WO2013118169A1 - 数値制御装置 - Google Patents
数値制御装置 Download PDFInfo
- Publication number
- WO2013118169A1 WO2013118169A1 PCT/JP2012/000826 JP2012000826W WO2013118169A1 WO 2013118169 A1 WO2013118169 A1 WO 2013118169A1 JP 2012000826 W JP2012000826 W JP 2012000826W WO 2013118169 A1 WO2013118169 A1 WO 2013118169A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axis
- tap
- acceleration
- spindle
- synchronization
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/182—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
- G05B19/186—Generation of screw- or gearlike surfaces
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/34—Director, elements to supervisory
- G05B2219/34333—Multi threading
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/50—Machine tool, machine tool null till machine tool work handling
- G05B2219/50008—Multiple, multi tool head, parallel machining
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/50—Machine tool, machine tool null till machine tool work handling
- G05B2219/50225—Synchronize feed and spindle speed as function of pitch of screw, thread
Definitions
- the present invention relates to a workpiece machining technique using a numerically controlled lathe controlled by a numerical control (hereinafter abbreviated as NC) device. More specifically, in lathe machining, the present invention relates to an eccentric machining that performs machining such as drilling at a position that is perpendicular to the XZ plane and perpendicular to the X-axis direction and away from the X-coordinate axis in the Y-axis direction. .
- NC numerical control
- one type of multi-tasking lathe has a Y axis as an additional axis perpendicular to the X (workpiece radial direction) Z (workpiece axis direction) plane, and drilled at a position away from the X coordinate axis in the Y axis direction.
- X workpiece radial direction
- Z workpiece axis direction
- Some have a Z-axis that moves in the direction and a turret axis (H-axis) that is driven by the X-axis and the Z-axis and that can rotate at an arbitrary angle perpendicular to the axis of the C-axis.
- H-axis turret axis
- the circumferential direction of the workpiece can be planarized by a virtual Y axis that does not actually exist. This processing is called D-cut because a part of the circular cross-section is linearly cut and a cross-section similar to the letter D is obtained.
- the D-cut processing is performed on the front and back surfaces of the workpiece, it is processed into a shape in which both sides of the circular cross-section are cut off. Double D-cut (the cross-section of the processed workpiece becomes a spanner opening, so Sometimes called a cut). This is because the same shape can be machined by applying the D-cut to the same workpiece twice with a conventional machine.
- Patent Document 3 since it is a machine composed of X, Z, spindle / C-axis, and fixed angle indexing turret, Y-axis control cannot be performed. . Accordingly, when drilling is performed on the outer diameter portion of the workpiece, all the holes are directed toward the workpiece center, and it is not possible to perform drilling perpendicular to the plane of the D-cut surface or the spanner-cut surface.
- JP-A-2000-218422 (Related description: page 5, column 7, line 25 to line 34, page 10, column 18, line 25 to page 11, column 19, line 32, FIG. 7 to FIG. 11)
- JP-A-60-04239 (Related description: line 5 of page 5 to page 6, column 2 of column 6, line 17 of outer diameter point machining in FIG. 10 (1e))
- the X-axis is movable so as to be movable in the X-axis direction about the C-axis gripping the workpiece.
- a turret shaft (H axis) capable of swinging in the circumferential direction (radial direction of the workpiece) is arranged, and the H axis can be controlled to rotate at an arbitrary angle.
- This so-called machine can be controlled as if there is a Y axis even if there is no Y axis as an actual axis, that is, it can perform virtual Y axis control.
- the H axis and the C axis are rotated at an equal angle, and the H axis is moved in the X axis direction to move away from the center of the workpiece by moving the rotating tool in and out of synchronization with the rotation.
- a virtual plane can be assumed at the position, and machining operations such as cutting and drilling in a direction perpendicular to the plane can be performed.
- the X-axis direction feed by the cooperation of the C-axis, the H-axis, and the X-axis, and the tool traveling direction is the Y-axis.
- Synchronous rotation control is required to rotate the C-axis and H-axis synchronous tools that maintain the angle so that they are perpendicular to each other and to rotate the S-axis tap tool, which is the main spindle for the rotary tool, in accordance with the screw pitch and feed rate.
- a machine with a set of XZHC axis and synchronous tap spindle S axis can perform synchronous tap processing with the same control as a normal synchronous tap, but simultaneously perform two synchronous tap processing on both sides of the spanner cut.
- the tool table having the H2, X2, and S2 axes is point-symmetric with respect to the existing tool table (the tool table having the H1, X1, and S1 axes) via the workpiece.
- the Z-axis Since the Z-axis is in a relative relationship between the tool and the workpiece, the Z-axis may be provided on either the tool table side or the workpiece holding side, but is generally provided on the tool table side. .
- appropriate synchronized tapping is performed if the operation of the two tool tables is not synchronized and the two rotary tool spindles on the two tool tables are not synchronized. I can't.
- the present invention has been made to solve the above-mentioned problems.
- a main set composed of an X1, H1 and S1 axes, an X2 axis, an H2 axis and an S2 axis. It is an object of the present invention to provide a numerical control apparatus capable of performing synchronous tapping on both surfaces in the diametrical direction of a workpiece accurately and simultaneously by controlling a machine in which a subset of the above is arranged point-symmetrically.
- the numerical control device of the present invention is a machine in which a main set consisting of X1, H1 and S1 axes and a subset consisting of X2, H2 and S2 axes are arranged symmetrically with respect to one C1 axis.
- a tapping spindle (S1, S2) time constant selection means for comparing the acceleration and deceleration time constants of the S1 axis and S2 axis of each of the main set and the subset to select a longer time constant; Based on the spindle time constant selected by the tap spindle (S1, S2) time constant selection means and the commanded spindle speed, the acceleration / deceleration movement amount of the X1 axis is calculated, and the drilling axis (X1) acceleration / deceleration for acceleration / deceleration processing is performed.
- tap spindle (S1) to drill axis (X1) synchronization processing means for calculating the rotation amount of the tap spindle from the X1 axis movement amount output from the drilling shaft (X1) acceleration / deceleration processing means, and the tap spindle (S1)-Drilling shaft (X1)
- a tap spindle (S2) synchronization processing means for transferring the tap spindle rotation amount calculated by the synchronization processing means as synchronization data on the synchronization side is provided, and the X1 axis and H1 axis on the main set side Drives the subset X2 axis, H2 axis, and S2 axis with drive data for the S1 axis, and controls the machine to simultaneously perform synchronous tapping on both sides in the diametrical direction of the workpiece gripped by the C1 axis It is.
- a main set including the X1, H1, and S1 axes and a subset including the X2, H2, and S2 axes are arranged symmetrically with respect to one C1 axis.
- simultaneous synchronous tap command processing means for newly setting a simultaneous synchronous tap command for simultaneously driving a plurality of tool spindles to perform synchronous tap machining and analyzing the simultaneous synchronous tap command
- a tap spindle (S1, S2) time constant selection means for selecting the longer time constant by comparing the acceleration and deceleration time constants of the S1 axis and S2 axis of each of the main set and the subset, and the tap spindle (S1, S2) Drilling shaft (X1) acceleration / deceleration processing for calculating and accelerating / decelerating the X-axis acceleration / deceleration movement based on the spindle time constant selected by the time constant selection means and the commanded spindle speed
- a tapping spindle A tapping spindle
- the present invention it is possible to select which of the main shafts of both sets is used as a reference, and the reliable simultaneous synchronous tapping with the maximum torque that does not cause the vibration of the servo motor of each rotary tool drive unit. Control can be done. Accordingly, since synchronous tapping is simultaneously completed on both surfaces of the workpiece in about half the time of the conventional method, there is a remarkable industrial effect that productivity is approximately doubled.
- FIG. 1 shows a main set of an X1 axis, a Z1 axis, a first turret axis (H1 axis), and an S1 axis for one C1 axis that rotates a workpiece by controlling the position according to the first embodiment of the present invention.
- X2 axis, Z2 axis, second turret axis (H2 axis), and a subset of S2 axis controlled by a point-symmetrical machine, spanner cut on both sides (back surface)
- Fig. 5 shows an example of synchronous tap machining operation and an example of the program.
- tapping is not a method that uses a floating tap that automatically cuts by the propulsion force of the tap simply by rotating the spindle, but the tap bit (tapping tool) is held by the synchronous tap spindle chuck, and the rotation and feed of the tap are synchronized. This is due to a synchronous tap or a rigid tap that is controlled to be cut by the NC device.
- the Z axis operating direction is a direction perpendicular to the XY plane, the H axis, and the C axis operating surface, and does not affect the basic operation of the first embodiment of the present invention. The explanation of the operation etc. is omitted.
- a main set comprising an X1 axis, a Z1 axis, a first turret axis (H1 axis) and an S1 axis, an X2 axis, a Z2 axis, a second turret axis (H2 axis) and an S2 axis
- a set of a reference C1 axis, an X1 axis, a Z1 axis, a turret axis H1 axis, and a synchronous tap main axis S1 axis (by controlling the newly configured machine as described above ( Synchronous tapping using, for example, virtual Y-axis control to the surface (a predetermined surface of the workpiece) by the main set, and driving the H2 axis in synchronization with the main set, the X2 axis, the Z2 axis, It enables simultaneous synchronous tapping, which simultaneously performs synchronous tapping on the back surface (surface opposite to the surface in the diameter direction of the workpiece) by the set (subset) of the H2 axis and S2 axis.
- FIG. 1 shows an example of a program for each system.
- the reference axis and the synchronization axis move in the same way, and synchronous tapping is performed simultaneously.
- synchronous tapping can be performed simultaneously on both sides.
- the main set and the subset turret shafts are arranged so as to face each other about the C1 axis that grips the workpiece.
- simultaneous synchronous tapping with this machine requires virtual Y-axis machining (control), but as a preliminary preparation for virtual Y-axis machining, the tool is changed to a tap tool and the axis for rotating the workpiece is set to C It is necessary to switch to the axis control mode.
- the tool direction and the virtual plane X-axis direction are made parallel (G0Xx1H0C0 is commanded for each system).
- the tool tip (center) is positioned at a position x1 away from the center of the C1 axis in the X axis direction, and the H axis and the C axis are positioned at 0 degrees (state (1) in FIG. 1).
- a virtual Y axis interpolation mode command (here, for example, M121) is commanded by the machining program of the main set (system 1 $ 1) to set the virtual Y axis interpolation mode.
- a virtual Y-axis synchronization command (here, for example, M131) is given in order to simultaneously perform virtual Y-axis machining in the two systems.
- a command for example, “!” Command is used to wait for synchronization between the main set and the subset (system 2 $ 2), “! 2” is commanded to the main set and “! 1” is commanded to the subset, the main set and the subset are set. (The state of (2) in FIG. 1).
- the C-axis angle is calculated so that the tool edge center is located at the virtual Y-axis position set on the coordinate system of the workpiece end surface. Then, the C axis and the H axis are rotated and the center of the H axis is moved on the X axis. When the amount of eccentricity from the C-axis center on the D-cut surface is further commanded, the tool center is moved so that the tool tip coincides with the position of Xp 1 on the virtual Y-axis as shown in FIG. 1 (state (3)). In the program example of FIG. 1, the G00 X50 Y50 command corresponds to each command.
- synchronous tapping can be performed on both the front and back surfaces simultaneously.
- This control can be performed as described above. This is limited to the case where tools having the same dimensional specifications are equally mounted on the turret shafts of the set and the subset.
- the subset uses control and drive data calculated in the main set. They also perform coordinate conversion from the virtual axis to the real axis.
- the X1 axis data calculated on the main set side is synchronized with the X2 axis
- the H1 axis data is synchronized with the H2 and C1 axes
- the S1 axis data is synchronized with the Z1 axis.
- p 2 is similarly obtained, and a line connecting p 1 and p 2 is linearly interpolated on the virtual XY plane. Further, the movement amount is finally converted into actual axis positions of the X axis, the H axis (rotation axis), and the C axis (rotation axis) and output to the servo control unit of each axis to drive the servo motor. Thereby, the vertical movement of the turret in the X-axis direction, the rotation of the workpiece gripped by the C-axis, and the position control of the turret shaft in the C-axis direction are performed in cooperation.
- FIG. 3 is an example of a flowchart for performing simultaneous synchronous tapping by the NC apparatus according to the first embodiment.
- Step 1 a machining program is read, and in Step 2, a program command related to the virtual Y axis is decoded, and a predetermined processing program is executed.
- the virtual Y axis interpolation mode is turned on / off.
- M121 / M120 is used. This M121 enables an interpolation calculation on the virtual XY axis plane, and operates a switching processing unit that selects machining based on the XZ plane as a normal lathe and machining that can be controlled using the virtual Y axis.
- M121 / M120 is output to the outside and adopts a method of inputting it again to the NC apparatus as an external input signal by a PLC (Programmable Logic Controller), it is also possible to switch within the NC apparatus.
- PLC Programmable Logic Controller
- the synchronous tap command G84 in the machining program read in Step 1 is a synchronous tap with an orientation command, and is commanded in a format of G84XxFpSs, R2; Fp is a pitch, Ss is a spindle speed, and “, R2” is synchronized after orientation.
- Step 3 the synchronous tap switching main shaft rotation speed of each of the two synchronous tap spindles S1 and S2 of the multi-stage acceleration / deceleration as exemplified in FIG. 5 is compared with the synchronous tap acceleration / deceleration time constant, and the optimum acceleration is moderate. Select the simultaneous synchronous tap acceleration / deceleration time constant and simultaneous synchronous tap switching spindle speed, and store them in each stage of the simultaneous synchronous tap optimum multistage acceleration / deceleration selection memory.
- multi-stage acceleration / deceleration control as shown in FIG. 6 is often applied, but this is a method capable of driving control with maximum torque, Parameters are set for each axis.
- Step 4 from the simultaneous synchronous tap time constant of each stage set in the simultaneous synchronous tap optimum multistage acceleration / deceleration selection memory in Step 3, and the synchronous synchronous tap switching main shaft rotational speed, the main shaft rotational speed during acceleration / deceleration is changed to the synchronous synchronous tap switching main shaft rotational speed.
- a stage that is equal to or higher than the simultaneous synchronous tap switching spindle rotational speed is searched below, and the acceleration / deceleration movement amount (rotation angle) is calculated from the simultaneous synchronous tap time constant set in that stage and the spindle rotational range of that stage.
- the acceleration / deceleration movement amount (rotation angle) calculated above and the X1-axis acceleration movement amount determined by the pitch are obtained, and acceleration / deceleration processing is performed so as to stop at the command position (hole bottom position).
- Step 5 the X1 axis movement amount (FdT) subjected to acceleration / deceleration processing in Step 4 is converted into the same S1 axis rotation angle (FdT) per control unit time.
- Step 6 the X1 axis coordinate value of the virtual coordinate system is converted to the actual axis coordinate values of X1, H1, and C1, and the real axes X1, H1, and C1 are moved from the difference of the actual axis coordinate values in the previous control time unit.
- the quantity (FdT) is calculated.
- Step 7 the S1-axis rotation angle (FdT) for the real axis of the synchronous tap converted in Step 5 is copied and used as the synchronous movement amount of the S2-axis. Also, the actual movement amounts (FdT) of X1 and H1 converted in Step 6 are copied and used as the synchronous movement amounts of the X2 axis and the H2 axis of the synchronization side turret. In the present embodiment, the control is performed with the main set designated as the reference side and the subset designated as the synchronization side.
- Step 8 by the above processing, the real axes X1, H1, and C1 after the coordinate conversion of the synchronous tap spindles S1 and S2 and the synchronous tap drilling axes and the real axes X2 and H2 of the synchronous tap drilling axes on the synchronous side are the actual axis movement amounts (FdT). Is output to the servo controller.
- simultaneous synchronous tapping by a virtual lathe-controlled composite lathe can be realized, and further details will be described later with reference to FIG.
- the command program commands only the first system, and the second system axis uses the first system command.
- the temporal relationship with the start and end of other operations in actual simultaneous synchronous tap machining is controlled by using a synchronization waiting command (“! ⁇ ” command shown in FIG. 1 machining program example).
- FIG. 4 is a block diagram illustrating an example of the configuration of the NC apparatus according to the first embodiment.
- 1 is an NC device
- 2 is an input operation unit
- 3 is an input control unit
- 4 is a memory
- 5 is a parameter storage unit
- 6 is a machining program storage unit
- 7 is a shared area
- 8 is a screen display data storage unit
- 9 is a screen.
- the processing unit 10 is a display unit.
- 11 is an analysis processing unit
- 12 is a machine control signal processing unit
- 13 is a PLC
- 14 is a virtual Y-axis interpolation mode signal processing unit
- 15 is a virtual Y-axis synchronization signal processing unit
- 16 is a simultaneous synchronization tap command processing unit
- 17 is Interpolation processing unit
- 18 is an X1 / Y1 / C1-axis interpolation means
- 19 is an X2 / Y2 axis interpolation processing means
- 20 is a simultaneous synchronous tap interpolation processing means
- 21 is a tap spindle (S1, S2) time constant selection means
- 22 is Drilling shaft (X1) acceleration / deceleration processing means
- 23 is a tap spindle (S1) to drilling shaft (X1) synchronization processing means
- 24 is an axis data output unit.
- Reference numerals 31 to 37 denote X1, X2, H1, H2, C1, S1, and S2 axis servo control units, and reference numerals 41 to 47 denote X1, X2, H1, H2, C1, S1, and S2 axis servo motors, respectively.
- 51 is a virtual Y-axis control processing unit
- 52 is a virtual Y-axis control switching processing unit
- 53 is a reference turret virtual Y-axis coordinate conversion processing unit
- 54 is a synchronization side turret synchronization processing unit (X2, H2)
- 55 is a tap. This is a spindle (S2) synchronization processing means.
- the input control unit 3 detects a change in the switch signal of the input operation unit 2 operated by the operator, and the parameter storage unit 5 in the memory 4, the machining program storage unit 6, the common area 7, and the screen display data area.
- a signal such as writing or reading that changes the contents of the memory is accessed by accessing each part such as 8.
- Various display data stored at predetermined addresses in the screen display data area 8 are read out by the screen processing unit 9 and displayed at predetermined positions on the display unit 10.
- the parameters stored in the parameter storage unit 5 include the acceleration / deceleration time constant parameter for the synchronous tap spindle shown in FIG. 5, the condition data necessary to determine the specifications of the NC device, and to perform machine control. included.
- the machining program describes and stores the operation contents of the machine and the movement path of the blade necessary for machining at least one workpiece in a format that can be read by the NC device.
- the shared area 7 stores temporary data and the like necessary for system control during machining program analysis and machine operation control.
- the screen display data area 8 stores various data specified by the input operation unit 2 such as current position information required by the operator, spindle rotation information, NC device control mode, and output status of various selection signals. ing.
- the analysis processing unit 11 sequentially reads the designated programs from the top of the machining programs stored in the machining program storage unit 6 and refers to the parameter 5 according to the processing procedure designated for each NC command.
- the program is analyzed and executed while temporarily storing the data being processed in the common area 7.
- the machine control signal processing unit 12 reads information related to the control of the machine peripheral device output from the analysis processing unit 11 to the memory 4 and outputs the information to the PLC 13 to give control information to the ladder circuit.
- F outputs various on / off control signals to the machine side.
- a signal input for control from the PLC 13 to various processing units of the NC or an external signal input from the machine side is written in the shared area 7 in the memory 4 and is applied to the control of the NC device. It operates so that the control of the machine proceeds correctly.
- the virtual Y-axis interpolation mode signal processing means 14 for example, switches an external signal input to the machine control signal processing unit 12 when switching on / off of the virtual Y-axis interpolation mode by a selection signal input from the outside of the NC device. Accept and set or reset certain parameters.
- This switching control can also be processed inside the NC unit by a command in the machining program.
- a method is used in which auxiliary commands (M121 and M120) are converted into on / off signals and input to the NC unit.
- the virtual Y-axis synchronization signal processing means 15 performs virtual Y-axis synchronization on / off in order to perform virtual Y-axis machining simultaneously in two systems (turret 1, turret 2) during the virtual Y-axis interpolation mode.
- a selection signal input from the outside of the NC device an external signal input to the machine control signal processing unit 12 is received, and a predetermined parameter is set or reset.
- a virtual Y-axis synchronization command is given.
- the virtual Y-axis interpolation mode it is converted to an on / off signal by an auxiliary command (M131 and M130). Then, a method of inputting to the NC device is used.
- the simultaneous synchronization tap command processing means 16 in the analysis processing unit 11 is a simultaneous synchronization tap for performing a conventional synchronous tap machining on both surfaces in the diameter direction of the workpiece simultaneously using two systems of turret shafts. Decode the instruction. In order to perform the simultaneous synchronous tap machining most easily, as shown at least in FIG. 2a, the same tap bit is equally attached to the synchronous tap main shafts of the two turret shafts arranged opposite to each other about the C axis.
- the position of the turret axis from the workpiece center (X axis) and the rotation of the turret axis are obtained by interpolation of the reference side system, and the synchronous X and H axes are synchronized using the X and H axis drive data on the reference side. What is necessary is just to drive.
- the interpolation processing unit 17 includes an X1 / Y1 / C1 axis interpolation processing unit 18, an X2 / Y2 axis interpolation processing unit 19, and a simultaneous synchronous tap interpolation processing unit 20.
- the simultaneous synchronous tap interpolation processing means 20 includes a tap spindle (S1, S2) time constant selection means 21, a drilling axis (X1) acceleration / deceleration processing means 22, and a tap spindle (S1) to drilling axis (X1) synchronization processing means 23.
- the Z axis that is the workpiece length direction is not directly involved in the virtual Y axis control machining, and therefore drawings and operation descriptions relating to the Z axis are omitted. To do. Further, it is necessary programmed to move the tool before running the simultaneous synchronized tapping process to the machining start point, where as in Figure 2a, the tool center is a tool corrected for the command position is positioned p 1 It will be described as being.
- interpolation processing means (not shown) of the X1, Z1, C1, and X2, Z2 axes in the interpolation processing unit 17 is used, and the relative movement amount obtained from the machining program is a straight line, a circular arc, or the like.
- These output data are output to the axis data output unit 24, input to the servo control units 31 to 37 of each axis, and the servo motors 41 to 37 are driven by the driving power output by the servo control units 31 to 37. 47 is driven to rotate.
- the XZ axis, the main axis, the C axis, the synchronous tap main axis and the like of the lathe that is the machine to be controlled are driven to perform desired machining.
- the virtual Y-axis control switching processing unit 52 is operated by a virtual Y-axis interpolation mode signal input from the outside, and the interpolation calculation result of the interpolation processing unit 17 can be used by the virtual Y-axis control processing unit 51.
- the virtual Y-axis control processing unit 51 includes reference-side turret virtual Y-axis coordinate conversion processing means 53, synchronization-side turret synchronization processing means (X 2, H 2) 54, and tap spindle (S 2) synchronization processing means 55.
- the tap spindle (S1, S2) time constant selection means 21 is used for two synchronous tap spindles S1, S2 at the same spindle rotational speeds S1, S2 from the spindle rotational speed and acceleration / deceleration time constant parameters as shown in FIG. Acceleration / deceleration time constants are compared, and the longer (slower) value is stored, for example, in a predetermined location of the simultaneous synchronous tap optimum multi-stage acceleration / deceleration selection memory (parameter storage unit 5). Multi-stage acceleration / deceleration control is often applied to the synchronous tap spindle in order to increase the machining efficiency by minimizing the acceleration / deceleration time. For example, as shown in FIG.
- the drive control can be performed with the maximum torque by performing linear acceleration / deceleration with a constant inclination, which gradually decreases gradually, in a plurality of times.
- the synchronous tap acceleration / deceleration time constant and the synchronous tap switching main shaft rotational speed can be set for a predetermined number of stages for multi-stage acceleration / deceleration control. It has become.
- the multistage acceleration / deceleration setting is three stages, but the number of stages of multistage acceleration / deceleration is not limited.
- the acceleration / deceleration time constants at the same spindle rotation speeds of the S1 and S2 axes are compared, and the spindle rotation speed at which the longer value and the acceleration / deceleration time constant are switched is optimal for the simultaneous synchronization tap. It is stored in the corresponding stage of the multistage acceleration / deceleration selection memory (parameter storage unit 5). 5 and 6, for example, the simultaneous synchronous tap acceleration / deceleration constant 1 in FIG. 5 corresponds to t1 in FIG. 6, and the simultaneous synchronous tap acceleration / deceleration time constant 2 in FIG. 5 corresponds to t2 in FIG. For example, the simultaneous synchronous tap switching spindle rotational speed 1 in FIG. 5 corresponds to s1 in FIG. 6, and the simultaneous synchronous tap switching spindle rotational speed 2 in FIG. 5 corresponds to s2 in FIG.
- the drilling shaft (X1) acceleration / deceleration means 22 is a simultaneous synchronous tap time constant of each stage set in the optimum multistage acceleration / deceleration selection memory by the tap spindle (S1, S2) time constant selection means 21, and a simultaneous synchronous tap switching spindle rotational speed.
- the acceleration / deceleration movement amount (rotation angle) is calculated from the constant and the spindle rotation range at that stage. For example, in the case of FIG.
- the acceleration / deceleration movement amount (rotation angle) calculated above and the acceleration movement amount of the X1-axis determined by the pitch are obtained, and acceleration / deceleration processing is performed so as to stop at the command position (hole bottom position).
- the tap spindle (S1) to drilling axis (X1) synchronization processing means 23 outputs the movement amount (FdT) per control unit time subjected to acceleration / deceleration processing of the X1 axis, which is output from the drilling axis (X1) acceleration / deceleration means 22.
- the movement amount (rotation angle) of the synchronous tap spindle to be rotated during the movement of this movement amount (FdT) is calculated by the following (Equation 1).
- Rotation angle (r / dT) X1 travel (mm / dT) ⁇ screw pitch (mm / r) (Equation 1)
- the reference-side turret virtual Y-axis coordinate conversion processing unit 53 outputs the movement amount (FdT) of the X1 axis of the virtual coordinate system output from the drilling axis (X1) acceleration / deceleration processing unit 22 to the X1 axis of the previous X1 axis.
- the coordinate value of the virtual coordinate system of the current X1 axis is calculated by adding to the coordinate value of the virtual coordinate system.
- the coordinate value of the X1 axis of the virtual coordinate system is subjected to coordinate conversion to be converted into actual axis positions of the X1 axis, the H1 axis (rotation axis), and the C1 axis (rotation axis).
- the difference between the calculated actual axis position and the actual axis position of the previous control unit time is calculated to output the actual axis movement amounts (FdT) of the X1 axis, the H1 axis, and the C1 axis to the axis data output unit 24.
- the synchronization side turret synchronization processing means (X2, H2) 55 copies the X1-axis real axis movement amount (FdT) output from the reference side turret virtual Y-axis coordinate conversion processing means 53 to the subset-side X2 axis, The data is output to the data output unit 24. Similarly, the actual movement amount (FdT) of the H1 axis is copied to the subset side H2 axis and output to the axis data output unit 24. Thereby linearly moving the line connecting the synchronous tapping start position Xp 1 and hole bottom position Xp 2 on in synchronization with the main set subset side virtual coordinate system of FIG.
- the tap spindle (S2) synchronization processing means 55 copies the S1 axis rotation angle (FdT) converted as the reference side by the tap spindle (S1) to the drilling axis (X1) synchronization processing means 23 to the S2 axis and generates axis data. Output to the output unit 24.
- the X1 axis of the virtual coordinate system and the tap main axis S1 axis are controlled synchronously, the X1 axis of the virtual coordinate system is converted to X1, H1, and C1 of the real axes, and the Y-axis direction is used on machines that do not have the Y axis on the main set side.
- Synchronized tapping is possible at a position eccentric to Furthermore, by synchronously controlling the X2 axis, H2 axis, and S2 axis on the subset side with respect to the main set side, synchronous tapping is simultaneously performed on both sides that have been wrench cut using a virtual Y axis controller having two turrets. Although it can be performed, the above configuration is an example, and various modifications are possible.
- the multi-stage acceleration / deceleration is used.
- the numerical control device includes a main set including an X1 axis, a Z1 axis, a first turret axis (H1 axis) and an S1 axis, an X2 axis, a Z2 axis, and a second C1 axis. It is suitable for synchronous tapping by numerically controlling a machine in which a turret axis (H2 axis) and a subset of S2 axes are arranged point-symmetrically.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
Description
またこれとは異なる形式の一つとして、ワークを把持して回転位置制御されるC軸と、当該C軸中心方向に接離するように位置制御されるX軸と、同様にC軸の軸線方向に移動するZ軸と、前記X軸とZ軸によって駆動される、前記C軸の軸線に直角に任意角度に回転可能なタレット軸(H軸)を有するものがある。この様な旋盤では通常のワーク円柱表面への旋削加工の他に、ワークの円周方向を実際には存在しない仮想Y軸により平面加工することができる。この加工は円形断面の一部を直線的に切り落とし、Dの文字に似た断面となることからDカットと呼ばれる。
この構成によりH軸とC軸を同期して等角度回転させ、更にH軸をX軸方向に、前記回転に同期して回転工具を接離させることによってDカット加工や、ワーク中心から離れた位置に平面を仮想し、当該平面に垂直な方向への切削や穴あけ等の加工動作を行なわせることができる。
従来、XZHC軸及び同期タップ主軸S軸から成る1セットの構成の機械では、通常の同期タップと同様の制御で同期タップ加工が行なえるが、スパナカットされた両面に同時に二つの同期タップ加工を行うには、図1に示すように、H2、X2、S2軸を有する工具台を、既に存在する前記工具台(H1、X1、S1軸を有する工具台)に対し、ワークを介して点対称位置に追加する必要がある。なお、Z軸は工具とワークとの間で相対的な関係にあるため、Z軸は工具台側、ワーク保持側のどちらに設けられてもよいが、一般的には工具台側に設けられる。
ところが、このように単純に工具台を追加したとしても、二つの工具台の動作の同期及び二つの工具台上の二つの回転工具用主軸の同期を取らなければ、適切な同期タップ加工を行うことができない。
以下、本発明の実施例1について図1乃至図7を用いて説明する。
図1は本発明の実施例1による、ワークを位置制御して回転させる一つのC1軸に対して、X1軸、Z1軸、第一のタレット軸(H1軸)及びS1軸から成るメインセットと、X2軸、Z2軸、第二のタレット軸(H2軸)及びS2軸から成るサブセットとを、点対称に配置した機械を制御して行う、ワークに施されたスパナカットの両面(裏表面)に同時に同期タップ加工の動作例とそのプログラム例を示したものである。ここでは先ず両面同時にタップの下穴を開け、続いて両面同時にタップ加工を行なっているが、加工プログラムはタップ加工に関する部分のみを示している。なお、タップ加工は主軸を回転させるだけでタップの推進力により自動的に切り込むフローティングタップを用いる方法ではなく、同期タップ主軸チャックでタップビット(タップ工具)を把持し、タップの回転と送りを同期させてNC装置で切込制御する同期タップまたはリジッドタップによるものである。
また、Z軸の作動方向はXY平面およびH軸、C軸の作動面に垂直な方向であり、本発明の実施例1の基本的な動作に影響することは無いので、軸名として挙げても動作等についての説明は割愛する。
従って、二組のXHZS軸夫々の移動量を計算し、加減速などのパラメータを選択して設定し直し、この二組を移動開始のタイミングも含めて完全に同期して作動させなければならない。
また、図1には、各系統のプログラム例を挙げているが、この中のシーケンス番号N101~N103の付されたブロックの内容に基づき基準軸と同期軸が同じ動きをして同時に同期タップ加工を行ない、表裏同時に同期タップ加工ができることになる。ここではワークを把持したC1軸を中心にしてメインセットとサブセットのタレット軸が対向して配置される。
また、この機械で同時同期タップ加工を行うには仮想Y軸加工(制御)が必要であるが、仮想Y軸加工の事前の準備として、タップ工具に工具交換し、ワークを回転させる軸をC軸制御モードに切り換えておくことが必要である。
なお、図2に示すような仮想Y軸の偏心穴に於ける穴の開始点と底位置はH軸中心と工具先端中心を結ぶ直線上にあるが、図2(a)の状態でH軸をC軸中心方向に単に平行移動させただけでは図2(b)のようにはならず、底位置までズレが生じて断面が長穴となり、正しい加工ができない。従って仮想Y軸における偏心位置での深さ方向への切込みには、H軸のC軸方向への位置制御だけではなく、H軸C軸間の距離に応じてH軸及びC軸の回転角度を変化させる必要がある。
Step1で加工プログラムを読み込み、Step2で仮想Y軸に関するプログラム命令を解読し、所定の処理プログラムを実行する。仮想Y軸に関する命令としては仮想Y軸補間モードオン/オフ、この実施例ではM121/M120をこれに充てる。このM121により仮想XY軸平面での補間演算を可能とし、通常の旋盤としてのXZ平面による加工と、仮想Y軸を用いた制御ができる加工とを選択する切換処理部を作動させる。また、M121/M120は外部出力され、PLC(Programmable Logic Controller)により外部入力信号として再度NC装置に入力する方法を採用しているが、NC装置内部で切り換えるようにすることも可能である。
更にStep1で読み込んだ加工プログラム中の同期タップ指令G84はオリエント指令付同期タップであり、G84XxFpSs,R2;というフォーマットで指令され、Fpはピッチ、Ssは主軸回転数、“,R2”はオリエント後同期タップを開始することを表し、標準的な命令であるが、標準的な命令には無いS2=S1、またはS1=S2という指定を追加することにより、S1,S2の二つある同期タップ主軸のどちらを基準として同期タップを行うかを指定することができる。
また前記Step6で変換されたX1、H1の実軸移動量(FdT)をコピーして、同期側タレットのX2軸、H2軸の同期移動量とする。
本実施例ではメインセットを基準側、サブセットを同期側に指定した制御を行なっているが、二つの同期タップ主軸S1,S2の基準・同期を逆にしたい場合には、同時同期タップ指令中に“S2=S1”を指令すればS2軸が基準側に、S1軸が同期側に設定され、S2軸用に計算されたS2軸回転角度(FdT)がS1軸用にコピーされ、S1軸の同期移動量とする。
以上の処理により仮想Y軸制御の複合旋盤による同時同期タップ加工が実現できるが、更なる詳細については図4を用いて後述する。
1はNC装置、2は入力操作部、3は入力制御部、4はメモリ、5はパラメータ記憶部、6は加工プログラム格納部、7は共有エリア、8は画面表示データ記憶部、9は画面処理部、10は表示部である。11は解析処理部、12は機械制御信号処理部、13はPLC、14は仮想Y軸補間モード信号処理手段、15は仮想Y軸同期信号処理手段、16は同時同期タップ指令処理手段、17は補間処理部、18はX1/Y1/C1軸補間手段、19はX2/Y2軸補間処理手段、20は同時同期タップ補間処理手段、21はタップ主軸(S1,S2)時定数選択手段、22は穴あけ軸(X1)加減速処理手段、23はタップ主軸(S1)~穴あけ軸(X1)同期処理手段、24は軸データ出力部である。31乃至37は夫々X1、X2、H1、H2、C1、S1、S2軸のサーボ制御部、41乃至47は夫々X1、X2、H1、H2、C1、S1、S2軸のサーボモータである。また、51は仮想Y軸制御処理部、52は仮想Y軸制御切換処理部、53は基準タレット仮想Y軸座標変換処理手段、54は同期側タレット同期処理手段(X2、H2)、55はタップ主軸(S2)同期処理手段である。
機械制御信号処理部12は、解析処理部11からメモリ4に出力される機械周辺装置の制御に関する情報を読み取り、PLC13に出力してラダー回路に制御情報を与え、図示しない外部入出力信号I/Fから各種オン/オフ等の制御信号を機械側に出力する。また、PLC13からNCの各種処理部への制御用に入力される信号や機械側から入力される外部信号をメモリ4内の共有エリア7に書き込み、NC装置の制御に作用させ、NC装置及び機械の制御が正しく進行するように作動する。
ここで、本発明の実施例1の説明に於いては、ワーク長さ方向であるZ軸については仮想Y軸制御加工には直接の関与は無いので、Z軸に関する図面記載や動作説明は割愛する。また、同時同期タップ加工を実行するまでに工具を加工開始点まで移動させるプログラムが必要であるが、ここでは図2aのように、指令位置に対して工具補正された工具中心がp1に位置決めされているものとして説明する。
回転角度(r/dT)=X1移動量(mm/dT) ÷ねじピッチ(mm/r) …(式1)
にコピーし、軸データ出力部24に出力する。また同様にH1軸の実軸移動量(FdT)をサブセット側H2軸にコピーし、軸データ出力部24に出力する。
これによりメインセットに同期してサブセット側も図2の仮想座標系上の同期タップ開始位置Xp1と穴底位置Xp2を結ぶ線上を直線移動する。
仮想座標系のX1軸とタップ主軸S1軸を同期制御し、仮想座標系のX1軸を実軸のX1、H1、C1に変換し、メインセット側でY軸がない機械に於いてY軸方向に偏心した位置で同期タップ加工を可能とする。更にメインセット側に対してサブセット側のX2軸、H2軸、S2軸を同期制御することで、2系統のタレットを有する仮想Y軸制御機を用いてスパナカットされた両面に同期タップ加工を同時に行うことができるが、前記構成は一例であり、各種変形が可能である。
Claims (2)
- 一つのC1軸に対して、X1軸、H1軸及びS1軸から成るメインセットと、X2軸、H2軸及びS2軸から成るサブセットとを、対向に配置した機械を制御する数値制御装置において、
前記メインセットとサブセット夫々のS1軸、S2軸の加減速時定数を比較して長い方の時定数を選択するタップ主軸(S1、S2)時定数選択手段と、前記タップ主軸(S1、S2)時定数選択手段により選択された主軸時定数、指令された主軸回転数に基づいてX1軸の加減速移動量の計算、加減速処理する穴あけ軸(X1)加減速処理手段と、前記穴あけ軸(X1)加減速処理手段の出力であるX軸移動データからタップ主軸の回転量を計算するタップ主軸(S1)~穴あけ軸(X1)同期処理手段と、前記タップ主軸(S1)~穴あけ軸(X1)同期処理手段で計算されたタップ主軸回転量を同期側に同期データとして転記するタップ主軸(S2)同期処理手段とを設け、仮想座標系のX軸の指令により座標変換してメインセット側のX1軸、H1軸、C1軸の駆動データで、サブセット側のX2軸、H2軸、S2軸を駆動することにより、C1軸に把持したワークの両面への同期タップ加工を同時に行うよう前記機械を制御することを特徴とする数値制御装置。 - 一つのC1軸に対して、X1軸、H1軸及びS1軸から成るメインセットと、X2軸、H2軸及びS2軸から成るサブセットとを、対向に配置した機械を制御する数値制御装置において、
複数の工具主軸を同時に駆動して同期タップ加工を行なう同時同期タップ指令を新たに設定すると共に、前記同時同期タップ指令を解析処理する同時同期タップ指令処理手段と、前記メインセットとサブセット夫々のS1軸、S2軸の加減速時定数を比較して長い方の時定数を選択するタップ主軸(S1、S2)時定数選択手段と、前記タップ主軸(S1、S2)時定数選択手段により選択された主軸時定数、指令された主軸回転数に基づいてX1軸の加減速移動量の計算、加減速処理する穴あけ軸(X1)加減速処理手段と、前記穴あけ軸(X1)加減速処理手段の出力であるX軸移動データからタップ主軸の回転量を計算するタップ主軸(S1)~穴あけ軸(X1)同期処理手段と、前記タップ主軸(S1)~穴あけ軸(X1)同期処理手段で計算されたタップ主軸回転量を同期側に同期データとして転記するタップ主軸(S2)同期処理手段とを設け、仮想座標系のX軸の指令により座標変換してメインセット側のX1軸、H1軸、C1軸の駆動データで、サブセット側のX2軸、H2軸、S2軸を駆動することにより、C1軸に把持したワークの両面への同期タップ加工を同時に行うよう前記機械を制御することを特徴とする数値制御装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012524942A JP5240412B1 (ja) | 2012-02-08 | 2012-02-08 | 数値制御装置 |
CN201280001977.4A CN103348295B (zh) | 2012-02-08 | 2012-02-08 | 数控装置 |
PCT/JP2012/000826 WO2013118169A1 (ja) | 2012-02-08 | 2012-02-08 | 数値制御装置 |
DE201211004962 DE112012004962T5 (de) | 2012-02-08 | 2012-02-08 | Numerische Steuervorrichtung |
US13/809,810 US9122265B2 (en) | 2012-02-08 | 2012-02-08 | Numerical control device for drilling and tapping with two synchronized spindles |
TW101107624A TWI474142B (zh) | 2012-02-08 | 2012-03-07 | 數值控制裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/000826 WO2013118169A1 (ja) | 2012-02-08 | 2012-02-08 | 数値制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013118169A1 true WO2013118169A1 (ja) | 2013-08-15 |
Family
ID=48903607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/000826 WO2013118169A1 (ja) | 2012-02-08 | 2012-02-08 | 数値制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9122265B2 (ja) |
JP (1) | JP5240412B1 (ja) |
CN (1) | CN103348295B (ja) |
DE (1) | DE112012004962T5 (ja) |
TW (1) | TWI474142B (ja) |
WO (1) | WO2013118169A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9529352B2 (en) | 2013-06-06 | 2016-12-27 | Mitsubishi Electric Corporation | Numerical control device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014038002A1 (ja) * | 2012-09-04 | 2014-03-13 | 三菱電機株式会社 | 数値制御装置 |
JP5642298B1 (ja) * | 2013-04-30 | 2014-12-17 | 三菱電機株式会社 | 数値制御装置 |
JP5778801B2 (ja) * | 2014-01-23 | 2015-09-16 | ファナック株式会社 | 工作機械の数値制御装置 |
DE102015013283B4 (de) * | 2014-10-17 | 2019-01-24 | Fanuc Corporation | Vorrichtung und Verfahren zum Steuern einer Werkzeugmaschine, um einen synchronisierten Betrieb einer Spindelachse und Vorschubachse zu steuern |
JP6088581B2 (ja) * | 2015-06-04 | 2017-03-01 | ファナック株式会社 | 主軸と送り軸との同期運転を制御する工作機械の制御装置及び制御方法 |
JP6806737B2 (ja) * | 2018-06-15 | 2021-01-06 | ファナック株式会社 | 同期装置、同期方法及び同期プログラム |
CN111966030A (zh) * | 2020-06-28 | 2020-11-20 | 徐州恒辉编织机械有限公司 | 一种编织机主机多伺服电机同步控制系统及控制方法 |
US20240219893A1 (en) * | 2021-05-12 | 2024-07-04 | Fanuc Corporation | Numerical control device and computer-readable storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04244350A (ja) * | 1991-01-30 | 1992-09-01 | Okuma Mach Works Ltd | 複合工作機械における制御方法 |
JPH10202428A (ja) * | 1997-01-24 | 1998-08-04 | Yachiyo Eng:Kk | 管体用のねじ孔加工装置 |
JPH11156638A (ja) * | 1997-11-21 | 1999-06-15 | Yaskawa Electric Corp | 数値制御装置 |
JP2001134321A (ja) * | 1999-11-04 | 2001-05-18 | Mitsubishi Electric Corp | 数値制御装置 |
JP2001277048A (ja) * | 2000-03-31 | 2001-10-09 | Kurimoto Ltd | 異形管タップ加工装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3328327C2 (de) | 1983-08-05 | 1985-10-10 | Index-Werke Kg Hahn & Tessky, 7300 Esslingen | Vorrichtung zum spanabhebenden Bearbeiten eines Werkstücks sowie NC-gesteuerte Drehmaschine zur Druchführung eines solchen Verfahrens |
USRE34155E (en) | 1983-08-05 | 1993-01-05 | Index-Werke Gmbh & Co. Kg Hahn & Tessky | Machining a workpiece in a turret lathe and an NC lathe therefor |
US4612832A (en) * | 1984-04-27 | 1986-09-23 | Kabushiki Kaisha Miyano Tekkosho | Multiple-function machine tool with two spindles |
US4612690A (en) * | 1984-12-24 | 1986-09-23 | Crankshaft Machine Company | Multiple spindle machine tool |
JP2581797B2 (ja) * | 1989-04-27 | 1997-02-12 | オ−クマ株式会社 | 同期制御方法及びその装置 |
JPH0644239A (ja) | 1992-07-23 | 1994-02-18 | Sharp Corp | 日本語文章作成装置 |
ES2207850T3 (es) * | 1997-06-17 | 2004-06-01 | WITZIG & FRANK GMBH | Maquina heramienta muy flexible. |
NL1008119C2 (nl) * | 1998-01-22 | 1999-07-26 | Reginald Ir Galestien | Een methode voor het meten van werkstukken met inwendige en uitwendige schroefdraad of soortgelijke groeven. |
JP4346824B2 (ja) * | 1998-12-24 | 2009-10-21 | 三菱電機株式会社 | 数値制御装置 |
DE19904253A1 (de) | 1999-02-03 | 2000-08-10 | Index Werke Kg Hahn & Tessky | Werkzeugmaschine |
JP4736173B2 (ja) | 2000-10-27 | 2011-07-27 | 株式会社ニコン | 撮像装置 |
JP4511949B2 (ja) * | 2003-02-06 | 2010-07-28 | 三菱電機株式会社 | ネジ切り制御方法及びその装置 |
CN100341654C (zh) * | 2004-12-21 | 2007-10-10 | 应安义 | 气动攻丝机 |
WO2008156425A1 (en) * | 2007-06-20 | 2008-12-24 | Unisteel Technology International Limited | Thread forming screw thread and corresponding thread roll die |
CN102027426B (zh) * | 2008-05-13 | 2013-06-12 | 三菱电机株式会社 | 数控方法及其装置 |
US8390416B2 (en) * | 2008-10-28 | 2013-03-05 | Koninklijke Philips Electronics N.V. | Reuse of screw thread |
CN101879637B (zh) * | 2010-06-24 | 2012-01-04 | 浙江三田滤清器有限公司 | 多机位攻丝装置及其方法 |
DE112011105336B4 (de) * | 2011-06-14 | 2017-03-23 | Mitsubishi Electric Corp. | Numerische-Steuerung-Vorrichtung |
-
2012
- 2012-02-08 WO PCT/JP2012/000826 patent/WO2013118169A1/ja active Application Filing
- 2012-02-08 JP JP2012524942A patent/JP5240412B1/ja active Active
- 2012-02-08 DE DE201211004962 patent/DE112012004962T5/de not_active Withdrawn
- 2012-02-08 US US13/809,810 patent/US9122265B2/en active Active
- 2012-02-08 CN CN201280001977.4A patent/CN103348295B/zh active Active
- 2012-03-07 TW TW101107624A patent/TWI474142B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04244350A (ja) * | 1991-01-30 | 1992-09-01 | Okuma Mach Works Ltd | 複合工作機械における制御方法 |
JPH10202428A (ja) * | 1997-01-24 | 1998-08-04 | Yachiyo Eng:Kk | 管体用のねじ孔加工装置 |
JPH11156638A (ja) * | 1997-11-21 | 1999-06-15 | Yaskawa Electric Corp | 数値制御装置 |
JP2001134321A (ja) * | 1999-11-04 | 2001-05-18 | Mitsubishi Electric Corp | 数値制御装置 |
JP2001277048A (ja) * | 2000-03-31 | 2001-10-09 | Kurimoto Ltd | 異形管タップ加工装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9529352B2 (en) | 2013-06-06 | 2016-12-27 | Mitsubishi Electric Corporation | Numerical control device |
Also Published As
Publication number | Publication date |
---|---|
US20130204427A1 (en) | 2013-08-08 |
DE112012004962T5 (de) | 2014-09-25 |
TW201333650A (zh) | 2013-08-16 |
CN103348295A (zh) | 2013-10-09 |
JPWO2013118169A1 (ja) | 2015-05-11 |
US9122265B2 (en) | 2015-09-01 |
CN103348295B (zh) | 2015-03-11 |
JP5240412B1 (ja) | 2013-07-17 |
TWI474142B (zh) | 2015-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5240412B1 (ja) | 数値制御装置 | |
JP4888619B1 (ja) | 数値制御装置 | |
JP5132842B1 (ja) | 数値制御装置 | |
US8676358B2 (en) | Numerical control method and numerical control device | |
US20120022682A1 (en) | Numerical control device and method of controlling the numerical control device | |
US20160274560A1 (en) | Numerical controller performing reciprocal turning in complex fixed cycle | |
WO2019012692A1 (ja) | 数値制御装置および数値制御方法 | |
JPS62237504A (ja) | 数値制御装置 | |
JP5287986B2 (ja) | 数値制御装置及び数値制御工作システム | |
KR100809108B1 (ko) | 자동 선반, 자동 선반 제어 방법 및 자동 선반 제어 장치 | |
JP7448637B2 (ja) | 工作機械の制御装置、制御システム、及び制御方法 | |
JP5059360B2 (ja) | 工作機械の早送り制御方法 | |
JP2007179314A (ja) | 工作機械及びそのプログラム変換方法 | |
JP2017127949A (ja) | インペラ加工装置 | |
JPH0649260B2 (ja) | 同期制御装置 | |
CN117440869A (zh) | 用于工具机的振动切削条件设定装置 | |
JP5049566B2 (ja) | 工作機械 | |
JPH07185901A (ja) | 重畳加工制御方法及びその数値制御装置 | |
JP7413729B2 (ja) | 工作機械及び工作機械の制御方法 | |
JP2002172542A (ja) | 多軸同期制御装置および多軸同期制御方法 | |
JP2002172501A (ja) | タッピング機構付き工作機械 | |
JP5314358B2 (ja) | 工作機械 | |
JP2002326140A (ja) | 多軸同期制御装置および多軸同期制御方法 | |
JP2002219631A (ja) | 多軸同期制御装置および多軸同期制御方法 | |
JP2002312009A (ja) | 数値制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012524942 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13809810 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12868062 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120049624 Country of ref document: DE Ref document number: 112012004962 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12868062 Country of ref document: EP Kind code of ref document: A1 |