WO2013118689A1 - 炭素繊維複合材料 - Google Patents
炭素繊維複合材料 Download PDFInfo
- Publication number
- WO2013118689A1 WO2013118689A1 PCT/JP2013/052526 JP2013052526W WO2013118689A1 WO 2013118689 A1 WO2013118689 A1 WO 2013118689A1 JP 2013052526 W JP2013052526 W JP 2013052526W WO 2013118689 A1 WO2013118689 A1 WO 2013118689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon fiber
- composite material
- bundle
- carbon
- fiber bundle
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/06—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/004—Additives being defined by their length
Definitions
- the present invention relates to a carbon fiber composite material, and more particularly to a carbon fiber composite material that can achieve both high fluidity and mechanical properties when a molded product is produced using the carbon fiber composite material.
- Patent Document 1 proposes a composite material in which the ratio of a specific carbon fiber bundle in a carbon fiber composite material to the total amount of fibers is kept low, and the average number of fibers in the specific carbon fiber bundle is in a specific range. Yes.
- the carbon fiber composite material in which the carbon fiber bundle in the carbon fiber composite material is thin and the percentage of the bundle is small and the carbon fiber is opened as described in Patent Document 1 is molded using the same.
- the mechanical properties of the product are excellent, but the fluidity during molding is low and the moldability is poor.
- the carbon fibers, which are reinforcing fibers are sufficiently dispersed, making it difficult for stress to concentrate, and while the carbon fiber reinforcement effect is sufficiently exerted, the carbon fibers cross each other and restrict each other's movement. This is because it becomes difficult to move.
- Patent Document 2 the ratio of the same specific carbon fiber bundle in the carbon fiber composite material to the total amount of fibers is set higher, and the average number of fibers in the specific carbon fiber bundle is set in another specific range.
- a composite material has been proposed.
- the carbon fiber composite material having a thick carbon fiber bundle and a large proportion of the bundle as described in Patent Document 2 has high fluidity and excellent moldability when a molded product is produced using the carbon fiber composite material.
- the followability of the carbon fiber to ribs and fine shapes is poor, the mechanical properties are low, and the variation is large. This is because the carbon fiber bundle is thick, so the followability of the carbon fiber to the fine member is poor, and stress tends to concentrate on the end of the carbon fiber, but the carbon fiber does not form a network and is easy to move. .
- the object of the present invention is to achieve both high fluidity and mechanical properties, which were not achieved with the conventional carbon fiber composite materials as described above, and have few variations in mechanical properties, and follow carbon fibers to fine parts such as ribs.
- the object is to provide a carbon fiber composite material having excellent properties.
- the carbon fiber composite material according to the present invention is composed of carbon fiber and a thermoplastic resin, and Mn / (Ln ⁇ D) is 8.5 ⁇ 10 ⁇ 1 (mg / mm 2 ) or more.
- the ratio Y of the carbon fiber bundle (1) to the total weight of the carbon fibers is 30 ⁇ Y ⁇ 90 (wt%)
- the average value X of Mn / Ln of the carbon fiber bundle (1) is 1.1 ⁇ 10 ⁇ 2 ⁇ X ⁇ 8.1 ⁇ 10 ⁇ 2 (mg / mm)
- the Y is Y ⁇ 100X + 30 It consists of what is characterized by satisfying.
- Mn Carbon fiber bundle weight
- Ln Carbon fiber fiber length
- D Carbon fiber fiber diameter
- the average value X of Mn / Ln of the carbon fiber bundle (1) is as follows: 1.5 ⁇ 10 ⁇ 2 ⁇ X ⁇ 5.5 ⁇ 10 ⁇ 2 (mg / mm) It is preferable that it exists in the range.
- the carbon fiber bundle (1) has a drape value at 25 ° C./bending rigidity (cm / (Pa ⁇ cm 4 )) is preferably formed from a carbon fiber bundle in the range of 3.5 ⁇ 10 3 to 9.0 ⁇ 10 3 (cm / (Pa ⁇ cm 4 )). A method for measuring the drape value and the like will be described later.
- the fiber length Ln of the carbon fiber in the carbon fiber bundle (1) is preferably in the range of 5 to 25 mm.
- the ratio Y of the carbon fiber bundle (1) to the total weight of the carbon fibers is preferably 40 ⁇ Y ⁇ 65 (wt%) It is desirable to be in the range.
- the single fiber bending rigidity of the carbon fiber constituting the carbon fiber bundle (1) is 1.0 ⁇ 10 ⁇ 11 to 2. It is preferably in the range of 8 ⁇ 10 ⁇ 11 (Pa ⁇ m 4 ).
- the carbon fiber aggregate in the carbon fiber composite material is preferably made of a carbon fiber nonwoven fabric obtained by a carding process.
- the carbon fiber composite material is preferably made of a stampable sheet in which the carbon fiber aggregate is impregnated with a thermoplastic resin.
- a carbon fiber composite material that can achieve both high fluidity and mechanical properties, has little variation in mechanical properties, and has excellent carbon fiber followability to fine parts. Can be provided.
- the carbon fiber used in the present invention is not particularly limited, but high-strength and high-modulus carbon fibers can be used, and these may be used alone or in combination of two or more.
- PAN-based, pitch-based, rayon-based carbon fibers and the like can be mentioned.
- PAN-based carbon fibers are more preferable.
- the density of the carbon fiber is preferably one having 1.65 ⁇ 1.95g / cm 3, further more preferably from 1.70 ⁇ 1.85g / cm 3. If the density is too high, the resulting carbon fiber reinforced plastic is inferior in light weight performance, and if it is too low, the mechanical properties of the resulting carbon fiber reinforced plastic may be low.
- the carbon fiber is preferably a bundle from the viewpoint of productivity, and a fiber having a large number of single yarns in the bundle is preferable.
- the number of single yarns can be used within the range of 1000 to 350,000, and it is particularly preferable to use within the range of 10,000 to 100,000.
- the single fiber bending stiffness of the carbon fiber is preferably in the range of 1.0 ⁇ 10 ⁇ 11 to 2.8 ⁇ 10 ⁇ 11 Pa ⁇ m 4 , more preferably 1.0 ⁇ 10 ⁇ 11 to 1.5.
- X10 ⁇ 11 Pa ⁇ m 4 is preferable.
- the carbon fiber is preferably surface-treated for the purpose of improving the adhesion between the carbon fiber and the matrix resin.
- surface treatment methods include electrolytic treatment, ozone treatment, and ultraviolet treatment.
- a sizing agent may be added to the carbon fiber for the purpose of preventing the fluff of the carbon fiber, improving the convergence of the carbon fiber, or improving the adhesion between the carbon fiber and the matrix resin.
- a sizing agent The compound which has functional groups, such as an epoxy group, a urethane group, an amino group, and a carboxyl group, can be used, These may use 1 type or 2 types or more together.
- a liquid containing a sizing agent after drying a wet carbon fiber bundle having a moisture content of about 20 to 80% by weight wetted by water in a generally known surface treatment step and water washing step (sizing agent) (Liquid).
- the means for applying the sizing agent there are no particular restrictions on the means for applying the sizing agent, but there are, for example, a method of immersing in a sizing liquid through a roller, a method of contacting a roller to which the sizing liquid is adhered, and a method of spraying the sizing liquid in a mist form. .
- a batch type or a continuous type may be sufficient, the continuous type which has good productivity and small variations is preferable.
- it is preferable to control the sizing solution concentration, temperature, yarn tension, and the like so that the amount of the sizing agent active ingredient attached to the carbon fiber is uniformly attached within an appropriate range.
- the drying temperature and drying time should be adjusted according to the amount of the compound attached, the time required for complete removal of the solvent used for applying the sizing agent and drying is shortened, while the thermal deterioration of the sizing agent is prevented, and carbon
- the drying temperature is preferably 150 ° C. or higher and 350 ° C. or lower, and more preferably 180 ° C. or higher and 250 ° C. or lower. .
- the sizing agent adhesion amount is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.05% by mass or more and 5% by mass or less, and more preferably 0.1% by mass or more and 5% by mass with respect to the mass of the carbon fiber alone. % Or less is more preferable. If it is 0.01% by mass or less, the effect of improving adhesiveness is hardly exhibited. If it is 10% by mass or more, the physical properties of the molded product may be lowered.
- the carbon fiber bundle is obtained by dividing the drape value, which is an index representing the hardness of the carbon fiber bundle, by the single yarn bending stiffness in order to obtain a carbon fiber aggregate to be described later, and the drape value / single yarn bending stiffness is 3.5 ⁇ 10. It is preferably in the range of 3 to 9.0 ⁇ 10 3 cm / (Pa ⁇ cm 4 ), more preferably in the range of 4.0 ⁇ 10 3 to 9.0 ⁇ 10 3 cm / (Pa ⁇ cm 4 ). It is.
- the fiber When the drape value / single yarn bending rigidity is less than 3.5 ⁇ 10 3 cm / (Pa ⁇ cm 4 ), the fiber has poor convergence, and the fiber is obtained in a process of obtaining a carbon fiber aggregate such as carding or airlaid described later. Is easy to open, and the moldability may be deteriorated when the carbon fiber composite material is used. When the carbon fiber composite material exceeds 9.0 ⁇ 10 3 cm / (Pa ⁇ cm 4 ), the matrix resin is obtained. And the wettability deteriorates and the mechanical properties are inferior.
- thermoplastic resin is used as the matrix resin, but the material of the thermoplastic matrix resin is not particularly limited, and can be appropriately selected within a range that does not significantly reduce the mechanical properties of the carbon fiber reinforced plastic.
- polyolefin resins such as polyethylene and polypropylene
- polyamide resins such as nylon 6, nylon 6,6, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyether ketone, polyether sulfone, aromatic polyamide, etc.
- the thermoplastic matrix resin is preferably at least one selected from the group consisting of polyamide, polyphenylene sulfide, polypropylene, polyether ether ketone, and phenoxy resin.
- Examples of the process for obtaining the carbon fiber aggregate include carding and airlaid.
- Carding as used in the present invention refers to an operation of aligning discontinuous fibers or opening fibers by applying a force in approximately the same direction in a comb-like discontinuous fiber assembly. Say. Generally, it is carried out using a carding apparatus having a roll having a large number of needle-like projections on the surface and / or a roll around which a metallic wire having a saw-like projection of a saw is wound.
- the rotation speed of the cylinder roll is preferably rotated at a high rotation speed such as 150 rpm or more.
- the surface speed of the doffer roll is preferably a high speed such as 10 m / min or more.
- the carding apparatus 1 includes a cylinder roll 2, a take-in roll 3 provided on the upstream side near the outer peripheral surface, and a downstream side opposite to the take-in roll 3. And a plurality of worker rolls provided close to the outer peripheral surface of the cylinder roll 2 between the take-in roll 3 and the doffer roll 4. 5, a stripper roll 6 provided close to the worker roll 5, a feed roll 7 and a belt conveyor 8 provided close to the take-in roll 3.
- a discontinuous carbon fiber bundle 9 is supplied to the belt conveyor 8, and the carbon fiber bundle 9 is introduced onto the outer peripheral surface of the cylinder roll 2 through the outer peripheral surface of the feed roll and then the outer peripheral surface of the take-in roll 3. Up to this stage, the carbon fiber bundle is unwound and becomes an aggregate of cotton-like carbon fiber bundles. A part of the aggregate of cotton-like carbon fiber bundles introduced on the outer peripheral surface of the cylinder roll 2 is wound around the outer peripheral surface of the worker roll 5, and this carbon fiber is peeled off by the stripper roll 6 and again the cylinder roll. 2 is returned to the outer peripheral surface.
- a large number of needles and protrusions are present on the outer peripheral surface of each of the feed roll 7, the take-up roll 3, the cylinder roll 2, the worker roll 5 and the stripper roll 6, and the carbon fiber is
- the bundle is opened to a predetermined bundle by the action of the needle and oriented to some extent.
- the fiber bundle is opened to a predetermined carbon fiber bundle, and moves on the outer peripheral surface of the doffer roll 4 as a sheet-like web 10 which is one form of the carbon fiber aggregate.
- This airlaid is a method in which a cut carbon fiber bundle alone or a cut carbon fiber bundle and a thermoplastic resin fiber are introduced into a pipe and compressed air is blown to open the fiber bundle, or the fiber bundle is physically separated by a pin cylinder or the like. This is a step of obtaining a carbon fiber aggregate that has been opened, diffused and fixed by a method of opening.
- the carbon fiber aggregate referred to herein refers to a carbon fiber bundle that retains its shape due to entanglement and friction between fibers in a state where discontinuous carbon fiber bundles are opened and oriented by the carding and airlaid.
- a thin sheet-like web or a non-woven fabric obtained by laminating and adhering webs as necessary can be exemplified.
- the obtained carbon fiber aggregate is preferably obtained by carding from the viewpoint of uniformity of the aggregate, and is preferably obtained by air laid from the viewpoint of preventing the carbon fiber from being bent or bent.
- the carbon fiber aggregate may be composed of only carbon fibers, but can also contain thermoplastic resin fibers. It is preferable to add a thermoplastic resin fiber because the carbon fiber can be prevented from being broken in the carding and airlaid processes. Since carbon fiber is rigid and brittle, it is difficult to be entangled and easily broken. Therefore, there is a problem that a carbon fiber aggregate composed only of carbon fibers is easily cut during the production or the carbon fibers are easily dropped. Therefore, a carbon fiber aggregate with high uniformity can be formed by including thermoplastic resin fibers that are flexible, difficult to break, and easily entangled.
- the carbon fiber content in the carbon fiber aggregate is preferably 20 to 95% by mass, more preferably 50 to 95% by mass, More preferably, it is 70 to 95% by mass. If the proportion of carbon fibers is low, it will be difficult to obtain high mechanical properties when a carbon fiber composite material is used. Conversely, if the proportion of thermoplastic resin fibers is too low, the uniformity of the above-mentioned carbon fiber aggregate will be improved. The effect is not obtained.
- the carbon fiber bundle in the carbon fiber aggregate is composed of carbon fiber bundle (1) and Mn / (Ln ⁇ ) in which the Mn / (Ln ⁇ D) of the carbon fiber bundle is 8.5 ⁇ 10 ⁇ 1 (mg / mm 2 ) or more.
- D is composed of a single yarn or carbon fiber bundle of less than 8.5 ⁇ 10 ⁇ 1 (mg / mm 2 ), and the ratio Y of the carbon fiber bundle (1) to the total weight of the carbon fiber is 30 ⁇ Y ⁇ 90 (wt%) And the average value X and M of the Mn / Ln of the carbon fiber bundle (1) described later are: Y ⁇ 100X + 30
- the ratio Y is preferably in the range satisfying 35 ⁇ Y ⁇ 80 (wt%) and Y ⁇ 100X + 30, more preferably in the range satisfying 38 ⁇ Y ⁇ 75 and Y ⁇ 100X + 30, and still more preferably 40 ⁇ Y ⁇ 65 (wt%).
- the ratio Y is less than 30 wt% and 100X + 30, the number of entanglements between the fiber bundles increases and the fluidity deteriorates.
- the ratio Y exceeds 90, the mechanical characteristics are deteriorated and the variation in mechanical characteristics is increased.
- the average value X of Mn / Ln of the carbon fiber bundle (1) in the carbon fiber assembly is 1.1 ⁇ 10 ⁇ 2 ⁇ X ⁇ 8.1 ⁇ 10 ⁇ 2 (mg / mm)
- the average value X of Mn / Ln is preferably 1.5 ⁇ 10 ⁇ 2 ⁇ X ⁇ 5.5 ⁇ 10 ⁇ 2 (mg / mm), more preferably 1.7 ⁇ 10 ⁇ 2 ⁇ X ⁇ . 5.5 ⁇ 10 ⁇ 2 (mg / mm), and more preferably 1.9 ⁇ 10 ⁇ 2 ⁇ X ⁇ 5.5 ⁇ 10 ⁇ 2 (mg / mm).
- the average value X of Mn / Ln is less than 1.1 ⁇ 10 ⁇ 2 , the number of entanglements between fibers increases and fluidity deteriorates.
- the average value M8.1 / Ln of X8.1 ⁇ 10 ⁇ 2 is exceeded, the mechanical properties and the carbon fiber followability to fine parts such as ribs are deteriorated, and the variation in mechanical properties becomes large.
- the standard deviation ⁇ of the number of carbon fibers xn constituting the carbon fiber bundle described later of the carbon fiber bundle (1) in the carbon fiber aggregate satisfies the range of 50 ⁇ ⁇ ⁇ 400, and the carbon fiber bundle is dispersed in the range.
- a carbon fiber composite material that can achieve both high fluidity and mechanical properties, has little variation in mechanical properties, and has excellent carbon fiber followability to fine parts can be obtained.
- the standard deviation ⁇ is less than 50, the fluidity is deteriorated.
- the standard deviation ⁇ is more than 400, the mechanical characteristics are deteriorated, and the dispersion of the mechanical characteristics is increased.
- F Fineness of carbon fiber
- the standard deviation ⁇ is preferably 100 ⁇ ⁇ ⁇ 380, more preferably 150 ⁇ ⁇ ⁇ 350, and still more preferably 170 ⁇ ⁇ ⁇ 300.
- the fiber length of the thermoplastic resin fiber is within a range in which the object of the present invention can be achieved such as maintaining the shape of the carbon fiber aggregate and preventing the carbon fiber from falling off. If there is no particular limitation, thermoplastic resin fibers of about 10 to 100 mm can be generally used. In addition, the fiber length of the thermoplastic resin fiber can be relatively determined according to the fiber length of the carbon fiber. For example, when a carbon fiber aggregate is stretched, a larger tension is applied to the fiber having a long fiber length.
- the carbon fiber aggregate can be made longer than the fiber length of the thermoplastic resin fiber, and in the opposite case, the fiber length of the carbon fiber can be made shorter than the fiber length of the thermoplastic resin fiber.
- thermoplastic resin fiber for the purpose of enhancing the entanglement effect by the thermoplastic resin fiber.
- the degree of crimp is not particularly limited as long as the object of the present invention can be achieved.
- thermoplastic resin fibers having a number of crimps of about 5 to 25 crests / 25 mm and a crimp ratio of about 3 to 30%. Can be used.
- the material of the thermoplastic resin fiber is not particularly limited, and can be appropriately selected within a range that does not significantly deteriorate the mechanical properties of the carbon fiber composite material.
- polyolefin resins such as polyethylene and polypropylene
- polyamide resins such as nylon 6, nylon 6,6, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyether ketone, polyether sulfone, aromatic polyamide, etc.
- a fiber obtained by spinning a resin of the above can be used. It is preferable that the material of the thermoplastic resin fiber is appropriately selected and used depending on the combination of matrix resins.
- thermoplastic resin fiber using the same resin as the matrix resin, a resin compatible with the matrix resin, or a resin having high adhesiveness with the matrix resin is preferable because it does not deteriorate the mechanical properties of the carbon fiber reinforced plastic.
- the thermoplastic resin fiber is preferably at least one fiber selected from the group consisting of polyamide fiber, polyphenylene sulfide fiber, polypropylene fiber, polyether ether ketone fiber and phenoxy resin fiber.
- a carbon fiber aggregate containing thermoplastic resin fibers is prepared, and the thermoplastic resin fibers contained in the carbon fiber aggregate are used as they are as the matrix resin.
- the carbon fiber aggregate not containing the thermoplastic resin fiber may be used as a raw material, and the matrix resin may be impregnated at any stage of producing the carbon fiber composite material.
- the matrix resin can be impregnated at any stage of producing the carbon fiber composite material.
- the resin constituting the thermoplastic resin fiber and the matrix resin may be the same resin or different resins. When the resin constituting the thermoplastic resin fiber is different from the matrix resin, it is preferable that both have compatibility or higher affinity.
- the carbon fiber aggregate as described above is impregnated with a thermoplastic resin as a matrix resin, and the impregnation step to make the carbon fiber composite material is performed using a press machine having a heating function.
- the press machine is not particularly limited as long as it can realize the temperature and pressure necessary for impregnation with the matrix resin, and a normal press machine having a flat platen that moves up and down, and a mechanism in which a pair of endless steel belts travel.
- a so-called double belt press machine having the following can be used.
- the matrix resin can be formed into a sheet shape such as a film, a nonwoven fabric, or a woven fabric, and then laminated with a carbon fiber aggregate, and in that state, the matrix resin can be melted and impregnated using the press machine or the like.
- discontinuous fibers are produced using a matrix resin, and mixed with inorganic fibers in the process of producing the carbon fiber aggregate, thereby producing a carbon fiber aggregate containing the matrix resin and the inorganic fibers.
- a method of heating and pressurizing the aggregate using a press machine or the like can also be employed.
- D is the carbon fiber diameter
- F is the fineness of the carbon fiber
- x n is the number of constituent fibers of the carbon fiber bundle.
- Mn / the (Ln ⁇ D) value 8.5 ⁇ 10 -1 mg / mm 2 or more fiber bundles of the carbon fiber bundle (1), the total weight of the carbon fiber bundle (1) and M A, flux Total N is measured. Further, the carbon fiber bundle under 8.5 ⁇ 10 -1 mg / mm 2 and the fiber bundle (2), the total weight of the carbon fiber bundle (2) as M B, measured.
- Fiber bundles opened to such an extent that they cannot be extracted with tweezers were collectively measured and finally weighed. Further, when the fiber length is short and it becomes difficult to measure the weight, the fiber length is classified at intervals of about 0.2 mm, the weight is measured for a bundle of a plurality of classified bundles, and an average value may be used. .
- N is the total number of bundles of carbon fibers (1).
- the ratio of the carbon fiber bundle (1) to the total weight of the carbon fiber bundle is M A / (M A + M B) ⁇ 100 Sought by.
- ⁇ is indicated, and if the rib is not filled up and a chip is observed, ⁇ is indicated.
- the matrix resin is PP: Two carbon fiber composites with dimensions of 100 x 100 mm x 2 mm are preheated to 230 ° C and then placed on a press machine with a rib shape of 15 mm in height and 1.0 mm in width. Pressurized for 5 s. The molded product after the compression is taken out, the state of the rib is observed, the carbon fiber and the thermoplastic resin flow to the corner of the rib, and the filled one is filled with ⁇ , and the thermoplastic resin is filled to the corner of the rib. However, if a resin-rich portion not filled with carbon fiber is observed, ⁇ is indicated, and if the rib is not filled up and a chip is observed, ⁇ is indicated.
- Vf carbon fiber content in carbon fiber reinforced plastic
- Fiber strength utilization rate bending strength / Vf
- the sizing agent (Sz agent) convergence index was obtained by dividing the single yarn bending stiffness from the drape value representing the hardness of the carbon fiber bundle.
- Carbon fiber bundle (C) An aqueous dispersion of polyurethane resin (Daiichi Kogyo Seiyaku Co., Ltd.) is applied to a continuous carbon fiber bundle having a fiber diameter of 7 ⁇ m, a tensile elastic modulus of 230 GPa, a single yarn bending rigidity of 2.71 ⁇ 10 ⁇ 11 Pa ⁇ m 4 , and 24,000 filaments Co., Ltd. “Superflex” (registered trademark) 300: film elongation 1500%), this sizing agent is diluted with water, and the sizing agent (C) having a sizing agent concentration of 1.0% is added to the carbon fiber bundle. A carbon fiber bundle (C) with 1.0% by weight attached was obtained. The drape value of the carbon fiber bundle (C) at this time was 22.0 cm.
- Carbon fiber bundle (D) Carbon fiber bundle (D) without sizing agent applied to continuous carbon fiber bundle having a diameter of 7 ⁇ m, tensile elastic modulus of 230 GPa, single yarn bending rigidity of 2.71 ⁇ 10 ⁇ 11 Pa ⁇ m 4 , and 24,000 filaments Got.
- the drape value of the carbon fiber bundle (D) at this time was 2.0 cm.
- Example 1 The carbon fiber bundle (A) is cut to a fiber length of 10 mm, and the cut carbon fiber bundle and nylon 6 short fiber (short fiber fineness 1.7 dtex, cut length 51 mm, crimp number 12 peaks / 25 mm, crimp rate 15%) Were mixed at a mass ratio of 90:10 and charged into a carding apparatus. The web that came out was cross-wrapped to form a sheet-like carbon fiber aggregate having a basis weight of 100 g / cm 2 made of carbon fiber and nylon 6 fiber.
- CM1001 nylon resin melt blown nonwoven fabric
- Examples 2 to 10 A flat plate of carbon fiber composite material was obtained in the same manner as in Example 1 except that the conditions were changed as shown in Table 1 for Example 1. The conditions, measurements, and evaluation results are also shown in Table 1.
- Example 11 The carbon fiber bundle (B) is cut to a fiber length of 15 mm, and the cut carbon fiber bundle and the polypropylene short fiber (short fiber fineness 1.7 dtex, cut length 51 mm, crimp number 12 peaks / 25 mm, crimp rate 15%) Mixing at a mass ratio of 90:10 to form a sheet-like carbon fiber aggregate having a basis weight of 100 g / cm 2 made of carbon fiber and polypropylene fiber, and the volume ratio of carbon fiber to thermoplastic resin is 25:75
- J709QG polypropylene resin melt blown nonwoven fabric
- Examples 12-14, 18-20 A flat plate of carbon fiber composite material was obtained in the same manner as in Example 1 except that the conditions were changed as shown in Table 2 with respect to Example 1. Table 2 shows the conditions, measurements, and evaluation results.
- Example 15 The carbon fiber bundle (B) was cut to a fiber length of 6 mm, and the cut carbon fiber bundle and nylon 6 discontinuous fiber (short fiber fineness 1.7 dtex, cut length 6 mm) were mixed at a mass ratio of 90:10. A mixture of the cut carbon fiber bundle and the nylon 6 discontinuous fiber was supplied into a tube having small holes, compressed air was supplied, and fiber opening was performed in the tube. Next, a table movable in the XY direction is installed at the lower part of the tube outlet, and suction is performed by a blower from the lower part of the table to obtain a sheet-like carbon fiber aggregate having a basis weight of 100 g / cm 2 made of carbon fiber and nylon 6 fiber. Obtained.
- Examples 16 and 17 A flat plate of carbon fiber composite material was obtained in the same manner as in Example 1 except that the conditions were changed as shown in Table 2 for Example 15. Table 2 shows the conditions, measurements, and evaluation results.
- Comparative Example 1 The carbon fiber bundle (B) was cut to a fiber length of 15 mm, and the cut carbon fiber bundle and nylon 6 discontinuous fiber (short fiber fineness 1.7 dtex, cut length 51 mm, number of crimps 12/25 mm, crimp rate 15% ) was mixed at a mass ratio of 90:10, put into a carding apparatus, and the same procedure as in Example 1 was performed except that a mixed raw cotton consisting of opened carbon fibers and nylon 6 fibers was obtained. As shown in Table 3, although the fiber strength utilization rate is good, the fluidity and the followability of the carbon fiber to the rib are inferior.
- Comparative Example 2 The carbon fiber bundle (D) was cut to a fiber length of 15 mm, and the cut carbon fiber bundle and nylon 6 discontinuous fiber (short fiber fineness 1.7 dtex, cut length 51 mm, number of crimps 12/25 mm, crimp rate 15% ) was mixed at a mass ratio of 90:10 and the same as in Example 1 except that the mixture was put into a carding apparatus. The results are also shown in Table 3. Although the fiber strength utilization rate is good, the fluidity and the followability of the carbon fiber to the rib are poor.
- Comparative Example 3 It implemented on the conditions shown in Table 3. As a result, as shown in Table 3, the fluidity is good, but the followability of the carbon fibers to the ribs is inferior, the fiber strength utilization rate is low, and the physical properties vary greatly.
- Comparative Example 4 It implemented on the conditions shown in Table 3. As a result, as shown in Table 3, the fluidity is good, but the followability of the carbon fibers to the ribs is inferior, the fiber strength utilization rate is low, and the physical properties vary greatly.
- Comparative Example 5 The carbon fiber bundle (B) is cut to a fiber length of 15 mm, and the cut carbon fiber bundle and nylon 6 short fiber (short fiber fineness 1.7 dtex, cut length 6 mm) are mixed at a mass ratio of 90:10 and cut.
- the mixture of the carbon fiber bundle and the nylon 6 discontinuous fiber was supplied into a tube having small holes, compressed air was supplied, and the fiber was opened in the tube.
- a table movable in the XY direction is installed at the lower part of the tube outlet, and suction is performed by a blower from the lower part of the table to obtain a sheet-like carbon fiber aggregate having a basis weight of 100 g / cm 2 made of carbon fiber and nylon 6 fiber. Obtained.
- CM1001 nylon resin melt blown nonwoven fabric
- the flat plate of the carbon fiber composite material of thickness 2mm When the bending strength in the 0 ° and 90 ° directions was measured with respect to the 0 ° direction of the surface layer of the obtained flat plate, the average value of the bending strength in the 0 ° and 90 ° directions was 425 MPa, and the fiber strength utilization factor 9 The composite material was as low as 0.7 MPa /%, the CV value exceeded 5%, and the dispersion was large.
- Comparative Example 6 The carbon fiber bundle (B) is cut to a fiber length of 15 mm, and the cut carbon fiber bundle and the polypropylene short fiber (short fiber fineness 1.7 dtex, cut length 6 mm) are mixed at a mass ratio of 90:10 to obtain a carbon fiber. And a mixture of polypropylene fibers were supplied into a tube having small holes, compressed air was supplied, and fiber opening was performed in the tube. Next, a table movable in the XY direction is installed at the lower part of the tube outlet, and suction is performed by a blower from the lower part of the table to obtain a sheet-like carbon fiber aggregate having a basis weight of 250 g / cm 2 made of carbon fiber and polypropylene fiber. It was.
- the MD (Machine Direction) of the sheet-like carbon fiber aggregate is 0 °, and 12 carbon fiber aggregates are obtained (0 ° / 90 ° / 0 ° / 90 ° / 0 ° / 90 °) s.
- the average value of the bending strength in the 0 ° and 90 ° directions was 330 MPa, and the fiber strength utilization rate 7
- the composite material was as low as 0.5 MPa /%, the CV value exceeded 5%, and the dispersion was large.
- Comparative Example 7 A flat plate of a carbon fiber composite material was obtained in the same manner as in Comparative Example 5 except that the conditions were changed as shown in Table 3 for Comparative Example 5. Table 3 shows the conditions, measurements, and evaluation results.
- the carbon fiber composite material according to the present invention can be applied to the production of all carbon fiber reinforced molded products that cannot be achieved by the prior art and require both high fluidity and mechanical properties, and small variations in mechanical properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
30≦Y<90(wt%)
の範囲にあり、炭素繊維束(1)のMn/Lnの平均値Xが、
1.1×10-2≦X≦8.1×10-2(mg/mm)
の範囲にあり、かつ、前記Yが、
Y≧100X+30
を満たすことを特徴とするものからなる。
Mn:炭素繊維束重量
Ln:炭素繊維の繊維長
D:炭素繊維の繊維径
1.5×10-2≦X≦5.5×10-2(mg/mm)
の範囲にあることが好ましい。
40≦Y≦65(wt%)
の範囲にあることが望ましい。
先ず、本発明において使用される炭素繊維は、特に限定されないが、高強度、高弾性率炭素繊維が使用でき、これらは1種または2種以上を併用してもよい。中でも、PAN系、ピッチ系、レーヨン系などの炭素繊維が挙げられる。得られる成形品の強度と弾性率とのバランスの観点から、PAN系炭素繊維がさらに好ましい。炭素繊維の密度は、1.65~1.95g/cm3のものが好ましく、さらには1.70~1.85g/cm3のものがより好ましい。密度が大きすぎるものは得られる炭素繊維強化プラスチックの軽量性能に劣り、小さすぎるものは、得られる炭素繊維強化プラスチックの機械特性が低くなる場合がある。
30≦Y<90(wt%)
の範囲にあり、かつ、後述する炭素繊維束(1)のMn/Lnの平均値Xと前記Yが、
Y≧100X+30
を満たすこととで、高流動性と機械特性を両立でき、機械特性のばらつきも少なく、細かい部位への炭素繊維追従性にも優れた炭素繊維複合材料を得ることができる。
Mn:炭素繊維束重量
Ln:炭素繊維の繊維長
D:炭素繊維の繊維径
1.1×10-2≦X≦8.1×10-2(mg/mm)
の範囲を満たすことで、高流動性と機械特性を両立でき、機械特性のばらつきも少なく、細かい部位への炭素繊維追従性にも優れた炭素繊維複合材料を得ることができる。
F:炭素繊維の繊度
先ず、実施例、比較例で用いた特性、測定方法について説明する。
(1)束の測定方法
炭素繊維複合材料から100mm×100mmのサンプルを切り出し、その後、サンプルを500℃に加熱した電気炉の中で1時間程度加熱してマトリックス樹脂等の有機物を焼き飛ばした。室温まで冷却した後に残った炭素繊維集合体の質量を測定した後に、炭素繊維集合体から炭素繊維束をピンセットで全て抽出した。抽出した全ての炭素繊維束について、1/10000gまで測定が可能な天秤を用いて、個々の炭素繊維束の重量Mnと長さLnを測定する。測定後、個々の束に対してMn/Ln、Mn/(Ln×D)、xn=Mn/(Ln×F)を計算する。ここでDとは炭素繊維直径であり、Fとは炭素繊維の繊度であり、xnは炭素繊維束の構成繊維本数ある。Mn/(Ln×D)の値が8.5×10-1mg/mm2以上の繊維束を炭素繊維束(1)とし、炭素繊維束(1)の総重量をMAとし、束総数をNとして、測定する。また、8.5×10-1mg/mm2未満の炭素繊維束を繊維束(2)とし、炭素繊維束(2)の総重量をMBとして、測定する。ピンセットで抽出することの出来ない程度に開繊した繊維束はまとめて最後に重量を測定した。また、繊維長が短く、重量の測定が困難になる場合は繊維長を0.2mm程度の間隔で分類し、分類した複数本の束をまとめて重量を測定し、平均値を用いてもよい。全て分類し、測定後、炭素繊維束(1)に対してΣ(Mn/Ln)/N、x=Σ{Mn/(Ln×F)}/N、σ={1/N×Σ(xn-x)2}1/2を計算し、炭素繊維束(1)のMn/Lnの平均値Xと繊維束の構成繊維本数の平均値xと繊維束の構成繊維本数の標準偏差σを求める。なお、Nは炭素繊維(1)の束総数である。また、炭素繊維束全体重量に対する炭素繊維束(1)の割合は、
MA/(MA+MB)×100
によって求められる。
マトリックス樹脂がナイロン(Ny)の場合:
寸法100×100mm×2mmの炭素繊維複合材料を2枚260℃に予熱後、2枚重ねて120℃に昇温したプレス盤に配し、20MPaで5s間加圧した。この圧縮後の面積A2と圧縮前のシートの面積A1を測定し、A2/A1を流動性(%)とした。マトリックス樹脂がポリプロピレン(PP)の場合:寸法100×100mm×2mmの炭素繊維複合材料を2枚230℃に予熱後、2枚重ねて80℃に昇温したプレス盤に配し、20MPaで5s間加圧した。この圧縮後の面積A2と圧縮前のシートの面積A1を測定し、A2/A1を流動性(%)とした。
マトリックス樹脂がNyの場合:
図2に示すように、寸法100×100mm×2mmの炭素繊維複合材料11を2枚260℃に予熱後、2枚重ねて120℃に昇温した高さ15mm、幅1.0mmのリブ形状12を有するプレス盤13に配し、15MPaで5s間加圧した。この圧縮後の成形品を取り出し、リブの状態を観察し、リブの角まで炭素繊維と熱可塑性樹脂が流動し、充填されているものには○、リブの角まで熱可塑性樹脂は充填されているが、炭素繊維が充填されていない樹脂リッチ部が観察されれば△、リブの角まで充填されず、成形品に欠けが観察されれば×とした。
マトリックス樹脂がPPの場合:
寸法100×100mm×2mmの炭素繊維複合材料を2枚230℃に予熱後、2枚重ねて80℃に昇温した高さ15mm、幅1.0mmのリブ形状を有するプレス盤に配し、15MPaで5s間加圧した。この圧縮後の成形品を取り出し、リブの状態を観察し、リブの角まで炭素繊維と熱可塑性樹脂が流動し、充填されているものには○、リブの角まで熱可塑性樹脂は充填されているが、炭素繊維が充填されていない樹脂リッチ部が観察されれば△、リブの角まで充填されず、成形品に欠けが観察されれば×とした。
炭素繊維強化プラスチックの成形品から約2gのサンプルを切り出し、その質量を測定した。その後、サンプルを500℃に加熱した電気炉の中で1時間加熱してマトリックス樹脂等の有機物を焼き飛ばした。室温まで冷却してから、残った炭素繊維の質量を測定した。炭素繊維の質量に対する、マトリックス樹脂等の有機物を焼き飛ばす前のサンプルの質量に対する比率を測定し、炭素繊維の含有率とした。
JIS-K7171に準拠して曲げ強度を測定した。
下記式で計算した。
繊維強度利用率=曲げ強度/Vf
単糸曲げ剛性=E×I
にて計算した。ここで、
E:単糸弾性率
I:断面二次モーメント
である。
繊維断面を真円と仮定し、繊維直径Dから断面二次モーメントを求め、単糸引張弾性率と断面二次モーメントから曲げ剛性を求めた。
炭素繊維束の硬さを表すドレープ値から単糸の曲げ剛性を除することで、サイジング剤(Sz剤)の収束性の指標とした。
図3(a)に示すように、ボビンからテンションをかけずに引き出した炭素繊維束21を40cmの長さにカットし、一端を止めテープ22で固定し、もう一端に100gの重り23を吊るし、撚りおよび曲がりを矯正した後、測定温度の雰囲気中に30分間放置する。次に、重り23を取り外し、図3(b)に示すように、角が90°の水平な長方形の台24から炭素繊維束25が25cmはみ出るように置き、40cmの炭素繊維束が折れないように支えながら台上の炭素繊維部分を止めテープ26で固定した後、台からはみ出た部分の支えを取り除いて垂れ下がらせ、2秒後に始点からの水平距離Lの長さを測定し、n数3回の平均をドレープ値とした。
炭素繊維束(A):繊維径5.5μm、引張弾性率294GPa、単糸曲げ剛性1.32×10-11Pa
・m4、フィラメント数24000本の連続した炭素繊維束に対し、ポリエチレングリコールジグリシジルエーテル100%成分(分子量=670)の水系サイジング剤(Sz剤)(A)を炭素繊維束に1.0重量%付着させた炭素繊維束(A)を得た。このときの炭素繊維束(A)のドレープ値は6.6cmであった。
繊維径7μm、引張弾性率230GPa、単糸曲げ剛性2.71×10-11Pa・m4、フィラメント数24000本の連続した炭素繊維束に対し、ビスフェノールA型エポキシ樹脂40%成分(分子量=370)と不飽和物エステル樹脂として、ビスフェノールA型エチレンオキサイドマレイン酸エステル40%成分(分子量=2500)、乳化剤20%を主成分にしたサイジング剤(B)を炭素繊維束に1.0重量%付着させた炭素繊維束(B)を得た。このときの炭素繊維束(B)のドレープ値は16.8cmであった。
繊維径7μm、引張弾性率230GPa、単糸曲げ剛性2.71×10-11Pa・m4、フィラメント数24000本の連続した炭素繊維束に対し、ポリウレタン樹脂の水分散体(第一工業製薬(株)製“スーパーフレックス” (登録商標)300:被膜伸度1500%)を用い、本サイジング剤を水で希釈してサイジング剤濃度が1.0%のサイジング剤(C)を炭素繊維束に1.0重量%付着させた炭素繊維束(C)を得た。このときの炭素繊維束(C)のドレープ値は22.0cmであった。
維径7μm、引張弾性率230GPa、単糸曲げ剛性2.71×10-11Pa・m4、フィラメント数24000本の連続した炭素繊維束に対し、サイジング剤を付与せず炭素繊維束(D)を得た。このときの炭素繊維束(D)のドレープ値は2.0cmであった。
炭素繊維束(A)を繊維長10mmにカットし、カットした炭素繊維束とナイロン6短繊維(短繊維繊度1.7dtex、カット長51mm、捲縮数12山/25mm、捲縮率15%)を質量比で90:10の割合で混合し、カーディング装置に投入した。出てきたウェブをクロスラップし、炭素繊維とナイロン6繊維とからなる目付100g/cm2のシート状の炭素繊維集合体を形成した。
実施例1に対し、表1に示すように条件を変更した以外実施例1と同様にして炭素繊維複合材料の平板を得た。条件、測定、評価結果を表1に併せて示す。
炭素繊維束(B)を繊維長15mmにカットし、カットした炭素繊維束とポリプロピレン短繊維(短繊維繊度1.7dtex、カット長51mm、捲縮数12山/25mm、捲縮率15%)を質量比で90:10の割合で混合し、炭素繊維とポリプロピレン繊維からなる目付100g/cm2のシート状の炭素繊維集合体を形成し、炭素繊維と熱可塑性樹脂の体積比が25:75となるようにポリプロピレン樹脂メルトブロー不織布(「J709QG」、MFR=55g/10min、プライムポリマー(株)製)を積層した以外は実施例1と同様とした。条件、測定、評価結果を表2に示す。
実施例1に対し、表2に示すように条件を変更した以外実施例1と同様にして炭素繊維複合材料の平板を得た。条件、測定、評価結果を表2に併せて示す。
炭素繊維束(B)を繊維長6mmにカットし、カットした炭素繊維束とナイロン6不連続繊維(短繊維繊度1.7dtex、カット長6mm)を質量比で90:10の割合で混合した。カットした炭素繊維束とナイロン6不連続繊維の混合物を小孔を有した管内に供給し、圧縮空気を送気し、管内で開繊を行った。次に管出口下部に、XY方向に移動可能なテーブルを設置し、テーブル下部よりブロワにて吸引を行い、炭素繊維とナイロン6繊維からなる目付100g/cm2のシート状の炭素繊維集合体を得た。
)sとなるように積層し、さらに積層した炭素繊維集合体全体で、炭素繊維と熱可塑性樹脂の体積比が25:75となるようにナイロン樹脂メルトブロー不織布(「CM1001」、ηr=2.3、東レ(株)製)を積層した後に、全体をステンレス板で挟み、240℃で90s間予熱後、2.0MPaの圧力をかけながら180s間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2mmの炭素繊維複合材料の平板を得た。得られた平板の表層の0°方向に対して、0°と90°方向の曲げ強度を測定したところ、0°と90°方向の曲げ強度の平均値は375MPaであり、繊維強度利用率15.0MPa/%、CV値が5%未満であった。
実施例15に対し、表2に示すように条件を変更した以外実施例1と同様にして炭素繊維複合材料の平板を得た。条件、測定、評価結果を表2に併せて示す。
炭素繊維束(B)を繊維長15mmにカットし、カットした炭素繊維束とナイロン6不連続繊維(短繊維繊度1.7dtex、カット長51mm、捲縮数12個/25mm、捲縮率15%)を質量比で90:10の割合で混合し、カーディング装置に投入し、開繊した炭素繊維とナイロン6繊維とからなる混合原綿を得た以外は実施例1と同様とした。表3に示すように、繊維強度利用率は良いが流動性とリブへの炭素繊維の追従性が劣る。
炭素繊維束(D)を繊維長15mmにカットし、カットした炭素繊維束とナイロン6不連続繊維(短繊維繊度1.7dtex、カット長51mm、捲縮数12個/25mm、捲縮率15%)を質量比で90:10の割合で混合し、カーディング装置に投入した以外は実施例1と同様とした。結果を併せて表3に示す。繊維強度利用率は良いが流動性とリブへの炭素繊維の追従性が劣る。
表3に示す条件で実施した。結果、表3に示すように、流動性は良いが、リブへの炭素繊維の追従性が劣り、繊維強度利用率も低く、物性のばらつきも大きい。
表3に示す条件で実施した。結果、表3に示すように、流動性は良いが、リブへの炭素繊維の追従性が劣り、繊維強度利用率も低く、物性のばらつきも大きい。
炭素繊維束(B)を繊維長15mmにカットし、カットした炭素繊維束とナイロン6短繊維(短繊維繊度1.7dtex、カット長6mm)を質量比で90:10の割合で混合し、カットした炭素繊維束とナイロン6不連続繊維の混合物を小孔を有した管内に供給し、圧縮空気を送気し、管内で開繊を行った。次に管出口下部に、XY方向に移動可能なテーブルを設置し、テーブル下部よりブロワにて吸引を行い、炭素繊維とナイロン6繊維からなる目付100g/cm2のシート状の炭素繊維集合体を得た。
炭素繊維束(B)を繊維長15mmにカットし、カットした炭素繊維束とポリプロピレン短繊維(短繊維繊度1.7dtex、カット長6mm)を質量比で90:10の割合で混合し、炭素繊維とポリプロピレン繊維の混合物を小孔を有した管内に供給し、圧縮空気を送気し、管内で開繊を行った。次に管出口下部に、XY方向に移動可能なテーブルを設置し、テーブル下部よりブロワにて吸引を行い、炭素繊維とポリプロピレン繊維からなる目付250g/cm2のシート状の炭素繊維集合体を得た。シート状の炭素繊維集合体のMD(Machine Direction)を0°とし、炭素繊維集合体を12枚、(0°/90°/0°/90°/0°/90°)sとなるように積層し、さらに積層した炭素繊維集合体全体で、炭素繊維と熱可塑性樹脂の体積比が44:56となるようにポリプロピレン樹脂メルトブロー不織布(「J709QG」、MFR=55g/10min、プライムポリマー(株)製)を積層した以外は比較例5と同様とした。
比較例5に対して、表3に示すように条件を変更した以外比較例5と同様にして炭素繊維複合材料の平板を得た。条件、測定、評価結果を表3に併せて示す。
2 シリンダーロール
3 テイクインロール
4 ドッファーロール
5 ワーカーロール
6 ストリッパーロール
7 フィードロール
8 ベルトコンベアー
9 不連続な炭素繊維
10 シート状のウエブ
11 炭素繊維複合材料
12 リブ形状
13 プレス盤
21 炭素繊維束
22 止めテープ
23 重り
24 台
25 炭素繊維束
26 止めテープ
Claims (9)
- 炭素繊維と熱可塑性樹脂から成り、Mn/(Ln×D)が8.5×10-1(mg/mm2)以上の炭素繊維束(1)の炭素繊維全体重量に対する割合Yが、
30≦Y<90(wt%)
の範囲にあり、炭素繊維束(1)のMn/Lnの平均値Xが、
1.1×10-2≦X≦8.1×10-2(mg/mm)
の範囲にあり、かつ、前記Yが、
Y≧100X+30
を満たすことを特徴とする炭素繊維複合材料。
Mn:炭素繊維束重量
Ln:炭素繊維の繊維長
D:炭素繊維の繊維径 - 前記炭素繊維束(1)のMn/Lnの平均値Xが、
1.5×10-2≦X≦5.5×10-2(mg/mm)
の範囲にある、請求項1に記載の炭素繊維複合材料。 - 前記炭素繊維束(1)の束を構成する繊維本数xn=Mn/(Ln×F)の標準偏差σが50≦σ≦400の範囲にある、請求項1または2に記載の炭素繊維複合材料。
F:炭素繊維の繊度 - 前記炭素繊維束(1)が、25℃におけるドレープ値/曲げ剛性(cm/(Pa・cm4))が3.5×103~9.0×103(cm/(Pa・cm4))の範囲にある炭素繊維束から形成されている、請求項1~3のいずれかに記載の炭素繊維複合材料。
- 前記炭素繊維束(1)における炭素繊維の繊維長Lnが5~25mmの範囲にある、請求項1~4のいずれかに記載の炭素繊維複合材料。
- 前記炭素繊維束(1)の炭素繊維全体重量に対する割合Yが、
40≦Y≦65(wt%)
の範囲にある、請求項1~5のいずれかに記載の炭素繊維複合材料。 - 前記炭素繊維束(1)を構成する炭素繊維の単糸曲げ剛性が1.0×10-11~2.8×10-11(Pa・m4)の範囲内にある、請求項1~6のいずれかに記載の炭素繊維複合材料。
- 前記炭素繊維複合材料中の炭素繊維集合体がカーディング工程によって得られた炭素繊維不織布からなる、請求項1~7のいずれかに記載の炭素繊維複合材料
- 前記炭素繊維複合材料が前記炭素繊維集合体に熱可塑性樹脂を含浸させたスタンパブルシートからなる、請求項1~8のいずれかに記載の炭素繊維複合材料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/377,392 US9850368B2 (en) | 2012-02-09 | 2013-02-05 | Carbon fiber composite material |
EP13747299.9A EP2813532A4 (en) | 2012-02-09 | 2013-02-05 | COMPOSITE MATERIAL OF CARBON FIBERS |
JP2013505653A JP6083377B2 (ja) | 2012-02-09 | 2013-02-05 | 炭素繊維複合材料 |
CN201380008079.6A CN104093771B (zh) | 2012-02-09 | 2013-02-05 | 碳纤维复合材料 |
KR1020147020816A KR102023790B1 (ko) | 2012-02-09 | 2013-02-05 | 탄소 섬유 복합 재료 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-026218 | 2012-02-09 | ||
JP2012026218 | 2012-02-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013118689A1 true WO2013118689A1 (ja) | 2013-08-15 |
Family
ID=48947453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/052526 WO2013118689A1 (ja) | 2012-02-09 | 2013-02-05 | 炭素繊維複合材料 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9850368B2 (ja) |
EP (1) | EP2813532A4 (ja) |
JP (1) | JP6083377B2 (ja) |
KR (1) | KR102023790B1 (ja) |
CN (1) | CN104093771B (ja) |
WO (1) | WO2013118689A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065161A1 (ja) * | 2012-10-25 | 2014-05-01 | 東レ株式会社 | スタンパブルシート |
WO2014129497A1 (ja) * | 2013-02-21 | 2014-08-28 | 東レ株式会社 | スタンパブルシート |
WO2014156760A1 (ja) * | 2013-03-26 | 2014-10-02 | 東レ株式会社 | 炭素繊維不織布 |
WO2015108021A1 (ja) * | 2014-01-17 | 2015-07-23 | 東レ株式会社 | スタンパブルシート |
US9481117B2 (en) * | 2013-08-13 | 2016-11-01 | Teijin Limited | Manufacturing method of decorative molded article and decorative molded article |
JP2018043412A (ja) * | 2016-09-14 | 2018-03-22 | 三菱ケミカル株式会社 | リブ成形用積層基材 |
JPWO2019107247A1 (ja) * | 2017-11-29 | 2020-11-19 | 帝人株式会社 | 複合材料、成形体の製造方法、及び複合材料の製造方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO332117B1 (no) | 2006-06-09 | 2012-06-25 | Jebsen Skipsrederi | System og fremgangsmate for lossing av pulverlast |
JP6331123B2 (ja) | 2012-05-29 | 2018-05-30 | 東レ株式会社 | 炭素繊維複合材料 |
US9752002B2 (en) * | 2012-11-27 | 2017-09-05 | Mitsubishi Chemical Corporation | Fiber-reinforced thermoplastic resin prepreg, molded body of same, and method for producing fiber-reinforced thermoplastic resin prepreg |
US9929569B2 (en) * | 2014-11-07 | 2018-03-27 | The Boeing Company | Methods for steering a magnetic field for smart wireless power transmission |
BR112017019066A2 (pt) * | 2015-03-06 | 2018-04-17 | LAW Enterprises, LLC | sistema de controle de tomada elétrica |
CN112234720B (zh) * | 2015-05-19 | 2024-02-09 | 松下知识产权经营株式会社 | 非接触供电设备 |
CN105197754A (zh) * | 2015-10-19 | 2015-12-30 | 江苏海迅铁路器材集团股份有限公司 | 一种复合材料电梯梯级 |
KR101588433B1 (ko) | 2015-11-17 | 2016-02-12 | 유종덕 | 부직포 성형을 위한 탄소섬유필름 제조장치 및 이 장치를 이용하여 제조되는 탄소섬유필름 |
WO2017126504A1 (ja) * | 2016-01-22 | 2017-07-27 | 東レ株式会社 | 流体分離用炭素膜および流体分離用炭素膜モジュール |
EP3463794A1 (de) * | 2016-05-25 | 2019-04-10 | Basf Se | Konfektionierung faserverstärkter schaumstoffe |
CN108368646A (zh) * | 2016-08-25 | 2018-08-03 | 仓敷纺绩株式会社 | 碳纤维开纤片材的制造方法 |
CN109929263A (zh) * | 2017-12-15 | 2019-06-25 | 南京机器人研究院有限公司 | 新型碳纤维复合材料 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097436A1 (ja) * | 2006-02-24 | 2007-08-30 | Toray Industries, Inc. | 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法 |
WO2009142291A1 (ja) * | 2008-05-22 | 2009-11-26 | 東洋紡績株式会社 | 繊維強化熱可塑性樹脂成形体 |
JP2010235779A (ja) * | 2009-03-31 | 2010-10-21 | Toray Ind Inc | プリプレグ、プリフォームおよび成形品 |
JP2011157524A (ja) * | 2010-02-03 | 2011-08-18 | Toray Ind Inc | 繊維強化熱可塑性プラスチックおよびその製造方法 |
JP2011178891A (ja) | 2010-03-01 | 2011-09-15 | Teijin Ltd | 炭素繊維複合材料 |
JP2011178890A (ja) | 2010-03-01 | 2011-09-15 | Teijin Ltd | 炭素繊維複合材料 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2626368B2 (ja) * | 1991-11-14 | 1997-07-02 | 日本鋼管株式会社 | 繊維強化熱可塑性樹脂シートの製造方法 |
JPH05329836A (ja) | 1992-05-29 | 1993-12-14 | Mitsubishi Petrochem Co Ltd | 繊維強化熱可塑性樹脂成形素材の製造方法 |
JP3633221B2 (ja) | 1997-07-23 | 2005-03-30 | 東レ株式会社 | 一方向性補強織物および補修または補強方法 |
JP2005264383A (ja) | 2004-03-19 | 2005-09-29 | Toray Ind Inc | 炭素繊維束およびその開繊方法 |
EP2314642B1 (en) | 2008-07-31 | 2014-09-24 | Toray Industries, Inc. | Prepreg, preform, molded product, and method for manufacturing prepreg |
CN102713051B (zh) | 2010-01-20 | 2015-03-18 | 东丽株式会社 | 碳纤维束 |
CN102741350B (zh) | 2010-01-29 | 2015-04-15 | 东丽株式会社 | 纤维增强热塑性树脂组合物、增强纤维束以及纤维增强热塑性树脂组合物的制造方法 |
RU2527703C1 (ru) * | 2011-02-01 | 2014-09-10 | Тейдзин Лимитед | Холст с хаотической ориентацией волокон и композитный материал, армированный волокном |
TWI515239B (zh) | 2011-02-28 | 2016-01-01 | Teijin Ltd | Reinforced fibrous composite material formed by the body |
TWI500664B (zh) * | 2011-04-14 | 2015-09-21 | Teijin Ltd | Reinforced fiber composites |
US9469740B2 (en) | 2011-05-31 | 2016-10-18 | Toray Industries, Inc. | Carbon-fiber-reinforced plastic and process for producing same |
CN103582556B (zh) | 2011-05-31 | 2016-03-02 | 帝人株式会社 | 用于制造具有维持的各向同性的成形制品的方法 |
JP6331123B2 (ja) * | 2012-05-29 | 2018-05-30 | 東レ株式会社 | 炭素繊維複合材料 |
WO2014021316A1 (ja) | 2012-07-31 | 2014-02-06 | 帝人株式会社 | ランダムマットおよび繊維強化複合材料成形体 |
US9193840B2 (en) * | 2012-09-14 | 2015-11-24 | Teijin Limited | Carbon fiber composite material |
-
2013
- 2013-02-05 JP JP2013505653A patent/JP6083377B2/ja active Active
- 2013-02-05 US US14/377,392 patent/US9850368B2/en active Active
- 2013-02-05 CN CN201380008079.6A patent/CN104093771B/zh not_active Expired - Fee Related
- 2013-02-05 KR KR1020147020816A patent/KR102023790B1/ko active IP Right Grant
- 2013-02-05 WO PCT/JP2013/052526 patent/WO2013118689A1/ja active Application Filing
- 2013-02-05 EP EP13747299.9A patent/EP2813532A4/en not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097436A1 (ja) * | 2006-02-24 | 2007-08-30 | Toray Industries, Inc. | 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法 |
WO2009142291A1 (ja) * | 2008-05-22 | 2009-11-26 | 東洋紡績株式会社 | 繊維強化熱可塑性樹脂成形体 |
JP2010235779A (ja) * | 2009-03-31 | 2010-10-21 | Toray Ind Inc | プリプレグ、プリフォームおよび成形品 |
JP2011157524A (ja) * | 2010-02-03 | 2011-08-18 | Toray Ind Inc | 繊維強化熱可塑性プラスチックおよびその製造方法 |
JP2011178891A (ja) | 2010-03-01 | 2011-09-15 | Teijin Ltd | 炭素繊維複合材料 |
JP2011178890A (ja) | 2010-03-01 | 2011-09-15 | Teijin Ltd | 炭素繊維複合材料 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2813532A1 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2913170A4 (en) * | 2012-10-25 | 2016-04-20 | Toray Industries | EXTENDABLE SHEET |
JPWO2014065161A1 (ja) * | 2012-10-25 | 2016-09-08 | 東レ株式会社 | スタンパブルシート |
WO2014065161A1 (ja) * | 2012-10-25 | 2014-05-01 | 東レ株式会社 | スタンパブルシート |
EP2913170A1 (en) | 2012-10-25 | 2015-09-02 | Toray Industries, Inc. | Stampable sheet |
EP2960269A1 (en) | 2013-02-21 | 2015-12-30 | Toray Industries, Inc. | Stampable sheet |
WO2014129497A1 (ja) * | 2013-02-21 | 2014-08-28 | 東レ株式会社 | スタンパブルシート |
US10066084B2 (en) | 2013-02-21 | 2018-09-04 | Toray Industries, Inc. | Stampable sheet |
WO2014156760A1 (ja) * | 2013-03-26 | 2014-10-02 | 東レ株式会社 | 炭素繊維不織布 |
US20160053432A1 (en) * | 2013-03-26 | 2016-02-25 | Toray Industries, Inc. | Carbon fiber nonwoven fabric |
US9481117B2 (en) * | 2013-08-13 | 2016-11-01 | Teijin Limited | Manufacturing method of decorative molded article and decorative molded article |
JP5843048B1 (ja) * | 2014-01-17 | 2016-01-13 | 東レ株式会社 | スタンパブルシート |
KR20160111401A (ko) | 2014-01-17 | 2016-09-26 | 도레이 카부시키가이샤 | 스탬퍼블 시트 |
WO2015108021A1 (ja) * | 2014-01-17 | 2015-07-23 | 東レ株式会社 | スタンパブルシート |
US20160339669A1 (en) * | 2014-01-17 | 2016-11-24 | Toray Industries, Inc. | Stampable sheet |
JP2018043412A (ja) * | 2016-09-14 | 2018-03-22 | 三菱ケミカル株式会社 | リブ成形用積層基材 |
JPWO2019107247A1 (ja) * | 2017-11-29 | 2020-11-19 | 帝人株式会社 | 複合材料、成形体の製造方法、及び複合材料の製造方法 |
JPWO2019107248A1 (ja) * | 2017-11-29 | 2020-11-19 | 帝人株式会社 | 複合材料及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2813532A4 (en) | 2015-11-25 |
CN104093771A (zh) | 2014-10-08 |
JP6083377B2 (ja) | 2017-02-22 |
EP2813532A1 (en) | 2014-12-17 |
US9850368B2 (en) | 2017-12-26 |
JPWO2013118689A1 (ja) | 2015-05-11 |
KR102023790B1 (ko) | 2019-09-20 |
KR20140126307A (ko) | 2014-10-30 |
CN104093771B (zh) | 2018-04-20 |
US20150005434A1 (en) | 2015-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6083377B2 (ja) | 炭素繊維複合材料 | |
JP5995150B2 (ja) | 炭素繊維複合材料 | |
JP5572947B2 (ja) | 成形材料、および、繊維強化プラスチック、ならびに、これらの製造方法 | |
JP6108240B2 (ja) | 炭素繊維不織布 | |
JP2009114612A (ja) | チョップド繊維束および成形材料の製造方法、成形材料、繊維強化プラスチック | |
EP3527344B1 (en) | Random mat and production method therefor, and fiber-reinforced resin molded material using random mat | |
US10066084B2 (en) | Stampable sheet | |
JP2014196584A (ja) | 不織布の製造方法および複合材料の製造方法 | |
JP6331123B2 (ja) | 炭素繊維複合材料 | |
WO2014065161A9 (ja) | スタンパブルシート | |
JP6540005B2 (ja) | スタンパブル基材の製造方法 | |
JP3314826B2 (ja) | 熱可塑性コンポジット用シート | |
JPH1081770A (ja) | ヤーンプリプレグおよびその製造方法 | |
JP2014101618A (ja) | 炭素繊維マットおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013505653 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13747299 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013747299 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147020816 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14377392 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |