WO2013108598A1 - 電子装置およびその製造方法 - Google Patents
電子装置およびその製造方法 Download PDFInfo
- Publication number
- WO2013108598A1 WO2013108598A1 PCT/JP2013/000060 JP2013000060W WO2013108598A1 WO 2013108598 A1 WO2013108598 A1 WO 2013108598A1 JP 2013000060 W JP2013000060 W JP 2013000060W WO 2013108598 A1 WO2013108598 A1 WO 2013108598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- conductive layer
- organic insulating
- insulating layer
- opening
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 230000002093 peripheral effect Effects 0.000 claims abstract description 60
- 229910052751 metal Inorganic materials 0.000 claims abstract description 47
- 239000002184 metal Substances 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 239000011368 organic material Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 48
- 238000004544 sputter deposition Methods 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 34
- 229910052721 tungsten Inorganic materials 0.000 claims description 26
- 229910044991 metal oxide Inorganic materials 0.000 claims description 22
- 150000004706 metal oxides Chemical class 0.000 claims description 22
- 150000004767 nitrides Chemical class 0.000 claims description 20
- 229910000838 Al alloy Inorganic materials 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 230000003746 surface roughness Effects 0.000 claims description 4
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 562
- 238000005401 electroluminescence Methods 0.000 description 46
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 36
- 229910001930 tungsten oxide Inorganic materials 0.000 description 36
- 238000002161 passivation Methods 0.000 description 32
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 24
- 239000010937 tungsten Substances 0.000 description 24
- 239000010408 film Substances 0.000 description 18
- 239000004020 conductor Substances 0.000 description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 238000005530 etching Methods 0.000 description 13
- 239000011261 inert gas Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 12
- 229910052581 Si3N4 Inorganic materials 0.000 description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 11
- 238000005192 partition Methods 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 238000004380 ashing Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/124—Insulating layers formed between TFT elements and OLED elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/123—Connection of the pixel electrodes to the thin film transistors [TFT]
Definitions
- the present invention relates to a structure of an electronic device such as an organic EL (Electro Luminescence) display panel and a manufacturing method thereof.
- an organic EL Electro Luminescence
- organic electroluminescence element which is a light emitting element utilizing the electroluminescence phenomenon of an organic fluorescent substance, is widely used.
- Patent Document 1 discloses an organic EL display panel 901 shown in FIG. 17 as an example of an electronic apparatus including an organic EL element.
- the organic EL display panel 901 includes a glass substrate 911, a TFT (thin film transistor) 912, a first conductive layer 913, an organic insulating layer 921, a second conductive layer 923, an intermediate layer 935, a partition wall 941, and a light emitting layer. 942, a third conductive layer 943, a protective layer 948, an adhesive layer 949, a color filter layer 950, and a sealing layer 951.
- the first conductive layer 913 functions as a wiring.
- the organic insulating layer 921 is formed on the first conductive layer 913, and an opening exposing a part of the surface of the first conductive layer 913 is opened.
- the second conductive layer 923 is formed so as to cover the organic insulating layer 921 to the first conductive layer 913, and functions as an anode.
- the material constituting the first conductive layer 923 is a metal.
- the intermediate layer 935 extends between the organic insulating layer 921 and the second conductive layer 923 on the top surface of the organic insulating layer 921, the inner peripheral surface 921a facing the opening, and the bottom surface 921b.
- the material constituting the intermediate layer 935 is ITO (Indium Tin Oxide) which is a kind of metal oxide.
- the light emitting layer 942 is formed on the second conductive layer 923 and is made of an organic light emitting material.
- the third conductive layer 943 functions as a cathode and is made of a transparent material. Accordingly, it is possible to realize a structure in which current flows from the first conductive layer 913 to the second conductive layer 923 through the intermediate layer 935 on the bottom surface 921b of the opening of the organic insulating layer 921.
- metal oxides have high adhesion to both organic materials and metal materials. Therefore, the adhesiveness between the organic insulating layer 921 and the intermediate layer 935 is high, and the adhesiveness between the intermediate layer 935 and the second conductive layer 923 is also high. Therefore, in the organic EL display panel 901, the organic insulating layer 921 can be prevented from being peeled off from the second conductive layer 923.
- the portion of the second conductive layer that is in contact with the intermediate layer may be changed into aluminum oxide. This is because the binding force of aluminum atoms to oxygen atoms is large, and for example, aluminum atoms contained in the second conductive layer easily react with oxygen atoms contained in ITO constituting the intermediate layer. Further, in the conventional organic EL display panel, since the intermediate layer is formed over the entire area between the first conductive layer and the second conductive layer, the intermediate layer also exists on the bottom surface of the opening of the organic insulating layer. To do.
- the contact resistance between the first conductive layer and the second conductive layer may increase. There is. This is because the conductivity of aluminum oxide is smaller than that of aluminum and aluminum alloys. Such a problem is not limited to the case where aluminum or aluminum oxide is used for the second conductive layer and ITO is used for the intermediate layer, and may occur when the intermediate layer contains oxygen atoms or nitrogen atoms. .
- an object of the present invention is to provide an electronic device in which the organic insulating layer and the second conductive layer are hardly peeled off and the contact resistance between the first conductive layer and the second conductive layer can be suppressed.
- An electronic device includes a substrate, a first conductive layer formed on the substrate, a first conductive layer formed on the first conductive layer, and a part of the first conductive layer exposed.
- An organic insulating layer having an opening, an upper surface of the organic insulating layer, an inner peripheral surface facing the opening of the organic insulating layer, and a metal first formed to cover the first conductive layer exposed from the opening Two conductive layers, and an intermediate layer containing an oxide or a nitride formed only between the inner peripheral surface facing the opening of the organic insulating layer and the second conductive layer, the opening of the organic insulating layer
- the first conductive layer and the second conductive layer are in contact with each other at the bottom surface.
- an intermediate layer containing oxide or nitride is formed only between the inner peripheral surface facing the opening of the organic insulating layer and the second conductive layer.
- oxides and nitrides have high adhesion to organic materials and metal materials. Therefore, the adhesion between the organic insulating layer and the intermediate layer is high, and the adhesion between the intermediate layer and the second conductive layer is also high. Accordingly, the formation of the intermediate layer makes it difficult for the organic insulating layer and the first conductive layer to peel off.
- the intermediate layer is not formed on the bottom surface of the opening of the organic insulating layer, and the first conductive layer and the second conductive layer are in contact with each other. Therefore, since the direct contact between the first conductive layer and the second conductive layer can be maintained at the bottom surface of the opening of the organic insulating layer, the contact resistance can be reduced.
- the organic insulating layer and the second conductive layer are hardly peeled off, and the contact resistance between the first conductive layer and the second conductive layer can be suppressed.
- FIG. 1 is a cross-sectional view illustrating a configuration of an organic EL display panel according to Embodiment 1.
- FIG. (A) is an enlarged view of the periphery of the contact portion between the first conductive layer and the second conductive layer of the organic EL display panel shown in FIG. 1, and (b) is the organic EL display panel shown in (a).
- FIG. 3 is an enlarged view of an interface peripheral portion ⁇ between the intermediate layer and the organic insulating layer. It is sectional drawing which shows the manufacturing process of the organic electroluminescence display panel shown in FIG. It is sectional drawing which shows the manufacturing process of the organic electroluminescence display panel shown in FIG. (A) is the imaging
- (b) is a trace figure of the imaging
- (A) is a schematic diagram of the intermediate
- (b) is a schematic diagram of the intermediate
- (A) is sectional drawing of the organic electroluminescence display panel which concerns on Embodiment 1
- (b) is the enlarged view of (a), and the measurement figure by EDX.
- FIG. 6 is a cross-sectional view illustrating a configuration of an organic EL display panel according to Embodiment 2. It is sectional drawing which shows the manufacturing process of the organic electroluminescence display panel shown in FIG. It is sectional drawing which shows the modification of the manufacturing process of the organic electroluminescence display panel shown in FIG. It is sectional drawing which shows the modification of the manufacturing process of the organic electroluminescence display panel shown in FIG. It is sectional drawing which shows the modification of the manufacturing process of the organic electroluminescence display panel shown in FIG. It is sectional drawing which shows the modification of the manufacturing process of the organic electroluminescence display panel shown in FIG.
- An electronic device includes a substrate, a first conductive layer formed on the substrate, a first conductive layer formed on the first conductive layer, and a part of the first conductive layer exposed.
- An organic insulating layer having an opening, an upper surface of the organic insulating layer, an inner peripheral surface facing the opening of the organic insulating layer, and a metal first formed to cover the first conductive layer exposed from the opening Two conductive layers, and an intermediate layer containing an oxide or a nitride formed only between the inner peripheral surface facing the opening of the organic insulating layer and the second conductive layer, the opening of the organic insulating layer
- the first conductive layer and the second conductive layer are in contact with each other at the bottom surface.
- an intermediate layer containing oxide or nitride is formed only between the inner peripheral surface facing the opening of the organic insulating layer and the second conductive layer.
- oxides and nitrides have high adhesion to organic materials and metal materials. Therefore, the adhesion between the organic insulating layer and the intermediate layer is high, and the adhesion between the intermediate layer and the second conductive layer is also high. Accordingly, the formation of the intermediate layer makes it difficult for the organic insulating layer and the first conductive layer to peel off.
- the intermediate layer is not formed on the bottom surface of the opening of the organic insulating layer, and the first conductive layer and the second conductive layer are in contact with each other.
- the organic insulating layer and the second conductive layer are hardly peeled off, and the contact resistance between the first conductive layer and the second conductive layer can be suppressed.
- the first conductive layer may be made of a metal, and the intermediate layer may be made of an oxide of the metal constituting the first conductive layer.
- the intermediate layer may be made of a conductive oxide.
- the first conductive layer is formed of an oxide or a nitride, is formed between the first conductive layer and the organic insulating layer, and a part of the first conductive layer is exposed corresponding to the opening of the organic insulating layer.
- the intermediate layer may be made of the same material as the insulating layer.
- the first conductive layer may be made of metal, and a metal layer made of metal constituting the first conductive layer may be further formed between the intermediate layer and the second conductive layer. .
- the first conductive layer is made of metal, and a metal oxide made of an oxide of the metal constituting the first conductive layer between the first conductive layer and the organic insulating layer.
- the surface roughness of the region of the first conductive layer that is formed and directly covered with the organic insulating layer may be larger than the surface roughness of the region of the first conductive layer exposed from the organic insulating layer. .
- the first conductive layer is made of metal, and in the region of the first conductive layer covered with the organic insulating layer, the first conductive layer is interposed between the first conductive layer and the organic insulating layer.
- An oxide layer composed of an oxide of the metal that constitutes may be formed.
- the first conductive layer may be made of a metal containing at least one of W, Mo, Ti, Cr, and Cu.
- the second conductive layer may be made of an Al alloy or an Ag alloy.
- the method for manufacturing an electronic device includes a first step of preparing a substrate, a second step of forming a first conductive layer made of metal on the substrate, and the first conductivity.
- the oxide or nitride contained in the intermediate layer may be an oxide or nitride of the metal constituting the first conductive layer.
- a step of oxidizing at least the surface of the first conductive layer may be provided between the second step and the fourth step.
- a step of sputtering a surface of the first conductive layer between the fourth step and the fifth step to form a metal layer made of metal contained in the first conductive layer on the intermediate layer You may have.
- the electronic device manufacturing method includes a sixth step of preparing a substrate and a step of forming an insulating layer made of an oxide or a nitride on the substrate and the first conductive layer. 7 steps, an 8th step of forming a first conductive layer made of metal on the substrate, an opening exposing a part of the first conductive layer is formed on the first conductive layer, and organic A ninth step of forming an organic insulating layer made of a material, and removing a part of the surface of the insulating layer by sputtering so that the surface of the first conductive layer is exposed; Sputtering the exposed surface of the insulating layer to form an intermediate layer made of the same material as the insulating layer only on the inner peripheral surface of the organic insulating layer; and the upper surface of the organic insulating layer , Opening the organic insulating layer Inner peripheral surface, and said to cover the first conductive layer exposed from the organic insulating layer, characterized in that it comprises a first 11 forming a
- FIG. 1 is a cross-sectional view showing the configuration of one pixel of the organic EL display panel according to the first embodiment.
- the organic EL display panel 1 includes a glass substrate 11, a gate electrode 12, an insulating layer 14, a first conductive layer 13, a tungsten oxide layer 13 a, a semiconductor layer 15, a passivation layer 16, and an organic insulating layer 21.
- the intermediate layer 35, the second conductive layer 23, the partition 40, the light emitting layer 41, the third conductive layer 43, and the sealing layer 51 are provided.
- the first conductive layer 13 is formed on a substrate composed of the glass substrate 11 and the insulating layer 14.
- the material constituting the first conductive layer 13 is tungsten.
- the tungsten oxide layer 13 a is formed between the first conductive layer 13 and the organic insulating layer 21 in the portion of the passivation layer 16 except for the opening of the organic insulating layer 21.
- the passivation layer 16 is formed on the first conductive layer 13 and is made of SiN (silicon nitride) that covers a part of the first conductive layer 13 and the semiconductor layer 15.
- the organic insulating layer 21 is formed on the first conductive layer 13 via the passivation layer 16.
- the organic insulating layer 21 has an opening exposing a part of the surface of the first conductive layer 13.
- the opening of the organic insulating layer 21 is formed in a reverse taper shape having a diameter reduced from the upper surface toward the bottom surface.
- the inner diameter of the uppermost surface of the opening of the organic insulating layer 21 is, for example, 15 ⁇ m
- the inner diameter of the bottom surface 21b of the opening of the organic insulating layer 21 is, for example, 5 ⁇ m
- the film thickness of the organic insulating layer 21 is, for example, 4 ⁇ m.
- the material constituting the organic insulating layer 21 is, for example, an insulating organic material (for example, acrylic resin, polyimide resin, etc.).
- the intermediate layer 35 exists on the inner peripheral surface 21a facing the opening of the organic insulating layer 21, as shown in FIG. It does not exist and does not exist on the first conductive layer 13 exposed from the opening of the organic insulating layer 21. That is, the intermediate layer 35 is formed only between the inner peripheral surface 21 a facing the opening of the organic insulating layer 21 and the second conductive layer 23. The region where the intermediate layer 35 extends is only half of the inner peripheral surface 21 a facing the opening of the organic insulating layer 21 on the first conductive layer side.
- the detailed configuration of the interface peripheral portion ⁇ between the intermediate layer 35 and the organic insulating layer 21 is shown in FIG.
- the roughness of the surface 13 b of the tungsten oxide layer 13 a directly covered with the organic insulating layer 21 is larger than the roughness of the surface 13 c of the first conductive layer 13 exposed from the opening of the organic insulating layer 21. This shape is considered to be due to the manufacturing method.
- the second conductive layer 23 is exposed from the upper surface of the organic insulating layer 21, the inner peripheral surface 21 a facing the opening of the organic insulating layer 21 through the intermediate layer 35, and the opening of the organic insulating layer 21.
- One conductive layer 13 is formed so as to function as an anode.
- the material constituting the second conductive layer 23 is an aluminum alloy.
- the second conductive layer 23 is in direct contact with the first conductive layer 13, and current is supplied from the first conductive layer 13 to the second conductive layer 23. That is, the contact portion between the second conductive layer 23 and the first conductive layer 13 is a contact portion.
- the partition wall 40 is embedded in the opening of the organic insulating layer 21 and is made of, for example, an insulating organic material (for example, acrylic resin, polyimide resin, or the like).
- the light emitting layer 41 is formed between adjacent partition walls 40 on the second conductive layer 23 and is made of an organic light emitting material.
- the third conductive layer 43 is formed so as to cover the partition wall 40 and the light emitting layer 41 and serves as a cathode.
- the material constituting the third conductive layer 43 is, for example, a transparent material (for example, ITO or IZO (Indium Zinc Oxide).
- the third conductive layer 43 includes a drive around the panel portion of the organic EL display panel 1. Current is supplied from the circuit
- the sealing layer 51 is formed so as to cover the third conductive layer 43 and is made of a material having gas barrier properties such as SiN.
- a first conductive material layer 13d made of tungsten having a passivation layer 16 on the surface is prepared on a substrate including an insulating layer 14. Specifically, the first conductive material layer 13d is formed on the substrate, and SiN that is the material of the passivation layer 16 is further deposited on the first conductive material layer 13d. Thereafter, the material of the passivation layer 16 is selectively etched by using a general photolithography technique and an etching technique to form an opening at a desired position of the passivation layer 16, and the surface of the first conductive material layer 13 d To expose a part of
- an organic insulating material layer 21d is laminated so as to cover the exposed region of the first conductive material layer 13d and the passivation layer 16.
- an organic insulating layer 21 having an opening is formed on the exposed region of the first conductive material layer 13d and the passivation layer 16.
- a photosensitive material is adopted as the material of the organic insulating layer 21, and a part of the organic insulating material layer 21d is selectively etched using a general photolithography technique and etching technique, and further fired. Is performed to form the organic insulating layer 21 having an opening.
- the portion of the surface of the first conductive material layer 13d made of tungsten that is exposed from the passivation layer 16 is transformed into a metal oxide film 13e made of tungsten oxide.
- a part of the surface of the first conductive material layer 13d is oxidized by annealing. Note that the partial oxidation step of the first conductive material layer 13d may also serve as the firing described with reference to FIG.
- the reverse sputtering method is a technique in which a target layer is ejected from a target by causing a specific layer of a substrate as a target and colliding with this with an inert gas ion.
- an inert gas ion such as Ar (argon) indicated by an arrow is caused to collide with the metal oxide film 13e made of tungsten oxide, and the tungsten oxide is ejected from the metal oxide film 13e.
- the conditions for this reverse sputtering were DC power of 1.0 kW to 1.5 kW, an argon gas pressure of 0.3 Pa to 7 Pa, and an argon gas flow rate of 100 sccm to 200 sccm using a parallel plate electrode DC sputtering apparatus. .
- the intermediate layer 35 is formed only on the inner peripheral surface 21a facing the opening of the organic insulating layer 21, as shown in FIG. 4B.
- the partition 40 is formed in the opening of the organic insulating layer 21.
- FIG. 5A is a TEM photograph of the contact portion of the organic EL element according to the present embodiment
- FIG. 5B is a trace diagram of the photograph diagram of FIG.
- the tungsten oxide layer 13a is considered to exist between the first conductive layer 13 and the organic insulating layer 21, it does not appear in the drawing. This is because the tungsten oxide layer 13a and the first conductive layer 13 are photographed as having the same density in the TEM.
- the intermediate layer 35 extends between the organic insulating layer 21 and the second conductive layer 23.
- middle layer 35 was formed in the internal peripheral surface 21a which faces the opening of the organic insulating layer 21.
- FIG. It was also confirmed that the roughness of the surface 13b of the tungsten oxide layer 13a directly covered with the organic insulating layer 21 was larger than the roughness of the surface 13c of the first conductive layer 13 exposed from the opening of the organic insulating layer 21. .
- FIG. 6 is a measurement diagram of the tungsten 4f orbit by XPS on the inner peripheral surface 21a facing the opening of the organic insulating layer 21 of the organic EL element shown in FIG.
- XPS X-ray Photoelectron Spectroscopy
- FIG. 7A is a schematic diagram of the intermediate layer forming step according to Patent Document 1
- FIG. 7B is a schematic diagram of the intermediate layer forming step according to the present embodiment.
- a metal oxide serving as the material of the intermediate layer 935 is formed from above by using a sputtering method. It is conceivable that the ITO 935b is sputtered on the inner peripheral surface 921a and the bottom surface 921b facing the opening from the upper surface of the organic insulating layer 921. However, in particular, since the incident angle of ITO 935b to the inner peripheral surface 921a facing the opening of the organic insulating layer 921 is shallow, the ITO 935b tends not to adhere to the inner peripheral surface 921a.
- the ITO 935b cannot be sufficiently adhered on the inner peripheral surface 921a facing the opening of the organic insulating layer 921, and the intermediate layer 935 may be formed thin.
- the sputtering method is a technique in which a target is provided above a substrate and an inert gas collides with the target to cause target atoms to jump out of the target and adhere to the substrate.
- the tungsten oxide 13f can be attached to the inner peripheral surface 21a. Therefore, a sufficient thickness of tungsten oxide can be secured on the inner peripheral surface 21 a facing the opening of the organic insulating layer 21. Thereby, it can suppress that the thickness of the intermediate
- the tungsten oxide 13f tends to adhere as it approaches the bottom surface from the upper surface of the opening in the inner peripheral surface 21a facing the opening of the organic insulating layer 21, and therefore in a direction perpendicular to the inner peripheral surface 21a facing the opening of the organic insulating layer 21.
- the thickness of the intermediate layer 35 increases as it approaches the bottom surface from the upper surface of the opening.
- the tungsten oxide 13f jumps out from the metal oxide film 13e formed on the first conductive layer 13, the thickness of the first conductive layer 13 in the direction perpendicular to the substrate is determined as organic insulation as shown in FIG.
- the thickness of the bottom surface 21b of the opening of the layer 21 is smaller than the thickness of the others.
- an intermediate layer 35 made of tungsten oxide is formed between the inner peripheral surface 21 a facing the opening of the organic insulating layer 21 and the second conductive layer 23.
- tungsten oxide has high adhesion to both an organic material and a metal material. Therefore, the adhesiveness between the organic insulating layer 21 and the intermediate layer 35 is high, and the adhesiveness between the intermediate layer 35 and the second conductive layer 23 is also high. Accordingly, the formation of the intermediate layer 35 makes it difficult for the organic insulating layer 21 and the second conductive layer 23 to peel off.
- the tungsten oxide 13f constituting the metal oxide film 13e formed on the first conductive layer 13 is ejected by reverse sputtering of an inert gas.
- the intermediate layer 35 is formed by adhering to the inner peripheral surface 21 a facing the opening of the organic insulating layer 21. Therefore, as described above, the thickness of the intermediate layer 35 can be sufficiently secured on the inner peripheral surface 921a facing the opening of the organic insulating layer 921 rather than sputtering the material of the intermediate layer 35 from above the organic insulating layer 21.
- FIG. 8 shows an example in which an intermediate layer 35 made of ITO includes the bottom surface 21 b of the opening of the organic insulating layer 21 and the first conductive layer 13 and the second conductive layer 23 using aluminum alloy as the material of the second conductive layer 23.
- 8A is a photograph taken by a transmission electron microscope (TEM)
- FIG. 8B is an enlarged view of FIG. 8A and EDX (Energy). It is a measurement figure by Dispersive X-ray spectroscopy.
- Aluminum oxide having a thickness of 7 nm to 10 nm or more is formed at the contact portion between the Al alloy as the second conductive layer 23 and the ITO as the intermediate layer 35.
- the contact portion of the second conductive layer 23 reacts with oxygen atoms contained in the intermediate layer 35 and changes into aluminum oxide. .
- This may increase the contact resistance of the portion of the second conductive layer 23 that is in contact with the intermediate layer 35.
- the intermediate layer 35 does not exist on the bottom surface 21b of the opening of the organic insulating layer 21, and the first conductive layer 13 and the second conductive layer 23 are in contact with each other. Thereby, since the direct contact between the first conductive layer 13 and the second conductive layer 23 can be maintained, the contact resistance is reduced.
- FIG. 9 is a diagram showing contact resistance values between a sample not subjected to reverse sputtering (comparative example) and a sample subjected to reverse sputtering according to the present embodiment.
- the contact resistance value is extremely large as about 10 9 ⁇ , but in the sample subjected to reverse sputtering according to the present embodiment, the contact resistance value could be reduced to about 2 ⁇ . .
- a tungsten oxide layer 13 a made of tungsten oxide obtained by oxidizing tungsten contained in the first conductive layer 13 is formed between the first conductive layer 13 and the organic insulating layer 21. Since the tungsten oxide layer 13 a is obtained by modifying the first conductive layer 13, the tungsten oxide layer 13 a is difficult to peel off from the first conductive layer 13. Further, the adhesion between the organic insulating layer 21 and the tungsten oxide layer 13a is high. Therefore, the first conductive layer 13 and the organic insulating layer 21 are difficult to peel off.
- the roughness of the surface 13 b of the tungsten oxide layer 13 a directly covered with the organic insulating layer 21 is the surface of the first conductive layer 13 exposed from the opening of the organic insulating layer 21. It is larger than the roughness of 13c. If the roughness of the surface 13b is large, the organic insulating layer 21 and the tungsten oxide layer 13a are likely to adhere to each other due to mechanical properties. As a result, the first conductive layer 13 is more difficult to peel off from the organic insulating layer 21.
- FIG. 10 is a cross-sectional view of an organic EL display panel 201 according to the second embodiment.
- a metal layer is formed on an intermediate layer made of a metal oxide. Since the configuration other than the following is the same as that of the organic EL display panel 1, the description thereof is omitted.
- the organic EL display panel 201 has a protruding portion 213 d that is a metal layer between the intermediate layer 35 and the second conductive layer 23 on the inner peripheral surface 21 a facing the opening of the organic insulating layer 21.
- the overhang portion 213d is made of tungsten, which is the same metal as the first conductive layer 213. 2. Manufacturing Method
- a method of manufacturing the organic EL display panel 201, particularly, a process of forming the intermediate layer 35 and the overhanging portion 213d of the first conductive layer 213 will be described with reference to the drawings.
- an intermediate layer 35 is formed on the inner peripheral surface 21 a of the opening of the organic insulating layer 21.
- a metal oxide film is formed on the first conductive material layer 213c by the same manufacturing method as in FIGS. 3A to 3D, and then the same inertness as in FIGS. 4A and 4B.
- a part of the metal oxide film is attached to the inner peripheral surface 21 a of the opening of the organic insulating layer 21 by a reverse sputtering method using a gas.
- a part of the first conductive material layer 213c is formed on the organic insulating layer 21 by reverse sputtering using an inert gas similar to that shown in FIGS. It adheres on the intermediate layer 35 formed on the inner peripheral surface 21a of the opening.
- an inert gas ion such as Ar (argon) indicated by an arrow is caused to collide with the first conductive material layer 213c made of tungsten, and tungsten is ejected from the first conductive layer 213. Most of the tungsten that has jumped out adheres to the intermediate layer 35 formed on the inner peripheral surface 21 a of the opening of the organic insulating layer 21.
- the reverse sputtering is performed using a parallel plate electrode DC sputtering apparatus with a DC power of 1.0 kW to 1.5 kW, an argon gas pressure of 0.3 Pa to 7.0 Pa, and an argon gas flow rate of 100 sccm to 200 sccm. It was.
- the second conductive layer 23 is formed, and further, the partition 40 is formed in the opening of the organic insulating layer 21. 3. Effect Between the intermediate layer 35 and the second conductive layer 23, a protruding portion 213d made of tungsten is further formed. In the opening of the organic insulating layer 21, the interface between the tungsten layer and the aluminum alloy layer becomes a contact surface between the overhanging portion 213 d and the second conductive layer 23. The area of the contact surface is larger than the area of the bottom of the opening of the organic insulating layer 21. On the other hand, no contact resistance exists between the first electrode layer 213 and the overhanging portion 213d.
- the contact resistance can be suppressed as compared with the first embodiment.
- projection part 213d must be comprised with the same material as the metal which comprises the 1st conductive layer 213.
- the overhanging portion 213d is made of the same material as the metal constituting the second conductive layer 32, the contact resistance is the same as in the first embodiment and no effect is generated.
- the overhanging portion 213d is made of a material different from the material of the first conductive layer 213 and the second conductive layer 23, a contact resistance exists between the first conductive layer 213 and the overhanging portion 213d. Does not occur.
- the first conductive layer is oxidized by annealing or baking, but the method for oxidizing the first conductive layer is not limited thereto.
- a part of the surface of the first conductive layer 13 may be oxidized by O 2 ashing.
- FIG. 12 shows a step of performing O 2 ashing after forming the first conductive material layer 13d.
- a first conductive material layer 13d made of tungsten having a passivation layer 16 formed on a substrate including an insulating layer 14 is formed.
- ashing is performed using O 2 plasma, and a portion of the surface of the first conductive material layer 13d made of tungsten where the passivation layer 16 is not formed is formed on tungsten oxide.
- the metal oxide film 13e made of is altered.
- an organic insulating layer 21 having an opening is formed using the same photolithography technique and etching technique as in FIGS. 3B and 3C.
- FIG. 13 shows a process of performing O 2 ashing after forming the organic insulating layer 21 having an opening.
- first conductive material layer 13d made of tungsten having passivation layer 16 formed on a substrate including insulating layer 14 as in FIG. 3A.
- an organic insulating layer 21 having an opening is formed using the same photolithography technique and etching technique as in FIGS. 3B and 3C. Further, as shown in FIG.
- ashing is performed using O 2 plasma, and a portion of the surface of the first conductive material layer 13d made of tungsten where the passivation layer 16 is not formed is made of tungsten oxide.
- the resulting metal oxide film 13e is altered.
- the intermediate layer is described as being made of tungsten oxide or tungsten oxide and tungsten.
- the present invention is not limited to this, and the material of the intermediate layer only needs to contain an oxide or a nitride.
- oxide or nitride includes oxynitride. This will be specifically described below.
- the intermediate layer may be formed of a conductive oxide such as ITO.
- a conductive oxide such as ITO.
- an organic insulating layer 21 having an opening is formed using the same photolithography technique and etching technique as in FIGS. 3B and 3C. .
- a part of the metal oxide film 313e made of ITO is opened in the organic insulating layer 21 by a reverse sputtering method using an inert gas as shown in FIG. It adheres to the inner peripheral surface 21a.
- an intermediate layer 335 made of ITO is formed on the inner peripheral surface 21a of the opening of the organic insulating layer 21, as shown in FIG.
- the second conductive layer 23 is formed as in FIG. 4 (c), and the partition 40 is formed in the opening of the organic insulating layer 21.
- the first conductive layer 13 is dug in the opening of the insulating layer 21, but this is also the result of reverse sputtering, the surface of the first conductive layer 13 is also reversed. It is an example which shows the state at the time of being sputtered. Note that the surface of the first conductive layer 13 may not be dug.
- the same material as that of the passivation layer may be formed of a material constituting the passivation layer.
- the intermediate layer can be formed by reverse sputtering using an inert gas as described above.
- a method for manufacturing an organic EL element including the intermediate layer made of SiN is shown in FIG.
- tungsten as the first conductive layer 13 is deposited, and SiN as the passivation layer material 113d is further deposited.
- FIGS. 15B and 15C an opening was opened on the passivation layer material 113d using the same photolithography technique and etching technique as in FIGS. 3B and 3C.
- An organic insulating layer 21 is formed.
- the SiN is part of the passivation layer material 113d, is reacted with a radical gas from CF 4, remove gasified To do.
- the reactive etching conditions are as follows: DC power of 0.25 kW to 1.0 kW, argon gas pressure of 0.7 Pa to 7.0 Pa, CF 4 gas flow rate of 100 sccm or more using a DC sputtering apparatus with parallel plate electrodes. 200 sccm or less, and the O 2 gas flow rate were set to 0 sccm or more and 50 sccm or less.
- reactive etching has a higher etching rate than reverse sputtering using an inert gas. Therefore, reactive etching of the passivation layer material 113d using CF 4 proceeds faster than etching by reverse sputtering of the passivation layer material 113d using Ar gas.
- the removal of the passivation layer material 113d may be performed until the thickness of the passivation layer material 113d reaches a thickness necessary for forming the desired intermediate layer 135b.
- an inert gas such as Ar was used as shown in FIG. 4A, as shown in FIG.
- a part of the passivation layer material 113d made of SiN is attached to the inner peripheral surface of the opening of the organic insulating layer 21 by reverse sputtering.
- an inert gas ion such as Ar for example, indicated by an arrow is caused to collide with the passivation layer material 113d made of SiN, and SiN is ejected from the passivation layer material 113d.
- Most of the protruding SiN adheres to the inner peripheral surface of the opening of the organic insulating layer 21.
- an intermediate layer 135b is formed on the inner peripheral surface 21a of the opening of the organic insulating layer 21, as shown in FIG. 16B. Further, as shown in FIG. Similar to 4 (c), the second conductive layer 23 is formed, and the partition 40 is formed in the opening of the organic insulating layer 21.
- the intermediate layer extends only to half of the inner peripheral surface of the opening of the organic insulating layer on the first conductive layer side.
- the intermediate layer may extend over the entire inner peripheral surface of the opening of the organic insulating layer.
- the intermediate layer is formed by reverse sputtering.
- the intermediate layer can also be formed by using dry etching using argon gas.
- the light emitting layer is made of an organic light emitting material.
- the present invention is not limited thereto, and includes at least an organic EL layer, and a hole injection layer, a hole transport layer, an electron injection layer as necessary And a material including various functional layers such as an electron transport layer.
- a material including various functional layers such as an electron transport layer.
- the 1st electrode layer with a material with high electroconductivity, and it is desirable to contain especially tungsten, Mo, Ti, Cr, or Cu.
- the second conductive layer is not limited to aluminum or an aluminum alloy, and may be made of a material having conductivity and light reflectivity such as an Ag alloy.
- the present invention is not limited to the contact between the first conductive layer that is an SD electrode and the second conductive layer that is an anode, as described in the above embodiments and the like. Further, it can be used for an electronic device having a structure in which an organic insulating layer and a metal film having an opening are stacked and the conductive layer and the metal film are in contact with each other in the opening of the organic insulating layer.
- it can also be used as a contact between the gate electrode 12 and the first conductive layer 13 of the TFT substrate shown in FIG. Even in the case of liquid crystal, it can be used when a contact hole exists through an organic insulating layer.
- the present invention can be widely used for electronic devices such as organic EL elements, and in particular, can be used for display panels using organic EL elements.
- Organic EL display panel 1 Glass substrate 11 First conductive layer 13 Organic insulation layer 21 Inner peripheral surface 21a of the organic insulating layer opening Bottom surface of organic insulating layer opening 21b Second conductive layer 23 Intermediate layer 35
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明の一態様に係る電子装置は、 基板と、前記基板上に形成された第1導電層と、前記第1導電層上に形成され、且つ、前記第1導電層の一部を露出する開口があけられた有機絶縁層と、前記有機絶縁層の上面、前記有機絶縁層の開口を臨む内周面、および前記開口から露出した第1導電層を覆うように形成された金属製の第2導電層と、前記有機絶縁層の開口を臨む内周面と前記第2導電層との間のみに形成された、酸化物あるいは窒化物を含む中間層とを備え、前記有機絶縁層の開口の底面において、前記第1導電層と前記第2導電層とが接触していることを特徴とする。
1.有機EL表示パネル1の全体構成
図1は、本実施の形態1に係る、有機EL表示パネルの1画素分の構成を示す断面図である。
以下、有機EL表示パネル1の製造方法、特に、中間層35を形成する工程について、図面を用いて説明する。なお、有機EL表示パネルを形成する工程のうち、下記以外の工程については、公知の技術を適用できるので、説明を省略する。
以下、中間層35の構造および組成の確認結果を示すとともに、中間層35の形成のメカニズムについて考察する。
(3-1)中間層35の構造
上記製造方法で形成した有機絶縁層21の構成を、TEM(走査透過型電子顕微)で観察した。図5(a)は有機EL素子の本実施の形態によるコンタクト部分のTEMによる撮影図であり、図5(b)は図5(a)の撮影図のトレース図である。なお、酸化タングステン層13aは、第1導電層13と有機絶縁層21との間に存在すると考えられるが図面には現れていない。これは、酸化タングステン層13aと第1導電層13とがTEMでは同じ濃さのものとして撮影されるためである。
(3-2)中間層35の組成
さらに、上記製造方法で形成した有機絶縁層21の開口を臨む内周面21aを、XPS(X-ray Photoelectron Spectroscopy)で観察した。図6は、図1に示した有機EL素子の有機絶縁層21の開口を臨む内周面21aのXPSによるタングステン4f軌道の測定図である。タングステン4f軌道を測定すると、金属単体であるタングステンが存在する場合には、2つのピークが観測され、金属酸化物である酸化タングステンが存在する場合には、4つのピークが観測される。図6では、図3(d)の酸化工程を行わなかった場合(比較例)と、図3(d)の酸化工程を行った場合(本実施の形態)との測定結果を示している。一点鎖線が比較例に対応し、二点鎖線が本実施の形態に対応する。図6に示すように、比較例では表面にタングステンが存在し、本実施の形態では酸化タングステンが存在する。このように、上記製造方法により形成した有機EL表示パネル1における中間層35は、酸化タングステンからなることが確認できた。
(3-3)中間層35の形成メカニズム
さらに、上記製造方法における、逆スパッタリング法による中間層の形成について図面を用いて詳しく考察する。図7(a)は特許文献1に係る中間層形成工程の模式図であり、図7(b)は本実施の形態に係る中間層形成工程の模式図である。
本実施の形態では、有機絶縁層21の開口を臨む内周面21aと第2導電層23との間に、酸化タングステンで構成される中間層35が形成されている。ここで、酸化タングステンは、有機材料に対しても金属材料に対しても密着性が高いことが知られている。そのため、有機絶縁層21と中間層35との密着性は高く、且つ、中間層35と第2導電層23との密着性も高い。従って、中間層35が形成されることにより、有機絶縁層21と第2導電層23とは剥がれにくくなる。
1.構成
図10は、実施の形態2に係る有機EL表示パネル201の断面図である。実施の形態2では、金属酸化物からなる中間層上に金属層が形成されている。下記以外の構成は、有機EL表示パネル1と同じなので、説明を省略する。
2.製造方法
以下、有機EL表示パネル201の製造方法、特に、中間層35および第1導電層213の張り出し部213dを形成する工程について、図面を用いて説明する。
3.効果
中間層35と第2導電層23との間に、タングステンで構成された張り出し部213dがさらに形成されている。そして、有機絶縁層21の開口において、タングステン層とアルミニウム合金層との界面は、張り出し部213dと第2導電層23との接触面となる。当該接触面の面積は、有機絶縁層21の開口の底部の面積よりも大きい。一方、第1電極層213と張り出し部213dとの間にはコンタクト抵抗は存在しない。従って、この構成では、実施の形態1よりもコンタクト抵抗を抑制できる。なお、当該効果が生じるためには、張り出し部213dが第1導電層213を構成する金属と同じ材料で構成されなければならない。張り出し部213dが第2導電層32を構成する金属と同じ材料で構成される場合は、実施の形態1とコンタクト抵抗が変わらず効果が発生しない。また、張り出し部213dが第1導電層213および第2導電層23の材料と異なる材料で構成される場合、第1導電層213と張り出し部213dとの間にコンタクト抵抗が存在するので、効果が発生しない。
以上の通り、本発明を実施の形態に基づいて説明したが、本発明は上記実施の形態に限らない。以下に、上記実施の形態の変形例について説明する。
実施の形態等では、アニールまたは焼成により第1導電層を酸化したが、第1導電層の酸化方法はこれに限らない。例えば、図12、図13に示すように、O2アッシングにより第1導電層13の表面の一部を酸化してもよい。
実施の形態等では、中間層を酸化タングステンあるいは酸化タングステンとタングステンとで構成されるとして説明した。しかしながら、これに限らず、中間層の材料は酸化物あるいは窒化物を含むものであればよい。ここでいう「酸化物あるいは窒化物」は酸窒化物を含む。以下、具体的に説明する。
中間層をITOのような導電性酸化物で形成してもよい。中間層335を、酸化タングステンよりも導電性の高い導電性酸化物で形成することにより、有機絶縁層21の開口の底部における中間層335と第1導電層13との間の界面でも電流が流れることとなる。その結果、有機絶縁層21の開口の底部における第1導電層13と第2導電層23とのコンタクト抵抗をさらに抑制できる。以下、導電性酸化物からなる中間層の例として、ITOで構成される中間層を含む有機EL素子の製造方法を、図14に示す。
中間層を、パッシベーション層を構成する材料で形成してもよい。パッシベーション層と中間層とを同一材料で形成することで、中間層を形成するために新たな材料を用いる必要がなくなる。パッシベーション層と中間層とを同一材料で形成する場合も、中間層の形成工程は、上述したような不活性ガスによる逆スパッタリングにより行うことができる。ここで、パッシベーション層と同一材料からなる中間層の例として、SiNで構成される中間層を含む有機EL素子の製造方法を、図15に示す。
さらに、図16(c)に示すように、図4(c)と同様に、第2導電層23を形成し、さらに、有機絶縁層21の開口に、隔壁40を形成する。
上記実施の形態等では、中間層は、有機絶縁層の開口の内周面の第1導電層側の半分のみに拡がっていた。しかしながら、中間層は、有機絶縁層の開口の内周面の全部に拡がっていてもよい。
上記実施の形態等では、中間層を逆スパッタリングで形成したが、アルゴンガスを用いたドライエッチングを用いても中間層を形成することができる。
上記実施の形態等では、発光層は有機発光材料から構成したが、これに限らず、少なくとも有機EL層を含み、必要に応じて正孔注入層、正孔輸送層、電子注入層、電子輸送層などの各種の機能層を含む材料で構成すればよい。また、第1電極層は、導電性の高い材料で構成すればよく、特に、タングステン、Mo、Ti、Cr、Cuのいずれかを含有することが望ましい。第2導電層は、アルミニウムあるいはアルミニウム合金に限らず、例えば、Ag合金のような導電性および光反射性を有する材料から構成すればよい。
本発明は、上記実施の形態等で示した、SD電極である第1導電層と陽極である第2導電層との間のコンタクト以外にも、導電層、開口があけられた有機絶縁層、金属膜の積層構造を採り、有機絶縁層の開口において、導電層と金属膜とが接するような構造の電子装置に用いることができる。
ガラス基板 11
第1導電層 13
有機絶縁層 21
有機絶縁層の開口の内周面 21a
有機絶縁層の開口の底面 21b
第2導電層 23
中間層 35
Claims (14)
- 基板と、
前記基板上に形成された第1導電層と、
前記第1導電層上に形成され、且つ、前記第1導電層の一部を露出する開口があけられた有機絶縁層と、
前記有機絶縁層の上面、前記有機絶縁層の開口を臨む内周面、および前記開口から露出した第1導電層を覆うように形成された金属製の第2導電層と、
前記有機絶縁層の開口を臨む内周面と前記第2導電層との間のみに形成された、酸化物あるいは窒化物を含む中間層と
を備え、
前記有機絶縁層の開口の底面において、前記第1導電層と前記第2導電層とが接触している
電子装置。 - 前記第1導電層は、金属で構成され、
前記中間層は、前記第1導電層を構成する前記金属の酸化物で構成されている、
請求項1に記載の電子装置。 - 前記中間層は、導電性酸化物で構成されている、
請求項1に記載の電子装置。 - 酸化物あるいは窒化物で構成され、前記第1導電層と前記有機絶縁層との間に形成され、且つ、前記有機絶縁層の開口に対応して前記第1導電層の一部を露出する開口があけられた絶縁層
をさらに備え、
前記中間層は、前記絶縁層と同じ材料で構成されている、
請求項1に記載の電子装置。 - 前記第1導電層は、金属で構成され、
前記中間層と前記第2導電層との間に、前記第1導電層を構成する金属で構成された金属層がさらに形成されている、
請求項1に記載の電子装置。 - 前記第1導電層は、金属で構成され、
前記第1導電層と前記有機絶縁層との間には、前記第1導電層を構成する前記金属の酸化物で構成された金属酸化物層が形成され、
前記有機絶縁層で直接覆われた第1導電層の領域の表面の粗さが、前記有機絶縁層から露出した第1導電層の領域の表面の粗さよりも大きい、
請求項1に記載の電子装置。 - 前記第1導電層は、金属で構成され、
前記有機絶縁層で覆われた第1導電層の領域では、前記第1導電層と前記有機絶縁層との間に、前記第1導電層を構成する前記金属の酸化物で構成される酸化物層が形成されている、
請求項1に記載の電子装置。 - 前記第1導電層は、W、Mo、Ti、Cr、Cuの少なくともいずれかを含有する金属で構成されている
請求項1に記載の電子装置。 - 前記第2導電層は、Al合金あるいはAg合金で構成されている、
請求項1に記載の電子装置。 - 基板を準備する第1工程と、
前記基板上に金属で構成された第1導電層を形成する第2工程と、
前記第1導電層上に、前記第1導電層の一部を露出する開口があけられ、有機材料で構成された有機絶縁層を形成する第3工程と、
少なくとも前記有機絶縁層から露出した前記第1導電層の表面をスパッタリングすることで、前記有機絶縁層の内周面のみに、酸化物あるいは窒化物を含有する中間層を形成する第4工程と、
前記有機絶縁層の上面、前記有機絶縁層の開口の内周面、および前記有機絶縁層から露出した第1導電層を覆うように、金属製の第2導電層を形成する第5工程と
を含む、
電子装置の製造方法。 - 前記中間層が含有する酸化物あるいは窒化物は、前記第1導電層を構成する前記金属の酸化物あるいは窒化物である、
請求項10に記載の電子装置の製造方法。 - 前記第2工程から前記第4工程までの間に、
前記第1導電層の少なくとも表面を酸化する工程を有する、
請求項11に記載の電子装置の製造方法。 - 前記第4工程と前記第5工程との間に、
前記第1導電層の表面をスパッタリングして、前記中間層上に前記第1導電層に含まれる金属からなる金属層を形成する工程を有する、
請求項11あるいは12に記載の電子装置の製造方法。 - 基板を準備する第6工程と、
前記基板および前記第1導電層上に酸化物あるいは窒化物で構成される絶縁層を形成する第7工程と、
前記基板上に金属で構成された第1導電層を形成する第8工程と、
前記第1導電層上に、前記第1導電層の一部を露出する開口があけられ、有機材料で構成された有機絶縁層を形成する第9工程と、
前記第1導電層の表面が露出するように前記絶縁層の表面の一部をスパッタリングにより除去することにより、少なくとも前記有機絶縁層から露出した前記絶縁層の表面をスパッタリングすることで、前記有機絶縁層の内周面のみにおいて、前記絶縁層と同じ材料で構成される中間層を形成する第10工程と、
前記有機絶縁層の上面、前記有機絶縁層の開口の内周面、および前記有機絶縁層から露出した第1導電層を覆うように、金属製の第2導電層を形成する第11工程と
を含む、
電子装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380005257.XA CN104081879B (zh) | 2012-01-18 | 2013-01-10 | 电子装置及其制造方法 |
US14/371,073 US9356252B2 (en) | 2012-01-18 | 2013-01-10 | Electronic device and manufacturing method therefor |
JP2013554242A JP6311311B2 (ja) | 2012-01-18 | 2013-01-10 | 電子装置およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012007797 | 2012-01-18 | ||
JP2012-007797 | 2012-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013108598A1 true WO2013108598A1 (ja) | 2013-07-25 |
Family
ID=48799032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/000060 WO2013108598A1 (ja) | 2012-01-18 | 2013-01-10 | 電子装置およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9356252B2 (ja) |
JP (1) | JP6311311B2 (ja) |
CN (1) | CN104081879B (ja) |
WO (1) | WO2013108598A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015194128A1 (ja) * | 2014-06-19 | 2015-12-23 | 株式会社Joled | アクティブマトリクス型表示パネルの製造方法とアクティブマトリクス型表示パネル |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10574109B2 (en) * | 2016-04-28 | 2020-02-25 | The Boeing Company | Permanent magnet biased virtual elliptical motor |
US10267383B2 (en) * | 2017-05-03 | 2019-04-23 | The Boeing Company | Self-aligning virtual elliptical drive |
US11410880B2 (en) | 2019-04-23 | 2022-08-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Phase control in contact formation |
CN113013362B (zh) * | 2021-02-26 | 2023-04-18 | 云谷(固安)科技有限公司 | 显示面板、显示面板的制备方法及显示装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004127933A (ja) * | 2002-09-11 | 2004-04-22 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
JP2005093398A (ja) * | 2003-09-19 | 2005-04-07 | Sony Corp | 有機発光素子およびその製造方法ならびに表示装置 |
JP2006173227A (ja) * | 2004-12-14 | 2006-06-29 | Seiko Epson Corp | コンタクトの形成方法、及び有機el装置 |
JP2007103098A (ja) * | 2005-09-30 | 2007-04-19 | Seiko Epson Corp | 有機el装置の製造方法、有機el装置及び電子機器 |
US20080042290A1 (en) * | 2006-08-18 | 2008-02-21 | Jong-Myeong Lee | Structures Electrically Connecting Aluminum and Copper Interconnections and Methods of Forming the Same |
JP2009295479A (ja) * | 2008-06-06 | 2009-12-17 | Sony Corp | 有機発光素子およびその製造方法ならびに表示装置 |
JP2010033936A (ja) * | 2008-07-30 | 2010-02-12 | Toshiba Corp | 自発光型素子及びその製造方法 |
JP2010225288A (ja) * | 2009-03-19 | 2010-10-07 | Kyocera Corp | 画像表示装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05315459A (ja) | 1992-05-11 | 1993-11-26 | Oki Electric Ind Co Ltd | 半導体装置の製造方法 |
JPH05315458A (ja) | 1992-05-11 | 1993-11-26 | Fujitsu Ltd | 半導体装置の製造方法 |
US6287977B1 (en) * | 1998-07-31 | 2001-09-11 | Applied Materials, Inc. | Method and apparatus for forming improved metal interconnects |
US7256421B2 (en) | 2002-05-17 | 2007-08-14 | Semiconductor Energy Laboratory, Co., Ltd. | Display device having a structure for preventing the deterioration of a light emitting device |
JP4493933B2 (ja) | 2002-05-17 | 2010-06-30 | 株式会社半導体エネルギー研究所 | 表示装置 |
US7291970B2 (en) * | 2002-09-11 | 2007-11-06 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting apparatus with improved bank structure |
JP4362696B2 (ja) * | 2003-03-26 | 2009-11-11 | ソニー株式会社 | 発光素子およびその製造方法、ならびに表示装置 |
JP4062171B2 (ja) | 2003-05-28 | 2008-03-19 | ソニー株式会社 | 積層構造の製造方法 |
JP4483245B2 (ja) * | 2003-09-19 | 2010-06-16 | ソニー株式会社 | 有機発光素子およびその製造方法ならびに表示装置 |
US8633919B2 (en) * | 2005-04-14 | 2014-01-21 | Semiconductor Energy Laboratory Co., Ltd. | Display device, driving method of the display device, and electronic device |
JP2007026754A (ja) * | 2005-07-13 | 2007-02-01 | Matsushita Electric Ind Co Ltd | 有機エレクトロルミネッセンス素子、露光装置および画像形成装置 |
JP2007227288A (ja) * | 2006-02-27 | 2007-09-06 | Seiko Epson Corp | 有機el装置および電子機器 |
KR101326129B1 (ko) * | 2007-07-24 | 2013-11-06 | 삼성디스플레이 주식회사 | 유기 박막 트랜지스터 표시판 및 그 제조 방법 |
US8829526B2 (en) * | 2009-01-23 | 2014-09-09 | Sharp Kabushiki Kaisha | Semiconductor device, method for manufacturing same, and display device |
JP2010257694A (ja) | 2009-04-23 | 2010-11-11 | Kyocera Corp | 画像表示装置 |
CN102511199B (zh) * | 2009-11-26 | 2016-06-15 | 夏普株式会社 | 有机el器件 |
KR101783352B1 (ko) * | 2010-06-17 | 2017-10-10 | 삼성디스플레이 주식회사 | 평판 표시 장치 및 그 제조 방법 |
US8921867B2 (en) | 2012-06-08 | 2014-12-30 | Panasonic Corporation | Thin-film transistor, display panel, and method for producing a thin-film transistor |
-
2013
- 2013-01-10 CN CN201380005257.XA patent/CN104081879B/zh active Active
- 2013-01-10 WO PCT/JP2013/000060 patent/WO2013108598A1/ja active Application Filing
- 2013-01-10 US US14/371,073 patent/US9356252B2/en active Active
- 2013-01-10 JP JP2013554242A patent/JP6311311B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004127933A (ja) * | 2002-09-11 | 2004-04-22 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
JP2005093398A (ja) * | 2003-09-19 | 2005-04-07 | Sony Corp | 有機発光素子およびその製造方法ならびに表示装置 |
JP2006173227A (ja) * | 2004-12-14 | 2006-06-29 | Seiko Epson Corp | コンタクトの形成方法、及び有機el装置 |
JP2007103098A (ja) * | 2005-09-30 | 2007-04-19 | Seiko Epson Corp | 有機el装置の製造方法、有機el装置及び電子機器 |
US20080042290A1 (en) * | 2006-08-18 | 2008-02-21 | Jong-Myeong Lee | Structures Electrically Connecting Aluminum and Copper Interconnections and Methods of Forming the Same |
JP2009295479A (ja) * | 2008-06-06 | 2009-12-17 | Sony Corp | 有機発光素子およびその製造方法ならびに表示装置 |
JP2010033936A (ja) * | 2008-07-30 | 2010-02-12 | Toshiba Corp | 自発光型素子及びその製造方法 |
JP2010225288A (ja) * | 2009-03-19 | 2010-10-07 | Kyocera Corp | 画像表示装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015194128A1 (ja) * | 2014-06-19 | 2015-12-23 | 株式会社Joled | アクティブマトリクス型表示パネルの製造方法とアクティブマトリクス型表示パネル |
JPWO2015194128A1 (ja) * | 2014-06-19 | 2017-04-20 | 株式会社Joled | アクティブマトリクス型表示パネルの製造方法とアクティブマトリクス型表示パネル |
US9799687B2 (en) | 2014-06-19 | 2017-10-24 | Joled Inc. | Method for manufacturing active-matrix display panel, and active-matrix display panel |
Also Published As
Publication number | Publication date |
---|---|
JP6311311B2 (ja) | 2018-04-18 |
JPWO2013108598A1 (ja) | 2015-05-11 |
CN104081879A (zh) | 2014-10-01 |
US9356252B2 (en) | 2016-05-31 |
CN104081879B (zh) | 2017-03-01 |
US20150001517A1 (en) | 2015-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8115376B2 (en) | Light-emitting display with auxiliary wiring section and method of manufacturing the same | |
KR100830318B1 (ko) | 발광표시장치 및 그의 제조방법 | |
TWI496123B (zh) | 用於可撓性顯示裝置之基板部分、製造該基板部分之方法及製造該顯示裝置之方法 | |
JP6311311B2 (ja) | 電子装置およびその製造方法 | |
EP2863447A2 (en) | Organic light emitting device and method of fabricating the same | |
US10700306B2 (en) | Light emitting apparatus | |
TWI508186B (zh) | 薄膜電晶體之製造方法、薄膜電晶體及影像顯示裝置 | |
CN102130147B (zh) | 显示器及其制造方法、以及电子设备 | |
WO2019097823A1 (ja) | 表示装置 | |
CN112447930A (zh) | 显示设备及制造该显示设备的方法 | |
US20210408178A1 (en) | Display panel and manufacturing method thereof | |
TW201839973A (zh) | 有機發光顯示裝置及其製造方法 | |
JP2008124316A (ja) | 有機el表示装置 | |
JP6099940B2 (ja) | 表示装置 | |
JP5117001B2 (ja) | 有機el表示装置 | |
JP2016080744A (ja) | 表示装置および電子機器 | |
US20020167269A1 (en) | Luminescent display device and method of manufacturing same | |
JP2006113571A5 (ja) | ||
US8563989B2 (en) | Light emitting device with an electrode having an dual metal alloy | |
US9716135B2 (en) | Organic thin film transistor array substrate and fabrication method thereof | |
WO2016086571A1 (zh) | 阵列基板及其制作方法、显示装置 | |
CN108886042B (zh) | 阵列基板及其制造方法、显示面板和显示设备 | |
JP2006228570A (ja) | エレクトロルミネッセンス素子及びエレクトロルミネッセンスパネル | |
JP2015185479A (ja) | 発光装置 | |
US11700755B2 (en) | Organic light emitting display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13738527 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013554242 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14371073 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13738527 Country of ref document: EP Kind code of ref document: A1 |