[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013110828A1 - Nanopartículas su perparamagn éticas como agente de contraste para imagen por resonancia magnética (irm) de la susceptibilidad magnética (t2*) - Google Patents

Nanopartículas su perparamagn éticas como agente de contraste para imagen por resonancia magnética (irm) de la susceptibilidad magnética (t2*) Download PDF

Info

Publication number
WO2013110828A1
WO2013110828A1 PCT/ES2012/070044 ES2012070044W WO2013110828A1 WO 2013110828 A1 WO2013110828 A1 WO 2013110828A1 ES 2012070044 W ES2012070044 W ES 2012070044W WO 2013110828 A1 WO2013110828 A1 WO 2013110828A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticle according
tissue
magnetic
nanoparticles
contrast agent
Prior art date
Application number
PCT/ES2012/070044
Other languages
English (en)
French (fr)
Inventor
Sebastián CERDAN GARCIA-ESTELLER
Daniel CALLE HERNÁNDEZ
Fernando Moreno Egea
Original Assignee
Soluciones Nanotecnológicas, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soluciones Nanotecnológicas, S.L. filed Critical Soluciones Nanotecnológicas, S.L.
Priority to EP12866960.3A priority Critical patent/EP2808036A4/en
Priority to PCT/ES2012/070044 priority patent/WO2013110828A1/es
Priority to JP2014553768A priority patent/JP6174603B2/ja
Priority to US14/374,185 priority patent/US10987436B2/en
Publication of WO2013110828A1 publication Critical patent/WO2013110828A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1854Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly(meth)acrylate, polyacrylamide, polyvinylpyrrolidone, polyvinylalcohol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present invention relates to the field of magnetic resonance, especially the use of superparamagnetic nanoparticles as a contrast agent for non-invasive tissue imaging or tumor perfusion. Its applications can be extended additionally to other fields of biomedicine or imaging.
  • Magnetic Resonance Imaging is a very useful tool for non-invasively monitoring tissue and tumor perfusion (U. Haberkorn and A. Altmann, Current Gene Therapy 2001, 1 (2), 163; T. Ichikawa et al., Neoplasia 2002, 4 (6), 523; DC Sullivan and JM Hoffman, Seminars in Radiation Oncology 2001, 1 1 (1), 37).
  • the technique is based on the phenomenon of nuclear magnetic resonance. This happens because the nuclei of different atoms absorb different energies in the radiofrequency domain, resonating at specific resonance frequencies when the applied magnetic field is periodically changed. Hydrogen is one of the most appropriate elements for the phenomenon of nuclear magnetic resonance, and is the most common element contained in the human body.
  • the MRI is able to provide high resolution images of soft tissues with detailed anatomical information.
  • the images are obtained by placing the subject in a magnetic field and observing the interactions between the magnetic spins of the subject's water protons and the radiofrequency of radiation applied.
  • the image is solved by applying orthogonal magnetic field gradients that ultimately encode spatially the three coordinates of each pixel in the image.
  • T1 longitudinal relaxation time
  • T2 transverse relaxation time
  • T1 or spin-net relaxation time represents the transfer of energy between the spins of the observed proton and the surrounding network
  • T2 or spin-spin relaxation time is the transfer of energy between different spins or protons.
  • An additional parameter, called relaxation time T2 * is also necessary to properly describe the total decay of the magnetic induction. This decay includes, both the decay of T2, and the additional phase-out processes caused by the inevitable inhomogeneities in the magnetic field they produce, variations in local magnetic susceptibility. For this reason, T2 * is always shorter than T2.
  • the MR signal detected thus includes a combination of relaxation times T1, T2 and T2 * , as well as the contribution of the proton density.
  • An advantage of this technique is that it does not use ionizing radiation, providing high quality images without exposing the patient to any type of harmful radiation.
  • endogenous and inherent MRI contrasts are in many cases insufficient to adequately resolve small anatomical lesions or properly characterize tissue physiology.
  • specific series of exogenous agents have been developed to enhance the components T1, T2 or T2 * of the image, respectively.
  • T1 and T2 enhancing agents much less is known about the investigation of T2 * potentiation, which could make possible the image of tissue and tumor perfusion with greatly increased resolution and sensitivity (CH Dodd et al. Journal of Immunological Methods 2001, 256, 1 -2, 89).
  • Magnetic resonance imaging contrast agents are divided into two general classes of magnetically active materials (AE Merbach and E. Toth 2001, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging 2001, John Wiley & Sons): Paramagnetic and Superparamagnetic Materials or Ferromagnetic Paramagnetic contrast agents include substances based on small gadolinium (III) chelates (Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, Gd-DO3A) (E.
  • Paramagnetic agents induce an increase in the intensity of MR image in T1-weighted sequences (positive contrast enhancement), and superparamagnetic agents induce a decrease in the magnetic resonance signal are T2-weighted sequences (negative contrast enhancement).
  • the sensitivity and specificity of both types of agents is very different. While gadolinium chelates have a relaxivity that requires millimolar concentrations of the compound in the target tissue, superparamagnetic nanoparticles, due to their greater molecular weight, are effective in micromolar or nanomolar ranges.
  • Superparamagnetic nanostructured materials were developed as a contrast agent for MRI since their nanoscale structure profoundly modified the relaxation time of protons, thereby enhancing the sensitivity of MRI diagnosis.
  • specific biologically active vectors such as monoclonal or polyclonal antibodies, or avidin-biotin systems
  • the specificity of the MRI diagnosis can also be increased.
  • Products based on iron oxide nanoparticles, such as Endorem ® and Lumirem ® marketed in Europe by Guerbet, received approval to be marketed in the United States in 1996, while Resovist ® , marketed by Bayer Schering in the United States, received approval to be marketed in Europe in 2001.
  • gadolinium derivatives have received a "black box” warning, by the FDA and other European agencies in 2007, due to the occurrence of significant cases of nephrogenic systemic fibrosis (NSF), after use in patients with renal insufficiency.
  • NSF nephrogenic systemic fibrosis
  • the FDA has initiated a follow-up program for patients with potential risk to study the incidence of NSF after administration of gadolinium-based contrast agents.
  • the quality of the particles used as an MRI contrast agent is determined by the magnetic properties of the core of the material, the particle size distribution, the particle's loading surface, stability in almost neutral solvents or physiological serum, as well. as the chemical and functional properties of immobilized molecules on the surface.
  • pharmacokinetic behavior is an important determinant in magnetic resonance imaging applications, since the agent should ideally remain in the target tissue only during the MRI exam, and be quickly removed afterwards, without accumulating anywhere in the body.
  • An appropriate protocol for producing magnetic iron oxide nanoparticles comprises coprecipitation of ferric and ferrous salts in an alkaline medium in the absence or presence of surfactants.
  • the nanoparticles thus obtained have a core with a diameter between 1 and 50 nm.
  • the coating of the magnetic nanoparticles with biocompatible polymers or copolymers is carried out through covalent bonding by activation with carbodiimide nanoparticles.
  • the nanoparticles with a coated core structure have a hydrodynamic diameter between 1 and 150 nm.
  • US Patent 2007/0140974 describes a contrast agent with a coated nuclear structure formed by magnetic nanoparticles coated with modified silane polyethyleneimine (PEI) and linked to therapeutic vectors.
  • US patent 2009/0220431 describes a contrast agent consisting of nanoparticles of manganese ferrite and coated with water soluble ligands. It has a T2 coefficient of relajivity higher than iron oxide nanoparticles.
  • Patent application WO 2009/156445 describes a contrast agent consisting of cobalt ferrite nanoparticles coated with polylactidacogl icol ida (PLGA) and albumin resulting in a potentiation of the T2 signal superior to the commercial product Endorem ® .
  • PLGA polylactidacogl icol ida
  • US 7,598,335 discloses a contrast agent consisting of iron oxide nanoparticles coated with polyethylene glycol and folic acid. It has a T2 / T1 ratio boosted above Resovist ® .
  • Patent application WO 2009/136764 describes a PET / MRI contrast agent consisting of manganese ferrite nanoparticles coated with albumin serum having a higher T2 coefficient of relajivity than conventional iron oxide nanoparticles.
  • Patent application WO201 1062217 discloses magnetic iron oxide particles dispersed in water and their potential use for magnetic resonance imaging (MRI). Its use is also mentioned for therapeutic potentiation by hyperthermia and in drug administration. According to this document, the coating of magnetic particles with modified molecules on their surface such as molecules with amino groups and carboxyls among others is described as a feature that improves the fixation of magnetic particles to biomolecules.
  • the inherent properties required to reduce vascular and tissue adhesion in order to limit specific accumulation in tissues in vivo are not mentioned.
  • the contrast agent of the present invention stands out for its effects on parameter T2 * , in addition to its negative loading surface that gives rise to excellent pharmacokinetic and toxicological properties, low adhesion to vascular and tissue biological surfaces, thus allowing retention transient in specific tissues without significant bioaccumulation, a collection of advantageous properties that make the following invention ideal for use in tumor and tissue perfusion assays in vivo.
  • the present invention relates to magnetic nanoparticles and to the use of said magnetic nanoparticles for application as a Magnetic Resonance Imaging (MRI) contrast agent.
  • MRI Magnetic Resonance Imaging
  • These nanoparticles have an inorganic core, whose surface is covered with one or more water soluble polymers. They show excellent pharmacokinetic properties: rapid systemic elimination, low retention in the brain and spleen, non-significant hepatic accumulation, revealing an extraordinarily low tissue and vascular adhesion. They also show appropriate T2 * relaxivity properties which makes them ideal for use in tissue and tumor imaging studies.
  • Another objective of the present invention is the method of preparing the particles described above as a contrast agent in MRI.
  • the method comprises the following steps: 1) synthesis of the nucleus of the nanoparticles; 2) coating the nanoparticles with a polymeric coating containing or not ionized functional groups; and optionally, 3) attach a specific vector molecule or molecular chromophores to the nanoparticle coating and 4) Examine its biological and toxicological performance in vivo and in vitro.
  • the contrast agent of the present invention has excellent pharmacokinetic properties including poor adherence to biological surfaces and good T2 * relaxivity properties which makes these nanoparticles ideal candidates for use in magnetic resonance imaging.
  • an object of this invention is to provide nanoparticles that show improved pharmacokinetic properties and magnetic susceptibility properties comparable to commercial nanoparticles previously used in magnetic resonance imaging.
  • a particular object of the invention is a contrast agent comprising one or more nanoparticles with suitable magnetic properties, said magnetic particles comprising: 1) an inorganic core; 2) a water-soluble polymeric coating but not limited to ionized functional groups that improve its removal; and 3) one or more molecular vectors.
  • Another object of the present invention is to provide the method of manufacturing the contrast agent described above, comprising the following steps: 1) synthesis of the nucleus of the nanoparticles; 2) coating the core of the nanoparticles with an appropriate polymeric shell that decreases the bonding properties observed in dextran coatings; and optionally 3) coupling a molecular vector to the coating of the nanoparticles.
  • the magnetic nanoparticle consists of one or more of the following components: i) an inorganic core containing one or more of the elements selected from transition metals, including but not limited to iron, cobalt, manganese , copper and magnesium; or ii) an inorganic core composed of an alloy containing elements selected from transition metals, including but not limited to iron, cobalt, manganese, copper and magnesium.
  • the inorganic core of the magnetic nanoparticle is selected from the group consisting of iron oxide, cobalt ferrite, manganese ferrite, magnesium ferrite and combinations thereof.
  • the inorganic core of the magnetic nanoparticle is iron oxide.
  • the water-soluble polymeric coating of the magnetic nanoparticle is formed by at least one polymer, at least one copolymer with functional groups selected from the group consisting of but not limited to polyacrylic acid, polyvinyl alcohol, polyethylene glycol, lolivinylpyridine, polyvinylpyrrolidon, PLGA, chitosan, dextran, hyaluronic acid, pululane, TMSMA-r-PEGMA, ethyl cellulose, polyolefins, polyesters, polyamines, polyamides, polycarbonate, polyacrylates, their derivatives and mixtures thereof.
  • the water soluble polymeric coating of the magnetic nanoparticle is polyacrylic acid.
  • the polymeric or copolymeric coating of the magnetic nanoparticle of the invention includes, but is not limited to, one or more functional groups selected from the group consisting of -COOH, -NH 2 , -SH, -SS-, -CONH 2 , -PO 3 H, - SO 3 H, -NO2, -CHO, -COSH, -CN, -OH, -SCN, -NCS, -NCO, -OCN, -N-, -NH-, -S-, -O- , CO3 and its combinations, generating positive or negative nanoparticle loading surfaces.
  • one or more functional groups selected from the group consisting of -COOH, -NH 2 , -SH, -SS-, -CONH 2 , -PO 3 H, - SO 3 H, -NO2, -CHO, -COSH, -CN, -OH, -SCN, -NCS, -NCO, -OCN, -N-
  • one or more molecular vectors may be attached to the polymeric coating of the magnetic nanoparticle, chosen from the group consisting of fluorophores, chromophores, radioactive agents, antibodies, avidin-biotin conjugates. , medications, ligands for receptors, interference RNAs and combinations thereof ,.
  • In vivo administration of magnetic nanoparticles allows visualization of tissue or tumor perfusion using magnetic resonance imaging methods.
  • the use of nanoparticles developed in this invention provides significant advantages through the reduction of non-selective adhesion of commercial preparations prior to vascular and tissue surfaces in vivo, thus providing novel and improved pharmacokinetic properties for tissue and tumor imaging.
  • Figure 1 Representative scheme of the process used for coating the magnetic nanoparticle of Fe3O 4 with polyacrylic acid (PAA) by carbodiimide in Example 1. Stresses the presence of negatively charged carboxylic groups, providing a negative net charge at physiological pH.
  • PAA polyacrylic acid
  • Figure 2 Electron microscope images of metal oxide nanoparticles coated with PAA.
  • the inorganic nucleus of the nanoparticles is Fe3O 4 .
  • Figure 3 Nanotex T1 and T2 relaxation properties in water (A, B) and fetal bovine serum (C, D) at 1.5 Tesla, at concentrations ranging from 0 to 0.05 mM Fe. Values are average ⁇ standard deviation of the pixels observed in each condition.
  • Figure 4 Relaxation values T2 and T2 * in 7 teslas water (A, B) and in fetal bovine serum (C, D) of Nanotex suspensions, in concentrations ranging between 0 and 0.05 mM Fe. Values they are mean ⁇ standard deviation of the pixels observed in each condition.
  • FIG. 5 Effects of increased Nanotex concentration on the viability of C6 cells detected by lactate dehydrogenase (LDH) released into the incubation medium, after 1 hour (left) or 24 hours incubation (right).
  • LDH lactate dehydrogenase
  • FIG 6 Accumulation in the spleen detected by MRI weighted in T2 * in four spleens (AD) of mice, obtained one hour after intravenous injection of Nanotex (15 micromoles Fe / Kg body weight).
  • Figure 7 Representative images weighted in T2 * (A) of the thorax and abdomen of mice and T2 * maps (B) obtained 24 hours after intravenous administration of Nanotex (15 micromoles Fe / Kg body weight).
  • Figure 8 Relative changes in hepatic T2 * after injection of a single dose (15 micromoles Fe / Kg body weight) and double dose (30 micromoles Fe / Kg body weight) of Nanotex in the tail vein mouse. The results are represented as the mean and standard deviation of 4 animals studied after administration of the contrast agent. The insert shows the region enlarged between 0 and 6 hours for a better appreciation of the potentiation of the effect.
  • Figure 9 Determination of cerebral perfusion by the "bolus follow-up" method in rats with C6 glial tumor implants using Nanotex.
  • Example 1 Preparation of magnetic iron oxide nanoparticles used as a contrast agent in tumor perfusion
  • the magnetic nanoparticles are washed several times with deionized water and ethanol, and dried at 70 ° C in an oven for subsequent treatment.
  • T1, T2 and T2 * The evaluation of the magnetic relaxation properties (T1, T2 and T2 * ) of Nanotex, developed in the present invention from the nanoparticles synthesized in Example 1, was carried out at 1.5 Teslas, a clinical field strength , using a Bruker Minispec magnetic resonance spectrometer (Bruker Biospin, Ettligen, Germany), and 7 Teslas on a Bruker Pharmascan scanner (Bruker Biospin, Ettlingen, Germany) ..
  • T1 to 1.5 Teslas were obtained using an eco-spin sequence with progressive saturation, TE: 10 ms, TR: 70-12000 ms (at least 9 values), the values of T1 to 7 Teslas were obtained using sections Coronal (1.5 mm) along a set of capillaries (1 mm in diameter) each containing concentrations of increasing Nanotex.
  • the acquisition conditions were: FOV (display window): 30 mm, matrix: 256x256.
  • T2 values at 1.5 Teslas were obtained using an eco-spin sequence (Carr-Purcell-Meiboom-Gill) independent of diffusion with TR: 9000 s, TE: 10 to 2000 ms (at least 9 values).
  • the T2 values at 7 Teslas were determined on the T2 maps of the coronal sections of the capillaries (1 mm in diameter) with FOV: 30 mm, Matrix: 256x256, coronal section: 1.5 mm.
  • T2 * maps were obtained at 7 Teslas from coronal sections (1.5 mm) along capillary assemblies (1 mm in diameter) containing increasing concentrations of Nanotex, using an echo gradient sequence, TR: 300 s, TE: 2.3-40 ms (at least 9 values), FOV: 30 mm, Matrix: 256x256, coronal section: 1.5 mm. T2 * values were calculated from T2 * maps and are expressed as mean ⁇ standard deviation.
  • Figure 3 shows the relaxation properties T1 and T2 of Nanotex at 1.5 Tesla in water and serum, in concentrations ranging from 0 to 0.05 mM Fe.
  • the highest concentration examined reduced T1 in water from 3200 ms to 2600 ms, and T2 from 2500 ms to 600 ms.
  • the effect on T2 is significantly higher than on T1, as corresponds to a superparamagnetic nanoparticle.
  • serum a reduction of T1 from 1800 ms to 1600 ms, and T2 from 1000 ms to 700ms is observed.
  • the effect in T2 continues to be higher than in T1, but the observed range is smaller than in pure water.
  • FIG. 4 shows the dependence between T2 and T2 * at 7 Teslas in Nanotex suspensions prepared in deionized water and fetal bovine serum in concentrations ranging between 0 and 0.05 mM Fe.
  • Nanotex reduces the value of T2 in water of 300 ms at 220 ms.
  • T2 * reductions by Nanotex are 18 ms.
  • a slight reduction in T2 is observed for Nanotex, while the reduction in T2 * is 10 ms.
  • the corresponding relaxivity values measured in serum are shown in Table 1.
  • the values of relaxivity were determined in suspensions of nanoparticles in fetal bovine serum at room temperature.
  • concentrations used for the measure of relaxivity are based on the iron content of the nanoparticle.
  • Example 3 Determination of the cytotoxicity of the Nanotex contrast agent in C6 glioma cell cultures.
  • Example 4 Determination of toxicity in vivo, accumulation in the spleen of the contrast agent Nanotex
  • In vivo accumulation in the Nanotex spleen is determined by measuring the T2 * values in spleens isolated from mice sacrificed one hour after intravenous administration of Nanotex (15 micromoles Fe / Kg body weight). This dose corresponds to the clinical recommended dose by commercial nanoparticle manufacturers and is used here as the reference dose.
  • the spleens were isolated from mice killed by cervical dislocation and located in 6 Plexiglas plates to allow reconstruction of the corresponding T2 * maps.
  • Figure 6 shows representative results of this approach on a plate with isolated spleens of six animals that have been administered Nanotex. The resolution and sensitivity achieved with this method allows very precise measurements of T2 * in spleens ex vivo, not achieved in spleens in vivo.
  • Table 2 shows the T2 * values in isolated spleens before and one hour after intravenous injection of Nanotex (15 micromoles Fe / Kg. Body weight). Nanotex does not induce a significant decrease in T2 * in the spleen, which suggests a very low or non-existent accumulation in the spleen and poor biological adhesion. Table 2. Accumulation in the Nanotex spleen detected by the value of T2 * in the spleen one hour after intravenous administration of the nanoparticles.
  • Nanotex does not induce significant changes in respiration or heart rate, no external signs of liver toxicity such as yellow skin are observed, and Nanotex does not induce baldness, nor spots of hair color, hyper or hypoactivity (drowsiness) , aggressiveness, hemiparesis or hemiplegia.
  • Example 5 Determination of the in vivo pharmacokinetics of the contrast agent for MRI Nanotex
  • weighted images were obtained in T2 * and their corresponding maps, in coronal sections through the thorax and abdomen of Swiss CD1 mice. Images were obtained before intravenous administration of Nanotex and at increased times after administration (1, 3, 6, 24, 48, 168 h). Nanotex nanoparticles were administered intravenously at a dose of 15 micromoles Fe / Kg body weight. This dose corresponds to the clinical dose recommended by commercial nanoparticle producers and is used here as the reference dose.
  • FIG. 7 shows a representative weighted T2 * image of the abdomen and thorax before (A), and a representative T2 * map obtained 24 hours after (B) of intravenous administration of the same dose of Nanotex (15 micromoles Fe / Kg of body weight).
  • the T2 * map ( Figure 7B) shows a significantly lower value of T2 * in the liver of animals treated with Nanotex, confirming the previous results.
  • Figure 8 summarizes the results of T2 * measurements for hepatic accumulation and elimination, after intravenous administration of a single dose (15 micromoles Fe / Kg body weight) and a double dose (30 micromoles Fe / Kg weight body) from Nanotex.
  • Nanotex induces a slight reduction in liver T2 * , with a rapid decrease followed by rapid removal of liver tissue.
  • the individual dose of 15 micromoles Fe / Kg of body weight of Nanotex was eliminated entirely in approximately 24 hours with an average of approximately half-life (ti 2 ) of hepatic elimination of 10 h. This half-life average is significantly shorter than that of dextran-coated nanoparticles, revealing inferior tissue and vascular adhesion and allowing repeated administration protocols in short intervals of time.
  • Example 6 Evaluation of the potential use of Nanotex as a contrast agent in perfusion images of a model of glioblastoma multiforme by magnetic resonance imaging.
  • Microvascular perfusion evaluation procedures are based on the monitoring of the traffic kinetics of a "bolus" contrast. Basically, a rapid injection is administered in such a way that the contrast agent circulates through the vasculature as a grouped “bolus", maintaining the initial concentration of the solution injected for each transited tissue (at least during the first tissue transit). When the plane section of the acquired RM image is reached by the bolus, a decrease in the intensity of the image that is proportional to the concentration of the injected solute can be measured by magnetic resonance.
  • the kinetics of the contrast agent that travels through the plane of the image approximates a gamma function with an initial portion, a point of maximum intensity and a descent to disappearance.
  • the area under the curve represents the volume of cerebral blood (CBV; ml / 100g) in the image plane.
  • the time between the start of the transit and the maximum concentration is known as the average transit time (MTT) and measures the time (s) in which half of the contrast bolus has passed through the section.
  • cerebral blood flow (CBF) is the CBV / MTT ratio and represents blood flow [(ml / 100g) / min] through the brain section studied.
  • Figure 9 illustrates the determination of cerebral perfusion using Nanotex in rats that carry C6 glial tumor implants. Basically, the figure illustrates the perfusion adjustment of the gamma function (red) to the different transit kinetics of the contrast agent (blue). Nanotex shows a rapid transit time and a virtually complete recovery of perfusion after injection, indicating that Nanotex does not remain fixed and does not adhere, nor does it interact significantly with the endothelium or cerebral microvasculature.
  • Table 3 shows the values of CBF [(ml / 100g) / min], CBV (ml / 100g) and MTT (s) of Nanotex (15 micromoles Fe / Kg body weight) in rats carrying tumors implanted, calculated from adjustments in the gamma transit function of the contrast agent. Nanotex has a short average transit time in healthy brain tissue. In summary, Nanotex reflects very favorable first-transit kinetics and a recovery through cerebral microvasculature.
  • body weight tumor body weight tumor
  • body weight body weight
  • Nanotex allows the detection of the heterogeneity of the perfusion of the center and the periphery of the tumor. This dose corresponds to the clinical dose recommended by commercial nanoparticle manufacturers and serves as a reference dose here.
  • the use of a double dose increases the confidence in the parameters due to a greater sound signal in the images, without appreciable toxic effects in the animals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

La presente invención se refiere al uso de nanopartículas superparamagnéticas biocompatibles con un núcleo inorgánico y un recubrimiento con un polímero cargado eléctricamente con baja adherencia tisular y vascular para su uso como agentes de contraste en Imagen por Resonancia Magnética (IRM). Las nanopartículas aquí descritas tienen novedosas propiedades farmacocinéticas y de relajitividad T2*, con un alto potencial para su aplicación en estrategias de perfusión tumoral y de imagen de tejidos in vivo basadas en el parámetro T2*.

Description

NANOPARTÍCULAS SUPERPARAMAGN ÉTICAS COMO AGENTES DE CONTRASTE PARA IMAGEN POR RESONANCIA MAGNÉTICA (IRM) DE LA SUSCEPTIBILIDAD MAGNÉTICA (T2*)
SECTOR DE LA TÉCNICA:
La presente invención se refiere al campo de la resonancia magnética, especialmente al uso de nanopartículas superparamagnéticas como agente de contraste para la imagen no invasiva de tejidos o de perfusión tumoral. Sus aplicaciones pueden ser extendidas adicionalmente a otros campos de la biomedicina o del diagnóstico por imagen.
ESTADO DE LA TÉCNICA:
La imagen por Resonancia Magnética constituye una herramienta muy útil para monitorizar de manera no invasiva la perfusión de tejidos y tumores (U. Haberkorn and A. Altmann, Current Gene Therapy 2001 , 1 (2), 163; T. Ichikawa et al., Neoplasia 2002, 4 (6), 523; D.C. Sullivan and J.M. Hoffman, Seminars in Radiation Oncology 2001 , 1 1 (1 ), 37).
La técnica se basa en el fenómeno de la resonancia magnética nuclear. Este sucede debido a que los núcleos de distintos átomos absorben diferentes energías en el dominio de radiofrecuencia, resonando a concretas frecuencias de resonancia cuando el campo magnético aplicado es cambiado periódicamente. El hidrógeno es uno de los elementos más apropiados para el fenómeno de la resonancia magnética nuclear, y es el elemento más común contenido en el cuerpo humano. Por estos motivos, la IRM es capaz de proporcionar imágenes de gran resolución de tejidos blandos con detallada información anatómica. Las imágenes se obtienen situando al sujeto en un campo magnético y observando las interacciones entre los espines magnéticos de los protones de agua del sujeto y la radiofrecuencia de radiación aplicada. La imagen se resuelve aplicando gradientes de campo magnético ortogonales que en última instancia codifican espacialmente las tres coordenadas de cada píxel de la imagen. Los espines magnéticos de la muestra liberan la energía adquirida durante la excitación, como un campo magnético oscilante de forma exponencialmente decreciente que induce una pequeña corriente en una bobina receptora. Dos parámetros, llamados tiempos de relajación del protón, son de una importancia fundamental en la generación de la imagen: T1 (tiempo de relajación longitudinal) y T2 (tiempo de relajación transversal). T1 o tiempo de relajación de espín-red representa la transferencia de energía entre los espines del protón observado y la red circundante, y T2 o tiempo de relajación espín-espín es la transferencia de energía entre diferentes espines o protones. Un parámetro adicional, llamado tiempo de relajación T2*, resulta también necesario para describir apropiadamente el decaimiento total de la inducción magnética. Este decaimiento incluye, tanto el decaimiento del T2, como los procesos adicionales de desfase causados por las inevitables inhomogeneidades en el campo magnético que producen, variaciones en la susceptibilidad magnética local. Por esta razón, T2* es siempre más breve que T2. La señal MR detectada incluye, por tanto, una combinación de tiempos de relajación T1 , T2 y T2*, así como la contribución de la densidad del protón.
Una ventaja de esta técnica es que no emplea radiación ionizante, aportando imágenes de gran calidad sin exponer al paciente a ningún tipo de radiación perjudicial. Sin embargo, los contrastes de IRM endógenos e inherentes son en muchos casos insuficientes para resolver adecuadamente pequeñas lesiones anatómicas o caracterizar adecuadamente la fisiología de los tejidos. Por esta razón, se han desarrollado series especificas de agentes exógenos para potenciar los componentes T1 , T2 o T2* de la imagen, respectivamente. Aunque se han realizado importantes avances en agentes potenciadores de T1 y T2, se sabe mucho menos sobre la investigación de la potenciación de T2*, que podría hacer posible la imagen de la perfusión tisular y tumoral con una resolución y sensibilidad muy aumentadas (C.H. Dodd et al. Journal of Immunological Methods 2001 , 256, 1 -2, 89).
Los agentes de contraste para imagen por resonancia magnética se dividen en dos clases generales de materiales activos magnéticamente (A.E. Merbach and E. Toth 2001 , The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging 2001 , John Wiley & Sons): Materiales paramagnéticos y superparamagnéticos o ferromagnéticos. Los agentes de contraste paramagnéticos incluyen sustancias basadas en pequeños quelatos de gadolinio (III) (Gd-DTPA, Gd-DTPA-BMA, Gd- DOTA, Gd-DO3A) (E. Toth et al., The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging 2001 , John Wiley & Sons, 45), y los agentes de contraste superparamagnéticos se basan en nanopartículas con núcleo de óxido de hierro (Fe3O4, Fe2Os) de tamaño muy reducido (<30Á, USPIO-ultrasmall superparamagnetic ¡ron oxide particles) o reducido (<200Á, SPIO- superparamagnetic ¡ron oxide) (R.N. Muller et al., The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging 2001 , John Wiley & Sons, 417). Los agentes paramagnéticos inducen un aumento en la intensidad de imagen RM en secuencias ponderadas en T1 (potenciación de contraste positiva), y los agentes superparamagnéticos inducen un descenso en la señal de resonancia magnética es secuencias ponderadas en T2 (potenciación de contraste negativa). La sensibilidad y especificidad de ambos tipos de agentes es muy distinta. Mientras que los quelatos de gadolinio tienen una relajitividad que requiere concentraciones milimolares del compuesto en el tejido objetivo, las nanopartículas superparamagnéticas, debido a su mayor peso molecular, son efectivas en rangos micromolares o nanomolares.
Los materiales nanoestructurados superparamagnéticos fueron desarrollados como agente de contraste para IRM ya que su estructura a nanoescala modificaba profundamente el tiempo de relajación de los protones, de este modo potenciando la sensibilidad del diagnóstico IRM. Además, mediante modificaciones en la superficie de las nanopartículas con vectores específicos biológicamente activos, como anticuerpos monoclonales o policlonales, o sistemas avidina-biotina, puede incrementarse también la especificidad del diagnóstico IRM. Productos basados en nanopartículas de óxido de hierro, como Endorem® y Lumirem®, comercializados en Europa por Guerbet, recibieron la aprobación para ser comercializados en Estados Unidos en 1996, mientras que Resovist®, comercializado por Bayer Schering en Estados Unidos, recibió la aprobación para ser comercializado en Europa en 2001 . Estos productos no han conducido a advertencias públicas de toxicidad por EMEA o FDA, al contrario que los productos basados en gadolinio. En particular, los derivados del gadolinio han recibido una advertencia de "caja negra", por la FDA y otras agencias europeas en 2007, debido a la aparición de casos significativos de fibrosis sistémica nefrogénica (NSF), tras su utilización en pacientes con insuficiencia renal. En la actualidad, la FDA ha iniciado un programa de seguimiento de pacientes con riesgo potencial para estudiar la incidencia de NSF tras la administración de agentes de contraste basados en gadolinio.
La calidad de las partículas usadas como agente de contraste de IRM está determinada por las propiedades magnéticas del núcleo del material, la distribución del tamaño de la partícula, la superficie de carga de la partícula, la estabilidad en disolventes casi neutrales o suero fisiológico, así como las propiedades químicas y funcionales de moléculas inmovilizadas en la superficie. Además, el comportamiento farmacocinético constituye un determinante importante en aplicaciones de imagen por resonancia magnética, ya que el agente idealmente debería permanecer en el tejido diana solo durante el examen IRM, y ser rápidamente eliminado después, sin acumularse en ninguna parte del cuerpo.
Los productos comerciales se sintetizan por coprecipitación (tamaño del núcleo de 5- 10 nm) en medio acuoso (Corot et al., Advanced Drug Delivery Reviews 2006, 58, 1471 ). Este método de síntesis simple y sostenible produce nanopartículas magnéticas no tóxicas recubiertas de dextrano (MNP) (Villanueva et al., Nanotechnology 2009, 20, 1 15103) de pequeño tamaño (<10nm), que se pueden mantener fácilmente en suspensión coloidal, pero que presentan distribuciones significativamente grandes (>20%). El tamaño hidrodinámico y la naturaleza química del recubrimiento influye en la distribución de MNP y por tanto en el órgano o tejido de acumulación (Thorek et al., Biomaterials 2008, 29, 3583). Las nanopartículas SPIO recubiertas de dextrano (Feridex) y Carboxydextrano (Resovist®) con tamaños hidrodinámicos superiores a 100nm han sido utilizadas para imagen de hígado, mientras que las nanopartículas USPIO con tamaños hidrodinámicos inferiores a 50nm han sido utilizadas para angiografías y aplicaciones de permeabilidad de tumores (Wagner et al., Investigative Radiology 2002, 37, 167). Sin embargo, los recubrimientos de dextrano o carboxydextrano dan lugar a una unión significativa y no específica por absorción de esas partículas a las superficies vasculares y de tejidos, limitando la efectiva eliminación de estas partículas una vez que el estudio por imagen ha sido realizado y siendo requeridos tiempos de espera relativamente largos hasta una completa eliminación y eventual readministración. Por estos motivos la producción y caracterización de nanopartículas magnéticas con escasa adherencia tisular y vascular que favorezca una rápida eliminación y una baja acumulación tisular presenta actualmente una gran relevancia.
Un protocolo apropiado para producir nanopartículas magnéticas de óxido de hierro comprende la coprecipitación de sales férricas y ferrosas en un medio alcalino en ausencia o presencia de surfactantes. Las nanopartículas así obtenidas tienen un núcleo con un diámetro comprendido entre 1 y 50 nm.
El recubrimiento de las nanopartículas magnéticas con polímeros biocompatibles o copolímeros se lleva a cabo a través de unión covalente por activación con nanopartículas de carbodiimida. Las nanopartículas con una estructura de núcleo con recubrimiento tienen un diámetro hidrodinámico comprendido entre 1 y 150 nm. Los procedimientos de elaboración de agentes de contraste de tipo T2 están descritos en la literatura:
La patente US 2007/0140974 describe un agente de contraste con una estructura nuclear recubierta formada por nanopartículas magnéticas recubiertas con polietilenimina de silano modificado (PEI) y ligadas a vectores terapéuticos. La patente US 2009/0220431 describe un agente de contraste que consiste en nanopartículas de ferrita de manganeso y recubiertas con ligandos solubles en agua. Tiene un coeficiente de relajitividad T2 mayor que las nanopartículas de óxido de hierro.
La patente US 2010/0061937 describe un agente de contraste que consiste en nanopartículas de óxido de hierro (Resovist®) encapsuladas en eritrocitos para obtener valores de T2* inferiores a aquellos determinados por la presencia de nanopartículas en la sangre.
La solicitud de patente WO 2009/156445 describe un agente de contraste consistente en nanopartículas de ferrita de cobalto cubiertas con polilactidacogl icol ida (PLGA) y albúmina que da lugar a una potenciación de la señal T2 superior al producto comercial Endorem®.
La patente US 7,598,335 describe un agente de contraste que consiste en nanopartículas de óxido de hierro recubiertas con polietileno glicol y ácido fólico. Tiene un ratio T2/T1 potenciado por encima de Resovist®.
La solicitud de patente WO 2009/136764 describe un agente de contraste PET/MRI que consiste en nanopartículas de ferrita de manganeso cubiertas con suero de albúmina que tienen un coeficiente de relajitividad T2 más alto que las nanopartículas convencionales de óxido de hierro. La solicitud de patente WO201 1062217 revela partículas magnéticas de óxido de hierro dispersas en agua y su potencial uso para imagen por resonancia magnética (IRM). También se menciona su uso para potenciación terapéutica por hipertermia y en administración de fármacos. De acuerdo con este documento, el recubrimiento de las partículas magnéticas con moléculas modificadas en su superficie como moléculas con grupos aminos y carboxilos entre otros se describe como característica que mejora la fijación de las partículas magnéticas a las biomoléculas. Sin embargo, no se mencionan las propiedades inherentes requeridas para reducir la adherencia vascular y tisular con el fin de limitar la acumulación específica en tejidos in vivo. A la vista de las patentes presentes en el estado de la técnica es necesario enfatizar que ninguna de ellas está dirigida específicamente a los efectos de susceptibilidad magnética, la superficie de carga y la reducida adherencia a la fase biológica, en el rendimiento farmacocinético o toxicológico. El agente de contraste de la presente invención destaca por sus efectos en el parámetro T2*, además de su superficie de carga negativa que da lugar a excelentes propiedades farmacocinéticas y toxicológicas, baja adherencia a las superficies biológicas vasculares y tisulares, por tanto permite la retención transitoria en tejidos específicos sin una bioacumulación significativa, una colección de propiedades ventajosas que hacen a la siguiente invención ideal para su uso en ensayos de perfusión tumoral y tisular in vivo. RESUMEN DE LA INVENCIÓN
La presente invención se refiere a nanopartículas magnéticas y al uso de dichas nanopartículas magnéticas para su aplicación como agente de contraste en Imagen por Resonancia Magnética (IRM). Estas nanopartículas tienen un núcleo inorgánico, cuya superficie está cubierta con uno o más polímeros solubles en agua. Muestran excelentes propiedades farmacocinéticas: rápida eliminación sistémica, baja retención en el cerebro y bazo, acumulación hepática no significativa, revelando una extraordinariamente baja adherencia tisular y vascular. Además muestran propiedades de relajatividad T2* apropiadas lo cual las hace ideales para su uso en estudios de imagen tisular y tumoral.
Otro objetivo de la presente invención es el método de preparación de las partículas descritas anteriormente como agente de contraste en IRM. El método comprende los siguientes pasos: 1 ) síntesis del núcleo de las nanopartículas; 2) recubrimiento de las nanopartículas con un recubrimiento polimérico que contiene o no grupos funcionales ionizados; y opcionalmente, 3) adjuntar una molécula vectorial específica o cromóforos moleculares al recubrimiento de la nanopartícula y 4) Examinar su actuación biológica y toxicológica in vivo e in vitro.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El agente de contraste de la presente invención tiene excelentes propiedades farmacocinéticas incluyendo escasa adherencia a superficies biológicas y buenas propiedades de relajatividad T2* lo que convierte a estas nanopartículas en candidatos ideales para su uso en imagen por resonancia magnética. De este modo, un objeto de esta invención es proporcionar nanopartículas que muestren propiedades farmacocinéticas mejoradas y propiedades de susceptibilidad magnética comparables a las nanopartículas comerciales previamente usadas en imagen por resonancia magnética. Un objeto particular de la invención es un agente de contraste que comprende una o más nanopartículas con propiedades magnéticas adecuadas, comprendiendo dichas partículas magnéticas: 1 ) un núcleo inorgánico; 2) un recubrimiento polimérico soluble en agua pero no limitado a grupos funcionales ionizados que mejoren su eliminación; y 3) uno o más vectores moleculares.
Otro objeto de la presente invención es proporcionar el método de elaboración del agente de contraste anteriormente descrito, que comprende los siguientes pasos: 1 ) síntesis del núcleo de las nanopartículas; 2) recubrir el núcleo de las nanopartículas con una cubierta polimérica apropiada que disminuya las propiedades de unión observadas en recubrimientos de dextrano; y opcionalmente 3) acoplar un vector molecular al recubrimiento de las nanopartículas.
De acuerdo con una realización de la invención la nanopartícula magnética consiste en uno o más de los siguientes componentes: i) un núcleo inorgánico que contiene uno o más de los elementos seleccionados entre metales de transición, incluyendo pero no limitado a hierro, cobalto, manganeso, cobre y magnesio; o ii) un núcleo inorgánico compuesto por una aleación que contenga elementos seleccionados entre metales de transición, incluyendo pero no limitado a hierro, cobalto, manganeso, cobre y magnesio.
En una realización particular de la invención el núcleo inorgánico de la nanopartícula magnética es seleccionado del grupo formado por óxido de hierro, ferrita de cobalto, ferrita de manganeso, ferrita de magnesio y sus combinaciones.
En una realización más particular de la invención, el núcleo inorgánico de la nanopartícula magnética es óxido de hierro.
De acuerdo con una realización de la invención, el recubrimiento polimérico soluble en agua de la nanopartícula magnética está formado por al menos un pol ímero, al menos un copolímero con grupos funcionales seleccionados del grupo consistente pero no limitado a ácido poliacrílico, alcohol polivinilo, polietilieno glicol, lolivinilpiridino, polivinilpirrolidon, PLGA, chitosano, dextrano, ácido hialurónico, pululano, TMSMA-r-PEGMA, etilcelulosa, poliolefinas, poliesteres, poliaminas, poliamidas, policarbonato, poliacrilatos sus derivados y sus mezclas. En una realización particular de la invención el recubrimiento polimérico soluble en agua de la nanopartícula magnética es ácido poliacrílico.
El recubrimiento polimérico o copolimérico de la nanopartícula magnética de la invención incluye, pero no está limitado a, uno o más grupos funcionales seleccionados del grupo formado por -COOH, -NH2, -SH, -SS-, -CONH2, -PO3H, - SO3H, -NO2, -CHO, -COSH, -CN, -OH, -SCN, -NCS, -NCO, -OCN, -N-, -NH-, -S-, -O- , CO3 y sus combinaciones, generando superficies de carga de la nanopartícula positivas o negativas.
De acuerdo con una realización de la invención, se pueden adjuntar al recubrimiento polimérico de la nanopartícula magnética, para fomentar su uso, uno o mas vectores moleculares, escogidos del grupo formado por fluoroforos, cromoforos, agentes radioactivos, anticuerpos, conjugados de avidina-biotina, medicamentos, ligandos para receptores, RNAs de interferencia y combinaciones de los mismos,. La administración in vivo de nanopartículas magnéticas permite la visualización de perfusión tisular o tumoral utilizando métodos de imagen por resonancia magnética. El uso de nanopartículas desarrollado en esta invención proporciona ventajas significativas a través de la reducción de la adherencia no selectiva de los preparados comerciales previos a las superficies vasculares y tisulares in vivo, proporcionando por tanto propiedades farmacocinéticas novedosas y mejoradas para imagen tisular y tumoral.
BREVE DESCRIPCIÓN DE LAS IMÁGENES:
Figura 1 : Esquema representativo del proceso usado para el recubrimiento de la nanopartícula magnética de Fe3O4 con ácido poliacrílico (PAA) por carbodiimida en el Ejemplo 1 . Destaca la presencia de grupos carboxílicos cargados negativamente, proporcionando carga neta negativa a pH fisiológico.
Figura 2: Imágenes de microscopio electrónico de nanopartículas de óxido de metal recubiertas con PAA. El núcleo inorgánico de las nanopartículas es Fe3O4. Figura 3: Propiedades de relajación T1 y T2 de Nanotex en agua (A, B) y suero fetal bovino (C, D) a 1 .5 Tesla, en concentraciones que oscilan entre 0 y 0,05 mM Fe. Los valores son media ± desviación estándar de los pixeles observados en cada condición. Figura 4: Valores de relajación T2 y T2* en agua a 7 teslas (A, B) y en suero fetal bovino (C, D) de suspensiones de Nanotex, en concentraciones que oscilan entre 0 y 0,05 mM Fe. Los valores son media ± desviación estándar de los pixeles observado en cada condición.
Figura 5: Efectos del aumento de la concentración de Nanotex en la viabilidad de células C6 detectado por la lactato deshidrogenasa (LDH) liberada al medio de incubación, después de 1 hora (izquierda) o de 24 horas de incubación (derecha).
Figura 6: Acumulación en el bazo detectada mediante IRM ponderada en T2* en cuatro bazos (A-D) de ratones, obtenidos una hora después de la inyección intravenosa de Nanotex (15 micromoles Fe/Kg de peso corporal). Figura 7: Imágenes representativas ponderadas en T2* (A) del tórax y abdomen de ratones y mapas de T2* (B) obtenidos 24 horas tras la administración intravenosa de Nanotex (15 micromoles Fe/Kg de peso corporal)..
Figura 8: Cambios relativos en el T2* hepático tras la inyección de una dosis única (15 micromoles Fe/Kg de peso corporal) y de doble dosis (30 micromoles Fe/Kg de peso corporal) de Nanotex en la vena de la cola del ratón. Los resultados se representan como la media y desviación estándar de 4 animales estudiados tras la administración del agente de contraste. El inserto muestra ampliada la región entre las 0 y 6 horas para una mejor apreciación de la potenciación del efecto.
Figura 9: Determinación de perfusión cerebral por el método de "seguimiento del bolo" en ratas con implantes de tumores gliales C6 utilizando Nanotex.
EJEMPLOS:
Los siguientes ejemplos están destinados a ser descriptivos y no deben ser comprendidos como límites a la presente invención. Ejemplo 1 : Preparación de nanopartículas magnéticas de óxido de hierro usadas como agente de contraste en perfusión tumoral
Las nanopartículas de magnetita (Fe3O4) se preparan en atmósfera inerte a 25°C, por coprecipitación de iones Fe3+ y Fe2+ 0.3 M (relación molar 2:1 ) con una solución de amoniaco (29,6 %) hasta pH= 10, seguido por un tratamiento hidrotermal a 80°C durante 30 minutos. Las nanopartículas magnéticas se lavan varias veces con agua deionizada y etanol, y se desecan a 70°C en un horno para el subsiguiente tratamiento. Para la unión del ácido poliacrílico (PAA), se mezclan en primer lugar 100 mg de nanopartículas de Fe3O4 con 2 mi de tampón A (0,003 M fosfato, pH6) y 0,5 mi de solución de carbodiimida (0.025 g-nnL"1 en el tampón A). Tras ser sonicadas durante 10 minutos, se añaden 2,5 mi de la solución PAA (60 nng-nnL"1 en el tampón A) y se sónica la mezcla durante otros 30 minutos. Finalmente, se recuperan magnéticamente las nanopartículas de Fe3O4 recubiertas de PAA, se lavan dos veces con agua y se dializan contra una solución salina amortiguada (Fig. 1 y Fig. 2A). En adelante, esta nanopartícula será llamada Nanotex.
Ejemplo 2: Evaluación de las propiedades de relajación magnética (T1 , T2 y T2*) del agente de contraste Nanotex
La evaluación de las propiedades de relajación magnéticas (T1 , T2 y T2*) de Nanotex, desarrollada en la presente invención a partir de las nanopartículas sintetizadas en el Ejemplo 1 , se llevó a cabo a 1 ,5 Teslas, una intensidad de campo clínica, utilizando un espectrómetro de resonancia magnética Bruker Minispec (Bruker Biospin, Ettligen, Alemania),, y a 7 Teslas en un escáner Bruker Pharmascan (Bruker Biospin, Ettlingen, Alemania)..
Los valores de T1 a 1 ,5 Teslas se obtuvieron utilizando una secuencia eco-espín con saturación progresiva, TE:10 ms, TR: 70-12000 ms (al menos 9 valores), los valores de T1 a 7 Teslas se obtuvieron usando secciones coronales (1 ,5 mm) a lo largo de un conjunto de capilares (1 mm de diámetro) conteniendo, cada uno, concentraciones de crecientes Nanotex. Las condiciones de adquisición fueron: FOV (ventana de visualización): 30 mm, matriz: 256x256. Los valores de T2 a 1 ,5 Teslas se obtuvieron utilizando una secuencia eco-espín (Carr-Purcell-Meiboom-Gill) independiente de la difusión con TR: 9000 s, TE: 10 a 2000 ms (al menos 9 valores). Los valores de T2 a 7 Teslas se determinaron en los mapas de T2 de las secciones coronales de los capilares (1 mm de diámetro) con FOV: 30 mm, Matriz: 256x256, sección coronal: 1 ,5 mm.
Los mapas de T2* se obtuvieron a 7 Teslas a partir de secciones coronales (1 ,5 mm) a lo largo de conjuntos de capilares (1 mm de diámetro) conteniendo concentraciones crecientes de Nanotex, utilizando una secuencia de gradiente de eco, TR:300 s, TE: 2,3-40 ms (al menos 9 valores), FOV: 30 mm, Matriz: 256x256, sección coronal: 1 ,5 mm. Los valores de T2* se calcularon a partir de mapas de T2* y se expresan como media ± desviación estándar.
La Figura 3 muestra las propiedades de relajación T1 y T2 de Nanotex a 1 ,5 Tesla en agua y suero, en concentraciones que oscilan entre 0 y 0,05 mM Fe. La concentración más alta examinada reducía T1 en agua de 3200 ms a 2600 ms, y T2 de 2500 ms a 600 ms. El efecto en T2 es significativamente más alto que en T1 , como corresponde a una nanopartícula superparamagnética. En el caso del suero, se observa una reducción de T1 de 1800 ms a 1600 ms, y de T2 de 1000 ms a 700ms. El efecto en T2 continua siendo más alto que en T1 , pero el rango observado es menor que en agua pura. La Figura 4 muestra la dependencia entre T2 y T2* a 7 Teslas en suspensiones de Nanotex preparadas en agua deionizada y suero fetal bovino en concentraciones que oscilan entre 0 y 0,05 mM Fe. Nanotex reduce el valor de T2 en agua de 300 ms a 220 ms. Las reducciones de T2* por Nanotex son de 18 ms. En presencia de suero, se observa una ligera reducción en T2 (de 159 ms a 133 ms) para Nanotex, mientras que la reducción en T2* es de 10 ms. Los valores de relajatividad correspondientes medidos en suero se muestran en la Tabla 1 . Tabla 1. Valores de relajatividad n, r2 y r2 * de Nanotex medidos a 7 Teslas en suero
Figure imgf000014_0001
Los valores de relajatividad fueron determinados en suspensiones de nanopartículas en suero fetal bovino a temperatura ambiente. Las concentraciones usadas para la medida de la relajatividad se basan en el contenido de hierro de la nanopartícula.
Ejemplo 3: Determinación de la citotoxicidad del agente de contraste Nanotex en cultivos de células de glioma C6.
La toxicidad in vitro de Nanotex utilizando células de glioma C6 se investigó mediante el ensayo de liberación de lactato de dehidrogenasa (LDH), un procedimiento que determina la integridad de la membrana celular. La muerte celular se detecta midiendo la liberación del enzima al medio de incubación. Bajo estas condiciones, la liberación de LDH se asocia a la drástica alteración de la permeabilidad de la membrana celular o a su rotura, de modo que el incremento de la liberación de LDH indica mayor muerte celular y menor viabilidad. La Figura 5 muestra el resultado de liberación de LDH de células C6 frente a un aumento de concentraciones de Nanotex. Los cambios en la viabilidad no resultan detectables en el rango de concentración estudiado, revelando una escasa toxicidad de Nanotex en células de glioma C6. Un control positivo (una concentración citotóxica de hidroxilamina) se empleó para confirmar que las células viables pueden ser matadas, y que este proceso puede ser detectado por la liberación de LDH.
Ejemplo 4: Determinación de la toxicidad in vivo, acumulación en el bazo del agente de contraste Nanotex
La acumulación in vivo en el bazo de Nanotex se determina midiendo los valores de T2* en bazos aislados de ratones sacrificados una hora después de la administración intravenosa de Nanotex (15 micromoles Fe/Kg de peso corporal). Esta dosis corresponde a la dosis recomendada en clínica por fabricantes de nanopartículas comerciales y se utiliza aquí como dosis de referencia. Los bazos fueron aislados de ratones sacrificados por dislocación cervical y situados en 6 placas de plexiglás para permitir la reconstrucción de los mapas de T2* correspondientes. La figura 6 muestra resultados representativos de este enfoque en una placa con bazos aislados de seis animales a los que se les ha administrado Nanotex. La resolución y sensitividad lograda con este método permite medidas muy precisas de T2* en bazos ex vivo, no conseguidas en bazos in vivo.
La Tabla 2 muestra los valores de T2* en bazos aislados antes y una hora después de la inyección intravenosa de Nanotex (15 micromoles de Fe/Kg. de peso corporal). Nanotex no induce un descenso significativo en T2* en el bazo, lo que sugiere una muy baja o inexistente acumulación en el bazo y escasa adherencia biológica. Tabla 2. Acumulación en el bazo de Nanotex detectada por el valor de T2* en el bazo una hora tras la administración intravenosa de las nanopartículas.
Figure imgf000015_0001
Durante los estudios in vivo no se detecta toxicidad in vivo apreciable tras la administración de Nanotex. Nanotex es además compatible con el protocolo de anestesia utilizado (1 -2% de isoflurano), sin mortalidad detectada debido a la nanopartícula en ninguno de los animales sanos estudiados (n=12).
En particular, la administración de Nanotex no induce cambios significativos en la respiración o frecuencia cardiaca, no se observan signos externos de toxicidad hepática como piel amarilla, y Nanotex no induce calvas, ni manchas de color en el pelo, hiper o hipoactividad (somnolencia), agresividad, hemiparesia o hemiplejía.
Ejemplo 5: Determinación de la farmacocinética in vivo del agente de contraste para IRM Nanotex Para estudiar la farmacocinética in vivo de las nanopartículas Nanotex para IRM, se obtuvieron imágenes ponderadas en T2* y sus correspondientes mapas, en secciones coronales a través del tórax y abdomen de ratones Swiss CD1 . Se obtuvieron las imágenes antes de la administración intravenosa de Nanotex y a tiempos incrementados tras la administración (1 , 3, 6, 24, 48, 168 h). Las nanopartículas Nanotex fueron administradas de forma intravenosa a una dosis de 15 micromoles Fe/Kg de peso corporal. Esta dosis corresponde a la dosis clínica recomendada por los productores de nanopartículas comerciales y se utiliza aquí como dosis de referencia. La Figura 7 muestra una imagen de T2* ponderada representativa del abdomen y tórax antes (A), y un mapa de T2* representativo obtenido 24 horas después (B) de la administración intravenosa de la misma dosis de Nanotex (15 micromoles Fe/Kg de peso corporal). El mapa de T2* (Figura 7B) muestra un valor significativamente menor de T2* en el hígado de los animales tratados con Nanotex, confirmando los resultados previos.
La figura 8 resume los resultados de las medidas de T2* para la acumulación hepática y eliminación, tras la administración intravenosa de una dosis única (15 micromoles Fe/Kg de peso corporal) y una dosis doble (30 micromoles de Fe/Kg de peso corporal) de Nanotex. Nanotex induce una ligera reducción en el T2* hepático, con una rápida disminución seguida por una rápida eliminación del tejido hepático. La dosis individual de 15 micromoles Fe/Kg de peso corporal de Nanotex fue eliminada por entero en aproximadamente 24 horas con una media de aproximadamente vida media (ti 2) de eliminación hepática de 10 h. Esta media de vida media es significativamente más corta que la de las nanopartículas recubiertas de dextrano, revelando una adherencia tisular y vascular inferior y permitiendo protocolos de administración repetidos en intervalos cortos de tiempo. El estudio de la farmacocinética de Nanotex tras la inyección del doble de la dosis recomendada (30 micromoles de Fe/Kg de peso corporal) demuestra un efecto de relajación incrementado, sin modificaciones en la rápida tasa de eliminación del hígado. La administración de una dosis doble no muestra síntomas adversos y todos los ratones sobrevivieron al estudio. Ejemplo 6: evaluación del potencial uso de Nanotex como agente de contraste en las imágenes de perfusión de un modelo de glioblastoma multiforme por resonancia magnética.
Los procedimientos de evaluación de la perfusión microvascular se basan en el seguimiento de la cinética del tránsito de un contraste de tipo "bolo". Básicamente se administra una rápida inyección de tal forma que el agente de contraste circula por la vasculatura como un "bolo" agrupado, manteniendo la concentración inicial de la solución inyectada para cada tejido transitado (al menos durante el primer tránsito tisular). Cuando la sección del plano de la imagen RM adquirida es alcanzada por el bolo, se puede medir por resonancia magnética una disminución en la intensidad de la imagen que es proporcional a la concentración del soluto inyectado.
La cinética del agente de contraste que transita a través del plano de la imagen se aproxima a una función gamma con una porción inicial, un punto de máxima intensidad y un descenso hasta la desaparición. El área bajo la curva representa el volumen de sangre cerebral (CBV; ml/100g) en el plano de la imagen. El tiempo entre el inicio del tránsito y la máxima concentración se conoce como tiempo medio de tránsito (MTT) y mide el tiempo (s) en el que la mitad del bolo de contraste ha pasado a través de la sección. Finalmente, el flujo sanguíneo cerebral (CBF) es el ratio CBV/MTT y representa el flujo sanguíneo [(ml/100g)/min] a través de la sección cerebral estudiada.
La Figura 9 ilustra la determinación de la perfusión cerebral utilizando Nanotex en ratas que llevan implantes de tumores gliales C6. Básicamente, la figura ilustra el ajuste en la perfusión de la función gamma (rojo) a las diferentes cinéticas de tránsito del agente de contraste (azul). Nanotex muestra un rápido tiempo de tránsito y una recuperación virtualmente completa de la perfusión tras la inyección, indicando que Nanotex no se queda fija y no se adhiere, ni interactúa significativamente con el endotelio o la microvasculatura cerebral.
La Tabla 3 muestra los valores de CBF [(ml/100g)/min], CBV (ml/100g) and MTT (s) de Nanotex (15 micromoles Fe/Kg de peso corporal) en ratas que llevan tumores implantados, calculadas de ajustes en la función de tránsito gamma del agente de contraste. Nanotex presenta un tiempo medio de tránsito corto en tejido cerebral sano. En resumen, Nanotex refleja cinéticas de primer tránsito muy favorables y una recuperación a través de la microvasculatura cerebral.
Tabla 3. Parámetros de perfusión cerebral determinada por el método de seguimiento del bolo de resonancia magnética utilizando Nanotex (15 micromoles Fe / kg de peso corporal).
Valor
Parámetro de
perfusión (media±sd)
CBF (ml_/100g/min) 22.86±4.62
CBV (ml_/100g) 1 .41 ± 0.06
MTT (s) 3.55± 1 .00
Para investigar la eficacia de las partículas como sondas para la vascularización y la angiogénesis se llevan a cabo mediciones de la perfusión en el centro de los gliomas (núcleo), que contiene principalmente la zona necrótica, y su periferia, que contiene la zona de crecimiento muy vascularizada. Nanotex (dosis 1 x y 2x) han sido utilizadas para la comparación. La tabla 4 muestra los resultados obtenidos con Nanotex en las tres variables.
Tabla 4. Parámetros de la perfusión tumoral determinados con dosis individuales y dobles de Nanotex mediante seguimiento del bolo en los gliomas C6 en un cerebro de rata tres semanas después de la implantación.
Nanotex
Nanotex
Región del (30 micromoles/Kg
Parámetro de perfusión (15 micromoles/Kg
tumor de peso corporal) de peso corporal)
Interior 1 1 ,5±1 .8 45.85±8.3
CBF (ml_/100g)/min)
Periferia 47,5±3.8 64.66±9.6
Interior 0,9±0.12 1 .1 1 ±0.6
CBV (ml_/100g)
Periferia 4.4±0.7 4,6±0.8
Interior 4.3±1 .4 2.1 ±0.4
MTT (s)
Periferia 5.5±0.9 4,4±0.2 Nótese cómo una dosis simple Nanotex permite la detección de la heterogeneidad de la perfusión del centro y la periferia del tumor. Esta dosis corresponde a la dosis clínica recomendada por los fabricantes de nanopartículas comerciales y sirve como dosis de referencia aquí. El uso de una doble dosis aumenta la confianza en los parámetros debido a una mayor señal de sonido en las imágenes, sin efectos apreciables tóxicos en los animales.

Claims

REIVINDICACIONES:
1. Una nanopartícula para resonancia magnética con un núcleo de diámetro inferior a 15 nm, superficie de carga eléctrica neta, y escasa adherencia vascular y tisular intrínseca en pH fisiológico in vivo, que comprende: 1) un núcleo inorgánico y 2) un recubrimiento polimérico soluble en agua.
2. Una nanopartícula conforme a la reivindicación 1 , en la que el núcleo inorgánico comprende los siguientes:
a. Uno o más elementos seleccionados entre los metales e iones paramagnéticos o diamagnéticos,
b. una aleación que contenga uno o más de los elementos seleccionados entre metales e iones paramagnéticos o diamagnéticos o
c. un óxido o ferrita de metal que contenga uno o más elementos seleccionados de metales o iones paramagnéticos o diamagnéticos.
3. Una nanopartícula conforme a la reivindicación 2, en la que el núcleo inorgánico comprende metales o iones paramagnéticos o diamagnéticos seleccionados del grupo consistente en hierro, cobre, cobalto, manganeso, magnesio y sus mezclas.
4. Una nanopartícula conforme a la reivindicación 2, en la que el núcleo inorgánico comprende una aleación que contiene uno o más elementos seleccionados del grupo formado por hierro, cobre, cobalto, manganeso, magnesio y sus mezclas.
5. Una nanopartícula conforme a la reivindicación 2, en la que el núcleo inorgánico comprende un óxido o ferrita de metal que contiene uno o más elementos seleccionados del grupo formado por hierro, cobre, cobalto, manganeso, magnesio y sus mezclas.
HOJA DE REEMPLAZO (Regla 26)
6. Una nanopartícula conforme a la reivindicación 5, en la que el núcleo inorgánico es seleccionado del grupo formado por óxido de hierro, ferrita de cobalto, ferrita de manganeso, ferrita de magnesio y sus combinaciones.
7. Una nanopartícula conforme a la reivindicación 5, donde el núcleo inorgánico está compuesto por magnetita -Fe304-, maghemita -Fe203-, o Co Fe204.
8. Una nanopartícula conforme a la reivindicación 1 , en la que el polímero o copolímero comprende uno o más grupos funcionales seleccionados del grupo formado por COOH, -NH2, -SH, -SS-, -CONH2, -P03H, -S03H, -N02, - CHO, -COSH, -CN, -OH, -SCN, -NCS, -NCO, -OCN, -N-, -NH-, -S-, -O-, CO3 y sus combinaciones dando lugar a una escasa adherencia vascular y tisular en pH fisiológico in vivo.
9. Una nanopartícula conforme a la reivindicación 8, en la que el polímero soluble en agua comprende uno o más polímeros o copolímeros con grupos funcionales seleccionados del grupo formado por ácido poliacrílico, polivinil alcohol, polietilenglicol, polivinipiridina, polivinilpirrolidona, poli(lactide-co- glicolida), chitosano, dextrano, ácido hialurónico, pululano, copolímeros de poli(etileno glicol) metil éter metacrilato y 3-(trimetoxilsilil)propil metacrilato, etil celulosa, poliolefinos, poliesters, poliaminas, poliamidas, policarbonatos, poliacrilatos o sus derivados y combinaciones de polímeros y copolímeros con dichos grupos funcionales, con una baja adherencia intrínseca tisular y vascular en pH fisiológico in vivo.
10. Una nanopartícula conforme a cualquiera de las reivindicaciones 1 a 9, donde el núcleo inorgánico es óxido de hierro y el polímero soluble en agua es ácido poliacrílico.
HOJA DE REEMPLAZO (Regla 26)
11. Una nanopartícula conforme a cualquiera de las reivindicaciones 1 a 10, que comprende además uno o más cromóforos moleculares o vectores moleculares dirigidos específicos.
12. Una nanopartícula conforme a la reivindicación 11 , en la que los cromóforos o vectores moleculares dirigidos específicos se seleccionan del grupo formado por fluoróforos, cromóforos, agentes radioactivos, anticuerpos, derivados de avidina dirigidos, derivados de biotina dirigidos, medicamentos, ligandos de receptores, y sondas de RNA de interferencia.
13. Una nanopartícula conforme a las reivindicaciones 1 a 12 con propiedades farmacocinéticas muy apropiadas incluyendo escasa adherencia vascular, rápida eliminación, acumulación no apreciable en el hígado y bazo y mínima interacción con el tejido cerebral sano.
14. Un agente de contraste que comprende nanopartículas magnéticas definidas en cualquiera de las reivindicaciones de 1 a 13 con valores de relajatividad en suero r2 y r2* superiores a 90 s"1 mM"1.
15. El método de preparación de las nanopartículas definidas en la reivindicación 1 , que comprende los siguientes pasos: 1) síntesis del núcleo de las nanopartículas magnéticas; 2) recubrimiento del núcleo de las nanopartículas magnéticas con una cubierta polimérica que proporciona reducida adherencia vascular y tisular.
16. El método conforme a la reivindicación 11, el cual comprende además la ligadura de un cromóforo o vector a la cubierta de dicha nanopartícula, manteniendo baja la adherencia vascular y tisular.
17. El uso de las nanopartículas magnéticas definidas en las reivindicaciones 1 a 12 o del agente de contraste definido en cualquiera de las reivindicaciones 13
HOJA DE REEMPLAZO (Regla 26) a 15, en imagen por resonancia magnética de tejidos biológicos in vivo en animales y humanos.
18. El uso de las nanopartículas magnéticas definidas en las reivindicaciones 1 a 12 o del agente de contraste definido en cualquiera de las reivindicaciones 13 a 14, para las mediciones de la perfusión en el tejido normal y patologías que afectan a las perturbaciones vasculares, isquemia tisular, neurodegeneración, inflamación, edema o cáncer, en animales o humanos por medio de resonancia magnética.
19. El uso de las nanopartículas magnéticas definidas en las reivindicaciones 1 a 12 o el agente de contraste definido en cualquiera de las reivindicaciones 13 a 14, en la administración de fármacos.
HOJA DE REEMPLAZO (Regla 26)
PCT/ES2012/070044 2012-01-27 2012-01-27 Nanopartículas su perparamagn éticas como agente de contraste para imagen por resonancia magnética (irm) de la susceptibilidad magnética (t2*) WO2013110828A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12866960.3A EP2808036A4 (en) 2012-01-27 2012-01-27 SUPERPARAMAGNETIC NANOPARTICLES AS A CONTRAST AGENT IN MAGNETIC RESPONSE MAGNETIC RESONANCE IMAGING (MRI) (T2 *)
PCT/ES2012/070044 WO2013110828A1 (es) 2012-01-27 2012-01-27 Nanopartículas su perparamagn éticas como agente de contraste para imagen por resonancia magnética (irm) de la susceptibilidad magnética (t2*)
JP2014553768A JP6174603B2 (ja) 2012-01-27 2012-01-27 T2*強調磁気共鳴イメージング(mri)のための造影剤
US14/374,185 US10987436B2 (en) 2012-01-27 2012-01-27 Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (MRI) of magnetic susceptibility (T2*)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2012/070044 WO2013110828A1 (es) 2012-01-27 2012-01-27 Nanopartículas su perparamagn éticas como agente de contraste para imagen por resonancia magnética (irm) de la susceptibilidad magnética (t2*)

Publications (1)

Publication Number Publication Date
WO2013110828A1 true WO2013110828A1 (es) 2013-08-01

Family

ID=48872905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070044 WO2013110828A1 (es) 2012-01-27 2012-01-27 Nanopartículas su perparamagn éticas como agente de contraste para imagen por resonancia magnética (irm) de la susceptibilidad magnética (t2*)

Country Status (4)

Country Link
US (1) US10987436B2 (es)
EP (1) EP2808036A4 (es)
JP (1) JP6174603B2 (es)
WO (1) WO2013110828A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107244A1 (es) * 2014-01-15 2015-07-23 Soluciones Nanotecnológicas, S.L. Composiciones que contienen liposomas, ácidos grasos poliinsaturados omega-3 de cadena larga y nanopartículas superparamagnéticas y su uso en el tratamiento de tumores malignos
EP2982652A1 (en) * 2014-08-08 2016-02-10 Universität für Bodenkultur Wien Ultra-dense shell core-shell nanoparticles
US9366670B2 (en) 2011-07-04 2016-06-14 Samsung Electronics Co., Ltd. Polymer including group having at least two hydroxyls or zwitterionic group and use thereof
JP2017519785A (ja) * 2014-06-30 2017-07-20 コンティプロ アクチオヴァ スポレチノスト ヒアルロン酸及び無機ナノ粒子をベースとする抗腫瘍組成物,その調製法,並びにその使用
CN107991336A (zh) * 2017-11-28 2018-05-04 南京林业大学 一种基于磁传感的快速同时检测、分离水中Pb2+和Cu2+的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013108453A1 (de) * 2013-08-06 2015-02-12 Yerzhan Ussembayev Nanocomposites zur Einkapselung von Zellen und Verfahren zur Behandlung von Krankheiten
CN106552296B (zh) 2015-09-29 2020-08-14 上海氪励铵勤科技发展有限公司 纳米粒子、其制备方法与结石取出装置及应用
KR101875474B1 (ko) * 2017-05-25 2018-07-09 가천대학교 산학협력단 개질 마그네틱 나노입자 및 이의 제조방법
CN109095509B (zh) * 2017-06-21 2020-12-01 上海师范大学 一种纳米级的超顺磁性空心Fe3O4纳米粒子及其制备方法和应用
KR102025356B1 (ko) * 2017-11-17 2019-09-25 울산과학기술원 뇌에 존재하는 철의 시각화를 위한 방법
CN110797453B (zh) * 2019-11-14 2021-09-21 中国科学院长春应用化学研究所 一种压电纳米复合材料及其制备方法
CN111330024B (zh) * 2020-01-16 2021-08-03 浙江大学 一种基于透明质酸和多酚的铁基肿瘤诊疗纳米材料及其制备方法和应用
US20220264703A1 (en) * 2021-02-12 2022-08-18 William Marsh Rice University Integrated microheater array for efficient and localized heating of magnetic nanoparticles at microwave frequencies

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069040A2 (en) * 2005-12-15 2007-06-21 General Electric Company Targeted nanoparticles for magnetic resonance imaging
US20090220431A1 (en) 2005-12-02 2009-09-03 Jin-Woo Cheon Magnetic resonance imaging contrast agents containing water-soluble nanoparticles of manganese oxide or manganese metal oxide
US7598335B2 (en) 2006-08-01 2009-10-06 Kaohsiung Medical University Folate-receptor-targeting iron oxide nanoparticles coated with poly(ethylene glycol)
WO2009136764A2 (en) 2008-05-09 2009-11-12 Industry-Academic Cooperation Foundation, Yonsei University Dual-modality pet/mri contrast agents
WO2009156445A2 (en) 2008-06-26 2009-12-30 Colorobbia Italia S.P.A. Use of cobalt ferrites as contrast agents for magnetic resonance
US20100061937A1 (en) 2006-07-03 2010-03-11 Universita Degli Studi Di Urbino "Carlo Bo" Delivery of contrasting agents for magnetic resonance imaging
CA2781329A1 (en) * 2009-11-20 2011-05-26 Toda Kogyo Corporation Magnetic iron oxide fine particles, and magnetic particle-containing water dispersion and process for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0783325B2 (en) * 1994-09-27 2004-03-31 Amersham Health AS Contrast agent
WO2006129248A2 (en) 2005-06-01 2006-12-07 Philips Intellectual Property & Standards Gmbh Determination of distribution information of a contrast agent by mr molecular imaging
KR101642903B1 (ko) * 2011-02-09 2016-07-27 한화케미칼 주식회사 친수성 물질이 코팅된 산화철 나노입자의 제조방법 및 이를 이용하는 자기공명영상 조영제

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220431A1 (en) 2005-12-02 2009-09-03 Jin-Woo Cheon Magnetic resonance imaging contrast agents containing water-soluble nanoparticles of manganese oxide or manganese metal oxide
WO2007069040A2 (en) * 2005-12-15 2007-06-21 General Electric Company Targeted nanoparticles for magnetic resonance imaging
US20070140974A1 (en) 2005-12-15 2007-06-21 General Electric Company Targeted nanoparticles for magnetic resonance imaging
US20100061937A1 (en) 2006-07-03 2010-03-11 Universita Degli Studi Di Urbino "Carlo Bo" Delivery of contrasting agents for magnetic resonance imaging
US7598335B2 (en) 2006-08-01 2009-10-06 Kaohsiung Medical University Folate-receptor-targeting iron oxide nanoparticles coated with poly(ethylene glycol)
WO2009136764A2 (en) 2008-05-09 2009-11-12 Industry-Academic Cooperation Foundation, Yonsei University Dual-modality pet/mri contrast agents
WO2009156445A2 (en) 2008-06-26 2009-12-30 Colorobbia Italia S.P.A. Use of cobalt ferrites as contrast agents for magnetic resonance
CA2781329A1 (en) * 2009-11-20 2011-05-26 Toda Kogyo Corporation Magnetic iron oxide fine particles, and magnetic particle-containing water dispersion and process for producing the same
WO2011062217A1 (ja) 2009-11-20 2011-05-26 戸田工業株式会社 磁性酸化鉄微粒子粉末、磁性粒子含有水分散体およびその製造方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
AE MERBACH; TOTH E.: "The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging", 2001, JOHN WILEY & SONS
CH DODD ET AL., JOURNAL OF IMMUNOLOGICAL METHODS, vol. 256, 2001, pages 1 - 2 89
CHEN, D-X. ET AL.: "Experimental study on T2 relaxation time of protons in water suspensions of iron-oxide nanoparticles: Effects of polymer coating thickness and over-low 1/T2", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 322, no. 5, 2010, pages 548 - 556, XP026782547 *
D.C. SULLIVAN; J.M. HOFFMAN, SEMINARS IN RADIATION ONCOLOGY, vol. 11, no. 1, 2001, pages 37
E. TOTH ET AL.: "The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging", 2001, JOHN WILEY & SONS, pages: 45
LIU, H. ET AL.: "A novel CoFe204/polyacrylate nanocomposite prepared via an in situ polymerization in emulsion system", REACTIVE & FUNCTIONAL POLYMERS, vol. 69, 2009, pages 43 - 47, XP025928016 *
RN MULLER ET AL.: "The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging", 2001, JOHN WILEY & SONS, pages: 417
See also references of EP2808036A4 *
T. ICHIKAWA ET AL., NEOPLASIA, vol. 4, no. 6, 2002, pages 523
THOREK ET AL., BIOMATERIALS, vol. 29, 2008, pages 3583
U. HABERKOM; A. ALTMANN, CURRENT GENE THERAPY, vol. 1, no. 2, 2001, pages 163
VILLANUEVA ET AL., NANOTECHNOLOGY, vol. 20, 2009
WAGNER ET AL., INVESTIGATIVE RADIOLOGY, vol. 37, 2002, pages 167
ZHAI, Y. ET AL.: "Synthesis of magnetite nanoparticle aqueous dispersions in anionic liquid containing acrylic acid anion", COLLOIDS AND SURFACES A: PHYSICOCHEM. ENG. ASPECTS, vol. 332, 2009, pages 98 - 102, XP025710545 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9366670B2 (en) 2011-07-04 2016-06-14 Samsung Electronics Co., Ltd. Polymer including group having at least two hydroxyls or zwitterionic group and use thereof
EP2544002B1 (en) * 2011-07-04 2016-09-14 Samsung Electronics Co., Ltd. Polymer including group having at least two hydroxyls or zwitterionic group and use thereof
WO2015107244A1 (es) * 2014-01-15 2015-07-23 Soluciones Nanotecnológicas, S.L. Composiciones que contienen liposomas, ácidos grasos poliinsaturados omega-3 de cadena larga y nanopartículas superparamagnéticas y su uso en el tratamiento de tumores malignos
JP2017519785A (ja) * 2014-06-30 2017-07-20 コンティプロ アクチオヴァ スポレチノスト ヒアルロン酸及び無機ナノ粒子をベースとする抗腫瘍組成物,その調製法,並びにその使用
EP2982652A1 (en) * 2014-08-08 2016-02-10 Universität für Bodenkultur Wien Ultra-dense shell core-shell nanoparticles
WO2016020524A1 (en) * 2014-08-08 2016-02-11 Universität Für Bodenkultur Wien Ultra-dense shell core-shell nanoparticles
CN107991336A (zh) * 2017-11-28 2018-05-04 南京林业大学 一种基于磁传感的快速同时检测、分离水中Pb2+和Cu2+的方法

Also Published As

Publication number Publication date
EP2808036A1 (en) 2014-12-03
US10987436B2 (en) 2021-04-27
JP2015511938A (ja) 2015-04-23
US20150217003A1 (en) 2015-08-06
EP2808036A4 (en) 2015-08-19
JP6174603B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
WO2013110828A1 (es) Nanopartículas su perparamagn éticas como agente de contraste para imagen por resonancia magnética (irm) de la susceptibilidad magnética (t2*)
Salehipour et al. Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents
Felton et al. Magnetic nanoparticles as contrast agents in biomedical imaging: recent advances in iron-and manganese-based magnetic nanoparticles
Ai Layer-by-layer capsules for magnetic resonance imaging and drug delivery
Weissig et al. Nanopharmaceuticals (part 2): products in the pipeline
Na et al. Inorganic nanoparticles for MRI contrast agents
Fang et al. Multifunctional magnetic nanoparticles for medical imaging applications
Zhou et al. Gadolinium‐based contrast agents for magnetic resonance cancer imaging
Yang et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging
Bae et al. Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T 1-and T 2-weighted magnetic resonance imaging
Vuu et al. Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging
Rammohan et al. Nanodiamond–gadolinium (III) aggregates for tracking cancer growth in vivo at high field
Lee et al. Magnetic nanoparticles for multi-imaging and drug delivery
De et al. Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications
Mauri et al. MnO nanoparticles embedded in functional polymers as T 1 contrast agents for magnetic resonance imaging
Yeh et al. Tumor targeting and MR imaging with lipophilic cyanine-mediated near-infrared responsive porous Gd silicate nanoparticles
Shao et al. A novel one‐step synthesis of Gd3+‐incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent
US20120114564A1 (en) Mri t1 contrasting agent comprising manganese oxide nanoparticle
Xue et al. 99mTc-labeled iron oxide nanoparticles for dual-contrast (T 1/T 2) magnetic resonance and dual-modality imaging of tumor angiogenesis
Yu et al. Magnetic nanoparticles and their applications in image-guided drug delivery
Sulek et al. Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents
He et al. Magnetic nanoparticles for imaging technology
Zhang et al. Recent development and application of magnetic nanoparticles for cell labeling and imaging
Mandarano et al. Development and use of iron oxide nanoparticles (Part 2): The application of iron oxide contrast agents in MRI
Guleria et al. Biomedical applications of magnetic nanomaterials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866960

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014553768

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012866960

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14374185

Country of ref document: US