[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013118169A1 - 数値制御装置 - Google Patents

数値制御装置 Download PDF

Info

Publication number
WO2013118169A1
WO2013118169A1 PCT/JP2012/000826 JP2012000826W WO2013118169A1 WO 2013118169 A1 WO2013118169 A1 WO 2013118169A1 JP 2012000826 W JP2012000826 W JP 2012000826W WO 2013118169 A1 WO2013118169 A1 WO 2013118169A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
tap
acceleration
spindle
synchronization
Prior art date
Application number
PCT/JP2012/000826
Other languages
English (en)
French (fr)
Inventor
浩司 寺田
正一 嵯峨▲崎▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012524942A priority Critical patent/JP5240412B1/ja
Priority to CN201280001977.4A priority patent/CN103348295B/zh
Priority to PCT/JP2012/000826 priority patent/WO2013118169A1/ja
Priority to DE201211004962 priority patent/DE112012004962T5/de
Priority to US13/809,810 priority patent/US9122265B2/en
Priority to TW101107624A priority patent/TWI474142B/zh
Publication of WO2013118169A1 publication Critical patent/WO2013118169A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • G05B19/186Generation of screw- or gearlike surfaces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34333Multi threading
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50008Multiple, multi tool head, parallel machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50225Synchronize feed and spindle speed as function of pitch of screw, thread

Definitions

  • the present invention relates to a workpiece machining technique using a numerically controlled lathe controlled by a numerical control (hereinafter abbreviated as NC) device. More specifically, in lathe machining, the present invention relates to an eccentric machining that performs machining such as drilling at a position that is perpendicular to the XZ plane and perpendicular to the X-axis direction and away from the X-coordinate axis in the Y-axis direction. .
  • NC numerical control
  • one type of multi-tasking lathe has a Y axis as an additional axis perpendicular to the X (workpiece radial direction) Z (workpiece axis direction) plane, and drilled at a position away from the X coordinate axis in the Y axis direction.
  • X workpiece radial direction
  • Z workpiece axis direction
  • Some have a Z-axis that moves in the direction and a turret axis (H-axis) that is driven by the X-axis and the Z-axis and that can rotate at an arbitrary angle perpendicular to the axis of the C-axis.
  • H-axis turret axis
  • the circumferential direction of the workpiece can be planarized by a virtual Y axis that does not actually exist. This processing is called D-cut because a part of the circular cross-section is linearly cut and a cross-section similar to the letter D is obtained.
  • the D-cut processing is performed on the front and back surfaces of the workpiece, it is processed into a shape in which both sides of the circular cross-section are cut off. Double D-cut (the cross-section of the processed workpiece becomes a spanner opening, so Sometimes called a cut). This is because the same shape can be machined by applying the D-cut to the same workpiece twice with a conventional machine.
  • Patent Document 3 since it is a machine composed of X, Z, spindle / C-axis, and fixed angle indexing turret, Y-axis control cannot be performed. . Accordingly, when drilling is performed on the outer diameter portion of the workpiece, all the holes are directed toward the workpiece center, and it is not possible to perform drilling perpendicular to the plane of the D-cut surface or the spanner-cut surface.
  • JP-A-2000-218422 (Related description: page 5, column 7, line 25 to line 34, page 10, column 18, line 25 to page 11, column 19, line 32, FIG. 7 to FIG. 11)
  • JP-A-60-04239 (Related description: line 5 of page 5 to page 6, column 2 of column 6, line 17 of outer diameter point machining in FIG. 10 (1e))
  • the X-axis is movable so as to be movable in the X-axis direction about the C-axis gripping the workpiece.
  • a turret shaft (H axis) capable of swinging in the circumferential direction (radial direction of the workpiece) is arranged, and the H axis can be controlled to rotate at an arbitrary angle.
  • This so-called machine can be controlled as if there is a Y axis even if there is no Y axis as an actual axis, that is, it can perform virtual Y axis control.
  • the H axis and the C axis are rotated at an equal angle, and the H axis is moved in the X axis direction to move away from the center of the workpiece by moving the rotating tool in and out of synchronization with the rotation.
  • a virtual plane can be assumed at the position, and machining operations such as cutting and drilling in a direction perpendicular to the plane can be performed.
  • the X-axis direction feed by the cooperation of the C-axis, the H-axis, and the X-axis, and the tool traveling direction is the Y-axis.
  • Synchronous rotation control is required to rotate the C-axis and H-axis synchronous tools that maintain the angle so that they are perpendicular to each other and to rotate the S-axis tap tool, which is the main spindle for the rotary tool, in accordance with the screw pitch and feed rate.
  • a machine with a set of XZHC axis and synchronous tap spindle S axis can perform synchronous tap processing with the same control as a normal synchronous tap, but simultaneously perform two synchronous tap processing on both sides of the spanner cut.
  • the tool table having the H2, X2, and S2 axes is point-symmetric with respect to the existing tool table (the tool table having the H1, X1, and S1 axes) via the workpiece.
  • the Z-axis Since the Z-axis is in a relative relationship between the tool and the workpiece, the Z-axis may be provided on either the tool table side or the workpiece holding side, but is generally provided on the tool table side. .
  • appropriate synchronized tapping is performed if the operation of the two tool tables is not synchronized and the two rotary tool spindles on the two tool tables are not synchronized. I can't.
  • the present invention has been made to solve the above-mentioned problems.
  • a main set composed of an X1, H1 and S1 axes, an X2 axis, an H2 axis and an S2 axis. It is an object of the present invention to provide a numerical control apparatus capable of performing synchronous tapping on both surfaces in the diametrical direction of a workpiece accurately and simultaneously by controlling a machine in which a subset of the above is arranged point-symmetrically.
  • the numerical control device of the present invention is a machine in which a main set consisting of X1, H1 and S1 axes and a subset consisting of X2, H2 and S2 axes are arranged symmetrically with respect to one C1 axis.
  • a tapping spindle (S1, S2) time constant selection means for comparing the acceleration and deceleration time constants of the S1 axis and S2 axis of each of the main set and the subset to select a longer time constant; Based on the spindle time constant selected by the tap spindle (S1, S2) time constant selection means and the commanded spindle speed, the acceleration / deceleration movement amount of the X1 axis is calculated, and the drilling axis (X1) acceleration / deceleration for acceleration / deceleration processing is performed.
  • tap spindle (S1) to drill axis (X1) synchronization processing means for calculating the rotation amount of the tap spindle from the X1 axis movement amount output from the drilling shaft (X1) acceleration / deceleration processing means, and the tap spindle (S1)-Drilling shaft (X1)
  • a tap spindle (S2) synchronization processing means for transferring the tap spindle rotation amount calculated by the synchronization processing means as synchronization data on the synchronization side is provided, and the X1 axis and H1 axis on the main set side Drives the subset X2 axis, H2 axis, and S2 axis with drive data for the S1 axis, and controls the machine to simultaneously perform synchronous tapping on both sides in the diametrical direction of the workpiece gripped by the C1 axis It is.
  • a main set including the X1, H1, and S1 axes and a subset including the X2, H2, and S2 axes are arranged symmetrically with respect to one C1 axis.
  • simultaneous synchronous tap command processing means for newly setting a simultaneous synchronous tap command for simultaneously driving a plurality of tool spindles to perform synchronous tap machining and analyzing the simultaneous synchronous tap command
  • a tap spindle (S1, S2) time constant selection means for selecting the longer time constant by comparing the acceleration and deceleration time constants of the S1 axis and S2 axis of each of the main set and the subset, and the tap spindle (S1, S2) Drilling shaft (X1) acceleration / deceleration processing for calculating and accelerating / decelerating the X-axis acceleration / deceleration movement based on the spindle time constant selected by the time constant selection means and the commanded spindle speed
  • a tapping spindle A tapping spindle
  • the present invention it is possible to select which of the main shafts of both sets is used as a reference, and the reliable simultaneous synchronous tapping with the maximum torque that does not cause the vibration of the servo motor of each rotary tool drive unit. Control can be done. Accordingly, since synchronous tapping is simultaneously completed on both surfaces of the workpiece in about half the time of the conventional method, there is a remarkable industrial effect that productivity is approximately doubled.
  • FIG. 1 shows a main set of an X1 axis, a Z1 axis, a first turret axis (H1 axis), and an S1 axis for one C1 axis that rotates a workpiece by controlling the position according to the first embodiment of the present invention.
  • X2 axis, Z2 axis, second turret axis (H2 axis), and a subset of S2 axis controlled by a point-symmetrical machine, spanner cut on both sides (back surface)
  • Fig. 5 shows an example of synchronous tap machining operation and an example of the program.
  • tapping is not a method that uses a floating tap that automatically cuts by the propulsion force of the tap simply by rotating the spindle, but the tap bit (tapping tool) is held by the synchronous tap spindle chuck, and the rotation and feed of the tap are synchronized. This is due to a synchronous tap or a rigid tap that is controlled to be cut by the NC device.
  • the Z axis operating direction is a direction perpendicular to the XY plane, the H axis, and the C axis operating surface, and does not affect the basic operation of the first embodiment of the present invention. The explanation of the operation etc. is omitted.
  • a main set comprising an X1 axis, a Z1 axis, a first turret axis (H1 axis) and an S1 axis, an X2 axis, a Z2 axis, a second turret axis (H2 axis) and an S2 axis
  • a set of a reference C1 axis, an X1 axis, a Z1 axis, a turret axis H1 axis, and a synchronous tap main axis S1 axis (by controlling the newly configured machine as described above ( Synchronous tapping using, for example, virtual Y-axis control to the surface (a predetermined surface of the workpiece) by the main set, and driving the H2 axis in synchronization with the main set, the X2 axis, the Z2 axis, It enables simultaneous synchronous tapping, which simultaneously performs synchronous tapping on the back surface (surface opposite to the surface in the diameter direction of the workpiece) by the set (subset) of the H2 axis and S2 axis.
  • FIG. 1 shows an example of a program for each system.
  • the reference axis and the synchronization axis move in the same way, and synchronous tapping is performed simultaneously.
  • synchronous tapping can be performed simultaneously on both sides.
  • the main set and the subset turret shafts are arranged so as to face each other about the C1 axis that grips the workpiece.
  • simultaneous synchronous tapping with this machine requires virtual Y-axis machining (control), but as a preliminary preparation for virtual Y-axis machining, the tool is changed to a tap tool and the axis for rotating the workpiece is set to C It is necessary to switch to the axis control mode.
  • the tool direction and the virtual plane X-axis direction are made parallel (G0Xx1H0C0 is commanded for each system).
  • the tool tip (center) is positioned at a position x1 away from the center of the C1 axis in the X axis direction, and the H axis and the C axis are positioned at 0 degrees (state (1) in FIG. 1).
  • a virtual Y axis interpolation mode command (here, for example, M121) is commanded by the machining program of the main set (system 1 $ 1) to set the virtual Y axis interpolation mode.
  • a virtual Y-axis synchronization command (here, for example, M131) is given in order to simultaneously perform virtual Y-axis machining in the two systems.
  • a command for example, “!” Command is used to wait for synchronization between the main set and the subset (system 2 $ 2), “! 2” is commanded to the main set and “! 1” is commanded to the subset, the main set and the subset are set. (The state of (2) in FIG. 1).
  • the C-axis angle is calculated so that the tool edge center is located at the virtual Y-axis position set on the coordinate system of the workpiece end surface. Then, the C axis and the H axis are rotated and the center of the H axis is moved on the X axis. When the amount of eccentricity from the C-axis center on the D-cut surface is further commanded, the tool center is moved so that the tool tip coincides with the position of Xp 1 on the virtual Y-axis as shown in FIG. 1 (state (3)). In the program example of FIG. 1, the G00 X50 Y50 command corresponds to each command.
  • synchronous tapping can be performed on both the front and back surfaces simultaneously.
  • This control can be performed as described above. This is limited to the case where tools having the same dimensional specifications are equally mounted on the turret shafts of the set and the subset.
  • the subset uses control and drive data calculated in the main set. They also perform coordinate conversion from the virtual axis to the real axis.
  • the X1 axis data calculated on the main set side is synchronized with the X2 axis
  • the H1 axis data is synchronized with the H2 and C1 axes
  • the S1 axis data is synchronized with the Z1 axis.
  • p 2 is similarly obtained, and a line connecting p 1 and p 2 is linearly interpolated on the virtual XY plane. Further, the movement amount is finally converted into actual axis positions of the X axis, the H axis (rotation axis), and the C axis (rotation axis) and output to the servo control unit of each axis to drive the servo motor. Thereby, the vertical movement of the turret in the X-axis direction, the rotation of the workpiece gripped by the C-axis, and the position control of the turret shaft in the C-axis direction are performed in cooperation.
  • FIG. 3 is an example of a flowchart for performing simultaneous synchronous tapping by the NC apparatus according to the first embodiment.
  • Step 1 a machining program is read, and in Step 2, a program command related to the virtual Y axis is decoded, and a predetermined processing program is executed.
  • the virtual Y axis interpolation mode is turned on / off.
  • M121 / M120 is used. This M121 enables an interpolation calculation on the virtual XY axis plane, and operates a switching processing unit that selects machining based on the XZ plane as a normal lathe and machining that can be controlled using the virtual Y axis.
  • M121 / M120 is output to the outside and adopts a method of inputting it again to the NC apparatus as an external input signal by a PLC (Programmable Logic Controller), it is also possible to switch within the NC apparatus.
  • PLC Programmable Logic Controller
  • the synchronous tap command G84 in the machining program read in Step 1 is a synchronous tap with an orientation command, and is commanded in a format of G84XxFpSs, R2; Fp is a pitch, Ss is a spindle speed, and “, R2” is synchronized after orientation.
  • Step 3 the synchronous tap switching main shaft rotation speed of each of the two synchronous tap spindles S1 and S2 of the multi-stage acceleration / deceleration as exemplified in FIG. 5 is compared with the synchronous tap acceleration / deceleration time constant, and the optimum acceleration is moderate. Select the simultaneous synchronous tap acceleration / deceleration time constant and simultaneous synchronous tap switching spindle speed, and store them in each stage of the simultaneous synchronous tap optimum multistage acceleration / deceleration selection memory.
  • multi-stage acceleration / deceleration control as shown in FIG. 6 is often applied, but this is a method capable of driving control with maximum torque, Parameters are set for each axis.
  • Step 4 from the simultaneous synchronous tap time constant of each stage set in the simultaneous synchronous tap optimum multistage acceleration / deceleration selection memory in Step 3, and the synchronous synchronous tap switching main shaft rotational speed, the main shaft rotational speed during acceleration / deceleration is changed to the synchronous synchronous tap switching main shaft rotational speed.
  • a stage that is equal to or higher than the simultaneous synchronous tap switching spindle rotational speed is searched below, and the acceleration / deceleration movement amount (rotation angle) is calculated from the simultaneous synchronous tap time constant set in that stage and the spindle rotational range of that stage.
  • the acceleration / deceleration movement amount (rotation angle) calculated above and the X1-axis acceleration movement amount determined by the pitch are obtained, and acceleration / deceleration processing is performed so as to stop at the command position (hole bottom position).
  • Step 5 the X1 axis movement amount (FdT) subjected to acceleration / deceleration processing in Step 4 is converted into the same S1 axis rotation angle (FdT) per control unit time.
  • Step 6 the X1 axis coordinate value of the virtual coordinate system is converted to the actual axis coordinate values of X1, H1, and C1, and the real axes X1, H1, and C1 are moved from the difference of the actual axis coordinate values in the previous control time unit.
  • the quantity (FdT) is calculated.
  • Step 7 the S1-axis rotation angle (FdT) for the real axis of the synchronous tap converted in Step 5 is copied and used as the synchronous movement amount of the S2-axis. Also, the actual movement amounts (FdT) of X1 and H1 converted in Step 6 are copied and used as the synchronous movement amounts of the X2 axis and the H2 axis of the synchronization side turret. In the present embodiment, the control is performed with the main set designated as the reference side and the subset designated as the synchronization side.
  • Step 8 by the above processing, the real axes X1, H1, and C1 after the coordinate conversion of the synchronous tap spindles S1 and S2 and the synchronous tap drilling axes and the real axes X2 and H2 of the synchronous tap drilling axes on the synchronous side are the actual axis movement amounts (FdT). Is output to the servo controller.
  • simultaneous synchronous tapping by a virtual lathe-controlled composite lathe can be realized, and further details will be described later with reference to FIG.
  • the command program commands only the first system, and the second system axis uses the first system command.
  • the temporal relationship with the start and end of other operations in actual simultaneous synchronous tap machining is controlled by using a synchronization waiting command (“! ⁇ ” command shown in FIG. 1 machining program example).
  • FIG. 4 is a block diagram illustrating an example of the configuration of the NC apparatus according to the first embodiment.
  • 1 is an NC device
  • 2 is an input operation unit
  • 3 is an input control unit
  • 4 is a memory
  • 5 is a parameter storage unit
  • 6 is a machining program storage unit
  • 7 is a shared area
  • 8 is a screen display data storage unit
  • 9 is a screen.
  • the processing unit 10 is a display unit.
  • 11 is an analysis processing unit
  • 12 is a machine control signal processing unit
  • 13 is a PLC
  • 14 is a virtual Y-axis interpolation mode signal processing unit
  • 15 is a virtual Y-axis synchronization signal processing unit
  • 16 is a simultaneous synchronization tap command processing unit
  • 17 is Interpolation processing unit
  • 18 is an X1 / Y1 / C1-axis interpolation means
  • 19 is an X2 / Y2 axis interpolation processing means
  • 20 is a simultaneous synchronous tap interpolation processing means
  • 21 is a tap spindle (S1, S2) time constant selection means
  • 22 is Drilling shaft (X1) acceleration / deceleration processing means
  • 23 is a tap spindle (S1) to drilling shaft (X1) synchronization processing means
  • 24 is an axis data output unit.
  • Reference numerals 31 to 37 denote X1, X2, H1, H2, C1, S1, and S2 axis servo control units, and reference numerals 41 to 47 denote X1, X2, H1, H2, C1, S1, and S2 axis servo motors, respectively.
  • 51 is a virtual Y-axis control processing unit
  • 52 is a virtual Y-axis control switching processing unit
  • 53 is a reference turret virtual Y-axis coordinate conversion processing unit
  • 54 is a synchronization side turret synchronization processing unit (X2, H2)
  • 55 is a tap. This is a spindle (S2) synchronization processing means.
  • the input control unit 3 detects a change in the switch signal of the input operation unit 2 operated by the operator, and the parameter storage unit 5 in the memory 4, the machining program storage unit 6, the common area 7, and the screen display data area.
  • a signal such as writing or reading that changes the contents of the memory is accessed by accessing each part such as 8.
  • Various display data stored at predetermined addresses in the screen display data area 8 are read out by the screen processing unit 9 and displayed at predetermined positions on the display unit 10.
  • the parameters stored in the parameter storage unit 5 include the acceleration / deceleration time constant parameter for the synchronous tap spindle shown in FIG. 5, the condition data necessary to determine the specifications of the NC device, and to perform machine control. included.
  • the machining program describes and stores the operation contents of the machine and the movement path of the blade necessary for machining at least one workpiece in a format that can be read by the NC device.
  • the shared area 7 stores temporary data and the like necessary for system control during machining program analysis and machine operation control.
  • the screen display data area 8 stores various data specified by the input operation unit 2 such as current position information required by the operator, spindle rotation information, NC device control mode, and output status of various selection signals. ing.
  • the analysis processing unit 11 sequentially reads the designated programs from the top of the machining programs stored in the machining program storage unit 6 and refers to the parameter 5 according to the processing procedure designated for each NC command.
  • the program is analyzed and executed while temporarily storing the data being processed in the common area 7.
  • the machine control signal processing unit 12 reads information related to the control of the machine peripheral device output from the analysis processing unit 11 to the memory 4 and outputs the information to the PLC 13 to give control information to the ladder circuit.
  • F outputs various on / off control signals to the machine side.
  • a signal input for control from the PLC 13 to various processing units of the NC or an external signal input from the machine side is written in the shared area 7 in the memory 4 and is applied to the control of the NC device. It operates so that the control of the machine proceeds correctly.
  • the virtual Y-axis interpolation mode signal processing means 14 for example, switches an external signal input to the machine control signal processing unit 12 when switching on / off of the virtual Y-axis interpolation mode by a selection signal input from the outside of the NC device. Accept and set or reset certain parameters.
  • This switching control can also be processed inside the NC unit by a command in the machining program.
  • a method is used in which auxiliary commands (M121 and M120) are converted into on / off signals and input to the NC unit.
  • the virtual Y-axis synchronization signal processing means 15 performs virtual Y-axis synchronization on / off in order to perform virtual Y-axis machining simultaneously in two systems (turret 1, turret 2) during the virtual Y-axis interpolation mode.
  • a selection signal input from the outside of the NC device an external signal input to the machine control signal processing unit 12 is received, and a predetermined parameter is set or reset.
  • a virtual Y-axis synchronization command is given.
  • the virtual Y-axis interpolation mode it is converted to an on / off signal by an auxiliary command (M131 and M130). Then, a method of inputting to the NC device is used.
  • the simultaneous synchronization tap command processing means 16 in the analysis processing unit 11 is a simultaneous synchronization tap for performing a conventional synchronous tap machining on both surfaces in the diameter direction of the workpiece simultaneously using two systems of turret shafts. Decode the instruction. In order to perform the simultaneous synchronous tap machining most easily, as shown at least in FIG. 2a, the same tap bit is equally attached to the synchronous tap main shafts of the two turret shafts arranged opposite to each other about the C axis.
  • the position of the turret axis from the workpiece center (X axis) and the rotation of the turret axis are obtained by interpolation of the reference side system, and the synchronous X and H axes are synchronized using the X and H axis drive data on the reference side. What is necessary is just to drive.
  • the interpolation processing unit 17 includes an X1 / Y1 / C1 axis interpolation processing unit 18, an X2 / Y2 axis interpolation processing unit 19, and a simultaneous synchronous tap interpolation processing unit 20.
  • the simultaneous synchronous tap interpolation processing means 20 includes a tap spindle (S1, S2) time constant selection means 21, a drilling axis (X1) acceleration / deceleration processing means 22, and a tap spindle (S1) to drilling axis (X1) synchronization processing means 23.
  • the Z axis that is the workpiece length direction is not directly involved in the virtual Y axis control machining, and therefore drawings and operation descriptions relating to the Z axis are omitted. To do. Further, it is necessary programmed to move the tool before running the simultaneous synchronized tapping process to the machining start point, where as in Figure 2a, the tool center is a tool corrected for the command position is positioned p 1 It will be described as being.
  • interpolation processing means (not shown) of the X1, Z1, C1, and X2, Z2 axes in the interpolation processing unit 17 is used, and the relative movement amount obtained from the machining program is a straight line, a circular arc, or the like.
  • These output data are output to the axis data output unit 24, input to the servo control units 31 to 37 of each axis, and the servo motors 41 to 37 are driven by the driving power output by the servo control units 31 to 37. 47 is driven to rotate.
  • the XZ axis, the main axis, the C axis, the synchronous tap main axis and the like of the lathe that is the machine to be controlled are driven to perform desired machining.
  • the virtual Y-axis control switching processing unit 52 is operated by a virtual Y-axis interpolation mode signal input from the outside, and the interpolation calculation result of the interpolation processing unit 17 can be used by the virtual Y-axis control processing unit 51.
  • the virtual Y-axis control processing unit 51 includes reference-side turret virtual Y-axis coordinate conversion processing means 53, synchronization-side turret synchronization processing means (X 2, H 2) 54, and tap spindle (S 2) synchronization processing means 55.
  • the tap spindle (S1, S2) time constant selection means 21 is used for two synchronous tap spindles S1, S2 at the same spindle rotational speeds S1, S2 from the spindle rotational speed and acceleration / deceleration time constant parameters as shown in FIG. Acceleration / deceleration time constants are compared, and the longer (slower) value is stored, for example, in a predetermined location of the simultaneous synchronous tap optimum multi-stage acceleration / deceleration selection memory (parameter storage unit 5). Multi-stage acceleration / deceleration control is often applied to the synchronous tap spindle in order to increase the machining efficiency by minimizing the acceleration / deceleration time. For example, as shown in FIG.
  • the drive control can be performed with the maximum torque by performing linear acceleration / deceleration with a constant inclination, which gradually decreases gradually, in a plurality of times.
  • the synchronous tap acceleration / deceleration time constant and the synchronous tap switching main shaft rotational speed can be set for a predetermined number of stages for multi-stage acceleration / deceleration control. It has become.
  • the multistage acceleration / deceleration setting is three stages, but the number of stages of multistage acceleration / deceleration is not limited.
  • the acceleration / deceleration time constants at the same spindle rotation speeds of the S1 and S2 axes are compared, and the spindle rotation speed at which the longer value and the acceleration / deceleration time constant are switched is optimal for the simultaneous synchronization tap. It is stored in the corresponding stage of the multistage acceleration / deceleration selection memory (parameter storage unit 5). 5 and 6, for example, the simultaneous synchronous tap acceleration / deceleration constant 1 in FIG. 5 corresponds to t1 in FIG. 6, and the simultaneous synchronous tap acceleration / deceleration time constant 2 in FIG. 5 corresponds to t2 in FIG. For example, the simultaneous synchronous tap switching spindle rotational speed 1 in FIG. 5 corresponds to s1 in FIG. 6, and the simultaneous synchronous tap switching spindle rotational speed 2 in FIG. 5 corresponds to s2 in FIG.
  • the drilling shaft (X1) acceleration / deceleration means 22 is a simultaneous synchronous tap time constant of each stage set in the optimum multistage acceleration / deceleration selection memory by the tap spindle (S1, S2) time constant selection means 21, and a simultaneous synchronous tap switching spindle rotational speed.
  • the acceleration / deceleration movement amount (rotation angle) is calculated from the constant and the spindle rotation range at that stage. For example, in the case of FIG.
  • the acceleration / deceleration movement amount (rotation angle) calculated above and the acceleration movement amount of the X1-axis determined by the pitch are obtained, and acceleration / deceleration processing is performed so as to stop at the command position (hole bottom position).
  • the tap spindle (S1) to drilling axis (X1) synchronization processing means 23 outputs the movement amount (FdT) per control unit time subjected to acceleration / deceleration processing of the X1 axis, which is output from the drilling axis (X1) acceleration / deceleration means 22.
  • the movement amount (rotation angle) of the synchronous tap spindle to be rotated during the movement of this movement amount (FdT) is calculated by the following (Equation 1).
  • Rotation angle (r / dT) X1 travel (mm / dT) ⁇ screw pitch (mm / r) (Equation 1)
  • the reference-side turret virtual Y-axis coordinate conversion processing unit 53 outputs the movement amount (FdT) of the X1 axis of the virtual coordinate system output from the drilling axis (X1) acceleration / deceleration processing unit 22 to the X1 axis of the previous X1 axis.
  • the coordinate value of the virtual coordinate system of the current X1 axis is calculated by adding to the coordinate value of the virtual coordinate system.
  • the coordinate value of the X1 axis of the virtual coordinate system is subjected to coordinate conversion to be converted into actual axis positions of the X1 axis, the H1 axis (rotation axis), and the C1 axis (rotation axis).
  • the difference between the calculated actual axis position and the actual axis position of the previous control unit time is calculated to output the actual axis movement amounts (FdT) of the X1 axis, the H1 axis, and the C1 axis to the axis data output unit 24.
  • the synchronization side turret synchronization processing means (X2, H2) 55 copies the X1-axis real axis movement amount (FdT) output from the reference side turret virtual Y-axis coordinate conversion processing means 53 to the subset-side X2 axis, The data is output to the data output unit 24. Similarly, the actual movement amount (FdT) of the H1 axis is copied to the subset side H2 axis and output to the axis data output unit 24. Thereby linearly moving the line connecting the synchronous tapping start position Xp 1 and hole bottom position Xp 2 on in synchronization with the main set subset side virtual coordinate system of FIG.
  • the tap spindle (S2) synchronization processing means 55 copies the S1 axis rotation angle (FdT) converted as the reference side by the tap spindle (S1) to the drilling axis (X1) synchronization processing means 23 to the S2 axis and generates axis data. Output to the output unit 24.
  • the X1 axis of the virtual coordinate system and the tap main axis S1 axis are controlled synchronously, the X1 axis of the virtual coordinate system is converted to X1, H1, and C1 of the real axes, and the Y-axis direction is used on machines that do not have the Y axis on the main set side.
  • Synchronized tapping is possible at a position eccentric to Furthermore, by synchronously controlling the X2 axis, H2 axis, and S2 axis on the subset side with respect to the main set side, synchronous tapping is simultaneously performed on both sides that have been wrench cut using a virtual Y axis controller having two turrets. Although it can be performed, the above configuration is an example, and various modifications are possible.
  • the multi-stage acceleration / deceleration is used.
  • the numerical control device includes a main set including an X1 axis, a Z1 axis, a first turret axis (H1 axis) and an S1 axis, an X2 axis, a Z2 axis, and a second C1 axis. It is suitable for synchronous tapping by numerically controlling a machine in which a turret axis (H2 axis) and a subset of S2 axes are arranged point-symmetrically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

 同時同期タップ指令を解析する同時同期タップ指令処理手段(16)と、メインセットとサブセットのS1軸、S2軸の加減速時定数を比較して長い方の時定数を選択するタップ主軸(S1、S2)時定数選択手段(21)と、タップ主軸(S1、S2)時定数選択手段(21)により選択された主軸時定数、指令された主軸回転数に基づいてX軸の加減速移動量を計算して指令した位置に移動させる穴あけ軸(X1)加減速処理手段(22)と、穴あけ軸(X1)加減速処理手段の出力である穴あけ軸の移動量とピッチから計算してタップ主軸を穴あけ軸に同期させる同期タップ補間処理手段(23)とタップ主軸(S1)~穴あけ軸(X1)同期処理手段の出力であるタップ主軸回転量を同期側に同期データとして転記するタップ主軸同期処理手段(55)とを設けた。

Description

数値制御装置
 この発明は、数値制御(Numerical Control、以下NCと略すことがある)装置によって制御する数値制御旋盤によるワークの加工技術に関するものである。更に詳しくは、旋盤加工に於いて、XZ平面に垂直、且つX軸方向と垂直に交わる平面上で、X座標軸からY軸方向に離れた位置に穴あけ等の加工を行う偏心加工に関するものである。
 従来、複合加工旋盤の型式の一つとしてX(ワーク半径方向)Z(ワーク軸方向)平面に直交する、付加軸としてのY軸を有し、X座標軸からY軸方向に離れた位置に穴あけ等の加工を行なえるようにしたものがある。
 またこれとは異なる形式の一つとして、ワークを把持して回転位置制御されるC軸と、当該C軸中心方向に接離するように位置制御されるX軸と、同様にC軸の軸線方向に移動するZ軸と、前記X軸とZ軸によって駆動される、前記C軸の軸線に直角に任意角度に回転可能なタレット軸(H軸)を有するものがある。この様な旋盤では通常のワーク円柱表面への旋削加工の他に、ワークの円周方向を実際には存在しない仮想Y軸により平面加工することができる。この加工は円形断面の一部を直線的に切り落とし、Dの文字に似た断面となることからDカットと呼ばれる。
 更に、前記Dカット加工をワークの表裏二面に行えば、円形断面の両側を切り落とした形に加工する、ダブルDカット(加工されたワークの断面がスパナの開口部のようになることからスパナカットと呼ばれることもある)となる。これは、従来の機械で前記Dカットを同一ワークに2回施せば同じ形状が加工できる。
 前記後者の形式による機械で前記Dカット加工を実現するためには、C軸に把持したワークの半径方向に、中心から任意の距離だけ離れた平面を想定し、C軸中心方向に対してはH軸上の回転工具をC軸中心方向に向け、C軸中心から離れた位置に対しては、その方向に工具が向くようにH軸を回転させるとともに、この工具に垂直になるようにC軸を回転させる。この時にはC軸中心とH軸中心を結ぶ線からY軸方向に外れた位置が加工点になるので、加工面と工具先端が離れることになる。従ってこの距離を算出し、H軸中心をC軸中心方向(X軸方向)に移動させる必要がある。この様な一連の制御をC軸のワーク円周上に想定した面の一端から他端まで連続して仮想Y軸上の速度が指令速度になるように行うことにより所望の加工が実現できる。X軸は前述のように工具先端(=加工点)のワーク中心からの距離にしたがって位置制御される。
 前記加工を実現するためにC軸回動と工具(タレット軸)の首振りを機械で同期制御したものが特許文献1に、前記と類似の動作をする、全サーボ制御による構成を一つのセットとし、これを6セット纏めた機械の構成および作動方法が特許文献2に開示されている。これらの文献では機械の構造や各部の動作が説明されており、これらの制御により所謂Dカット加工や、Dカット面の平面に穴あけなどを行うことができる。
 また、前記Dカットに似た加工内容が特許文献3に図示されているが、X、Z、主軸/C軸、固定角度割出タレットで構成される機械であるので、Y軸制御が行なえない。従って、ワーク外径部に穴あけを行なった場合、穴の方向は全てワーク中心に向かうことになり、Dカット面やスパナカット面の平面に垂直な穴あけを行うことはできない。
特公平3-033441号公報 (関連記述:第8ページ第16欄32行目乃至第9ページ第17欄28行目、第9ページ第18欄18行目乃至第10ページ第19欄29行目、第3図、第4図) 特開2000-218422号公報 (関連記述:第5ページ第7欄25行目乃至同34行目、第10ページ第18欄25行目乃至第11ページ第19欄32行目、図7乃至図11) 特開昭60-044239号公報 (関連記述:第5ページ第4欄乃至第6ページ第2欄17行目、第10図の外径点加工の線形状(1e))
 図7に示すような従来の一組のXZHC軸及び同期タップ主軸S軸から成る機械構成に於いては、ワークを把持するC軸を中心にしてX軸方向に移動可能なように、X軸方向の円周方向(ワークの半径方向)に首振りができるタレット軸(H軸)が配されており、H軸は任意の角度に回転制御できる。所謂この機械は実際の軸としてY軸が無くてもあたかもY軸があるように制御でき、即ち仮想Y軸制御ができる。
 この構成によりH軸とC軸を同期して等角度回転させ、更にH軸をX軸方向に、前記回転に同期して回転工具を接離させることによってDカット加工や、ワーク中心から離れた位置に平面を仮想し、当該平面に垂直な方向への切削や穴あけ等の加工動作を行なわせることができる。
 前記の様な構成の機械で、加工されたDカット面に対して例えば同期タップ加工を行うには、C軸、H軸、X軸の協調によるX軸方向送りと、工具進行方向がY軸に対して垂直になる様に角度を維持するC軸とH軸の同期回転、回転工具用主軸であるS軸のタップ工具をねじピッチと送り速度に合わせて回転させる同期回転制御が必要となる。
 従来、XZHC軸及び同期タップ主軸S軸から成る1セットの構成の機械では、通常の同期タップと同様の制御で同期タップ加工が行なえるが、スパナカットされた両面に同時に二つの同期タップ加工を行うには、図1に示すように、H2、X2、S2軸を有する工具台を、既に存在する前記工具台(H1、X1、S1軸を有する工具台)に対し、ワークを介して点対称位置に追加する必要がある。なお、Z軸は工具とワークとの間で相対的な関係にあるため、Z軸は工具台側、ワーク保持側のどちらに設けられてもよいが、一般的には工具台側に設けられる。
 ところが、このように単純に工具台を追加したとしても、二つの工具台の動作の同期及び二つの工具台上の二つの回転工具用主軸の同期を取らなければ、適切な同期タップ加工を行うことができない。
 また、二つのタップ工具を同じ速度パターンで工具軸方向に駆動し、円周方向に回転駆動させるには、同一名称の軸でも異なった仕様のモータが使われて加減速パターンや加減速時定数が異なっている可能性があるので、これらを一致させる必要がある。なお、同期タップ主軸には特に注意しなければねじ山が潰れてしまうことがある。
 本発明は、前記課題を解決するためになされたもので、ワークを回転させる一つのC1軸に対して、X1軸、H1軸及びS1軸から成るメインセットと、X2軸、H2軸及びS2軸から成るサブセットとを、点対称に配置した機械を制御することにより、ワークの直径方向両面への同期タップ加工を精度よく同時に行うことができる数値制御装置を提供することを目的とする。
 本発明の数値制御装置は、一つのC1軸に対して、X1軸、H1軸及びS1軸から成るメインセットと、X2軸、H2軸及びS2軸から成るサブセットとを、点対称に配置した機械を制御する数値制御装置において、前記メインセットとサブセット夫々のS1軸、S2軸の加減速時定数を比較して長い方の時定数を選択するタップ主軸(S1,S2)時定数選択手段と、前記タップ主軸(S1,S2)時定数選択手段により選択された主軸時定数、指令された主軸回転数に基づいてX1軸の加減速移動量の計算、加減速処理する穴あけ軸(X1)加減速処理手段と、前記穴あけ軸(X1)加減速処理手段から出力されたX1軸移動量からタップ主軸の回転量を計算するタップ主軸(S1)~穴あけ軸(X1)同期処理手段と、前記タップ主軸(S1)~穴あけ軸(X1)同期処理手段で計算されたタップ主軸回転量を同期側に同期データとして転記するタップ主軸(S2)同期処理手段とを設け、メインセット側のX1軸、H1軸、S1軸の駆動データで、サブセット側のX2軸、H2軸、S2軸を駆動することにより、C1軸に把持したワークの直径方向両面への同期タップ加工を同時に行うよう前記機械を制御するものである。
 また、本発明の数値制御装置は、一つのC1軸に対して、X1軸、H1軸及びS1軸から成るメインセットと、X2軸、H2軸及びS2軸から成るサブセットとを、点対称に配置した機械を制御する数値制御装置において、複数の工具主軸を同時に駆動して同期タップ加工を行なう同時同期タップ指令を新たに設定すると共に、前記同時同期タップ指令を解析処理する同時同期タップ指令処理手段と、前記メインセットとサブセット夫々のS1軸、S2軸の加減速時定数を比較して長い方の時定数を選択するタップ主軸(S1,S2)時定数選択手段と、前記タップ主軸(S1、S2)時定数選択手段により選択された主軸時定数、指令された主軸回転数に基づいてX軸の加減速移動量を計算、加減速処理する穴あけ軸(X1)加減速処理手段と、前記穴あけ軸(X1)加減速処理手段から出力されたX軸移動量からタップ主軸の回転量を計算するタップ主軸(S1)~穴あけ軸(X1)同期処理手段と、前記タップ主軸(S1)~穴あけ軸(X1)同期処理手段で計算されたタップ主軸回転量を同期側に同期データとして転記するタップ主軸(S2)同期処理手段とを設け、メインセット側のX1軸、H1軸の駆動データでサブセット側のX2軸、H2軸を駆動するとともに、S1軸、S2軸については同時同期タップ指令中に指定された基準/同期指定により基準に指定されたS軸駆動データで同期側S軸を駆動することにより、C1軸に把持したワークの直径方向両面への同期タップ加工を同時に行うよう前記機械を制御するものである。
 この発明によれば、両セットの夫々の回転工具駆動部のサーボモータが振動を起こさない最大トルクで無理の無い確実な同時同期タップ加工制御が行うことができる。従って、従来の約半分の時間でワーク両面に同時に同期タップ加工が完了するので、生産性が約二倍になるという産業上の顕著な効果がある。
 また、この発明によれば、両セットの何れの主軸を基準にするかを選択でき、且つ夫々の回転工具駆動部のサーボモータが振動を起こさない最大トルクで無理の無い確実な同時同期タップ加工制御が行うことができる。従って、従来の約半分の時間でワーク両面に同時に同期タップ加工が完了するので、生産性が約二倍になるという産業上の顕著な効果がある。
本発明の実施例1に係る、仮想Y軸制御による同時同期タップ加工の動作例と加工プログラム例を示す図である。 本発明の実施例1に係る、仮想Y軸制御による同時同期タップ動作の詳細説明図である。 本発明の実施例1に係る、仮想Y軸制御による同時同期タップ制御のフローチャートである。 本発明の実施例1に係る数値制御装置の一構成例を示すブロック図である。 本発明の実施例1に係る同期タップ主軸用加減速パラメータの一例を示す図である。 一般的な傾き一定多段加減速パターンの一例を示す図である。 仮想Y軸制御を行う機械の基本軸構成例を示す図である。
実施例1.
 以下、本発明の実施例1について図1乃至図7を用いて説明する。
 図1は本発明の実施例1による、ワークを位置制御して回転させる一つのC1軸に対して、X1軸、Z1軸、第一のタレット軸(H1軸)及びS1軸から成るメインセットと、X2軸、Z2軸、第二のタレット軸(H2軸)及びS2軸から成るサブセットとを、点対称に配置した機械を制御して行う、ワークに施されたスパナカットの両面(裏表面)に同時に同期タップ加工の動作例とそのプログラム例を示したものである。ここでは先ず両面同時にタップの下穴を開け、続いて両面同時にタップ加工を行なっているが、加工プログラムはタップ加工に関する部分のみを示している。なお、タップ加工は主軸を回転させるだけでタップの推進力により自動的に切り込むフローティングタップを用いる方法ではなく、同期タップ主軸チャックでタップビット(タップ工具)を把持し、タップの回転と送りを同期させてNC装置で切込制御する同期タップまたはリジッドタップによるものである。
 また、Z軸の作動方向はXY平面およびH軸、C軸の作動面に垂直な方向であり、本発明の実施例1の基本的な動作に影響することは無いので、軸名として挙げても動作等についての説明は割愛する。
 この一つのC1軸に対して、X1軸、Z1軸、第一のタレット軸(H1軸)及びS1軸から成るメインセットと、X2軸、Z2軸、第二のタレット軸(H2軸)及びS2軸から成るサブセットとを、点対称に配置した機械のために、同じ数の駆動部を設けた場合、二組のXZHS軸に同じ指令、例えばメインの組の移動量をそのまま対向して配置された他の組に与えれば、工具および工具取り付が完全に等しく、且つ工具補正量等も等しい時(両タレットに、寸法諸元が同一の二つの工具を、同等に取り付けている時)に限り、動きとしてはスパナカットされた両面の、点対称の位置に同時穴あけやタップ加工を行なえることになる。実際の同時同期タップに於いては、同期タップ主軸用モータの仕様が異なっていたり負荷が異なっていたりする場合には夫々に適した加減速パラメータ等が設定されているが、同時に同期タップを行うときは、これらのパラメータも最適なものに統一する必要がある。
 従って、二組のXHZS軸夫々の移動量を計算し、加減速などのパラメータを選択して設定し直し、この二組を移動開始のタイミングも含めて完全に同期して作動させなければならない。
 本発明の実施例1は、前記新規構成の機械を前記のように制御することにより、基準となるC1軸、X1軸、Z1軸、タレット軸であるH1軸及び同期タップ主軸S1軸のセット(メインセットとする)による表面(ワークの一所定面)への例えば仮想Y軸制御を用いて同期タップ加工を行うと共に、前記メインセットに同期してH2軸を駆動し、X2軸、Z2軸、H2軸、S2軸のセット(サブセットとする)による裏面(前記表面に対してワークの直径方向で反対側の面)への同期タップ加工を同時に行う、同時同期タップ加工ができるようにするものである。
 また、図1には、各系統のプログラム例を挙げているが、この中のシーケンス番号N101~N103の付されたブロックの内容に基づき基準軸と同期軸が同じ動きをして同時に同期タップ加工を行ない、表裏同時に同期タップ加工ができることになる。ここではワークを把持したC1軸を中心にしてメインセットとサブセットのタレット軸が対向して配置される。
 また、この機械で同時同期タップ加工を行うには仮想Y軸加工(制御)が必要であるが、仮想Y軸加工の事前の準備として、タップ工具に工具交換し、ワークを回転させる軸をC軸制御モードに切り換えておくことが必要である。
 図1に示す機械で同時に同期タップ加工を行うには、図1に示すように、先ず、工具方向と仮想平面X軸方向を平行にする(各系統毎にG0Xx1H0C0;を指令する)。この指令によりC1軸中心からX軸方向にx1離れた位置に工具先端(中心)が位置決めされ、H軸とC軸は0度に位置決めされる(図1の(1)の状態)。
 メイン、サブ両セットについて前記位置決めを実行した上で、メインセット(系統1 $1)の加工プログラムで仮想Y軸補間モード指令(ここでは例えばM121とする)を指令して仮想Y軸補間モードを確立する。続いて二つの系統で同時に同期して仮想Y軸加工を行うために、仮想Y軸同期指令(ここでは例えばM131とする)を与える。また、メインセットとサブセット(系統2 $2)とを同期待ち合わせさせる指令(例えば「!」指令を用い、メインセットに「!2」、サブセットに「!1」を指令すれば、メインセットとサブセットとが同期待ち合わせすることになる)を与える(図1の(2)の状態)。
 次に加工開始位置(仮想Y軸の座標値)への位置決め指令を行うと、ワーク端面の座標系上に設定された仮想Y軸位置に工具刃先中心が位置するようにC軸の角度を計算し、C軸とH軸を回転させると共にH軸中心がX軸上で移動する。更にDカット面上のC軸中心からの偏心量を指令すると、図2(a)に示すように仮想Y軸上のXpの位置に工具先端が一致するように工具中心を移動する(図1では(3)の状態)。なお、図1のプログラム例では、G00 X50 Y50指令が、前記各指令に相当する。次に同時同期タップ指令(G84 X10.F1.S1=S2 S100.,R2)のX座標値を読み取り、終点(タップ穴底)位置であるXu(図1のプログラム例ではX10)までタップビットを前進させ、同時にX軸の制御単位時間当たりの移動量に対応した角度だけ主軸を回転させながらタップ加工を実行する。図2(b)に示すように穴底p(=Xu)に達すると、続いて工具主軸を逆転させてタップビットを逆転させながら引き抜き、pの位置に戻ったところで同期タップ加工は完了する(図1の(4)の状態)。続いて(図1のプログラム例ではG00 X50 Y0を指令して)ワークと工具が干渉しない位置に工具を退避させると共に工具方向と仮想平面X軸方向を一致させる(図1の(5)の状態)。そして仮想Y軸同期キャンセル指令(同様にここでは例えばM130)を指令し、更に仮想Y軸補間モードキャンセル(例えばM120)を指令して仮想Y軸制御モードを終了する(図1の(6)の状態)。最後に(図1のプログラム例ではG00 X100を指令して)、タップビットを搭載したタレットを初期位置に復帰させる(図1の(7)の状態)。
 以上のようにしてメインセット(系統1)への1同期タップ加工工程の加工プログラムで、表裏両面に同時に同期タップ加工が行なえることとなるが、この制御が行なえるのは前述したようにメインセットとサブセットの夫々のタレット軸に、寸法的諸元が同一の工具が等しく装着された場合に限られる。同時同期タップ加工に於いて、サブセットはメインセットで計算された制御・駆動データを用いる。またこれらは仮想軸から実軸への座標変換を行って、メインセット側で計算されたX1軸データはX2軸へ、H1軸データはH2軸及びC1軸に、S1軸データはZ1軸と同期化処理を行なった後でS2軸に入力することにより、メインセット、セブセット及びC1軸は同時同期タップ加工の動作を行うことができる。
 加工プログラム中で加工終点位置(穴底位置)が指定されると、同様にpが求められ、pとpを結ぶ線を仮想XY平面上で直線補間する。更に当該移動量を最終的にはX軸とH軸(回転軸)とC軸(回転軸)の実軸位置に変換して各軸のサーボ制御部に出力し、サーボモータを駆動する。これによりタレットの実軸X軸方向の上下移動とC軸に把持されたワークの回転、タレット軸のC軸方向への位置制御が協調して行なわれる。その結果、ワークの中心から指定距離だけ離れた位置で、半径方向と直角な面に垂直に穴あけやタップ送り等の移動制御を行うことができる。
 なお、図2に示すような仮想Y軸の偏心穴に於ける穴の開始点と底位置はH軸中心と工具先端中心を結ぶ直線上にあるが、図2(a)の状態でH軸をC軸中心方向に単に平行移動させただけでは図2(b)のようにはならず、底位置までズレが生じて断面が長穴となり、正しい加工ができない。従って仮想Y軸における偏心位置での深さ方向への切込みには、H軸のC軸方向への位置制御だけではなく、H軸C軸間の距離に応じてH軸及びC軸の回転角度を変化させる必要がある。
 図3は実施例1のNC装置による同時同期タップ加工を行うためのフローチャートの一例である。
 Step1で加工プログラムを読み込み、Step2で仮想Y軸に関するプログラム命令を解読し、所定の処理プログラムを実行する。仮想Y軸に関する命令としては仮想Y軸補間モードオン/オフ、この実施例ではM121/M120をこれに充てる。このM121により仮想XY軸平面での補間演算を可能とし、通常の旋盤としてのXZ平面による加工と、仮想Y軸を用いた制御ができる加工とを選択する切換処理部を作動させる。また、M121/M120は外部出力され、PLC(Programmable Logic Controller)により外部入力信号として再度NC装置に入力する方法を採用しているが、NC装置内部で切り換えるようにすることも可能である。
 また他の命令としては仮想Y軸で二つのタレット軸の同期制御を行うためのM131(仮想Y軸同期オン/オフ)がある。このM131を指定することによりH2軸はH1軸データにより駆動されると解釈し、M130でキャンセルされ、夫々が独立して駆動されることになる。
 更にStep1で読み込んだ加工プログラム中の同期タップ指令G84はオリエント指令付同期タップであり、G84XxFpSs,R2;というフォーマットで指令され、Fpはピッチ、Ssは主軸回転数、“,R2”はオリエント後同期タップを開始することを表し、標準的な命令であるが、標準的な命令には無いS2=S1、またはS1=S2という指定を追加することにより、S1,S2の二つある同期タップ主軸のどちらを基準として同期タップを行うかを指定することができる。
 Step3では二つの同期タップ主軸S1,S2の、例えば図5に例示するような多段加減速の各段の同期タップ切換え主軸回転速度と同期タップ加減速時定数を比較し、加速度が緩やかな最適な同時同期タップ加減速時定数、同時同期タップ切換え主軸回転速度を選定し、同時同期タップ最適多段加減速選定メモリの各段に格納する。同期タップ主軸には加減速時間を最短にして加工効率を上げるために、図6に示すような多段加減速制御が適用されることが多いが、これは最大トルクで駆動制御できる方法であり、夫々の軸についてパラメータ設定される。
 Step4ではStep3で同時同期タップ最適多段加減速選定メモリに設定された各段の同時同期タップ時定数、同時同期タップ切換え主軸回転速度から、加減速中の主軸回転速度が同時同期タップ切換え主軸回転速度以下かつ同時同期タップ切換え主軸回転速度以上となる段を検索し、その段に設定されている同時同期タップ時定数とその段の主軸回転範囲から加減速移動量(回転角度)を計算する。前記で算出された加減速移動量(回転角度)とピッチで決まるX1軸の加速度移動量を求め、指令位置(穴底位置)に停止するように加減速処理する。
 Step5ではStep4で加減速処理したX1軸移動量(FdT)を、同一の制御単位時間当たりのS1軸回転角度(FdT)に変換する。
 Step6では、仮想座標系のX1軸座標値をX1、H1、C1の実軸座標値に座標変換して、前回の制御時間単位の実軸座標値の差から実軸X1、H1、C1の移動量(FdT)を算出する。
 Step7では前記Step5で変換された同期タップ実軸用のS1軸回転角度(FdT)をコピーしてS2軸の同期移動量とする。
また前記Step6で変換されたX1、H1の実軸移動量(FdT)をコピーして、同期側タレットのX2軸、H2軸の同期移動量とする。
本実施例ではメインセットを基準側、サブセットを同期側に指定した制御を行なっているが、二つの同期タップ主軸S1,S2の基準・同期を逆にしたい場合には、同時同期タップ指令中に“S2=S1”を指令すればS2軸が基準側に、S1軸が同期側に設定され、S2軸用に計算されたS2軸回転角度(FdT)がS1軸用にコピーされ、S1軸の同期移動量とする。
 Step8では前記処理により同期タップ主軸S1,S2、同期タップ穴あけ軸の座標変換後の実軸X1、H1、C1と同期側の同期タップ穴あけ軸の実軸X2、H2用実軸移動量(FdT)をサーボ制御部に出力する。
 以上の処理により仮想Y軸制御の複合旋盤による同時同期タップ加工が実現できるが、更なる詳細については図4を用いて後述する。
 なお、表裏同時同期タップ加工の加工プログラムでは夫々の側の動作は同じであるので、指令プログラムは第1系統にのみ指令し、第2系統の軸は第1系統の指令を利用する。実際の同時同期タップ加工における他の動作の開始や終了等との時間的な関係は、同期待ち合わせ指令(図1加工プログラム例で示す「!○」指令)等を用いることによって制御される。
 図4は実施例1によるNC装置の構成の一例を示すブロック図である。
 1はNC装置、2は入力操作部、3は入力制御部、4はメモリ、5はパラメータ記憶部、6は加工プログラム格納部、7は共有エリア、8は画面表示データ記憶部、9は画面処理部、10は表示部である。11は解析処理部、12は機械制御信号処理部、13はPLC、14は仮想Y軸補間モード信号処理手段、15は仮想Y軸同期信号処理手段、16は同時同期タップ指令処理手段、17は補間処理部、18はX1/Y1/C1軸補間手段、19はX2/Y2軸補間処理手段、20は同時同期タップ補間処理手段、21はタップ主軸(S1,S2)時定数選択手段、22は穴あけ軸(X1)加減速処理手段、23はタップ主軸(S1)~穴あけ軸(X1)同期処理手段、24は軸データ出力部である。31乃至37は夫々X1、X2、H1、H2、C1、S1、S2軸のサーボ制御部、41乃至47は夫々X1、X2、H1、H2、C1、S1、S2軸のサーボモータである。また、51は仮想Y軸制御処理部、52は仮想Y軸制御切換処理部、53は基準タレット仮想Y軸座標変換処理手段、54は同期側タレット同期処理手段(X2、H2)、55はタップ主軸(S2)同期処理手段である。
 次に動作について説明する。NC装置1はオペレータが操作する入力操作部2のスイッチ信号の変化等を入力制御部3が検知し、メモリ4内のパラメータ記憶部5、加工プログラム格納部6、共有エリア7、画面表示データエリア8等の各所にアクセスしてメモリ内容を変更する書き込みや読み取り等の信号を与える。画面表示データエリア8の所定のアドレスに格納されている各種表示データは画面処理部9によって読み出され、表示部10上の所定の位置にデータの表示を行う。
 パラメータ記憶部5に記憶されているパラメータには、図5に示す同期タップ主軸用加減速時定数パラメータや、NC装置の仕様を決定したり、機械制御したりするのに必要な条件データ等が含まれる。加工プログラムは少なくとも一つのワークを加工するのに必要な、機械の動作内容や刃物の移動経路等がNC装置の解読できるフォーマットで記述し、格納されている。共有エリア7は加工プログラムの解析や機械動作を制御中のシステム制御に必要な一時的なデータ等が記憶される。また、画面表示データエリア8には入力操作部2で指定された、オペレータが必要とする現在位置情報、主軸回転情報、NC装置の制御モード、各種選択信号の出力状態等の各種データを格納している。
 解析処理部11は前記加工プログラム格納部6に記憶されている加工プログラムの内の、指定されたプログラムを先頭から順次読み出し、各種NC指令毎に指定された処理手順によって、パラメータ5を参照し、処理中のデータ等を共有エリア7に一時記憶しながらプログラムを解析し実行して行く。
 機械制御信号処理部12は、解析処理部11からメモリ4に出力される機械周辺装置の制御に関する情報を読み取り、PLC13に出力してラダー回路に制御情報を与え、図示しない外部入出力信号I/Fから各種オン/オフ等の制御信号を機械側に出力する。また、PLC13からNCの各種処理部への制御用に入力される信号や機械側から入力される外部信号をメモリ4内の共有エリア7に書き込み、NC装置の制御に作用させ、NC装置及び機械の制御が正しく進行するように作動する。
 仮想Y軸補間モード信号処理手段14は、例えば仮想Y軸補間モードのオン/オフをNC装置の外部から入力される選択信号によって切り換える場合に、機械制御信号処理部12に入力される外部信号を受け付け、所定のパラメータをセットまたはリセットする。この切換制御は加工プログラム中の命令によってNC装置内部で処理することもできる。本発明に於いては補助指令(M121及びM120)でオン/オフ信号に変換してNC装置に入力する方法を用いている。
 仮想Y軸同期信号処理手段15は、例えば仮想Y軸補間モード中に二つの系統(タレット1、タレット2)で同時に同期して仮想Y軸加工を行うために、仮想Y軸同期オン/オフをNC装置の外部から入力される選択信号によって切り換える場合に、機械制御信号処理部12に入力される外部信号を受け付け、所定のパラメータをセットまたはリセットする。二つの系統で同時に同期して仮想Y軸加工を行うために、仮想Y軸同期指令を与えるが、ここでは仮想Y軸補間モードと同様に補助指令(M131及びM130)でオン/オフ信号に変換してNC装置に入力する方法を用いている。
 解析処理部11内にある同時同期タップ指令処理手段16は、従来からある同期タップ加工を二つの系統のタレット軸を用いてワークの直径方向の両面に同時に行なえるようにするための同時同期タップ命令を解読する。同時同期タップ加工を最も簡単に行うには、少なくとも図2aに示すように、C軸を中心に対向して配置された二つのタレット軸の同期タップ主軸に同一のタップビットを等しく取り付け、二つのタレット軸のワーク中心からの位置(X軸)及びタレット軸の回転は基準側の系統の補間により求め、基準側となったX、H軸の駆動データを用いて同期側X,H軸を同期駆動すればよい。ワークを回転させるC軸も基準軸であるH軸の駆動データを用いて同期駆動することにより同時同期制御の動きが実現できる。
 補間処理部17は、X1/Y1/C1軸補間処理手段18、X2/Y2軸補間処理手段19、同時同期タップ補間処理手段20から構成されている。同時同期タップ補間処理手段20はタップ主軸(S1,S2)時定数選択手段21、穴あけ軸(X1)加減速処理手段22、タップ主軸(S1)~穴あけ軸(X1)同期処理手段23から成る。
ここで、本発明の実施例1の説明に於いては、ワーク長さ方向であるZ軸については仮想Y軸制御加工には直接の関与は無いので、Z軸に関する図面記載や動作説明は割愛する。また、同時同期タップ加工を実行するまでに工具を加工開始点まで移動させるプログラムが必要であるが、ここでは図2aのように、指令位置に対して工具補正された工具中心がpに位置決めされているものとして説明する。
 通常の旋盤としての加工制御に於いては補間処理部17内の図示しないX1,Z1,C1軸とX2,Z2軸の補間処理手段を用い、加工プログラムから求められる相対移動量に直線や円弧等の補間処理を行ない、これらの出力データを軸データ出力部24に出力し、各軸のサーボ制御部31乃至37に入力し、該サーボ制御部31乃至37が出力する駆動電力によってサーボモータ41乃至47を回転駆動する。これによって制御対象機械である旋盤のXZ軸、主軸、C軸、同期タップ主軸などを駆動して所望の加工を行なわせる。
 仮想Y軸制御時には、外部から入力される仮想Y軸補間モード信号によって仮想Y軸制御切換処理部52が作動し、前記補間処理部17の補間計算結果を仮想Y軸制御処理部51で使用できるように切り換える。仮想Y軸制御処理部51は基準側タレット仮想Y軸座標変換処理手段53、同期側タレット同期処理手段(X2、H2)54、タップ主軸(S2)同期処理手段55から成る。
 タップ主軸(S1、S2)時定数選択手段21は二つの同期タップ主軸S1,S2の、例えば図5に示すような主軸回転速度と加減速時定数パラメータからS1、S2の同じ主軸回転速度に於ける加減速時定数を比較し、長い方(緩やかな方)の値を例えば同時同期タップ最適多段加減速選定メモリ(パラメータ記憶部5)の所定の場所に格納する。同期タップ主軸には加減速時間を最短にして加工効率を上げるために、多段加減速制御が適用されることが多い。これは例えば図6に示すように夫々が徐々に緩やかになる傾き一定の直線加減速を複数回に分けて行うことにより最大トルクで駆動制御できるものである。これらに対応できるように各同期タップ主軸には図5に示すように、同期タップ用として同期タップ加減速時定数及び同期タップ切換え主軸回転速度が多段加減速制御用に所定段数分設定できるようになっている。図5の例では3段の多段加減速設定であるが、多段加減速の段数を限定したものではない。本処理では多段加減速の場合、S1,S2軸の同じ主軸回転速度に於ける加減速時定数を比較し、長い方の値と加減速時定数が切換わる主軸回転速度を前記同時同期タップ最適多段加減速選定メモリ(パラメータ記憶部5)の対応段に格納する。また、図5と図6において、例えば図5の同時同期タップ加減速定数1が図6のt1に対応し、また図5の同時同期タップ加減速時定数2が図6のt2に対応し、例えば図5の同時同期タップ切換え主軸回転速度1が図6のs1に対応し、図5の同時同期タップ切換え主軸回転速度2が図6のs2に対応する。
 穴あけ軸(X1)加減速手段22は、前記タップ主軸(S1、S2)時定数選択手段21で最適多段加減速選定メモリに設定した各段の同時同期タップ時定数、同時同期タップ切換え主軸回転速度から、制御単位時間毎に加減速中の主軸回転速度が同時同期タップ切換え主軸回転速度以下かつ同時同期タップ切換え主軸回転速度以上となる段を検索し、その段に設定されている同時同期タップ時定数とその段の主軸回転範囲から加減速移動量(回転角度)を計算する。例えば図6の場合、0~s1の主軸回転速度領域での加減速移動量 = s1/t1、s1~s2の主軸回転速度領域での加減速移動量=(s2-s1)/t2 と計算する。前記で算出された加減速移動量(回転角度)とピッチで決まるX1軸の加速度移動量を求め、指令位置(穴底位置)に停止するように加減速処理する。
 タップ主軸(S1)~穴あけ軸(X1)同期処理手段23は、前記穴あけ軸(X1)加減速手段22から出力される、X1軸の加減速処理された制御単位時間毎の移動量(FdT)に基づき、下記(式1)によりこの移動量(FdT)の移動中に回転すべき同期タップ主軸の移動量(回転角度)を計算する。
回転角度(r/dT)=X1移動量(mm/dT) ÷ねじピッチ(mm/r) …(式1)
基準側タレット仮想Y軸座標変換処理手段53は、前記穴あけ軸(X1)加減速処理手段22から出力される、仮想座標系のX1軸の移動量(FdT)を前回のX1軸のX1軸の仮想座標系の座標値に加算して今回のX1軸の仮想座標系の座標値を算出する。続いて仮想座標系のX1軸の座標値を座標変換してX1軸とH1軸(回転軸)とC1軸(回転軸)の実軸位置に変換する。前記計算した実軸位置から前回制御単位時間の実軸位置との差を計算することでX1軸、H1軸、C1軸の実軸移動量(FdT)を軸データ出力部24に出力する。
同期側タレット同期処理手段(X2、H2)55は前記基準側タレット仮想Y軸座標変換処理手段53から出力されたX1軸の実軸移動量(FdT)をサブセット側のX2軸
にコピーし、軸データ出力部24に出力する。また同様にH1軸の実軸移動量(FdT)をサブセット側H2軸にコピーし、軸データ出力部24に出力する。
これによりメインセットに同期してサブセット側も図2の仮想座標系上の同期タップ開始位置Xpと穴底位置Xpを結ぶ線上を直線移動する。
タップ主軸(S2)同期処理手段55は、前記タップ主軸(S1)~穴あけ軸(X1)同期処理手段23で基準側として変換されたS1軸回転角度(FdT)をS2軸にコピーし、軸データ出力部24に出力する。
 仮想座標系のX1軸とタップ主軸S1軸を同期制御し、仮想座標系のX1軸を実軸のX1、H1、C1に変換し、メインセット側でY軸がない機械に於いてY軸方向に偏心した位置で同期タップ加工を可能とする。更にメインセット側に対してサブセット側のX2軸、H2軸、S2軸を同期制御することで、2系統のタレットを有する仮想Y軸制御機を用いてスパナカットされた両面に同期タップ加工を同時に行うことができるが、前記構成は一例であり、各種変形が可能である。
 前記説明では多段加減速を用いるものについて説明しているが、1段の直線加減速や指数加減速でも同様である。但し、何れの場合についてもX軸、H軸、C軸は全て時定数やサーボ応答ゲインを予め同じ値に設定する必要がある。
 この発明に係る数値制御装置は、一つのC1軸に対して、X1軸、Z1軸、第一のタレット軸(H1軸)及びS1軸から成るメインセットと、X2軸、Z2軸、第二のタレット軸(H2軸)及びS2軸から成るサブセットとを点対称に配置した機械を、数値制御して同期タップ加工するのに適している。
 6 加工プログラム、7 共有エリア、11 解析処理部、12 機械制御信号処理部、13 PLC、14 仮想Y軸補間モード信号処理手段、15 仮想Y軸同期信号処理手段、16 同時同期タップ指令処理手段、20 同時同期タップ補間手段、21 タップ主軸(S1、S2)時定数選択手段、22 穴あけ軸(X1)加減速処理手段、23 タップ主軸(S1)~穴あけ軸(X1)同期処理手段、51 仮想Y軸制御処理部、52 仮想Y軸制御切換処理部、53 基準側タレット仮想Y軸座標変換処理手段、54同期タレット同期処理手段(X2、H2)、55 タップ主軸(S2)同期処理手段。

Claims (2)

  1.  一つのC1軸に対して、X1軸、H1軸及びS1軸から成るメインセットと、X2軸、H2軸及びS2軸から成るサブセットとを、対向に配置した機械を制御する数値制御装置において、
     前記メインセットとサブセット夫々のS1軸、S2軸の加減速時定数を比較して長い方の時定数を選択するタップ主軸(S1、S2)時定数選択手段と、前記タップ主軸(S1、S2)時定数選択手段により選択された主軸時定数、指令された主軸回転数に基づいてX1軸の加減速移動量の計算、加減速処理する穴あけ軸(X1)加減速処理手段と、前記穴あけ軸(X1)加減速処理手段の出力であるX軸移動データからタップ主軸の回転量を計算するタップ主軸(S1)~穴あけ軸(X1)同期処理手段と、前記タップ主軸(S1)~穴あけ軸(X1)同期処理手段で計算されたタップ主軸回転量を同期側に同期データとして転記するタップ主軸(S2)同期処理手段とを設け、仮想座標系のX軸の指令により座標変換してメインセット側のX1軸、H1軸、C1軸の駆動データで、サブセット側のX2軸、H2軸、S2軸を駆動することにより、C1軸に把持したワークの両面への同期タップ加工を同時に行うよう前記機械を制御することを特徴とする数値制御装置。
  2.  一つのC1軸に対して、X1軸、H1軸及びS1軸から成るメインセットと、X2軸、H2軸及びS2軸から成るサブセットとを、対向に配置した機械を制御する数値制御装置において、
     複数の工具主軸を同時に駆動して同期タップ加工を行なう同時同期タップ指令を新たに設定すると共に、前記同時同期タップ指令を解析処理する同時同期タップ指令処理手段と、前記メインセットとサブセット夫々のS1軸、S2軸の加減速時定数を比較して長い方の時定数を選択するタップ主軸(S1、S2)時定数選択手段と、前記タップ主軸(S1、S2)時定数選択手段により選択された主軸時定数、指令された主軸回転数に基づいてX1軸の加減速移動量の計算、加減速処理する穴あけ軸(X1)加減速処理手段と、前記穴あけ軸(X1)加減速処理手段の出力であるX軸移動データからタップ主軸の回転量を計算するタップ主軸(S1)~穴あけ軸(X1)同期処理手段と、前記タップ主軸(S1)~穴あけ軸(X1)同期処理手段で計算されたタップ主軸回転量を同期側に同期データとして転記するタップ主軸(S2)同期処理手段とを設け、仮想座標系のX軸の指令により座標変換してメインセット側のX1軸、H1軸、C1軸の駆動データで、サブセット側のX2軸、H2軸、S2軸を駆動することにより、C1軸に把持したワークの両面への同期タップ加工を同時に行うよう前記機械を制御することを特徴とする数値制御装置。
PCT/JP2012/000826 2012-02-08 2012-02-08 数値制御装置 WO2013118169A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012524942A JP5240412B1 (ja) 2012-02-08 2012-02-08 数値制御装置
CN201280001977.4A CN103348295B (zh) 2012-02-08 2012-02-08 数控装置
PCT/JP2012/000826 WO2013118169A1 (ja) 2012-02-08 2012-02-08 数値制御装置
DE201211004962 DE112012004962T5 (de) 2012-02-08 2012-02-08 Numerische Steuervorrichtung
US13/809,810 US9122265B2 (en) 2012-02-08 2012-02-08 Numerical control device for drilling and tapping with two synchronized spindles
TW101107624A TWI474142B (zh) 2012-02-08 2012-03-07 數值控制裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000826 WO2013118169A1 (ja) 2012-02-08 2012-02-08 数値制御装置

Publications (1)

Publication Number Publication Date
WO2013118169A1 true WO2013118169A1 (ja) 2013-08-15

Family

ID=48903607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000826 WO2013118169A1 (ja) 2012-02-08 2012-02-08 数値制御装置

Country Status (6)

Country Link
US (1) US9122265B2 (ja)
JP (1) JP5240412B1 (ja)
CN (1) CN103348295B (ja)
DE (1) DE112012004962T5 (ja)
TW (1) TWI474142B (ja)
WO (1) WO2013118169A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529352B2 (en) 2013-06-06 2016-12-27 Mitsubishi Electric Corporation Numerical control device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038002A1 (ja) * 2012-09-04 2014-03-13 三菱電機株式会社 数値制御装置
JP5642298B1 (ja) * 2013-04-30 2014-12-17 三菱電機株式会社 数値制御装置
JP5778801B2 (ja) * 2014-01-23 2015-09-16 ファナック株式会社 工作機械の数値制御装置
DE102015013283B4 (de) * 2014-10-17 2019-01-24 Fanuc Corporation Vorrichtung und Verfahren zum Steuern einer Werkzeugmaschine, um einen synchronisierten Betrieb einer Spindelachse und Vorschubachse zu steuern
JP6088581B2 (ja) * 2015-06-04 2017-03-01 ファナック株式会社 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法
JP6806737B2 (ja) * 2018-06-15 2021-01-06 ファナック株式会社 同期装置、同期方法及び同期プログラム
CN111966030A (zh) * 2020-06-28 2020-11-20 徐州恒辉编织机械有限公司 一种编织机主机多伺服电机同步控制系统及控制方法
US20240219893A1 (en) * 2021-05-12 2024-07-04 Fanuc Corporation Numerical control device and computer-readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244350A (ja) * 1991-01-30 1992-09-01 Okuma Mach Works Ltd 複合工作機械における制御方法
JPH10202428A (ja) * 1997-01-24 1998-08-04 Yachiyo Eng:Kk 管体用のねじ孔加工装置
JPH11156638A (ja) * 1997-11-21 1999-06-15 Yaskawa Electric Corp 数値制御装置
JP2001134321A (ja) * 1999-11-04 2001-05-18 Mitsubishi Electric Corp 数値制御装置
JP2001277048A (ja) * 2000-03-31 2001-10-09 Kurimoto Ltd 異形管タップ加工装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3328327C2 (de) 1983-08-05 1985-10-10 Index-Werke Kg Hahn & Tessky, 7300 Esslingen Vorrichtung zum spanabhebenden Bearbeiten eines Werkstücks sowie NC-gesteuerte Drehmaschine zur Druchführung eines solchen Verfahrens
USRE34155E (en) 1983-08-05 1993-01-05 Index-Werke Gmbh & Co. Kg Hahn & Tessky Machining a workpiece in a turret lathe and an NC lathe therefor
US4612832A (en) * 1984-04-27 1986-09-23 Kabushiki Kaisha Miyano Tekkosho Multiple-function machine tool with two spindles
US4612690A (en) * 1984-12-24 1986-09-23 Crankshaft Machine Company Multiple spindle machine tool
JP2581797B2 (ja) * 1989-04-27 1997-02-12 オ−クマ株式会社 同期制御方法及びその装置
JPH0644239A (ja) 1992-07-23 1994-02-18 Sharp Corp 日本語文章作成装置
ES2207850T3 (es) * 1997-06-17 2004-06-01 WITZIG & FRANK GMBH Maquina heramienta muy flexible.
NL1008119C2 (nl) * 1998-01-22 1999-07-26 Reginald Ir Galestien Een methode voor het meten van werkstukken met inwendige en uitwendige schroefdraad of soortgelijke groeven.
JP4346824B2 (ja) * 1998-12-24 2009-10-21 三菱電機株式会社 数値制御装置
DE19904253A1 (de) 1999-02-03 2000-08-10 Index Werke Kg Hahn & Tessky Werkzeugmaschine
JP4736173B2 (ja) 2000-10-27 2011-07-27 株式会社ニコン 撮像装置
JP4511949B2 (ja) * 2003-02-06 2010-07-28 三菱電機株式会社 ネジ切り制御方法及びその装置
CN100341654C (zh) * 2004-12-21 2007-10-10 应安义 气动攻丝机
WO2008156425A1 (en) * 2007-06-20 2008-12-24 Unisteel Technology International Limited Thread forming screw thread and corresponding thread roll die
CN102027426B (zh) * 2008-05-13 2013-06-12 三菱电机株式会社 数控方法及其装置
US8390416B2 (en) * 2008-10-28 2013-03-05 Koninklijke Philips Electronics N.V. Reuse of screw thread
CN101879637B (zh) * 2010-06-24 2012-01-04 浙江三田滤清器有限公司 多机位攻丝装置及其方法
DE112011105336B4 (de) * 2011-06-14 2017-03-23 Mitsubishi Electric Corp. Numerische-Steuerung-Vorrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244350A (ja) * 1991-01-30 1992-09-01 Okuma Mach Works Ltd 複合工作機械における制御方法
JPH10202428A (ja) * 1997-01-24 1998-08-04 Yachiyo Eng:Kk 管体用のねじ孔加工装置
JPH11156638A (ja) * 1997-11-21 1999-06-15 Yaskawa Electric Corp 数値制御装置
JP2001134321A (ja) * 1999-11-04 2001-05-18 Mitsubishi Electric Corp 数値制御装置
JP2001277048A (ja) * 2000-03-31 2001-10-09 Kurimoto Ltd 異形管タップ加工装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529352B2 (en) 2013-06-06 2016-12-27 Mitsubishi Electric Corporation Numerical control device

Also Published As

Publication number Publication date
US20130204427A1 (en) 2013-08-08
DE112012004962T5 (de) 2014-09-25
TW201333650A (zh) 2013-08-16
CN103348295A (zh) 2013-10-09
JPWO2013118169A1 (ja) 2015-05-11
US9122265B2 (en) 2015-09-01
CN103348295B (zh) 2015-03-11
JP5240412B1 (ja) 2013-07-17
TWI474142B (zh) 2015-02-21

Similar Documents

Publication Publication Date Title
JP5240412B1 (ja) 数値制御装置
JP4888619B1 (ja) 数値制御装置
JP5132842B1 (ja) 数値制御装置
US8676358B2 (en) Numerical control method and numerical control device
US20120022682A1 (en) Numerical control device and method of controlling the numerical control device
US20160274560A1 (en) Numerical controller performing reciprocal turning in complex fixed cycle
WO2019012692A1 (ja) 数値制御装置および数値制御方法
JPS62237504A (ja) 数値制御装置
JP5287986B2 (ja) 数値制御装置及び数値制御工作システム
KR100809108B1 (ko) 자동 선반, 자동 선반 제어 방법 및 자동 선반 제어 장치
JP7448637B2 (ja) 工作機械の制御装置、制御システム、及び制御方法
JP5059360B2 (ja) 工作機械の早送り制御方法
JP2007179314A (ja) 工作機械及びそのプログラム変換方法
JP2017127949A (ja) インペラ加工装置
JPH0649260B2 (ja) 同期制御装置
CN117440869A (zh) 用于工具机的振动切削条件设定装置
JP5049566B2 (ja) 工作機械
JPH07185901A (ja) 重畳加工制御方法及びその数値制御装置
JP7413729B2 (ja) 工作機械及び工作機械の制御方法
JP2002172542A (ja) 多軸同期制御装置および多軸同期制御方法
JP2002172501A (ja) タッピング機構付き工作機械
JP5314358B2 (ja) 工作機械
JP2002326140A (ja) 多軸同期制御装置および多軸同期制御方法
JP2002219631A (ja) 多軸同期制御装置および多軸同期制御方法
JP2002312009A (ja) 数値制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012524942

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13809810

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120049624

Country of ref document: DE

Ref document number: 112012004962

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868062

Country of ref document: EP

Kind code of ref document: A1