[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013118910A1 - Calibrator device - Google Patents

Calibrator device Download PDF

Info

Publication number
WO2013118910A1
WO2013118910A1 PCT/JP2013/053588 JP2013053588W WO2013118910A1 WO 2013118910 A1 WO2013118910 A1 WO 2013118910A1 JP 2013053588 W JP2013053588 W JP 2013053588W WO 2013118910 A1 WO2013118910 A1 WO 2013118910A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
unit
cone mirror
shielding member
ring
Prior art date
Application number
PCT/JP2013/053588
Other languages
French (fr)
Japanese (ja)
Inventor
清文 藤村
俊寛 林
道子 馬場
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2013118910A1 publication Critical patent/WO2013118910A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/001Axicons, waxicons, reflaxicons

Definitions

  • the present invention relates to an inner diameter measuring device that measures the inner diameter or inner surface shape of a cylinder, and more particularly to an inner diameter measuring device that measures the inner surface shape without contact.
  • Patent Documents 1 and 2 disclose a non-contact inner diameter that irradiates a laser beam in the entire circumferential direction, images a light ring formed on the inner surface of a cylindrical body, and measures the shape and diameter of the light ring from the image. A measuring device is shown.
  • a cone mirror having a conical reflecting surface is used as means for irradiating a laser beam in the entire circumferential direction.
  • the laser beam is reflected in the entire circumferential direction.
  • the laser beam diffused in the entire circumferential direction irradiates the inner surface of the cylinder, forms an optical ring, images the optical ring with an imaging device, and measures the diameter, shape, etc. of the inner surface from the obtained image.
  • the laser beam reflected by the inner surface may reach the inner surface on the opposite side.
  • an optical ring is formed on the inner surface of the cylindrical body by the laser beam directly reflected by the cone mirror and the laser beam reflected by the inner surface on the opposite side.
  • the optical ring formed by the laser beam reflected from the inner surface deteriorates the optical ring to be measured as noise or reduces the measurement accuracy, so the influence of the laser beam reflected from the inner surface on the inner diameter measurement is affected. Is preferably removed.
  • the present invention provides an inner diameter measuring device that irradiates a laser beam in a circumferential direction with a cone mirror, forms an optical ring on the inner surface of a cylindrical body, and measures the inner diameter of the cylindrical body based on the optical ring.
  • the present invention provides an inner diameter measuring device that suppresses the influence of the laser beam reflected from the inner surface on the inner diameter measurement.
  • the present invention relates to a cone mirror having a conical reflection surface at the tip, a laser beam emitting unit that makes a laser beam incident on the apex of the cone mirror, and a light transmission that transmits the laser beam reflected in the entire circumferential direction by the cone mirror A window, an imaging unit that images a light ring formed on the inner surface of the cylindrical body by a laser beam emitted from the light transmission window, and a periphery of the light transmission window that is rotatable.
  • the present invention relates to an inner diameter measuring device including a laser beam shielding member that covers a portion within a predetermined range.
  • FIG. 1 is a perspective view of an inner diameter measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a sectional view showing the inner diameter measuring apparatus according to the embodiment.
  • FIG. 3 is a view showing a laser beam shielding member used in this embodiment.
  • FIG. 4 is a view showing another example of the laser beam shielding member used in this embodiment.
  • 5 (A) and 5 (B) are diagrams in which the laser beam shielding member used in this embodiment is in contact with the stopper, and FIG. 5 (A) is from the left side of the stopper, FIG. 5 (B). Indicates a contact state from the right side of the stopper.
  • the inner diameter measuring apparatus 1 mainly includes an imaging unit 2, a laser beam emitting unit 3, a centering unit 4, and a laser beam diffusing unit. 5, a transparent window portion 6, a frame portion 10, and the like.
  • the frame portion 10 has a configuration in which a base end ring 7 and a tip end ring 8 are connected by three support columns 9, and the support columns 9 are arranged on the same circumference at a predetermined interval, for example, at three equal positions.
  • a space is formed at the center of the frame unit 10, and the imaging unit 2 and the laser beam emitting unit 3 are accommodated in the space.
  • the number of the support columns 9 may be two or four, and can support the imaging unit 2 and the laser beam diffusing unit 5 and should not interfere with the imaging of the imaging unit 2.
  • the proximal ring 7 and the distal ring 8 may be connected by a transparent glass tube instead of the support 9.
  • the proximal ring 7 and the distal ring 8 are concentric, that is, arranged on the axial center of the frame portion 10.
  • the imaging unit 2 is attached to the base end ring 7 so as to penetrate the base end ring 7.
  • the imaging unit 2 includes a camera 11, and the optical axis of the imaging unit 2, that is, the optical axis of the camera 11, coincides with the axis of the frame unit 10.
  • the centering portion 4 is attached to the tip ring 8, and the laser beam emitting portion 3 is supported on the centering portion 4.
  • the laser beam emitter 3 includes a laser emitter 14 held by a light emitter holder 15 which is a cylindrical body.
  • the position and orientation of the laser beam emitting unit 3 can be adjusted by an adjusting mechanism unit 21 to be described later.
  • the optical axis of the laser beam emitting unit 3, that is, the laser emitter coincides with the axial center of the frame unit 10 and the optical axis of the imaging unit 2.
  • the centering portion 4 includes the adjusting mechanism portion 21 and a housing 18 that houses the adjusting mechanism portion 21.
  • the adjustment mechanism unit 21 includes an X-axis slider 22 that can be displaced in a direction perpendicular to the paper surface, and a Y-axis slider 23 that is provided on the X-axis slider 22 and can be displaced in a direction parallel to the paper surface.
  • the displacement of the X-axis slider 22 and the Y-axis slider 23 can be adjusted by adjusting screws (not shown).
  • the laser beam emitter 3 is fixed to the Y-axis slider 23 at three locations by tilt adjusting screws 24.
  • the tilt adjusting screw 24 is a set of a push screw and a pull screw, and the tilt of the optical axis of the laser beam emitting unit 3 can be adjusted by adjusting the protruding amount of the push screw.
  • the adjusting mechanism 21 can displace the laser beam emitting unit 3 in two directions (X-axis direction and Y-axis direction) orthogonal to the optical axis of the laser beam emitting unit 3. It has a function of adjusting the inclination of the optical axis of the laser beam emitting unit 3.
  • the translucent window portion 6 is provided on the distal end side of the centering portion 4.
  • the translucent window portion 6 includes a first flange 26 on the proximal end with a circular hole in the center, a second flange 27 on the distal end with a circular hole in the center, and the first flange 26 and the
  • the circumferential light transmission window 28 is sandwiched between the second flange 27, and the material of the circumferential light transmission window 28 is made of transparent glass or transparent synthetic resin.
  • the laser beam diffusing unit 5 is attached to the second flange 27, and the laser beam diffusing unit 5 is concentric with the centering unit 4, the frame unit 10, and the imaging unit 2 in a mounted state. .
  • the laser beam diffusing unit 5 includes a cone mirror 29, a cone mirror holder 31 that holds the cone mirror 29, and a fixed flange 32 to which the cone mirror holder 31 is fitted.
  • the fixed flange 32 is formed with a flange portion 32a, and the flange portion 32a is attached to the second flange 27 by an inlay method.
  • the cone mirror 29 is in a state in which the laser beam diffusing unit 5 is attached to the second flange 27, that is, in a state in which the cone mirror 29 is attached to the translucent window portion 6.
  • the imaging unit 2 and the axis coincide with each other, and the cone mirror 29 is aligned in advance when the laser beam diffusing unit 5 is assembled. Further, a laser beam shielding member 34 shown in FIG.
  • the laser beam shielding member 34 has a substantially semicylindrical shape, for example, a partial cylindrical shape having a central angle of about 178 ° to 175 °, and shields substantially half of the light transmitting window portion 6.
  • the laser beam shielding member 34 has a circumferential edge on one end side (the upper end in FIG. 3), and hooks 35 are formed at both end positions in the circumferential direction.
  • a circular sliding groove 36 into which the hook 35 is fitted is formed on the surface of the flange portion 32a, and the laser beam shielding member 34 has the hook 35 fitted into the sliding groove 36.
  • the laser beam shielding member 34 rotates about the flange portion 32 a along the sliding groove 36 by approximately 180 °, for example, 175 °. If the stopper 37 (see FIG. 5) is provided on the surface of the flange portion 32a to restrict the rotation, the reproducibility of the laser beam shielding position of the laser beam shielding member 34 is improved. For example, in the position of the laser beam shielding member 34 in FIG. 5A, that is, in a state where the laser beam shielding member 34 is in contact with the stopper 37 from the left side, the laser beam shielding member 34 has the light transmitting window portion. 6 is covered, and the laser beam shielding member 34 is rotated clockwise from the position of FIG.
  • the laser beam shielding member 34 covers substantially the right half of the translucent window portion 6. If the stopper 37 is omitted, a friction member is provided between the laser beam shielding member 34 and the flange portion 32a, and the laser beam shielding member 34 is held at an arbitrary position, the laser The central angle of the light shielding member 34 may be 180 ° or greater than 180 °. The operation will be described below. As preparation for measurement, the optical axis of the laser beam emitting unit 3 and the axis of the cone mirror 29 are matched in advance by the adjusting mechanism unit 21. The laser beam shielding member 34 is in the state shown in FIG.
  • a laser beam 17 is emitted from the laser emitter 14, and the laser beam 17 is incident on the apex of the cone mirror 29.
  • the laser beam 17 is diffusely reflected by the conical surface of the cone mirror 29 in the entire circumferential direction.
  • the laser beam 17 diffusely reflected on the left side is blocked by the laser beam shielding member 34, and the laser beam 17 diffusely reflected on the right side passes through the all-round light transmitting window 28. And injected.
  • the emitted laser beam 17 irradiates the inner surface of the cylinder, which is the measurement object, to form a semicircular right light ring.
  • the imaging unit 2 captures the half right light ring and acquires image data.
  • the maximum imaging field angle of the imaging unit 2 is ⁇ as shown in FIG.
  • the laser beam emitting unit 3, the centering unit 4 and the like become obstacles, and the angle of view of ⁇ 1 becomes a blind spot. Therefore, in this embodiment, it is possible to capture an image in the range of the angle of view from ⁇ to ⁇ 1.
  • the laser beam shielding member 34 is rotated to the position shown in FIG. 5B, the laser beam 17 diffusely reflected on the right side is blocked by the laser beam shielding member 34 and diffusely reflected on the left side.
  • the laser beam 17 is emitted through the entire light-transmitting window 28 and irradiates the inner surface of the cylindrical body to form a semicircular left light ring.
  • the semi-left light ring is imaged by the imaging unit 2 to acquire image data.
  • the laser beam 17 to the right side is blocked, no noise light reflected by the inner surface on the right side is generated.
  • image data of the circular light ring can be obtained, and measurement can be performed based on the image data of the circular light ring. .
  • the rotation angle of the laser beam shielding member 34 is 175 °, the laser beam 17 reflected from the inner surface by 5 ° centering on the stopper 37 becomes noise light. If the position of the support column 9 is 10, the laser beam 17 is blocked by the support column 9, so there is no particular problem. Also, the shape, attachment method, etc. of the laser beam shielding member 34 can be variously changed, for example, as shown in FIG.
  • the laser beam shielding member 34 shown in FIG. 4 has a cylindrical member 38 provided with a laser beam passage window hole 39, and the center angle ⁇ of the laser beam passage window hole 39 is set to 175 °, for example.
  • the laser beam shielding member 34 is fitted over the first flange 26 and the second flange 27, and further provided between the housing 18 and the flange portion 32a.
  • the axial direction is the flange portion 32a and the flange portion 32a.
  • the housing 18 regulates.
  • the inner diameter can be measured by forming a semicircular ring at a position where the laser beam shielding member 34 is not rotated and a position where the laser beam shielding member 34 is rotated by 175 °, that is, approximately 180 °, and acquiring an image.
  • the range shielded by the laser beam shielding member 34 is 180 ° or approximately 180 °.
  • the range shielded by the laser beam shielding member 34 is 240 °, and the laser beam 17 is directed every 120 °.
  • the circular light ring may be divided into three or more to obtain a circular light ring, for example, by combining three image data to obtain a circular light ring.
  • a cone mirror having a conical reflection surface at the tip, a laser beam emitting unit that makes a laser beam incident on the apex of the cone mirror, and a laser beam reflected in the entire circumferential direction by the cone mirror are transmitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A calibrator device comprises: a cone mirror having a conical reflecting face in the leading end thereof; a laser beam emission unit (3) which causes a laser beam to enter the apex of the cone mirror; a translucent window unit (6) which transmits the laser beams which are reflected in the total circumference direction with the cone mirror; an image capture unit (2) which image captures a ring of light which is formed on the interior face of a cylinder by the laser beams which are illuminated by the translucent window unit; and a laser beam shield member (34) which is rotatably disposed in the periphery of the translucent window unit, and which covers a prescribed range of the translucent window unit.

Description

内径測定装置Inner diameter measuring device
 本発明は、筒体の内径或は内面形状を測定する内径測定装置、特に非接触で内面形状を測定する内径測定装置に関するものである。 The present invention relates to an inner diameter measuring device that measures the inner diameter or inner surface shape of a cylinder, and more particularly to an inner diameter measuring device that measures the inner surface shape without contact.
 非接触で筒体の内径を測定するものとして、レーザ光線を全周方向に照射し、筒体の内面に光リングを形成し、該光リングを撮像し、画像上から光リングの形状、径を測定する非接触の内径測定装置がある。
 特許文献1、特許文献2には、レーザ光線を全周方向に照射し、筒体の内面に形成される光リングを撮像し、画像上から光リングの形状、径を測定する非接触の内径測定装置が示されており、特許文献1、特許文献2の内径測定装置ではレーザ光線を全周方向に照射する手段として円錐反射面を有するコーンミラーが用いられており、レーザ光線をコーンミラーの頂点に入射することでレーザ光線を全周方向に反射している。全周方向に拡散されたレーザ光線は筒体内面を照射し、光リングを形成し、この光リングを撮像装置により撮像し、得られた画像から、内面の直径、形状等を測定している。
 ここで、測定対象が筒体の内面である場合で、レーザ光線を全周方向に照射した場合、内面で反射されたレーザ光線が、反対側の内面に到達する場合があり、この場合、筒体内面には、コーンミラーで直接反射されたレーザ光線と、反対側の内面で反射されたレーザ光線によって筒体内面に光リングが形成される。この内面で反射されたレーザ光線で形成される光リングは、ノイズとして測定すべき光リングを劣化させるか、或は測定精度を低下させるので、内面で反射されたレーザ光線による内径測定への影響を除去することが好ましい。
 本発明は斯かる実情に鑑み、コーンミラーによりレーザ光線を全周方向に照射し、筒体の内面に光リングを形成し、該光リングに基づき筒体の内径を測定する内径測定装置に於いて、内面で反射されたレーザ光線による内径測定への影響を抑止した内径測定装置を提供するものである。
In order to measure the inner diameter of the cylinder in a non-contact manner, a laser beam is irradiated in the entire circumferential direction, an optical ring is formed on the inner surface of the cylindrical body, the optical ring is imaged, and the shape and diameter of the optical ring are viewed from above the image. There is a non-contact inner diameter measuring device for measuring
Patent Documents 1 and 2 disclose a non-contact inner diameter that irradiates a laser beam in the entire circumferential direction, images a light ring formed on the inner surface of a cylindrical body, and measures the shape and diameter of the light ring from the image. A measuring device is shown. In the inner diameter measuring devices of Patent Document 1 and Patent Document 2, a cone mirror having a conical reflecting surface is used as means for irradiating a laser beam in the entire circumferential direction. By entering the apex, the laser beam is reflected in the entire circumferential direction. The laser beam diffused in the entire circumferential direction irradiates the inner surface of the cylinder, forms an optical ring, images the optical ring with an imaging device, and measures the diameter, shape, etc. of the inner surface from the obtained image. .
Here, when the measurement target is the inner surface of the cylinder and the laser beam is irradiated in the entire circumferential direction, the laser beam reflected by the inner surface may reach the inner surface on the opposite side. On the inner surface of the body, an optical ring is formed on the inner surface of the cylindrical body by the laser beam directly reflected by the cone mirror and the laser beam reflected by the inner surface on the opposite side. The optical ring formed by the laser beam reflected from the inner surface deteriorates the optical ring to be measured as noise or reduces the measurement accuracy, so the influence of the laser beam reflected from the inner surface on the inner diameter measurement is affected. Is preferably removed.
In view of such circumstances, the present invention provides an inner diameter measuring device that irradiates a laser beam in a circumferential direction with a cone mirror, forms an optical ring on the inner surface of a cylindrical body, and measures the inner diameter of the cylindrical body based on the optical ring. Thus, the present invention provides an inner diameter measuring device that suppresses the influence of the laser beam reflected from the inner surface on the inner diameter measurement.
特開平10−197215号公報JP-A-10-197215 特開2010−164334号公報JP 2010-164334 A
 本発明は、先端に円錐反射面を有するコーンミラーと、該コーンミラーの頂点にレーザ光線を入射させるレーザ光線発光部と、前記コーンミラーで全周方向に反射されたレーザ光線を透過する透光窓部と、該透光窓部より照射されたレーザ光線により筒体内面に形成された光リングを撮像する撮像部と、前記透光窓部の周囲を回転可能に設けられ、該透光窓部を所定の範囲で覆うレーザ光線遮蔽部材とを具備する内径測定装置に係るものである。 The present invention relates to a cone mirror having a conical reflection surface at the tip, a laser beam emitting unit that makes a laser beam incident on the apex of the cone mirror, and a light transmission that transmits the laser beam reflected in the entire circumferential direction by the cone mirror A window, an imaging unit that images a light ring formed on the inner surface of the cylindrical body by a laser beam emitted from the light transmission window, and a periphery of the light transmission window that is rotatable. The present invention relates to an inner diameter measuring device including a laser beam shielding member that covers a portion within a predetermined range.
 図1は本発明の実施例に係る内径測定装置の斜視図である。
 図2は該実施例に係る内径測定装置を示す断面図である。
 図3は該実施例で用いられているレーザ光線遮蔽部材を示す図である。
 図4は該実施例で用いられているレーザ光線遮蔽部材の他の例を示す図である。
 図5(A)、図5(B)は該実施例に用いられているレーザ光線遮蔽部材がストッパに当接した図であり、図5(A)はストッパの左側から、図5(B)はストッパの右側から当接した状態を示す。
FIG. 1 is a perspective view of an inner diameter measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a sectional view showing the inner diameter measuring apparatus according to the embodiment.
FIG. 3 is a view showing a laser beam shielding member used in this embodiment.
FIG. 4 is a view showing another example of the laser beam shielding member used in this embodiment.
5 (A) and 5 (B) are diagrams in which the laser beam shielding member used in this embodiment is in contact with the stopper, and FIG. 5 (A) is from the left side of the stopper, FIG. 5 (B). Indicates a contact state from the right side of the stopper.
 以下、図面を参照しつつ本発明の実施例を説明する。
 図1、図2は本発明の実施例に係る内径測定装置1を示しており、該内径測定装置1は主に、撮像部2、レーザ光線発光部3、芯合せ部4、レーザ光線拡散部5、透光窓部6、フレーム部10等から構成される。
 前記フレーム部10は、基端リング7と先端リング8とを3本の支柱9により連結した構成であり、該支柱9は同一円周上に所定の間隔、例えば3等分の位置に配置され、前記フレーム部10の中心部には空間が形成され、該空間に前記撮像部2、前記レーザ光線発光部3が収納される様になっている。尚、前記支柱9は、2本であっても或は4本であってもよく、前記撮像部2、前記レーザ光線拡散部5を支持し得、又前記撮像部2の撮像に支障なければよい。更に、前記支柱9に代え透明なガラス管により前記基端リング7と前記先端リング8とを連結してもよい。
 前記基端リング7と前記先端リング8とは同心であり、即ち前記フレーム部10の軸心上に配置されている。前記基端リング7に、該基端リング7を貫通する様に前記撮像部2が取付けられている。該撮像部2はカメラ11を有し、前記撮像部2の光軸、即ち前記カメラ11の光軸は前記フレーム部10の軸心と合致している。
 前記先端リング8に前記芯合せ部4が取付けられ、該芯合せ部4に前記レーザ光線発光部3が支持されている。
 該レーザ光線発光部3は、筒体である発光器ホルダ15に保持されたレーザ発光器14を具備している。前記レーザ光線発光部3の位置、姿勢は、後述する調整機構部21によって調整可能であり、位置、姿勢の調整が完了した状態では、前記レーザ光線発光部3の光軸、即ち前記レーザ発光器14の光軸は、前記フレーム部10の軸心及び前記撮像部2の光軸と合致する様になっている。
 又、前記芯合せ部4は、前記調整機構部21及び該調整機構部21を収納するハウジング18を有する。
 前記調整機構部21は、紙面に対して垂直な方向に変位可能なX軸スライダ22と、該X軸スライダ22に設けられ、紙面と平行な方向に変位可能なY軸スライダ23を有し、前記X軸スライダ22、前記Y軸スライダ23は調整螺子(図示せず)によって変位を調整可能となっている。
 前記Y軸スライダ23に、前記レーザ光線発光部3が傾き調整螺子24により3箇所で固定されている。該傾き調整螺子24は、押し螺子と引き螺子の組になっており、押し螺子の突出量を調整することで前記レーザ光線発光部3の光軸の傾きを調整可能となっている。
 而して、前記調整機構部21は、該レーザ光線発光部3を該レーザ光線発光部3の光軸に対して直交する2方向(X軸方向、Y軸方向)に変位可能とすると共に前記レーザ光線発光部3の光軸の傾きを調整する機能を有している。
 前記透光窓部6は前記芯合せ部4の先端側に設けられる。該透光窓部6は中央に円孔が穿設された基端側の第1フランジ26、中央に円孔が穿設された先端側の第2フランジ27、及び前記第1フランジ26と前記第2フランジ27との間に挾持された全周透光窓28によって構成されており、該全周透光窓28の材質は、透明ガラス或は透明な合成樹脂製となっている。
 前記第2フランジ27に前記レーザ光線拡散部5が取付けられ、該レーザ光線拡散部5は取付けられた状態で、前記芯合せ部4、前記フレーム部10及び前記撮像部2と同心となっている。
 前記レーザ光線拡散部5はコーンミラー29、該コーンミラー29を保持するコーンミラーホルダ31と、該コーンミラーホルダ31が嵌合される固定フランジ32とを有する。該固定フランジ32にはフランジ部32aが形成され、該フランジ部32aが前記第2フランジ27にインロー方式で取付けられる様になっている。
 前記コーンミラー29は、前記レーザ光線拡散部5が前記第2フランジ27に取付けられた状態、即ち前記透光窓部6に取付けられた状態で、前記芯合せ部4及び前記フレーム部10及び前記撮像部2と軸心が合致する様になっており、前記レーザ光線拡散部5を組立てる場合に予め前記コーンミラー29の芯合せを行っている。
 又、前記レーザ光線拡散部5には、図3に示されるレーザ光線遮蔽部材34が、前記透光窓部6の周囲を回転可能に取付けられている。
 前記レーザ光線遮蔽部材34は略半円筒形状、例えば中心角が178°~175°程度の部分円筒形であり、前記透光窓部6の略半分を遮蔽する。
 前記レーザ光線遮蔽部材34は1端側(図3では上端)の円周縁で、且つ周方向の両端位置にフック35が形成されている。又、前記フランジ部32aの表面には、前記フック35が嵌合する円の摺動溝36が刻設されており、前記レーザ光線遮蔽部材34は、前記フック35が前記摺動溝36に嵌合した状態で前記フランジ部32aに取付けられる。
 又、前記レーザ光線遮蔽部材34は、前記摺動溝36に沿って、前記フランジ部32aの周囲を略180°、例えば175°回転する。
 尚、前記フランジ部32aの表面にストッパ37(図5参照)を設け、回転を規制する様にすれば、前記レーザ光線遮蔽部材34のレーザ光線遮蔽位置の再現性が向上する。
 例えば、図5(A)での前記レーザ光線遮蔽部材34の位置、即ち前記レーザ光線遮蔽部材34が前記ストッパ37に左側から当接した状態では、前記レーザ光線遮蔽部材34は前記透光窓部6の略左半分を覆い、図5(A)の位置から前記レーザ光線遮蔽部材34を時計方向に回転させ、前記ストッパ37に右側から突当て、図5(B)の状態とすれば、前記レーザ光線遮蔽部材34は前記透光窓部6の略右半分を覆う。尚、前記ストッパ37を省略し、前記レーザ光線遮蔽部材34と前記フランジ部32aとの間に摩擦部材を設け、前記レーザ光線遮蔽部材34が任意の位置で保持される様にすれば、前記レーザ光線遮蔽部材34の中心角は、180°或は180°より大きくてもよい。
 以下、作用を説明する。
 測定する準備として、事前に前記調整機構部21によって前記レーザ光線発光部3の光軸と前記コーンミラー29の軸心とを合致させておく。又、前記レーザ光線遮蔽部材34は図5(A)の状態とする。
 前記レーザ発光器14よりレーザ光線17が射出され、該レーザ光線17は前記コーンミラー29の頂点に入射する。前記レーザ光線17は前記コーンミラー29の円錐面で全周方向に拡散反射される。
 図5(A)に於いて、左側に拡散反射されたレーザ光線17は、前記レーザ光線遮蔽部材34で遮断され、右側に拡散反射されたレーザ光線17が前記全周透光窓28を透って射出される。射出されたレーザ光線17は、測定対象物である筒体の内面を照射し、半円の右光リングを形成する。
 前記撮像部2により、前記半右光リングを撮像し、画像データを取得する。この時、左側へのレーザ光線17は遮断されているので、左側の内面で反射したノイズ光は発生しない。
 前記撮像部2の最大撮像画角は、図2に示される様にθとなっている。又、前記レーザ光線発光部3、前記芯合せ部4等が障害物となり、θ1の画角が死角となる。従って、本実施例では、画角がθ~θ1迄の範囲が撮像可能となる。
 次に、前記レーザ光線遮蔽部材34を回転させ、図5(B)の位置迄回転すると、右側に拡散反射されたレーザ光線17は、前記レーザ光線遮蔽部材34で遮断され、左側に拡散反射されたレーザ光線17が前記全周透光窓28を透って射出され、筒体の内面を照射し、半円の左光リングを形成する。
 同様に前記撮像部2により前記半左光リングを撮像し、画像データを取得する。この時も、右側へのレーザ光線17は遮断されているので、右側の内面で反射したノイズ光は発生しない。
 前記半右光リングの画像データと前記半左光リングの画像データを合成することで、円の光リングの画像データが得られ、該円の光リングの画像データに基づき測定を行うことができる。
 尚、前記レーザ光線遮蔽部材34の回転角を175°とすると、前記ストッパ37を中心とした5°分だけ内面で反射されたレーザ光線17がノイズ光となるが、前記ストッパ37を前記フレーム部10の前記支柱9の位置とすれば、該支柱9によってレーザ光線17が遮断されるので、特に支障はない。
 又、前記レーザ光線遮蔽部材34の形状、取付け方法等は種々変更が可能であり、例えば図4に示されるものがある。
 図4に示されるレーザ光線遮蔽部材34は、円筒部材38にレーザ光線通過窓孔39を穿設したものであり、該レーザ光線通過窓孔39の中心角ωを例えば175°とする。
 前記レーザ光線遮蔽部材34を前記第1フランジ26、前記第2フランジ27に掛渡って外嵌させ、更に前記ハウジング18と前記フランジ部32aとの間に設け、軸心方向は該フランジ部32a及び前記ハウジング18によって規制する様にする。
 この場合も、前記レーザ光線遮蔽部材34を回転しない位置と175°即ち略180°回転させた位置とで、半円リングを形成し、画像取得することで内径を測定することができる。
 尚上記実施例では、前記レーザ光線遮蔽部材34で遮蔽する範囲を180°或は略180°としたが、前記レーザ光線遮蔽部材34で遮蔽する範囲を240°とし、レーザ光線17を120°毎に照射し、3つの画像データを合成して円の光リングを取得する様にする等、3以上に分割して円の光リングを取得する様にしてもよい。
Embodiments of the present invention will be described below with reference to the drawings.
1 and 2 show an inner diameter measuring apparatus 1 according to an embodiment of the present invention. The inner diameter measuring apparatus 1 mainly includes an imaging unit 2, a laser beam emitting unit 3, a centering unit 4, and a laser beam diffusing unit. 5, a transparent window portion 6, a frame portion 10, and the like.
The frame portion 10 has a configuration in which a base end ring 7 and a tip end ring 8 are connected by three support columns 9, and the support columns 9 are arranged on the same circumference at a predetermined interval, for example, at three equal positions. A space is formed at the center of the frame unit 10, and the imaging unit 2 and the laser beam emitting unit 3 are accommodated in the space. Note that the number of the support columns 9 may be two or four, and can support the imaging unit 2 and the laser beam diffusing unit 5 and should not interfere with the imaging of the imaging unit 2. Good. Further, the proximal ring 7 and the distal ring 8 may be connected by a transparent glass tube instead of the support 9.
The proximal ring 7 and the distal ring 8 are concentric, that is, arranged on the axial center of the frame portion 10. The imaging unit 2 is attached to the base end ring 7 so as to penetrate the base end ring 7. The imaging unit 2 includes a camera 11, and the optical axis of the imaging unit 2, that is, the optical axis of the camera 11, coincides with the axis of the frame unit 10.
The centering portion 4 is attached to the tip ring 8, and the laser beam emitting portion 3 is supported on the centering portion 4.
The laser beam emitter 3 includes a laser emitter 14 held by a light emitter holder 15 which is a cylindrical body. The position and orientation of the laser beam emitting unit 3 can be adjusted by an adjusting mechanism unit 21 to be described later. When the adjustment of the position and orientation is completed, the optical axis of the laser beam emitting unit 3, that is, the laser emitter. The optical axis 14 coincides with the axial center of the frame unit 10 and the optical axis of the imaging unit 2.
The centering portion 4 includes the adjusting mechanism portion 21 and a housing 18 that houses the adjusting mechanism portion 21.
The adjustment mechanism unit 21 includes an X-axis slider 22 that can be displaced in a direction perpendicular to the paper surface, and a Y-axis slider 23 that is provided on the X-axis slider 22 and can be displaced in a direction parallel to the paper surface. The displacement of the X-axis slider 22 and the Y-axis slider 23 can be adjusted by adjusting screws (not shown).
The laser beam emitter 3 is fixed to the Y-axis slider 23 at three locations by tilt adjusting screws 24. The tilt adjusting screw 24 is a set of a push screw and a pull screw, and the tilt of the optical axis of the laser beam emitting unit 3 can be adjusted by adjusting the protruding amount of the push screw.
Thus, the adjusting mechanism 21 can displace the laser beam emitting unit 3 in two directions (X-axis direction and Y-axis direction) orthogonal to the optical axis of the laser beam emitting unit 3. It has a function of adjusting the inclination of the optical axis of the laser beam emitting unit 3.
The translucent window portion 6 is provided on the distal end side of the centering portion 4. The translucent window portion 6 includes a first flange 26 on the proximal end with a circular hole in the center, a second flange 27 on the distal end with a circular hole in the center, and the first flange 26 and the The circumferential light transmission window 28 is sandwiched between the second flange 27, and the material of the circumferential light transmission window 28 is made of transparent glass or transparent synthetic resin.
The laser beam diffusing unit 5 is attached to the second flange 27, and the laser beam diffusing unit 5 is concentric with the centering unit 4, the frame unit 10, and the imaging unit 2 in a mounted state. .
The laser beam diffusing unit 5 includes a cone mirror 29, a cone mirror holder 31 that holds the cone mirror 29, and a fixed flange 32 to which the cone mirror holder 31 is fitted. The fixed flange 32 is formed with a flange portion 32a, and the flange portion 32a is attached to the second flange 27 by an inlay method.
The cone mirror 29 is in a state in which the laser beam diffusing unit 5 is attached to the second flange 27, that is, in a state in which the cone mirror 29 is attached to the translucent window portion 6. The imaging unit 2 and the axis coincide with each other, and the cone mirror 29 is aligned in advance when the laser beam diffusing unit 5 is assembled.
Further, a laser beam shielding member 34 shown in FIG. 3 is attached to the laser beam diffusing unit 5 so as to be rotatable around the light transmitting window unit 6.
The laser beam shielding member 34 has a substantially semicylindrical shape, for example, a partial cylindrical shape having a central angle of about 178 ° to 175 °, and shields substantially half of the light transmitting window portion 6.
The laser beam shielding member 34 has a circumferential edge on one end side (the upper end in FIG. 3), and hooks 35 are formed at both end positions in the circumferential direction. In addition, a circular sliding groove 36 into which the hook 35 is fitted is formed on the surface of the flange portion 32a, and the laser beam shielding member 34 has the hook 35 fitted into the sliding groove 36. In the combined state, it is attached to the flange portion 32a.
The laser beam shielding member 34 rotates about the flange portion 32 a along the sliding groove 36 by approximately 180 °, for example, 175 °.
If the stopper 37 (see FIG. 5) is provided on the surface of the flange portion 32a to restrict the rotation, the reproducibility of the laser beam shielding position of the laser beam shielding member 34 is improved.
For example, in the position of the laser beam shielding member 34 in FIG. 5A, that is, in a state where the laser beam shielding member 34 is in contact with the stopper 37 from the left side, the laser beam shielding member 34 has the light transmitting window portion. 6 is covered, and the laser beam shielding member 34 is rotated clockwise from the position of FIG. 5 (A) so as to abut against the stopper 37 from the right side to obtain the state of FIG. 5 (B). The laser beam shielding member 34 covers substantially the right half of the translucent window portion 6. If the stopper 37 is omitted, a friction member is provided between the laser beam shielding member 34 and the flange portion 32a, and the laser beam shielding member 34 is held at an arbitrary position, the laser The central angle of the light shielding member 34 may be 180 ° or greater than 180 °.
The operation will be described below.
As preparation for measurement, the optical axis of the laser beam emitting unit 3 and the axis of the cone mirror 29 are matched in advance by the adjusting mechanism unit 21. The laser beam shielding member 34 is in the state shown in FIG.
A laser beam 17 is emitted from the laser emitter 14, and the laser beam 17 is incident on the apex of the cone mirror 29. The laser beam 17 is diffusely reflected by the conical surface of the cone mirror 29 in the entire circumferential direction.
In FIG. 5A, the laser beam 17 diffusely reflected on the left side is blocked by the laser beam shielding member 34, and the laser beam 17 diffusely reflected on the right side passes through the all-round light transmitting window 28. And injected. The emitted laser beam 17 irradiates the inner surface of the cylinder, which is the measurement object, to form a semicircular right light ring.
The imaging unit 2 captures the half right light ring and acquires image data. At this time, since the laser beam 17 to the left side is blocked, no noise light reflected from the inner surface on the left side is generated.
The maximum imaging field angle of the imaging unit 2 is θ as shown in FIG. Further, the laser beam emitting unit 3, the centering unit 4 and the like become obstacles, and the angle of view of θ1 becomes a blind spot. Therefore, in this embodiment, it is possible to capture an image in the range of the angle of view from θ to θ1.
Next, when the laser beam shielding member 34 is rotated to the position shown in FIG. 5B, the laser beam 17 diffusely reflected on the right side is blocked by the laser beam shielding member 34 and diffusely reflected on the left side. The laser beam 17 is emitted through the entire light-transmitting window 28 and irradiates the inner surface of the cylindrical body to form a semicircular left light ring.
Similarly, the semi-left light ring is imaged by the imaging unit 2 to acquire image data. Also at this time, since the laser beam 17 to the right side is blocked, no noise light reflected by the inner surface on the right side is generated.
By combining the image data of the semi-right light ring and the image data of the semi-left light ring, image data of the circular light ring can be obtained, and measurement can be performed based on the image data of the circular light ring. .
If the rotation angle of the laser beam shielding member 34 is 175 °, the laser beam 17 reflected from the inner surface by 5 ° centering on the stopper 37 becomes noise light. If the position of the support column 9 is 10, the laser beam 17 is blocked by the support column 9, so there is no particular problem.
Also, the shape, attachment method, etc. of the laser beam shielding member 34 can be variously changed, for example, as shown in FIG.
The laser beam shielding member 34 shown in FIG. 4 has a cylindrical member 38 provided with a laser beam passage window hole 39, and the center angle ω of the laser beam passage window hole 39 is set to 175 °, for example.
The laser beam shielding member 34 is fitted over the first flange 26 and the second flange 27, and further provided between the housing 18 and the flange portion 32a. The axial direction is the flange portion 32a and the flange portion 32a. The housing 18 regulates.
Also in this case, the inner diameter can be measured by forming a semicircular ring at a position where the laser beam shielding member 34 is not rotated and a position where the laser beam shielding member 34 is rotated by 175 °, that is, approximately 180 °, and acquiring an image.
In the above embodiment, the range shielded by the laser beam shielding member 34 is 180 ° or approximately 180 °. However, the range shielded by the laser beam shielding member 34 is 240 °, and the laser beam 17 is directed every 120 °. The circular light ring may be divided into three or more to obtain a circular light ring, for example, by combining three image data to obtain a circular light ring.
 本発明によれば、先端に円錐反射面を有するコーンミラーと、該コーンミラーの頂点にレーザ光線を入射させるレーザ光線発光部と、前記コーンミラーで全周方向に反射されたレーザ光線を透過する透光窓部と、該透光窓部より照射されたレーザ光線により筒体内面に形成された光リングを撮像する撮像部と、前記透光窓部の周囲を回転可能に設けられ、該透光窓部を所定の範囲で覆うレーザ光線遮蔽部材とを具備するので、筒体内面で反射されたレーザ光線が撮像の対象となる光リングに影響を及すことを抑止できる。 According to the present invention, a cone mirror having a conical reflection surface at the tip, a laser beam emitting unit that makes a laser beam incident on the apex of the cone mirror, and a laser beam reflected in the entire circumferential direction by the cone mirror are transmitted. A translucent window, an imaging unit that captures an optical ring formed on the inner surface of the cylindrical body by a laser beam emitted from the translucent window, and a periphery of the translucent window that is rotatable. Since the laser beam shielding member that covers the optical window portion in a predetermined range is provided, it is possible to prevent the laser beam reflected by the inner surface of the cylindrical body from affecting the optical ring that is the object of imaging.
 1       内径測定装置
 2       撮像部
 3       レーザ光線発光部
 4       芯合せ部
 5       レーザ光線拡散部
 6       透光窓部
 7       基端リング
 8       先端リング
 10      フレーム部
 11      カメラ
 14      レーザ発光器
 15      発光器ホルダ
 17      レーザ光線
 18      ハウジング
 21      調整機構部
 22      X軸スライダ
 23      Y軸スライダ
 28      全周透光窓
 29      コーンミラー
 31      コーンミラーホルダ
 34      レーザ光線遮蔽部材
DESCRIPTION OF SYMBOLS 1 Inner diameter measuring apparatus 2 Imaging part 3 Laser beam light emission part 4 Centering part 5 Laser beam diffusion part 6 Light transmission window part 7 Base end ring 8 Tip ring 10 Frame part 11 Camera 14 Laser light emitter 15 Light emitter holder 17 Laser light 18 Housing 21 Adjustment mechanism 22 X-axis slider 23 Y-axis slider 28 All-round light transmission window 29 Cone mirror 31 Cone mirror holder 34 Laser beam shielding member

Claims (1)

  1.  先端に円錐反射面を有するコーンミラーと、該コーンミラーの頂点にレーザ光線を入射させるレーザ光線発光部と、前記コーンミラーで全周方向に反射されたレーザ光線を透過する透光窓部と、該透光窓部より照射されたレーザ光線により筒体内面に形成された光リングを撮像する撮像部と、前記透光窓部の周囲を回転可能に設けられ、該透光窓部を所定の範囲で覆うレーザ光線遮蔽部材とを具備することを特徴とする内径測定装置。 A cone mirror having a conical reflection surface at the tip; a laser beam light emitting unit that causes a laser beam to be incident on the apex of the cone mirror; and a translucent window unit that transmits the laser beam reflected in the entire circumferential direction by the cone mirror; An imaging unit that images a light ring formed on the inner surface of the cylindrical body by a laser beam irradiated from the light transmissive window, and a periphery of the light transmissive window are rotatably provided. An inner diameter measuring device comprising a laser beam shielding member that covers the area.
PCT/JP2013/053588 2012-02-09 2013-02-07 Calibrator device WO2013118910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012026041A JP2013164270A (en) 2012-02-09 2012-02-09 Inner diameter measuring apparatus
JP2012-026041 2012-02-09

Publications (1)

Publication Number Publication Date
WO2013118910A1 true WO2013118910A1 (en) 2013-08-15

Family

ID=48947659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053588 WO2013118910A1 (en) 2012-02-09 2013-02-07 Calibrator device

Country Status (2)

Country Link
JP (1) JP2013164270A (en)
WO (1) WO2013118910A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855557A (en) * 2019-03-15 2019-06-07 浙江岩创科技有限公司 A kind of device of measurement rock-boring deformation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298613A (en) * 1988-10-05 1990-04-11 Sekiyu Sangyo Katsuseika Center Pipe inspecting device
JPH05149884A (en) * 1991-04-26 1993-06-15 Sekiyu Sangyo Kasseika Center In-pipe inspection device
JP2010164334A (en) * 2009-01-13 2010-07-29 Ihi Corp Device and method for measuring inside shape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298613A (en) * 1988-10-05 1990-04-11 Sekiyu Sangyo Katsuseika Center Pipe inspecting device
JPH05149884A (en) * 1991-04-26 1993-06-15 Sekiyu Sangyo Kasseika Center In-pipe inspection device
JP2010164334A (en) * 2009-01-13 2010-07-29 Ihi Corp Device and method for measuring inside shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855557A (en) * 2019-03-15 2019-06-07 浙江岩创科技有限公司 A kind of device of measurement rock-boring deformation

Also Published As

Publication number Publication date
JP2013164270A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5915222B2 (en) Inner diameter measuring device
WO2013118913A1 (en) Inside-diameter measurement device
JP6175835B2 (en) Laser radar equipment
JP2011002439A (en) Inspection apparatus
US20100097598A1 (en) Distance measuing apparatus
JP2007309696A (en) Surface inspection head device
WO2013118910A1 (en) Calibrator device
JP5641859B2 (en) Dial-type switch
JP2009025006A (en) Optical device, light source device, and optical measuring device
JP6270318B2 (en) Internal shape measuring device
US9874463B2 (en) Optical encoder for preventing crosstalk
EP3006910A1 (en) Illumination device and reflection-characteristics measurement device
JP2022170900A (en) Analyzer
JP2014026371A (en) Optical information reader
US7397899B2 (en) X-ray irradiator and X-ray imaging apparatus
JP5983880B2 (en) V block type refractive index measuring device
CN112764184B (en) Optical device and optical measuring machine
JP2004198416A (en) Instrument for measuring thickness of thin layer
JP2009222441A (en) Retroreflective intensity measuring device
JP2017129523A (en) Inner surface inspection system, assembly, and light guide component
KR101651564B1 (en) Target apparatus capable of shielding x-ray
KR101651565B1 (en) Target apparatus of x-ray generator
JP2020190495A (en) Distance measurement device
JP6555472B2 (en) Non-contact inner surface shape measuring device
JP5941824B2 (en) Photometric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746547

Country of ref document: EP

Kind code of ref document: A1