも適宜設計変更可能である。
 さらに、上記実施形態では、可撓性シート100が、アクチュエータ素子10に用いられるアクチュエータ素子用可撓性シート100を例にとり説明したが、本発明に係る可撓性シート100はこれに限定されるものではない。つまり、本発明に係る可撓性シート100は、例えば後述する第二実施形態のように例えば発電素子等に用いることも可能である。
 さらに、上記実施形態においては、一対の可撓性シート100を折り畳んだものについて説明したが、本発明はこれに限定されるものではなく、例えば二対の可撓性シートを折り畳んだアクチュエータ素子を採用することも可能であり、具体的には各可撓性シートを略45°で交差させて重ね合せ、交互に蛇腹状に折り畳んだアクチュエータ素子を採用することも可能である。
 また、上記実施形態においては、一対の可撓性シート100として同一構成のものを用い、可撓性シート100の表裏一対のエラストマー製の誘電層120を有するものについて説明したが、本発明はこれに限定されるものではなく、異なる構成の可撓性シートを採用したり、表裏のエラストマー製の誘電層が異なる構成の可撓性シートを用いたりすることも適宜設計変更可能である。但し、一対の可撓性シートの最外面が同一素材で且つ自己粘着性を有する層から構成されることが好ましく、これにより接着剤を用いることなく積層構造のアクチュエータ素子の形態が維持されやすい。
 以下、実施例によって当該発明をさらに具体的に説明するが、当該発明は以下の実施例に限定されるものではない。
 [実施例]
 実施例の可撓性シートは、平均厚み10μmの電極層110と、この電極層110の表裏面に積層された平均厚み45μmのエラストマー製の誘電層との三層構造のシートを用いた。
 上記誘電層は、商品名エスプレン(住友化学株式会社製)100質量部に、可塑剤を30質量部添加し、さらに誘電性フィラーとして平均粒径0.5μmのチタン酸バリウムを全体の体積に対して25容量%となるよう添加した形成材料によって形成した。また、上記電極層は、商品名エスプレン(住友化学株式会社製)100質量部に、可塑剤を30質量部添加し、さらに導電性フィラーとしてカーボンナノチューブを全体の体積に対して2.8容量%となるよう添加した形成材料によって形成した。なお、エラストマー製の誘電層及び電極層はそれぞれ架橋して使用している。
 上記誘電層の比誘電率は、6.5であった。
 上記誘電層を、JIS-K6253に準拠して、タイプAデュロメータを用いて、20℃において測定したところ(n=3で測定しその平均値を算出)、硬度(デュロA)は6度であった。また、上記誘電層を、JIS-K7312「タイプC硬さ試験」に準拠して、タイプCデュロメータを用いて、20℃において測定したところ硬度(デュロC)が32度であった。
 また、この可撓性シートについて、10%伸長した際の伸長モジュラス(M10)を測定すると0.01MPaであり、50%伸長した際の伸長モジュラス(M50)を測定すると0.07MPaであり、100%伸長した際の伸長モジュラス(M100)を測定すると0.12MPaであり、400%伸長した際の伸長モジュラス(M400)を測定すると0.49MPaであった。なお、この伸長モジュラスの測定は、JIS-K7312に準じて、ダンベル型試験片(JIS3号)を用いた。
 上記可撓性シートについて、JIS-K6323の「8.2引張試験」に準拠して、引張強さを測定したところ、2.2MPaであった。また、上記可撓性シートについて、JIS-K6732に準拠して、破断時伸びを測定したところ、1079%であった。
 上記可撓性シートについて、JIS-K-6254のA法に準拠して圧縮弾性率を求めたところ、0.5MPaであった。具体的には、厚さ12.5±0.5mm、直径29.0±0.5mmの試験片が25%の歪みに達するまで10±1mm/minの速度で圧縮し、直ちに同速度で除荷し、この操作を更に3回繰り返し、歪みと力を記録し、4回目の曲線から10%、20%の圧縮力を求め、圧縮弾性率を式に従い算出した。
 上記可撓性シートについて、JIS-C2110-1,2準拠して、絶縁破壊強さ(DC)を測定したところ、37.4kV/mmであった。ここで、昇圧方法、短時間試験、電極形状は、Φ20mm球形/Φ25mm平板、試験厚み1mm以下とした。
 一対の上記可撓性シートを交差して重ねあわせ交互に蛇腹状に折り畳んでアクチュエータ素子を製造した。ここで、各可撓性シートの折り返し回数をそれぞれ7回とし、各可撓性シート100が8層、合計16層積層されたアクチュエータ素子10を製造した。
 上記アクチュエータ素子の電極層に電圧を印加して、収縮量を測定した結果を図10に示す。ここで、電源として松定プレシジョン株式会社製の直流高圧電源を用い、収縮量の測定にオムロン株式会社製のレーザー変位計を用い、データ記憶のためにキーエンス株式会社製のデータロガーNR-500を用いた。
 図10から明らかなように、当該アクチュエータ素子は、電圧印加によって収縮するとともに、電圧の印加をやめると復元力によって伸長することができる。
[第二実施形態]
 まず、本発明に係る圧電素子の第二実施形態として、図11から図13に示す発電デバイス201に用いられる発電素子210を例にとり説明する。
 以下、本発明の実施の形態について、図面を参酌しつつ説明する。
<発電デバイス201>
 図11の発電デバイス201は、上記第一実施形態と同様の構成からなる発電素子用の可撓性シート100を有する発電素子210と、発電素子210の一面側に接合される第一剛性部材220と、発電素子210の他面側に接合される第二剛性部材230とを備える。図示例では、第一剛性部材220と第二剛性部材230とは板状の部材から構成され、この第一剛性部材220と第二剛性部材230との間に収縮可能な発電素子210が介在されている。
 上記発電素子210は、図12に示すように電極層110及びエラストマー製の誘電層120を有する複数の可撓性シート100を有しており、この電極層110は可撓性シート100の端部から突設された接続部111を有している。そして、当該発電デバイス201は、図11に示すように電極層110に電気的に接続される制御回路240を有している。また、当該発電デバイス201は、制御回路240にバイアス電圧を印加するためのバイアス電圧回路250を有している。上記電極層110は、制御回路240を介してバイアス電圧が印加されるとともに、発電素子210で発電された電力は上記制御回路240を介して取り出される。
<発電素子210>
 当該発電素子210は、複数の帯状の可撓性シート100が電極層110,110同士の間にエラストマー製の誘電層120が配設されるよう折り畳まれている。具体的には、図11及び図12に示すように、一対の可撓性シート100が、略直角に交差して重ねあわされ、交互に蛇腹状に折り畳まれている。この一対の可撓性シート100は、同一構成のものを使用している。
 また、一対の可撓性シート100は、10層以上10000層以下で重畳されていることが好ましく30層以上1000層以下で重畳されていることがより好ましく、50層以上100層以下で重畳されていることがさらに好ましい。上記下限値未満であると、圧縮時に可撓性シート100が平面方向に伸長しにくく、十分な発電量が得られないおそれがある。上記上限値を超えると、可撓性シート100の長さが長くなり過ぎ、可撓性シート100に欠陥を生ずるおそれがあり、この欠陥によって絶縁破壊が生ずるおそれがある。
<可撓性シート100>
 当該発電素子210においては、可撓性シート100として上述のように第一実施形態と同様のものが用いられる。つまり、当該可撓性シート100としては、図3に示すように、伸縮性を有する電極層110と、この電極層110の表面側及び裏面側に積層される一対のエラストマー製の誘電層120とを備えている。表裏一対のエラストマー製の誘電層120は同一構成を有するものが用いられる。
 当該発電素子210における可撓性シート100も、平均厚みが20μm以上200μm以下であることが好ましく、40μm以上140μm以下であることがより好ましい。また、当該可撓性シート100の幅(短手方向の長さ)は、用いられる発電デバイス201の用途等に応じて適宜設計変更可能であり、例えば1cmとすることが可能である。さらに、当該可撓性シート100の長さ(長手方向の長さ)は、重畳する回数やシートの幅等により適宜設計変更可能であるが、例えば80cmとすることが可能である。
 当該発電素子210においても、上記誘電層120は、弾性変形可能な層であり、このエラストマー製の誘電層120の素材は第一実施形態と同様であるので、その詳細な説明を省略する。
 上記誘電層120は、他のエラストマー製の誘電層120と略同一厚みで形成されている。なお、略同一厚みとは、一方のエラストマー製の誘電層120の平均厚みに対する他方のエラストマー製の誘電層120の平均厚みの比が0.95以上1.05以下であることを意味する。
 このエラストマー製の誘電層120(一層)の平均厚み(T1)は、10μm以上100μm以下であることが好ましく、20μm以上70μm以下であることがより好ましく、30μm以上50μm以下であることが特に好ましい。上記下限値未満であると、エラストマー製の誘電層120が薄くなり過ぎ、エラストマー製の誘電層120が絶縁破壊するおそれが生ずるとともに、発電素子210の高さ(積層厚方向の長さ)を十分なものとするために当該可撓性シート100の積層数が多くなり過ぎ、製造コストの増大を招くおそれがある。一方、上記上限値を超えると、重ねあわせて発電デバイス201として利用した際に電極同士の間が離間し過ぎ、静電容量が小さくなり、発電量が小さくなるおそれがある。
 また、エラストマー製の誘電層120は、圧縮弾性率が、0.1MPa以上1.5MPa以下であることが好ましく、0.3MPa以上0.7MPa以下であることがより好ましい。上記下限値未満であると、エラストマー製の誘電層120が軟らかすぎ、圧縮変形ひずみが大きくなり過ぎるおそれがある。一方、上記上限値を超えると、エラストマー製の誘電層120が硬すぎ、層厚方向に圧縮し難いおそれがある。上記圧縮弾性率は、JIS-K6254の低変形圧縮試験に準拠して、10%歪を与えた場合の圧縮弾性率である。
 さらに、エラストマー製の誘電層120の比誘電率は、2以上9以下が好ましく、3以上8以下がより好ましく、4以上7以下がさらに好ましい。上記下限値未満であると、静電容量が小さくなり、発電デバイス201として利用した際に十分な発電量が得られないおそれがある。一方、比誘電率が上記上限値を超えると、誘電性フィラーを大量に添加する必要がありエラストマー製の誘電層が硬くなり変形しにくくなる。
 また、エラストマー製の誘電層120は他のエラストマー製の誘電層120と略同一幅で形成されている。なお、略同一幅とは、一方のエラストマー製の誘電層120の幅に対する他方のエラストマー製の誘電層120の幅の比が0.95以上1.05以下であることを意味する。このエラストマー製の誘電層120の幅(W1)は、用いられる発電デバイス201の用途等に応じて適宜設計変更可能であり、例えば1cmとすることが可能である。
 上記電極層110は、上記誘電層120の伸縮に追従可能な伸縮性を有するエラストマー製の導電層から構成することが好ましい。このエラストマー製の導電層は、エラストマーに導電性フィラーが含有されている。ここで、導電層のエラストマーとしては、エラストマー製の誘電層120と接着可能なものが好適に用いられ、例えばエラストマー製の誘電層120と同様の素材のものを用いることが可能である。
 また、電極層110はエラストマー製の誘電層120よりも薄く設けられ、電極層110の平均厚み(T2)は、エラストマー製の誘電層120(一層)の平均厚み(T1)の1/30以上1/10以下であることが好ましく、1/20以上1/15以下であることがより好ましい。上記上限値を超えると、発電素子210における電極層110の割合(層厚)が大きくなり、エラストマー製の誘電層120の割合が小さくなるので、発電素子210の発電量が十分得られないおそれがある。一方、上記下限値未満であると、エラストマー製の導電層が薄くなり過ぎ、電極層110の抵抗値が大きくなるおそれがある。
 また、電極層110の平均厚み(T2)は、50nm以上50μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。上記上限値を超えると、発電素子210における電極層110の割合(層厚)が大きくなり、エラストマー製の誘電層120の割合が小さくなるので、発電素子210の発電量が十分得られないおそれがある。一方、上記下限値未満であると、エラストマー製の導電層が薄くなり過ぎ、電極層110の抵抗値が大きくなるおそれがある。
 さらに、電極層110は、圧縮弾性率が、0.1MPa以上1.5MPa以下であることが好ましく、0.3MPa以上0.7MPa以下であることがより好ましい。上記下限値未満であると、電極層110が軟らかすぎ、圧縮変形ひずみが大きくなり過ぎるおそれがある。一方、上記上限値を超えると、電極層110が硬すぎ、エラストマー製の誘電層120に追従できなくなるおそれがある。
 また、電極層110は、エラストマー製の誘電層120よりも幅狭に形成されている。つまり、エラストマー製の誘電層120は、電極層110よりも外側に延出した袖部121を有しており、電極層110の端面での短絡等を防止している。ここで、この袖部121の幅(W3=(W1-W2)/2)は、電極層110の平均厚み(T2)に対して5倍以上100倍以下であることが好ましく、10倍以上50倍以下であることがより好ましい。また、袖部121の幅は、エラストマー製の誘電層120の幅(W1)に対して1/100倍以上1/20倍以下であることが好ましく、1/50倍以上1/30倍以下であることがより好ましい。上記下限値未満であると短絡防止効果が十分に得られないおそれがある。一方、上記上限値を超えると、電極層110の幅が狭くなり、平面視電極が重なっている領域の面積が狭くなり、十分な収縮力が得られないおそれがある。
 さらに、電極層110は、可撓性シート100の両端部において、エラストマー製の誘電層120よりも突出した上記接続部111を有し、当該発電素子210は、この接続部111を介して他の部材(制御回路240)と電気的に接続されている。なお、この両端部の接続部111が発電素子210の同一の側(図1では右側)となるよう、可撓性シート100は奇数回折り返されていることが好ましい。
 さらに、上記電極層110の導電性フィラーとしては、種々のものが採用可能であり、この導電性フィラーとしては第一実施形態で説明したものと同様のものが採用可能であるため、その詳細な説明は省略する。
<利点>
 当該発電素子210は、図13に示すように、下側から説明すると、一方の可撓性シート100の電極層110の上面に、この一方の可撓性シート100の上側のエラストマー製の誘電層120及び他方の可撓性シート100の下側のエラストマー製の誘電層120を介して、この他方の可撓性シート100の電極層110が積層された構造となる。そして、この他方の可撓性シート100の電極層110の上面に、この他方の可撓性シート100の上側のエラストマー製の誘電層120、及び折り返された上記一方の可撓性シート100の下側のエラストマー製の誘電層120を介して、この一方の可撓性シート100の電極層110が積層された構造となる。さらに、この折り返された一方の可撓性シート100の電極層110の上面に、この一方の可撓性シート100の上側のエラストマー製の誘電層120、及び折り返された上記他方の可撓性シート100の下側のエラストマー製の誘電層120を介して、この他方の可撓性シート100の電極層110が積層された構造となる。このため、当該発電素子210にあっては、一対の可撓性シート100の電極層110間にバイアス電圧を印加するとともに、可撓性シート100の積層部分(重ねあわされた部分)に負荷をかけて(押圧して)層厚方向に圧縮する。そして、積層部分にかけられた上記負荷を解除することによって、可撓性シート100(のエラストマー製の誘電層120及び電極層110)の弾性復元力によって復元、つまり層厚方向に伸長する。この圧縮及び伸長に際して電極層間の距離が変更され、静電容量の変化が生じるので、この静電容量の変化を利用して発電することが可能となる。
 この一の電極層110と、この一の電極層110にエラストマー製の誘電層120を挟んで対向する一の電極層110との間に生ずる電力量ΔJは、以下の式(7)で表される。
ΔJ=(1/2)×ΔC1×V1×(ΔC1/ΔC2-1)・・・式(7)
ここで、ΔC1は伸長状態での静電容量で、ΔC2は圧縮状態での静電容量、V1は圧縮状態で与えられるバイアス電圧である。
 また、各静電容量ΔC1,ΔC2は、以下の式(8)及び式(9)で表される。
ΔC1=ε×ε×A1/2T1=ε×ε×b1/4T1・・・式(8)
ΔC2=ε×ε×A2/2T1´=ε×ε×b2/4T1´・・・式(9)
ここで、εは自由空間の誘電率、εはエラストマー製の誘電層の比誘電率である。A1は伸長状態での電極面積、T1は伸長状態でのエラストマー製の誘電層120の厚み、b1は伸長状態での電極間の体積であり、b1=A1×2T1である。また、A2は圧縮状態での電極面積、T1´は圧縮状態での電極間の距離(エラストマー製の誘電層の厚み)、b2は圧縮状態での電極間の体積(エラストマー製の誘電層の体積)であり、b2=A2×2T1´である。
 圧縮状態の体積と収縮状態の体積とが一定(b1=b2)であると仮定すると、各静電容量ΔC1,ΔC2は、以下の式(10)を満たす。
ΔC1/ΔC2=T1´/T1・・・式(10)
 この式(10)及び式(8)によって式(7)は以下の式(11)のように書き直すことができる。
ΔJ=(1/2)×ε×ε×A1/2T1×V1×(T1´/T1-1)・・・式(11)
 このため、可撓性シートの積層数(重ねあわせ数)をXとすると、当該発電素子の発電量Jは、式(12)で表される。
J=(1/2)×ε×ε×A1/2T1×V1×(T1´/T1-1)×(X-1)・・・式(12)
 このように当該発電素子210は可撓性シート100の積層数に比例した発電量を得られる可能性があり、従来の発電素子に比べて発電量が大きい。
 また、当該発電素子210は、上述のように可撓性シート100の積層部分を圧縮・伸長することによって発電するものであるので、従来の伸長・収縮によって発電するものと異なり、可撓性シート100を把持する必要性がなく、可撓性シート100が劣化し難い。また、従来の伸長・収縮させる発電デバイスと比較して、圧縮時における電極層120間の距離が平面方向で一定になり易く、絶縁破壊が起こりにくい。
 さらに、当該発電素子210は、上記のように複数の可撓性シート100を交差して重ねあわせ交互に蛇腹状に折り畳む簡易な構成であるため、容易に製造することが可能である。特に、電極層110を有する可撓性シート100が折り畳まれ、一つの電極層110によって複数の電極が構成されることになるため、電極ごとの配線が不要であり、配線構造が簡易である。
 しかも、当該発電デバイス201は、電極層110の表面側及び裏面側に一対のエラストマー製の誘電層120が積層された三層構造の可撓性シート100を用いるため、この可撓性シート100を蛇腹状に折り畳むことによって、一対の可撓性シート100の電極層110同士の間には可撓性シート100のエラストマー製の誘電層120が必ず介在し、容易に製造することができる。
 また、当該発電デバイス201は、一対の可撓性シート100が、略直角に交差して重ねあわされているので、一対の可撓性シート100の重ねあわされる面積を大きくすることができ、発電量が大きい。そして、従来の単層又は数層を積層した膜の伸長により発電する方式に比べ、装置容積を大幅に小さくできる。
<当該発電デバイス及び発電素子の変形例(他実施形態)>
 なお、本発明は上記実施形態の他、種々の変更、改良を施した形態で実施することができる。
 つまり、上記第二実施形態の発電デバイス201は一つの発電素子210を備えるものについて説明したが、第一実施形態のアクチュエータと同様に、複数の発電素子210,210を備えることも適宜設計変更可能である。具体的には、図14に示すように、第一剛性部材220が、複数(図示例では2つ)の発電素子210,210の一面側(上面側)に接合され、第二剛性部材230が、上記複数の発電素子210,210の他面側(下面側)に接合されている構成を採用可能である。さらに、図15に示すように、互いに平行に配された第一剛性部材220、第二剛性部材230及び第三剛性部材260を有し、この第一剛性部材220と第二剛性部材230との間及び第一剛性部材220と第三剛性部材260との間のそれぞれに発電素子210,210が配設された構成を採用することも可能である。
 また、上記第二実施形態においては、一対のエラストマー製の誘電層120が同一幅のものについて説明したが、既述のように本発明はこれに限定されるものではなく、当該発電素子210においても例えば図7に示すような可撓性シートを用いることも可能である。
 また、上記第二実施形態においては、一対のエラストマー製の誘電層120が同一厚みのものについて説明したが、既述のように本発明はこれに限定されるものではない。また、一対の上記誘電層120の平均厚みの合計も上記第一実施形態と同様の範囲内とすることが可能である。つまり、エラストマー製の誘電層120の平均厚みの合計は、20μm以上200μm以下であることが好ましく、40μm以上140μm以下であることがより好ましく、60μm以上100μm以下であることが特に好ましい。上記下限値未満であると、エラストマー製の誘電層120が薄くなり過ぎ、エラストマー製の誘電層120が絶縁破壊するおそれが生ずるとともに、発電素子210の高さ(積層方向の長さ)を十分なものとするために当該可撓性シート100の積層数が多くなり過ぎ、製造コストの増大を招くおそれがある。一方、上記上限値を超えると、重ねあわせた際に電極同士の間が離間し過ぎ、静電容量が小さくなり、発電量が小さくなるおそれがある。
 さらに、上記第二実施形態においては、可撓性シート100が多層に積層された例について説明したが、本発明に係る発電素子210にあっては、図8に示すように一対の可撓性シート100が一回折り返されて、交差して重ねあわされ交互に蛇腹状に折り畳まれ、全体として四層の可撓性シート100を有する発電素子210を採用することも可能である。
 また、上記第二実施形態においては、可撓性シート100として三層構造のものについて説明したが、本発明はこれに限定されない。例えば、本発明に係る発電素子として、既述の図8に示すように電極層110とエラストマー製の誘電層120との二層構造の可撓性シート100を用いることも可能である。また、上記第二実施形態においては、一対の可撓性シート100が同一構造を有するものについて説明したが、本発明はこれに限定されるものではなく、第一実施形態と同様に既述の図9に示すように一対の可撓性シート100が異なる構造の可撓性シート100を用いることも適宜設計変更可能である。
 さらに、上記第二実施形態においては、一対の可撓性シート100を折り畳んだものについて説明したが、本発明はこれに限定されるものではなく、例えば二対の可撓性シートを折り畳んだ発電素子を採用することも可能であり、具体的には各可撓性シートを略45°で交差させて重ねあわせ、交互に蛇腹状に折り畳んだ発電素子を採用することも可能である。
 また、上記第二実施形態においては、一対の可撓性シート100として同一構成のものを用い、可撓性シート100の表裏一対のエラストマー製の誘電層120を有するものについて説明したが、本発明はこれに限定されるものではなく、異なる構成の可撓性シートを採用したり、表裏のエラストマー製の誘電層が異なる構成の可撓性シートを用いたりすることも適宜設計変更可能である。但し、一対の可撓性シートの最外面が同一素材で且つ自己粘着性を有する層から構成されることが好ましく、これにより接着剤を用いることなく積層構造の発電素子の形態が維持されやすい。
 以下、実施例によって当該発明をさらに具体的に説明するが、当該発明は以下の実施例に限定されるものではない。
 [実施例2]
 実施例の可撓性シートは、平均厚み10μmの電極層110と、この電極層110の表裏面に積層された平均厚み45μmのエラストマー製の誘電層との三層構造のシートを用いた。
 上記誘電層は、商品名エスプレン(住友化学株式会社製)100質量部に、可塑剤を30質量部添加し、さらに誘電性フィラーとして平均粒径0.5μmのチタン酸バリウムを全体の体積に対して25容量%となるよう添加した形成材料によって形成した。また、上記電極層は、商品名エスプレン(住友化学株式会社製)100質量部に、可塑剤を30質量部添加し、さらに導電性フィラーとしてカーボンナノチューブを全体の体積に対して2.8容量%となるよう添加した形成材料によって形成した。なお、エラストマー製の誘電層及び電極層はそれぞれ架橋して使用している。
 上記誘電層の比誘電率は、6.5であった。
 上記誘電層を、JIS-K6253に準拠して、タイプAデュロメータを用いて、20℃において測定したところ(n=3で測定しその平均値を算出)、硬度(デュロA)は6度であった。また、上記誘電層を、JIS-K7312「タイプC硬さ試験」に準拠して、タイプCデュロメータを用いて、20℃において測定したところ硬度(デュロC)が32度であった。
 また、この可撓性シートについて、10%伸長した際の伸長モジュラス(M10)を測定すると0.01MPaであり、50%伸長した際の伸長モジュラス(M50)を測定すると0.07MPaであり、100%伸長した際の伸長モジュラス(M100)を測定すると0.12MPaであり、400%伸長した際の伸長モジュラス(M400)を測定すると0.49MPaであった。なお、この伸長モジュラスの測定は、JIS-K7312に準じて、ダンベル型試験片(JIS3号)を用いた。
 上記可撓性シートについて、JIS-K6323の「8.2引張試験」に準拠して、引張強さを測定したところ、2.2MPaであった。また、上記可撓性シートについて、JIS-K6732に準拠して、破断時伸びを測定したところ、1079%であった。
 上記可撓性シートについて、JIS-K-6254のA法に準拠して圧縮弾性率を求めたところ、0.5MPaであった。具体的には、厚さ12.5±0.5mm、直径29.0±0.5mmの試験片が25%の歪みに達するまで10±1mm/minの速度で圧縮し、直ちに同速度で除荷し、この操作を更に3回繰り返し、歪みと力を記録し、4回目の曲線から10%、20%の圧縮力を求め、圧縮弾性率を式に従い算出した。
 上記可撓性シートについて、JIS-C2110-1,2に準拠して、絶縁破壊強さ(DC)を測定したところ、37.4kV/mmであった。ここで、昇圧方法、短時間試験、電極形状は、Φ20mm球形/Φ25mm平板、試験厚み1mm以下とした。
 一対の上記可撓性シートを交差して重ねあわせ交互に蛇腹状に折り畳んで発電素子を製造した。ここで、各可撓性シートの折り返し回数をそれぞれ7回とし、各可撓性シート100が8層、合計16層積層された発電素子210を製造した。
 上記発電素子にバイアス電圧を印加した状態で発電素子の積層部分を圧縮した。バイアス電圧及び圧縮率を変更して発生エネルギーを測定した結果を図16に示す。
 図16から明らかなように、当該発電素子は、積層部分の圧縮によって効果的に発電されている。
 本発明の圧電素子はアクチュエータ素子や発電素子として用いることができ、例えば電圧印加によって収縮状態が得られるので、アクチュエータとして人工筋肉等の幅広い分野に適用することができ、また、積層部分を圧縮することによって発電されるので、発電素子として運動エネルギーを電力に変換する幅広い分野に適用することができる。
1 アクチュエータ
10 アクチュエータ素子
20 第一剛性部材
30 第二剛性部材
40 制御回路
100 可撓性シート
110 電極層
111 接続部
120 エラストマー製の誘電層
121 袖部
201 発電デバイス
210 発電素子
220 第一剛性部材
230 第二剛性部材
240 制御回路
250 バイアス電圧回路

Claims (18)

  1.  エラストマー製の誘電層と、上記誘電層に積層され、かつ、伸縮性を有する電極層とを有する複数の帯状の可撓性シートを備え、
     複数の可撓性シートが、交差して重ねあわされ、交互に蛇腹状に折り畳まれている圧電素子。
  2.  請求項1に記載の圧電素子を有するアクチュエータ素子。
  3.  上記複数の可撓性シートのうち少なくとも一つの可撓性シートが、上記電極層の表面側及び裏面側に積層される一対の上記誘電層を備える請求項2に記載のアクチュエータ素子。
  4.  一対の上記可撓性シートが、略直角に交差して重ねあわされ、交互に蛇腹状に折り畳まれている請求項2に記載のアクチュエータ素子。
  5.  上記一対の可撓性シートが10層以上10000層以下で重畳されている請求項2に記載のアクチュエータ素子。
  6.  上記誘電層の平均厚みが10μm以上100μm以下である請求項2に記載のアクチュエータ素子。
  7.  上記電極層の平均厚みが、上記誘電層の平均厚みの1/10以下である請求項2に記載のアクチュエータ素子。
  8.  請求項2に記載のアクチュエータ素子と、
     上記アクチュエータ素子の一面側に接合される第一剛性部材と、
     上記アクチュエータ素子の他面側に接合される第二剛性部材と
    を備える
     アクチュエータ。
  9.  複数の上記アクチュエータ素子を備え、
     上記第一剛性部材が、上記複数のアクチュエータ素子の一面側に接合され、
     上記第二剛性部材が、上記複数のアクチュエータ素子の他面側に接合されている
     請求項8に記載のアクチュエータ。
  10.  請求項1に記載の圧電素子を有する発電素子。
  11.  一対の上記可撓性シートが、略直角に交差して重ねあわされ、交互に蛇腹状に折り畳まれている請求項10に記載の発電素子。
  12.  上記一対の可撓性シートの少なくとも一方の可撓性シートが、電極層の表面側及び裏面側に積層される一対の上記誘電層を備える請求項10に記載の発電素子。
  13.  上記誘電層の平均厚みが10μm以上100μm以下である請求項10に記載の発電素子。
  14.  上記電極層の平均厚みが、上記誘電層の平均厚みの1/10以下である請求項10に記載の発電素子。
  15.  上記一対の可撓性シートが10層以上10000層以下で重畳されている請求項10に記載の発電素子。
  16.  請求項10に記載の発電素子と、
     上記発電素子の一面側に接合される第一剛性部材と、
     上記発電素子の他面側に接合される第二剛性部材と
    を備える
     発電デバイス。
  17.  複数の上記発電素子を備え、
     上記第一剛性部材が、上記複数の発電素子の一面側に接合され、
     上記第二剛性部材が、上記複数の発電素子の他面側に接合されている
     請求項16に記載の発電デバイス。
  18.  帯状の可撓性シートであって、
     伸縮性を有する電極層と、
     この電極層の表面側及び裏面側に積層される一対のエラストマー製の誘電層と
     を備えることを特徴とする可撓性シート。
PCT/JP2013/053426 2012-02-15 2013-02-13 圧電素子、アクチュエータ素子、アクチュエータ、発電素子、発電デバイス及び可撓性シート WO2013122110A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013522048A JP5308603B1 (ja) 2012-02-15 2013-02-13 圧電素子、アクチュエータ素子、アクチュエータ、発電素子、発電デバイス及び可撓性シート
US14/376,677 US20150008798A1 (en) 2012-02-15 2013-02-13 Piezoelectric element, actuator element, actuator, power generating element, power generating device and flexible sheet
EP13748909.2A EP2816724A4 (en) 2012-02-15 2013-02-13 PIEZOELECTRIC ELEMENT, ACTUATOR ELEMENT, ACTUATOR, ELECTRICITY GENERATING ELEMENT, ELECTRICITY GENERATING DEVICE, AND FLEXIBLE SHEET

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012031172 2012-02-15
JP2012031171 2012-02-15
JP2012-031172 2012-02-15
JP2012-031171 2012-12-21

Publications (1)

Publication Number Publication Date
WO2013122110A1 true WO2013122110A1 (ja) 2013-08-22

Family

ID=48984219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053426 WO2013122110A1 (ja) 2012-02-15 2013-02-13 圧電素子、アクチュエータ素子、アクチュエータ、発電素子、発電デバイス及び可撓性シート

Country Status (4)

Country Link
US (1) US20150008798A1 (ja)
EP (1) EP2816724A4 (ja)
JP (1) JP5308603B1 (ja)
WO (1) WO2013122110A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894684A1 (de) * 2014-01-09 2015-07-15 Robert Bosch Gmbh EAP-Vorrichtung, Verwendung einer EAP-Endloshybridfolie sowie Verfahren zur Herstellung der EAP-Vorrichtung
EP2913859A1 (de) * 2014-02-27 2015-09-02 FESTO AG & Co. KG Elastomer-Aktuator
JP2016127286A (ja) * 2014-12-31 2016-07-11 エルジー ディスプレイ カンパニー リミテッド 多層可変素子及び表示装置
EP3115740A4 (en) * 2014-03-03 2017-11-01 Bando Chemical Industries, Ltd. Sensor device and elastic structural body
JP2018081952A (ja) * 2016-11-14 2018-05-24 国立研究開発法人産業技術総合研究所 電子装置
TWI631740B (zh) * 2014-12-31 2018-08-01 Lg顯示器股份有限公司 多層可變形裝置及包含該多層可變形裝置的顯示裝置
CN109048985A (zh) * 2018-08-13 2018-12-21 江苏大学 一种基于介电弹性体的柔性关节
JP2019007749A (ja) * 2017-06-20 2019-01-17 ヤマハ株式会社 圧力センサー
JP2019091717A (ja) * 2013-11-28 2019-06-13 バンドー化学株式会社 伸縮性電極、センサシート及び静電容量型センサ
WO2021049149A1 (ja) * 2019-09-09 2021-03-18 ソニー株式会社 圧電センサ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118481A (ja) * 2012-12-17 2014-06-30 Tokai Rubber Ind Ltd 導電材料およびそれを用いたトランスデューサ
RU2716841C2 (ru) * 2015-09-02 2020-03-17 Конинклейке Филипс Н.В. Переключатель на основе электроактивного или фотоактивного полимера
JP6736861B2 (ja) * 2015-09-28 2020-08-05 株式会社リコー 発電素子、発光素子、帯状発光体及び救難表示装置
JP6672817B2 (ja) 2016-01-15 2020-03-25 株式会社リコー 素子
CN105871250B (zh) * 2016-04-11 2017-09-12 西安交通大学 利用载荷变化和往复重叠式压电薄膜的发电装置
CN112963290A (zh) * 2020-12-22 2021-06-15 浙江师范大学 一种压电偏置式波浪能介电弹性体发电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126206A (ja) * 1984-07-14 1986-02-05 株式会社日本自動車部品総合研究所 積層型誘電体装置及びその製造方法
JP2003505865A (ja) 1999-07-20 2003-02-12 エスアールアイ インターナショナル 改良電気活性ポリマ
JP2008211922A (ja) * 2007-02-27 2008-09-11 Yamaha Corp 高分子静電型アクチュエータ
JP2010057321A (ja) 2008-08-29 2010-03-11 Tokyo Institute Of Technology 静電アクチュエータおよびその製造方法
JP2010263750A (ja) 2009-05-11 2010-11-18 Hyper Drive Corp 電場応答性高分子を用いた発電デバイス
JP2011087423A (ja) * 2009-10-16 2011-04-28 Murata Mfg Co Ltd アクチュエータ及びアクチュエータを製造する方法
JP2011103713A (ja) 2009-11-10 2011-05-26 Seiko Epson Corp アクチュエーター

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237747A1 (en) * 2005-12-19 2010-09-23 Physical Logic Ag Piezoelectric Composite Material
DE102008002492A1 (de) * 2008-06-18 2009-12-24 Robert Bosch Gmbh Faltaktor oder Faltsensor sowie Herstellungsverfahren für einen Faltaktor oder Faltsensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126206A (ja) * 1984-07-14 1986-02-05 株式会社日本自動車部品総合研究所 積層型誘電体装置及びその製造方法
JP2003505865A (ja) 1999-07-20 2003-02-12 エスアールアイ インターナショナル 改良電気活性ポリマ
JP2008211922A (ja) * 2007-02-27 2008-09-11 Yamaha Corp 高分子静電型アクチュエータ
JP2010057321A (ja) 2008-08-29 2010-03-11 Tokyo Institute Of Technology 静電アクチュエータおよびその製造方法
JP2010263750A (ja) 2009-05-11 2010-11-18 Hyper Drive Corp 電場応答性高分子を用いた発電デバイス
JP2011087423A (ja) * 2009-10-16 2011-04-28 Murata Mfg Co Ltd アクチュエータ及びアクチュエータを製造する方法
JP2011103713A (ja) 2009-11-10 2011-05-26 Seiko Epson Corp アクチュエーター

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091717A (ja) * 2013-11-28 2019-06-13 バンドー化学株式会社 伸縮性電極、センサシート及び静電容量型センサ
EP2894684A1 (de) * 2014-01-09 2015-07-15 Robert Bosch Gmbh EAP-Vorrichtung, Verwendung einer EAP-Endloshybridfolie sowie Verfahren zur Herstellung der EAP-Vorrichtung
EP2913859A1 (de) * 2014-02-27 2015-09-02 FESTO AG & Co. KG Elastomer-Aktuator
US10209055B2 (en) 2014-03-03 2019-02-19 Bando Chemical Industries, Ltd. Sensor device and stretchable structure
EP3115740A4 (en) * 2014-03-03 2017-11-01 Bando Chemical Industries, Ltd. Sensor device and elastic structural body
US9836125B2 (en) 2014-12-31 2017-12-05 Lg Display Co., Ltd. Multilayer transformable device and display device comprising the same
TWI631740B (zh) * 2014-12-31 2018-08-01 Lg顯示器股份有限公司 多層可變形裝置及包含該多層可變形裝置的顯示裝置
JP2016127286A (ja) * 2014-12-31 2016-07-11 エルジー ディスプレイ カンパニー リミテッド 多層可変素子及び表示装置
JP2018081952A (ja) * 2016-11-14 2018-05-24 国立研究開発法人産業技術総合研究所 電子装置
JP2019007749A (ja) * 2017-06-20 2019-01-17 ヤマハ株式会社 圧力センサー
CN109048985A (zh) * 2018-08-13 2018-12-21 江苏大学 一种基于介电弹性体的柔性关节
WO2021049149A1 (ja) * 2019-09-09 2021-03-18 ソニー株式会社 圧電センサ
JP7464056B2 (ja) 2019-09-09 2024-04-09 ソニーグループ株式会社 圧電センサ

Also Published As

Publication number Publication date
EP2816724A4 (en) 2015-11-04
US20150008798A1 (en) 2015-01-08
EP2816724A1 (en) 2014-12-24
JP5308603B1 (ja) 2013-10-09
JPWO2013122110A1 (ja) 2015-05-18

Similar Documents

Publication Publication Date Title
WO2013122110A1 (ja) 圧電素子、アクチュエータ素子、アクチュエータ、発電素子、発電デバイス及び可撓性シート
EP3646457B1 (en) Electrostatic actuator
Kovacs et al. Stacked dielectric elastomer actuator for tensile force transmission
RU2705647C2 (ru) Исполнительное или сенсорное устройство на основе электроактивного полимера
JP2014220949A (ja) アクチュエータ素子、アクチュエータ、可撓性シート及びアクチュエータ素子の製造方法
US8458889B2 (en) Actuator manufacturing method
US7400080B2 (en) Elastomer actuator and a method of making an actuator
Kovacs et al. Contractive tension force stack actuator based on soft dielectric EAP
JP4837794B1 (ja) 駆動性能及び耐久性が改善されたトランスデューサー用電場応答性高分子
JP5458288B2 (ja) 静電アクチュエータおよびその製造方法
JP2008251833A (ja) アクチュエータおよびアクチュエータ集束体
Jordi et al. Scaling of planar dielectric elastomer actuators in an agonist-antagonist configuration
US7719164B2 (en) Patterned dielectric elastomer actuator and method of fabricating the same
JP2014217238A (ja) アクチュエータ
US20200287478A1 (en) Actuator
JP4695226B1 (ja) 駆動性能及び耐久性が改善されたアクチュエータ用電場応答性高分子
JP4383505B1 (ja) 発電効率及び耐久性が改善された電場応答性高分子
JP5129998B2 (ja) 電歪素子
JP5988718B2 (ja) トランスデューサ用可撓性シート及びトランスデューサ用可撓性シートの製造方法。
CN109983783B (zh) 静电式换能器及其制造方法
JP7549356B2 (ja) マルチレイヤー構造を有する静電アクチュエータ
JP2016201995A (ja) トランスデューサ用可撓性シート
JP7502995B2 (ja) 誘電エラストマートランスデューサー
JP7089979B2 (ja) アクチュエーター
CN107408622A (zh) 压电发电机、按钮、无线电模块和制造压电发电机的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013522048

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013748909

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14376677

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE