[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013113260A1 - 一种气压扬水泵、泵组及气压扬水蓄能、位能发电和远程输水系统 - Google Patents

一种气压扬水泵、泵组及气压扬水蓄能、位能发电和远程输水系统 Download PDF

Info

Publication number
WO2013113260A1
WO2013113260A1 PCT/CN2013/070733 CN2013070733W WO2013113260A1 WO 2013113260 A1 WO2013113260 A1 WO 2013113260A1 CN 2013070733 W CN2013070733 W CN 2013070733W WO 2013113260 A1 WO2013113260 A1 WO 2013113260A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
intake
cylinder
air
regulating valve
Prior art date
Application number
PCT/CN2013/070733
Other languages
English (en)
French (fr)
Inventor
张延胜
Original Assignee
Zhang Yansheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210021046.2A external-priority patent/CN102705206B/zh
Priority claimed from CN2012100209484A external-priority patent/CN102704530B/zh
Priority claimed from CN201210020947.XA external-priority patent/CN102705271B/zh
Priority claimed from CN201210295240.XA external-priority patent/CN102797707B/zh
Application filed by Zhang Yansheng filed Critical Zhang Yansheng
Publication of WO2013113260A1 publication Critical patent/WO2013113260A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/26Reciprocating-piston liquid engines adapted for special use or combined with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/13Combinations of wind motors with apparatus storing energy storing gravitational potential energy
    • F03D9/14Combinations of wind motors with apparatus storing energy storing gravitational potential energy using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention relates to the field of pneumatic water pumping technology, in particular to a pneumatic pump and a pump set, a pneumatic pumping water storage, a power generation and a remote water delivery system.
  • the air pump is a high-efficiency water pump that pushes water into the water pipe by air pressure. It is used in water lifting or agricultural irrigation, and is mainly used for deep well water lifting. Since the water in the water pipe is doped with gas, it is higher than the lift of the ordinary water pump under the same air pressure.
  • Cida Patent Publication No. 201220029975.3 discloses a pneumatic pump, which comprises: a tank, an exhaust regulating valve, a control intake valve and an outlet pipe, the inside of the casing is divided into two cylinders, and the two cylinders are respectively provided with The water valve, the exhaust regulating valve, the control intake valve and the outlet pipe, wherein the inlet of the outlet pipe in one cylinder is lower than the inlet of the outlet pipe of the other cylinder, and the outlet pipes of the two cylinders merge to form a drainage In the main pipe, the water filling amount of the drainage main pipe is greater than or equal to the maximum water quantity that can be discharged by the cylinder body of the outlet pipe having a higher water inlet position; the two exhaust ports are respectively connected to the drainage main pipe through the exhaust pipe; A linkage mechanism is provided between the gas regulating valve and the control intake valve, and the staggered exhausting and draining process of the two cylinders is realized by linkage, so that one of the cylinders is exhausted, the other cylinder is
  • the gas pressure pump since the upper and lower cylinder structures are adopted, the gas pressure pump must be at a constant water pressure and a constant lift height to achieve air pressure discharge, and normal operation cannot be achieved in the case of a well and a relatively large water level. Since the exhaust port is higher than the outlet pipe, the action of the upper water check valve causes the upper pipe to the exhaust port to be stopped, and the water supply again has poor linkage, which reduces the randomness of the rising water flow in the pipe.
  • a pneumatic pump comprising:
  • An upper water pipe one end of which is disposed in the cylinder body and extends to a lower portion of the cylinder body, and the other end of which extends through the upper end of the cylinder body and protrudes from the water body surface;
  • An intake adjusting valve is disposed in the cylinder and communicates with an intake pipe connected to the intake system;
  • An exhaust gas regulating valve is disposed in the cylinder body and is in communication with the upper water pipe, and an air inlet of the exhaust gas regulating valve is located at an upper portion of the cylinder body;
  • a water inlet regulating valve is disposed at the bottom of the cylinder body
  • a linkage mechanism is disposed between the intake air regulating valve, the water inlet regulating valve and the exhaust gas regulating valve, and the linkage mechanism comprises: a first linkage rod and a second linkage rod;
  • the first linkage rod is respectively connected to the inlet water regulating valve and the intake air regulating valve, and the second linkage rod is connected to the exhaust gas regulating valve.
  • the water inlet regulating valve opens and pushes the first linkage rod upward to close the intake regulating valve, and the first linkage rod pushes the first
  • the second moving rod moves up and drives the exhaust gas regulating valve to open, and the residual gas in the cylinder body is discharged into the upper water pipe by the water body water pressure;
  • the water inlet regulating valve When the pressure in the cylinder is greater than the water pressure of the water body, the water inlet regulating valve is closed and the first linkage rod is moved downward to open the intake regulating valve, and the second linkage rod is moved downward to the control center.
  • the exhaust gas regulating valve is closed, the cylinder receives air, and the water is discharged into the upper water pipe by air pressure.
  • the intake air regulating valve is disposed between the exhaust gas regulating valve and the water inlet regulating valve, and includes an intake valve seat and an intake adjusting rod, and an intake port of the intake valve seat and the inlet a gas pipe connection, the air intake adjusting rod is disposed in the air intake valve seat, and is in sliding engagement with the air intake valve seat, the air intake adjusting rod is fixedly connected to an upper end of the first linkage rod, The air intake adjusting rod is provided with a radial through hole, and when the air intake adjusting rod is moved to communicate with the air outlet of the intake valve seat, the cylinder intake air is realized.
  • a guiding groove is arranged along the axial direction of the intake adjusting rod, and the inner circular surface of the intake valve seat is provided with a guiding key for axial sliding matching with the guiding groove .
  • the water inlet regulating valve comprises: a water inlet valve plate, a valve plate shaft and a weight, the bottom of the cylinder is formed with a water inlet hole, and the water inlet valve plate is disposed at the water inlet hole of the cylinder body For controlling the water inlet of the cylinder, the lower end of the first linkage rod is fixedly connected with the inlet valve plate;
  • the valve plate shaft is disposed at a middle portion of the inlet valve plate, and a lower portion thereof is fixedly coupled to the weight.
  • the exhaust regulating valve includes an exhaust valve seat, an exhaust valve needle and a valve needle guiding tube;
  • the exhaust valve seat is in communication with the upper water pipe; the valve needle guide tube is disposed at an upper end of the cylinder; an upper portion of the exhaust valve needle is disposed in the valve needle guide tube and is opposite to the valve needle a guiding tube is slidably engaged, a lower portion thereof is adapted to an intake port of the exhaust valve seat, an upper end of the second linkage rod is fixedly connected to the exhaust valve needle, and a lower end thereof is disposed on the intake adjusting rod Directly above, when the first linkage rod moves up, the air intake adjustment rod is moved up, and the upper end of the air intake adjustment rod realizes the exhaust valve adjustment valve by pushing the second linkage rod up Opened.
  • the volume inside the cylinder is the volume of the upper water pipe 2 to 3 m head.
  • the middle portion of the upper water pipe is provided with a plurality of water-distributing cones which are spaced apart, and the large end surface of the water-dividing cone accounts for 1/3 of the cross-sectional area of the water pipe, which can prevent the gas from moving up along the middle of the water pipe After adding the water-dividing cone, the gas can be placed on both sides, so that it will support the water sliding down the pipe wall, which can improve the water supply efficiency.
  • the upper water pipe is formed by connecting a plurality of connecting pipes end to end, and each of the connecting pipes is composed of a straight pipe, a cone pipe and a column connecting pipe, and the small diameter end of the cone pipe is connected with the straight pipe, and the large diameter thereof The end is connected to the columnar connecting tube, and the columnar connecting tube sleeve is placed on the outer surface of the straight tube of the connecting tube at the lower end thereof.
  • the present invention also provides a gas pressure water pump set, comprising at least two gas pressure water pumps, wherein the intake air regulating valves of the gas pressure water pumps are respectively connected to the air intake system through the respective intake pipes, The upper water pipes of the air pump are respectively protruded from the upper end of the cylinder.
  • a plurality of the gas pressure water pumps are formed in at least two groups, and the air pressure water pumps of each group are arranged in an up and down direction.
  • the present invention provides a continuous drainage and water lifting method, so that the water in the reservoir can realize high-level water lifting under the pressure of the gas, and improve the energy storage capacity.
  • the technical solution is as follows:
  • a pneumatic pumping storage system includes a low level reservoir, a high level reservoir, an energy supply device and a water lifting device, the energy supply device providing energy to the water lifting device for using the low water reservoir
  • the water lifting device is lifted into the high level water storage tank;
  • the water lifting device is a pneumatic water pump, which is disposed in the low level water storage tank,
  • the energy supply device is a wind air air press, and the wind air air press
  • the gas storage chamber is connected to the intake pipe of the gas pressure water pump through an air passage, and a connecting air passage between the gas pressure water pump and the gas storage chamber is provided with a one-way exhaust valve, and the gas lift pump is Outlet pipe and the high A reservoir connection.
  • the wind air press includes: a wind power transmission system and an air compressor, the air compressor includes a casing, a driving wheel and a cylinder, the cylinder is disposed on the casing, and the driving wheel is disposed in the box
  • the driving body of the driving wheel is formed with a closed sliding rail structure, and the piston rod connecting end of the cylinder is constrained to the sliding rail of the driving wheel.
  • the structure is slid along the sliding rail structure, and the compressed gas generated by the cylinder is sent to the gas storage chamber through the exhaust manifold, and the gas storage chamber is connected to the intake pipe of the pneumatic pump by the gas passage;
  • the drive shaft is disposed at a center of the slide rail structure, and a link guiding mechanism is further disposed perpendicular to an axial direction of the cylinder piston link, and the link guiding mechanism is rollingly connected with the piston connecting rod;
  • the link guiding mechanism includes a plurality of guiding wheels fixed to a cylinder inner wall of the cylinder by a connecting rod; a plurality of the guiding wheels are evenly distributed on an outer circumference of the piston connecting rod, and The rolling link is connected to the piston rod.
  • the slide rail structure is formed by connecting a plurality of arcuate slide rails end to end, and the plurality of arcuate slide rails are connected to form a closed slide rail structure with a concave and convex phase distribution;
  • the curved slide rail comprises an upward exhaust curved slide rail and a downward suction curved slide rail, wherein the exhaust curved slide rail and the suction curved slide rail respectively comprise an outer convex arc segment and a straight segment And connecting the concave arc segments, wherein the straight segments are tangent to the convex arc segments and the concave arc segments, and the ends of the convex arc segments correspond to the upper ends of the cylinders In the point position, the end of the concave arc segment corresponds to the bottom dead center position of the cylinder.
  • the sliding rail structure is formed on an outer circular end surface of the driving wheel, and the curved sliding rail is a groove formed on an outer circular end surface of the driving wheel, and one side of the groove is formed with a retaining prevention a retainer, a working end of the piston connecting rod is provided with a bearing, the bearing is received in the groove, and is constrained by the retaining retaining frame, and when the driving wheel rotates, the piston is connected to the piston
  • the bearing at the action end of the rod periodically reciprocates around the curved slide rail.
  • the energy supply device further includes an air pump device, wherein the air pump device is connected to an external power source, and an exhaust pipe of the air pump device is connected to an intake pipe of the air pump, the gas pump is the same as the air pump device. There is a one-way exhaust valve on the connecting line.
  • the energy supply device further includes a solar energy supply device, and the air pump device is electrically connected to the solar energy supply device.
  • the present invention also provides a pneumatic pumping water level power generation system, comprising a pneumatic pumping energy storage system and a hydroelectric generator disposed at a lower portion of the high level reservoir, wherein the hydroelectric generator is in a high level reservoir
  • the power generation is realized by the water, and the water in the high-level reservoir is sent to the low-level reservoir after being generated by the hydro-generator.
  • a pneumatic water pumping remote water delivery system includes a pneumatic pumping water storage system, and water in the high level reservoir flows to the user end through a pipeline.
  • the system further includes a remote low level reservoir connected to the high level reservoir via a pipeline, the level of the connection between the pipeline and the high level reservoir being higher than its connection with the remote low reservoir The level of the end.
  • the invention realizes the coordination work of the three by setting a linkage mechanism between the intake regulating valve, the exhaust regulating valve and the water inlet regulating valve, and in the case of a water level change, the lifting water can be adjusted by itself;
  • the air pressure in the cylinder will continuously replenish part of the gas, and the water column in the upper water pipe will be continuously discharged.
  • the gas in the tube is forced to accelerate the water column to rise, and the water in the cylinder body is pressed out.
  • the water pipe is up, the upper water pipe mouth is instantaneously discharged into the high pressure gas in the pipe.
  • the inertia of the water flow is lower than the water pressure of the water body, and the inlet valve plate is opened, and the air inlet is closed to realize the water inlet of the cylinder.
  • the invention is arranged up and down by two air pressure water pumps, that is, at different water level heights, and the air intake regulating valves of the two air pressure water pumps are respectively connected with the intake pipe, and the upper water pipes of the two air pressure water pumps respectively protrude out of the cylinder body.
  • the pressure of the water body outside the cylinder of the air pump with shallow water level is small, so the normal operation of the air pump can be realized with a small wind pressure, and the air pump at the deep water level is activated because of the required pressure.
  • the air pressure is large, so it is difficult to achieve normal operation when the wind pressure of the wind turbine is small. Only when the wind pressure provided by the wind turbine is large, the two air pressure water pumps can be driven to work at the same time to realize the utilization of wind energy.
  • the water-dividing cone In order to prevent uneven mixing of water and gas, airflow rises at the center of the upper water pipe, and a plurality of water-dividing cones are arranged in the upper water pipe, wherein the large end face of the water-dividing cone accounts for the cross-sectional area of the upper water pipe 1/3, the water-dividing cone is suitable for the pipeline with the inner diameter of the upper water pipe less than 40mm; when the inner diameter of the upper water pipe is larger, when it is larger than 40mm, it is necessary to provide anti-backflow device on the pipe wall, that is, the multi-section connecting pipe is sleeved with each other.
  • the connecting end of the two adjacent connecting pipes is provided with an inverted cone type taper pipe.
  • the inner diameter is larger than that of the straight pipe.
  • the speed decreases, the pressure rises, and the airflow further raises part of the water flow that falls countercurrently.
  • FIG. 1 is a schematic structural view of a gas pressure pump in a state provided by the present invention (the water inlet adjustment is wide open); 2 is a schematic structural view of a gas pressure pump in another state provided by the present invention (the water inlet adjustment is wide closed);
  • FIG. 3 is an upper water pipe with a waterproof backflow structure provided by the present invention;
  • FIG. 4 is a schematic structural view of a pneumatic pump unit provided by the present invention.
  • Figure 5 is a structural diagram of a wind-solar complementary gas pressure water storage system provided by the present invention.
  • FIG. 7 is a diagram of a remote water delivery system for wind and light complementary pressure water pumping provided by the implementation of the present invention.
  • Figure 8 is a remote water delivery system with a potential energy generation system provided by the present invention.
  • Figure 9 is an overall structural view of a wind air press provided by the present invention.
  • FIG. 10 is a structural diagram of a driving wheel with twice the speed increase provided by Embodiment 1 of the present invention.
  • FIG. 11 is a structural diagram of a three-speed increasing drive wheel provided by Embodiment 2 of the present invention.
  • FIG. 12 is a structural diagram of a six-fold speed increasing driving wheel according to Embodiment 3 of the present invention.
  • Figure 13 is a linear diagram of the curved slide rail structure provided by the present invention.
  • Figure 14 is a connection diagram of the steering shaft seat of Figure 9 and the gas storage chamber;
  • Figure 15 is a schematic structural view of the pressure relief wide structure of the present invention after pressure relief;
  • Figure 16 is a schematic structural view of the pressure relief wide structure of the present invention before pressure relief;
  • Fig. 17 is a front structural view showing the pressure relief of the present invention.
  • 3-intake adjustment 31-intake wide seat, 311-guide key; 32-intake adjustment lever;
  • 6-Inlet water adjustment 61-influent wide board, 62-wide shaft, 63-weight;
  • 514-wind blade 515-window shaft seat; 516-direction shaft seat; 5161-rotary seat; 5162-fixed seat;
  • 517-air storage chamber 518-connecting rod; 527-piston connecting rod; 528-reduced air vent; 529-curved rail; 5291-convex arc segment; 5292-straight segment; 5293-concave arc segment;
  • 543-shaft seat intake pipe 544-pressure gas passage; 546-airtight component; 547-pressure relief;
  • Outlet pipe 4-4. Air pump device, 4-41. Exhaust pipe; 4-6. Solar energy supply device;
  • the present invention provides a pneumatic pump which includes: a cylinder 1, an upper water pipe 2, an air intake regulating valve 3, a water inlet regulating valve 6, an exhaust gas regulating valve 5, and a linkage structure.
  • the cylinder 1 is disposed in the water body, and one end of the upper water pipe 2 is placed in the cylinder body 1 and extends to the lower portion of the cylinder body, and the other end thereof penetrates the upper end of the cylinder body 1 and protrudes from the water body surface; the intake regulating valve 3 is disposed in the cylinder
  • the body 1 is connected to the intake pipe 4 connected to the intake system;
  • the exhaust gas regulating valve 5 is disposed in the cylinder 1 and communicates with the upper water pipe 2, and the air inlet of the exhaust gas regulating valve 5 is located in the cylinder 1
  • the upper inlet valve 6 is disposed at the bottom of the cylinder 1.
  • the linkage mechanism is disposed between the intake regulator valve 3, the inlet regulator valve 6 and the exhaust regulator valve 5 for coordinating the control between the three.
  • the linkage mechanism includes: a first linkage rod 8 and a second linkage rod 9; the first linkage rod 8 is respectively connected with the inlet water regulating valve 6 and the intake air regulating valve 3, and the second linkage rod 9 is connected with the exhaust gas regulating valve 5;
  • the water inlet regulating valve 6 opens and pushes the first linkage rod 8 upward, so that the intake regulating valve 3 is closed, and the first linkage rod 8 pushes the second linkage rod up and 9
  • the water inlet regulating valve 6 When the pressure in the cylinder 1 is greater than the water pressure of the water body, the water inlet regulating valve 6 is closed and the first linkage rod 8 is moved downward to open the intake regulating valve 3, and the second linkage rod 9 is moved downward to control the exhaust regulating valve 5.
  • the inner air is taken in the cylinder 1, and the water is discharged into the upper water pipe 2 by air pressure.
  • the volume inside the cylinder 1 is the volume of the upper pipe 2 to 3 meters head; the depth of the cylinder 1 in the water body is greater than 1/5 of the head height and less than 2/5 of the head height.
  • the intake air regulating valve 3 is disposed between the exhaust gas regulating valve 5 and the water inlet regulating valve 6, and includes an intake valve seat 31 and an intake adjusting rod 32, and an intake port and an intake pipe 4 of the intake valve seat 31.
  • the intake adjusting rod 32 is disposed in the intake valve seat 31 and is slidably engaged with the intake valve seat 31.
  • the intake adjusting rod 32 is fixedly coupled to the upper end of the first connecting rod 8, and the intake adjusting rod 32 is provided with a The radial through hole 321 and the intake adjusting lever 32 are moved until the radial through hole 321 communicates with the air outlet of the intake valve seat 31 to realize the intake of the cylinder 1.
  • a guiding groove 322 is provided along the axial direction of the intake adjusting rod 32, and the inner circular surface of the intake valve seat 31 is provided with a guiding groove. 322 realizes the axial sliding fit of the guide key 311.
  • the exhaust regulating valve 5 includes an exhaust valve seat 51, an exhaust valve needle 52 and a valve needle guide tube 53;
  • the exhaust valve seat 51 is in communication with the upper water pipe 2; the valve needle guide pipe 53 is disposed at the upper end of the cylinder body 1, and the upper end thereof is closed; the upper portion of the exhaust valve needle 52 is disposed in the valve needle guide pipe 53, the lower portion thereof and the exhaust valve
  • the intake port of the seat 51 is adapted, and the exhaust valve needle 52 is slidably engaged with the needle guide tube 53 for controlling the intake of the exhaust valve seat 51.
  • the lower part of the exhaust valve needle 52 shown in the figure has a tapered structure. When the exhaust gas regulating valve 5 is closed, the tapered surface of the exhaust valve needle cooperates with the intake port of the exhaust valve seat 51 to achieve the alignment.
  • the air valve seat air inlet is sealed, the upper end of the second linkage rod 9 is fixedly connected with the exhaust valve needle 52, and the lower end thereof is located directly above the first linkage rod.
  • the water inlet regulating valve 6 includes: a water inlet valve plate 61, a valve plate shaft 62 and a weight 63.
  • the bottom of the cylinder 1 is formed with a water inlet hole 7, and the water inlet valve plate 61 is disposed at the water inlet hole of the cylinder body ⁇
  • the lower end of the first linkage rod 8 is fixedly coupled to the upper end surface of the inlet valve plate 61.
  • the inlet valve plate 61 pushes the inlet valve plate 61 to open by the action of the water pressure of the peripheral water body, and the water enters the cylinder body 7 through the water inlet hole 7, and the first linkage at this time
  • the upper end of the rod pushes the intake adjusting rod up, causing the inlet regulating valve to close, the upper end of the intake adjusting rod contacts the lower end of the second linkage rod and pushes the second linkage rod to move up, and the second linkage rod drives the exhaust valve
  • the needle 52 opens the air inlet of the exhaust valve seat to start exhausting the exhaust gas regulating valve;
  • the valve plate shaft 62 is disposed at a central portion of the inlet valve plate 61, and a lower portion thereof is fixedly coupled to the weight 63, wherein the weight 63 is used to adjust the buoyancy of the inlet valve plate 61, and the cylinder 1 is filled with water.
  • the inlet valve plate 61 falls under the gravity of the weight 63, and the inlet hole 7 is sealed to stop the water inlet.
  • the first linkage rod moves downward, and the radial through hole 321 on the intake adjustment rod. It communicates with the inside of the cylinder to realize rapid intake.
  • the second linkage rod moves down by gravity, and drives the exhaust valve needle to move down to close the intake port of the exhaust valve seat to stop the exhaust in the upward water pipe.
  • a plurality of water-dividing cones 10 spaced apart are disposed inside the water pipe 2, and the large end surface of the water-dividing cone 10 occupies about 1/3 of the cross-sectional area of the water pipe 2.
  • the gas in the upper water pipe rises to the position of the water dividing cone, it will rise along the cone surface, which will lift up some of the water sliding down the upper water pipe wall to drive the water to rise;
  • the flow velocity is gradually accelerated due to the gradual decrease of the cross-sectional area, which can be obtained by the cypress effort equation, and the pressure along the tapered surface is gradually lowered, which will drive the subsequent fluid to rise. Applicable when the inner diameter of the upper water pipe is less than 40mm.
  • the inner diameter of the upper water pipe is larger, when it is larger than 40 mm, it is necessary to provide an anti-backflow device on the pipe wall of the upper water pipe 2, wherein the upper water pipe 2 is connected by a plurality of connecting pipes 21, and each connecting pipe 21 is connected.
  • the length of the connecting pipe 21 is composed of a straight pipe 211, a tapered pipe 212 and a columnar connecting pipe 213.
  • the small diameter end of the tapered pipe 212 is connected with the straight pipe 211, and the large diameter end and the column connecting pipe 213 are connected.
  • the columnar connecting tube 213 is placed on the outer circular surface of the straight tube 211 of the connecting tube 21 at the lower end thereof, wherein the taper tube 212 has a taper angle of 4 to 6°.
  • the inner diameter is larger than the inner diameter of the straight pipe 211, the velocity of the airflow reaches here, the pressure rises, and the air flow further. Part of the current that slides down the countercurrent rises.
  • the invention also provides a gas pressure water pump group, as shown in Fig. 4, comprising two gas pressure water pumps, the two air pressure water pumps are arranged up and down, that is, at different water level heights, a pressure difference is generated between the two, two pressures
  • the intake regulating valve 3 of the water pump is respectively connected with the intake pipe 4, and the upper water pipe 2 of the two-pressure pump is respectively extended from the upper end of the cylinder 1, and a plurality of air pump can also be provided, and the setting of the plurality of air pump is provided.
  • the method is preferably set in the upper and lower positions. Since the water pressure of the cylinder outside the cylinder of the shallow water pump is relatively high, a large wind pressure is required to perform the intake and drainage operation. When the wind pressure provided by the wind turbine is small, the water level is The shallower air pressure pump can work. Once the wind pressure provided by the wind turbine is large, multiple air pressure pump can be driven at the same time.
  • the working principle of the invention is as follows: The pneumatic pump is placed in the water body, and then the pressure gas is injected into the intake pipe 4 through the intake system, the pressure of the pressure gas is greater than the water pressure in the cylinder 1, and the pressure gas passes through the radial direction.
  • the through hole 321 enters the cylindrical body 1, and the gas in the cylindrical body 1 exerts pressure on the water, and the water pushed into the cylindrical body 1 enters the upper water pipe 2, and the water entering the upper water pipe 2 gradually increases in speed, and is initially started.
  • the fluid in the upper water pipe continues to rise by its inertia, and when the pressure difference between the inner and outer cylinders is converted to a negative value, the water inlet regulating valve and the exhaust gas regulating valve are opened, and at the same time,
  • the intake regulating valve is closed, the peripheral water body enters the cylinder body, enters the influent and exhaust phase, and when the residual gas is exhausted quickly, the water inlet is stopped, the inlet valve plate is reset by gravity, and the water inlet is adjusted.
  • the valve and the exhaust regulating valve are closed, and the intake regulating valve is opened to continue the intake and drainage.
  • the water and gas in the cylinder are alternately discharged into the upper water pipe, and the gas gradually expands during the ascending process, which can drive the water column in the upper water pipe to rise. .
  • the invention can realize the delivery of high lift water at a lower pressure by experimental verification.
  • the upper water pipe diameter is 30mm
  • the radial through hole diameter of the intake control valve is 5mm
  • the inlet pressure is 1.2kg
  • the lift head is 26m.
  • Figure 5 shows a pneumatic pumping storage system, including a low level reservoir 4-2, a high level reservoir 4-1, an energy supply device and a water lifting device, and the water lifting device is connected to the energy supply device for The water in the low water storage tank 4-2 is lifted into the high water storage tank 4-1.
  • the water lifting device here is a pneumatic water pump 4-3, and the energy supply device passes through the gas path with the air intake pipe of the air pressure water pump 4-3.
  • Road 4-31 is connected.
  • a hydroelectric generator 4-7 is also disposed in the lower portion of the high level reservoir 4-1. As shown in Fig. 6, when electricity is required, the water in the high reservoir 4-1 enters through the downpipe 4-9. In the hydro-generators 4-7, the hydro-generators 4-7 are driven to generate electricity, and the drains of the hydro-generators 4-7 are connected to the lower reservoirs 4-2;
  • the compressed air in the wind power supply device enters the air pressure water pump 4-3 through the air passage, and the water in the low water storage tank 4-2 is sent to the high water storage tank 4-1 through the air pressure water pump 4-3, and the high position storage
  • the water in the pool 4-1 is generated by the hydroelectric generator 4-7, and the water in the high reservoir 4-1 is generated by the hydro generator 4-7 and then transferred to the lower reservoir 4-2.
  • a solar energy supply device and a 4-6 air pump device 4-4 are added to the system, which can be separately supplied with a pressure pump 4-3 pressure gas or a wind air. Press 4-8 is used.
  • the air pump device 4-4 is an electric air pump, and the electric air pump is electrically connected with the solar energy supply device, and the exhaust pipe 4-41 of the electric air pump is connected with the intake pipe 4-31 of the air pressure water pump 4-3, and the air pressure water pump 4
  • a three-way exhaust valve 13 is provided on the air passage between the -3 and the electric air pump and the connecting air passage between the pneumatic pump 4-3 and the air reservoir 17.
  • the solar energy supply device 4-6 herein includes a solar lighting panel 4-61, an inverter 4-62, and a battery 4-63. Since this block is used in the prior art, it will not be described here.
  • the water in the lower reservoir 4-2 is sent to the high reservoir 4-1 through the outlet pipe 4-32 by air pressure.
  • the water in the high reservoir 4-1 is stored as an energy source. It is necessary to make the water in the high reservoir 4-1 only need to be lowered into the lower reservoir 4-2 through the downpipe 4-9.
  • the change of potential energy The water in the high-level reservoir 4-1 is converted into electric energy by the hydro-generator 4-7 for the user to use, and does not need to store energy, thus reducing the environmental pollution of the electric energy storage device. Instant start and use of electricity.
  • a pneumatic water pumping remote water delivery system includes a low level reservoir 4-2 and a high level reservoir 4-1, a water lifting device and an energy supply device for supplying energy to the water lifting device, and the water lifting device is used for
  • the water in the lower reservoir 4-2 is lifted into the high reservoir 4-1, the lower reservoir 4-2 can be the water source, and the water in the high reservoir 4-1 flows to the user end, wherein
  • the water lifting device is a pneumatic pump 4-3, and the energy supply device is connected to the intake line 4-31 of the pneumatic pump 4-3 through the gas path.
  • the energy supply device is a wind air press 4-8, or a solar energy supply device 4-6 and a gas pump device 4-4, and most preferably both are used at the same time, and the air pump device 4-4 can be directly connected to an external power source directly. Connect the power supply.
  • the solar energy supply device 4-6 herein includes a solar lighting panel 4-61, an inverter 4-62, and a battery 4-63. Collecting solar energy through solar panels 4-6, and It is converted into electric energy and stored by the battery 4-63, and then converted into electricity required by the electric air pump through the inverter 4-62 for operation thereof, and generates pressurized gas, and the pressure gas generated by the electric air pump passes through the electric motor.
  • the exhaust pipe 4-41 of the air pump is connected to the intake line 4-31 of the air pump 4-3, and the air pump 4-3 is pumped to the high water tower 4-1 through the outlet pipe 4-32 after the air pressure is lifted.
  • the high reservoir 4-1 flows to the customer end.
  • the remote low-pressure water storage system 4-10 also includes a remote low-level reservoir 4-10 that communicates with the high-level reservoir 4-1 through the downpipe 4-9.
  • the high reservoir 4-1 here can be placed on the roof of a high-rise building in the city as a source of water for residents to use water for other purposes.
  • a hydro-generator 4-7 is installed in the lower part of the high-level reservoir 4-1, and the high-level reservoir 4-1 can be used for power generation at the same time, thereby forming a gas pressure water level power generation system, as shown in Fig. 8. As shown, when the water in the high reservoir 4-1 is not used, the potential energy of part of the water can be converted into electrical energy.
  • the energy supply device used in the present invention is a wind air press 4-8, as shown in the structural view of Fig. 9.
  • a wind air press 4-8 shown in the drawings mainly includes: a wind power transmission system, a steering shaft seat 516, an air compressor, and a gas storage chamber 517.
  • the wind power transmission system includes: a wind blade 514, a driving shaft 530, a blade shaft seat 515 and a tail wing 50.
  • the driving shaft penetrates the blade shaft seat 515 and is fixedly connected with the driving wheel in the air compressor casing 512, and the tail wing 50 passes
  • the tail link is fixed to one side of the air compressor casing 512, and the tail link is hinged with the casing 512, and the blade axle seat 515 is rotatably coupled to the axle seat 516.
  • the pivoting base 516 is composed of a rotating base 5161 and a fixed seat 5162.
  • the rotating base 5161 is fixedly connected with the lower end of the blade shaft seat 515.
  • the rotating base 5161 is rotatably connected with the fixed seat 5162.
  • the rotating base 5161 is rotated.
  • a central pressure air passage 544 and an intake pipe 543 communicating with the pressure air passage 544 are disposed on the central axis.
  • the air storage chamber 517 is in communication with the pressure air passage 544, and the wind power transmission system is rotatable about the steering shaft seat 516.
  • the air compressor includes a casing 512, a driving wheel 56 and at least one cylinder 511.
  • the cylinder 511 is disposed on the casing 512.
  • the driving wheel 56 is disposed in the casing 512 and is sleeved and fixed on the driving shaft 530 of the wind power transmission system.
  • the driving surface of the driving wheel 56 is formed with a closed sliding rail structure.
  • the piston rod 527 of the cylinder 511 is bounded to the sliding rail structure of the driving wheel 56 and slides along the sliding rail structure, and the piston rod 527 of each cylinder 511 is mounted.
  • a link guiding mechanism 531 is disposed perpendicular to the axis of the cylinder piston link 527.
  • the link guiding mechanism 531 is disposed perpendicular to the piston link 527, and four link guiding mechanisms 531 are symmetrically disposed, respectively, which are restricted from four directions. When it is oscillated, the cylinder only needs to move in the up and down direction to ensure smooth operation of the cylinder 511 during air intake and exhaust.
  • the link guiding mechanism 531 includes a plurality of guiding wheels 5312.
  • the guiding wheels 5312 are fixed to the inner wall of the cylinder 511 through a connecting rod 5311.
  • the plurality of guiding wheels 5312 are evenly distributed on the piston connecting rod.
  • the outer circumference of the 527 is slidably coupled to the piston rod 527, and the guide wheel 5312 herein may be a rolling bearing or a sliding bearing.
  • a gas storage chamber 517 is disposed below the aligning shaft seat 516, and the directional shaft seat 516 is sealingly connected to the gas storage chamber 517 by a gas-tight member 546.
  • the lower end of the fixing seat 5162 is fixed at the upper end of the gas storage chamber 517.
  • the exhaust manifold 535 placed on the air compressor is provided with a one-way exhaust valve 513, and the exhaust manifold 535 is in communication with the shaft seat intake pipe 543 on the rotating base 5161, and the gas in the exhaust manifold 535 is in turn
  • the shaft seat intake pipe 543 and the pressure gas passage 544 are discharged into the gas storage chamber 517.
  • the compressed gas in the gas storage chamber 517 passes through the gas path and the intake pipe of the gas pressure water pump 3. 36 connected.
  • the drive shaft 530 is disposed at the center of the slide rail structure, and the slide rail structure is formed by connecting the plurality of arcuate slide rails 529 end to end.
  • the slide rail structure is formed by connecting the plurality of arcuate slide rails 529 end to end.
  • the active end of the piston link 527 acts on and is constrained by the slide rail structure;
  • the curved slide rail 529 includes an upward exhaust curved slide rail and a downward suction curved shape
  • the sliding rail, the exhaust curved rail and the suction curved rail are symmetrically arranged and matched with the running track of the cylinder 511; the driving wheel 56 rotates and drives the working end of the piston connecting rod 527 along the curved sliding rail
  • the 529 is periodically reciprocated up and down to realize the speed increasing exhaust and suction process of the cylinder 511.
  • Fig. 10 is a structural diagram of the driving wheel with twice the speed increasing.
  • the cylinder 11 provided on the casing 512 with one rotation of the driving shaft requires two suction and exhaust processes, and is mainly used for a small fan.
  • Fig. 11 is a structural diagram of the drive wheel of the triple-increasing speed.
  • the cylinder 11 provided on the casing 512 with one rotation of the drive shaft requires three suction and exhaust processes, and is mainly used for a small fan.
  • FIG. 12 is a structural diagram of a driving wheel of a six-fold increasing speed.
  • a plurality of cylinders 511 are disposed on the casing 512, and the driving shaft 530 is rotated one week.
  • the single cylinder 511 on the casing 512 needs to complete six suction and exhaust processes, and is mainly used for the suction and exhaust process of six times. On large fans.
  • Figure 13 is a line diagram showing the structure of the slide rail of the drive wheel 56.
  • the exhaust curved track and the suction curved track are of the same curved shape, that is, respectively by the convex arc segment 5291, the straight segment 5292 and the concave circle.
  • the arc segments 5293 are connected, wherein the straight segments 5292 are tangent to the convex arc segments 5291 and the concave arc segments 5293, respectively, and the ends of the convex arc segments 5291 correspond to the top dead center positions of the cylinders 511, The end of the concave arc segment 5293 corresponds to the bottom dead center position of the cylinder 511.
  • the concave arc segment of the upper and lower segments changes the stroke direction buffer size Speed stage trajectory shape working state torque stroke
  • the curved slide rail 529 may also be a sinusoidal slide rail, and the slide rail structure is unfolded to form a sinusoidal wave structure having the same waveform; the slide rail structure formed by connecting the plurality of sinusoidal slide rails end to end is connected to the drive wheel 56.
  • the axis of the circle is a circle of a center, and the slide rail structure is formed with a plurality of sinusoidal rail connecting pits, wherein the connecting pits are turning points of the cylinder 511 from the inhaled state to the exhausted state.
  • the downward pit changes to change the upstream initial transition buffer point.
  • the slide rail structure is formed on the outer end surface of the drive wheel 56, and the curved slide rail 529 is a groove 533 formed on the outer end surface of the drive wheel 56.
  • a retaining retaining frame 534 is formed on one side, and a bearing 532 is disposed at the working end of the piston connecting rod 527.
  • the bearing 532 is received in the recess 533 and is restrained by the retaining retainer 534.
  • the bearing 532 at the active end of the piston link 527 periodically reciprocates around the curved rail 529.
  • the bearing 532 is disposed at the end of the piston rod 527, and the bearing 532 is a sliding bearing or a rolling bearing.
  • the box body 512 shown in FIG. 10-12 has a cylindrical shape, and an upper cylinder surface is provided with an even number of cylinders 511 which are slidably connected with the slide rail structure, and each cylinder 511 is vertically disposed with the cylindrical surface of the box body 512, adjacent to the two
  • the center angle formed by the cylinders 511 is equal, and the exhaust pipes on the respective cylinders 511 are connected in series and communicate with the exhaust manifold.
  • the lubrication of the piston of the cylinder 511 shown in Figs. 10 and 11 is automatically completed by the operation of the drive wheel 56.
  • the speed of the piston is fast, and the lubrication in the casing 512 can be achieved only by the centrifugal force generated by the drive wheel 56.
  • the oil is brought into the cylinder 511 to lubricate the cylinder 511.
  • the lubricating oil located at the bottom of the casing 512 cannot be brought into the cylinder 511 by the centrifugal force. Therefore, a hydraulic oil pump needs to be disposed in the casing 512. As shown in FIG.
  • the hydraulic oil pump is composed of a hydraulic cylinder 540 and a cam 536 that is fixedly mounted on the drive shaft 530.
  • the piston rod 538 end of the hydraulic cylinder 540 A sliding bearing 542 is disposed.
  • the piston rod 538 between the sliding bearing 542 and the cylinder of the hydraulic cylinder 540 is sleeved with a return spring 541 for the hydraulic cylinder 540 to perform an oil suction operation.
  • the drive shaft 530 rotates and drives the cam 536 to rotate to the hydraulic cylinder 540.
  • the end of the piston rod 538 reciprocates along the outer end surface of the cam 536; the hydraulic cylinder 540 is provided with an oil suction port and an oil outlet 539, and the oil outlet 539 of the hydraulic cylinder
  • a plurality of connecting tubing 537, 537 one to one communication with the cylinder chamber of the plurality of cylinders plurality of tubing 511, thereby relying on the power of the wind generated by each cylinder lubrication can be realized on the box 512 pair.
  • the exhaust manifold 535 is provided with at least two exhaust manifolds 550, each of which is in communication with an exhaust pipe disposed on a corresponding number of cylinders 511, and each of the exhaust manifolds 550 meets Thereafter, the exhaust manifold 535 is connected; one of the exhaust manifolds 550 communicates with the exhaust manifold 535 through a one-way exhaust valve 513; the remaining exhaust manifolds 5550 respectively pass through a pressure relief valve 5547 and a one-way
  • the exhaust valve 513 is in communication with the exhaust manifold 535; when the wind is small, the pressure relief valve 547 corresponding to the wind strength is opened, and the respective cylinders 511 connected to the pressure relief valve 547 are generated.
  • the pressurized air is vented to the atmosphere.
  • FIG. 12 shows a case where two exhaust manifolds 550 are provided.
  • a total of four cylinders 511 are provided, wherein each two cylinders 511 are arranged in a group and are respectively connected to respective exhaust manifolds 550, one of which is an exhaust manifold.
  • the 550 is connected to the exhaust manifold 535 through a one-way exhaust valve 513; the other exhaust branch 550 is connected to the exhaust pipes of the other two cylinders 511, and then output through a pressure relief valve 547 and a one-way exhaust valve.
  • the 513 is in communication with the exhaust manifold 535, and a decompression air hole 528 is further disposed on the casing 512, as shown in FIG.
  • three or more exhaust branch pipes 550 may be provided. If three exhaust pipe branches are provided, one of the exhaust pipe branches 550 is directly connected to the exhaust manifold 535 through the one-way exhaust valve 513. In communication, the other two exhaust branch pipes 550 are respectively communicated with the exhaust manifold 535 through a pressure relief valve 547 and a one-way exhaust valve 513, wherein the two pressure relief valves 547 can be set for different wind speeds, and can be adapted to different wind speeds.
  • the lower air press operates, and when a certain wind speed is reached, the pressure relief valve 547 corresponding to this wind speed level operates and performs a pressure relief action.
  • the pressure relief valve 547 is disposed on the housing 512, and includes a valve housing 5471, a rotary valve core 5472, and a wind operating mechanism, as shown in FIG. 15, FIG. 16, and FIG.
  • the rotary valve core 5472 is disposed in the valve casing 5471, and is sealedly connected.
  • the rotary valve core 5472 is internally formed with an air flow passage 5479.
  • the valve casing 5471 is provided with two exhaust holes 5473 at a rotation angle. And an air inlet hole 5470 communicating with the exhaust manifold 550. When the rotary valve core rotates, the air inlet hole 5470 of the valve casing passes through the air flow passage 5479 and the two of the exhaust holes 5473 One phase is connected.
  • the air flow passage 5479 shown in the figure starts from the end of the rotary valve core 5472 and communicates with an air inlet hole 5470 provided at the bottom of the valve housing 5471, and the air flow passage 5479 terminates in the rotation.
  • the rotary valve core 5472 rotates and the air flow passage 5479 is formed on two cylindrical vent holes 5473 at a 90 degree rotation angle on the cylindrical side wall of the valve casing 5471.
  • a corresponding connection can also be a rotation angle of other angles, here is not limited to a 90 degree rotation angle;
  • the wind operating mechanism is disposed at an end of the rotary valve core 5472, and operates the rotary valve core 5472 to perform a rotating motion according to the magnitude of the wind force.
  • the wind operating mechanism includes: a rotating shaft 5475 fixed to an end of the rotating valve core 5472, and a limiting block 5478 for limiting a rotation angle of the rotating shaft 5475 may be disposed, and the position of the limiting block may be disposed on the valve casing. It can also be disposed on other fixed positions on the box 512;
  • the wind baffle comprises a large wind baffle 5476 with a large wind take-up surface and a small wind baffle 5474 with a small wind take-up surface, and the two wind baffles 5474 and 5476 are fixed at 90 degrees.
  • the large wind baffle 5476 and the small air baffle 5474 are disposed perpendicular to the wind direction, and the angle formed by the two air baffles 5474, 5476 is not limited to 90 degrees.
  • the initial state can set the bulk wind baffle 5474 to the vertical position, and the small wind baffle 5476 is set at the horizontal shelter position. The initial position at this time is that the pressure relief valve 547 is in the breeze.
  • the position of the time that is, the portion of the pressure gas generated by the cylinder 511 is discharged to the atmosphere.
  • the air baffle plate may be disposed here, and is mainly used for generating rotation by the wind-starting rotary valve core 5472;
  • the wind drives the large wind baffle 5476, so that the large wind baffle 5476 sequentially drives the rotating shaft 5475 and the rotating valve core 5472 to rotate 90 degrees, so that the air flow channel 5479 in the rotating valve core 5472 rotates.
  • the pressure air in the cylinder 511 directly enters the intake pipe 543 communicating with the plenum 517 through the air flow passage 5479 in the rotary spool 5472, and then enters the pressure gas passage. 544 is discharged into the gas storage chamber 517, at which time all of the pressure gas discharged from the cylinder 511 is discharged into the gas storage chamber 517.
  • the two air baffles 5474, 5476 are restored to the initial position by the action of the disc spring 5477, and the pressure air generated by one of the cylinders 511 is discharged to the atmosphere, thereby reducing the load on the air compressor. Realize the normal operation of the air compressor in a small wind environment.
  • the cylinders 511 may be arranged at regular intervals on the drive wheels 56, and other forms of settings may be adopted as long as the air pressure is not changed.
  • the balance of the machine can be balanced, and will not be described here.
  • the function of the pressure relief valve of the multi-cylinder 511 wind air compressor is due to the large difference between the large and small winds.
  • the pressure relief valve In order to make full use of the small breeze for a long time, in the case of small breeze, when using the multi-cylinder 511, the pressure relief valve is used. Go to the working pressure of some cylinders 511 such as 1/2, 1/3, 2/5, etc. to achieve small breeze work. Seal the pressure relief valve at high wind speeds to make it work normally with strong winds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

一种气压扬水泵、泵组及气压扬水蓄能、位能发电和远程输水系统,其中气压扬水泵包括:筒体(1)、上水管(2)、进气调节阀(3)、排气调节阀(5)和进水调节阀(6);上水管(2)的一端置于筒体(1)的下部,其另一端贯穿筒体(1)的上端并伸出水体面;进气调节阀(3)设置于筒体(1)内,并与连接于进气系统的进气管(4)连通;排气调节阀(5)与上水管(2)连通,其进气口位于筒体(1)的上部;其中进气调节阀(3)、进水调节阀(6)及排气调节阀(5)之间设有联动机构,其控制进气调节阀(3)开启时进水调节阀(6)及排气调节阀(5)关闭,实现上水管(2)的上水过程;筒体(1)内压力小于水体压力时,控制进水调节阀(3)及排气调节阀(5)开启时进气调节阀(6)关闭,实现上水管(2)的进气过程,气压扬水泵组由至少两个上述扬水泵组成,且各泵间呈上下方位设置。

Description

一种气压扬水泵、 泵组及气压扬水蓄能、 位能发电和远程输水系统 技术领域
本发明涉及气压扬水技术领域, 特别涉及一种气压扬水泵及泵组及气压扬水蓄能、 发电 和远程输水系统。 背景技术
气压扬水泵是通过气压推动进入上水管中的水实现高效扬水, 其用于提水或农业灌溉等 领域, 主要用于深井提水。 由于水管中的水掺杂着气, 所以在同样气压条件下比普通扬水泵 的扬程高。
中国专利文献 201220029975.3公开了一种气压扬水泵, 其包括: 箱体、 排气调节阀、 控 制进气阀和出水管, 箱体内部被分成两筒体, 两所述筒体上分别设有进水阀、 排气调节阀、 控制进气阀和出水管, 其中一筒体内的出水管的进水口位置低于另一筒体内出水管的进水口 位置, 两筒体的出水管汇合形成一排水总管, 所述排水总管的充水量大于等于进水口位置较 高的所述出水管所在筒体一次所能排出的最大水量; 两排气口分别通过排气管同所述排水总 管相连通; 排气调节阀与控制进气阀之间设有联动机构, 通过联动实现两筒体的交错排气和 排水过程, 使其中一个筒体在排气时, 另一筒体实现排水, 进而水掺杂着气一起排入排水总 管中, 使排水总管中水柱的重量降低, 在同种条件下提高了排水扬程。
发明人在实现本发明的过程中, 发现现有技术中存在以下技术缺陷:
上述的专利申请由于其采用上下两筒体结构, 气压扬水泵必须在恒定的水压与恒定的扬 程高度才能实现气压排出, 在水井及变化比较大的水位的情况下不能实现正常工作。 由于排 气口高于出水管, 由于上水单向阀的作用使上水管底部至排气口出现停顿, 再次上水的连动 性较差, 降低了管内上升水流的随机性。
扬水泵在工作过程中, 扬水泵内部的气压只有低于外部的水压, 扬水泵才会进水。 如果 扬程过高, 又如果上述的专利申请用在了变化比较大的水位的情况下, 那么, 过高的扬程需 要有相应的过高的进气压力。 虽然扬水泵在排水过程中, 扬水泵内部水压因水柱上升的惯性 有所降低使得扬水泵能够进水, 但是在变化比较大的水位的情况下, 扬水泵外部的水压变化 也会较大, 当扬水泵外部的水压低于进气压力时, 扬水泵就会停止进水, 整个扬水泵就中断 工作, 无法在进气压力高于扬水泵外部水压时作出自行调整, 因此, 上述专利申请适用于在 恒定水压和恒定扬程高度下工作。 发明内容
为了能在不同水源 (水井) 水位变化的情况下实现自行调整运行, 克服现有技术中的扬 水泵需在恒定水压和恒定扬程高度下工作的弊端, 本发明一方面提供了一种气压扬水泵。
所述技术方案如下:
一种气压扬水泵, 包括:
筒体, 其设置于水体内;
上水管, 其一端置于所述筒体内并伸至所述筒体的下部, 其另一端贯穿所述筒体的上端 并伸出水体面;
进气调节阀, 设置于所述筒体内, 并与连接于进气系统的进气管连通;
排气调节阀, 设置于所述筒体内, 并与所述上水管连通, 所述排气调节阀的进气口位于 所述筒体的上部;
进水调节阀, 设置于所述筒体的底部,
所述进气调节阀、 进水调节阀及排气调节阀之间设有联动机构, 所述联动机构包括: 第 一联动杆和第二联动杆;
所述第一联动杆分别与所述进水调节阀和进气调节阀连接, 所述第二联动杆与所述排气 调节阀连接,
所述筒体内压力小于所处水体水压时,所述进水调节阀开启并推动所述第一联动杆上移, 使所述进气调节阀关闭, 所述第一联动杆推动所述第二联动杆上移并驱动所述排气调节阀开 启, 通过水体水压作用将所述筒体中的余气排至所述上水管中;
所述筒体内压力大于所处水体水压时,所述进水调节阀关闭并带动所述第一联动杆下移, 使所述进气调节阀开启, 所述第二联动杆下移控制所述排气调节阀关闭, 所述筒体内进气, 并通过气压作用将水排至所述上水管中。
所述进气调节阀设置于所述排气调节阀与所述进水调节阀之间, 其包括进气阀座和进气 调节杆, 所述进气阀座的进气口与所述进气管连接, 所述进气调节杆设置于所述进气阀座中, 并与所述进气阀座滑动配合, 所述进气调节杆与所述第一联动杆的上端固定连接, 所述进气 调节杆上设有一径向通孔, 所述进气调节杆移动至所述径向通孔与所述进气阀座的出气口连 通时, 实现筒体进气。 为了防止进气调节杆的转动, 沿所述进气调节杆的轴向设有导向槽, 所述进气阀座的内 圆面上设有与所述导向槽实现轴向滑动配合的导向键。
所述进水调节阀包括: 进水阀板、 阀板轴及配重块, 所述筒体的底部成型一进水孔, 所 述进水阀板设置于所述筒体的进水孔处, 用于控制所述筒体的进水, 所述第一联动杆的下端 与所述进水阀板固定连接;
所述阀板轴设置于所述进水阀板的中部, 其下部与所述配重块固定连接。
所述排气调节阀包括排气阀座、 排气阀针和阀针导向管;
所述排气阀座与所述上水管连通; 所述阀针导向管设置于所述筒体的上端; 所述排气阀 针的上部设置于所述阀针导向管内且与所述阀针导向管滑动配合, 其下部与所述排气阀座的 进气口相适配, 所述第二联动杆的上端与所述排气阀针固定连接, 其下端设置于所述进气调 节杆的正上方, 当所述第一联动杆上移时带动所述进气调节杆上移, 所述进气调节杆的上端 通过推动所述第二联动杆上移实现所述排气阀调节阀的开启。
所述筒体内的容积为所述上水管 2〜3米扬程所具有的容积。
所述上水管的中部设有多个呈间隔分布的分水圆锥, 所述分水圆锥的大端面占所述上水 管横截面面积的 1/3, 可以防止气体沿着上水管的中部上移,加入分水圆锥后可以将气体分置 于两侧, 使其将沿管壁下滑的水托起, 可以很好的提高上水效率。
所述上水管由多段连接管首尾连接而成, 每段所述连接管依次由直管、 锥管和柱状连接 管组成, 所述锥管的小直径端与所述直管连接, 其大直径端与所述柱状连接管连接, 所述柱 状连接管套置于位于其下端的所述连接管的直管外圆面上。
另一方面, 本发明还提供了一种气压扬水泵组, 包括至少两个气压扬水泵, 各所述气压 扬水泵的进气调节阀分别通过各自的所述进气管与进气系统连接, 各所述气压扬水泵的上水 管分别外伸出筒体的上端。
多个所述气压扬水泵共形成至少两组, 各组所述气压扬水泵间呈上下方位设置。
另一方面, 本发明提供了一种连续排水提水方式, 使氏位蓄水池中的水能在较氏气压下 实现高位能的提水, 提高其蓄能能力。 所述技术方案如下:
一种气压扬水蓄能系统, 包括低位蓄水池、 高位蓄水池、 供能装置和提水装置, 所述供 能装置为所述提水装置提供能量, 用于将所述低位蓄水池内的水提至所述高位蓄水池中; 所述提水装置为气压扬水泵, 其设置于所述低位蓄水池中, 所述供能装置为风力空气压 力机, 所述风力空气压力机的储气室通过气路与所述气压扬水泵的进气管路连接, 所述气压 扬水泵与所述储气室之间的连接气路上设有单向排气阀, 所述气压扬水泵的出水管与所述高 位蓄水池连接。
所述风力空气压力机包括: 风力传动系统和空压机, 所述空压机包括箱体、 驱动轮和气 缸, 所述气缸设置于所述箱体上, 所述驱动轮设置于所述箱体内并套置固定于所述风力传动 系统的驱动轴上, 所述驱动轮的驱动面上成型有闭合的滑轨结构, 所述气缸的活塞连杆作用 端约束于所述驱动轮的滑轨结构并沿所述滑轨结构滑动, 所述气缸所产生的压縮气体通过排 气总管输送至储气室, 所述储气室通过气路同所述气压扬水泵的进气管连接;
所述驱动轴设置于所述滑轨结构的中心, 垂直于所述气缸活塞连杆的轴线方向上还设有 一连杆导向机构, 所述连杆导向机构同所述活塞连杆滚动连接;
所述连杆导向机构包括多个导向轮,所述导向轮通过连杆固定于所述气缸的缸体内壁上; 多个所述导向轮均布于所述活塞连杆的外圆周上, 并同所述活塞连杆滚动连接。
所述滑轨结构由多段弧形滑轨首尾连接而成, 多段所述弧形滑轨连接后形成一凹凸相间 分布的闭合滑轨结构;
所述弧形滑轨包括上行的排气弧形滑轨和下行的吸气弧形滑轨, 所述排气弧形滑轨和吸 气弧形滑轨分别由外凸圆弧段、 直线段和内凹圆弧段连接而成, 所述直线段分别同所述外凸 圆弧段和内凹圆弧段相切, 所述外凸圆弧段的端部对应于所述气缸的上止点位置, 所述内凹 圆弧段的端部对应于所述气缸的下止点位置。
所述滑轨结构成型于所述驱动轮的外圆端面上, 所述的弧形滑轨为成型于所述驱动轮外 圆端面上的凹槽, 所述凹槽的一侧成型有防脱保持架, 所述活塞连杆的作用端设有一轴承, 所述轴承容置于所述凹槽内, 并受所述防脱保持架约束, 所述驱动轮旋转时, 设置于所述活 塞连杆作用端的轴承绕所述弧形滑轨作周期性往复运动。
所述供能装置还包括气泵装置, 所述气泵装置同外接电源连接, 所述气泵装置的排气管 同所述气压扬水泵的进气管路连通, 所述气压扬水泵同所述气泵装置之间的连接气路上设有 单向排气阀。
进一步地, 所述供能装置还包括太阳能供能装置, 所述气泵装置同所述太阳能供能装置 电连接。
另一方面, 本发明还提供了一种气压扬水位能发电系统, 包括气压扬水蓄能系统和设置 在所述高位蓄水池下部的水力发电机, 所述水力发电机在高位蓄水池中的水的带动下实现发 电, 所述高位蓄水池中的水经所述水力发电机发电后汇入所述低位蓄水池。
另一方面, 本发明还提供了采用一种连续排水提水方式, 使氏水位水源在较低气压下实 现高位能的提水, 实现水源的远距离输送。 所述技术方案如下: 一种气压扬水远程输水系统, 包括气压扬水蓄能系统, 所述高位蓄水池中的水通过管道 流向用户端。
所述系统还包括与所述高位蓄水池通过管路连通的远程低位蓄水池, 所述管路与所述高 位蓄水池连接端的水平高度高于其与所述远程低位蓄水池连接端的水平高度。
本发明所提供的技术方案带来的有益效果是:
A. 本发明通过在进气调节阀、 排气调节阀和进水调节阀之间设置联动机构, 实现三者 的协调工作, 在水位变化的情况下, 可以自行进行调整扬水; 当筒体水位变化后不能实现正 常进水时, 筒体内的气压会不断补充部分气体, 促使上水管中的水柱不断排出, 在筒体内水 体压出水管时, 实现管内气体迫使水柱加速上升, 筒体内水压出至上水管口时, 上水管口瞬 间排入管内高压气体, 由于水流上升的惯性导致筒体内压低于水体水压, 进水阀板打开的同 时, 使进气口封闭, 实现筒体进水。
B. 本发明通过两个气压扬水泵上下设置, 即位于不同的水位高度, 两气压扬水泵的进气 调节阀分别与进气管相连通, 两气压扬水泵的上水管分别外伸出筒体的上端, 由于水位较浅 的气压扬水泵的筒体外围水体压力较小,因此在较小的风压即可实现气压扬水泵的正常工作, 而位于较深水位的气压扬水泵由于其所需启动气压较大, 因此风力机风压较小时难以实现其 正常工作, 只有当风力机所提供的风压较大时, 可以同时带动两个气压扬水泵进行工作, 实 现风能的利用率。
C.为了防止水气混合不均匀, 出现气流在上水管中心处上升, 在上水管内设置多个呈间 隔分布的分水圆锥,其中分水圆锥的大端面约占所述上水管横截面面积的 1/3, 分水圆锥适用 于上水管内径小于 40mm的管路; 当上水管内径较大时, 大于 40mm时, 需要在管壁上设置 防倒流的装置, 即采用多段连接管彼此套接, 相邻两连接管的连接端设置有倒锥型锥管, 当 部分水流沿上水管壁逆流下滑至锥管内壁时, 由于此处采用的是变径管结构, 其内径大于直 管的内径, 气流到达此处时速度降低, 压力上升, 气流会进一步将逆流下滑的部分水流托起 上升。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用的附 图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域 普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明所提供的一种状态下的气压扬水泵结构示意图 (进水调节阔处于开启) ; 图 2是本发明所提供的另一状态下的气压扬水泵结构示意图 (进水调节阔处于关闭) ; 图 3是本发明所提供的带有防水倒流结构的上水管;
图 4是本发明所提供的气压扬水泵组结构示意图;
图 5是本发明所提供的一种风光互补气压扬水蓄能系统结构图;
图 6是本发明所提供的一种带有气压扬水位能发电系统的蓄能系统;
图 7是本发明实施所提供的风光互补气压扬水远程输水系统图;
图 8是本发明所提供的一种带有位能发电系统的远程输水系统;
图 9是本发明所提供的风力空气压力机整体结构图;
图 10是本发明实施例一所提供的两倍增速的驱动轮结构图;
图 11是本发明实施例二所提供的三倍增速的驱动轮结构图;
图 12是本发明实施例三所提供的六倍增速的驱动轮结构图;
图 1 3是本发明所提供的弧形滑轨结构线性图;
图 14是图 9中的调向轴座同储气室连接结构图;
图 15是本发明的泄压阔结构泄压后的结构示意图;
图 16是本发明的泄压阔结构泄压前的结构示意图;
图 17是本发明的泄压阔的正面结构图。
图中:
1-筒体; 2-上水管, 21-连接管, 211-直管, 212-锥管, 21 3-柱状连接管;
3-进气调节阔, 31-进气阔座, 311-导向键; 32-进气调节杆;
321-径向通孔, 322-导向槽;
4-进气管;
5-排气调节阔, 51-排气阔座, 52-排气阔针, 53-阔针导向管;
6-进水调节阔, 61-进水阔板, 62-阔板轴, 63-配重块;
7-进水孔;
8-第一联动杆; 9-第二联动杆; 10-分水圆锥;
50-尾翼; 56-驱动轮;
511- 气缸; 512- 箱体;
51 3- 单向排气阔;
514-风叶; 515-风叶轴座; 516-调向轴座; 5161-旋转座; 5162-固定座;
517-储气室; 518-连接杆 ; 527-活塞连杆; 528-减压气孔; 529-弧形滑轨; 5291-外凸圆弧段; 5292-直线段; 5293-内凹圆弧段;
530-驱动轴; 531-连杆导向机构; 5311-连杆; 5312-导向轮; 532-轴承;
533-凹槽; 534-防脱保持架; 535-排气总管; 536-凸轮; 537-油管;
538-活塞杆; 539-出油口; 540-液压缸; 541-复位弹簧; 542-滑动轴承;
543-轴座进气管; 544-压力气通道; 546-气密元件; 547-泄压阔;
5470-进气孔; 5471-阔壳; 5472旋转阔芯; 5473-排气孔;
5474-小块取风挡板; 5475-旋转轴; 5476-大块取风挡板; 5477-碟簧;
5478-限位块; 5479-气流通道; 550-排气支管;
4-1高位蓄水池, 4-2.低位蓄水池, 4-3.气压扬水机, 4-31.进气管路;
4-32.出水管, 4-4.气泵装置, 4-41.排气管; 4-6.太阳能供能装置;
4-61.太阳能釆光板, 4-62.逆变器, 4-63.蓄电池; 4-7.水力发电机;
4-8.风力空气压力机, 4-9.下水管, 4-10.远程低位蓄水池。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作进 一步地详细描述。
由图 1和图 2所示, 本发明提供了一种气压扬水泵, 包括: 筒体 1、 上水管 2、 进气调节 阀 3、 进水调节阀 6、 排气调节阀 5及联动结构。 其中筒体 1设置于水体内, 上水管 2的一端 置于筒体 1 内并伸至筒体的下部, 其另一端贯穿筒体 1的上端并伸出水体面; 进气调节阀 3 设置于筒体 1 内, 并与连接于进气系统的进气管 4连通; 排气调节阀 5, 设置于筒体 1 内, 并与上水管 2连通, 排气调节阀 5的进气口位于筒体 1的上部; 进水调节阀 6设置于筒体 1 的底部。 联动机构设置于进气调节阀 3、 进水调节阀 6及排气调节阀 5之间, 用于协调控制 三者之间的动作。 联动机构包括: 第一联动杆 8和第二联动杆 9; 第一联动杆 8分别与进水 调节阀 6和进气调节阀 3连接, 第二联动杆 9与排气调节阀 5连接; 筒体 1内压力小于所处 水体水压时, 进水调节阀 6开启并推动第一联动杆 8上移, 使进气调节阀 3关闭, 第一联动 杆 8推动第二联动杆上移 9并驱动排气调节阀 5开启, 通过水体水压作用将筒体 1中的余气 排至所述上水管 2中;
筒体 1内压力大于所处水体水压时, 进水调节阀 6关闭并带动第一联动杆 8下移, 使进 气调节阀 3开启, 第二联动杆 9下移控制排气调节阀 5关闭, 筒体 1内进气, 并通过气压作 用将水排至所述上水管 2中。 筒体 1内的容积为上水管 2〜3米扬程所具有的容积;筒体 1置于水体中的深度大于其扬 程高度的 1/5, 且小于其扬程高度的 2/5。
其中的进气调节阀 3设置于排气调节阀 5与进水调节阀 6之间,其包括进气阀座 31和进 气调节杆 32, 进气阀座 31的进气口与进气管 4连接, 进气调节杆 32设置于进气阀座 31中, 并与进气阀座 31滑动配合, 进气调节杆 32与第一联动杆 8的上端固定连接, 进气调节杆 32 上设有一径向通孔 321, 进气调节杆 32移动至径向通孔 321与进气阀座 31的出气口连通时, 实现筒体 1进气。
为了防止进气调节杆 32在进气阀座 31中发生旋转影响进气,沿进气调节杆 32的轴向设 有导向槽 322, 进气阀座 31的内圆面上设有与导向槽 322实现轴向滑动配合的导向键 311。
排气调节阀 5包括排气阀座 51、 排气阀针 52和阀针导向管 53;
排气阀座 51与上水管 2连通; 阀针导向管 53设置于筒体 1的上端, 其上端闭合; 排气 阀针 52的上部设置于阀针导向管 53 内, 其下部与排气阀座 51 的进气口相适配, 排气阀针 52与阀针导向管 53滑动配合, 用于控制排气阀座 51的进气。 图中所示的排气阀针 52的下 部为锥形结构, 当排气调节阀 5关闭时, 排气阀针的锥形面与排气阀座 51的进气口相配合, 实现对排气阀座进气口的密封, 第二联动杆 9的上端与排气阀针 52固定连接, 其下端位于第 一联动杆的正上方。
进水调节阀 6包括: 进水阀板 61、 阀板轴 62及配重块 63, 筒体 1的底部成型一进水孔 7, 进水阀板 61设置于筒体 1的进水孔 Ί处, 第一联动杆 8的下端与进水阀板 61的上端面固 定连接。 当筒体内压力小于所处水体水压时, 进水阀板 61依靠外围水体水压的作用推动进水 阀板 61开启,水由进水孔 7进入筒体 7中,此时的第一联动杆的上端会推动进气调节杆上移, 致使进水调节阀关闭, 进气调节杆的上端与第二联动杆的下端接触并推动第二联动杆上移, 第二联动杆带动排气阀针 52将排气阀座的进气口打开, 使排气调节阀开始排气;
阀板轴 62设置于进水阀板 61的中部, 其下部与配重块 63固定连接, 其中的配重块 63 是用来调节进水阀板 61的浮力, 当筒体 1中进满水后, 进水阀板 61在配重块 63的重力作用 下下落,将进水孔 7密封住停止进水,此时的第一联动杆下移,进气调节杆上的径向通孔 321 与筒体内部相通, 实现快速进气, 第二联动杆依靠重力下移, 并带动排气阀针下移使排气阀 座的进气口关闭, 停止向上水管中排气。
为了实现提高上水管 2的上水效率, 在上水管 2的内部设有多个呈间隔分布的分水圆锥 10, 分水圆锥 10的大端面占上水管 2横截面面积的 1/3左右。 上水管中的气体上升至分水圆 锥位置时, 会沿着锥面上升, 这样会将部分沿上水管壁下滑的水重新托起, 带动水上升; 另 外, 气体或水上升至分水圆锥位置时, 由于截面积逐步减少, 使流速逐渐加速, 由柏努力方 程可以得到, 沿锥面处的压力逐渐降低, 这样会带动后面的流体上升, 此结构适用于上水管 内径小于 40mm的情况下。
如图 3所示当上水管内径较大时, 大于 40mm时, 需要在上水管 2管壁上设置防倒流的 装置, 其中上水管 2 由多段连接管 21 首尾连接而成, 每段连接管 21 的长度为 400mm〜 1000mm, 每段连接管 21依次由直管 211、 锥管 212和柱状连接管 213组成, 锥管 212的小 直径端与直管 211连接, 其大直径端与柱状连接管 213连接, 柱状连接管 213套置于位于其 下端的连接管 21的直管 211外圆面上, 其中锥管 212的锥角为 4〜6° 。 当部分水流沿上水 管 2壁逆流下滑至锥管内壁时, 由于此处采用的是变径管结构, 其内径大于直管 211的内径, 气流到达此处时速度降低, 压力上升, 气流会进一步将逆流下滑的部分水流托起上升。
本发明还提供了一种气压扬水泵组, 如图 4所示, 包括两个气压扬水泵, 两气压扬水泵 呈上下设置, 即位于不同的水位高度, 二者之间产生压差, 两气压扬水泵的进气调节阀 3分 别与进气管 4相连通, 两气压扬水泵的上水管 2分别外伸出筒体 1的上端, 也可以设置多个 气压扬水泵, 多个气压扬水泵的设置方式优选呈上下位置设置, 由于水位较浅的气压扬水泵 的筒体外围水体压力较大, 因此需要较大的风压采用进行进气排水动作, 当风力机所提供的 风压较小时, 水位较浅的气压扬水泵可以工作, 一旦风力机所提供的风压较大时, 可以同时 带动多个气压扬水泵进行工作。
本发明的工作原理如下所述: 将气压扬水泵置于水体中, 然后通过进气系统向进气管 4 内打入压力气体, 压力气体的压力大于筒体 1内水压, 压力气体通过径向通孔 321进入筒体 1内, 筒体 1内的气体对水施加压力, 推到筒体 1内的水进入上水管 2中, 进入上水管 2中 的水其上升速度逐步加快, 在最初启动的时候, 水和气相混杂进入上水管中, 根据伯努利方 程可知, 上水管 2下端进口附近的压力逐渐降低, 筒体 1内外的压差越来越小, 直至筒体内 外压差变为零时, 上水管中的流体流速为最大值, 此时上水管中的流体依靠其惯性继续上升, 使筒体内外压差转换为负值时, 进水调节阀和排气调节阀开启, 同时进气调节阀关闭, 外围 水体进入筒体内, 进入进水排气阶段, 当余气迅速排尽后, 停止进水, 进水阀板依靠重力作 用复位, 进水调节阀和排气调节阀关闭, 同时进气调节阀开启, 继续执行进气排水, 筒体内 的水和气呈现交替排至上水管中, 而气体在上升过程中逐步膨胀, 可以带动上水管中的水柱 上升。
本发明通过实验验证可以实现在较低的气压下, 实现高扬程水的输送。 所采用的上水管 管径为 30mm,进气调节阀的径向通孔孔径为 5mm,其进气压力为 1.2公斤,提升扬程为 26m。 下面是利用上述的气压扬水泵用于蓄能、 发电及远程输水系统中, 如图 5至图 8所示。 图 5所示为一种气压扬水蓄能系统, 包括低位蓄水池 4-2、 高位蓄水池 4-1、 供能装置和 提水装置, 提水装置同供能装置连接, 用于将低位蓄水池 4-2内的水提至高位蓄水池 4-1中, 这里的提水装置为气压扬水泵 4-3, 供能装置通过气路同气压扬水泵 4-3的进气管路 4-31连 接。
另外, 在高位蓄水池 4-1的下部还设有一水力发电机 4-7, 如图 6所示, 需要电的时候, 高位蓄水池 4-1内的水通过下水管 4-9进入水力发电机 4-7中, 并带动水力发电机 4-7进行发 电, 水力发电机 4-7的排水管同低位蓄水池 4-2相连通;
风力供能装置中的压縮空气通过气路进入气压扬水泵 4-3中, 低位蓄水池 4-2中的水通 过气压扬水泵 4-3输送至高位蓄水池 4-1, 高位蓄水池 4-1内的水通过水力发电机 4-7实现发 电, 高位蓄水池 4-1中的水经水力发电机 4-7发电后汇入低位蓄水池 4-2。
为了提高气压扬水泵 4-3的扬水效率, 在系统中又增加了太阳能供能装置和 4-6气泵装 置 4-4, 其可以单独供气压扬水泵 4-3压力气体, 也可以同风力空气压力机 4-8—起使用。 这 里的气泵装置 4-4为电动气泵, 电动气泵同太阳能供能装置电连接, 电动气泵的排气管 4-41 同气压扬水泵 4-3的进气管路 4-31连通, 气压扬水泵 4-3同电动气泵之间的气路上及气压扬 水泵 4-3与储气室 17之间的连接气路上设有单向排气阀 13。这里的太阳能供能装置 4-6包括 太阳能采光板 4-61、逆变器 4-62和蓄电池 4-63, 由于这一块所采用的是现有技术, 这里就不 再赘述。
通过气压扬水将低位蓄水池 4-2内的水通过出水管 4-32输送至高位蓄水池 4-1。 高位蓄 水池 4-1 中的水作为能源被存放起来, 需要电使只需要将高位蓄水池 4-1 中的水通过下水管 4-9下放至低位蓄水池 4-2中, 通过位能的变化高位蓄水池 4-1中的水通过水力发电机 4-7转 化为电能, 供用户使用, 不需要对电能进行蓄能, 这样减少了电力蓄能装置对环境的污染, 实现电力的即时启动和使用。
参照图 7, 一种气压扬水远程输水系统, 包括低位蓄水池 4-2和高位蓄水池 4-1、 提水装 置和为提水装置提供能量的供能装置, 提水装置用于将低位蓄水池 4-2中的水提至高位蓄水 池 4-1中, 低位蓄水池 4-2可以为水源, 而高位蓄水池 4-1中的水流向用户端, 其中的提水装 置为气压扬水泵 4-3, 供能装置通过气路同气压扬水泵 4-3的进气管路 4-31连接。 供能装置 为风力空气压力机 4-8, 或者为太阳能供能装置 4-6和气泵装置 4-4, 最为优选的是二者同时 使用, 也可以直接将气泵装置 4-4直接与外接电源连接供电。 这里的太阳能供能装置 4-6包 括太阳能采光板 4-61、 逆变器 4-62和蓄电池 4-63。 通过太阳能采光板 4-6采集太阳光能, 并 将其转化成电能通过蓄电池 4-63储存起来, 然后再通过逆变器 4-62将其转换成电动气泵所 需要的电供其运转,并产生压力气体,电动气泵所产生的压力气体通过电动气泵的排气管 4-41 同气压扬水泵 4-3的进气管路 4-31连通, 气压扬水泵 4-3通过气压扬水后通过出水管 4-32输 送至高位水塔 4-1, 水从高位蓄水池 4-1流向用户端。 同时, 在气压扬水远程输水系统中还包 括与高位蓄水池 4-1通过下水管 4-9连通的远程低位蓄水池 4-10。
这里的高位蓄水池 4-1可以置于城市高层楼房房顶上, 作为供居民用水或作其他用途用 水的水源。
另外, 在高位蓄水池 4-1 的下部还设置了一个水力发电机 4-7, 可以同时利用高位蓄水 池 4-1进行发电, 从而形成一种气压扬水位能发电系统, 如图 8所示, 当高位蓄水池 4-1中 的水使用不完的情况下, 可以将部分水的位能转换为电能。
本发明所用供能装置为风力空气压力机 4-8, 如图 9所示结构图。
图中所示的一种风力空气压力机 4-8主要包括: 风力传动系统、 调向轴座 516、 空压机 和储气室 517。
其中的风力传动系统包括: 风叶 514、 驱动轴 530、 风叶轴座 515和尾翼 50, 驱动轴贯 穿风叶轴座 515并同空压机箱体 512内的驱动轮固定连接,尾翼 50通过尾翼连杆固定于空压 机箱体 512的一侧面, 尾翼连杆同箱体 512铰接, 所述风叶轴座 515同调向轴座 516旋转连 接。
调向轴座 516,包括旋转座 5161和固定座 5162组成,其中的旋转座 5161同所述风叶轴 座 515的下端固定连接, 旋转座 5161同固定座 5162之间可旋转连接, 旋转座 5161的中轴线 上设置一贯穿的压力气通道 544和同压力气通道 544相连通的进气管 543, 储气室 517同压 力气通道 544连通, 风力传动系统可绕调向轴座 516旋转。
空压机, 包括箱体 512、 驱动轮 56和至少一个气缸 511, 气缸 511设置于箱体 512上, 驱动轮 56设置于箱体 512内并套置固定于风力传动系统的驱动轴 530上, 驱动轮 56的驱动 面上成型有闭合的滑轨结构,气缸 511的活塞连杆 527作用端约束于驱动轮 56的滑轨结构并 沿滑轨结构滑动, 每个气缸 511的活塞连杆 527上设置有垂直于所述气缸活塞连杆 527轴线 的连杆导向机构 531, 连杆导向机构 531同活塞连杆 527垂直设置, 共对称设置四个连杆导 向机构 531, 分别从四个方向上限制其摆动, 气缸工作时只需其在上下方向移动, 以确保气 缸 511在吸气和排气时的运行平稳。 所述连杆导向机构 531包括多个导向轮 5312,所述导向轮 5312通过连杆 5311固定于所 述气缸 511的缸体内壁上; 多个所述导向轮 5312均布于所述活塞连杆 527的外圆周上, 并同 所述活塞连杆 527滚动连接, 这里的导向轮 5312可以为滚动轴承或滑动轴承。
储气室 517, 设置于所述调向轴座 516的下方, 调向轴座 516同储气室 517通过气密元 件 546密封连接, 所述固定座 5162的下端固定在储气室 517的上端, 置于空压机上的排气总 管 535上设有单向排气阀 513, 排气总管 535同旋转座 5161上的轴座进气管 543相连通, 所 述排气总管 535内的气体依次通过轴座进气管 543、 压力气通道 544排入所述储气室 517内, 如图 14和图 16所示, 储气室 517内的压縮气体通过气路同气压扬水泵 3的进气管 36连通。
如图 10、 图 11和图 12所示, 其中的驱动轴 530设置于滑轨结构的中心, 滑轨结构由多 段弧形滑轨 529首尾连接而成, 多段所述弧形滑轨 529连接后形成一凹凸相间分布的闭合滑 轨结构, 活塞连杆 527的作用端作用于滑轨结构上并受其约束; 弧形滑轨 529包括上行的排 气弧形滑轨和下行的吸气弧形滑轨,排气弧形滑轨和吸气弧形滑轨呈对称设置,且同气缸 511 的运行轨迹相适配;驱动轮 56旋转并带动活塞连杆 527的作用端沿着弧形滑轨 529作上下周 期性往复运动, 实现气缸 511的增速排气和吸气过程。
图 10是两倍增速的驱动轮结构图, 驱动轴旋转一周设置于箱体 512上的气缸 11需要进 行两次吸排气过程, 主要用于小型风机上。
图 11是三倍增速的驱动轮结构图, 驱动轴旋转一周设置于箱体 512上的气缸 11需要进 行三次吸排气过程, 主要用于小型风机上。
图 12是六倍增速的驱动轮结构图,箱体 512上设置多个气缸 511,驱动轴 530旋转一周, 箱体 512上的单个气缸 511需要完成六次的吸排气过程, 主要用于大型风机上。
当然也可以根据情况设置多倍增速的驱动轮 56,只需改变滑轨结构上吸气弧形轨道和排 气弧形轨道的数量即可设计出实现不同增速的驱动轮 56。
图 13所示为驱动轮 56的滑轨结构线形图, 排气弧形轨道和吸气弧形轨道为相同弧形的 结构, 即分别由外凸圆弧段 5291、 直线段 5292和内凹圆弧段 5293连接而成, 其中的直线段 5292分别同外凸圆弧段 5291和内凹圆弧段 5293相切, 外凸圆弧段 5291的端部对应于气缸 511的上止点位置, 内凹圆弧段 5293的端部对应于气缸 511的下止点位置。
下表对气缸 511的活塞连杆在上行和下行运行至各个行速阶段的解释 行速阶段 轨迹形状 工作状态 扭矩 行程
上行上段 外凸圆弧段 高气压储气缓冲 大 小
上行中段 直线段 气体压縮加速 小 大
上行下段 内凹圆弧段 改变行程方向缓冲 大 小 行速阶段 轨迹形状 工作状态 扭矩 行程
下行上段 外凸圆弧段 改变行程方向缓冲 大 小
下行中段 直线段 吸气加速 小 大
下行下段 内凹圆弧段 吸气还原大气压力 大 小
其中的弧形滑轨 529也可以为正弦形滑轨, 滑轨结构展开后形成一波形相同的正弦波结 构; 多个正弦形滑轨首尾连接所成型的滑轨结构内接于以驱动轮 56的轴线为圆心的圆, 滑轨 结构上成型有多个正弦形滑轨连接凹点, 其中的连接凹点为气缸 511 由吸气状态转为排气状 态的转折点。 下行凹点转为改变上行初步转折缓冲点。
如图 10和图 11所示,其中的滑轨结构成型于驱动轮 56的外圆端面上, 而弧形滑轨 529 为成型于驱动轮 56外圆端面上的凹槽 533, 凹槽 533的一侧成型有防脱保持架 534, 所述活 塞连杆 527的作用端设有一轴承 532, 轴承 532容置于凹槽 533内, 并受防脱保持架 534约 束, 驱动轮 56旋转时, 设置于活塞连杆 527作用端的轴承 532绕弧形滑轨 529作周期性往复 运动。
轴承 532设置于活塞连杆 527的端部, 轴承 532为滑动轴承或滚动轴承。
图 10-12中所示的箱体 512呈圆柱形, 其上部圆柱面上设置有偶数个同滑轨结构滑动连 接的气缸 511,各个气缸 511同箱体 512的圆柱面垂直设置,相邻两气缸 511所形成的中心夹 角相等, 各个所述气缸 511上的排气管相串接后同排气总管连通。
图 10和图 11所示的气缸 511活塞的润滑是通过驱动轮 56运转时自动完成的, 对于小 型风机其行速快, 仅仅依靠驱动轮 56所产生的离心力即可将箱体 512 内的润滑油带入气缸 511内, 从而使气缸 511得以润滑; 对于大型风机, 由于驱动轮 56的直径较大, 且旋转速度 慢,位于箱体 512底部的润滑油无法通过离心力的作用带入气缸 511内,因此需要在箱体 512 内设置一液压油泵, 如图 12所示, 其中的液压油泵由液压缸 540及套置固定于驱动轴 530上 的凸轮 536组成, 液压缸 540的活塞杆 538端部设有滑动轴承 542, 滑动轴承 542与液压缸 540缸体之间的活塞杆 538上套置有供液压缸 540执行吸油动作的复位弹簧 541, 驱动轴 530 旋转并带动凸轮 536旋转使液压缸 540的活塞杆 538端部沿凸轮 536的外端面作往复运动; 液压缸 540上设有吸油口和出油口 539, 液压缸的出油口 539同多个油管 537连接, 多个油 管 537同多个气缸 511的缸体内腔一一对应连通, 从而依靠风力所产生的动力即可实现对箱 体 512上各个缸体的润滑。
对于大型或中型空气压力机, 为了减少运行时气缸 511所产生的负荷, 实现风力空气压 力机在微风下的平稳运行, 在空压机上设置了泄压阀 547, 可有效提高整套系统设置的效率, 提高空气压力机的利用率, 使其在微风下可以运转工作。 如图 12所示,排气总管 535共设置至少两路排气支管 550,每路排气支管 550同设置相 应数量的气缸 511上的排气管相连通, 各路所述排气支管 550汇合后同所述排气总管 535连 接; 其中一路排气支管 550通过一单向排气阀 513同所述排气总管 535连通; 其余各路排气 支管 5550分别通过一泄压阀 5547和单向排气阀 513同所述排气总管 535连通; 当风力较小 时, 同所述风力强度相对应的一路所述泄压阀 547开启, 同所述泄压阀 547相连接的各个气 缸 511所产生的压力空气外排至大气。
图 12所示出了设置两路排气支管 550的情况, 共设置四个气缸 511, 其中每两个气缸 511设置为一组, 并分别同各自的排气支管 550连接, 其中一路排气支管 550通过一单向排 气阀 513同排气总管 535连通; 另一路排气支管 550同另外两个气缸 511的排气管连接后输 出, 然后依次通过一泄压阀 547和单向排气阀 513同排气总管 535连通, 在箱体 512上还设 置了减压气孔 528, 如图 11所示。
对于多组气缸 511的大型空气压力机, 也可以设置三路以上的排气支管 550, 若设置三 路排气支管, 其中一路排气支管 550通过单向排气阀 513直接同排气总管 535连通, 另外两 路排气支管 550分别通过一个泄压阀 547和一个单向排气阀 513同排气总管 535连通, 其中 的两个泄压阀 547可以针对不同风速进行设置, 可以适应不同风速下的空气压力机运行, 当 到达一定风速时, 其对应这一风速级别的泄压阀 547工作并执行泄压动作。
其中的泄压阀 547如图 15、 图 16和图 17所示, 所述泄压阀 547设置于所述箱体 512 上, 其包括阀壳 5471、 旋转阀芯 5472和风力操作机构, 所述旋转阀芯 5472设置于所述阀壳 5471内, 二者密封连接, 所述旋转阀芯 5472内部成型一气流通道 5479, 所述阀壳 5471上设 有两个呈一旋转角的排气孔 5473和同所述排气支管 550相连通的进气孔 5470, 所述旋转阀 芯旋转时,所述阀壳的进气孔 5470通过所述气流通道 5479同两所述排气孔 5473中的其一相 连通。
图中所示的所述气流通道 5479起始于所述旋转阀芯 5472 的端部并同设置于所述阀壳 5471底部的进气孔 5470相连通, 所述气流通道 5479终止于所述旋转阀芯 5472的柱状弧面 上,所述旋转阀芯 5472旋转并使所述气流通道 5479同成型于所述阀壳 5471柱形侧壁上的两 个呈 90度旋转角的排气孔 5473—一对应连通, 也可呈其它角度的旋转角, 这里不限于 90度 旋转角;
其中一个排气孔 5473同所述进气管 543连通, 另一个排气孔 5473同外界大气连通。 所述风力操作机构设置于所述旋转阀芯 5472的端部, 其根据风力大小操作所述旋转阀 芯 5472执行旋转动作。 所述风力操作机构包括: 旋转轴 5475, 固定于所述旋转阀芯 5472端部, 可以设置用于 限制旋转轴 5475旋转角度的限位块 5478, 限位块的位置可以设置在阀壳上, 也可以设置于 箱体 512上其它可以固定的位置;
取风挡板, 包括一个取风面较大的大块取风挡板 5476和一个取风面较小的小块取风挡 板 5474, 两所述取风挡板 5474、 5476呈 90度固定于所述旋转轴 5475上, 所述大块取风挡 板 5476和小块取风挡板 5474均垂直于风向设置, 这里两取风挡板 5474、 5476所形成的角度 不限于 90度, 也可为其它角度, 其最初状态可以将大块取风挡板 5474设置于竖直位置, 而 小块取风挡板 5476设置在水平避风的位置,此时的初始位置为泄压阀 547处于微风时的位置, 即气缸 511 所产生的压力气体部分外排至大气中, 当然, 这里的取风挡板也可以设置一个, 主要用于依靠风力启动旋转阀芯 5472产生旋转;
碟簧 5477,其一端固定于所述限位块 5478上,其另一端绕所述旋转轴 5475固定于所述 其中一个取风挡板上;
风速较大时, 风力驱动大块取风挡板 5476, 使大块取风挡板 5476依次带动所述旋转轴 5475、 旋转阀芯 5472旋转 90度, 使旋转阀芯 5472中的气流通道 5479旋转至同进气管 543 相连通的排气孔 5473的位置, 气缸 511内的压力空气直接通过旋转阀芯 5472内的气流通道 5479进入同储气室 517相连通的进气管 543, 然后进入压力气通道 544排入储气室 517内, 此时所有的气缸 511所排放的压力气体均被排入储气室 517内。
风速较小时, 两个取风挡板 5474、 5476在碟簧 5477的作用恢复到初始位置, 实现其中 一组气缸 511所产生的压力空气外排至大气中, 从而减轻了空压机的负荷, 实现空压机在风 力较小环境下的正常运行。
设置多个泄压阀 547时, 每个泄压阀 547所对应的风速不同, 其工作的时机也不同, 也 就是说, 每个泄压阀 547的开启同一定的风速大小相对应。
在减少空压机的负荷的情况下, 为了不破坏空压机的受力平衡, 可以使气缸 511在驱动 轮 56上呈规律性间隔设置,也可以采用其他形式的设置,只要不改变空压机的受力平衡即可, 这里不再赘述。
多气缸 511风力空压机的泄压阀的作用, 由于风的大与小的极差很大, 为了充分利用长 时间小微风, 在小微风时, 采用多气缸 511时, 用泄压阀减去 1/2、 1/3、 2/5等部分气缸 511 的工作压力来实现小微风工作。 在大风速时封掉泄压阀, 使其进行利用大风正常工作。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则之 作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种气压扬水泵, 包括:
筒体 (1 ), 其设置于水体内;
上水管(2), 其一端置于所述筒体(1 ) 内并伸至所述筒体的下部, 其另一端贯穿所述筒 体 (1 ) 的上端并伸出水体面;
进气调节阀 (3), 设置于所述筒体 (1 ) 内, 并与连接于进气系统的进气管 (4) 连通; 排气调节阀 (5), 设置于所述筒体 (1 ) 内, 并与所述上水管 (2) 连通, 所述排气调节 阀 (5) 的进气口位于所述筒体 (1 ) 的上部;
进水调节阀 (6), 设置于所述筒体 (1 ) 的底部, 其特征在于,
所述进气调节阀 (3 )、 进水调节阀 (6) 及排气调节阀 (5) 之间设有联动机构, 所述联 动机构包括: 第一联动杆 (8) 和第二联动杆 (9);
所述第一联动杆(8) 的两端分别与所述进水调节阀 (6)和进气调节阀 (3)连接, 所述 第二联动杆 (9) 与所述排气调节阀 (5) 连接,
所述筒体 (1 ) 内压力小于所处水体水压时, 所述进水调节阀 (6) 开启并推动所述第一 联动杆(8) 上移, 使所述进气调节阀 (3) 关闭, 所述第一联动杆(8)推动所述第二联动杆 上移 (9) 并驱动所述排气调节阀 (5) 开启, 通过水体水压作用将所述筒体 (1 ) 中的余气排 至所述上水管 (2) 中;
所述筒体 (1 ) 内压力大于所处水体水压时, 所述进水调节阀 (6) 关闭并带动所述第一 联动杆(8) 下移, 使所述进气调节阀 (3) 开启, 所述第二联动杆(9) 下移控制所述排气调 节阀 (5) 关闭, 所述筒体 (1 ) 内进气, 并通过气压作用将水排至所述上水管 (2) 中。
2、 根据权利要求 1所述的气压扬水泵, 其特征在于,
所述进气调节阀 (3) 设置于所述排气调节阀 (5) 与所述进水调节阀 (6)之间, 其包括 进气阀座 (31 )和进气调节杆 (32), 所述进气阀座 (31 ) 的进气口与所述进气管 (4)连接, 所述进气调节杆 (32) 设置于所述进气阀座 (31 ) 中, 并与所述进气阀座 (31 ) 形成气密滑 动连接,所述进气调节杆(32)与所述第一联动杆(8)的上端固定连接,所述进气调节杆(32) 上设有一径向通孔 (321 ), 所述第一联动杆(8)控制所述进气调节杆(32)上移至所述径向 通孔 (321 ) 与所述进气阀座 (31 ) 的出气口连通时, 实现筒体 (1 ) 进气。
3、 根据权利要求 2所述的气压扬水泵, 其特征在于,
沿所述进气调节杆 (32) 的轴向设有导向槽 (322), 所述进气阀座 (31 ) 的内圆面上设 有与所述导向槽 (322) 实现轴向滑动配合的导向键 (311 )。
4、 根据权利要求 2所述的气压扬水泵, 其特征在于,
所述进水调节阀(6)包括: 进水阀板(61 )、 阀板轴(62)及配重块(63), 所述筒体(1 ) 的底部成型一进水孔 (7), 所述进水阀板 (61 ) 设置于所述筒体 (1 ) 的进水孔 (7) 处, 用 于控制所述筒体(7) 的进水, 所述第一联动杆 (8) 的下端与所述进水阀板 (61 ) 固定连接; 所述阀板轴 (62) 垂直设置于所述进水阀板 (61 ) 的中部, 其下部与所述配重块 (63) 固定连接。
5、 根据权利要求 2-4任一所述的气压扬水泵, 其特征在于,
所述排气调节阀 (5) 包括排气阀座 (51 )、 排气阀针 (52) 和阀针导向管 (53);
所述排气阀座(51 )与所述上水管(2)连通; 所述阀针导向管(53)设置于所述筒体(1 ) 的上端;所述排气阀针(52)的上部设置于所述阀针导向管(53)内且与所述阀针导向管(53) 滑动配合, 其下部与所述排气阀座 (51 ) 的进气口相适配; 所述第二联动杆(9) 的上端与所 述排气阀针 (52) 固定连接, 其下端设置于所述进气调节杆 (32) 的正上方, 当所述第一联 动杆(8) 上移时带动所述进气调节杆(32) 上移, 所述进气调节杆 (32) 的上端通过推动所 述第二联动杆 (9) 上移实现所述排气阀调节阀 (5) 的开启。
6、 根据权利要求 1-5任一所述的气压扬水泵, 其特征在于,
所述筒体 (1 ) 内的容积为所述上水管 (2) 2〜3米扬程所具有的容积。
7、 根据权利要求 1-6任一所述的气压扬水泵, 其特征在于,
所述上水管 (2) 的中部设有多个呈间隔分布的分水圆锥 (10), 所述分水圆锥 (10) 的 大端面占所述上水管 (2) 横截面面积的 1/3。
8、 根据权利要求 7所述的气压扬水泵, 其特征在于,
所述上水管 (2) 由多段连接管 (21 ) 首尾连接而成, 每段所述连接管 (21 )依次由直管 (211 )、锥管(212)和柱状连接管(213)组成,所述锥管(212)的小直径端与所述直管(211 ) 连接, 其大直径端与所述柱状连接管 (213) 连接, 所述柱状连接管 (213) 套置于位于其下 端的所述连接管 (21 ) 的直管 (211 ) 外圆面上。
9、 一种气压扬水泵组, 其特征在于, 包括至少两个由权利要求 1-8任一所述的气压扬水 泵, 各所述气压扬水泵的进气调节阀 (3)分别通过各自的所述进气管 (4)与进气系统连接, 各所述气压扬水泵的上水管 (2) 分别外伸出筒体 (1 ) 的上端。
10、 根据权利要求 9所述的气压扬水泵组, 其特征在于,
多个所述气压扬水泵至少设置两组, 各组所述气压扬水泵间呈上下方位设置。
11、 一种气压扬水蓄能系统, 包括低位蓄水池(4-2)、 高位蓄水池(4-1 )、 供能装置和提 水装置, 所述供能装置为所述提水装置提供能量, 用于将所述低位蓄水池 (4-2) 内的水提至 所述高位蓄水池 (4-1 ) 中, 其特征在于,
所述提水装置为包含权利要求 1-10任一所述的气压扬水泵 (4-3), 其设置于所述低位蓄 水池(4-2) 中, 所述供能装置为风力空气压力机(4-8), 所述风力空气压力机的储气室(17) 通过气路与所述气压扬水泵 (4-3) 的进气管路 (4-31 ) 连接, 所述气压扬水泵与所述储气室 之间的连接气路上设有单向排气阀 (13 ), 所述气压扬水泵 (4-3 ) 的出水管 (4-32) 与所述 高位蓄水池 (4-1 ) 连接。
12、 根据权利要求 11所述的气压扬水蓄能系统, 其特征在于:
所述风力空气压力机(4-8 )包括: 风力传动系统和空压机, 所述空压机包括箱体(512)、 驱动轮 (56) 和气缸 (511 ), 所述气缸 (511 ) 设置于所述箱体 (512) 上, 所述驱动轮 (56) 设置于所述箱体 (512) 内并套置固定于所述风力传动系统的驱动轴 (530) 上, 所述驱动轮
(56) 的驱动面上成型有闭合的滑轨结构, 所述气缸 (511 ) 的活塞连杆 (527) 作用端约束 于所述驱动轮(56) 的滑轨结构并沿所述滑轨结构滑动, 所述气缸(511 )所产生的压縮气体 通过排气总管 (535) 输送至储气室 (517), 所述储气室 (517) 通过气路同所述气压扬水泵
(4-3) 的进气管 (36) 连接;
所述驱动轴(530)设置于所述滑轨结构的中心, 垂直于所述气缸(511 )活塞连杆(527) 的轴线方向上还设有一连杆导向机构(531 ),所述连杆导向机构(531 )同所述活塞连杆(527) 滚动连接;
所述连杆导向机构(531 )包括多个导向轮(5312), 所述导向轮(5312)通过连杆(5311 ) 固定于所述气缸(511 ) 的缸体内壁上; 多个所述导向轮 (5312)均布于所述活塞连杆(527) 的外圆周上, 并同所述活塞连杆 (527) 滚动连接。
13、 根据权利要求 12所述的气压扬水蓄能系统, 其特征在于,
所述滑轨结构由多段弧形滑轨 (529) 首尾连接而成, 多段所述弧形滑轨 (529) 连接后 形成一凹凸相间分布的闭合滑轨结构;
所述弧形滑轨(529)包括上行的排气弧形滑轨和下行的吸气弧形滑轨, 所述排气弧形滑 轨和吸气弧形滑轨分别由外凸圆弧段(5291 )、 直线段(5292)和内凹圆弧段(5293)连接而 成, 所述直线段 (5292) 分别同所述外凸圆弧段 (5291 ) 和内凹圆弧段 (5293) 相切, 所述 外凸圆弧段 (5291 ) 的端部对应于所述气缸 (511 ) 的上止点位置, 所述内凹圆弧段 (5293) 的端部对应于所述气缸 (511 ) 的下止点位置。
14、 根据权利要求 13所述的气压扬水蓄能系统, 其特征在于,
所述滑轨结构成型于所述驱动轮(56) 的外圆端面上, 所述的弧形滑轨 (529)为成型于 所述驱动轮(56)外圆端面上的凹槽(533),所述凹槽(533)的一侧成型有防脱保持架(534), 所述活塞连杆 (527) 的作用端设有一轴承 (532), 所述轴承 (532) 容置于所述凹槽 (533) 内, 并受所述防脱保持架(534)约束, 所述驱动轮(56)旋转时, 设置于所述活塞连杆(527) 作用端的轴承 (532) 绕所述弧形滑轨 (529) 作周期性往复运动。
15、 根据权利要求 11-14任一所述的气压扬水蓄能系统, 其特征在于,
所述供能装置还包括气泵装置 (4-4), 所述气泵装置 (4-4) 同外接电源连接, 所述气泵 装置的排气管 (4-41 ) 同所述气压扬水泵 (4-3) 的进气管路 (4-31 ) 连通, 所述气压扬水泵 (4-3) 同所述气泵装置 (4-4) 之间的连接气路上设有单向排气阀 (13)。
16、 根据权利要求 15所述的气压扬水蓄能系统, 其特征在于:
所述供能装置还包括太阳能供能装置 (4-6), 所述气泵装置 (4-4) 同所述太阳能供能装 置 (4-6) 电连接。
17、 一种气压扬水位能发电系统, 其特征在于: 包括权利要求 14-16任一所述的气压扬 水蓄能系统和设置在所述高位蓄水池(4-1 )下部的水力发电机(4-7 ), 所述水力发电机(4-7) 在高位蓄水池 (4-1 ) 中的水的带动下实现发电, 所述高位蓄水池 (4-1 ) 中的水经所述水力 发电机 (4-7) 发电后汇入所述低位蓄水池 (4-2)。
18、 一种气压扬水远程输水系统, 其特征在于: 包括权利要求 14-16任一所述的气压扬 水蓄能系统, 所述高位蓄水池 (4-1 ) 中的水通过管道流向用户端。
19、 根据权利要求 18所述的气压扬水远程输水系统, 其特征在于:
所述系统还包括与所述高位蓄水池 (4-1 ) 通过管路连通的远程低位蓄水池 (4-10), 所 述管路与所述高位蓄水池 (4-1 ) 连接端的水平高度高于其与所述远程低位蓄水池 (4-2) 连 接端的水平高度。
PCT/CN2013/070733 2012-01-30 2013-01-18 一种气压扬水泵、泵组及气压扬水蓄能、位能发电和远程输水系统 WO2013113260A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201210021046.2A CN102705206B (zh) 2012-01-30 2012-01-30 一种风力空气压力机
CN201210020947.X 2012-01-30
CN2012100209484A CN102704530B (zh) 2012-01-30 2012-01-30 一种气压扬水远程输水系统及位能发电系统
CN201210021046.2 2012-01-30
CN201210020948.4 2012-01-30
CN201210020947.XA CN102705271B (zh) 2012-01-30 2012-01-30 一种气压扬水蓄能系统及位能发电系统
CN201210295240.XA CN102797707B (zh) 2012-08-17 2012-08-17 一种气压扬水泵及泵组
CN201210295240.X 2012-08-17

Publications (1)

Publication Number Publication Date
WO2013113260A1 true WO2013113260A1 (zh) 2013-08-08

Family

ID=48904409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070733 WO2013113260A1 (zh) 2012-01-30 2013-01-18 一种气压扬水泵、泵组及气压扬水蓄能、位能发电和远程输水系统

Country Status (1)

Country Link
WO (1) WO2013113260A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486951A (zh) * 2019-09-06 2019-11-22 北京民利储能技术有限公司 一种太阳能结合蓄水池跨季节蓄水装置
CN111594490A (zh) * 2020-06-16 2020-08-28 杭州摇头龙科技有限公司 数控气压动力水泵、使用该水泵的喷泉及喷水方法
CN114544109A (zh) * 2022-03-11 2022-05-27 苏州协同创新智能制造装备有限公司 球阀的密封性检测方法
CN115611471A (zh) * 2022-11-03 2023-01-17 江西绿青蓝生态环境建设有限公司 一种集成深度脱氮除磷的污水处理设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718407A (en) * 1971-02-16 1973-02-27 J Newbrough Multi-stage gas lift fluid pump system
SU775407A1 (ru) * 1979-03-23 1980-10-30 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Вакуум-эрлифтна установка
CN1789731A (zh) * 2005-11-02 2006-06-21 张延胜 气压扬水机
CN102705206A (zh) * 2012-01-30 2012-10-03 新泰市风龙王设备有限公司 一种风力空气压力机
CN102705271A (zh) * 2012-01-30 2012-10-03 新泰市风龙王设备有限公司 一种气压扬水蓄能系统及位能发电系统
CN102704530A (zh) * 2012-01-30 2012-10-03 新泰市风龙王设备有限公司 一种气压扬水远程输水系统及位能发电系统
CN102797707A (zh) * 2012-08-17 2012-11-28 新泰市风龙王设备有限公司 一种气压扬水泵及泵组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718407A (en) * 1971-02-16 1973-02-27 J Newbrough Multi-stage gas lift fluid pump system
SU775407A1 (ru) * 1979-03-23 1980-10-30 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Вакуум-эрлифтна установка
CN1789731A (zh) * 2005-11-02 2006-06-21 张延胜 气压扬水机
CN102705206A (zh) * 2012-01-30 2012-10-03 新泰市风龙王设备有限公司 一种风力空气压力机
CN102705271A (zh) * 2012-01-30 2012-10-03 新泰市风龙王设备有限公司 一种气压扬水蓄能系统及位能发电系统
CN102704530A (zh) * 2012-01-30 2012-10-03 新泰市风龙王设备有限公司 一种气压扬水远程输水系统及位能发电系统
CN102797707A (zh) * 2012-08-17 2012-11-28 新泰市风龙王设备有限公司 一种气压扬水泵及泵组

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486951A (zh) * 2019-09-06 2019-11-22 北京民利储能技术有限公司 一种太阳能结合蓄水池跨季节蓄水装置
CN110486951B (zh) * 2019-09-06 2023-09-08 北京民利储能技术有限公司 一种太阳能结合蓄水池跨季节蓄水装置
CN111594490A (zh) * 2020-06-16 2020-08-28 杭州摇头龙科技有限公司 数控气压动力水泵、使用该水泵的喷泉及喷水方法
CN114544109A (zh) * 2022-03-11 2022-05-27 苏州协同创新智能制造装备有限公司 球阀的密封性检测方法
CN115611471A (zh) * 2022-11-03 2023-01-17 江西绿青蓝生态环境建设有限公司 一种集成深度脱氮除磷的污水处理设备
CN115611471B (zh) * 2022-11-03 2024-05-24 江西绿青蓝生态环境建设有限公司 一种集成深度脱氮除磷的污水处理设备

Similar Documents

Publication Publication Date Title
CN205025709U (zh) 一种增压离心泵
US20130134714A1 (en) Method And System For Tidal Energy Storage And Power Generation
CN102705271B (zh) 一种气压扬水蓄能系统及位能发电系统
CN1884822A (zh) 伸缩套筒气缸塔式的气压储能型风力发电技术。
EP1406011A4 (en) WIND POWER GENERATION DEVICE PUMPS
WO2013113260A1 (zh) 一种气压扬水泵、泵组及气压扬水蓄能、位能发电和远程输水系统
WO2015184999A1 (zh) 一种垂直重力强压式大容量液体高效泵送装置
CN102704530B (zh) 一种气压扬水远程输水系统及位能发电系统
CN102384055B (zh) 低转速柱塞泵装置及应用该装置的风力发电装置
US20230243355A1 (en) Pneumatic type water-free starting self-priming device
CN106837811A (zh) 一种基于水轮机的潜水式搅拌系统
CN102797707B (zh) 一种气压扬水泵及泵组
CN204299768U (zh) 一种巨型水车
CN106870321A (zh) 一种家用风能蓄水装置
GB2522047A (en) Rigid body dynamics-based hydropower technology
CN111985063A (zh) 一种机械式风力提水装置优化方法
CN109915302A (zh) 一种水力发电系统
CN207004717U (zh) 一种水能发电机组及水能发电循环系统
CN108488052A (zh) 能利用水力发电余水动能的泵
CN102705194B (zh) 一种立轴风力空气压力机
CN202545164U (zh) 一种立轴风力空气压力机
CN109162855B (zh) 一种涡扇水轮加力发电系统
CN208718827U (zh) 能利用水力发电余水动能的水力发电系统
WO2013113259A1 (zh) 一种风力空气压力机及利用风力空气压力机的气压扬水蓄能、位能发电和远程输水系统
CN107191160A (zh) 双柱塞潜油隔膜泵系统及其接力举升方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743067

Country of ref document: EP

Kind code of ref document: A1