[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013105654A1 - Transparent electrically conductive film, substrate having transparent electrically conductive film attached thereto, ips liquid crystal cell, capacitive touch panel, and method for producing substrate having transparent electrically conductive film attached thereto - Google Patents

Transparent electrically conductive film, substrate having transparent electrically conductive film attached thereto, ips liquid crystal cell, capacitive touch panel, and method for producing substrate having transparent electrically conductive film attached thereto Download PDF

Info

Publication number
WO2013105654A1
WO2013105654A1 PCT/JP2013/050439 JP2013050439W WO2013105654A1 WO 2013105654 A1 WO2013105654 A1 WO 2013105654A1 JP 2013050439 W JP2013050439 W JP 2013050439W WO 2013105654 A1 WO2013105654 A1 WO 2013105654A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
substrate
electrically conductive
liquid crystal
Prior art date
Application number
PCT/JP2013/050439
Other languages
French (fr)
Japanese (ja)
Inventor
孝洋 伊東
直美 菅原
Original Assignee
ジオマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジオマテック株式会社 filed Critical ジオマテック株式会社
Publication of WO2013105654A1 publication Critical patent/WO2013105654A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a high-resistance, high-transmission transparent conductive film, a substrate with a transparent conductive film, an IPS liquid crystal cell using the same, a capacitive touch panel, and a method for manufacturing the substrate with a transparent conductive film.
  • An in-cell capacitive touch panel that incorporates a touch panel detection electrode in a liquid crystal cell is a transparent conductive film that has electromagnetic shielding and antistatic functions to prevent interference with display operations due to low-frequency noise near the display.
  • a membrane is essential.
  • the resistance of the transparent conductive film is low, high-frequency signals normally used for capacitive touch sensing are also shielded. Therefore, in order to penetrate a high-frequency signal that senses a touch event while functioning as a display shield, a predetermined high-resistance transparent conductive film is required.
  • high resistance and high transmission are required.
  • Patent Document 1 discloses a transparent conductive thin film mainly composed of indium oxide containing praseodymium and having a specific resistance in the range of 0.9 to 1.8 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. ing.
  • Patent Document 2 discloses a method for forming a tin-doped indium oxide film, wherein the tin content in the film is 10 to 40% by weight with respect to indium and the film thickness is 150 mm or more by sputtering or pyrosol method.
  • the sheet resistance of the film is 200 to 1000 ⁇ / sq. Further, it is disclosed that the uniformity of the sheet resistance is within 6.1% and the specific resistance is 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or more.
  • the specific resistance is in the order of 10 ⁇ 3 ⁇ ⁇ cm, a practical film thickness of several tens of K ⁇ / sq. Only about several M to several hundred M ⁇ / sq. Sheet resistance, that is, a specific resistance in the range of 10 0 to 10 3 ⁇ ⁇ cm and a high transmittance of 90% or more could not be obtained.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide several hundred M ⁇ / sq.
  • a highly transparent transparent conductive film that can stably obtain high resistance of the order and little changes with time, a substrate with the transparent conductive film, an IPS liquid crystal cell, a capacitive touch panel, and a method for manufacturing the substrate with the transparent conductive film There is to do.
  • Another object of the present invention is to provide a transparent conductive film that can be formed by DC sputtering, which is advantageous in productivity and stability over RF, a substrate with a transparent conductive film, an IPS liquid crystal cell using them, a capacitive touch panel, and a capacitive touch panel. It is providing the manufacturing method of this board
  • the subject is a transparent conductive film formed on a glass substrate, mainly composed of indium tin oxide (ITO), and 7.2 to 11.2 at% silicon.
  • ITO indium tin oxide
  • the specific resistance is in the order of 10 0 to 10 3 ⁇ ⁇ cm, and the transmittance at a wavelength of 550 nm is 98% or more.
  • a highly transmissive transparent conductive film can be obtained. Accordingly, it is possible to provide a transparent conductive film that can penetrate a high-frequency signal that senses a touch event while functioning as a noise shield in a display, and a high-performance in-cell capacitive touch panel can be provided. .
  • the transparent conductive film of the present invention When the transparent conductive film of the present invention is formed on a glass substrate, it is possible to extend the area used to detect a touch beyond the display surface, and physically close the user's finger or the like near the surface. It is also possible to detect near the surface without manual contact. Furthermore, the function of penetrating high-frequency signals that sense touch events while functioning as a display shield can be achieved with an inorganic material with little change in performance over time, and an in-cell capacitive touch panel with high operational reliability Can be provided.
  • Sheet resistance is 10 7 to 10 9 ⁇ / sq. It is suitable that it is a stand. If the film thickness is too thin, the resistance value tends to increase at high temperatures, and quality degradation occurs at high temperatures. Thus, since the film thickness of the transparent conductive film is 90 mm or more, A film with little change with time can be obtained. Further, since the film thickness of the transparent conductive film is 130 mm or less, a film having a high transmittance of 98% transmittance at 550 nm can be obtained.
  • an IPS liquid crystal cell comprising the substrate with a transparent conductive film according to claim 2, wherein the transparent conductive film is provided on the opposite side of the liquid crystal of the color filter side glass substrate. It is preferable. With this configuration, the transparent conductive film can be formed relatively easily and film defects and the like are reduced. Thus, an IPS liquid crystal cell having an antistatic function and a high manufacturing yield can be obtained. it can.
  • the capacitance type touch panel includes the IPS liquid crystal cell according to claim 3, wherein a capacitance detection electrode is incorporated in the IPS liquid crystal cell. .
  • a capacitance detection electrode is incorporated in the IPS liquid crystal cell.
  • the method for producing a substrate with a transparent conductive film according to claim 2 wherein the film resistance is 10 7 to 10 9 ⁇ on the glass substrate with a film thickness of 90 to 130 mm. / Sq. It is preferable to form the transparent conductive film as a base.
  • the thickness is within the above range, the resistance value is stable, the change with time is small, and the transmittance can be kept high. Moreover, in the range of the sheet resistance, a change in capacitance can be reliably detected while maintaining an antistatic function, and a satisfactory operation as a touch panel can be guaranteed.
  • a target containing indium tin oxide (ITO) as a main material and containing 10 to 15 wt% silicon oxide is used, and argon gas added with oxygen is introduced as a sputtering gas, and DC is added.
  • the transparent conductive film is preferably formed by magnetron sputtering. With this configuration, a transparent conductive film having high resistance and high transmission can be easily manufactured, and mass production can also be easily performed.
  • the present invention it is possible to obtain a transparent conductive film having a high resistance and high transmission of specific resistance of 10 0 to 10 3 ⁇ ⁇ cm, transmittance of 98% or more at a wavelength of 550 nm, which could not be achieved conventionally. . Accordingly, it is possible to provide a transparent conductive film that can penetrate a high-frequency signal that senses a touch event while functioning as a noise shield in a display, and can provide a high-performance in-cell capacitive touch panel. Become. When the transparent conductive film of the present invention is formed on a glass substrate, it is possible to extend the area used to detect a touch beyond the display surface, and physically close the user's finger or the like near the surface.
  • SiO 2 ratio is a graph showing the XPS analysis results of the transparent conductive film formed using 10 wt% of a target.
  • SiO 2 ratio is a graph showing the XPS analysis results of the transparent conductive film formed using a 12.5 wt% of a target.
  • SiO 2 ratio is a graph showing the XPS analysis results of the transparent conductive film formed using 15 wt%. It is a graph which shows the relationship between a film thickness and sheet resistance. It is a graph which shows the relationship between a film thickness and the transmittance
  • SiO 2 ratio in the target is a graph showing the results of a heat resistance test of the transparent conductive film formed. It is a graph which shows the result of the heat resistance test at the time of changing a film thickness. It is a graph which shows the result of a moisture resistance test at the time of changing a film thickness.
  • oxygen is added by a known DC magnetron sputtering using a target containing indium tin oxide (ITO) as a main material and containing 10 to 15 wt% silicon oxide. Argon gas was introduced, and a sheet resistance of 10 7 to 10 9 ⁇ / sq. A transparent conductive film as a base is formed.
  • ITO indium tin oxide
  • a DC magnetron sputtering apparatus For film formation, a DC magnetron sputtering apparatus is used, and a target containing indium tin oxide and 10 to 15% silicon oxide is attached to the cathode for the non-magnetic target, and a glass substrate is placed parallel to and facing the target. Then, a sputtering gas to which oxygen is added is introduced, and film formation is performed under predetermined conditions.
  • target-substrate distance 50 to 150 mm
  • ultimate vacuum 5 to 8 ⁇ 10 ⁇ 4 Pa
  • introduced gas 0.5 to 5.0% (depending on sputtering pressure)
  • Ar gas containing oxygen sputtering pressure : 0.1 to 0.5 Pa
  • input power DC 1 to 3 W / cm 2
  • substrate heating temperature room temperature (no heating) to 70 ° C.
  • the transparent conductive film obtained by the method for manufacturing a substrate with a transparent conductive film of the present embodiment is formed on a glass substrate, and is composed of indium tin oxide (ITO) as a main material, and is 7.2 to 11.2 at%.
  • ITO indium tin oxide
  • the specific resistance is in the order of 10 0 to 10 3 ⁇ ⁇ cm, and the transmittance at a wavelength of 550 nm is 98% or more.
  • the film thickness is in the range of 90 to 130 mm, and the sheet resistance is 10 7 to 10 9 ⁇ / sq. A stand is preferable.
  • the substrate with a transparent conductive film of the present embodiment includes a glass substrate and the transparent conductive film of the present embodiment formed on the glass substrate.
  • IPS liquid crystal cell and capacitive touch panel Moreover, the IPS liquid crystal cell C of FIG. 1 provided with the substrate with a transparent conductive film of this embodiment and the in-cell capacitive touch panel provided with the IPS liquid crystal cell C can be produced.
  • IPS In-Plane-Switching
  • the liquid crystal is rotated in the substrate plane by a horizontal electric field applied between a pair of comb electrodes provided on one substrate. It is a method to perform.
  • a liquid crystal cell is one in which spacers are dispersed between a TFT substrate and a color filter substrate, precisely aligned, injected with liquid crystal, cut into each panel size, and a film such as a polarizing plate adhered.
  • FIG. 1 shows a cross section.
  • the in-cell type is a system in which a touch panel function is incorporated in a liquid crystal cell in a panel in which a liquid crystal panel and a touch panel are integrated.
  • the electrostatic capacitance type is a form in which a position is detected by detecting a change in electrostatic capacitance between a fingertip and a detection electrode formed by patterning a conductive film.
  • the liquid crystal cell C of the present embodiment is formed by bonding a color filter substrate 10 and a TFT substrate 20 in a state where the liquid crystal 1 is sealed.
  • the color filter substrate 10 is formed by laminating a color filter 13 arranged in a black matrix 12 on the surface of the glass substrate 11 on the liquid crystal 1 side, which is the non-viewing side, and further forming an alignment film 15 thereon. Yes.
  • the surface of the color filter substrate 10 opposite to the liquid crystal 1 is provided with the transparent conductive film 3 of the present embodiment, and a cover 8 is laminated thereon via a known polarizing plate 17 and an adhesive layer 7. ing.
  • the cover 8 constitutes the surface of the capacitive touch panel and serves as a surface touched by the user.
  • the TFT substrate 20 has a pixel electrode 24 made of a comb-shaped transparent electrode formed on the surface of the glass substrate 21 on the liquid crystal 1 side.
  • An alignment film 25 is further formed on the surface of the TFT substrate 20 and the pixel electrode 24 on the liquid crystal 1 side, and a polarizing plate is provided on the surface of the TFT substrate 20 on the opposite side of the liquid crystal 1 that is the backlight side via an adhesive layer 37. 27 are stacked.
  • the liquid crystal 1 is disposed on the color filter substrate 10 side, and the drive region 4, the sensing region 5, and the ground region 6 are disposed on the TFT substrate 20 side.
  • the drive region 4 and the sensing region 5 are obtained by grouping a plurality of common electrodes of display pixels into the drive region 4 and the sensing region 5.
  • the common electrode in the drive region 4 is driven by an induction signal from a driver logic (not shown) being transmitted through a drive line.
  • a sensing signal sensed by the common electrode in the sensing area 5 is transmitted through a sensing line and processed by an event detection and demodulation circuit in a touch control device (not shown).
  • the capacitive touch panel includes a drive circuit board (not shown), electrode terminals, and a light source.
  • the glass substrate 11 corresponds to the glass substrate of the present embodiment
  • the glass substrate 11 and the transparent conductive film 3 correspond to the substrate with the transparent conductive film of the present embodiment.
  • Example 1 Using a target composed of indium tin oxide and 10% (Example 1), 12.5% (Example 2), and 15% (Example 3) of silicon dioxide, the target was formed by DC magnetron sputtering under the following conditions. Filmed.
  • Sputtering equipment Carousel type batch type sputtering equipment Target: Square type, thickness 6mm
  • Sputtering method DC magnetron sputtering
  • Exhaust device Turbo molecular pump Ultimate vacuum: 5 ⁇ 10 ⁇ 4 Pa Ar flow rate: 450 sccm
  • Substrate temperature 70 ° C
  • Sputtering power 1.55 W / cm 2
  • Table 1 shows the ratio (wt%) of silicon oxide contained in the target, the sheet resistance, specific resistance, transmittance, film thickness, and composition ratio of each element in the film (at%) of the formed transparent conductive film. ).
  • the formed transparent conductive film has a specific resistance of about 10 0 to 10 3 ⁇ ⁇ cm and a sheet resistance of 10 5 to 10 9 ⁇ / sq at a film thickness of 125 to 127 mm. . It was found that the specific resistance and sheet resistance were very high even when compared with a conventional transparent conductive film, and an unprecedented high resistance transparent conductive film was obtained. Further, from Table 1 and FIGS. 3 and 5, the transparent conductive film formed has a transmittance of 98 to 99% at 550 nm. From Table 1 and FIGS. It was found that a highly transmissive transparent conductive film was obtained.
  • the state of silicon contained in the transparent conductive films of Examples 1 to 3 was analyzed by XPS (X-ray Photoelectron Spectroscopy) high-resolution measurement. The measurement results are shown in FIGS. 6 to 8, the intensity peak appears near the binding energy of 102 eV. It is known that the Si peak is around 99 eV, the SiO 2 peak is around 103 eV, the SiO x N y peak is around 102 eV, and the Si 3 N 4 peak is around 101 eV (source: SCAS Technical News XPS). In this embodiment, since the target is made of indium tin oxide and silicon dioxide, and the introduced gas is oxygen, the silicon contained in the transparent conductive films of Examples 1 to 3 is an oxide. It was determined that
  • the film thickness is 80, 100, 120, and 140 mm (Examples 4 to 6, proportional 1), and when the oxygen flow rate is 6.6 sccm, 80, 90, 100, and 110 , 120 mm (Examples 7 to 11).
  • the ratio of introduced oxygen in the sputtering gas of Examples 4 to 6 and Comparative Example 1 was 1.6%, and the ratio of introduced oxygen in the sputtering gas of Examples 7 to 11 was 4.2%.
  • the contrast 1 is a contrast outside the scope of the present invention because the transmittance is less than 98%.
  • FIG. 9 and FIG. 10 show the film thickness, sheet resistance, specific resistance, and transmittance of the formed transparent conductive film in Examples 4 to 6, Comparative Example 1, and Examples 7 to 11. Showing the relationship.
  • the formed transparent conductive film has a specific resistance of about 10 1 to 10 2 ⁇ ⁇ cm at a film thickness of 80 to 120 mm, and the transmittance at 550 nm is almost all. It was found that an unprecedented high resistance and high transmittance transparent conductive film was obtained.
  • Test Example 3 The glass substrate with a transparent conductive film on which the transparent conductive film of Examples 1 to 3 was formed in Test Example 1 was held at 120 ° C. in the atmosphere for 0 hour, 1 hour, 2 hours, 3 hours, and after each hold The sample was subjected to a heat resistance test for measuring sheet resistance. The measurement results are shown in FIG. As a result of the heat resistance test, in all of Examples 1 to 3, the sheet resistance hardly changed after being held at 120 ° C. in the atmosphere for 0 hour, 1 hour, 2 hours, 3 hours, up to 3 hours at 120 ° C. It was found that the film had high heat resistance.
  • Test Example 4 The glass substrate with a transparent conductive film on which the transparent conductive film of Examples 4 to 6 was formed in Test Example 2 was held at 120 ° C. in the atmosphere for 0 hour, 1 hour, 2 hours, 3 hours, and after each hold The sample was subjected to a heat resistance test for measuring sheet resistance. The measurement results are shown in FIG. As a result of the heat resistance test, all of Examples 4 to 6 were maintained at 120 ° C. in the atmosphere for 0 hours, 1 hour, 2 hours, and 3 hours, and then the sheet resistance did not change greatly, and the temperature was 120 ° C. for 3 hours It was found that the film had high heat resistance.
  • Test Example 5 The glass substrate with a transparent conductive film on which the transparent conductive film of Examples 4 to 6 was formed in Test Example 2 was placed in a constant temperature and humidity chamber set at a temperature of 60 ° C. and a humidity of 90%, at 0, 90, 150, 198, 246. , 342, 582, 750, and 1014 hours, and each sample after being held was subjected to a moisture resistance test for measuring sheet resistance.
  • the measurement results are shown in FIG.
  • the sheet resistance did not change greatly after being held at 60 ° C. and 90% for 0 to 1014 hours, and the conditions of 60 ° C. and 90% for 0 to 1014 hours were maintained.
  • the rate of change tends to be large when the film thickness is thin, it was found to have high moisture resistance.
  • the proportions of introduced oxygen in the sputtering gas of Comparative 2, 3, Examples 12-14, and Comparative 4 are 0%, 0.4%, 0.9%, 1.3%, and 1.8%, respectively. 2.2%.
  • the film thickness was in the range of 117 to 126 mm.
  • FIG. 14 and FIG. 15 show the relationship between the oxygen introduction amount and the sheet resistance, specific resistance and transmittance.
  • the formed transparent conductive film obtained a transmittance of 98% or more, except for the proportions 2 and 3 with an oxygen flow rate of 2 sccm or less.
  • the specific resistance when the oxygen flow rate is 10 sccm, the proportionality 4 exceeds the predetermined range of 10 4 ⁇ ⁇ cm, and considering both, the oxygen flow rate is 4 to 8 sccm (oxygen concentration in the sputtering gas: 0.88 to 1). .75%) was found to be suitable. Within this range, changes in sheet resistance and specific resistance are small, which is advantageous from the viewpoint of control during film formation.
  • Liquid crystal cell 1 Liquid crystal 2 Spacer 3 Transparent conductive film 4 Drive area 5 Sensing area 6 Ground area 7, 37 Adhesive layer 8 Cover 10 Color filter substrate 11, 21 Glass substrate 12 Black matrix 13 Color filter 15, 25 Alignment films 17, 27 Polarizing plate 20 TFT substrate 24 Pixel electrode (transparent electrode)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Provided are: a high-transmittance transparent electrically conductive film, which can achieve a high resistivity on the order of several hundred milliohms/sq. and undergoes little change in properties over time; a substrate having the transparent electrically conductive film attached thereto; an IPS liquid crystal cell; a capacitive touch panel; and a method for producing a substrate having a transparent electrically conductive film attached thereto. A transparent electrically conductive film (3) formed on a glass substrate, which contains indium tin oxide (ITO) as the main material, contains 7.2 to 11.2 at% of silicon, and has a specific resistance of the order of 100 to 103 Ω•cm and a transmittance of 98% or more at a wavelength of 550 nm.

Description

透明導電膜,透明導電膜付き基板,IPS液晶セル,静電容量型タッチパネル及び透明導電膜付き基板の製造方法Transparent conductive film, substrate with transparent conductive film, IPS liquid crystal cell, capacitive touch panel, and method for manufacturing substrate with transparent conductive film
 本発明は、高抵抗,高透過の透明導電膜,透明導電膜付き基板とそれらを用いたIPS液晶セル,静電容量型タッチパネル及び該透明導電膜付き基板の製造方法に関する。 The present invention relates to a high-resistance, high-transmission transparent conductive film, a substrate with a transparent conductive film, an IPS liquid crystal cell using the same, a capacitive touch panel, and a method for manufacturing the substrate with a transparent conductive film.
 液晶セル内にタッチパネルの検出電極を組み込んだ、インセル型の静電容量型タッチパネルでは、ディスプレイ近傍の低周波ノイズによるディスプレイ動作の妨害を阻止するために、電磁遮蔽且つ帯電防止の機能を有する透明導電膜が必須となる。しかし、透明導電膜の抵抗が低い場合、容量性タッチ感知に通常使用される高周波信号も遮蔽されてしまう。
 従って、ディスプレイの遮蔽体として機能しながらタッチ事象を感知する高周波信号を貫通させるために、所定の高抵抗の透明導電膜が必要となり、インセル型の静電容量型タッチパネルにおいて、高抵抗、高透過の膜に対するニーズが高まっている。このニーズに応じるほどの高い抵抗値ではないものの、抵抗式タッチパネル用途で、高抵抗、高透過を狙った透明導電膜とその製造方法等を模索する試みが、種々行われている(例えば特許文献1及び2)。
An in-cell capacitive touch panel that incorporates a touch panel detection electrode in a liquid crystal cell is a transparent conductive film that has electromagnetic shielding and antistatic functions to prevent interference with display operations due to low-frequency noise near the display. A membrane is essential. However, when the resistance of the transparent conductive film is low, high-frequency signals normally used for capacitive touch sensing are also shielded.
Therefore, in order to penetrate a high-frequency signal that senses a touch event while functioning as a display shield, a predetermined high-resistance transparent conductive film is required. In an in-cell capacitive touch panel, high resistance and high transmission are required. There is a growing need for membranes. Although the resistance value is not high enough to meet this need, various attempts have been made to search for a transparent conductive film aimed at high resistance and high transmission and its manufacturing method in a resistive touch panel application (for example, Patent Documents). 1 and 2).
 特許文献1には、プラセオジムを含有する酸化インジウムを主成分とした透明導電性薄膜であって、比抵抗が0.9~1.8×10-3Ω・cmの範囲にあるものが開示されている。
 また、特許文献2には、スズドープ酸化インジウム膜の成膜方法であって、スパッタ法又はパイロゾル法により膜中のスズ含有量がインジウムに対して10~40重量%、かつ膜厚が150Å以上となるように成膜して、膜のシート抵抗が200~1000Ω/sq.、シート抵抗の均一性が6.1%以内かつ比抵抗が5×10-4Ω・cm以上となるようにすることが開示されている。
Patent Document 1 discloses a transparent conductive thin film mainly composed of indium oxide containing praseodymium and having a specific resistance in the range of 0.9 to 1.8 × 10 −3 Ω · cm. ing.
Patent Document 2 discloses a method for forming a tin-doped indium oxide film, wherein the tin content in the film is 10 to 40% by weight with respect to indium and the film thickness is 150 mm or more by sputtering or pyrosol method. The sheet resistance of the film is 200 to 1000 Ω / sq. Further, it is disclosed that the uniformity of the sheet resistance is within 6.1% and the specific resistance is 5 × 10 −4 Ω · cm or more.
特開2011-174168号公報JP 2011-174168 A 特開2007-197839号公報JP 2007-197839 A
 しかし、特許文献1及び2の発明では、比抵抗が、10-3Ω・cm台、実用的な膜厚で最大でも数十KΩ/sq.程度しか実現できず、現在要求されている数M~数百MΩ/sq.のシート抵抗、即ち、比抵抗が10~10Ω・cm台で、且つ、90数%以上の高透過率の膜を得ることはできなかった。 However, in the inventions of Patent Documents 1 and 2, the specific resistance is in the order of 10 −3 Ω · cm, a practical film thickness of several tens of KΩ / sq. Only about several M to several hundred MΩ / sq. Sheet resistance, that is, a specific resistance in the range of 10 0 to 10 3 Ω · cm and a high transmittance of 90% or more could not be obtained.
 本発明は、上記の課題に鑑みてなされたものであり、本発明の目的は、数百MΩ/sq.オーダーの高抵抗が安定して得られ且つ経時変化も少ない高透過の透明導電膜,その透明導電膜付きの基板,IPS液晶セル,静電容量型タッチパネル及び透明導電膜付き基板の製造方法を提供することにある。
 本発明の他の目的は、RFよりも生産性、安定性で有利なDCスパッタにより成膜可能な透明導電膜,透明導電膜付き基板とそれらを用いたIPS液晶セル,静電容量型タッチパネル及び該透明導電膜付き基板の製造方法を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide several hundred MΩ / sq. A highly transparent transparent conductive film that can stably obtain high resistance of the order and little changes with time, a substrate with the transparent conductive film, an IPS liquid crystal cell, a capacitive touch panel, and a method for manufacturing the substrate with the transparent conductive film There is to do.
Another object of the present invention is to provide a transparent conductive film that can be formed by DC sputtering, which is advantageous in productivity and stability over RF, a substrate with a transparent conductive film, an IPS liquid crystal cell using them, a capacitive touch panel, and a capacitive touch panel. It is providing the manufacturing method of this board | substrate with a transparent conductive film.
 前記課題は、請求項1の透明導電膜によれば、ガラス基板に形成された透明導電膜であって、酸化インジウムスズ(ITO)を主材料とし、7.2~11.2at%のケイ素を含み、比抵抗が、10~10Ω・cm台、波長550nmにおける透過率が、98%以上であること、により解決される。 According to the transparent conductive film of claim 1, the subject is a transparent conductive film formed on a glass substrate, mainly composed of indium tin oxide (ITO), and 7.2 to 11.2 at% silicon. The specific resistance is in the order of 10 0 to 10 3 Ω · cm, and the transmittance at a wavelength of 550 nm is 98% or more.
 このように特定の割合のケイ素を含む材料で構成しているため、従来達成することができなかった、比抵抗10~10Ω・cm台、波長550nmにおける透過率98%以上という高抵抗、高透過の透明導電膜を得ることができる。
 従って、ディスプレイにおけるノイズ遮蔽体として機能しながらタッチ事象を感知する高周波信号を貫通させることができるような透明導電膜が提供可能となり、高性能なインセル型の静電容量型タッチパネルが提供可能となる。本発明の透明導電膜をガラス基板上に形成した場合、タッチを検出するのに使用される領域を、ディスプレイ表面を超えて延在させることが可能となり、表面近くのユーザの指等を、物理的接触なく、表面近傍で検出することも可能となる。
 更に、ディスプレイの遮蔽体として機能しながらタッチ事象を感知する高周波信号を貫通させるという機能を、経時的な性能変化の少ない無機物によって達成でき、動作の信頼性の高いインセル型の静電容量型タッチパネルを提供可能となる。
Since it is made of a material containing a specific proportion of silicon in this way, it has a high resistivity of a resistivity of about 10 0 to 10 3 Ω · cm and a transmittance of 98% or more at a wavelength of 550 nm, which could not be achieved in the past. A highly transmissive transparent conductive film can be obtained.
Accordingly, it is possible to provide a transparent conductive film that can penetrate a high-frequency signal that senses a touch event while functioning as a noise shield in a display, and a high-performance in-cell capacitive touch panel can be provided. . When the transparent conductive film of the present invention is formed on a glass substrate, it is possible to extend the area used to detect a touch beyond the display surface, and physically close the user's finger or the like near the surface. It is also possible to detect near the surface without manual contact.
Furthermore, the function of penetrating high-frequency signals that sense touch events while functioning as a display shield can be achieved with an inorganic material with little change in performance over time, and an in-cell capacitive touch panel with high operational reliability Can be provided.
 このとき、請求項2のように、ガラス基板に請求項1記載の透明導電膜が形成された透明導電膜付き基板であって、前記透明導電膜は、膜厚90~130Åの範囲にあり、シート抵抗が、10~10Ω/sq.台であると好適である。
 膜厚が薄すぎると、高温下で抵抗値が上昇する傾向があり、高温下での品質低下が発生するが、このように、透明導電膜の膜厚を90Å以上としているため、高温下における経時変化の殆どない膜とすることができる。また、透明導電膜の膜厚を130Å以下としているため、550nmでの透過率98%という高透過率の膜とすることができる。
At this time, as in claim 2, a substrate with a transparent conductive film in which the transparent conductive film according to claim 1 is formed on a glass substrate, the transparent conductive film being in a range of 90 to 130 mm in thickness, Sheet resistance is 10 7 to 10 9 Ω / sq. It is suitable that it is a stand.
If the film thickness is too thin, the resistance value tends to increase at high temperatures, and quality degradation occurs at high temperatures. Thus, since the film thickness of the transparent conductive film is 90 mm or more, A film with little change with time can be obtained. Further, since the film thickness of the transparent conductive film is 130 mm or less, a film having a high transmittance of 98% transmittance at 550 nm can be obtained.
 このとき、請求項3のように、請求項2記載の透明導電膜付き基板を備えたIPS液晶セルであって、前記透明導電膜は、カラーフィルタ側ガラス基板の液晶反対側に設けられていると好適である。
 このように構成されているため、透明導電膜の成膜が比較的に容易であり、膜欠陥等も少なくなることから、帯電防止の機能を備え且つ製造歩留まりのよいIPS液晶セルとすることができる。
At this time, as in claim 3, it is an IPS liquid crystal cell comprising the substrate with a transparent conductive film according to claim 2, wherein the transparent conductive film is provided on the opposite side of the liquid crystal of the color filter side glass substrate. It is preferable.
With this configuration, the transparent conductive film can be formed relatively easily and film defects and the like are reduced. Thus, an IPS liquid crystal cell having an antistatic function and a high manufacturing yield can be obtained. it can.
 このとき、請求項4のように、請求項3記載のIPS液晶セルを備えた静電容量型タッチパネルであって、静電容量検出電極が前記IPS液晶セル内に組み込まれていると好適である。
 このように構成しているため、IPSモードでインセル式の静電容量型タッチパネルを提供可能となる。
At this time, as in claim 4, it is preferable that the capacitance type touch panel includes the IPS liquid crystal cell according to claim 3, wherein a capacitance detection electrode is incorporated in the IPS liquid crystal cell. .
With this configuration, an in-cell capacitive touch panel can be provided in the IPS mode.
 このとき、請求項5のように、請求項2記載の透明導電膜付き基板の製造方法であって、前記ガラス基板上に、膜厚90~130Åで、シート抵抗が、10~10Ω/sq.台である前記透明導電膜を成膜すると好適である。 At this time, as in claim 5, the method for producing a substrate with a transparent conductive film according to claim 2, wherein the film resistance is 10 7 to 10 9 Ω on the glass substrate with a film thickness of 90 to 130 mm. / Sq. It is preferable to form the transparent conductive film as a base.
 上記膜厚の範囲であれば、抵抗値が安定して経時変化が少なく、透過率も高く維持できる。また、上記シート抵抗の範囲では、帯電防止の機能を保持しながら静電容量の変化を確実に検出することができ、タッチパネルとしての良好な動作を保証できる。 If the thickness is within the above range, the resistance value is stable, the change with time is small, and the transmittance can be kept high. Moreover, in the range of the sheet resistance, a change in capacitance can be reliably detected while maintaining an antistatic function, and a satisfactory operation as a touch panel can be guaranteed.
 このとき、請求項6のように、酸化インジウムスズ(ITO)を主材料とし10~15wt%の酸化ケイ素を含有するターゲットを用い、酸素が添加されたアルゴンガスをスパッタガスとして導入して、DCマグネトロンスパッタにより前記透明導電膜を成膜すると好適である。
 このように構成しているため、高抵抗高透過の透明導電膜の製作を、容易に行うことができ、大量生産も容易に行うことができる。
At this time, as in claim 6, a target containing indium tin oxide (ITO) as a main material and containing 10 to 15 wt% silicon oxide is used, and argon gas added with oxygen is introduced as a sputtering gas, and DC is added. The transparent conductive film is preferably formed by magnetron sputtering.
With this configuration, a transparent conductive film having high resistance and high transmission can be easily manufactured, and mass production can also be easily performed.
 本発明によれば、従来達成することができなかった、比抵抗10~10Ω・cm台、波長550nmにおける透過率98%以上という高抵抗、高透過の透明導電膜を得ることができる。
 従って、ディスプレイにおけるノイズの遮蔽体として機能しながらタッチ事象を感知する高周波信号を貫通させることができるような透明導電膜が提供可能となり、高性能なインセル型の静電容量型タッチパネルが提供可能となる。本発明の透明導電膜をガラス基板上に形成した場合、タッチを検出するのに使用される領域を、ディスプレイ表面を超えて延在させることが可能となり、表面近くのユーザの指等を、物理的接触なく、表面近傍で検出することも可能となる。
 更に、ディスプレイの遮蔽体として機能しながらタッチ事象を感知する高周波信号を貫通させるという機能を、経時的な性能変化の少ない無機物によって達成でき、動作の信頼性の高いインセル型の静電容量型タッチパネルを提供可能となる。
According to the present invention, it is possible to obtain a transparent conductive film having a high resistance and high transmission of specific resistance of 10 0 to 10 3 Ω · cm, transmittance of 98% or more at a wavelength of 550 nm, which could not be achieved conventionally. .
Accordingly, it is possible to provide a transparent conductive film that can penetrate a high-frequency signal that senses a touch event while functioning as a noise shield in a display, and can provide a high-performance in-cell capacitive touch panel. Become. When the transparent conductive film of the present invention is formed on a glass substrate, it is possible to extend the area used to detect a touch beyond the display surface, and physically close the user's finger or the like near the surface. It is also possible to detect near the surface without manual contact.
Furthermore, the function of penetrating high-frequency signals that sense touch events while functioning as a display shield can be achieved with an inorganic material with little change in performance over time, and an in-cell capacitive touch panel with high operational reliability Can be provided.
本発明の実施形態に係るIPS液晶セルの断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the IPS liquid crystal cell which concerns on embodiment of this invention. ターゲット中のSiO比とシート抵抗との関係を示すグラフである。Is a graph showing the relationship between the SiO 2 ratio and the sheet resistance in the target. ターゲット中のSiO比と透過率との関係を示すグラフである。Is a graph showing the relationship between the SiO 2 ratio and the transmittance in the target. 膜中のSi比とシート抵抗との関係を示すグラフである。It is a graph which shows the relationship between Si ratio in a film | membrane, and sheet resistance. 膜中のSi比と透過率との関係を示すグラフである。It is a graph which shows the relationship between Si ratio in a film | membrane, and the transmittance | permeability. SiO比が10wt%のターゲットを用いて成膜した透明導電膜のXPS分析結果を示すグラフである。SiO 2 ratio is a graph showing the XPS analysis results of the transparent conductive film formed using 10 wt% of a target. SiO比が12.5wt%のターゲットを用いて成膜した透明導電膜のXPS分析結果を示すグラフである。SiO 2 ratio is a graph showing the XPS analysis results of the transparent conductive film formed using a 12.5 wt% of a target. SiO比が15wt%を用いて成膜した透明導電膜のXPS分析結果を示すグラフである。SiO 2 ratio is a graph showing the XPS analysis results of the transparent conductive film formed using 15 wt%. 膜厚とシート抵抗との関係を示すグラフである。It is a graph which shows the relationship between a film thickness and sheet resistance. 膜厚と透過率との関係を示すグラフである。It is a graph which shows the relationship between a film thickness and the transmittance | permeability. ターゲット中のSiO比を変化させて成膜した透明導電膜の耐熱性試験の結果を示すグラフである。By changing the SiO 2 ratio in the target is a graph showing the results of a heat resistance test of the transparent conductive film formed. 膜厚を変化させた場合の耐熱性試験の結果を示すグラフである。It is a graph which shows the result of the heat resistance test at the time of changing a film thickness. 膜厚を変化させた場合の耐湿性試験の結果を示すグラフである。It is a graph which shows the result of a moisture resistance test at the time of changing a film thickness. 成膜時の導入酸素量と成膜された透明導電膜のシート抵抗との関係を示すグラフである。It is a graph which shows the relationship between the oxygen amount at the time of film-forming, and the sheet resistance of the formed transparent conductive film. 成膜時の導入酸素量と成膜された透明導電膜の透過率との関係を示すグラフである。It is a graph which shows the relationship between the oxygen introduction amount at the time of film-forming, and the transmittance | permeability of the formed transparent conductive film.
 以下、本発明の実施形態について図1を参照しながら説明するが、これに限定されるものではない。 Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to this.
(透明導電膜付き基板の製造方法)
 本実施形態の透明導電膜付き基板の製造方法は、公知のDCマグネトロンスパッタにより、酸化インジウムスズ(ITO)を主材料とし、10~15wt%の酸化ケイ素を含有するターゲットを用い、酸素が添加されたアルゴンガスを導入して、ガラス基板上に、膜厚90~130Åで、シート抵抗が、10~10Ω/sq.台である透明導電膜を成膜する。
(Manufacturing method of substrate with transparent conductive film)
In the method for manufacturing a substrate with a transparent conductive film according to this embodiment, oxygen is added by a known DC magnetron sputtering using a target containing indium tin oxide (ITO) as a main material and containing 10 to 15 wt% silicon oxide. Argon gas was introduced, and a sheet resistance of 10 7 to 10 9 Ω / sq. A transparent conductive film as a base is formed.
 成膜には、DCマグネトロンスパッタリング装置を用い、その非磁性体ターゲット用カソードに、酸化インジウムスズ及び10~15%の酸化ケイ素を含有するターゲットを取り付け、ターゲットと平行かつ対向してガラス基板を設置し、酸素が添加されたスパッタガスを導入して、所定条件により成膜を行う。例えば、ターゲット-基板間距離:50~150mm、到達真空度:5~8×10-4Pa、導入ガス:0.5~5.0%(スパッタ圧により異なる)酸素を含むArガス、スパッタ圧力:0.1~0.5Pa、投入電力:直流1~3W/cm、基板加熱温度:室温(無加熱)~70℃とする。 For film formation, a DC magnetron sputtering apparatus is used, and a target containing indium tin oxide and 10 to 15% silicon oxide is attached to the cathode for the non-magnetic target, and a glass substrate is placed parallel to and facing the target. Then, a sputtering gas to which oxygen is added is introduced, and film formation is performed under predetermined conditions. For example, target-substrate distance: 50 to 150 mm, ultimate vacuum: 5 to 8 × 10 −4 Pa, introduced gas: 0.5 to 5.0% (depending on sputtering pressure) Ar gas containing oxygen, sputtering pressure : 0.1 to 0.5 Pa, input power: DC 1 to 3 W / cm 2 , substrate heating temperature: room temperature (no heating) to 70 ° C.
(透明導電膜及び透明導電膜付き基板)
 本実施形態の透明導電膜付き基板の製造方法により得られる透明導電膜は、ガラス基板に形成されたものであって、酸化インジウムスズ(ITO)を主材料とし、7.2~11.2at%のケイ素を含み、比抵抗が、10~10Ω・cm台、波長550nmにおける透過率が、98%以上である。また、膜厚90~130Åの範囲にあり、シート抵抗が、10~10Ω/sq.台であると好ましい。
 本実施形態の透明導電膜付き基板は、ガラス基板と該ガラス基板上に形成された本実施形態の透明導電膜とからなる。
(Transparent conductive film and substrate with transparent conductive film)
The transparent conductive film obtained by the method for manufacturing a substrate with a transparent conductive film of the present embodiment is formed on a glass substrate, and is composed of indium tin oxide (ITO) as a main material, and is 7.2 to 11.2 at%. The specific resistance is in the order of 10 0 to 10 3 Ω · cm, and the transmittance at a wavelength of 550 nm is 98% or more. The film thickness is in the range of 90 to 130 mm, and the sheet resistance is 10 7 to 10 9 Ω / sq. A stand is preferable.
The substrate with a transparent conductive film of the present embodiment includes a glass substrate and the transparent conductive film of the present embodiment formed on the glass substrate.
(IPS液晶セル及び静電容量型タッチパネル)
 また、本実施形態の透明導電膜付き基板を備えた図1のIPS液晶セルC及びこのIPS液晶セルCを備えたインセル式の静電容量型タッチパネルを作製することができる。
 IPS(In-Plane-Switching)モードとは、アクティブマトリクス型液晶表示装置において、一方の基板に設けた櫛形電極対間に印加された横方向の電界により、液晶を基板面内で回転させて表示を行う方式である。
(IPS liquid crystal cell and capacitive touch panel)
Moreover, the IPS liquid crystal cell C of FIG. 1 provided with the substrate with a transparent conductive film of this embodiment and the in-cell capacitive touch panel provided with the IPS liquid crystal cell C can be produced.
In IPS (In-Plane-Switching) mode, in an active matrix liquid crystal display device, the liquid crystal is rotated in the substrate plane by a horizontal electric field applied between a pair of comb electrodes provided on one substrate. It is a method to perform.
 液晶セルとは、TFT基板とカラーフィルタ基板の間にスペーサを散布して精密に位置合せをし、液晶を注入した後、それぞれのパネルサイズに切り分け、偏光板等のフィルムを接着したものをいい、例えば、図1に断面を示すものである。
 インセル式とは、液晶パネルとタッチパネルを一体化したパネルにおいて、タッチパネル機能を液晶セルの中に組み込む方式である。
 静電容量型とは、指先と、導電膜のパターニングにより形成された検出電極との間での静電容量の変化を捉えて位置を検出する形式である。
A liquid crystal cell is one in which spacers are dispersed between a TFT substrate and a color filter substrate, precisely aligned, injected with liquid crystal, cut into each panel size, and a film such as a polarizing plate adhered. For example, FIG. 1 shows a cross section.
The in-cell type is a system in which a touch panel function is incorporated in a liquid crystal cell in a panel in which a liquid crystal panel and a touch panel are integrated.
The electrostatic capacitance type is a form in which a position is detected by detecting a change in electrostatic capacitance between a fingertip and a detection electrode formed by patterning a conductive film.
 本実施形態の液晶セルCは、図1に示すように、カラーフィルタ基板10とTFT基板20とが、液晶1を封入した状態で貼合されて形成されている。
 カラーフィルタ基板10は、ガラス基板11の非視認側である液晶1側の面に、ブラックマトリクス12に区分されて配置されたカラーフィルタ13が積層され、更にその上に配向膜15が形成されている。
As shown in FIG. 1, the liquid crystal cell C of the present embodiment is formed by bonding a color filter substrate 10 and a TFT substrate 20 in a state where the liquid crystal 1 is sealed.
The color filter substrate 10 is formed by laminating a color filter 13 arranged in a black matrix 12 on the surface of the glass substrate 11 on the liquid crystal 1 side, which is the non-viewing side, and further forming an alignment film 15 thereon. Yes.
 カラーフィルタ基板10の液晶1逆側の面には、本実施形態の透明導電膜3を備えており、その上に、公知の偏光板17と、粘着層7を介してカバー8が、積層されている。カバー8は、静電容量型タッチパネルの表面を構成し、ユーザがタッチする面となる。 The surface of the color filter substrate 10 opposite to the liquid crystal 1 is provided with the transparent conductive film 3 of the present embodiment, and a cover 8 is laminated thereon via a known polarizing plate 17 and an adhesive layer 7. ing. The cover 8 constitutes the surface of the capacitive touch panel and serves as a surface touched by the user.
 TFT基板20は、ガラス基板21の液晶1側の面に、櫛形の透明電極からなる画素電極24が形成されてなる。TFT基板20及び画素電極24の液晶1側の面には、更に配向膜25が形成され、TFT基板20のバックライト側である液晶1逆側の面には、粘着層37を介して偏光板27が積層されている。 The TFT substrate 20 has a pixel electrode 24 made of a comb-shaped transparent electrode formed on the surface of the glass substrate 21 on the liquid crystal 1 side. An alignment film 25 is further formed on the surface of the TFT substrate 20 and the pixel electrode 24 on the liquid crystal 1 side, and a polarizing plate is provided on the surface of the TFT substrate 20 on the opposite side of the liquid crystal 1 that is the backlight side via an adhesive layer 37. 27 are stacked.
 配向膜15と配向膜25との間には、カラーフィルタ基板10側に液晶1と、TFT基板20側に駆動領域4、感知領域5及び接地領域6が配置されている。
 駆動領域4および感知領域5は、表示画素の複数の共通電極を、駆動領域4と感知領域5にグループ化したものである。
 駆動領域4の共通電極は、不図示のドライバ論理からの誘導信号が駆動線により伝達されて駆動される。また、感知領域5の共通電極で感知された感知信号は、感知線により伝達され、不図示のタッチ制御装置内の事象検出及び復調回路にて処理される。
Between the alignment film 15 and the alignment film 25, the liquid crystal 1 is disposed on the color filter substrate 10 side, and the drive region 4, the sensing region 5, and the ground region 6 are disposed on the TFT substrate 20 side.
The drive region 4 and the sensing region 5 are obtained by grouping a plurality of common electrodes of display pixels into the drive region 4 and the sensing region 5.
The common electrode in the drive region 4 is driven by an induction signal from a driver logic (not shown) being transmitted through a drive line. A sensing signal sensed by the common electrode in the sensing area 5 is transmitted through a sensing line and processed by an event detection and demodulation circuit in a touch control device (not shown).
 静電容量型タッチパネルは、以上の液晶セルCに加え、不図示の駆動回路基板、電極端子、光源を備えてなる。
 図1において、ガラス基板11が本実施形態のガラス基板、ガラス基板11と透明導電膜3とが、本実施形態の透明導電膜付き基板に該当する。
In addition to the liquid crystal cell C described above, the capacitive touch panel includes a drive circuit board (not shown), electrode terminals, and a light source.
In FIG. 1, the glass substrate 11 corresponds to the glass substrate of the present embodiment, and the glass substrate 11 and the transparent conductive film 3 correspond to the substrate with the transparent conductive film of the present embodiment.
 以下、本発明の透明導電膜の具体的実施例について説明するが、本発明は、これに限定されるものではない。
(試験例1)
 酸化インジウムスズと、10%(実施例1),12.5%(実施例2),15%(実施例3)の二酸化ケイ素とからなるターゲットを用いて、以下の条件でDCマグネトロンスパッタによって成膜した。
 スパッタ装置:カルーセル型バッチ式スパッタ装置
 ターゲット:角型、厚さ6mm
 スパッタ方式 :DCマグネトロンスパッタ
 排気装置 :ターボ分子ポンプ
 到達真空度 :5×10-4Pa
 Ar流量 :450sccm
 酸素流量 :10sccm(実施例1)、7.3sccm(実施例2)、6sccm(実施例3)
 基板温度 :70℃
 スパッタ電力 :1.55W/cm
 使用基板 :ガラス基板 t=1.1mm
 表1より、実施例1~3のスパッタガス中の導入酸素の比率は、それぞれ、2.1%,1.6%,1.3%であった。
Hereinafter, although the specific Example of the transparent conductive film of this invention is described, this invention is not limited to this.
(Test Example 1)
Using a target composed of indium tin oxide and 10% (Example 1), 12.5% (Example 2), and 15% (Example 3) of silicon dioxide, the target was formed by DC magnetron sputtering under the following conditions. Filmed.
Sputtering equipment: Carousel type batch type sputtering equipment Target: Square type, thickness 6mm
Sputtering method: DC magnetron sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Ar flow rate: 450 sccm
Oxygen flow rate: 10 sccm (Example 1), 7.3 sccm (Example 2), 6 sccm (Example 3)
Substrate temperature: 70 ° C
Sputtering power: 1.55 W / cm 2
Substrate used: Glass substrate t = 1.1 mm
From Table 1, the ratios of introduced oxygen in the sputtering gases of Examples 1 to 3 were 2.1%, 1.6%, and 1.3%, respectively.
 表1は、ターゲット中に含まれる酸化ケイ素の比率(wt%)と、成膜された透明導電膜のシート抵抗,比抵抗,透過率,膜厚及び膜中の各元素の組成比(at%)を示している。 Table 1 shows the ratio (wt%) of silicon oxide contained in the target, the sheet resistance, specific resistance, transmittance, film thickness, and composition ratio of each element in the film (at%) of the formed transparent conductive film. ).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図2,図3は、表1に示す各実施例のターゲット中のSiO比(wt%)と成膜された透明導電膜のシート抵抗及び550nmにおける透過率との関係をそれぞれグラフに示したものである。
 図4,図5は、表1に示す各実施例の膜中のSi元素比(at%)と成膜された透明導電膜のシート抵抗及び550nmにおける透過率との関係をそれぞれグラフに示したものである。
2 and 3 are graphs showing the relationship between the SiO 2 ratio (wt%) in the target of each example shown in Table 1, the sheet resistance of the formed transparent conductive film, and the transmittance at 550 nm. Is.
4 and 5 are graphs showing the relationship between the Si element ratio (at%) in the film of each example shown in Table 1, the sheet resistance of the formed transparent conductive film, and the transmittance at 550 nm. Is.
 表1及び図2,図4より、成膜された透明導電膜は、膜厚125~127Åにおいて、比抵抗が、10~10Ω・cm台、シート抵抗10~10Ω/sq.台であり、従来の透明導電膜と対比しても非常に比抵抗及びシート抵抗が高く、従来にない高抵抗の透明導電膜が得られることが分かった。
 また、表1及び図3,図5より、成膜された透明導電膜は、550nmにおける透過率がいずれも98~99%であり、表1及び図2~図5より、従来にない高抵抗,高透過の透明導電膜が得られることが分かった。
From Table 1, FIG. 2, and FIG. 4, the formed transparent conductive film has a specific resistance of about 10 0 to 10 3 Ω · cm and a sheet resistance of 10 5 to 10 9 Ω / sq at a film thickness of 125 to 127 mm. . It was found that the specific resistance and sheet resistance were very high even when compared with a conventional transparent conductive film, and an unprecedented high resistance transparent conductive film was obtained.
Further, from Table 1 and FIGS. 3 and 5, the transparent conductive film formed has a transmittance of 98 to 99% at 550 nm. From Table 1 and FIGS. It was found that a highly transmissive transparent conductive film was obtained.
 実施例1~3の透明導電膜に含まれるケイ素の状態を、XPS(X-ray Photoelectron Spectroscopy)の高分解能測定を行って分析した。
 測定結果を、それぞれ図6~図8に示す。
 図6~図8において、いずれも、強度のピークは、結合エネルギー102eV付近に現れている。
 Siのピークは99eV付近、SiOのピークは103eV付近、SiOのピークは102eV付近、Siのピークは101eV付近であることが知られていること(出典:SCAS Technical News XPSによるシリコンウェーハの分析)と、本実施形態では、ターゲットが酸化インジウムスズ及び二酸化ケイ素からなり、導入ガスが酸素であることから、実施例1~3の透明導電膜に含まれるケイ素は、酸化物の状態であると判定された。
The state of silicon contained in the transparent conductive films of Examples 1 to 3 was analyzed by XPS (X-ray Photoelectron Spectroscopy) high-resolution measurement.
The measurement results are shown in FIGS.
6 to 8, the intensity peak appears near the binding energy of 102 eV.
It is known that the Si peak is around 99 eV, the SiO 2 peak is around 103 eV, the SiO x N y peak is around 102 eV, and the Si 3 N 4 peak is around 101 eV (source: SCAS Technical News XPS). In this embodiment, since the target is made of indium tin oxide and silicon dioxide, and the introduced gas is oxygen, the silicon contained in the transparent conductive films of Examples 1 to 3 is an oxide. It was determined that
(試験例2)
 酸化インジウムスズと、12.5wt%の酸化ケイ素とからなるターゲットを用いて、以下のような条件にてDCマグネトロンスパッタによって成膜した。
 スパッタ装置:カルーセル型バッチ式スパッタ装置
 ターゲット寸法 :角型、厚さ6mm
 スパッタ方式 :DCマグネトロンスパッタ
 排気装置 :ターボ分子ポンプ
 到達真空度 :5×10-4Pa
 Ar流量 :450sccm(実施例4~6、対比例1)、150sccm(実施例7~11)
 酸素流量 :7.3sccm(実施例4~6、対比例1)、6.6sccm(実施例7~11)
 スパッタ圧 :0.4Pa(実施例4~6、対比例1)、0.15Pa(実施例7~11)
 基板温度 :70℃
 スパッタ電力 :1.55W/cm
 使用基板 :ガラス基板 t=1.1mm
(Test Example 2)
Using a target composed of indium tin oxide and 12.5 wt% silicon oxide, a film was formed by DC magnetron sputtering under the following conditions.
Sputtering equipment: Carousel type batch type sputtering equipment Target dimensions: Square type, thickness 6mm
Sputtering method: DC magnetron sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Ar flow rate: 450 sccm (Examples 4 to 6, proportional 1), 150 sccm (Examples 7 to 11)
Oxygen flow rate: 7.3 sccm (Examples 4 to 6, comparative 1), 6.6 sccm (Examples 7 to 11)
Sputtering pressure: 0.4 Pa (Examples 4 to 6, proportional 1), 0.15 Pa (Examples 7 to 11)
Substrate temperature: 70 ° C
Sputtering power: 1.55 W / cm 2
Substrate used: Glass substrate t = 1.1 mm
 ここで、酸素流量7.3sccmの場合は、膜厚が80,100,120,140Å(実施例4~6,対比例1)、酸素流量6.6sccmの場合は、80,90,100,110,120Å(実施例7~11)になるように成膜した。
 実施例4~6,対比例1のスパッタガス中の導入酸素の比率は、1.6%、実施例7~11のスパッタガス中の導入酸素の比率は、4.2%であった。
 なお、対比例1は、透過率が98%未満のため本発明の範囲外として対比例としたものである。
Here, when the oxygen flow rate is 7.3 sccm, the film thickness is 80, 100, 120, and 140 mm (Examples 4 to 6, proportional 1), and when the oxygen flow rate is 6.6 sccm, 80, 90, 100, and 110 , 120 mm (Examples 7 to 11).
The ratio of introduced oxygen in the sputtering gas of Examples 4 to 6 and Comparative Example 1 was 1.6%, and the ratio of introduced oxygen in the sputtering gas of Examples 7 to 11 was 4.2%.
Note that the contrast 1 is a contrast outside the scope of the present invention because the transmittance is less than 98%.
 表2,図9,図10は、実施例4~6、対比例1,実施例7~11の場合において、成膜された透明導電膜の膜厚とシート抵抗,比抵抗及び透過率との関係を示している。 Table 2, FIG. 9 and FIG. 10 show the film thickness, sheet resistance, specific resistance, and transmittance of the formed transparent conductive film in Examples 4 to 6, Comparative Example 1, and Examples 7 to 11. Showing the relationship.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2及び図9,図10より、成膜された透明導電膜は、膜厚80~120Åにおいて、比抵抗が10~10Ω・cm台で、かつ、550nmにおける透過率がいずれも略98%以上であり、従来にない高抵抗,高透過の透明導電膜が得られることが分かった。 From Table 2, FIG. 9, and FIG. 10, the formed transparent conductive film has a specific resistance of about 10 1 to 10 2 Ω · cm at a film thickness of 80 to 120 mm, and the transmittance at 550 nm is almost all. It was found that an unprecedented high resistance and high transmittance transparent conductive film was obtained.
(試験例3)
 試験例1で実施例1~3の透明導電膜を成膜した透明導電膜付きガラス基板を、120℃,大気中に0時間,1時間,2時間,3時間保持し、保持した後の各サンプルについてシート抵抗を測定する耐熱性試験を行った。
 測定結果を、図11に示す。
 耐熱性試験の結果、実施例1~3のいずれも、120℃,大気中に0時間,1時間,2時間,3時間保持した後、シート抵抗には殆ど変化はなく、120℃3時間までの条件については、高い耐熱性を有することが分かった。
(Test Example 3)
The glass substrate with a transparent conductive film on which the transparent conductive film of Examples 1 to 3 was formed in Test Example 1 was held at 120 ° C. in the atmosphere for 0 hour, 1 hour, 2 hours, 3 hours, and after each hold The sample was subjected to a heat resistance test for measuring sheet resistance.
The measurement results are shown in FIG.
As a result of the heat resistance test, in all of Examples 1 to 3, the sheet resistance hardly changed after being held at 120 ° C. in the atmosphere for 0 hour, 1 hour, 2 hours, 3 hours, up to 3 hours at 120 ° C. It was found that the film had high heat resistance.
(試験例4)
 試験例2で実施例4~6の透明導電膜を成膜した透明導電膜付きガラス基板を、120℃,大気中に0時間,1時間,2時間,3時間保持し、保持した後の各サンプルについてシート抵抗を測定する耐熱性試験を行った。
 測定結果を、図12に示す。
 耐熱性試験の結果、実施例4~6のいずれも、120℃,大気中に0時間,1時間,2時間,3時間保持した後、シート抵抗には大きな変化はなく、120℃3時間までの条件については、高い耐熱性を有することが分かった。
(Test Example 4)
The glass substrate with a transparent conductive film on which the transparent conductive film of Examples 4 to 6 was formed in Test Example 2 was held at 120 ° C. in the atmosphere for 0 hour, 1 hour, 2 hours, 3 hours, and after each hold The sample was subjected to a heat resistance test for measuring sheet resistance.
The measurement results are shown in FIG.
As a result of the heat resistance test, all of Examples 4 to 6 were maintained at 120 ° C. in the atmosphere for 0 hours, 1 hour, 2 hours, and 3 hours, and then the sheet resistance did not change greatly, and the temperature was 120 ° C. for 3 hours It was found that the film had high heat resistance.
(試験例5)
 試験例2で実施例4~6の透明導電膜を成膜した透明導電膜付きガラス基板を、温度60℃,湿度90%に設定した恒温恒湿槽内に0,90,150,198,246,342,582,750,1014時間保持し、保持した後の各サンプルについてシート抵抗を測定する耐湿性試験を行った。
 測定結果を、図13に示す。
 耐湿性試験の結果、実施例4~6は、60℃,90%に0時間~1014時間保持した後も、シート抵抗には大きな変化がなく、60℃,90%0時間~1014時間の条件については、膜厚が薄いと変化率が大きい傾向はあるものの、高い耐湿性を有することが分かった。
(Test Example 5)
The glass substrate with a transparent conductive film on which the transparent conductive film of Examples 4 to 6 was formed in Test Example 2 was placed in a constant temperature and humidity chamber set at a temperature of 60 ° C. and a humidity of 90%, at 0, 90, 150, 198, 246. , 342, 582, 750, and 1014 hours, and each sample after being held was subjected to a moisture resistance test for measuring sheet resistance.
The measurement results are shown in FIG.
As a result of the moisture resistance test, in Examples 4 to 6, the sheet resistance did not change greatly after being held at 60 ° C. and 90% for 0 to 1014 hours, and the conditions of 60 ° C. and 90% for 0 to 1014 hours were maintained. As for, although the rate of change tends to be large when the film thickness is thin, it was found to have high moisture resistance.
(試験例6)
 酸化インジウムスズと、12.5wt%の酸化ケイ素とからなるターゲットを用いて、以下のような条件にてDCマグネトロンスパッタによって成膜した。
 スパッタ装置:カルーセル型バッチ式スパッタ装置
 ターゲット寸法 :角型、厚さ6mm
 スパッタ方式 :DCマグネトロンスパッタ
 排気装置 :ターボ分子ポンプ
 到達真空度 :5×10-4Pa
 Ar流量 :450sccm
 酸素流量 :0,2,4,6,8,10sccm(それぞれ、対比例2,3,実施例12~14,対比例4)
 基板温度 :70℃
 スパッタ電力 :1.55W/cm
 使用基板 :ガラス基板 t=1.1mm
(Test Example 6)
Using a target composed of indium tin oxide and 12.5 wt% silicon oxide, a film was formed by DC magnetron sputtering under the following conditions.
Sputtering equipment: Carousel type batch type sputtering equipment Target dimensions: Square type, thickness 6mm
Sputtering method: DC magnetron sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Ar flow rate: 450 sccm
Oxygen flow rate: 0, 2, 4, 6, 8, 10 sccm (respectively proportional 2, 3, examples 12 to 14, comparative 4)
Substrate temperature: 70 ° C
Sputtering power: 1.55 W / cm 2
Substrate used: Glass substrate t = 1.1 mm
 対比例2,3,実施例12~14,対比例4のスパッタガス中の導入酸素の比率は、それぞれ、0%,0.4%,0.9%,1.3%,1.8%,2.2%であった。
 このとき、膜厚は、117~126Åの範囲になった。
The proportions of introduced oxygen in the sputtering gas of Comparative 2, 3, Examples 12-14, and Comparative 4 are 0%, 0.4%, 0.9%, 1.3%, and 1.8%, respectively. 2.2%.
At this time, the film thickness was in the range of 117 to 126 mm.
 表3,図14,図15は、酸素導入量とシート抵抗,比抵抗及び透過率との関係を示している。 Table 3, FIG. 14 and FIG. 15 show the relationship between the oxygen introduction amount and the sheet resistance, specific resistance and transmittance.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3及び図14,図15より、成膜された透明導電膜は、酸素流量2sccm以下の対比例2、3を除いて、98%以上の透過率が得られた。比抵抗については、酸素流量10sccmの対比例4では10Ω・cm台と所定の範囲を超えており、両方を考慮すると酸素流量4~8sccm(スパッタガス中の酸素濃度:0.88~1.75%)の範囲が適当であることがわかった。この範囲ではシート抵抗及び比抵抗の変化も小さいので、成膜時の制御の点からも有利である。 From Table 3, FIG. 14, and FIG. 15, the formed transparent conductive film obtained a transmittance of 98% or more, except for the proportions 2 and 3 with an oxygen flow rate of 2 sccm or less. As for the specific resistance, when the oxygen flow rate is 10 sccm, the proportionality 4 exceeds the predetermined range of 10 4 Ω · cm, and considering both, the oxygen flow rate is 4 to 8 sccm (oxygen concentration in the sputtering gas: 0.88 to 1). .75%) was found to be suitable. Within this range, changes in sheet resistance and specific resistance are small, which is advantageous from the viewpoint of control during film formation.
C 液晶セル
1 液晶
2 スペーサ
3 透明導電膜
4 駆動領域
5 感知領域
6 接地領域
7,37 粘着層
8 カバー
10 カラーフィルタ基板
11,21 ガラス基板
12 ブラックマトリクス
13 カラーフィルタ
15,25 配向膜
17,27 偏光板
20 TFT基板
24 画素電極(透明電極)
C Liquid crystal cell 1 Liquid crystal 2 Spacer 3 Transparent conductive film 4 Drive area 5 Sensing area 6 Ground area 7, 37 Adhesive layer 8 Cover 10 Color filter substrate 11, 21 Glass substrate 12 Black matrix 13 Color filter 15, 25 Alignment films 17, 27 Polarizing plate 20 TFT substrate 24 Pixel electrode (transparent electrode)

Claims (6)

  1.  ガラス基板に形成された透明導電膜であって、
     酸化インジウムスズ(ITO)を主材料とし、7.2~11.2at%のケイ素を含み、
     比抵抗が、10~10Ω・cm台、波長550nmにおける透過率が、98%以上であることを特徴とする透明導電膜。
    A transparent conductive film formed on a glass substrate,
    Indium tin oxide (ITO) as the main material, containing 7.2 to 11.2 at% silicon,
    A transparent conductive film having a specific resistance in the range of 10 0 to 10 3 Ω · cm and a transmittance at a wavelength of 550 nm of 98% or more.
  2.  ガラス基板に請求項1記載の透明導電膜が形成された透明導電膜付き基板であって、
     前記透明導電膜は、膜厚90~130Åの範囲にあり、
     シート抵抗が、10~10Ω/sq.台であることを特徴とする透明導電膜付き基板。
    A substrate with a transparent conductive film, wherein the transparent conductive film according to claim 1 is formed on a glass substrate,
    The transparent conductive film has a thickness in the range of 90 to 130 mm,
    Sheet resistance is 10 7 to 10 9 Ω / sq. A substrate with a transparent conductive film, characterized by being a table.
  3.  請求項2記載の透明導電膜付き基板を備えたIPS液晶セルであって、
     前記透明導電膜は、カラーフィルタ側ガラス基板の液晶反対側に設けられていることを特徴とするIPS液晶セル。
    An IPS liquid crystal cell comprising the substrate with a transparent conductive film according to claim 2,
    The IPS liquid crystal cell, wherein the transparent conductive film is provided on the opposite side of the liquid crystal of the color filter side glass substrate.
  4.  請求項3記載のIPS液晶セルを備えた静電容量型タッチパネルであって、
     静電容量検出電極が前記IPS液晶セル内に組み込まれていることを特徴とする静電容量型タッチパネル。
    A capacitive touch panel comprising the IPS liquid crystal cell according to claim 3,
    A capacitance type touch panel, wherein a capacitance detection electrode is incorporated in the IPS liquid crystal cell.
  5.  請求項2記載の透明導電膜付き基板の製造方法であって、
     前記ガラス基板上に、膜厚90~130Åで、シート抵抗が、10~10Ω/sq.台である前記透明導電膜を成膜することを特徴とする透明導電膜付き基板の製造方法。
    A method for producing a substrate with a transparent conductive film according to claim 2,
    On the glass substrate, a film thickness of 90 to 130 mm and a sheet resistance of 10 7 to 10 9 Ω / sq. A method for producing a substrate with a transparent conductive film, comprising forming the transparent conductive film as a base.
  6.  酸化インジウムスズ(ITO)を主材料とし、10~15wt%の酸化ケイ素を含有するターゲットを用い、酸素添加のアルゴンガスをスパッタガスとして導入して、DCマグネトロンスパッタにより前記透明導電膜を成膜することを特徴とする請求項5記載の透明導電膜付き基板の製造方法。 Using a target containing indium tin oxide (ITO) as a main material and containing 10 to 15 wt% silicon oxide, oxygen-added argon gas is introduced as a sputtering gas, and the transparent conductive film is formed by DC magnetron sputtering. The method for producing a substrate with a transparent conductive film according to claim 5.
PCT/JP2013/050439 2012-01-12 2013-01-11 Transparent electrically conductive film, substrate having transparent electrically conductive film attached thereto, ips liquid crystal cell, capacitive touch panel, and method for producing substrate having transparent electrically conductive film attached thereto WO2013105654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012004403A JP5855948B2 (en) 2012-01-12 2012-01-12 Transparent conductive film, substrate with transparent conductive film, IPS liquid crystal cell, capacitive touch panel, and method for manufacturing substrate with transparent conductive film
JP2012-004403 2012-01-12

Publications (1)

Publication Number Publication Date
WO2013105654A1 true WO2013105654A1 (en) 2013-07-18

Family

ID=48781595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050439 WO2013105654A1 (en) 2012-01-12 2013-01-11 Transparent electrically conductive film, substrate having transparent electrically conductive film attached thereto, ips liquid crystal cell, capacitive touch panel, and method for producing substrate having transparent electrically conductive film attached thereto

Country Status (3)

Country Link
JP (1) JP5855948B2 (en)
TW (1) TWI552169B (en)
WO (1) WO2013105654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981372A (en) * 2021-10-26 2022-01-28 京东方科技集团股份有限公司 High-resistance film, manufacturing method thereof, touch display panel and display device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6553950B2 (en) * 2015-05-27 2019-07-31 日東電工株式会社 Transparent conductive film and method for producing the same
CN106249930A (en) * 2015-06-05 2016-12-21 群创光电股份有限公司 Touch-control display panel and use its touch control display device
JP6779672B2 (en) * 2016-06-20 2020-11-04 株式会社アルバック Method for manufacturing a substrate with a transparent conductive film, a liquid crystal panel, and a substrate with a transparent conductive film
CN108028094B (en) * 2016-08-10 2020-03-27 株式会社爱发科 Substrate with transparent conductive layer and liquid crystal panel
JP6842927B2 (en) 2017-01-06 2021-03-17 株式会社ジャパンディスプレイ Touch detection device and display device with touch detection function
JP6849481B2 (en) 2017-03-02 2021-03-24 株式会社ジャパンディスプレイ Detection device and display device
CN110546299B (en) * 2017-05-15 2022-09-30 三井金属矿业株式会社 Sputtering target for transparent conductive film
WO2018211792A1 (en) * 2017-05-15 2018-11-22 三井金属鉱業株式会社 Sputtering target for transparent conductive film
JP7378952B2 (en) 2018-04-25 2023-11-14 ナガセケムテックス株式会社 Optical laminate having transparent conductive film and coating composition
JP6705526B2 (en) 2018-04-26 2020-06-03 三菱マテリアル株式会社 Shield layer, method for manufacturing shield layer, and oxide sputtering target
CN111902561B (en) * 2018-04-26 2022-04-08 三菱综合材料株式会社 Shield layer, method for producing shield layer, and oxide sputtering target
JP2020033639A (en) 2018-08-27 2020-03-05 三菱マテリアル株式会社 Oxide sputtering target and method for manufacturing the same
KR102102548B1 (en) 2018-12-11 2020-04-21 주식회사 네이션스 Substrate having transparent electrical shielding layer, and Touch screen display with transparent electrical shielding layer
JP7256647B2 (en) * 2019-01-29 2023-04-12 株式会社ジャパンディスプレイ Display device
JP2020204050A (en) * 2019-06-14 2020-12-24 株式会社アルバック Method for manufacturing transparent conductive film, transparent conductive film and sputtering target
US11181790B2 (en) 2019-11-11 2021-11-23 Lg Display Co., Ltd. Liquid crystal display device
JP2021088730A (en) 2019-12-02 2021-06-10 三菱マテリアル株式会社 Oxide sputtering target and oxide sputtering target production method
JP2024021364A (en) 2022-08-03 2024-02-16 シャープディスプレイテクノロジー株式会社 In-cell touch panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389656A (en) * 1986-10-01 1988-04-20 Agency Of Ind Science & Technol Electrically conductive transparent film and its formation
JPH04206403A (en) * 1990-11-30 1992-07-28 Nitto Denko Corp Transparent conductive coating, transparent conductive film and analogue touch panel
JP2003105532A (en) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
JP2003277921A (en) * 2002-03-19 2003-10-02 Nikko Materials Co Ltd Sputtering target for high resistance transparent electroconductive film
JP2007138266A (en) * 2005-11-21 2007-06-07 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW256931B (en) * 1993-02-24 1995-09-11 Sumitomo Metal Mining Co
JPH07196365A (en) * 1993-12-28 1995-08-01 Showa Denko Kk Sintered ito, ito clear conductive layer and formation thereof
TW446637B (en) * 1996-05-28 2001-07-21 Mitsui Chemicals Inc Transparent laminates and optical filters for displays using the same
JP2001307553A (en) * 2000-04-24 2001-11-02 Geomatec Co Ltd Transparent conductive film, its manufacturing method, and its application
US6908574B2 (en) * 2001-08-13 2005-06-21 Dowa Mining Co., Ltd. Tin-containing indium oxides, a process for producing them, a coating solution using them and electrically conductive coatings formed of them
WO2009044897A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide transparent conductive film and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389656A (en) * 1986-10-01 1988-04-20 Agency Of Ind Science & Technol Electrically conductive transparent film and its formation
JPH04206403A (en) * 1990-11-30 1992-07-28 Nitto Denko Corp Transparent conductive coating, transparent conductive film and analogue touch panel
JP2003105532A (en) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
JP2003277921A (en) * 2002-03-19 2003-10-02 Nikko Materials Co Ltd Sputtering target for high resistance transparent electroconductive film
JP2007138266A (en) * 2005-11-21 2007-06-07 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981372A (en) * 2021-10-26 2022-01-28 京东方科技集团股份有限公司 High-resistance film, manufacturing method thereof, touch display panel and display device

Also Published As

Publication number Publication date
TW201333985A (en) 2013-08-16
JP5855948B2 (en) 2016-02-09
JP2013142194A (en) 2013-07-22
TWI552169B (en) 2016-10-01

Similar Documents

Publication Publication Date Title
JP5855948B2 (en) Transparent conductive film, substrate with transparent conductive film, IPS liquid crystal cell, capacitive touch panel, and method for manufacturing substrate with transparent conductive film
TWI233570B (en) Touch panel display apparatus and method of fabricating the same
JP5375536B2 (en) Capacitive touch panel, method of manufacturing the same, and liquid crystal display device including the touch panel
US10281616B2 (en) Transparent body for use in a touch panel having structured transparent conductive film directly between first and second transparent layer stacks, method of making, and apparatus for making
US10365508B2 (en) Touch control display device having high resistance layer
CN101681069B (en) Transparent electrode
KR102042081B1 (en) Method for producing a substrate with a transparent conductive layer, a liquid crystal panel and a substrate with a transparent conductive layer
CN104145239A (en) Input device
JP2000113732A (en) Transparent conductive film, its manufacture, substrate with transparent conductive film, and touch panel
JP6779672B2 (en) Method for manufacturing a substrate with a transparent conductive film, a liquid crystal panel, and a substrate with a transparent conductive film
KR101755694B1 (en) Touch panel, method for manufacturing the same and liquid crystla display comprising touch panel
US20190064569A1 (en) Antistatic film and display input device
CN107430466B (en) Layer system for a touch screen panel, method for manufacturing a layer system for a touch screen panel and touch screen panel
JP2007188707A (en) Transparent conductive film and its manufacturing method, and touch panel
JP2015003493A (en) Transparent conductive film-provided structure, element and electronic apparatus
KR102102548B1 (en) Substrate having transparent electrical shielding layer, and Touch screen display with transparent electrical shielding layer
KR101492215B1 (en) ULTRATHIN ITO:Ce FILM DEPOSITED BY RF SUPERIMPOSED DC MAGNETRON SPUTTERING, A PREPARATION METHOD OF THE FILM AND A TOUCH PANEL INCLUDING THE SAME
JP2013175240A (en) Capacitance type touch panel and liquid crystal display device provided with touch panel
JP2014182252A (en) Transparent electrode substrate, color filter and display unit
TW201005617A (en) Optical display having touch function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13736227

Country of ref document: EP

Kind code of ref document: A1