WO2013111277A1 - 駆動装置一体型回転電機 - Google Patents
駆動装置一体型回転電機 Download PDFInfo
- Publication number
- WO2013111277A1 WO2013111277A1 PCT/JP2012/051490 JP2012051490W WO2013111277A1 WO 2013111277 A1 WO2013111277 A1 WO 2013111277A1 JP 2012051490 W JP2012051490 W JP 2012051490W WO 2013111277 A1 WO2013111277 A1 WO 2013111277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inverter
- rotating electrical
- electrical machine
- drive device
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/04—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
- H02K11/049—Rectifiers associated with stationary parts, e.g. stator cores
- H02K11/05—Rectifiers associated with casings, enclosures or brackets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/22—Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
- H02K9/227—Heat sinks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
Definitions
- the present invention relates to a drive unit-integrated rotary electric machine in which a rotary electric machine and a drive unit that drives by supplying electric power to the rotary electric machine are integrally fixed.
- the arrangement of the three-phase inverter unit corresponds to the heat mass of the dynamo-electric machine as a heat radiating unit that dissipates the heat generated by the three-phase inverter unit. It is biased and does not effectively use the heat mass of the rotating electrical machine as a heat dissipating part, and can tolerate only a small amount of heat for the drive device despite the large heat mass of the rotating electrical machine. There is a problem that it is difficult to increase the output current of the rotating electrical machine by increasing the current capacity for energizing the motor.
- the present invention has been made to solve the above-described problems in the conventional drive unit-integrated rotating electrical machine, and it is possible to increase the current capacity to energize the rotating electrical machine and increase the output of the rotating electrical machine. It is an object of the present invention to provide a drive device-integrated rotating electrical machine that can be realized.
- the drive device coaxial integrated rotary electric machine is: A driving device-integrated rotating electrical machine in which a rotating electrical machine and a driving device that drives by supplying electric power to the rotating electrical machine are integrally fixed,
- the drive device includes a first inverter unit and a second inverter unit that can supply power to a stator winding of the rotating electrical machine,
- the first inverter part and the second inverter part are arranged symmetrically with respect to the axis of the rotating electrical machine and are attached to a heat sink part
- the heat sink part is configured such that at least a heat mass of a part corresponding to the first inverter part and a heat mass of a part corresponding to the second inverter part are substantially the same. It is characterized by this.
- the heat dissipation of the inverter unit is dispersed and the heat mass of the heat sink unit to which the inverter unit is mounted is effectively utilized, thereby improving the drive current and improving the output.
- a driving device-integrated rotating electrical machine can be obtained.
- FIG. 1 is an axial cross-sectional view of a drive unit coaxial-integrated dynamoelectric machine according to Embodiment 1 of the present invention. It is a top view which shows the connection part of a rotary electric machine and a drive device in the drive device coaxial integrated rotary electric machine by Embodiment 1 of this invention.
- 1 is a circuit diagram of a drive unit coaxial-integrated dynamoelectric machine according to Embodiment 1 of the present invention; FIG.
- FIG. 1 is an axial cross-sectional view of a drive unit coaxial-integrated dynamoelectric machine according to Embodiment 1 of the present invention.
- FIG. 2 is a plan view showing a connecting portion between the rotating electrical machine and the drive device in the drive device coaxial integrated rotating electrical machine according to the first embodiment of the present invention.
- a rotating electrical machine 2 in a drive unit-integrated rotating electrical machine 1 is a brushless type permanent magnet type synchronous motor, and has a stator core 3 formed by laminating electromagnetic steel plates.
- the first and second stator windings 5a and 5b which are two sets of three-phase stator windings, are wound through a resin insulator 4.
- the first and second stator windings 5 a and 5 b are each ⁇ -connected by a winding terminal 7 housed in a resin terminal holder 6.
- first and second stator windings described above may be Y-connected.
- the stator winding may be a set of three-phase stator windings.
- the stator winding includes first and second two sets of stator windings. The case will be described.
- Motor terminals 9a and 9b for electrical connection to the drive device 8 are attached to the winding terminal 7 for each set.
- the first and second motor terminals 9a and 9b are arranged so as to extend in the axial direction at positions that are line-symmetric with respect to the direction in which the axis X of the rotating electrical machine 2 extends, with one set of three phases.
- the stator core 3 is fitted into an aluminum frame 10 and constitutes a stator 11 of the rotating electrical machine 2.
- a bottom 101 is provided at one end (front end) of the frame 10.
- a front bearing box portion 14 that houses a front bearing 13 for supporting one end of the rotor 12 is formed at the center of the bottom portion 101.
- the bottom portion 101 of the frame 10 is provided with an inlay portion 102 for fitting into a speed reduction mechanism (not shown) as another mechanism portion, and constitutes an attachment portion 15 for the speed reduction mechanism.
- a permanent magnet 17 that generates a field magnetic flux is attached to the outer periphery of the shaft 16 of the rotor 12.
- a boss 18 that is a coupling for connecting to the speed reduction mechanism is attached to the front side end of the shaft 16.
- the other end of the frame 10 is open, and the opening is connected to one end of the heat sink 19 of the drive device 8.
- the heat sink portion 19 is formed of an aluminum alloy die-cast product, and the other end is joined to the cover 23 of the driving device 8.
- the rear holder 20 is fitted into the opening of the frame 10, and a rear bearing box portion 22 that houses a rear bearing 21 for supporting one end of the rotor 12 is formed at the center thereof.
- the first and second motor terminals 9a and 9b are arranged symmetrically with respect to the direction in which the axis X of the rotating electrical machine extends, and pass through the rear holder 20 as well shown in FIG. ing.
- the drive device 8 includes a glass epoxy control board 26 on which the microcomputer 24 and the first and second FET drive circuits 25a and 25b are mounted, and a power element such as a power MOSFET and a set of three phases.
- the two inverter units 27a and 27b are provided.
- the inverter unit 27a is referred to as a first inverter unit
- the inverter unit 27b is referred to as a second inverter unit.
- a lead frame 28 is provided between the control board 26 and the first and second inverter units 27a and 27b.
- the lead frame 28 includes a copper terminal (not shown) that supplies power to the first and second inverter units 27a and 27b, a first and second inverter units 27a and 27b, a capacitor (not shown), and A copper terminal (not shown) for connecting a coil (not shown) is insert-molded into a resin and integrally formed.
- a copper terminal (not shown) for connecting the connector portion (not shown), the control board 26, and the first and second inverter portions 27a and 27b to the lead frame 28 is also integrally formed by insert molding. ing.
- the first and second inverter portions 27a and 27b are mounted so as to be in close contact with the first protrusion portion 29a and the second protrusion portion 29b provided on the heat sink portion 19, respectively.
- the unit 19 is configured to conduct heat.
- the first and second protrusions 29 a and 29 b are formed so as to extend in the direction in which the axis X of the rotating electrical machine 2 extends.
- the first and second inverter units 27 a and 27 b are arranged at positions that are line-symmetric with respect to the axis X of the rotating electrical machine 2.
- first and second inverter units 27a and 27b are provided with first and second inverter unit signal terminals 30a and 30b, and first and second inverter unit motor terminals 31a and 31b, respectively.
- the first and second inverter unit signal terminals 30 a and 30 b are connected to the control board 26, and the first and second inverter unit motor terminals 31 a and 31 b protrude through the heat sink unit 19. 2 are connected to the motor terminals 9a and 9b.
- FIG. 3 is a circuit diagram of the drive unit coaxial-integrated dynamoelectric machine according to Embodiment 1 of the present invention.
- the rotary electric machine 2 is a brushless type motor as described above, and includes a first stator winding 5a and two second armature windings connected in a three-phase ⁇ connection.
- the stator winding 5b is provided.
- the first inverter unit 27a includes a first switching element Sa composed of six field effect transistors (hereinafter referred to as FETs), three first shunt resistors Ra, and three first smoothing elements. It is comprised by the capacitor
- the second inverter unit 27b includes a second switching element Sb composed of six FETs, three second shunt resistors Rb, and three second smoothing capacitors Cb.
- the positive side terminals of the first inverter unit 27a and the second inverter unit 27b are connected to each other and connected to the positive side of the battery BAT which is a DC power source via the choke coil CL, and the negative side terminal is connected to the first side.
- the second shunt resistors Ra and Rb are connected to the ground level GND.
- the AC side output terminal of the first inverter unit 27a is connected to each terminal of the first stator winding 5a, and supplies three-phase AC power to the first stator winding 5a.
- the AC side output terminal of the second inverter unit 27b is connected to each terminal of the second stator winding 5b and supplies three-phase AC power to the second stator winding 5b.
- the first FET drive circuit 25a controls a control signal applied to the gate of each first switching element Sa of the first inverter unit 27a to control the first inverter unit 27a.
- the second FET drive circuit 25b controls the control signal given to the gate of each second switching element Sb of the second inverter unit 27b based on a command from the microcomputer 24 to control the second inverter unit 27b. To drive.
- the rotor 12 is rotated by energizing both or one of the first and second stator windings 5a and 5b.
- stator windings When the stator windings are set as one set, the first inverter unit 27a and the second inverter unit 27b are switched as necessary, and one of them is operated to drive the stator windings. Alternatively, the stator windings can be driven by operating the first inverter unit 27a and the second inverter unit 27b simultaneously.
- the heat sink unit 19 corresponds to each of the first and second inverter units 27 a and 27 b so that the heat mass based on the volume of each part existing immediately below them is substantially the same. It is configured.
- the heat transfer paths that conduct heat from the first and second inverter portions 27a and 27b to the frame 10 via the portions of the heat sink portion 19 immediately below are configured to be substantially the same. Therefore, the heat generated in each of the first and second inverter units 27a and 27b is dissipated substantially equally and dissipated.
- the loss when one inverter unit is used alone and the loss when both inverter units are used are equal to each other because the heat mass of the heat sink unit 19 and the heat dissipation to the heat sink unit 19 and the frame 10 are the same.
- the heat generation amount allowed from the above is substantially the same when one inverter unit is used alone and when both inverter units are used.
- both currents having a loss equivalent to the loss when only one of the two inverter units is operated are The inverter part is energized.
- the heat transfer path from the first and second inverter units 27a and 27b is substantially parallel to the direction in which the axis X of the rotating electrical machine 2 extends, and the heat transfer path is short and the heat dissipation is good. It will be something. Further, since the above-described heat transfer path is substantially parallel to the direction in which the axis X of the rotating electrical machine 2 extends, the heat of the first and second inverter portions 27a and 27b is transferred into the drive device 8. Less heat is dissipated, and the temperature rise inside the driving device 8 can be suppressed.
- the heat dissipation surfaces of the first and second inverter portions 27 a and 27 b and the inverter mounting surface of the heat sink portion 19 are configured to be perpendicular to the direction in which the axis X of the rotating electrical machine 2 extends. Therefore, the heat transfer path is short and the heat dissipation is good. Further, with the above-described configuration, the heat of the first and second inverter units 27a and 27b is less radiated to the inside of the driving device 8, and the temperature rise inside the driving device 8 can be suppressed.
- the first and second stator windings 5a and 5b wound in two sets of three phases as one set are separately connected to the first and second inverter units 27a and 27b, respectively. And constitutes an independent circuit. For this reason, there is no interaction between the two inverter units, imbalance between the two inverter units is suppressed, and heat generation is made uniform.
- the first and second motor terminals 9a and 9b corresponding to the first and second stator windings 5a and 5b are arranged symmetrically with respect to the direction in which the axis X of the rotating electrical machine 2 extends. Yes.
- the connecting portion between the first stator winding 5a and the first inverter portion 27a and the connecting portion between the second stator winding 5b and the second inverter portion 27b are the same as those of the rotating electrical machine. They are arranged symmetrically with respect to the direction in which the axis X extends. For this reason, the first and second motor terminals 9a and 9b and the first and second stator windings 5a and 5b are arranged substantially symmetrically both electrically and thermally.
- the lead frame 28 accommodates the first and second smoothing capacitors Ca and Cb that absorb the ripple of the current flowing through the first and second stator windings 5a and 5b of the rotating electrical machine 2,
- the terminals are connected to corresponding first and second inverter units 27a and 27b through terminals (not shown).
- the lead frame 28 also houses the choke coil CL that absorbs noise, and is connected to a connector portion (not shown) via a terminal (not shown).
- the connector portion is provided with a power connector and a signal connector.
- each inverter unit is symmetrical with respect to the motor axis.
- the volume of the part corresponding to each inverter part in the heat sink part, that is, the heat mass is substantially equal, and there is a heat transfer path for conducting heat from the inverter part to the heat sink part and from the heat sink part to the frame.
- the heat dissipation of each inverter unit is approximately the same, the heat dissipation of the inverter unit is distributed, unbalance is suppressed, heat generation is uniformed, and the temperature inside the drive unit rises Is suppressed, and as a result, the drive current can be improved, and the output of the rotating electrical machine can be improved.
- the attachment portion 15 to the speed reduction mechanism or the like as the other mechanism portion, the rotary electric machine 2, and the drive device 8 are arranged on the same axis. Since the heat of the driving device is easily transmitted to the rotating electrical machine, the heat dissipation of the driving device is improved, and the driving current can be improved, and the output of the rotating electrical machine is improved.
- the apparatus can be miniaturized.
- FIG. 1 the mounting portion 15, the rotating electrical machine 2, and the driving device 8 are integrally formed on the same axis, but the driving device according to the second embodiment of the present invention has the mounting portion 15. In this order, the driving device 8 and the rotating electrical machine 2 are integrally configured on the same axis.
- the heat of the drive device can be easily transmitted to the counterpart device such as the speed reduction mechanism through the mounting portion, and the heat dissipation of the drive device.
- the drive current can be improved, the output of the rotating electrical machine can be improved, and the apparatus can be miniaturized.
- FIG. A drive unit coaxial integrated rotary electric machine according to Embodiment 3 of the present invention is obtained by applying the drive unit coaxial integrated rotary electric machine according to Embodiment 1 or 2 described above to an electric power steering system.
- the rotating electrical machine is used as an electric motor that generates assist torque in the electric power steering apparatus.
- the output of the dynamoelectric machine is improved and the apparatus can be miniaturized. Therefore, the electric power steering system can be reduced in weight, and thus the vehicle can be reduced in weight. This has the effect of improving fuel efficiency and reducing carbon dioxide emissions.
- the embodiments can be freely combined, and the embodiments can be appropriately modified or omitted.
- the drive device-integrated rotating electrical machine according to the present invention can be used in various fields that utilize the output of the rotating electrical machine, such as the field of an electric power steering system for a vehicle.
- Inverter part 28 lead frame, 29a first protrusion part, 29b second protrusion part, 30a first inverter part signal terminal, 30b second inverter part signal terminal, 31a first inverter part motor terminal, 31b Second inverter motor terminal, Ra first shunt resistor, Rb second shunt resistor, Sa first switching element, Sb second switching element, Ca first smoothing capacitor, Cb second smoothing capacitor, CL choke coil, BAT battery, GND ground level
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Motor Or Generator Cooling System (AREA)
- Power Steering Mechanism (AREA)
Abstract
Description
回転電機とこの回転電機に電力を供給して駆動する駆動装置とを一体に固定した駆動装置一体型回転電機であって、
前記駆動装置は、前記回転電機の固定子巻線に電力を供給し得る第1のインバータ部と第2のインバータ部とを備え、
前記第1のインバータ部と前記第2のインバータ部は、前記回転電機の軸心に対して線対称に配置されてヒートシンク部に装着され、
前記ヒートシンク部は、少なくとも前記第1のインバータ部に対応する部位のヒートマスと前記第2のインバータ部に対応する部位のヒートマスとが略同一となるように構成されている、
ことを特徴とするものである。
図1は、この発明の実施の形態1による駆動装置同軸一体型回転電機の軸方向断面図である。図2は、この発明の実施の形態1による駆動装置同軸一体型回転電機に於ける、回転電機と駆動装置との接続部を示す平面図である。図1及び図2に於いて、駆動装置一体型回転電機1に於ける回転電機2は、ブラシレスタイプの永久磁石型同期電動機であって、電磁鋼板を積層して形成された固定子鉄心3には樹脂製のインシュレータ4を介して3相の2組の固定子巻線である第1及び第2の固定子巻線5a、5bが巻回されている。第1及び第2の固定子巻線5a、5bは、樹脂製のターミナルホルダ6に収められた巻線ターミナル7によって、夫々の組がΔ結線されている。
Iw2×Ri×2=Is2×Ri ・・・・・ 式(1)
Iw=Is/√2 ・・・・・・・・・・・ 式(2)
ここで、インバータ部は2個存在するので、全電流は[1/√2×2=2/√2]となる。即ち、一方のインバータ部を単独で使用した際の電流値Isの√2倍の電流を流せることになり、その分モータの出力を向上させることができる。
前述の実施の形態1では、取り付け部15、回転電機2、駆動装置8の順で、同軸上に一体的に構成されていたが、この発明の実施の形態2による駆動装置は、取り付け部15、駆動装置8、回転電機2の順で、同軸上に一体的に構成するようにしたものである。
この発明の実施の形態3による駆動装置同軸一体型回転電機は、前述の実施の形態1又は実施の形態2による駆動装置同軸一体型回転電機を、電動パワーステアリングシステムに適用したものである。この場合、回転電機は、電動パワーステアリング装置に於けるアシストトルクを発生させる電動機として用いられる。
Claims (10)
- 回転電機とこの回転電機に電力を供給して駆動する駆動装置とを一体に固定した駆動装置一体型回転電機であって、
前記駆動装置は、前記回転電機の固定子巻線に電力を供給し得る第1のインバータ部と第2のインバータ部とを備え、
前記第1のインバータ部と前記第2のインバータ部は、前記回転電機の軸心に対して線対称に配置されてヒートシンク部に装着され、
前記ヒートシンク部は、少なくとも前記第1のインバータ部に対応する部位のヒートマスと前記第2のインバータ部に対応する部位のヒートマスとが略同一となるように構成されている、
ことを特徴とする駆動装置一体型回転電機。 - 前記第1のインバータ部と前記第2のインバータ部とを同時に動作させるとき、前記双方のインバータ部のうちの一方のみを動作させたときの損失と同等の損失となる電流を、前記双方のインバータ部に通電するようにした、
ことを特徴とする請求項1に記載の駆動装置一体型回転電機。 - 前記双方のインバータ部に通電する夫々の電流値は、前記一方のインバータ部にのみ通電する際の電流値の1/√2倍である、
ことを特徴とする請求項2に記載の駆動装置一体型回転電機。 - 前記第1のインバータ部から前記ヒートシンク部を経由する熱伝導経路と、前記第2のインバータ部から前記ヒートシンク部を経由する熱伝導経路とは、前記回転電機の軸心に対して線対称であり、かつ前記軸心の延びる方向に略平行である、
ことを特徴とする請求項1乃至3のうちの何れか一項に記載の駆動装置一体型回転電機。 - 前記第1のインバータ部と前記第2のインバータ部の夫々の放熱面と、前記ヒートシンク部に於ける前記夫々のインバータ部を装着している部位の面とは、前記回転電機の軸心の延びる方向に対して垂直方向に配置されている、
ことを特徴とする請求項1乃至4のうちの何れか一項に記載の駆動装置一体型回転電機。 - 前記固定子巻線は、第1の固定子巻線と第2の固定子巻線とから構成され、
前記第1の固定子巻線は、前記第1のインバータ部に接続され、
前記第2の固定子巻線は、前記第2のインバータ部に接続されている、
ことを特徴とする請求項1乃至5のうちの何れか一項に記載の駆動装置一体型回転電機。 - 前記第1の固定子巻線と前記第1のインバータ部との接続部と、前記第2の固定子巻線と前記第2のインバータ部との接続部とは、前記回転電機の軸心に対して線対称に配置されている、
ことを特徴とする請求項1乃至6のうちの何れか一項に記載の駆動装置一体型回転電機。 - 他の機構部に取り付けられる取り付け部を備え、
前記取り付け部と前記回転電機と前記駆動装置とは、前記取り付け部、前記回転電機、前記駆動装置の順に一体に構成されている、
ことを特徴とする請求項1乃至7のうちの何れか一項に記載の駆動装置一体型回転電機。 - 他の機構部に取り付けられる取り付け部を備え、
前記取り付け部と前記回転電機と前記駆動装置とは、前記取り付け部、前記駆動装置、前記回転電機、の順に一体に構成されている、
ことを特徴とする請求項1乃至7のうちの何れか一項に記載の駆動装置一体型回転電機。 - 前記回転電機は、電動パワーステアリング装置に於けるアシストトルクを発生させる電動機である、
ことを特徴とする請求項1乃至9のうちの何れか一項に記載の駆動装置一体型回転電機。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280056097.7A CN103931086B (zh) | 2012-01-25 | 2012-01-25 | 驱动装置一体型旋转电机 |
US14/353,253 US9570960B2 (en) | 2012-01-25 | 2012-01-25 | Driving-device-integral-type rotary electric machine |
EP20173461.3A EP3713053B1 (en) | 2012-01-25 | 2012-01-25 | Driving-device-integral-type rotary electric machine |
JP2013555040A JP5752276B2 (ja) | 2012-01-25 | 2012-01-25 | 駆動装置一体型回転電機 |
PCT/JP2012/051490 WO2013111277A1 (ja) | 2012-01-25 | 2012-01-25 | 駆動装置一体型回転電機 |
EP12866453.9A EP2808982B1 (en) | 2012-01-25 | 2012-01-25 | Rotating electric machine with integrated driving apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/051490 WO2013111277A1 (ja) | 2012-01-25 | 2012-01-25 | 駆動装置一体型回転電機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013111277A1 true WO2013111277A1 (ja) | 2013-08-01 |
Family
ID=48873049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051490 WO2013111277A1 (ja) | 2012-01-25 | 2012-01-25 | 駆動装置一体型回転電機 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9570960B2 (ja) |
EP (2) | EP2808982B1 (ja) |
JP (1) | JP5752276B2 (ja) |
CN (1) | CN103931086B (ja) |
WO (1) | WO2013111277A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015087554A1 (ja) * | 2013-12-13 | 2015-06-18 | 日本精工株式会社 | 電子制御ユニット、電動パワーステアリング装置及び車両 |
JP2016034201A (ja) * | 2014-07-31 | 2016-03-10 | 株式会社デンソー | 駆動装置 |
JP2016036244A (ja) * | 2014-07-31 | 2016-03-17 | 株式会社デンソー | 駆動装置、および、これを用いた電動パワーステアリング装置 |
WO2016117114A1 (ja) * | 2015-01-23 | 2016-07-28 | 三菱電機株式会社 | 電動駆動装置 |
WO2017022094A1 (ja) * | 2015-08-05 | 2017-02-09 | 三菱電機株式会社 | インバータ一体型モータ |
JP2017192231A (ja) * | 2016-04-14 | 2017-10-19 | 三菱電機株式会社 | 駆動装置一体型回転電機、及び、電動パワーステアリング装置 |
JP2017208872A (ja) * | 2016-05-16 | 2017-11-24 | Kyb株式会社 | 回転電機 |
JPWO2018096705A1 (ja) * | 2016-11-23 | 2019-10-17 | 日本電産株式会社 | モータ及び電動パワーステアリング装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016140147A (ja) * | 2015-01-26 | 2016-08-04 | 株式会社デンソー | 回転電機 |
EP3260352B1 (en) * | 2015-02-18 | 2020-12-09 | Mitsubishi Electric Corporation | Integrated electric power steering apparatus |
JP6457884B2 (ja) * | 2015-05-19 | 2019-01-23 | 株式会社日立製作所 | 車両用駆動装置 |
US9954409B2 (en) * | 2015-07-27 | 2018-04-24 | Ford Global Technologies, Llc | Power supply device |
CN108093671B (zh) * | 2015-09-18 | 2021-07-06 | 三菱电机株式会社 | 一体型电动助力转向装置 |
CN107476951B (zh) * | 2017-08-08 | 2019-03-22 | 中山大洋电机股份有限公司 | 一体化电动空气压缩机及应用其的燃料电池空气进气系统 |
JP6500285B1 (ja) | 2017-10-19 | 2019-04-17 | 本田技研工業株式会社 | 電力変換装置 |
JP2020054149A (ja) * | 2018-09-27 | 2020-04-02 | 日本電産株式会社 | モータ |
JP7428489B2 (ja) * | 2019-08-05 | 2024-02-06 | カヤバ株式会社 | 回転電機 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004297847A (ja) * | 2003-03-25 | 2004-10-21 | Nissan Motor Co Ltd | 電力変換装置 |
JP2004343825A (ja) * | 2003-05-13 | 2004-12-02 | Toyota Motor Corp | インバータ装置 |
JP4200885B2 (ja) | 2003-11-21 | 2008-12-24 | 株式会社デンソー | 電動圧縮機用モータ駆動装置 |
JP2011177001A (ja) * | 2009-06-24 | 2011-09-08 | Denso Corp | 駆動装置 |
JP2011200022A (ja) * | 2010-03-19 | 2011-10-06 | Mitsubishi Electric Corp | 電動式駆動装置およびそれを搭載した電動式パワーステアリング装置 |
JP2011217466A (ja) * | 2010-03-31 | 2011-10-27 | Mitsubishi Electric Corp | 電動式駆動装置 |
JP2011250489A (ja) * | 2010-05-21 | 2011-12-08 | Denso Corp | 駆動装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5624330B2 (ja) * | 2009-06-24 | 2014-11-12 | 株式会社デンソー | モータ |
US20100277869A1 (en) * | 2009-09-24 | 2010-11-04 | General Electric Company | Systems, Methods, and Apparatus for Cooling a Power Conversion System |
WO2011093200A1 (ja) * | 2010-01-29 | 2011-08-04 | 三菱電機株式会社 | インバータ一体型駆動モジュール |
US9539909B2 (en) * | 2010-01-29 | 2017-01-10 | Mitsubishi Electric Corporation | Inverter-integrated driving module and manufacturing method therefor |
JP5316469B2 (ja) * | 2010-04-16 | 2013-10-16 | 株式会社デンソー | 電動機の駆動装置及びこれを用いた電動装置 |
KR20110116525A (ko) | 2010-04-19 | 2011-10-26 | 엘지전자 주식회사 | 3d 오브젝트를 제공하는 영상표시장치, 그 시스템 및 그 동작 제어방법 |
JP5170711B2 (ja) * | 2010-12-28 | 2013-03-27 | 株式会社デンソー | コントローラ |
JP5807846B2 (ja) * | 2012-03-29 | 2015-11-10 | 株式会社デンソー | 駆動装置 |
JP5969241B2 (ja) * | 2012-03-29 | 2016-08-17 | 株式会社デンソー | 駆動装置 |
-
2012
- 2012-01-25 WO PCT/JP2012/051490 patent/WO2013111277A1/ja active Application Filing
- 2012-01-25 EP EP12866453.9A patent/EP2808982B1/en active Active
- 2012-01-25 CN CN201280056097.7A patent/CN103931086B/zh active Active
- 2012-01-25 JP JP2013555040A patent/JP5752276B2/ja active Active
- 2012-01-25 US US14/353,253 patent/US9570960B2/en active Active
- 2012-01-25 EP EP20173461.3A patent/EP3713053B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004297847A (ja) * | 2003-03-25 | 2004-10-21 | Nissan Motor Co Ltd | 電力変換装置 |
JP2004343825A (ja) * | 2003-05-13 | 2004-12-02 | Toyota Motor Corp | インバータ装置 |
JP4200885B2 (ja) | 2003-11-21 | 2008-12-24 | 株式会社デンソー | 電動圧縮機用モータ駆動装置 |
JP2011177001A (ja) * | 2009-06-24 | 2011-09-08 | Denso Corp | 駆動装置 |
JP2011200022A (ja) * | 2010-03-19 | 2011-10-06 | Mitsubishi Electric Corp | 電動式駆動装置およびそれを搭載した電動式パワーステアリング装置 |
JP2011217466A (ja) * | 2010-03-31 | 2011-10-27 | Mitsubishi Electric Corp | 電動式駆動装置 |
JP2011250489A (ja) * | 2010-05-21 | 2011-12-08 | Denso Corp | 駆動装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2808982A4 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015087554A1 (ja) * | 2013-12-13 | 2015-06-18 | 日本精工株式会社 | 電子制御ユニット、電動パワーステアリング装置及び車両 |
JP2016034201A (ja) * | 2014-07-31 | 2016-03-10 | 株式会社デンソー | 駆動装置 |
JP2016036244A (ja) * | 2014-07-31 | 2016-03-17 | 株式会社デンソー | 駆動装置、および、これを用いた電動パワーステアリング装置 |
CN107210655A (zh) * | 2015-01-23 | 2017-09-26 | 三菱电机株式会社 | 电动驱动装置 |
JPWO2016117114A1 (ja) * | 2015-01-23 | 2017-04-27 | 三菱電機株式会社 | 電動駆動装置 |
WO2016117114A1 (ja) * | 2015-01-23 | 2016-07-28 | 三菱電機株式会社 | 電動駆動装置 |
US10439479B2 (en) | 2015-01-23 | 2019-10-08 | Mitsubishi Electric Corporation | Electric drive device |
WO2017022094A1 (ja) * | 2015-08-05 | 2017-02-09 | 三菱電機株式会社 | インバータ一体型モータ |
JPWO2017022094A1 (ja) * | 2015-08-05 | 2017-10-19 | 三菱電機株式会社 | インバータ一体型モータ |
US20180198351A1 (en) * | 2015-08-05 | 2018-07-12 | Mitsubishi Electric Corporation | Inverter-integrated motor |
US10673309B2 (en) | 2015-08-05 | 2020-06-02 | Mitsubishi Electric Corporation | Inverter-integrated motor |
JP2017192231A (ja) * | 2016-04-14 | 2017-10-19 | 三菱電機株式会社 | 駆動装置一体型回転電機、及び、電動パワーステアリング装置 |
JP2017208872A (ja) * | 2016-05-16 | 2017-11-24 | Kyb株式会社 | 回転電機 |
JPWO2018096705A1 (ja) * | 2016-11-23 | 2019-10-17 | 日本電産株式会社 | モータ及び電動パワーステアリング装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103931086B (zh) | 2017-06-23 |
JPWO2013111277A1 (ja) | 2015-05-11 |
CN103931086A (zh) | 2014-07-16 |
EP3713053A1 (en) | 2020-09-23 |
JP5752276B2 (ja) | 2015-07-22 |
US9570960B2 (en) | 2017-02-14 |
EP2808982A4 (en) | 2016-05-25 |
EP3713053B1 (en) | 2022-11-23 |
EP2808982B1 (en) | 2022-08-10 |
EP2808982A1 (en) | 2014-12-03 |
US20150303776A1 (en) | 2015-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5752276B2 (ja) | 駆動装置一体型回転電機 | |
KR101204624B1 (ko) | 제어 장치 일체형 전동 파워 스티어링 장치용 모터 및 전동 파워 스티어링 장치 | |
JP5147943B2 (ja) | 電動パワーステアリング装置、及び制御装置一体型電動機 | |
JP5970668B2 (ja) | 電動式パワーステアリング用パワーモジュールおよびこれを用いた電動式パワーステアリング駆動制御装置 | |
CN105827068B (zh) | 旋转电机 | |
US8659193B2 (en) | Control device for electric motor | |
JP5039171B2 (ja) | 電動式駆動装置およびその電動式駆動装置を搭載した電動式パワーステアリング装置 | |
JP5836879B2 (ja) | インバータ装置 | |
US8552604B2 (en) | Drive unit of electric motor and motorized equipment using the drive unit | |
JP5957396B2 (ja) | 両面冷却型電力変換装置 | |
WO2015122069A1 (ja) | 制御装置付き回転電機、電動パワーステアリング装置および制御装置付き回転電機の製造方法 | |
WO2012096335A1 (ja) | 回転電機ユニット | |
US20130088128A1 (en) | Device for controlling drive of motor for electric power steering device | |
JP2016034205A (ja) | 駆動装置、および、これを用いた電動パワーステアリング装置 | |
JPWO2012153402A1 (ja) | 電動パワーステアリング装置 | |
JP2006333587A (ja) | モータシステム | |
CN114696546A (zh) | 电动马达和逆变器组件 | |
JP2013211938A (ja) | 車載用モータ及びそれを用いた電動パワーステアリングモータ | |
JP2014161174A (ja) | モータ装置 | |
JP6934985B1 (ja) | 回転電機 | |
WO2015133177A1 (ja) | 内燃機関用電動流体ポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12866453 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013555040 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14353253 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012866453 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |