WO2013107798A1 - Use of a polymer network as a cathode material for rechargeable batteries - Google Patents
Use of a polymer network as a cathode material for rechargeable batteries Download PDFInfo
- Publication number
- WO2013107798A1 WO2013107798A1 PCT/EP2013/050796 EP2013050796W WO2013107798A1 WO 2013107798 A1 WO2013107798 A1 WO 2013107798A1 EP 2013050796 W EP2013050796 W EP 2013050796W WO 2013107798 A1 WO2013107798 A1 WO 2013107798A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- network
- cathode material
- cathode
- use according
- electrolyte
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
- H01M4/606—Polymers containing aromatic main chain polymers
- H01M4/608—Polymers containing aromatic main chain polymers containing heterocyclic rings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the field of chemistry and energy technology, in particular the energy storage technology, and relates to the use of a polymer network as a cathode material, as it can be used in particular for organic rechargeable high-performance batteries.
- Rechargeable batteries basically consist of at least the anode, cathode and an electrolyte.
- amorphous covalent triazine-based networks (ACTF-1 - amorphous covalent triazine-based framework) are known.
- the pores of the -1.5 nm network are surrounded by sheet-like structures.
- These networks exist as a defined network of a layered structure, but without forming a three-dimensional regular network (Kuhn, P. et al: Macromolecules 42, 319-326 (2009)).
- the object of the present invention is the use of a network as a cathode material for rechargeable batteries, by which the specific energy of the batteries is significantly increased.
- a polymer network is used as the cathode material for rechargeable batteries, with the network used being an amorphous bipolar porous polymer network based on triazine as the cathode material.
- triazine with nitrogen in positions 1, 3.5 in the 6-membered ring is used as the base material of the polymer network.
- a polymer network is used as the cathode material, and both the anions of the electrolyte material and Li + ions or nations can be used as charge carriers in the discharge.
- the network is used as cathode material and lithium or sodium in pure form or as alloy or compound as anode material, wherein still advantageously the network as cathode material and as anode material L ⁇ Ce, NaCö, LiTiO2, LiSn, LiAl, NaTiO2, or Na3 , 5 Sn is used.
- salts and organic solvents are used as the electrolyte, more preferably as salts LiPF 6 , NaPF 6 , LiCI0 4 , NaCIO 4 , Li-trifluoromethanesulfonyl imide (Li-TFSI) or Na trifluoromethanesulfonyl imide (Na-TFSI) and as organic solvents propylene carbonate , Ethylene carbonate, diethyl carbonate, dimethyl carbonate or ethyl methyl carbonate.
- Li-TFSI Li-trifluoromethanesulfonyl imide
- Na-TFSI Na trifluoromethanesulfonyl imide
- both the anions of the electrolyte or Li + ions or nations can be used as charge carriers for the transfer of the electrons from one electrode to the other electrode.
- electrons are transported from the anode to the cathode this is the discharge process.
- anions from the electrolyte and cations from the anode can be used as charge carriers.
- LiC6, NaCo, LiTiO 2 , LiSn, LiAl, NaTiO 2 , or Na 3 can advantageously be used as anode materials. 5 Sn. Other metals, such as S or Al, or intercalation compounds can also be used.
- electrolytes salts and organic solvents can advantageously be used.
- Li-TFSI Li trifluoromethanesulfonyl imide
- Na-TFSI Na trifluoromethanesulfonyl imide
- organic solvents propylene carbonates, ethylene carbonates, diethyl carbonates, dimethyl carbonates or ethylmethylcarbonates.
- the particular advantage of the solution according to the invention is that a material is used as the cathode material, which is bipolar, ie at the same time an n- and p-type material. As a result, the material can realize both a charging process and a discharging process.
- C3N 3 + X can be used as the network material. Then the first reaction leads to:
- C3N 3 + X can be used as the network material. Then the first reaction leads to:
- the solution according to the invention exhibits a high mechanical stability, as well as a high specific capacity, a large working potential due to a fast ion transport and a large cathode surface.
- a network consisting of triazine rings (C3N3) in an amorphous structure is processed into a cathode.
- C3N3 triazine rings
- 70% by weight of amorphous CTF-1 (ACTF-1), 20% by weight of carbon black as conductive additive and 10% by weight of carboxymethylcellulose are mixed as binder and coated with an aluminum foil as current collector.
- the polymer network was prepared according to the known method of P. Kuhn et al: Angew. Chem. Int. Ed. 47, 3450-3453 (2008).
- the ACTF-1 was synthesized by heating a mixture of p-dicyanobenzene and ZnC in a ratio of p-dicyanobenzene / ZnC ⁇ of 0.1 in a quartz vessel to 400 ° C.
- An anode of commercial Li metal is electrically connected together with the cathode and incorporated into a swagelock cell to test the electrochemical properties.
- the anode and cathode are positioned in the cell with 1 M LiPF 6 as the electrolyte in the volume ratio of ethylene carbonate: Dimetylencarbonat of 1: 1. Glass fibers separate the cathode from the anode.
- the cell is transferred to a room with an Ar atmosphere and tested in a VMP3 (multiChannel potentiostatic-galvanostatic system).
- the specific energy achieved is 1, 084 Wh kg “1 at a specific force of 13.238 W kg “ 1 based on the cathode mass. This is a significant improvement in specific energy over typical values of 600 Wh kg "1 and for the specific force of 500-2000 W kg " 1 for prior art cathode materials.
- a network consisting of triazine rings (C3N3) in an amorphous structure is processed into a cathode.
- C3N3 triazine rings
- 70% by weight of amorphous CTF-1 (ACTF-1), 20% by weight of carbon black as conductive additive and 10% by weight of carboxymethylcellulose are mixed as binder and coated with an aluminum foil as current collector.
- Na metal was used as anode and reference electrode.
- 1 M NaCIO 4 in propylene carbonate was used as the electrolyte. It was measured with a three-electrode configuration in a beaker.
- the specific energy achieved is 500 Wh kg "1 at a specific force of 1 0 kW kg " 1 based on the cathode mass. After 7000 cycles, the electrode shows 80% of its initial capacity in half-cells.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
The invention concerns the area of chemistry and energy technology, in particular energy storage technology, and relates to the use of a polymer network as a cathode material for rechargeable batteries consisting of a cathode, an anode, and an electrolyte. An amorphous bipolar triazine-based porous polymer network, as the network, is used as the cathode material. The specific energy of the batteries is substantially increased using such a cathode material.
Description
Verwendung eines Polymernetzwerkes als Kathodenmaterial für wiederaufladbare Batterien Use of a polymer network as a cathode material for rechargeable batteries
Die Erfindung bezieht sich auf das Gebiet der Chemie und der Energietechnik, insbesondere der Energiespeichertechnik, und betrifft die Verwendung eines Polymernetzwerkes als Kathodenmaterial, wie es insbesondere für organische wiederaufladbare Hochleistungsbatterien zur Anwendung kommen kann. The invention relates to the field of chemistry and energy technology, in particular the energy storage technology, and relates to the use of a polymer network as a cathode material, as it can be used in particular for organic rechargeable high-performance batteries.
Wiederaufladbare Batterien bestehen grundsätzlich mindestens aus Anode, Kathode und einem Elektrolyten. Rechargeable batteries basically consist of at least the anode, cathode and an electrolyte.
Seit die grundlegenden Technologien für Li-Ionenbatterien und Na— lonenbatterien erarbeitet worden sind (Whittingham, M. S. et al: Science 192, 1 126-1 127 (1976)), ist das Hauptaugenmerk der weiteren Forschung auf die Verbesserung der spezifischen Energie dieser Batterien auf das Kathodenmaterial gelegt worden (Mizushima, K. et al: Mater. Res. Bull. 15, 783-789 (1980), Barpanda, P. et al: Nature Mater. 10, 772- 779 (201 1 )).
Die hohen Kosten der gegenwärtigen Li-Ionenbatterien sind ein weiteres Problem, insbesondere beim Einsatz solcher Batterien in Elektroautos oder für Energiespeicherzwecke. Daher sind organische Materialien als Elektrodenmaterialien in den Blickpunkt der Forschungen gerückt, insbesondere aufgrund ihrer geringen Kosten. Als Kathoden auf Polymerbasis sind solche aus Polyacetylen bekannt (N igrey, P. J . et al : J . Electrochem . Soc. 1 28, 1 651 -1654 (1981 )). Verbesserte Eigenschaften konnten mit radikalischen Polymermaterialien erreicht werden (Nishide, H. et al: Electrochim. Acta 50, 827-831 (2004)). Since the basic technologies for Li-ion batteries and alkaline batteries have been developed (Whittingham, MS et al: Science 192, 1 126-1 127 (1976)), the main focus of further research is on improving the specific energy of these batteries Res. Bull. 15, 783-789 (1980), Barpanda, P. et al: Nature Mater., 10, 772-799 (201 1)). The high cost of current Li-ion batteries is another problem, especially in the use of such batteries in electric cars or for energy storage purposes. Therefore, organic materials as electrode materials have come into the focus of research, especially because of their low cost. As polymer-based cathodes, those made of polyacetylene are known (Nigrey, P.J., et al., J. Electrochem., Soc.128,1651-1654 (1981)). Improved properties could be achieved with free radical polymeric materials (Nishide, H. et al: Electrochim. Acta 50, 827-831 (2004)).
Weiterhin sind amorphe kovalente triazin-basierte Netzwerke (ACTF-1 - amorphous covalent triazin-based framework) bekannt. Die Poren des Netzwerkes mit einer Größe von -1 .5 nm sind von schichtähnlichen Strukturen (sheet-like structure) umgeben. Diese Netzwerke liegen als definiertes Netzwerk aus einer schichtartigen Struktur vor, jedoch ohne ein dreidimensionales regelmäßiges Netzwerk zu bilden (Kuhn, P. et al: Macromolecules 42, 319-326 (2009)). Furthermore, amorphous covalent triazine-based networks (ACTF-1 - amorphous covalent triazine-based framework) are known. The pores of the -1.5 nm network are surrounded by sheet-like structures. These networks exist as a defined network of a layered structure, but without forming a three-dimensional regular network (Kuhn, P. et al: Macromolecules 42, 319-326 (2009)).
Nachteilig bei den bekannten Lösungen des Standes der Technik ist, dass die spezifische Energie der Batterien immer noch nicht ausreichend hoch ist. A disadvantage of the known solutions of the prior art is that the specific energy of the batteries is still not sufficiently high.
Die Aufgabe der vorliegenden Erfindung besteht in der Verwendung eines Netzwerkes als Kathodenmaterial für wiederaufladbare Batterien, durch das die spezifische Energie der Batterien deutlich erhöht wird. The object of the present invention is the use of a network as a cathode material for rechargeable batteries, by which the specific energy of the batteries is significantly increased.
Die Aufgabe wird durch die in den Ansprüchen angegebene Erfindung. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche. The object is achieved by the invention specified in the claims. Advantageous embodiments are the subject of the dependent claims.
Erfindungsgemäß wird ein Polymernetzwerk als Kathodenmaterial für wiederaufladbare Batterien verwendet, wobei als Netzwerk ein amorphes bipolares poröses Polymernetzwerk auf der Basis von Triazin als Kathodenmaterial eingesetzt wird. According to the invention, a polymer network is used as the cathode material for rechargeable batteries, with the network used being an amorphous bipolar porous polymer network based on triazine as the cathode material.
Vorteilhaft ist es, wenn als Basismaterial des Polymernetzwerkes Triazin mit Stickstoff in den Positionen 1 ,3,5 im Sechserring eingesetzt wird.
Vorteilhafterweise wird als Kathodenmaterial ein Polymernetzwerk eingesetzt, und sowohl die Anionen des Elektrolytmaterials als auch Li+-lonen oder Nationen können als Ladungsträger bei der Entladung eingesetzt werden. It is advantageous if triazine with nitrogen in positions 1, 3.5 in the 6-membered ring is used as the base material of the polymer network. Advantageously, a polymer network is used as the cathode material, and both the anions of the electrolyte material and Li + ions or nations can be used as charge carriers in the discharge.
Ebenfalls vorteilhafterweise wird das Netzwerk als Kathodenmaterial und Lithium oder Natrium in reiner Form oder als Legierung oder Verbindung als Anodenmaterial verwendet, wobei noch vorteilhafterweise das Netzwerk als Kathodenmaterial und als Anodenmaterial L\Ce, NaCö, LiTiO2, Li Sn, LiAl, NaTiO2, oder Na3.5Sn eingesetzt wird. Also advantageously, the network is used as cathode material and lithium or sodium in pure form or as alloy or compound as anode material, wherein still advantageously the network as cathode material and as anode material L \ Ce, NaCö, LiTiO2, LiSn, LiAl, NaTiO2, or Na3 , 5 Sn is used.
Weiterhin vorteilhafterweise werden als Elektrolyt Salze und organische Lösungsmittel eingesetzt, wobei noch vorteilhafterweise als Salze LiPF6, NaPF6, LiCI04, NaCIO4, Li-Trifluormethansulfonylimid (Li-TFSI) oder Na- Trifluormethansulfonylimid (Na-TFSI) und als organische Lösungsmittel Propylencarbonate, Ethylencarbonate, Diethylcarbonate, Dimethylcarbonate oder Ethylmethylcarbonate eingesetzt werden. Further advantageously, salts and organic solvents are used as the electrolyte, more preferably as salts LiPF 6 , NaPF 6 , LiCI0 4 , NaCIO 4 , Li-trifluoromethanesulfonyl imide (Li-TFSI) or Na trifluoromethanesulfonyl imide (Na-TFSI) and as organic solvents propylene carbonate , Ethylene carbonate, diethyl carbonate, dimethyl carbonate or ethyl methyl carbonate.
Und weiterhin vorteilhafterweise wird als Elektrolyt 1 M LiPF6 im Volumenverhältnis Ethylencarbonat : Dimetylencarbonat von 1 :1 verwendet. And furthermore advantageously 1 M LiPF 6 in the volume ratio ethylene carbonate: dimetylene carbonate of 1: 1 is used as the electrolyte.
Mit der erfindungsgemäßen Lösung ist es erstmals möglich, die spezifische Energie von wiederaufladbaren Batterien unter Verwendung eines Netzwerkes aus einem amorphen bipolaren porösen Polymernetzwerk auf der Basis von Triazin als Kathodenmaterial deutlich zu erhöhen. With the solution according to the invention, it is now possible to significantly increase the specific energy of rechargeable batteries using a network of an amorphous bipolar porous polymer network based on triazine as the cathode material.
Dies wird im Wesentlichen durch die Verwendung des speziellen Kathodenmaterials erreicht. This is achieved essentially by the use of the special cathode material.
Es hat sich als vorteilhaft erwiesen, als Basismaterial für das Polymernetzwerk Triazin mit Stickstoff in den Positionen 1 ,3,5 im Sechserring einzusetzen. It has proven to be advantageous to use triazine with nitrogen in positions 1, 3.5 in the 6-membered ring as the base material for the polymer network.
Als Ladungsträger für die für die Übertragung der Elektronen von einer Elektrode zur anderen Elektrode können sowohl die die Anionen des Elektrolyten oder Li+-lonen oder Nationen verwendet werden. Wenn Elektronen von der Kathode zur Anode transportiert werden, ist dies der Ladevorgang. Werden Elektronen von der Anode zur Kathode transportiert, so ist dies der Entladevorgang.
Während des Ladevorganges können Anionen vom Elektrolyten und Kationen von der Anode als Ladungsträger verwendet werden. As charge carriers for the transfer of the electrons from one electrode to the other electrode, both the anions of the electrolyte or Li + ions or nations can be used. When electrons are transported from the cathode to the anode, this is the charging process. If electrons are transported from the anode to the cathode, this is the discharge process. During the charging process, anions from the electrolyte and cations from the anode can be used as charge carriers.
Als Anodenmaterialien können vorteilhafterweise LiC6, NaCö, LiTiO2, Li Sn, LiAl, NaTiO2, oder Na3.5Sn. W e i t e r e M e t a l l e , w i e S n o d e r A I, oder Interkalationsverbindungen können ebenfalls eingesetzt werden. LiC6, NaCo, LiTiO 2 , LiSn, LiAl, NaTiO 2 , or Na 3 can advantageously be used as anode materials. 5 Sn. Other metals, such as S or Al, or intercalation compounds can also be used.
Als Elektrolyte können vorteilhafterweise Salze und organische Lösungsmittel eingesetzt werden. As electrolytes, salts and organic solvents can advantageously be used.
Dies können beispielsweise al s Sa l ze L i P F6, NaPF6, LiCIO4, NaCIO4, Li- Trifluormethansulfonylimid (Li-TFSI) oder Na-Trifluormethansulfonylimid (Na-TFSI) und als organische Lösungsmittel Propylencarbonate, Ethylencarbonate, Diethylcarbonate, Dimethylcarbonate oder Ethylmethylcarbonate sein. These can be, for example, Al s Sal ze L i PF 6 , NaPF 6 , LiCIO 4 , NaCIO 4 , Li trifluoromethanesulfonyl imide (Li-TFSI) or Na trifluoromethanesulfonyl imide (Na-TFSI) and as organic solvents propylene carbonates, ethylene carbonates, diethyl carbonates, dimethyl carbonates or ethylmethylcarbonates.
Durch die erfindungsgemäße Lösung kann ein neues Prinzip der Energiespeicherung realisiert werden. The inventive solution, a new principle of energy storage can be realized.
Die Wirkungsweise der erfindungsgemäßen Lösung ist folgende. The mode of action of the solution according to the invention is as follows.
Aufgrund der chemischen und bipolaren Struktur des Polymernetzwerkes ändert sich während des Ladens und Entladens der Kathode ihrer Ladungszustand durch einen kontinuierlichen, linearen bipolaren Redoxmechanismus. Der neutrale Zustand des Triazinrings überbrückt linear und kontinuierlich seinen oxidierten Zustand und den reduzierten Zustand durch den kontinuierlichen linearen Übergang der bipolaren Redoxmechanismen in Verbindung mit Anionen des Elektrolyten und Li+- oder Na+- lonen entsprechend. Dementsprechend liegen sowohl Anionen des Elektrolyten als auch Li+- oder Nationen vor, die beide für die erfindungsgemäß erreichte Erhöhung der spezifischen Energie benötigt werden. Due to the chemical and bipolar structure of the polymer network, its charge state changes during charging and discharging of the cathode due to a continuous, linear bipolar redox mechanism. The neutral state of the triazine ring linearly and continuously bridges its oxidized state and its reduced state by the continuous linear transition of the bipolar redox mechanisms in conjunction with anions of the electrolyte and Li + or Na + ions, respectively. Accordingly, there are both anions of the electrolyte and Li + - or nations, both of which are needed for the inventively achieved increase in specific energy.
Der besondere Vorteil der erfindungsgemäßen Lösung besteht darin, dass als Kathodenmaterial ein Material eingesetzt wird, was bipolar ist, also gleichzeitig ein n- und p-Typ-Material. Dadurch kann das Material sowohl einen Ladevorgang als auch einen Entladevorgang realisieren. The particular advantage of the solution according to the invention is that a material is used as the cathode material, which is bipolar, ie at the same time an n- and p-type material. As a result, the material can realize both a charging process and a discharging process.
Allgemein kann der Entladungsprozess von 4,5 auf 1 ,5 V gegenüber Li mit LiPF6 als Elektrolyt (PF6 " ist das Anion) so beschrieben werden:
Erste Reaktion In general, the discharge process from 4.5 to 1.5 V versus Li with LiPF 6 as the electrolyte (PF 6 " is the anion) can be described as follows: First reaction
[Netzwerkmateria x(PF6 ")x] + xLi -> (Netzwerkmaterial) + xLi+( PF6 ") [Network material x (PF 6 " ) x] + xLi -> (network material) + xLi + (PF6 " )
(4,5 - 3,0 V gegen Li/Li+)(4.5-3.0 V vs. Li / Li + )
Zweite Reaktion Second reaction
Netzwerkmaterial +xLi -» [Netzwerkmaterial"x(Li+)x ] Network material + xLi - »[Network material x (Li + ) x ]
(3,0 - 1 ,5 V gegen Li/Li+). (3.0-1.5 V vs. Li / Li + ).
Beispielsweise kann als Netzwerkmaterial C3N3 +X eingesetzt werden. Dann führt die erste Reaktion zu: For example, C3N 3 + X can be used as the network material. Then the first reaction leads to:
[C3N3 +x(PF6 ")x] + xLi— (C3N3) + xLi+(PF6 ") (4.5-3.0 V gegen Li/Li+) [C 3 N 3 + x (PF 6 " ) x] + x Li (C 3 N 3 ) + x Li + (PF 6 " ) (4.5-3.0 V vs Li / Li + )
und die zweite Reaktion führt in einem kontinuierlichen und linearen Übergang vom oxidierten Zustand in den reduzierten Zustand: and the second reaction results in a continuous and linear transition from the oxidized state to the reduced state:
(C3N3) + xLi— [C3N3 "x(Li+)x] (3.0-1 .5 V gegen Li/Li+). (C3N3) + XLI [C 3 N 3 "x (Li +) x] (3.0-1 .5 V vs. Li / Li +).
Allgemein kann für Na-Ionenbatterien, der Entladungsprozess von 4,1 auf 1 ,3 V gegenüber Na mit NaCIO4 als Elektrolyt (CIO4 " ist das Anion) so beschrieben werden: In general, for Na ion batteries, the discharge process from 4.1 to 1.3 V versus Na with NaCIO 4 as the electrolyte (CIO 4 " is the anion) can be described as follows:
Erste Reaktion First reaction
[Netzwerkmaterial+x(CIO ")x] + xNa -> (Netzwerkmaterial) + xNa+( CIO ") [Network material + x (CIO " ) x] + xNa -> (network material) + xNa + (CIO " )
(4,1 - 2.8 V gegen Na/Na+)(4.1 - 2.8 V vs Na / Na + )
Zweite Reaktion Second reaction
Netzwerkmaterial +xNa -» [Netzwerkmaterial"x(Na+)x ] Network material + xNa - »[Network material x (Na + ) x ]
(2,8 - 1 ,3 V gegen Na/Na+). (2.8-1.3 V vs Na / Na + ).
Beispielsweise kann als Netzwerkmaterial C3N3 +X eingesetzt werden. Dann führt die erste Reaktion zu: For example, C3N 3 + X can be used as the network material. Then the first reaction leads to:
[C3N3 +x(CIO4-)x] + xNa -»■ (C3N3) + xNa+( CI04 ~ ) (4.1-2.8 V gegen Na/Na+)
und die zweite Reaktion führt in einem kontinuierlichen und linearen Übergang vom oxidierten Zustand in den reduzierten Zustand: [C 3 N 3 + x (CIO 4 -) x ] + xNa - » ■ (C 3 N 3 ) + xNa + (CI0 4 ~ ) (4.1-2.8 V vs. Na / Na + ) and the second reaction results in a continuous and linear transition from the oxidized state to the reduced state:
(C3N3) + xNa -»■ [C3N3 "x(Na+)x] (2.8-1 .3 V gegen Na/Na+). (C3N3) + xNa - » ■ [C 3 N 3 " x (Na + ) x ] (2.8-1 .3 V vs. Na / Na + ).
Die erfindungsgemäße Lösung zeigt eine hohe mechanische Stabilität auf, ebenso wie eine hohe spezifische Kapazität, ein großes Arbeitspotential aufgrund eines schnellen lonentransportes und einer großen Kathodenoberfläche. The solution according to the invention exhibits a high mechanical stability, as well as a high specific capacity, a large working potential due to a fast ion transport and a large cathode surface.
Nachfolgend wird die Erfindung an mehreren Ausführungsbeispielen näher erläutert. The invention will be explained in more detail below with reference to several exemplary embodiments.
Beispiel 1 example 1
Ein Netzwerk bestehend aus Triazinringen (C3N3) in amorpher Struktur wird zu einer Kathode verarbeitet. Dazu werden 70 Ma.-% amorphes CTF-1 (ACTF-1 ), 20 Ma.-% Ruß als leitfähiges Additiv und 10 Ma.-% Carboxymethylcellulose als Binder gemischt und mit einer AI-Folie als Stromabnehmer umhüllt. Das Polymernetzwerk wurde gemäß dem bekannten Verfahren nach P. Kuhn et al: Angew. Chem. Int. Ed. 47, 3450-3453 (2008) hergestellt. Das ACTF-1 wurde synthetisiert, indem eine Mischung aus p-Dicyanobenzen und ZnC in einem Verhältnis von p- Dicyanobenzen/ZnC^ von 0,1 in einem Quarzgefäß auf 400 °C aufgeheizt wurde. Eine Anode aus kommerziellem Li-Metall wird zusammen mit der Kathode elektrisch verbunden und in eine Swagelock-Zelle eingebaut, um die elektrochemischen Eigenschaften zu prüfen. Dazu werden die Anode und Kathode in der Zelle mit 1 M LiPF6 als Elektrolyten im Volumenverhältnis Ethylencarbonat : Dimetylencarbonat von 1 :1 positioniert. Glasfasern trennen die Kathode von der Anode. Die Zelle wird in einen Raum mit einer Ar-Atmosphäre überführt und in einem VMP3 (multiChannel potentiostatic-galvanostatic System) geprüft. A network consisting of triazine rings (C3N3) in an amorphous structure is processed into a cathode. For this purpose, 70% by weight of amorphous CTF-1 (ACTF-1), 20% by weight of carbon black as conductive additive and 10% by weight of carboxymethylcellulose are mixed as binder and coated with an aluminum foil as current collector. The polymer network was prepared according to the known method of P. Kuhn et al: Angew. Chem. Int. Ed. 47, 3450-3453 (2008). The ACTF-1 was synthesized by heating a mixture of p-dicyanobenzene and ZnC in a ratio of p-dicyanobenzene / ZnC ^ of 0.1 in a quartz vessel to 400 ° C. An anode of commercial Li metal is electrically connected together with the cathode and incorporated into a swagelock cell to test the electrochemical properties. For this purpose, the anode and cathode are positioned in the cell with 1 M LiPF 6 as the electrolyte in the volume ratio of ethylene carbonate: Dimetylencarbonat of 1: 1. Glass fibers separate the cathode from the anode. The cell is transferred to a room with an Ar atmosphere and tested in a VMP3 (multiChannel potentiostatic-galvanostatic system).
Die erreichte spezifische Energie beträgt 1 ,084 Wh kg"1 bei einer spezifischen Kraft von 13,238 W kg"1 bezogen auf die Kathodenmasse.
Dies ist eine deutliche Verbesserung der spezifischen Energie gegenüber typischen Werten von 600 Wh kg"1 und für die spezifische Kraft von 500-2000 W kg"1 für Kathodenmaterialien nach dem Stand der Technik. The specific energy achieved is 1, 084 Wh kg "1 at a specific force of 13.238 W kg " 1 based on the cathode mass. This is a significant improvement in specific energy over typical values of 600 Wh kg "1 and for the specific force of 500-2000 W kg " 1 for prior art cathode materials.
Beispiel 2 Example 2
Ein Netzwerk bestehend aus Triazinringen (C3N3) in amorpher Struktur wird zu einer Kathode verarbeitet. Dazu werden 70 Ma.-% amorphes CTF-1 (ACTF-1 ), 20 Ma.-% Ruß als leitfähiges Additiv und 10 Ma.-% Carboxymethylcellulose als Binder gemischt und mit einer AI-Folie als Stromabnehmer umhüllt. Als Anode und Referenzelektrode wurde Na-Metall benutzt. 1 M NaCIO4 in Propylencarbonat wurde als Elektrolyt genutzt. Gemessen wurde mit einer Drei-Elektrodenkonfiguration in einem Becherglas. A network consisting of triazine rings (C3N3) in an amorphous structure is processed into a cathode. For this purpose, 70% by weight of amorphous CTF-1 (ACTF-1), 20% by weight of carbon black as conductive additive and 10% by weight of carboxymethylcellulose are mixed as binder and coated with an aluminum foil as current collector. Na metal was used as anode and reference electrode. 1 M NaCIO 4 in propylene carbonate was used as the electrolyte. It was measured with a three-electrode configuration in a beaker.
Die erreichte spezifische Energie beträgt 500 Wh kg"1 bei einer spezifischen Kraft von 1 0 kW kg"1 bezogen auf die Kathodenmasse. Nach 7000 Zyklen zeigt die Elektrode 80 % ihrer ursprünglichen Belastbarkeit in Halbzellen.
The specific energy achieved is 500 Wh kg "1 at a specific force of 1 0 kW kg " 1 based on the cathode mass. After 7000 cycles, the electrode shows 80% of its initial capacity in half-cells.
Claims
1. Verwendung eines Polymernetzwerkes als Kathodenmaterial für wiederaufladbare Batterien, die aus Kathode, Anode und Elektrolyt bestehen, wobei als Netzwerk ein amorphes bipolares poröses Polymernetzwerk auf der Basis von Triazin als Kathodenmaterial eingesetzt wird. 1. Use of a polymer network as a cathode material for rechargeable batteries, which consist of cathode, anode and electrolyte, wherein an amorphous bipolar porous polymer network based on triazine is used as a cathode material as a network.
2. Verwendung nach Anspruch 1, bei dem Triazin als Basismaterial mit Stickstoff in den Positionen 1,3,5 im Sechserring eingesetzt wird. 2. Use according to claim 1, in which triazine is used as the base material with nitrogen in the positions 1,3,5 in the 6-membered ring.
3. Verwendung nach Anspruch 1, bei dem als Kathodenmaterial ein Polymernetzwerk eingesetzt wird, und sowohl die Anionen des Elektrolytmaterials als auch Li+-lonen oder Nationen als Ladungsträger bei der Entladung eingesetzt werden. 3. Use according to claim 1, wherein as the cathode material, a polymer network is used, and both the anions of the electrolyte material and Li + ions or nations are used as charge carriers in the discharge.
4. Verwendung nach Anspruch 1, bei dem das Netzwerk als Kathodenmaterial und Lithium oder Natrium in reiner Form oder als Legierung oder Verbindung als Anodenmaterial eingesetzt wird. 4. Use according to claim 1, wherein the network is used as the cathode material and lithium or sodium in pure form or as an alloy or compound as the anode material.
5. Verwendung nach Anspruch 4, bei dem das Netzwerk als Kathodenmaterial und als Anodenmaterial L\Ce, NaCö, LiTiO2, Li Sn, LiAl, NaTiO2, Na3.5Sn eingesetzt wird. 5. Use according to claim 4, wherein the network as the cathode material and the anode material L \ Ce, NaCo, LiTiO2, LiSn, LiAl, NaTiO2, Na3. 5 Sn is used.
6. Verwendung nach Anspruch 1, bei dem als Elektrolyt Salze und organische Lösungsmittel eingesetzt werden. 6. Use according to claim 1, wherein salts and organic solvents are used as the electrolyte.
7. Verwendung nach Anspruch 6, bei dem als Salze LiPF6, NaPF6, LiCIO4. 7. Use according to claim 6, wherein the salts as LiPF 6, NaPF 6, LiClO. 4
NaCIO4, Li-Trifluormethansulfonylimid (Li-TFSI) oder Na- Trifluormethansulfonylimid (Na-TFSI) und als organische Lösungsmittel Propylencarbonate, Ethylencarbonate, Diethylcarbonate, Dimethylcarbonate oder Ethylmethylcarbonate eingesetzt werden. NaClO 4, Li-Trifluormethansulfonylimid (Li-TFSI), or Na Trifluormethansulfonylimid (Na-TFSI) and are used as organic solvents propylene carbonate, ethylene carbonate, diethyl carbonates, dimethyl carbonates or Ethylmethylcarbonate.
8. Verwendung nach Anspruch 1 , bei dem als Elektrolyt 1 M LiPF6 im Volumenverhältnis Ethylencarbonat : Dimetylencarbonat von 1 :1 eingesetzt wird. 8. Use according to claim 1, in which the electrolyte 1 M LiPF 6 in a volume ratio of ethylene carbonate: Dimetylencarbonat of 1: 1 is used.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012200827A DE102012200827A1 (en) | 2012-01-20 | 2012-01-20 | Use of a polymer network as a cathode material for rechargeable batteries |
DE102012200827.6 | 2012-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013107798A1 true WO2013107798A1 (en) | 2013-07-25 |
Family
ID=48083107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/050796 WO2013107798A1 (en) | 2012-01-20 | 2013-01-17 | Use of a polymer network as a cathode material for rechargeable batteries |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102012200827A1 (en) |
WO (1) | WO2013107798A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019110450B3 (en) | 2019-04-23 | 2020-06-10 | Humboldt-Universität Zu Berlin | Anode and process for its manufacture |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2911723A1 (en) * | 2007-01-19 | 2008-07-25 | Arkema France | Electrode, for electrochemical energy storage system, which is useful as a battery for a computer, a server/a portable telephone, or a supercapacitor, comprises a triazinic polynitroxide |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1202072A (en) * | 1981-12-28 | 1986-03-18 | Yoram S. Papir | Batteries fabricated with electroactive polymers |
CA1341507C (en) * | 1989-09-01 | 2006-06-13 | Michel Gauthier | Solid-state cell making use of redox polymerization |
-
2012
- 2012-01-20 DE DE102012200827A patent/DE102012200827A1/en not_active Ceased
-
2013
- 2013-01-17 WO PCT/EP2013/050796 patent/WO2013107798A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2911723A1 (en) * | 2007-01-19 | 2008-07-25 | Arkema France | Electrode, for electrochemical energy storage system, which is useful as a battery for a computer, a server/a portable telephone, or a supercapacitor, comprises a triazinic polynitroxide |
Non-Patent Citations (9)
Title |
---|
BARPANDA, P. ET AL., NATURE MATER., vol. 10, 2011, pages 772 - 779 |
KUHN, P. ET AL., MACROMOLECULES, vol. 42, 2009, pages 319 - 326 |
MIZUSHIMA, K. ET AL., MATER. RES. BULL., vol. 15, 1980, pages 783 - 789 |
NIGREY, P. J. ET AL., J. ELECTROCHEM. SOC., vol. 128, 1981, pages 1651 - 1654 |
NISHIDE, H. ET AL., ELECTROCHIM. ACTA, vol. 50, 2004, pages 827 - 831 |
P. KUHN ET AL., ANGEW. CHEM. INT. ED., vol. 47, 2008, pages 3450 - 3453 |
PIERRE KUHN ET AL: "Ionothermalsynthese von porösen kovalenten Triazin- Polymernetzwerken", ANGEWANDTE CHEMIE (INTERNATIONAL ED. IN ENGLISH), vol. 120, no. 18, 21 April 2008 (2008-04-21), pages 3499 - 3502, XP055064091, ISSN: 0044-8249, DOI: 10.1002/ange.200705710 * |
PIERRE KUHN ET AL: "Toward Tailorable Porous Organic Polymer Networks: A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles", MACROMOLECULES, vol. 42, no. 1, 13 January 2009 (2009-01-13), pages 319 - 326, XP055064197, ISSN: 0024-9297, DOI: 10.1021/ma802322j * |
WHITTINGHAM, M. S. ET AL., SCIENCE, vol. 192, 1976, pages 1126 - 1127 |
Also Published As
Publication number | Publication date |
---|---|
DE102012200827A1 (en) | 2013-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3791437B1 (en) | Rechargeable battery cell | |
EP3734724B1 (en) | Rechargeable battery cell | |
EP2583335A1 (en) | Lithium-ion battery with amorphous electrode materials | |
WO2013135353A1 (en) | Graphene-containing separator for lithium-ion batteries | |
EP2586083A1 (en) | Cathode for lithium ion rechargeable batteries | |
DE102011017105A1 (en) | Lithium-ion battery with high voltage | |
EP2676310B1 (en) | Metal-sulphur battery system | |
DE102014202180A1 (en) | Electrolyte compositions for lithium-sulfur batteries | |
EP3771011A2 (en) | So2-based electrolyte for a rechargeable battery and rechargeable battery therewith | |
WO2022162005A1 (en) | So2-based electrolyte for a rechargeable battery cell, and rechargeable battery cell | |
EP2514019B1 (en) | Lithium-ion battery | |
WO2013107798A1 (en) | Use of a polymer network as a cathode material for rechargeable batteries | |
DE102008008483B4 (en) | Solid polymer electrolyte material, solid polymer electrolyte sheet and methods for their production and electrochemical battery device using such a sheet | |
DE102023102564A1 (en) | Electrode for a lithium ion battery comprising a hybrid electrolyte and lithium ion battery | |
DE102023112154A1 (en) | Sodium ion battery, method for producing a sodium ion battery and use of a sodium ion battery | |
WO2022022958A1 (en) | Cathode active material, and lithium ion battery comprising said cathode active material | |
DE102023112153A1 (en) | Sodium ion battery, method for producing a sodium ion battery and use of a sodium ion battery | |
DE102020132661A1 (en) | Cathode active material and lithium ion battery having the cathode active material | |
DE102015201077A1 (en) | Electrolyte for lithium-based energy storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13715143 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13715143 Country of ref document: EP Kind code of ref document: A1 |