[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013105421A1 - 逆浸透処理方法 - Google Patents

逆浸透処理方法 Download PDF

Info

Publication number
WO2013105421A1
WO2013105421A1 PCT/JP2012/083288 JP2012083288W WO2013105421A1 WO 2013105421 A1 WO2013105421 A1 WO 2013105421A1 JP 2012083288 W JP2012083288 W JP 2012083288W WO 2013105421 A1 WO2013105421 A1 WO 2013105421A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
water
iron
osmosis treatment
treatment method
Prior art date
Application number
PCT/JP2012/083288
Other languages
English (en)
French (fr)
Inventor
育野 望
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020147014515A priority Critical patent/KR102021627B1/ko
Priority to CN201280066633.1A priority patent/CN104039713B/zh
Priority to JP2013553236A priority patent/JP6135511B2/ja
Priority to SG11201403820YA priority patent/SG11201403820YA/en
Publication of WO2013105421A1 publication Critical patent/WO2013105421A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen

Definitions

  • the present invention relates to a reverse osmosis treatment method, and more particularly, to a method of reverse osmosis treatment after adding an iron-based inorganic flocculant to water to be treated, followed by solid-liquid separation.
  • Patent Document 1 discloses a method of performing membrane separation treatment with a reverse osmosis membrane device (hereinafter sometimes referred to as RO device) after adding ferric chloride to water to be treated, separating by pressure floating and sand filtering. It is well-known as described in 2 etc.
  • RO device reverse osmosis membrane device
  • a scale dispersant is also added to the RO water supply (Patent Documents 3 and 4).
  • Patent Document 5 paragraph 0003 describes that the flocculant made of iron chloride contains Mn (manganese), and the 38% concentration of ferric chloride solution contains 400 to 1000 mg / L of manganese. Has been.
  • An object of the present invention is to provide a reverse osmosis treatment method capable of preventing deterioration of an RO membrane due to heavy metals in an iron-based inorganic flocculant.
  • the reverse osmosis treatment method of the present invention is a reverse osmosis treatment method in which an iron-based inorganic flocculant is added to water to be treated, solid-liquid separated, and then treated with a reverse osmosis device. A scale inhibitor and a scale dispersant are added.
  • the present invention is suitable for application when the total content of Mn, Zn and Ni in the iron-based inorganic flocculant is 0.05% by weight or more.
  • an iron-based inorganic flocculant is added to the water to be treated, and the separated water that has been subjected to solid-liquid separation is used as RO water supply.
  • a chelate scale inhibitor is added to the RO water supply.
  • Water to be treated examples include industrial water, river water, lake water, well water, biologically treated water of organic waste water, waste water from various manufacturing processes and cleaning processes, and the like.
  • iron-based inorganic flocculant examples include ferric chloride and polyiron sulfate, and particularly ferric chloride having a high heavy metal content.
  • Ni and Zn in the iron-based inorganic flocculant is 0.05 wt% or more and 5 wt% or less, for example 0.1 wt% or more and 2 wt% or less It is effective.
  • the amount of iron-based inorganic flocculant added to the water to be treated is preferably determined experimentally by jar test or the like.
  • the amount of the iron-based inorganic flocculant added to the water to be treated is usually about 10 to 400 mg / L, although it varies depending on the quality of the water to be treated.
  • an iron-based inorganic flocculant When an iron-based inorganic flocculant is added to the water to be treated, it is preferable to add a pH adjuster as necessary to adjust the pH to 4 to 8, particularly about 5 to 8, and perform the flocculant treatment.
  • the pH adjuster include acids such as hydrochloric acid and sulfuric acid, and alkalis such as sodium hydroxide, but are not limited thereto.
  • a polymer flocculant such as an anionic polymer flocculant may be added.
  • Solid-liquid separation As solid-liquid separation after the flocculation treatment, it is desirable to use both floating separation or sedimentation separation and filtration for passing water through the filter medium layer. Sand, anthracite, or the like can be used as the filter medium.
  • chelate scale inhibitor ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), or the like is preferably used. These chelate-based scale inhibitors may be used alone or in combination of two or more.
  • the amount of addition of a chelate scale inhibitor such as EDTA or NTA is preferably 20 times or more, particularly 30 to 40 times the total equivalent weight of heavy metals of Mn, Zn and Ni in the RO water supply.
  • a chelate scale inhibitor such as EDTA or NTA
  • the chelate scale inhibitor forms a chelate compound with the heavy metal in the RO water supply, solubilizes the heavy metal, so that the heavy metal flows out together with the concentrated water from the RO device, and the heavy metal is RO Adhering to the membrane surface is prevented, and deterioration of the RO membrane due to the catalytic action of heavy metals is prevented.
  • Scale dispersants include (meth) acrylic acid polymers and salts thereof, low molecular weight polymers such as maleic acid polymers and salts thereof, ethylenediaminetetramethylenephosphonic acid and salts thereof, hydroxyethylidene diphosphonic acid and salts thereof, nitrilotrimethylene Use phosphonic acid and phosphonate such as phosphonic acid and its salt, phosphonobutane tricarboxylic acid and its salt, hexametaphosphoric acid and its salt, inorganic polyphosphoric acid and inorganic polymeric phosphate such as tripolyphosphoric acid and its salt, etc. be able to. These scale dispersants may be used alone or in combination of two or more. The amount of the scale dispersant added is preferably about 1 to 100 mg / L with respect to the solid-liquid separated water that is the water supplied to the RO apparatus.
  • Example 1 A simulated waste water (Ca: 100 mg / L, F: 13 mg / L, pH 3) of HF waste water is prepared and introduced into the reaction tank 1 as shown in FIG. 1, and sodium hydroxide is added to adjust the pH to 6-7. While adjusting, ferric chloride was added so that the density
  • the effluent water from the reaction tank 1 is introduced into the coagulation tank 2 and reacted, and then subjected to pressure levitation treatment in the pressure levitation tank 3, and the treated water is treated with the two-layer filter 4 (filter medium: sand, anthracite). And filtered. 10 mg / L of Wellclin A801 (manufactured by Kurita Kogyo) as a chelate scale inhibitor is added to the filtered water of the filter 4, and 10 mg / L of Clifloat N900 (manufactured by Kurita Kogyo) is added as a scale dispersant, and then the RO device.
  • RO membrane treatment was performed at 5.
  • the RO membrane was Nitto Denko ES-20, and the recovery rate was 85%.
  • FIG. 2 shows changes over time in the desalting rate and the differential pressure of the RO device 5.
  • FIG. 2 shows changes over time in the desalting rate and the differential pressure of the RO device 5.
  • the RO membrane is prevented from deteriorating and the desalination rate is maintained high over a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

 鉄系無機凝集剤中の重金属によるRO膜の劣化を防止することができる逆浸透処理方法を提供する。被処理水に鉄系無機凝集剤を添加し、浮上分離及び二層濾過などによって固液分離した後、逆浸透装置で処理する逆浸透処理方法において、該逆浸透装置への給水にキレート系スケール抑制剤とスケール分散剤とを添加する。キレート系スケール抑制剤は、エチレンジアミン四酢酸又はニトリロ三酢酸が好適である。

Description

逆浸透処理方法
 本発明は、逆浸透処理方法に係り、特に被処理水に鉄系無機凝集剤を添加し、固液分離した後、逆浸透処理する方法に関する。
 被処理水に塩化第二鉄を添加した後、加圧浮上分離し、砂濾過した後、逆浸透膜装置(以下、RO装置ということがある。)で膜分離処理する方法は特許文献1,2等に記載の通り周知である。RO処理に際し、RO給水にスケール分散剤を添加することも行われている(特許文献3,4)。
 特許文献5の0003段落には、塩化鉄よりなる凝集剤にはMn(マンガン)が含まれており、38%濃度の塩化第二鉄溶液にはマンガンが400~1000mg/L存在することが記載されている。
特開2009-240974 特開2008-246386 特開平5-269463 特開平10-202066 特開2006-342007
 被処理水に鉄系無機凝集剤を添加し、固液分離した後、RO処理する方法において、鉄系無機凝集剤中のMn等の重金属がRO膜表面に付着し、これが酸化触媒として作用し、RO膜を劣化させることがある。
 本発明は、鉄系無機凝集剤中の重金属によるRO膜の劣化を防止することができる逆浸透処理方法を提供することを目的とする。
 本発明の逆浸透処理方法は、被処理水に鉄系無機凝集剤を添加し、固液分離した後、逆浸透装置で処理する逆浸透処理方法において、該逆浸透装置への給水にキレート系スケール抑制剤とスケール分散剤とを添加することを特徴とするものである。
 本発明は、鉄系無機凝集剤中のMn、Zn及びNiの合計の含有率が0.05重量%以上である場合に適用するのに好適である。
 本発明では、被処理水に鉄系無機凝集剤を添加し、固液分離した分離水をRO給水とする。このRO給水に対しスケール分散剤の他にさらにキレート系スケール抑制剤を添加する。これにより、重金属の酸化触媒作用によるRO膜の劣化が防止される。
実施の形態に係る逆浸透処理方法の説明図である。 実施例1と比較例1の結果を示すグラフである。
 以下、本発明についてさらに詳細に説明する。
[被処理水]
 被処理水としては、工業用水、河川水、湖沼水、井水などの他、有機性排水の生物処理水、各種製造工程や洗浄工程からの排水などが例示される。
[鉄系無機凝集剤]
 鉄系無機凝集剤としては、塩化第二鉄、ポリ硫酸鉄などが挙げられるが、特に重金属含有率が高い塩化第二鉄が挙げられる。この鉄系無機凝集剤中のMn、Ni及びZnの合計の含有率が0.05重量%以上5重量%以下、例えば0.1重量%以上2重量%以下である場合に本発明を適用すると効果的である。被処理水への鉄系無機凝集剤の添加量は、ジャーテストなどによって実験的に定めるのが好ましい。被処理水への鉄系無機凝集剤の添加量は、被処理水の水質等によっても異なるが、通常10~400mg/L程度である。
 被処理水に鉄系無機凝集剤を添加した場合、必要に応じpH調整剤を添加してpHを4~8特に5~8程度に調整して凝集処理することが好ましい。pH調整剤としては、塩酸、硫酸などの酸や、水酸化ナトリウム等のアルカリが用いられるが、これらに限定されない。鉄系無機凝集剤を添加した後アニオン性ポリマー凝集剤などのポリマー凝集剤を添加してもよい。
[固液分離]
 凝集処理後の固液分離としては、浮上分離又は沈降分離と、濾材層に通水する濾過とを併用することが望ましい。濾材としては、砂、アンスラサイトなどを用いることができる。
[キレート系スケール抑制剤]
 キレート系スケール抑制剤としては、エチレンジアミン四酢酸(EDTA)やニトリロ三酢酸(NTA)などが好適に用いられる。これらのキレート系スケール抑制剤は1種を単独で用いても良く、2種以上を併用しても良い。
 EDTA、NTA等のキレート系スケール抑制剤の添加量は、RO給水中のMn、Zn及びNiの重金属合計当量の20倍量以上特に30~40倍量が好ましい。このキレート系スケール抑制剤の添加により、キレート系スケール抑制剤がRO給水中の重金属とキレート系化合物を形成し、重金属を可溶化するので重金属がRO装置からの濃縮水と共に流出し、重金属がRO膜面に付着することが防止され、重金属の触媒作用に起因したRO膜の劣化が防止される。
[スケール分散剤]
 スケール分散剤としては、(メタ)アクリル酸重合体及びその塩、マレイン酸重合体及びその塩などの低分子量ポリマー、エチレンジアミンテトラメチレンホスホン酸及びその塩、ヒドロキシエチリデンジホスホン酸及びその塩、ニトリロトリメチレンホスホン酸及びその塩、ホスホノブタントリカルボン酸及びその塩などのホスホン酸及びホスホン酸塩、ヘキサメタリン酸及びその塩、トリポリリン酸及びその塩などの無機重合リン酸及び無機重合リン酸塩などを使用することができる。これらのスケール分散剤は1種を単独で用いても良く、2種以上を併用しても良い。
 スケール分散剤の添加量は、RO装置の給水である固液分離水に対して1~100mg/L程度とすることが好ましい。
[実施例1]
 HF排水処理水の模擬排水(Ca:100mg/L、F:13mg/L、pH3)を調製し、図1の通り反応槽1に導入し、水酸化ナトリウムを添加してpH=6~7に調整すると共に、塩化第二鉄を反応槽1内の濃度が150mg/Lとなるように添加した。この塩化第二鉄中のMn含有率は1重量%、Ni含有率は0.05重量%、Zn含有率は0.05重量%であった。反応槽1からの流出水を、凝集槽2に導入して、反応させた後、加圧浮上槽3で加圧浮上処理し、処理水を二層濾過器4(濾材:砂、アンスラサイト)にて濾過した。濾過器4の濾過水にキレート系スケール抑制剤としてウェルクリンA801(栗田工業製)を10mg/L添加し、スケール分散剤としてクリフロートN900(栗田工業製)を10mg/L添加し、次いでRO装置5にてRO膜処理した。RO膜は日東電工製ES-20であり、回収率は85%とした。RO装置5の脱塩率と差圧の経時変化を図2に示す。
[比較例1]
 キレート系スケール抑制剤を添加しなかったこと以外は実施例1と同一条件にて処理を行った。RO装置5の脱塩率と差圧の経時変化を図2に示す。
 図2の通り、本発明によると、RO膜の劣化が防止され、長期にわたって脱塩率が高く維持される。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2012年1月11日付で出願された日本特許出願(特願2012-003287)に基づいており、その全体が引用により援用される。

Claims (8)

  1.  被処理水に鉄系無機凝集剤を添加し、固液分離した後、逆浸透装置で処理する逆浸透処理方法において、
     該逆浸透装置への給水にキレート系スケール抑制剤とスケール分散剤とを添加することを特徴とする逆浸透処理方法。
  2.  請求項1において、キレート系スケール抑制剤は、エチレンジアミン四酢酸及び/又はニトリロ三酢酸であることを特徴とする逆浸透処理方法。
  3.  請求項1又は2において、スケール分散剤は(メタ)アクリル酸重合体及びその塩、並びにマレイン酸重合体及びその塩よりなる群から選ばれる少なくとも1種であることを特徴とする逆浸透処理方法。
  4.  請求項1ないし3のいずれか1項において、前記鉄系無機凝集剤は、Mn、Zn及びNiの合計の含有率が0.05重量%以上であることを特徴とする逆浸透処理方法。
  5.  請求項1ないし4のいずれか1項において、前記被処理水に前記鉄系無機凝集剤を10~400mg/L添加することを特徴とする逆浸透処理方法。
  6.  請求項1ないし5のいずれか1項において、前記キレート系スケール抑制剤の添加量が、前記給水中のMn、Zn及びNiの重金属合計当量の20倍量以上であることを特徴とする逆浸透処理方法。
  7.  請求項1ないし6のいずれか1項において、前記給水にスケール分散剤を1~200mg/L添加することを特徴とする逆浸透処理方法。
  8.  請求項1ないし7のいずれか1項において、前記被処理水に鉄系無機凝集剤を添加してpH4~8で凝集処理した後固液分離することを特徴とする逆浸透処理方法。
PCT/JP2012/083288 2012-01-11 2012-12-21 逆浸透処理方法 WO2013105421A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147014515A KR102021627B1 (ko) 2012-01-11 2012-12-21 역침투 처리 방법
CN201280066633.1A CN104039713B (zh) 2012-01-11 2012-12-21 逆渗透处理方法
JP2013553236A JP6135511B2 (ja) 2012-01-11 2012-12-21 逆浸透処理方法
SG11201403820YA SG11201403820YA (en) 2012-01-11 2012-12-21 Reverse osmosis treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012003287 2012-01-11
JP2012-003287 2012-01-11

Publications (1)

Publication Number Publication Date
WO2013105421A1 true WO2013105421A1 (ja) 2013-07-18

Family

ID=48781379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083288 WO2013105421A1 (ja) 2012-01-11 2012-12-21 逆浸透処理方法

Country Status (6)

Country Link
JP (1) JP6135511B2 (ja)
KR (1) KR102021627B1 (ja)
CN (1) CN104039713B (ja)
SG (2) SG10201700194QA (ja)
TW (1) TWI606014B (ja)
WO (1) WO2013105421A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059194A (ja) * 2000-08-23 2002-02-26 Nippon Steel Corp 原水の処理方法
JP2002191942A (ja) * 2000-12-22 2002-07-10 Sumitomo Heavy Ind Ltd 排水処理方法
JP2003071252A (ja) * 2001-09-06 2003-03-11 Nitto Denko Corp 多段式逆浸透処理方法
JP2006007145A (ja) * 2004-06-28 2006-01-12 Takuma Co Ltd 一般ごみ焼却場排水の処理方法
JP2009006209A (ja) * 2007-06-26 2009-01-15 Toray Ind Inc 中空糸膜モジュールの洗浄方法
JP2009066508A (ja) * 2007-09-12 2009-04-02 Kurita Water Ind Ltd 有機物含有水の凝集処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269463A (ja) 1992-03-24 1993-10-19 Kurita Water Ind Ltd 膜分離装置
JP3752761B2 (ja) 1997-01-16 2006-03-08 栗田工業株式会社 逆浸透膜処理方法
JP5029982B2 (ja) 2005-06-07 2012-09-19 鶴見曹達株式会社 塩化鉄水溶液の精製法
JP5223219B2 (ja) 2007-03-30 2013-06-26 栗田工業株式会社 有機性排水の処理装置
JP5348369B2 (ja) 2008-03-31 2013-11-20 栗田工業株式会社 水処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059194A (ja) * 2000-08-23 2002-02-26 Nippon Steel Corp 原水の処理方法
JP2002191942A (ja) * 2000-12-22 2002-07-10 Sumitomo Heavy Ind Ltd 排水処理方法
JP2003071252A (ja) * 2001-09-06 2003-03-11 Nitto Denko Corp 多段式逆浸透処理方法
JP2006007145A (ja) * 2004-06-28 2006-01-12 Takuma Co Ltd 一般ごみ焼却場排水の処理方法
JP2009006209A (ja) * 2007-06-26 2009-01-15 Toray Ind Inc 中空糸膜モジュールの洗浄方法
JP2009066508A (ja) * 2007-09-12 2009-04-02 Kurita Water Ind Ltd 有機物含有水の凝集処理方法

Also Published As

Publication number Publication date
CN104039713B (zh) 2016-08-24
TW201343566A (zh) 2013-11-01
JPWO2013105421A1 (ja) 2015-05-11
SG10201700194QA (en) 2017-03-30
KR20140109867A (ko) 2014-09-16
SG11201403820YA (en) 2014-11-27
JP6135511B2 (ja) 2017-05-31
KR102021627B1 (ko) 2019-11-04
CN104039713A (zh) 2014-09-10
TWI606014B (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
JP5873771B2 (ja) 有機性廃水の処理方法及び処理装置
US9758394B2 (en) Treatment of contaminated water from gas wells
US8119008B2 (en) Fluid purification methods and devices
JP5489982B2 (ja) 被処理水の逆浸透膜による分離のための前処理方法
Cheng et al. In-line coagulation/ultrafiltration for silica removal from brackish water as RO membrane pretreatment
Hawari et al. Dilution of seawater using dewatered construction water in a hybrid forward osmosis system
JP2012196614A (ja) 排水処理方法および排水処理システム
TWI387562B (zh) Process and treatment device for water containing biological treatment water
Ćurko et al. As (V) removal from drinking water by coagulation and filtration through immersed membrane
Krupińska Removal of iron and organic substances from groundwater in an alkaline medium
JP2006095425A (ja) 廃水の生物処理水含有水の浄化方法及び浄化装置
Kucera Reverse osmosis: Fundamental causes of membrane deposition and approaches to mitigation
JP5884493B2 (ja) 重金属含有排水の処理方法
WO2018030109A1 (ja) 膜ろ過方法及び膜ろ過システム
JP2011056411A (ja) 被処理水の淡水化システムおよび淡水化方法
JP6135511B2 (ja) 逆浸透処理方法
JP2005224761A (ja) 純水又は超純水の製造方法
JP4598415B2 (ja) 有機ヒ素化合物処理方法
JP2004267830A (ja) 生物処理水含有水の処理方法
JP2008062223A (ja) 膜ろ過方法及び膜ろ過処理システム
JP2016093789A (ja) 水処理方法及び水処理システム
JP7460004B1 (ja) フッ素含有排水の処理装置及び方法
JP7520764B2 (ja) 水処理方法及びその装置
JP2009233633A (ja) 水処理方法および水処理装置
JP2014046235A (ja) 造水方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553236

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147014515

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865095

Country of ref document: EP

Kind code of ref document: A1