WO2013121771A1 - Image display device - Google Patents
Image display device Download PDFInfo
- Publication number
- WO2013121771A1 WO2013121771A1 PCT/JP2013/000745 JP2013000745W WO2013121771A1 WO 2013121771 A1 WO2013121771 A1 WO 2013121771A1 JP 2013000745 W JP2013000745 W JP 2013000745W WO 2013121771 A1 WO2013121771 A1 WO 2013121771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- prism
- control sheet
- directivity control
- guide plate
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 14
- 238000010586 diagram Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000001154 acute effect Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0053—Prismatic sheet or layer; Brightness enhancement element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/27—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
- G02F1/133607—Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
Definitions
- the present disclosure relates to an image display device such as a liquid crystal display.
- Patent Document 1 uses a backlight capable of illuminating two types of light having different directivities, and alternately switches light having different directivities, and displays an image corresponding to left and right parallax in synchronization with the switching. Is disclosed. According to this method, stereoscopic display can be performed with the same resolution as that of two-dimensional display.
- the present disclosure provides an image display device capable of displaying a good image even on a relatively large screen.
- the image display device includes a substantially flat light guide plate having a light incident surface as a side surface and a light exit surface as one of the main surfaces, a light source that emits light to the light incident surface of the light guide plate, and a light guide.
- a directivity control sheet that receives light emitted from the light plate, converts the incident light into a desired light distribution characteristic and emits the light, and is provided on the light output side of the directivity control sheet.
- an image display panel that forms an image by spatial modulation.
- the directivity control sheet has a prism array on the light incident surface.
- the prism array is configured by arranging a plurality of prisms having a substantially triangular cross section. The angle formed by the bisector of the apex angle of the prism and the normal to the bottom surface of the prism increases from the central portion toward the end portion of the directivity control sheet.
- the image display device is effective for displaying a good image even on a relatively large screen.
- FIG. 1 is a schematic configuration diagram of an image display apparatus.
- FIG. 2 is an exploded perspective view of a part of the image display apparatus.
- FIG. 3 is a graph showing the intensity distribution with respect to the angle of light emitted from the light guide plate.
- FIG. 4 is a schematic enlarged view showing the shape of the central portion and the shape of the end portion of the directivity control sheet.
- FIG. 5 is a schematic diagram showing the shape of the central portion and the end portion of the directivity control sheet 3.
- FIG. 6 is a graph showing changes in the tilt angle of the prism.
- FIG. 7A is a schematic diagram showing ray tracing in the central portion
- FIG. 7B is a graph showing light distribution characteristics in the central portion.
- FIG. 8A is a schematic diagram showing the ray trajectory at the right end of the screen
- FIG. 8B is a graph showing the light distribution characteristic at the right end of the screen.
- FIG. 9A is a schematic diagram illustrating ray tracing of the comparative example
- FIG. 9B is a graph illustrating light distribution characteristics of the comparative example.
- FIG. 10 is a schematic diagram illustrating a modification of the directivity control sheet.
- FIG. 11 is a conceptual diagram for explaining light condensed on the left and right eyes of the viewer.
- FIG. 1 is a schematic sectional view of an image display device 1 according to the embodiment, and FIG. 2 is a perspective view. In FIG. 1, representative ray trajectories are also shown.
- a three-dimensional orthogonal coordinate system is set for the image display device 1, and the direction is specified using the coordinate axes.
- the X-axis direction coincides with the left-right direction (horizontal direction) when the user faces the display surface of the image display panel 4.
- the Y-axis direction coincides with the vertical direction when the user faces the display surface of the liquid crystal panel 4.
- the Z-axis direction coincides with a direction perpendicular to the display surface of the liquid crystal panel 4.
- “directly facing” means that, for example, when the character “A” is displayed on the display surface, the user faces the front of the display surface so that the user can see the character “A” from the correct direction. It means that it is located.
- 1 and 2 correspond to views seen from the upper side of the image display device 1. Therefore, the left side of FIGS. 1 and 2 is the right side of the display screen viewed from the viewer.
- the image display device 1 mainly includes a light source switching type backlight 7 and a liquid crystal panel 4 that displays the right-eye image and the left-eye image while alternately switching them. Details of each component will be described below.
- the backlight 7 includes light sources 2 a and 2 b facing each other, a reflective film 5, and a light guide plate 6.
- the reflective film 5 is provided on the lower surface side (back surface side) of the light guide plate 6.
- the light sources 2a and 2b are disposed along each of the pair of side surfaces of the light guide plate 6 and face each other in the X-axis direction.
- the light source 2 a is disposed on the left side surface of the light guide plate 6, and the light source 2 b is disposed on the right side surface of the light guide plate 6.
- Each of the light sources 2a and 2b has a plurality of LED elements arranged in the Y-axis direction.
- the light sources 2a and 2b are alternately turned on and off in synchronization with switching between the left-eye image and the right-eye image displayed on the liquid crystal panel 4. That is, when the liquid crystal panel 4 displays the right-eye image, the light source 2a is turned on and the light source 2b is turned off. When the liquid crystal panel 4 displays the left-eye image, the light source 2a is turned off and the light source 2b is turned on. To do.
- the light guide plate 6 has a substantially flat plate shape.
- the light guide plate 6 has a light incident surface on which light emitted from the light sources 2a and 2b is incident and a light emission surface from which light incident from the side surface is emitted.
- the side surface of the light guide plate 6 corresponds to the light incident surface.
- the upper surface (front surface) of the light guide plate 6 corresponds to a light emitting surface.
- the light emitted from the light sources 2 a and 2 b is incident from the side surface of the light guide plate 6.
- the light incident from the side surface of the light guide plate 6 propagates through the light guide plate 6 while repeating total reflection between the opposing main surfaces (upper surface and lower surface) of the light guide plate.
- a plurality of fine inclined surfaces are formed on the lower surface of the light guide plate 6, and the angle changes little by little during the propagation process, so that light rays that deviate from the total reflection condition are emitted from the light guide plate 6.
- the intensity of light emitted from the light guide plate 6 is made uniform over the entire upper surface.
- FIG. 3 is a graph showing the angular distribution of the light intensity of the light emitted from the light guide plate 6.
- the horizontal axis of the graph indicates the emission angle, and the vertical axis indicates the light intensity.
- the outgoing angle is expressed as an angle formed by outgoing light with respect to the normal line of the main surface of the light guide plate 6.
- the outgoing angle of 0 ° indicates that the outgoing direction of outgoing light is parallel to the ray of the main surface of the light guide plate.
- a plus sign on the horizontal axis indicates that the light guide plate 6 is inclined rightward from the normal line of the main surface of the light guide plate 6.
- a minus sign on the horizontal axis indicates that the light guide plate 6 is tilted leftward from the normal line of the main surface of the light guide plate 6.
- the light intensity of the light emitted from the light guide plate 6 has a distribution that peaks in the vicinity of ⁇ 70 °. That is, a large amount of light emitted from the light guide plate 6 is emitted in an oblique direction inclined by + 70 ° or ⁇ 70 ° with respect to the direction perpendicular to the display surface of the liquid crystal panel.
- the reflective film 5 is provided on the lower surface side of the light guide plate 6.
- the light that has broken the total reflection angle of the inclined surface provided on the lower surface of the light guide plate 6 is reflected by the reflection film 5, enters the light guide plate 6 again, and finally exits from the upper surface.
- the light emitted from the light guide plate 6 enters the directivity control sheet 3.
- the reflective film is composed of, for example, a film having silver deposited on the surface or a multilayer film that causes regular reflection.
- the directivity control sheet 3 converts the incident light into a desired light distribution characteristic and emits it.
- the directivity control sheet 3 converts light having directivity as shown in FIG. 3 into light having a direction toward the viewpoint of each of the left eye and right eye as a main directivity direction, and also having higher directivity. It has a function.
- “light with higher directivity” means light having a higher peak of light intensity and a narrower half-width of the peak.
- a prism array 31 is provided on the incident surface of the directivity control sheet 3, and a lenticular lens array 32 is provided on the exit surface side.
- the directivity control sheet 3 is formed, for example, by transferring a lens shape and a prism shape with a UV resin onto a base material made of a PET film.
- the light emitted from the light guide plate 6 is reflected upward (in the positive direction of the Z axis) by the inclined surface of the prism array 31.
- the prism array 31 totally reflects the light from the light guide plate 6 and converts the main directing direction.
- the light reflected upward is collected by the lenticular lens array 32.
- the lenticular lens 32 sharpens the directivity by converging the incident light, and reduces crosstalk (interference between the image for the right eye and the image for the left eye) during stereoscopic display.
- FIG. 4A is a schematic enlarged view showing the shape of the central portion of the directivity control sheet 3
- FIG. 4B is a schematic enlarged view showing the shape of the end portion of the directivity control sheet 3.
- the prism array 31 is composed of a plurality of prisms having a triangular cross section and ridge lines extending in the Y-axis direction.
- the lenticular lens 32 includes a plurality of cylindrical lenses that extend in the Y-axis direction and are arranged in parallel in the X-axis direction.
- the pitch of the prism array 31, that is, the width of each prism is the same over the entire surface.
- the pitch of the lenticular lens array 32 that is, the width of each cylindrical lens is the same over the entire surface.
- the pitch of the lenticular lens array 32 is smaller than the pitch of the prism array 31. Accordingly, as will be described in detail later, as the distance from the central portion of the directivity control sheet 3 toward the side end portion increases, the positional relationship between the prism and the cylindrical lens shifts, and the cylindrical lens moves toward the central portion with respect to the prism. And shift.
- the prism has a symmetrical isosceles triangle shape. That is, the bisector L1 of the apex angle of the vertex A1 of the central prism (hereinafter sometimes referred to as “line segment L1”) is substantially parallel to the Z axis.
- a surface formed by connecting the bottommost portions C of the concave portions of the prism is defined as a bottom surface B of the prism.
- the prism and the cylindrical lens are opposed to each other. That is, the line segment L1 and the line segment N passing through the center of the cylindrical lens substantially coincide with each other.
- the prisms other than the center of the directivity control sheet 3, that is, on the end side, are formed such that the apex angle bisector L ⁇ b> 2 (hereinafter sometimes referred to as a line segment L ⁇ b> 2) is inclined toward the center. . That is, the line segment L2 is inclined at a predetermined angle ⁇ with respect to the normal line M2 of the bottom surface B.
- the inclination angle ⁇ gradually changes from the central portion toward the end portion of the directivity control sheet 3. Specifically, the inclination angle ⁇ increases from the central portion toward the end portion. That is, the inclination angle ⁇ is larger as the distance from the center is larger.
- the cylindrical lens position with respect to the prism is shifted to the center side.
- This shift amount differs depending on the magnitude of the inclination angle ⁇ . Specifically, the greater the inclination angle ⁇ , the greater the shift amount.
- the shape of the prism is different between the central portion and the end portion.
- the apex angle of the apex of the prism is constant in any region.
- the directivity control sheet 3 can be easily manufactured.
- the shapes of the apex A and the bottom B of the prism are shown as acute angles.
- the actual prism may be a curved surface with a slight curvature instead of an acute angle.
- the extreme end portion of the curved surface may be regarded as a vertex.
- vertex A is a curved surface
- a point that intersects when two sides (slopes) forming the prism are extended may be regarded as the vertex.
- FIG. 11 is a conceptual diagram for explaining light condensed on the left and right eyes of the viewer.
- FIGS. 11A and 11B are schematic diagrams showing the relationship between a type 3 screen and viewers.
- FIG. 11C is a schematic diagram showing the relationship between the 10-inch screen and the viewer.
- the viewing distance which is the distance from the viewer's eyes to the display screen
- the distance between the viewer's left and right eyes is 65 mm. This is the average left-right eye spacing for adults.
- the center position of the left and right eyes of the viewer is at a position passing through the center of the screen.
- a perpendicular line that passes through the center of the screen and is perpendicular to the screen is defined as a reference axis X.
- the light emitted from the center of the screen reaches the left and right eyes with a spread of ⁇ 6 ° with respect to the reference axis X. Since the viewer is viewing while facing the center of the screen, the central axis Xa of the light emitted from the center of the screen coincides with the reference axis X.
- the central axis Xb of the light emitted from the edge of the screen has an inclination of 6 ° with respect to the reference axis X. That is, in order to allow light emitted from the edge of the screen to reach the left and right eyes of the viewer, it is necessary to deflect the emission angle by 6 °.
- the central axis Xc of the light emitted from the edge of the screen has an inclination of 20 ° with respect to the reference axis X. . That is, in order to make the light emitted from the edge of the screen reach the left and right eyes of the viewer, it is necessary to increase the light emission angle from the edge of the screen by 20 °.
- the pitch of the prism array and the lenticular lens array facing each other is slightly different, and the lenticular lens is arranged inward in the peripheral portion, thereby setting the light emission angle from the edge of the screen. Attempts to make it larger.
- the screen size of the stereoscopic image display apparatus that can be realized by this method is limited to about 5 inches, and there is a problem that it cannot cope with a large screen.
- the image display device 1 of the present embodiment includes a light guide plate 6, light sources 2 a and 2 b, a directivity control sheet 3, and a liquid crystal panel 4.
- the light guide plate 6 has a substantially flat plate shape with a side surface serving as a light incident surface and a main one as a light emitting surface.
- the light sources 2 a and 2 b make light incident on the incident surface of the light guide plate 6.
- the directivity control sheet 3 receives the emitted light emitted from the light guide plate 6, converts the light into a desired light distribution characteristic, and emits the light.
- the liquid crystal panel 4 is provided on the light output side of the directivity control sheet 3 and forms an image by spatially modulating incident light according to a video signal.
- the directivity control sheet 3 has a prism array 31 on the light incident surface.
- the prism array 31 is configured by arranging a plurality of prisms having a substantially triangular cross section. The angle formed between the bisector of the apex angle of the prism and the normal to the bottom surface of the prism gradually changes from the end of the directivity control sheet toward the center.
- the image display device 1 can perform better stereoscopic display than before.
- the case where stereoscopic image display is performed using the two light sources 2a and 2b has been described as an example, but the present disclosure is not limited thereto.
- the light source may be arranged only on one side surface of the light guide plate 6 to display a two-dimensional image. In this case, it is expected that a bright image can be obtained with a small amount of light by collecting the light in the viewing direction.
- the shape of the prism array 31 of the directivity control sheet 3 can be appropriately designed as shown in FIG. As shown in FIG. 10, the shape of the central portion of the prism array 31 is not necessarily a symmetric shape (isosceles triangle).
- the shape is gradually changed from the center to the end so that the light from the entire region is directed toward the viewpoint.
- the prism at the left end may have an isosceles triangle cross section, and the apex of the prism may shift to the right as it goes to the right end.
- the light condensing position is the left front of the directivity control sheet 3 (upper left in FIG. 10).
- the shape of the prism is symmetrical to that of FIG. 10, that is, the prism at the right end is an isosceles triangle, and the apex of the prism increases toward the left end.
- the asymmetric directivity control sheet 3 having a prism shape that is asymmetrical to the left and right is a case where the viewer's viewpoint position with respect to the image display device is shifted to a side portion from the center, such as an in-vehicle display.
- the LED is described as an example of the light source, but the present disclosure is not limited to this.
- a cold cathode tube or a laser diode may be used as the light source.
- the light guide plate 6 is shared by the light sources 2a and 2b. However, a light guide plate for the light source 2a and a light guide plate for the light source 2b are provided, and the two light guide plates are stacked. May be.
- the directivity control sheet in which the prism array 31 and the lenticular lens array 32 are integrated has been described as an example, but the present disclosure is not limited thereto. You may provide separately the prism sheet in which the prism array was formed, and the lenticular lens array sheet in which the lenticular lens was formed. In this case, the prism sheet and the lenticular lens array sheet may be configured to have shapes corresponding to the prism array and the lenticular lens array of the directivity control sheet, respectively.
- the stereoscopic image display device that displays the right-eye image and the left-eye image with parallax in a time-division manner is described as an example, but an image without parallax may be displayed.
- the light sources instead of blinking the light sources 2a and 2b alternately, the light sources may be constantly lit.
- 2D images as well as 3D images, not only the energy is saved but also the contents displayed by the surrounding people can be viewed by reducing and projecting the image only near the viewer's eyes. Can be prevented and privacy protection can be improved.
- the lenticular lens array 32 is provided on the exit surface side of the directivity control sheet 3, but the directivity control sheet 3 having only the prism array 31 is provided without providing the lenticular lens array 32. May be.
- the exit surface of the directivity control sheet 3 is formed flat. Even when the directivity control sheet 3 has only the prism array 31, the prism array 31 deflects the left and right light emitted from the light guide plate 6, thereby allowing the light emitted from the left and right ends of the screen to be viewed by the viewer's eyes. The light can be condensed at the position, and a bright image display device can be realized over the entire screen.
- the lenticular lens array 32 when the lenticular lens array 32 is provided as in the above-described embodiment, the variation in the deflection angle of the light emitted from the side of the center of the screen can be reduced (that is, FIG. Since the dispersion of the light intensity distribution shown in b) can be reduced), a brighter image display device can be realized. Further, when the lenticular lens array 32 is provided, the crosstalk component of light emitted from the side of the center of the screen can be reduced, so that the image quality of the entire screen can be improved.
- Example 2 Examples will be described below.
- simulation was performed on a directivity control sheet designed with a parallax of 6 °, assuming an optimal viewing distance of 300 mm and a screen size of 10 type.
- FIG. 5 is a schematic diagram showing the shape and design data of the central part and the end part of the directivity control sheet 3.
- FIG. 6 is a graph showing changes in the inclination angle ⁇ .
- the cross-sectional shape of the prism is an isosceles triangle in the central portion of the directivity control sheet 3.
- the apex angle ⁇ p of the prism was 60 °, and the same angle was used at the center and at the end of the directivity control sheet 3.
- the prism pitch Pp was 0.1 mm, and the same pitch was used at the center and at the end of the directivity control sheet 3.
- Pitch P L of the lenticular lens is the same in the end in the central part of the directivity control sheet 3, shift amount for the prism of the lenticular lens element which is disposed outermost end (endmost eccentricity) [Delta] x is The thickness was set to 0.099967 mm so as to be 0.036 mm.
- the thickness t from the bottom surface of the prism to the bottom surface of the lenticular lens was 0.121 mm.
- the radius of curvature RL of the lenticular lens was 0.091 mm, and the central portion and the end portion had the same radius of curvature.
- the inclination angle ⁇ of the prism disposed on the outermost side of the end portion of the directivity control sheet 3 was 9 °.
- the tilt angle ⁇ is an angle formed by a bisector of the apex angle of the prism and a normal to the bottom surface of the prism.
- the inclination angle ⁇ of the prism was designed to gradually change between the central portion and the end portion of the directivity control sheet 3.
- the vertical axis in FIG. 6 indicates the inclination angle ⁇ of the prism.
- the horizontal axis is the distance from the central part of the directivity control sheet 3 to a predetermined position, and is normalized by the length from the central part to the end part. The value on the horizontal axis is “0” at the center of the directivity control sheet 3, “1” at the rightmost end, and “ ⁇ 1” at the leftmost end.
- the prism inclination angle is changed linearly from the center to the end.
- the shift amount (eccentric amount) of the lenticular lens position is also changed linearly.
- FIG. 7A is a ray tracing diagram at the central portion, and the representative ray from the light source 2a arranged on the right side as viewed from the observer is a broken line and the representative ray from the light source 2b arranged on the left side as seen from the observer. Is indicated by a solid line.
- FIG. 7B shows the light distribution characteristics at the center.
- FIG. 8 (a) is a schematic diagram showing the ray trajectory at the right end of the screen
- FIG. 8 (b) is a graph showing the light distribution characteristics.
- the prism is designed so that the prism tilt angle (the angle formed by the bisector of the prism apex angle with respect to the prism bottom surface) is 9 ° at the right end.
- the prism at the right end of the screen is inclined, as shown in FIG. 8A, the light (dashed line) from the light source 2a is deflected to the minus side (that is, toward the center of the screen). Further, the light beam (solid line) from the light source 2b is also deflected to the minus side.
- the cylindrical lens constituting the lenticular lens at the right end is shifted to the center by 36% with respect to the prism pitch. Thereby, the light reflected by the prism at the right end can be efficiently focused. As a result, the directivity of light at the right end can be increased.
- the image display device using the directivity control sheet 3 according to the embodiment can provide a bright image over the entire screen to the viewer.
- Comparative example Next, a comparative example will be described. As a comparative example, prisms having the same shape were used at any location. Further, the lenticular lens was shifted inward by 36% at the extreme end as in the example. A simulation was performed for such a directivity control sheet.
- FIG. 9 (a) is a schematic diagram showing the ray trajectory at the end of the directivity control sheet of the comparative example, and FIG. 9 (b) shows its light distribution characteristics.
- the directivity peak was confirmed, but the deflection angle with respect to the normal of the directivity control sheet was a small value of 10 °. Also, the symmetry of the light distribution characteristic of the right eye light and the light distribution characteristic of the left eye light is poor. Further, as shown in FIGS. 9A and 9B, the cylindrical lens adjacent to the cylindrical lens corresponding to the prism (the cylindrical lens to which light from the prism should originally enter) is transmitted to the cylindrical lens. Since a part of the light is incident and the condensing position of a part of the light is shifted, a lot of irregular unnecessary light is generated. As a result, as shown in FIG. 9B, a peak of unnecessary light occurs in the light intensity distribution.
- the present disclosure is suitably used for an image display device such as a liquid crystal display.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Planar Illumination Modules (AREA)
Abstract
The problem addressed by the present invention is to provide an image display device that can display excellent images. An image display device (1) that addresses this problem is provided with a light guide plate (6), light sources (2a, 2b), a directivity control sheet (3), and a liquid crystal panel (4). The light guide plate (6) has a substantially flat sheet shape and has a side surface as a light input surface and one main surface as a light output surface. The light of the light sources (2a, 2b) is incident to the input surfaces of the light guide plate (6). The directivity control sheet (3) has output light that has been output by the light guide plate (6) incident thereto, converts to prescribed light distribution characteristics, and outputs the light. The liquid crystal panel (4) is provided on the light output side of the directivity control sheet (3) and forms the light that is input into an image by spatial modulation according to an image signal. The directivity control sheet (3) has a prism array (31) on the light input surface. The prism array (31) is constituted by arranging a plurality of prisms having a substantially triangular shape in cross-section. Furthermore, an angle formed by a line bisecting the apex of a prism and a line normal to the bottom surface of the prism increases from the center to the edges of the directivity control sheet.
Description
本開示は、液晶ディスプレイなどの画像表示装置に関するものである。
The present disclosure relates to an image display device such as a liquid crystal display.
特許文献1は、異なる2種の指向性の光を照明可能なバックライトを用い、指向性が異なる光を交互に切り替えるとともに、この切り替えと同期して左右の視差に対応する映像を表示する方法を開示する。この方法によれば2次元表示と同等の解像力で立体表示が可能になる。
Patent Document 1 uses a backlight capable of illuminating two types of light having different directivities, and alternately switches light having different directivities, and displays an image corresponding to left and right parallax in synchronization with the switching. Is disclosed. According to this method, stereoscopic display can be performed with the same resolution as that of two-dimensional display.
本開示は、比較的大きな画面でも良好な画像を表示可能な画像表示装置を提供する。
The present disclosure provides an image display device capable of displaying a good image even on a relatively large screen.
本開示における画像表示装置は、側面を光入射面とし、主面の一方を光出射面とする略平板状の導光板と、導光板の光入射面に対して光を出射する光源と、導光板から出射された光が入射し、入射した光を所望の配光特性に変換して出射する指向性制御シートと、指向性制御シートの光出射側に設けられ、入射した光を映像信号に応じて空間変調して画像を形成する画像表示パネルとを備える。指向性制御シートは、光入射面にプリズムアレイを有する。プリズムアレイは、断面略三角形状のプリズムが複数配列して構成される。プリズムの頂角の二等分線と、プリズムの底面に対する法線とのなす角度が、指向性制御シートの中央部から端部に向かって増加する。
The image display device according to the present disclosure includes a substantially flat light guide plate having a light incident surface as a side surface and a light exit surface as one of the main surfaces, a light source that emits light to the light incident surface of the light guide plate, and a light guide. A directivity control sheet that receives light emitted from the light plate, converts the incident light into a desired light distribution characteristic and emits the light, and is provided on the light output side of the directivity control sheet. And an image display panel that forms an image by spatial modulation. The directivity control sheet has a prism array on the light incident surface. The prism array is configured by arranging a plurality of prisms having a substantially triangular cross section. The angle formed by the bisector of the apex angle of the prism and the normal to the bottom surface of the prism increases from the central portion toward the end portion of the directivity control sheet.
本開示における画像表示装置は、比較的大きな画面でも良好な画像を表示するのに有効である。
The image display device according to the present disclosure is effective for displaying a good image even on a relatively large screen.
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
なお、発明者は、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
The inventor provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is not intended to limit the subject matter described in the claims. Absent.
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。また、図面は、理解しやすくするために、主要な構成要素を模式的に示している。
Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. Further, the drawings schematically show main components for easy understanding.
(実施形態)
[1-1.画像表示装置]
図1は、実施形態に係る画像表示装置1の概略断面図であり、図2は斜視図である。尚、図1においては、代表的な光線の軌跡を併記している。 (Embodiment)
[1-1. Image display device]
FIG. 1 is a schematic sectional view of animage display device 1 according to the embodiment, and FIG. 2 is a perspective view. In FIG. 1, representative ray trajectories are also shown.
[1-1.画像表示装置]
図1は、実施形態に係る画像表示装置1の概略断面図であり、図2は斜視図である。尚、図1においては、代表的な光線の軌跡を併記している。 (Embodiment)
[1-1. Image display device]
FIG. 1 is a schematic sectional view of an
本実施形態では、画像表示装置1に対して3次元直交座標系を設定し、座標軸を用いて方向を特定する。図1及び2に示すように、X軸方向は、画像表示パネル4の表示面に対してユーザが正対したときの左右方向(水平方向)と一致している。Y軸方向は、液晶パネル4の表示面に対してユーザが正対したときの上下方向に一致している。Z軸方向は、液晶パネル4の表示面に対して垂直な方向に一致している。ここで、「正対」とは、例えば表示面に「A」という文字が表示されている場合において、ユーザがこの「A」という文字を正しい方向から見るように、表示面の真正面に向かって位置していることを意味する。また、図1及び2は、画像表示装置1の上側から見た図に相当する。したがって、図1及び2の左側が、視聴者から見た表示画面の右側となる。
In the present embodiment, a three-dimensional orthogonal coordinate system is set for the image display device 1, and the direction is specified using the coordinate axes. As shown in FIGS. 1 and 2, the X-axis direction coincides with the left-right direction (horizontal direction) when the user faces the display surface of the image display panel 4. The Y-axis direction coincides with the vertical direction when the user faces the display surface of the liquid crystal panel 4. The Z-axis direction coincides with a direction perpendicular to the display surface of the liquid crystal panel 4. Here, “directly facing” means that, for example, when the character “A” is displayed on the display surface, the user faces the front of the display surface so that the user can see the character “A” from the correct direction. It means that it is located. 1 and 2 correspond to views seen from the upper side of the image display device 1. Therefore, the left side of FIGS. 1 and 2 is the right side of the display screen viewed from the viewer.
画像表示装置1は主として、光源切替型のバックライト7と、右目用画像及び左目用画像を交互に切り替えながら表示する液晶パネル4とを備える。以下、各構成について詳細を述べる。
The image display device 1 mainly includes a light source switching type backlight 7 and a liquid crystal panel 4 that displays the right-eye image and the left-eye image while alternately switching them. Details of each component will be described below.
バックライト7は、互いに対向する光源2a及び2bと、反射フィルム5と、導光板6とを備える。反射フィルム5は、導光板6の下面側(背面側)に設けられている。
The backlight 7 includes light sources 2 a and 2 b facing each other, a reflective film 5, and a light guide plate 6. The reflective film 5 is provided on the lower surface side (back surface side) of the light guide plate 6.
光源2a及び2bは、導光板6の一対の側面のそれぞれに沿って配置されており、X軸方向において互いに対向している。光源2aは、導光板6の左側面に配置されており、光源2bは導光板6の右側面に配置されている。光源2a及び2bは、それぞれY軸方向に配列された複数のLED素子を有している。光源2a及び2bは、液晶パネル4に表示される左目用画像及び右目用画像の切り替えに同期して、交互に点灯及び消灯を繰り返す。すなわち、液晶パネル4が右目用画像を表示する場合は、光源2aが点灯して光源2bが消灯し、液晶パネル4が左目用画像を表示する場合は、光源2aが消灯して光源2bが点灯する。
The light sources 2a and 2b are disposed along each of the pair of side surfaces of the light guide plate 6 and face each other in the X-axis direction. The light source 2 a is disposed on the left side surface of the light guide plate 6, and the light source 2 b is disposed on the right side surface of the light guide plate 6. Each of the light sources 2a and 2b has a plurality of LED elements arranged in the Y-axis direction. The light sources 2a and 2b are alternately turned on and off in synchronization with switching between the left-eye image and the right-eye image displayed on the liquid crystal panel 4. That is, when the liquid crystal panel 4 displays the right-eye image, the light source 2a is turned on and the light source 2b is turned off. When the liquid crystal panel 4 displays the left-eye image, the light source 2a is turned off and the light source 2b is turned on. To do.
導光板6は、略平板状の形状である。導光板6は、光源2a及び2bから出射された光が入射する光入射面と、側面から入射した光が出射する光出射面を有する。導光板6の側面が光入射面に相当する。また導光板6の上面(前面)が光出射面に相当する。
The light guide plate 6 has a substantially flat plate shape. The light guide plate 6 has a light incident surface on which light emitted from the light sources 2a and 2b is incident and a light emission surface from which light incident from the side surface is emitted. The side surface of the light guide plate 6 corresponds to the light incident surface. Further, the upper surface (front surface) of the light guide plate 6 corresponds to a light emitting surface.
光源2a及び2bから出射された光は、導光板6の側面から入射する。導光板6の側面から入射した光は、導光板の対向する主面(上面及び下面)の間で全反射を繰り返しながら導光板6内を伝播する。導光板6の下面には、複数の微細な傾斜面が形成されており、伝播の過程で少しずつ角度が変化し、全反射条件から外れた光線が導光板6から出射する。これらの傾斜面の角度分布を適切に設定して、導光板6から出射する光の強度を上面全体にわたって均一にする。
The light emitted from the light sources 2 a and 2 b is incident from the side surface of the light guide plate 6. The light incident from the side surface of the light guide plate 6 propagates through the light guide plate 6 while repeating total reflection between the opposing main surfaces (upper surface and lower surface) of the light guide plate. A plurality of fine inclined surfaces are formed on the lower surface of the light guide plate 6, and the angle changes little by little during the propagation process, so that light rays that deviate from the total reflection condition are emitted from the light guide plate 6. By appropriately setting the angular distribution of these inclined surfaces, the intensity of light emitted from the light guide plate 6 is made uniform over the entire upper surface.
図3は、導光板6から出射される光の光線強度の角度分布を示すグラフである。グラフの横軸は出射角度を示し、縦軸が光の強度を示す。出射角度は、出射光が導光板6の主面の法線に対してなす角度で表す。出射角度0°は、出射光の出射方向が導光板の主面の放線と平行であることを示す。横軸の符号のプラスは、導光板6の主面の法線から右方向に傾いていることを示す。また、横軸の符号のマイナスは、導光板6の主面の法線から左方向に傾いていることを示す。
FIG. 3 is a graph showing the angular distribution of the light intensity of the light emitted from the light guide plate 6. The horizontal axis of the graph indicates the emission angle, and the vertical axis indicates the light intensity. The outgoing angle is expressed as an angle formed by outgoing light with respect to the normal line of the main surface of the light guide plate 6. The outgoing angle of 0 ° indicates that the outgoing direction of outgoing light is parallel to the ray of the main surface of the light guide plate. A plus sign on the horizontal axis indicates that the light guide plate 6 is inclined rightward from the normal line of the main surface of the light guide plate 6. A minus sign on the horizontal axis indicates that the light guide plate 6 is tilted leftward from the normal line of the main surface of the light guide plate 6.
図3に示されるように、導光板6から出射された光の光線強度は、±70°近傍でピークとなる分布を有する。すなわち、導光板6から出射された光は、液晶パネルの表示面に垂直な方向に対して、+70°または-70°傾斜した斜めの方向に多く出射する。
As shown in FIG. 3, the light intensity of the light emitted from the light guide plate 6 has a distribution that peaks in the vicinity of ± 70 °. That is, a large amount of light emitted from the light guide plate 6 is emitted in an oblique direction inclined by + 70 ° or −70 ° with respect to the direction perpendicular to the display surface of the liquid crystal panel.
反射フィルム5は、導光板6の下面側に設けられている。導光板6の下面に設けられた傾斜面の全反射角度を破った光は、反射フィルム5により反射され、再び導光板6内に入射し、最終的に上面から出射される。導光板6から出射された光は、指向性制御シート3に入射する。
The reflective film 5 is provided on the lower surface side of the light guide plate 6. The light that has broken the total reflection angle of the inclined surface provided on the lower surface of the light guide plate 6 is reflected by the reflection film 5, enters the light guide plate 6 again, and finally exits from the upper surface. The light emitted from the light guide plate 6 enters the directivity control sheet 3.
反射フィルムは、例えば、表面に銀蒸着させたフィルムや、正反射を起こす多層膜などで構成される。
The reflective film is composed of, for example, a film having silver deposited on the surface or a multilayer film that causes regular reflection.
[1-2.指向性制御シート]
導光板6から出射した光は、指向性制御シート3に入射する。指向性制御シート3は、入射した光を、所望の配光特性に変換して出射する。指向性制御シート3は、図3に示すような指向性を持つ光を、左目、右目それぞれの視点に向かう方向を主指向方向とする光に変換するとともに、更に指向性の高い光に変換する機能を有する。ここで、「更に指向性の高い光」とは、光線強度のピークが更に高くなり、かつ、ピークの半値幅が更に狭くなった光を意味する。 [1-2. Directivity control sheet]
The light emitted from thelight guide plate 6 enters the directivity control sheet 3. The directivity control sheet 3 converts the incident light into a desired light distribution characteristic and emits it. The directivity control sheet 3 converts light having directivity as shown in FIG. 3 into light having a direction toward the viewpoint of each of the left eye and right eye as a main directivity direction, and also having higher directivity. It has a function. Here, “light with higher directivity” means light having a higher peak of light intensity and a narrower half-width of the peak.
導光板6から出射した光は、指向性制御シート3に入射する。指向性制御シート3は、入射した光を、所望の配光特性に変換して出射する。指向性制御シート3は、図3に示すような指向性を持つ光を、左目、右目それぞれの視点に向かう方向を主指向方向とする光に変換するとともに、更に指向性の高い光に変換する機能を有する。ここで、「更に指向性の高い光」とは、光線強度のピークが更に高くなり、かつ、ピークの半値幅が更に狭くなった光を意味する。 [1-2. Directivity control sheet]
The light emitted from the
指向性制御シート3の入射面にはプリズムアレイ31が設けられ、出射面側にはレンチキュラレンズアレイ32が設けられている。指向性制御シート3は、例えば、PETフィルムからなる基材に、UV樹脂でレンズ形状及びプリズム形状を転写することで形成される。
A prism array 31 is provided on the incident surface of the directivity control sheet 3, and a lenticular lens array 32 is provided on the exit surface side. The directivity control sheet 3 is formed, for example, by transferring a lens shape and a prism shape with a UV resin onto a base material made of a PET film.
導光板6から出射した光は、プリズムアレイ31の傾斜面により、上方向(Z軸の正方向)に反射される。具体的には、プリズムアレイ31は導光板6からの光を全反射して主指向方向を変換する。上方向に反射された光は、レンチキュラレンズアレイ32により集光される。具体的には、レンチキュラレンズ32は入射した光を集束することで指向性を鋭くし、立体表示の際のクロストーク(右目用画像と左目用画像の干渉)を低減する。
The light emitted from the light guide plate 6 is reflected upward (in the positive direction of the Z axis) by the inclined surface of the prism array 31. Specifically, the prism array 31 totally reflects the light from the light guide plate 6 and converts the main directing direction. The light reflected upward is collected by the lenticular lens array 32. Specifically, the lenticular lens 32 sharpens the directivity by converging the incident light, and reduces crosstalk (interference between the image for the right eye and the image for the left eye) during stereoscopic display.
図4を用いて、指向性制御シート3に詳細について説明する。図4(a)は、指向性制御シート3の中央部の形状を示す概略拡大図であり、図4(b)は、指向性制御シート3の端部の形状を示す概略拡大図である。
Details of the directivity control sheet 3 will be described with reference to FIG. FIG. 4A is a schematic enlarged view showing the shape of the central portion of the directivity control sheet 3, and FIG. 4B is a schematic enlarged view showing the shape of the end portion of the directivity control sheet 3.
プリズムアレイ31は、断面三角形状及びY軸方向に延びる稜線を有する複数のプリズムにより構成されている。レンチキュラレンズ32は、Y軸方向に延び、かつ、X軸方向に並列に配置された複数のシリンドリカルレンズで構成されている。
The prism array 31 is composed of a plurality of prisms having a triangular cross section and ridge lines extending in the Y-axis direction. The lenticular lens 32 includes a plurality of cylindrical lenses that extend in the Y-axis direction and are arranged in parallel in the X-axis direction.
プリズムアレイ31のピッチ、すなわち、各プリズムの幅は、全面に渡って同一である。また、レンチキュラレンズアレイ32のピッチ、すなわち、各シリンドリカルレンズの幅も全面に渡って同一である。本実施形態では、レンチキュラレンズアレイ32のピッチは、プリズムアレイ31のピッチよりも小さい。これにより、詳細は後述するが、指向性制御シート3の中央部から側端部へと向かって離れるにつれて、プリズムとシリンドリカルレンズとの位置関係がずれ、プリズムに対してシリンドリカルレンズが中央部側へとシフトする。
The pitch of the prism array 31, that is, the width of each prism is the same over the entire surface. The pitch of the lenticular lens array 32, that is, the width of each cylindrical lens is the same over the entire surface. In the present embodiment, the pitch of the lenticular lens array 32 is smaller than the pitch of the prism array 31. Accordingly, as will be described in detail later, as the distance from the central portion of the directivity control sheet 3 toward the side end portion increases, the positional relationship between the prism and the cylindrical lens shifts, and the cylindrical lens moves toward the central portion with respect to the prism. And shift.
指向性制御シート3の中央部では、プリズムは、左右対称の二等辺三角形状である。すなわち、中央部のプリズムの頂点A1の頂角の二等分線L1(以下、「線分L1」と称する場合がある)は、Z軸と略平行になっている。また、プリズムの凹部の最底部Cを結んで形成される面をプリズムの底面Bとする。底面Bの法線を法線M1としたとき、法線M1と線分L1とは略平行になっている。
In the central part of the directivity control sheet 3, the prism has a symmetrical isosceles triangle shape. That is, the bisector L1 of the apex angle of the vertex A1 of the central prism (hereinafter sometimes referred to as “line segment L1”) is substantially parallel to the Z axis. A surface formed by connecting the bottommost portions C of the concave portions of the prism is defined as a bottom surface B of the prism. When the normal line of the bottom surface B is the normal line M1, the normal line M1 and the line segment L1 are substantially parallel.
また、指向性制御シート3の中央部では、プリズムとシリンドリカルレンズとは互いに正対している。すなわち、線分L1と、シリンドリカルレンズの中心を通る線分Nとが略一致する。
Further, in the central portion of the directivity control sheet 3, the prism and the cylindrical lens are opposed to each other. That is, the line segment L1 and the line segment N passing through the center of the cylindrical lens substantially coincide with each other.
指向性制御シート3の中央以外、すなわち端部側では、プリズムは、頂角の二等分線L2(以下、線分L2と称する場合がある。)が中央方向へ傾くように形成されている。すなわち、底面Bの法線M2に対して、線分L2は所定の角度θで傾いている。この傾斜角θは、指向性制御シート3の中央部から端部に向かって徐々に変化する。具体的には、この傾斜角θは、中央部から端部に向かって大きくなる。すなわち、この傾斜角θは、中央部からの距離が大きいほど大きい。
The prisms other than the center of the directivity control sheet 3, that is, on the end side, are formed such that the apex angle bisector L <b> 2 (hereinafter sometimes referred to as a line segment L <b> 2) is inclined toward the center. . That is, the line segment L2 is inclined at a predetermined angle θ with respect to the normal line M2 of the bottom surface B. The inclination angle θ gradually changes from the central portion toward the end portion of the directivity control sheet 3. Specifically, the inclination angle θ increases from the central portion toward the end portion. That is, the inclination angle θ is larger as the distance from the center is larger.
また、指向性制御シート3の端部側では、プリズムに対するシリンドリカルレンズ位置が、中央部側にシフトしている。このシフト量は、傾斜角θの大きさに応じて異なる。具体的には、傾斜角θが大きいほど、シフト量も大きくなる。
Further, on the end side of the directivity control sheet 3, the cylindrical lens position with respect to the prism is shifted to the center side. This shift amount differs depending on the magnitude of the inclination angle θ. Specifically, the greater the inclination angle θ, the greater the shift amount.
上述したように、本実施形態の指向性制御シート3は、プリズムの形状が中央部と端部とで異なる。しかし、プリズムの頂点の頂角は、いずれの領域においても一定にしている。
As described above, in the directivity control sheet 3 of the present embodiment, the shape of the prism is different between the central portion and the end portion. However, the apex angle of the apex of the prism is constant in any region.
プリズムの頂角を一定にしているので、プリズムを転写するための金型を加工する際に、同一形状のバイトを用いて加工できる。したがって、容易に指向性制御シート3を製造することができる。
Since the apex angle of the prism is constant, it can be processed using a tool having the same shape when processing a die for transferring the prism. Therefore, the directivity control sheet 3 can be easily manufactured.
なお、本実施形態では、プリズムの頂点A及び最底部Bの形状を鋭角に示しているが、実際のプリズムを厳密に見ると鋭角ではなく、微少な曲率の曲面になっている場合もある。そのような場合は、曲面の最も先端部分を頂点とみなせばよい。
In the present embodiment, the shapes of the apex A and the bottom B of the prism are shown as acute angles. However, when the actual prism is strictly observed, it may be a curved surface with a slight curvature instead of an acute angle. In such a case, the extreme end portion of the curved surface may be regarded as a vertex.
また、頂点Aが曲面の場合は、プリズムを形成する2つの辺(斜面)を延長したときに交わる点を頂点とみなしてもよい。
Further, when the vertex A is a curved surface, a point that intersects when two sides (slopes) forming the prism are extended may be regarded as the vertex.
[1-3.効果等]
立体的な画像を表示することができる画像表示装置において、画面全体で良好な立体表示を実現するためには、画面全面にわたって、右目用の照明光が右目集光し、左目用の照明光が左目に集光する必要がある。 [1-3. Effect]
In an image display device capable of displaying a stereoscopic image, in order to realize a favorable stereoscopic display on the entire screen, right-eye illumination light is condensed on the right eye, and left-eye illumination light is emitted over the entire screen. It is necessary to focus on the left eye.
立体的な画像を表示することができる画像表示装置において、画面全体で良好な立体表示を実現するためには、画面全面にわたって、右目用の照明光が右目集光し、左目用の照明光が左目に集光する必要がある。 [1-3. Effect]
In an image display device capable of displaying a stereoscopic image, in order to realize a favorable stereoscopic display on the entire screen, right-eye illumination light is condensed on the right eye, and left-eye illumination light is emitted over the entire screen. It is necessary to focus on the left eye.
図11は、視聴者の左右の目に集光する光を説明するための概念図である。図11(a)及び(b)は、3型の画面と視聴者との関係を示す概略図である。図11(c)は、10型の画面と視聴者との関係を示す概略図である。
FIG. 11 is a conceptual diagram for explaining light condensed on the left and right eyes of the viewer. FIGS. 11A and 11B are schematic diagrams showing the relationship between a type 3 screen and viewers. FIG. 11C is a schematic diagram showing the relationship between the 10-inch screen and the viewer.
ここで、視聴者の目から表示画面までの距離である視距離は300mmとする。視聴者の左右の目の間隔は65mmとする。これは、大人の平均的な左右目間隔の値である。視聴者の左右の目の中心位置が、画面の中心を通る位置にあると想定する。ここで、画面の中心を通り、かつ、画面に垂直な垂線を基準軸Xとする。
Here, the viewing distance, which is the distance from the viewer's eyes to the display screen, is 300 mm. The distance between the viewer's left and right eyes is 65 mm. This is the average left-right eye spacing for adults. Assume that the center position of the left and right eyes of the viewer is at a position passing through the center of the screen. Here, a perpendicular line that passes through the center of the screen and is perpendicular to the screen is defined as a reference axis X.
まず、画面の中心から出射される光について説明する。
First, the light emitted from the center of the screen will be described.
図11(a)に示すように、画面の中心から出射した光は、基準軸Xに対して±6°の広がりをもって左右の目に到達する。視聴者は、画面の中心に対向して視聴しているので、画面の中心から出射する光の中心軸Xaは、基準軸Xと一致する。
As shown in FIG. 11A, the light emitted from the center of the screen reaches the left and right eyes with a spread of ± 6 ° with respect to the reference axis X. Since the viewer is viewing while facing the center of the screen, the central axis Xa of the light emitted from the center of the screen coincides with the reference axis X.
次に、画面の端から出射される光について説明する。
Next, the light emitted from the edge of the screen will be described.
図11(b)に示すように、画面の端から出射する光の中心軸Xbは、基準軸Xに対して6°の傾きを有している。すなわち、画面の端から出射する光を視聴者の左右の目に到達させようとすると、出射角度を6°偏向させる必要がある。
As shown in FIG. 11B, the central axis Xb of the light emitted from the edge of the screen has an inclination of 6 ° with respect to the reference axis X. That is, in order to allow light emitted from the edge of the screen to reach the left and right eyes of the viewer, it is necessary to deflect the emission angle by 6 °.
また、図11(c)に示すように、画面のサイズが10型の場合は、画面の端から出射する光の中心軸Xcは、基準軸Xに対して20°の傾きを有している。すなわち、画面の端から出射する光を視聴者の左右の目に到達させようとすると、画面の端からの光の出射角度を20°大きくする必要がある。
Further, as shown in FIG. 11C, when the screen size is 10 type, the central axis Xc of the light emitted from the edge of the screen has an inclination of 20 ° with respect to the reference axis X. . That is, in order to make the light emitted from the edge of the screen reach the left and right eyes of the viewer, it is necessary to increase the light emission angle from the edge of the screen by 20 °.
特開2006-266293号公報では、対向するプリズムアレイとレンチキュラレンズアレイのピッチを僅かに異ならせ、周辺部でレンチキュラレンズを内側に寄せて配置することによって、画面の端からの光の出射角度を大きくすることが試みられている。
In Japanese Patent Application Laid-Open No. 2006-266293, the pitch of the prism array and the lenticular lens array facing each other is slightly different, and the lenticular lens is arranged inward in the peripheral portion, thereby setting the light emission angle from the edge of the screen. Attempts to make it larger.
しかしながら、この方法では、光の出射方向(指向方向)を10°程度大きくするのが限界であった。したがって、この方法で実現可能な立体画像表示装置の画面サイズは、5型程度が限度であり、大画面に対応できないという課題があった。
However, with this method, it has been the limit to increase the light emission direction (direction direction) by about 10 °. Therefore, the screen size of the stereoscopic image display apparatus that can be realized by this method is limited to about 5 inches, and there is a problem that it cannot cope with a large screen.
これに対して、本実施形態の画像表示装置1は、導光板6と、光源2a及び2bと、指向性制御シート3と、液晶パネル4とを備える。導光板6は、側面を光入射面とし、主の一方を光出射面とする略平板状である。光源2a及び2bは、導光板6の入射面に光を入射する。指向性制御シート3は、導光板6から出射された出射光が入射され、所望の配光特性に変換して出射する。液晶パネル4は、指向性制御シート3の光出射側に設けられ、入射された光を映像信号に応じて空間変調して画像を形成する。指向性制御シート3は、光入射面にプリズムアレイ31を有する。プリズムアレイ31は、断面略三角形状のプリズムを複数配列して構成される。そして、プリズムの頂角の二等分線と、プリズムの底面に対する法線とのなす角度が、指向性制御シートの端部から中央部に向かって徐々に変化する。
In contrast, the image display device 1 of the present embodiment includes a light guide plate 6, light sources 2 a and 2 b, a directivity control sheet 3, and a liquid crystal panel 4. The light guide plate 6 has a substantially flat plate shape with a side surface serving as a light incident surface and a main one as a light emitting surface. The light sources 2 a and 2 b make light incident on the incident surface of the light guide plate 6. The directivity control sheet 3 receives the emitted light emitted from the light guide plate 6, converts the light into a desired light distribution characteristic, and emits the light. The liquid crystal panel 4 is provided on the light output side of the directivity control sheet 3 and forms an image by spatially modulating incident light according to a video signal. The directivity control sheet 3 has a prism array 31 on the light incident surface. The prism array 31 is configured by arranging a plurality of prisms having a substantially triangular cross section. The angle formed between the bisector of the apex angle of the prism and the normal to the bottom surface of the prism gradually changes from the end of the directivity control sheet toward the center.
このような構成により、比較的大きな画面サイズの表示装置であっても、画面の左右端から出射された光を効率良く視聴者の左右の目に集光させることができる。その結果、画像表示装置1は、従来よりも良好な立体表示を行うことができる。
With such a configuration, even in a display device having a relatively large screen size, the light emitted from the left and right ends of the screen can be efficiently condensed on the left and right eyes of the viewer. As a result, the image display device 1 can perform better stereoscopic display than before.
(その他の実施形態)
上述の実施形態では、2つの光源2a及び2bを用い立体映像表示をおこなう場合を例に挙げて説明したが、本開示はこれに限らない。光源は、導光板6の片方の側面にのみ配置して2次元映像を表示してもよい。この場合は光を視野方向に集めることにより少ない光量で明るい映像を得ることが期待できる。このような構成の場合、指向性制御シート3のプリズムアレイ31の形状は、図10に示すように適宜設計され得る。図10に示すように、プリズムアレイ31の中央部の形状は、必ずしも対称な形状(二等辺三角形)でなくてもよい。要するに、全領域からの光が視点方向に向かうように中央部から端部に向かって徐々に形状を変化させる。例えば図10に示すように、左側端部のプリズムは断面二等辺三角形で、右側端部に向かうに従って、プリズムの頂点が右側にシフトするような構成であってもよい。尚、図10に示す指向性制御シート3の構成例では、光の集光位置は指向性制御シート3の左前方(図10における左上方)となる。指向性制御シート3の右前方に光を集光させたい場合は、図10とは対称の形状、すなわち、右側端部のプリズムを断面二等辺三角形とし、左側端部に向かうに従って、プリズムの頂点が左側にシフトするように、プリズムアレイを構成すれば良い。このように、プリズム形状が左右で非対称の指向性制御シート3は、例えば車載用ディスプレイのように、画像表示装置に対する視聴者の視点位置が中央より側方部にずれた位置に定まっている場合に利用できる。 (Other embodiments)
In the above-described embodiment, the case where stereoscopic image display is performed using the two light sources 2a and 2b has been described as an example, but the present disclosure is not limited thereto. The light source may be arranged only on one side surface of the light guide plate 6 to display a two-dimensional image. In this case, it is expected that a bright image can be obtained with a small amount of light by collecting the light in the viewing direction. In the case of such a configuration, the shape of the prism array 31 of the directivity control sheet 3 can be appropriately designed as shown in FIG. As shown in FIG. 10, the shape of the central portion of the prism array 31 is not necessarily a symmetric shape (isosceles triangle). In short, the shape is gradually changed from the center to the end so that the light from the entire region is directed toward the viewpoint. For example, as shown in FIG. 10, the prism at the left end may have an isosceles triangle cross section, and the apex of the prism may shift to the right as it goes to the right end. In the configuration example of the directivity control sheet 3 illustrated in FIG. 10, the light condensing position is the left front of the directivity control sheet 3 (upper left in FIG. 10). When it is desired to collect light to the right front of the directivity control sheet 3, the shape of the prism is symmetrical to that of FIG. 10, that is, the prism at the right end is an isosceles triangle, and the apex of the prism increases toward the left end. What is necessary is just to comprise a prism array so that may shift to the left side. As described above, the asymmetric directivity control sheet 3 having a prism shape that is asymmetrical to the left and right is a case where the viewer's viewpoint position with respect to the image display device is shifted to a side portion from the center, such as an in-vehicle display. Available to:
上述の実施形態では、2つの光源2a及び2bを用い立体映像表示をおこなう場合を例に挙げて説明したが、本開示はこれに限らない。光源は、導光板6の片方の側面にのみ配置して2次元映像を表示してもよい。この場合は光を視野方向に集めることにより少ない光量で明るい映像を得ることが期待できる。このような構成の場合、指向性制御シート3のプリズムアレイ31の形状は、図10に示すように適宜設計され得る。図10に示すように、プリズムアレイ31の中央部の形状は、必ずしも対称な形状(二等辺三角形)でなくてもよい。要するに、全領域からの光が視点方向に向かうように中央部から端部に向かって徐々に形状を変化させる。例えば図10に示すように、左側端部のプリズムは断面二等辺三角形で、右側端部に向かうに従って、プリズムの頂点が右側にシフトするような構成であってもよい。尚、図10に示す指向性制御シート3の構成例では、光の集光位置は指向性制御シート3の左前方(図10における左上方)となる。指向性制御シート3の右前方に光を集光させたい場合は、図10とは対称の形状、すなわち、右側端部のプリズムを断面二等辺三角形とし、左側端部に向かうに従って、プリズムの頂点が左側にシフトするように、プリズムアレイを構成すれば良い。このように、プリズム形状が左右で非対称の指向性制御シート3は、例えば車載用ディスプレイのように、画像表示装置に対する視聴者の視点位置が中央より側方部にずれた位置に定まっている場合に利用できる。 (Other embodiments)
In the above-described embodiment, the case where stereoscopic image display is performed using the two
また、上述の実施形態では、光源としてLEDを例に挙げて説明したが、本開示はこれに限らない。光源として例えば、冷陰極管や、レーザダイオードを用いてもよい。
In the above-described embodiment, the LED is described as an example of the light source, but the present disclosure is not limited to this. For example, a cold cathode tube or a laser diode may be used as the light source.
また、上述の実施形態では、導光板6は光源2a及び2bで共用されているが、光源2a用の導光板と光源2b用の導光板とを設け、2枚の導光板を重ねて配置しても良い。
In the above-described embodiment, the light guide plate 6 is shared by the light sources 2a and 2b. However, a light guide plate for the light source 2a and a light guide plate for the light source 2b are provided, and the two light guide plates are stacked. May be.
また、上述の実施形態では、プリズムアレイ31とレンチキュラレンズアレイ32とが一体になった指向性制御シートを例に挙げて説明したが、本開示はこれには限らない。プリズムアレイが形成されたプリズムシート及びレンチキュラレンズが形成されたレンチキュラレンズアレイシートを別個に設けても良い。この場合、プリズムシート及びレンチキュラレンズアレイシートをそれぞれ、指向性制御シートのプリズムアレイ及びレンチキュラレンズアレイに対応する形状を有するように構成すれば良い。
In the above embodiment, the directivity control sheet in which the prism array 31 and the lenticular lens array 32 are integrated has been described as an example, but the present disclosure is not limited thereto. You may provide separately the prism sheet in which the prism array was formed, and the lenticular lens array sheet in which the lenticular lens was formed. In this case, the prism sheet and the lenticular lens array sheet may be configured to have shapes corresponding to the prism array and the lenticular lens array of the directivity control sheet, respectively.
更に、上述の実施形態では、視差のある右目用画像及び左目用画像を時分割で表示する立体画像表示装置を例として説明したが、視差のない画像を表示しても良い。この場合、光源2a及び2bを交互に点滅させる代わりに、常時点灯させればよい。3次元画像に限らず、二次元画像を表示する際にも、視聴者の眼付近にのみ画像を縮小投影させることにより、省エネだけでなく、周辺の人から表示されている内容を覗かれることも防止でき、プライバシー保護も向上できる。
Furthermore, in the above-described embodiment, the stereoscopic image display device that displays the right-eye image and the left-eye image with parallax in a time-division manner is described as an example, but an image without parallax may be displayed. In this case, instead of blinking the light sources 2a and 2b alternately, the light sources may be constantly lit. When displaying 2D images as well as 3D images, not only the energy is saved but also the contents displayed by the surrounding people can be viewed by reducing and projecting the image only near the viewer's eyes. Can be prevented and privacy protection can be improved.
更に、上述の実施形態では、指向性制御シート3の出射面側にレンチキュラレンズアレイ32を設けているが、レンチキュラレンズアレイ32を設けず、プリズムアレイ31のみを有する指向性制御シート3を構成しても良い。この場合、指向性制御シート3の出射面は平坦に形成する。指向性制御シート3がプリズムアレイ31のみを有する場合でも、プリズムアレイ31が導光板6から出射された左右の光を偏向することによって、画面の左右端から出射された光を視聴者の目の位置に集光することが可能となり、画面全体に渡って明るい画像表示装置を実現できる。ただし、上述の実施形態のように、レンチキュラレンズアレイ32を設けた場合には、画面の中央部より側方から出射された光の偏向角度のばらつきを小さくすることができる(すなわち、図7(b)に示した光強度分布の分散を小さくすることができる)ので、より明るい画像表示装置を実現できる。また、レンチキュラレンズアレイ32を設けた場合には、画面の中央部より側方から出射された光のクロストーク成分を低減することができるので、画面全体の画質を向上することもできる。
Furthermore, in the above-described embodiment, the lenticular lens array 32 is provided on the exit surface side of the directivity control sheet 3, but the directivity control sheet 3 having only the prism array 31 is provided without providing the lenticular lens array 32. May be. In this case, the exit surface of the directivity control sheet 3 is formed flat. Even when the directivity control sheet 3 has only the prism array 31, the prism array 31 deflects the left and right light emitted from the light guide plate 6, thereby allowing the light emitted from the left and right ends of the screen to be viewed by the viewer's eyes. The light can be condensed at the position, and a bright image display device can be realized over the entire screen. However, when the lenticular lens array 32 is provided as in the above-described embodiment, the variation in the deflection angle of the light emitted from the side of the center of the screen can be reduced (that is, FIG. Since the dispersion of the light intensity distribution shown in b) can be reduced), a brighter image display device can be realized. Further, when the lenticular lens array 32 is provided, the crosstalk component of light emitted from the side of the center of the screen can be reduced, so that the image quality of the entire screen can be improved.
(実施例)
以下、実施例について説明する。本実施例では、最適視距離300mm、画面サイズ10型を想定し、視差6°で設計した指向性制御シートについてシミュレーションを行った。 (Example)
Examples will be described below. In this example, simulation was performed on a directivity control sheet designed with a parallax of 6 °, assuming an optimal viewing distance of 300 mm and a screen size of 10 type.
以下、実施例について説明する。本実施例では、最適視距離300mm、画面サイズ10型を想定し、視差6°で設計した指向性制御シートについてシミュレーションを行った。 (Example)
Examples will be described below. In this example, simulation was performed on a directivity control sheet designed with a parallax of 6 °, assuming an optimal viewing distance of 300 mm and a screen size of 10 type.
図5は、指向性制御シート3の中央部及び端部の形状と、設計データを示す概略図である。図6は、傾斜角φの変化を示すグラフである。
FIG. 5 is a schematic diagram showing the shape and design data of the central part and the end part of the directivity control sheet 3. FIG. 6 is a graph showing changes in the inclination angle φ.
図5(a)に示すように、指向性制御シート3の中央部では、プリズムの断面形状を二等辺三角形とした。
As shown in FIG. 5A, the cross-sectional shape of the prism is an isosceles triangle in the central portion of the directivity control sheet 3.
図5(c)に示すように、プリズムの頂角θpは60°であり、指向性制御シート3の中央部でも端部でも同じ角度とした。
As shown in FIG. 5 (c), the apex angle θp of the prism was 60 °, and the same angle was used at the center and at the end of the directivity control sheet 3.
プリズムのピッチPpは、0.1mmであり、指向性制御シート3の中央部でも端部でも同じピッチとした。
The prism pitch Pp was 0.1 mm, and the same pitch was used at the center and at the end of the directivity control sheet 3.
レンチキュラレンズのピッチPLは、指向性制御シート3の中央部でも端部でも同じであり、端部の最も外側に配置されるレンチキュラレンズのプリズムに対するズレ量(最端部偏芯量)Δxが、0.036mmとなるように、0.099967mmとした。
Pitch P L of the lenticular lens is the same in the end in the central part of the directivity control sheet 3, shift amount for the prism of the lenticular lens element which is disposed outermost end (endmost eccentricity) [Delta] x is The thickness was set to 0.099967 mm so as to be 0.036 mm.
プリズムの底面からレンチキュラレンズの底面までの厚さtは、0.121mmとした。
The thickness t from the bottom surface of the prism to the bottom surface of the lenticular lens was 0.121 mm.
レンチキュラレンズの曲率半径RLは、0.091mmであり、中央部も端部も同じ曲率半径とした。
The radius of curvature RL of the lenticular lens was 0.091 mm, and the central portion and the end portion had the same radius of curvature.
図5(b)に示すように、指向性制御シート3の端部の最も外側に配置されるプリズムの傾斜角φは、9°とした。傾斜角φとは、プリズムの頂角の二等分線と、プリズムの底面に対する法線とのなす角度である。
As shown in FIG. 5B, the inclination angle φ of the prism disposed on the outermost side of the end portion of the directivity control sheet 3 was 9 °. The tilt angle φ is an angle formed by a bisector of the apex angle of the prism and a normal to the bottom surface of the prism.
また、図6に示すように、指向性制御シート3の中央部と端部との間で、プリズムの傾斜角φは、徐々に変化するように設計した。図6の縦軸は、プリズムの傾斜角φを示している。横軸は、指向性制御シート3の中央部から所定の位置までの距離であって、中央部から端部までの長さで規格化したものである。横軸の値は、指向性制御シート3の中央部で「0」とし、右側の最端部で「1」とし、左側の最端部で「-1」としている。
Further, as shown in FIG. 6, the inclination angle φ of the prism was designed to gradually change between the central portion and the end portion of the directivity control sheet 3. The vertical axis in FIG. 6 indicates the inclination angle φ of the prism. The horizontal axis is the distance from the central part of the directivity control sheet 3 to a predetermined position, and is normalized by the length from the central part to the end part. The value on the horizontal axis is “0” at the center of the directivity control sheet 3, “1” at the rightmost end, and “−1” at the leftmost end.
図6に示すように、中央部から端部にかけてプリズム傾斜角をリニアに変化させている。なお、レンチキュラレンズ位置のシフト量(偏芯量)も同様にリニアに変化させる。
As shown in FIG. 6, the prism inclination angle is changed linearly from the center to the end. The shift amount (eccentric amount) of the lenticular lens position is also changed linearly.
図7(a)は、中央部での光線追跡図であり観察者から見て右側に配置した光源2aからの代表光線を破線で、観察者から見て左側に配置した光源2bからの代表光線を実線で表示している。図7(b)は、中央部での配光特性を示す。
FIG. 7A is a ray tracing diagram at the central portion, and the representative ray from the light source 2a arranged on the right side as viewed from the observer is a broken line and the representative ray from the light source 2b arranged on the left side as seen from the observer. Is indicated by a solid line. FIG. 7B shows the light distribution characteristics at the center.
図7(b)に示すように、光源2aを点灯した場合(破線)、出射光の光線強度分布は、右目の視点方向であるマイナス6°でピークとなった。また、光源2bを点灯した場合(実線)、出射光の光線強度分布は、左目の視点方向であるプラス6°でピークとなった。
As shown in FIG. 7B, when the light source 2a was turned on (broken line), the light intensity distribution of the emitted light peaked at −6 ° which is the viewpoint direction of the right eye. When the light source 2b was turned on (solid line), the light intensity distribution of the emitted light peaked at + 6 ° which is the viewpoint direction of the left eye.
図8(a)は画面右端部における光線軌跡を示す概略図であり、図8(b)は、その配光特性を示すグラフである。図8(a)に示すように、右端部でプリズムの傾斜角(プリズム底面に対するプリズム頂角の2等分線がなす角度)が9°となるように、プリズムが設計されている。
FIG. 8 (a) is a schematic diagram showing the ray trajectory at the right end of the screen, and FIG. 8 (b) is a graph showing the light distribution characteristics. As shown in FIG. 8A, the prism is designed so that the prism tilt angle (the angle formed by the bisector of the prism apex angle with respect to the prism bottom surface) is 9 ° at the right end.
画面右端部のプリズムが傾斜していることによって、図8(a)に示すように、光源2aからの光(破線)は、マイナス側(すなわち、画面中央に向かって)に偏向される。また、光源2bからの光線(実線)も、マイナス側に偏向される。右側端部でレンチキュラレンズを構成するシリンドリカルレンズを、プリズムのピッチに対して36%分だけ中央部側にシフトさせている。これにより、右側端部のプリズムで反射された光を効率良く集束することができる。その結果、右側端部における光の指向性を高めることができる。
Since the prism at the right end of the screen is inclined, as shown in FIG. 8A, the light (dashed line) from the light source 2a is deflected to the minus side (that is, toward the center of the screen). Further, the light beam (solid line) from the light source 2b is also deflected to the minus side. The cylindrical lens constituting the lenticular lens at the right end is shifted to the center by 36% with respect to the prism pitch. Thereby, the light reflected by the prism at the right end can be efficiently focused. As a result, the directivity of light at the right end can be increased.
図8(b)に示すように、光源2aを点灯した場合(破線)、出射光の光線強度分布は、右目の視点方向であるマイナス26°でピークとなった。また、右側光源2bを点灯した場合(実線)、出射光の光線強度分布は右目の視点方向であるマイナス14°でピークとなった。すなわち、右側端部から出射された右目用及び左目用の光は、それぞれ20°マイナス側(画面中央部側)に偏向した。尚、左側端部から出射された光の偏向については、右側端部から出射された光の偏向方向と反対であることを除いて同じであるので、繰り返しの説明を省略する。したがって、10型のディスプレイであっても、画面の左右の端部から出射された光を視聴者の目の位置に集光させることができ、画面中央部で視聴している視聴者の左右の目に届く光量を大きくすることができる。したがって、実施例に係る指向性制御シート3を用いた画像表示装置は、視聴者に対して、画面全体にわたって明るい画像を提供することができる。
As shown in FIG. 8B, when the light source 2a was turned on (broken line), the light intensity distribution of the emitted light peaked at minus 26 °, which is the viewpoint direction of the right eye. When the right light source 2b was turned on (solid line), the light intensity distribution of the emitted light peaked at minus 14 °, which is the viewpoint direction of the right eye. That is, the light for the right eye and the light for the left eye emitted from the right end portion was deflected by 20 ° minus side (screen center side). Since the deflection of the light emitted from the left end is the same except that it is opposite to the deflection direction of the light emitted from the right end, repeated description is omitted. Therefore, even with a 10-inch display, the light emitted from the left and right edges of the screen can be focused on the viewer's eyes, and the right and left of the viewer watching in the center of the screen The amount of light that reaches the eyes can be increased. Therefore, the image display device using the directivity control sheet 3 according to the embodiment can provide a bright image over the entire screen to the viewer.
(比較例)
次に比較例について説明する。比較例として、いずれの場所でも同一形状のプリズムを用いた。また、レンチキュラレンズについては、実施例と同様に最端部で36%内側にシフトさせた。このような指向性制御シートについてシミュレーションを行った。 (Comparative example)
Next, a comparative example will be described. As a comparative example, prisms having the same shape were used at any location. Further, the lenticular lens was shifted inward by 36% at the extreme end as in the example. A simulation was performed for such a directivity control sheet.
次に比較例について説明する。比較例として、いずれの場所でも同一形状のプリズムを用いた。また、レンチキュラレンズについては、実施例と同様に最端部で36%内側にシフトさせた。このような指向性制御シートについてシミュレーションを行った。 (Comparative example)
Next, a comparative example will be described. As a comparative example, prisms having the same shape were used at any location. Further, the lenticular lens was shifted inward by 36% at the extreme end as in the example. A simulation was performed for such a directivity control sheet.
図9(a)は、比較例の指向性制御シートにおける最端部での光線軌跡を示す概略図であり、図9(b)は、その配光特性である。
FIG. 9 (a) is a schematic diagram showing the ray trajectory at the end of the directivity control sheet of the comparative example, and FIG. 9 (b) shows its light distribution characteristics.
図9(b)に示すように、指向性のピークは確認できたが、指向性制御シートの法線に対する偏向角度は10°と小さな値であった。また、右目用の光の配光特性と左目用の光の配光特性の対称性も悪い。さらに、図9(a)及び(b)に示すように、プリズムに対応するシリンドリカルレンズ(当該プリズムからの光が本来入射すべきシリンドリカルレンズ)に隣接するシリンドリカルレンズに、対応するプリズムからの光の一部が入射し、この光の一部の集光位置がずれるため、イレギュラーな不要光が多く発生している。この結果、図9(b)に示すように、光線強度分布に不要光のピークが生じる
As shown in FIG. 9B, the directivity peak was confirmed, but the deflection angle with respect to the normal of the directivity control sheet was a small value of 10 °. Also, the symmetry of the light distribution characteristic of the right eye light and the light distribution characteristic of the left eye light is poor. Further, as shown in FIGS. 9A and 9B, the cylindrical lens adjacent to the cylindrical lens corresponding to the prism (the cylindrical lens to which light from the prism should originally enter) is transmitted to the cylindrical lens. Since a part of the light is incident and the condensing position of a part of the light is shifted, a lot of irregular unnecessary light is generated. As a result, as shown in FIG. 9B, a peak of unnecessary light occurs in the light intensity distribution.
この状態では左右の映像の明るさがアンバランスになって良好な立体表示が出来ない。また、この状態を許容するとしても、偏向角度が10°程度では、視距離300mmで5型程度の画面にしか対応できない。
In this state, the brightness of the left and right images is unbalanced and a good 3D display is not possible. Even if this state is allowed, if the deflection angle is about 10 °, it can only deal with a screen of about 5 inches at a viewing distance of 300 mm.
以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
In addition, since the above-described embodiments are for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
本開示は、液晶ディスプレイなどの画像表示装置に好適に利用される。
The present disclosure is suitably used for an image display device such as a liquid crystal display.
1 画像表示装置
2a、2b 光源
3 指向性制御シート
31 プリズムアレイ
32 レンチキュラレンズアレイ
4 液晶パネル
5 反射フィルム
6 導光板
7 バックライト DESCRIPTION OFSYMBOLS 1 Image display apparatus 2a, 2b Light source 3 Directionality control sheet 31 Prism array 32 Lenticular lens array 4 Liquid crystal panel 5 Reflective film 6 Light guide plate 7 Backlight
2a、2b 光源
3 指向性制御シート
31 プリズムアレイ
32 レンチキュラレンズアレイ
4 液晶パネル
5 反射フィルム
6 導光板
7 バックライト DESCRIPTION OF
Claims (4)
- 側面を光入射面とし、主面の一方を光出射面とする略平板状の導光板と、
前記導光板の前記光入射面に対して光を出射する光源と、
前記導光板から出射された光が入射し、入射した光を所望の配光特性に変換して出射する指向性制御シートと、
前記指向性制御シートの光出射側に設けられ、入射した光を映像信号に応じて空間変調して画像を形成する画像表示パネルとを備え、
前記指向性制御シートは、光入射面にプリズムアレイを有し、
前記プリズムアレイは、断面略三角形状のプリズムが複数配列して構成され、
前記プリズムの頂角の二等分線と、前記プリズムの底面に対する法線とのなす角度が、前記指向性制御シートの中央部から端部に向かって増加する、画像表示装置。 A substantially flat light guide plate having a side surface as a light incident surface and one of the main surfaces as a light exit surface;
A light source that emits light to the light incident surface of the light guide plate;
A directivity control sheet that receives light emitted from the light guide plate, converts the incident light into desired light distribution characteristics, and emits the light, and
An image display panel that is provided on the light output side of the directivity control sheet and that spatially modulates incident light according to a video signal to form an image;
The directivity control sheet has a prism array on the light incident surface,
The prism array is configured by arranging a plurality of prisms having a substantially triangular cross section,
The image display device, wherein an angle formed by a bisector of the apex angle of the prism and a normal line to the bottom surface of the prism increases from a central portion toward an end portion of the directivity control sheet. - 前記複数のプリズムの頂角は、一定である、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein apex angles of the plurality of prisms are constant.
- 前記指向制御シートの前記プリズムアレイを形成した入射面と対向する出射面には、それぞれのプリズムに対向するシリンドリカルレンズからなるレンチキュラレンズアレイが形成され、
前記レンチキュラレンズアレイは、前記シリンドリカルレンズが複数配列して構成され、
前記プリズムに対応する前記シリンドリカルレンズの配列方向における位置が、前記プリズムの頂角の二等分線と、前記プリズムの底面に対する法線とのなす角度に応じて、中央部側にシフトしている、請求項1に記載の画像表示装置。 A lenticular lens array composed of cylindrical lenses facing each prism is formed on the exit surface facing the entrance surface on which the prism array of the directivity control sheet is formed,
The lenticular lens array is configured by arranging a plurality of the cylindrical lenses,
The position in the arrangement direction of the cylindrical lenses corresponding to the prism is shifted to the center side according to the angle formed by the bisector of the apex angle of the prism and the normal to the bottom surface of the prism. The image display device according to claim 1. - 前記光源は、前記導光板の対向する2つの側面のそれぞれに対して光を出射する第1の光源及び第2の光源を有し、
前記第1の光源及び前記第2の光源は、交互に点灯及び消灯を繰り返し行い、
前記画像表示パネルは、前記画像表示パネルの表示映像を前記第1の光源及び第2の光源の点灯及び消灯の切り替えと同期して切り替える、請求項1に記載の画像表示装置。 The light source includes a first light source and a second light source that emit light to each of two opposing side surfaces of the light guide plate,
The first light source and the second light source alternately turn on and off repeatedly,
The image display device according to claim 1, wherein the image display panel switches a display image of the image display panel in synchronization with switching of turning on and off of the first light source and the second light source.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012028158A JP2015084005A (en) | 2012-02-13 | 2012-02-13 | Image display device |
JP2012-028158 | 2012-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013121771A1 true WO2013121771A1 (en) | 2013-08-22 |
Family
ID=48983904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/000745 WO2013121771A1 (en) | 2012-02-13 | 2013-02-12 | Image display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015084005A (en) |
WO (1) | WO2013121771A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021170491A (en) * | 2020-04-16 | 2021-10-28 | スタンレー電気株式会社 | Side edge type surface lighting device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9244284B2 (en) * | 2011-03-15 | 2016-01-26 | 3M Innovative Properties Company | Microreplicated film for autostereoscopic displays |
CA3007532C (en) * | 2016-01-30 | 2021-11-30 | Leia Inc. | Multibeam element-based backlighting having converging views |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001066547A (en) * | 1999-08-31 | 2001-03-16 | Toshiba Corp | Stereoscopic display device |
JP2005266293A (en) * | 2004-03-18 | 2005-09-29 | Mitsubishi Electric Corp | Liquid crystal display device and image display system |
JP2006079082A (en) * | 2004-09-09 | 2006-03-23 | Au Optronics Corp | Liquid crystal display and display method thereof |
JP2006173046A (en) * | 2004-12-20 | 2006-06-29 | Kuraray Co Ltd | Surface light source element and three-dimensional display device using the same |
-
2012
- 2012-02-13 JP JP2012028158A patent/JP2015084005A/en active Pending
-
2013
- 2013-02-12 WO PCT/JP2013/000745 patent/WO2013121771A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001066547A (en) * | 1999-08-31 | 2001-03-16 | Toshiba Corp | Stereoscopic display device |
JP2005266293A (en) * | 2004-03-18 | 2005-09-29 | Mitsubishi Electric Corp | Liquid crystal display device and image display system |
JP2006079082A (en) * | 2004-09-09 | 2006-03-23 | Au Optronics Corp | Liquid crystal display and display method thereof |
JP2006173046A (en) * | 2004-12-20 | 2006-06-29 | Kuraray Co Ltd | Surface light source element and three-dimensional display device using the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021170491A (en) * | 2020-04-16 | 2021-10-28 | スタンレー電気株式会社 | Side edge type surface lighting device |
JP7532071B2 (en) | 2020-04-16 | 2024-08-13 | スタンレー電気株式会社 | Side edge type surface lighting device |
TWI876006B (en) * | 2020-04-16 | 2025-03-11 | 日商斯坦雷電氣股份有限公司 | Side-edge type surface light emitting apparatus having multiple gradually-sloped peak-shaped prisms |
Also Published As
Publication number | Publication date |
---|---|
JP2015084005A (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3930021B2 (en) | Display device and electronic apparatus equipped with display device | |
US9274346B2 (en) | Multi-view auto-stereoscopic display | |
US9507159B2 (en) | Light source device and stereoscopic display apparatus | |
CN105008983B (en) | Super lens component for directional display | |
US20070268590A1 (en) | Lenticule and Prism Unit | |
US9030643B2 (en) | Liquid crystal optical element and image display apparatus including the same | |
CN104049370A (en) | Image Display Apparatus | |
CN104854864A (en) | Temporally multiplexed display with landscape and portrait operation modes | |
WO2001059508A1 (en) | Display system with no eyeglasses | |
JP5938720B2 (en) | Optical deflection element and image display apparatus using the same | |
WO2013161257A1 (en) | Liquid crystal optical element and image display device provided therewith | |
US9405125B2 (en) | Image display apparatus | |
JP2010237416A (en) | Stereoscopic display device | |
WO2014155984A1 (en) | Image display device | |
JP4503619B2 (en) | Portable device | |
JP5919510B2 (en) | Image display device | |
JP5942150B2 (en) | Image display device | |
JP2009093989A (en) | Plane light source apparatus and liquid crystal display device | |
WO2013121771A1 (en) | Image display device | |
WO2014125793A1 (en) | Image display device and lighting device | |
JP3925500B2 (en) | Image display device and portable terminal device using the same | |
JP2006107997A (en) | Surface light source device and liquid crystal display device | |
JP2006293106A (en) | Stereoscopic display device | |
JP4698616B2 (en) | Image display device and portable terminal device using the same | |
JP5591783B2 (en) | Image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13748978 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13748978 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |