[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013100107A1 - Optical glass, optical element, and preform - Google Patents

Optical glass, optical element, and preform Download PDF

Info

Publication number
WO2013100107A1
WO2013100107A1 PCT/JP2012/083996 JP2012083996W WO2013100107A1 WO 2013100107 A1 WO2013100107 A1 WO 2013100107A1 JP 2012083996 W JP2012083996 W JP 2012083996W WO 2013100107 A1 WO2013100107 A1 WO 2013100107A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
glass
optical glass
optical
cation
Prior art date
Application number
PCT/JP2012/083996
Other languages
French (fr)
Japanese (ja)
Inventor
裕次 川中
浩人 野嶋
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Publication of WO2013100107A1 publication Critical patent/WO2013100107A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus

Definitions

  • the present invention relates to an optical glass, an optical element, and a preform.
  • the lens system of an optical device is usually designed by combining a plurality of glass lenses having different optical properties.
  • optical glasses having optical properties that have not been used in the past have been used as optical elements such as spherical and aspherical lenses in order to further increase the degree of freedom in designing lens systems of diversifying optical devices.
  • those having different refractive indices and dispersion tendencies have been developed for the purpose of reducing chromatic aberration in the entire optical system.
  • a glass represented by Patent Document 1 is known as an optical glass having a refractive index of 1.53 or more and an Abbe number of 60 or more.
  • the conventional optical glass as described in Patent Document 1 has an insufficient refractive index. That is, development of an optical glass having a higher refractive index while having a high Abbe number of 60 or more is desired.
  • a method of producing an optical element from optical glass for example, a method of obtaining a shape of an optical element by grinding and polishing a gob or glass block formed from optical glass, formed from optical glass
  • a method for obtaining the shape of an optical element by molding with a mold (precision mold press molding) is known. Any method is required to obtain a stable glass when a gob or glass block is formed from a molten glass raw material.
  • the stability devitrification resistance
  • an object of the present invention is to provide an optical glass having a higher refractive index and higher devitrification resistance while having a desired high Abbe number, and a preform and an optical element using the optical glass. is there.
  • the present inventors diligently studied to solve the above problems and completed the present invention. Specifically, the present invention provides the following.
  • P 5+ and Al 3+ are contained as the cation component, the content of Al 3+ is 25.0% or less, O 2 ⁇ and F ⁇ are contained as the anion component, An optical glass having a refractive index (nd) of 1.53 or more.
  • Mg 2+ content 0-20.0%
  • Ca 2+ content is 0-30.0%
  • Sr 2+ content is 0-30.0%
  • Ba 2+ content is 0-50.0%
  • the optical glass according to any one of (1) to (3).
  • La 3+ content is 0-10.0%
  • the content of Gd 3+ is 0 to 10.0%
  • the content of Y 3+ is 0 to 10.0%
  • Yb 3+ content is 0-20.0%
  • Lu 3+ content is 0-10.0%
  • the optical glass according to any one of (1) to (8).
  • Si 4+ content is 0-10.0%
  • Zn 2+ content 0-30.0%
  • Nb 5+ content is 0 to 10.0%
  • Ti 4+ content is 0-10.0%
  • the content of Zr 4+ is 0 to 10.0%
  • Ta 5+ content is 0-10.0%
  • the content of W 6+ is 0 to 10.0%
  • Ge 4+ content is 0-10.0%
  • Bi 3+ content is 0-10.0%
  • Te 4+ content is 0-15.0%
  • the optical glass according to any one of (1) to (12).
  • optical glass according to any one of (1) to (14), which has an Abbe number ( ⁇ d) of 60 or more.
  • a preform for polishing and / or precision press molding comprising the optical glass according to any one of (1) to (16).
  • an optical glass having a higher refractive index and a higher devitrification resistance while having a desired high Abbe number, and a preform and an optical element using the optical glass. it can.
  • the optical glass of the present invention contains P 5+ and Al 3+ as the cation component, the content of Al 3+ is 25.0% or less, contains O 2 ⁇ and F ⁇ as the anion component, and has a refractive index (nd ) Is 1.53 or more.
  • nd refractive index
  • the refractive index and Abbe number of the glass can be increased.
  • P 5+ as the cation component and F ⁇ as the anion component the devitrification resistance of the glass is enhanced while a desired high Abbe number is obtained. Therefore, it is possible to obtain an optical glass having a higher refractive index and high devitrification resistance while having a desired high Abbe number.
  • optical glass of the present invention will be described.
  • the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention.
  • description may be abbreviate
  • ⁇ Glass component> Each component which comprises the optical glass of this invention is demonstrated.
  • the content of each component is expressed in terms of cation% or anion% based on the molar ratio.
  • cation% and anion% are glass constituents of the optical glass of the present invention. Is divided into a cation component and an anion component, and the total ratio is 100 mol% in each, and the content of each component contained in the glass is described.
  • the ionic value of each component uses only a representative value for convenience, it is not distinguished from other ionic values.
  • the ionic valence of each component present in the optical glass may be other than the representative value.
  • P is normally present in the glass in a state where the ionic valence is pentavalent, it is expressed as “P 5+ ” in this specification, but may exist in other ionic valence states.
  • each component is treated as being present in the glass with a representative ionic valence even if it exists in another ionic valence state.
  • the content of P 5+ is preferably 10.0%, more preferably 20.0%, and still more preferably 30.0%.
  • the upper limit of the content of P 5+ is preferably 70.0%, more preferably 60.0%, more preferably 50.0%, and more preferably 45.0%.
  • Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , Zn (PO 3 ) 2 , BPO 4 , H 3 PO 4 and the like can be used as raw materials.
  • the content of Al 3+ is preferably more than 0%, more preferably 1.0%, more preferably 5.0%, and still more preferably 10.0%.
  • the upper limit of the Al 3+ content is preferably 25.0%, more preferably 22.0%, even more preferably 20.0%, and even more preferably less than 17.0%.
  • Al 3+ can use Al (PO 3 ) 3 , AlF 3 , Al 2 O 3 or the like as a raw material.
  • B 3+ is a component that itself increases the refractive index, and is an optional component that can increase the devitrification resistance when using Yb 3+ or Ba 2+ components, which are other components that increase the refractive index. That is, when B 3+ is contained more than 0%, the refractive index and devitrification resistance of the glass can be improved. Therefore, the content of B 3+ is preferably more than 0%, more preferably 0.1%, still more preferably 1.0%, and even more preferably 3.0%. On the other hand, deterioration of chemical durability can be suppressed by setting the content of B 3+ to 15.0% or less. Therefore, the upper limit of the content of B 3+ is preferably 15.0%, more preferably 12.0%, and still more preferably 10.0%. B 3+ can be used H 3 BO 3, Na 2 B 4 O 7, BPO 4 , etc. as a raw material.
  • Mg 2+ is an optional component that can enhance the devitrification resistance of the glass when it is contained in an amount of more than 0%.
  • the fall of the refractive index of glass can be suppressed by making content rate of Mg2 + into 20.0% or less.
  • the upper limit of the Mg 2+ content is preferably 20.0%, more preferably 10.0%, still more preferably 7.0%, and even more preferably 3.0%.
  • Mg 2+ may be used MgO, the MgF 2 or the like as a raw material.
  • Ca 2+ is an optional component that can increase the devitrification resistance of the glass and suppress the decrease in the refractive index when it is contained in excess of 0%. Therefore, the Ca 2+ content is preferably more than 0%, more preferably 1.0%, and even more preferably 2.0%. On the other hand, by setting the Ca 2+ content to 30.0% or less, it is possible to suppress devitrification resistance and a decrease in refractive index of the glass due to excessive Ca 2+ content. Therefore, the Ca 2+ content is preferably 30.0%, more preferably 20.0%, and even more preferably 10.0%. Ca 2+ can use Ca (PO 3 ) 2 , CaCO 3 , CaF 2 or the like as a raw material.
  • Sr 2+ is an optional component that can enhance the devitrification resistance of the glass and suppress the decrease in the refractive index when it is contained in an amount of more than 0%.
  • the Sr 2+ content is preferably 30.0%, more preferably 20.0%, and still more preferably 10.0%.
  • Sr 2+ can use Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
  • Ba 2+ is an optional component that can maintain low dispersibility and increase the refractive index while increasing the devitrification resistance of the glass when it contains more than 0%. Accordingly, the Ba 2+ content is preferably more than 0%, more preferably 10.0%, even more preferably 20.0%, even more preferably more than 25.0%, and even more preferably 29.0%. Also good. On the other hand, the fall of the devitrification resistance of the glass by excessive containing of Ba2 + is suppressed by making the content rate of Ba2 + into 50.0% or less. Accordingly, the upper limit of the Ba 2+ content is preferably 50.0%, more preferably 40.0%, more preferably 37.0%. As Ba 2+ , Ba (PO 3 ) 2 , BaCO 3 , Ba (NO 3 ) 2 , BaF 2, or the like can be used as a raw material.
  • the total content of P 5+ , B 3+ and Ba 2+ is preferably 30.0% or more and 80.0% or less.
  • the total content (P 5+ + B 3+ + Ba 2+ ) is preferably 30.0%, more preferably 50.0%, further preferably 55.0%, more preferably 60.0%, Preferably it is over 65.0%.
  • the fall of devitrification resistance by excessive inclusion of these components can be suppressed by making this total content rate into 80.0% or less. Therefore, the total content (P 5+ + B 3+ + Ba 2+ ) is preferably 80.0%, more preferably 78.0%, and still more preferably 76.0%.
  • the total content of P 5+ , B 3+ , Ba 2+ and Al 3+ is preferably 95.0% or less.
  • the total content (P 5+ + B 3+ + Ba 2+ + Al 3+ ) is preferably 95.0%, more preferably 93.0%, and still more preferably 91.0%.
  • devitrification resistance can be improved by these components by making this total content rate 30.0% or more.
  • the total content (P 5+ + B 3+ + Ba 2+ + Al 3+ ) is preferably 30.0%, more preferably 50.0%, still more preferably 70.0%, still more preferably 80.0%, and even more preferably May be 85.0% as a lower limit.
  • Alkaline earth metal means one or more selected from the group consisting of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
  • One or more selected from the group consisting of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ may be represented as R 2+ .
  • the total content of R 2+ means the total content of one or more of these four ions (for example, Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ ).
  • the total content of R 2+ is preferably 60.0% or less. Thereby, devitrification due to excessive inclusion of R 2+ can be reduced. Therefore, the total content of R 2+ is preferably 60.0%, more preferably 50.0%, more preferably 45.0%, and still more preferably 41.0%.
  • the total content of R 2+ may be more than 0%.
  • the total content of R 2+ is preferably more than 0%, more preferably 10.0%, even more preferably 20.0%, and even more preferably 30.0%.
  • La 3+ , Gd 3+ , Y 3+ , Yb 3+, and Lu 3+ are optional components that can increase devitrification resistance while maintaining a high refractive index and a high Abbe number when at least one of them contains more than 0%. It is.
  • the La 3+ content is preferably more than 0%, more preferably 0.1%, and even more preferably 0.5%. More preferably, 1.0% may be set as the lower limit.
  • the refractive index can be increased, and volatilization of F ⁇ and the like during melting can be reduced.
  • the content of Yb 3+ is preferably more than 0%, more preferably 0.8%.
  • the lower limit may be 1%, more preferably 0.7%, and even more preferably 2.0%.
  • the content of each of La 3+ , Gd 3+ , Y 3+ and Lu 3+ is preferably 10.0%, more preferably 8.0%, still more preferably 5.0%, and even more preferably 3.0%. Is the upper limit.
  • the upper limit of the Yb 3+ content is preferably 20.0%, more preferably 15.0%, still more preferably 10.0%, and even more preferably 5.0%.
  • La 3+ , Gd 3+ , Y 3+ , Yb 3+ and Lu 3+ are La 2 O 3 , LaF 3 , Gd 2 O 3 , GdF 3 , Y 2 O 3 , YF 3 , Yb 2 O 3 and Lu 2 O as raw materials. 3 etc. can be used.
  • Ln 3+ means at least one selected from the group consisting of Y 3+ , La 3+ , Gd 3+ , Yb 3+ and Lu 3+ .
  • the total content of Ln 3+ may represent the total content of these five ions (Y 3+ + La 3+ + Gd 3+ + Yb 3+ + Lu 3+ ).
  • the total content of Ln 3+ is preferably 20.0%, more preferably 10.0%, and still more preferably 6.0%.
  • Ln 3+ does not need to be contained, but by containing more than 0% of Ln 3+ , devitrification resistance can be enhanced while maintaining a high refractive index and a high Abbe number. Therefore, the total content of Ln 3+ is preferably 0.1%, more preferably 1.0%, and still more preferably 3.0%.
  • Li + , Na + and K + are optional components that can lower the glass transition point while maintaining high devitrification resistance during glass formation when contained in excess of 0%.
  • the Li + content is preferably more than 0%, more preferably 0.1%, and even more preferably 0.3%.
  • the content of Li + is 20.0% or less and / or the content of one or more of Na + and K + is 10.0% or less, thereby reducing the refractive index.
  • the upper limit of the content of Li + is preferably 20.0%, more preferably 10.0%, and still more preferably 5.0%.
  • each of Na + and K + is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
  • Li + , Na + and K + are Li 2 CO 3 , LiNO 3 , LiF, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 , K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like can be used.
  • Rn + means at least one selected from the group consisting of Li + , Na + and K + .
  • the total content of Rn + may represent the total content of these three ions (Li + + Na + + K + ).
  • the total content of Rn + is preferably 20.0%, more preferably 10.0%, and still more preferably 5.0%.
  • the total content of Rn + is preferably more than 0%, more preferably 0.1%, and even more preferably 0.3%.
  • Si 4+ is an optional component that can increase the devitrification resistance of the glass, increase the refractive index, and decrease the degree of wear when it contains more than 0%.
  • the upper limit of the Si 4+ content is preferably 10.0%, more preferably 5.0%, and even more preferably 3.0%.
  • Si 4+ can use SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like as a raw material.
  • Zn 2+ is an optional component that can enhance the devitrification resistance of the glass when it contains more than 0%.
  • the upper limit of the Zn 2+ content is preferably 30.0%, more preferably 15.0%, still more preferably 5.0%, and still more preferably 3.0%.
  • Zn 2+ Zn (PO 3 ) 2 , ZnO, ZnF 2 or the like can be used as a raw material.
  • Nb 5+ , Ti 4+ and W 6+ are optional components that can increase the refractive index of the glass when contained over 0%.
  • Nb 5+ can increase chemical durability when it contains more than 0%. Further, when W 6+ is contained in an amount exceeding 0%, the glass transition point can be lowered.
  • the upper limit of the content of each of Nb 5+ , Ti 4+ and W 6+ is preferably 10.0%, more preferably 5.0%, and even more preferably 3.0%.
  • Nb 2+ , Ti 4+ and W 6+ can use Nb 2 O 5 , TiO 2 , WO 3 or the like as a raw material.
  • Zr 4+ is an optional component that can increase the refractive index of glass when it contains more than 0%.
  • the striae of the glass by volatilization of the component in glass can be suppressed by making the content rate of Zr4 + 10.0% or less. Therefore, the upper limit of the content of Zr 4+ is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
  • Zr 4+ may use ZrO 2, ZrF 4, etc. as a raw material.
  • Ta 5+ is an optional component that can increase the refractive index of glass when it is contained in excess of 0%. On the other hand, devitrification of glass can be reduced by making the content rate of Ta 5+ 10.0% or less. Accordingly, the upper limit of the Ta 5+ content is preferably 10.0%, more preferably 5.0%, and even more preferably 3.0%. Ta 5+ can use Ta 2 O 5 or the like as a raw material.
  • Ge 4+ is an optional component that can increase the refractive index of the glass and increase the resistance to devitrification when it contains more than 0%.
  • the content rate of Ge 4+ is 10.0% or less, the content of expensive Ge 4+ is reduced, so that the material cost of the glass can be reduced. Therefore, the Ge 4+ content is preferably 10.0%, more preferably 5.0%, and even more preferably 3.0%.
  • GeO 2 or the like can be used as a raw material.
  • Bi 3+ and Te 4+ are optional components that can increase the refractive index of the glass and lower the glass transition point when it is contained in excess of 0%.
  • the Bi 3+ content is set to 10.0% or less and / or the Te 4+ content is set to 15.0% or less, so that the glass is devitrified and the visible light transmittance decreases due to coloring. Can be suppressed.
  • the upper limit of the Bi 3+ content is preferably 10.0%, more preferably 5.0%, and even more preferably 3.0%.
  • the Te 4+ content is preferably 15.0%, more preferably 10.0%, and still more preferably 5.0%.
  • Bi 3+ and Te 4+ can use Bi 2 O 3 , TeO 2 or the like as a raw material.
  • the optical glass of the present invention F - containing.
  • the content of F ⁇ is preferably 20.0% to 70.0%, for example.
  • the content of F ⁇ is preferably 20.0%, more preferably 23.0%, and further preferably 26.0%.
  • the content of F ⁇ is 70.0% or less, a decrease in the degree of wear of the glass can be suppressed.
  • the upper limit of the content of F ⁇ is preferably 70.0%, more preferably 60.0%, more preferably 50.0%, and still more preferably 40.0%.
  • F - it may be used AlF 3, various cationic components of MgF 2, BaF 2 and the like fluoride as a raw material.
  • the optical glass of the present invention contains O 2 ⁇ .
  • the content of O 2 ⁇ is preferably 30.0% to 80.0%, for example.
  • the lower limit of the content of O 2 ⁇ is preferably 30.0%, more preferably 40.0%, still more preferably 50.0%, and even more preferably 60.0%.
  • the upper limit of the content of O 2 ⁇ is preferably 80.0%, more preferably 77.0%, and still more preferably 74.0%.
  • the total of the content of O 2 ⁇ and the content of F ⁇ is preferably 98.0%, more preferably 99.0%, more preferably 100%.
  • O 2 ⁇ is an oxide of various cation components such as Al 2 O 3 , MgO and BaO as raw materials, and phosphate of various cation components such as Al (PO) 3 , Mg (PO) 2 and Ba (PO) 2. Etc. can be used.
  • Cations of transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, are each single or composite. Even if it is contained in a small amount, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. Therefore, it is preferable that the glass is not substantially contained particularly in optical glass using a wavelength in the visible range.
  • Cb of Pb, Th, Cd, Tl, Os, Be, and Se have tended to refrain from being used as harmful chemical substances in recent years, leading to not only the glass manufacturing process but also the processing process and disposal after commercialization.
  • Environmental measures are required. Therefore, when importance is placed on the environmental impact, it is preferable not to substantially contain them except for inevitable mixing. As a result, the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking special environmental measures.
  • optical glass of this invention does not contain Sb and As from such a point.
  • the method for producing the optical glass of the present invention is not particularly limited.
  • the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a quartz crucible, an alumina crucible or a platinum crucible and roughly melted, and then a platinum crucible, a platinum alloy Stir in a crucible or iridium crucible for 2-10 hours at 900-1200 ° C, stir to homogenize, blow out bubbles, etc., then lower the temperature to 850 ° C or lower, then stir to finish and stir It is possible to manufacture by removing the above, casting into a mold and slow cooling.
  • the optical glass of the present invention has a high refractive index.
  • the optical glass of the present invention preferably has a high Abbe number (low dispersion).
  • the refractive index (nd) of the optical glass of the present invention is preferably 1.53, more preferably 1.57, even more preferably 1.59, still more preferably 1.60, and even more preferably 1.607.
  • the upper limit of this refractive index is preferably 2.00, more preferably 1.90, and even more preferably 1.80.
  • the Abbe number ( ⁇ d) of the optical glass of the present invention is preferably 60, more preferably 63, still more preferably 66, the lower limit, preferably 90, more preferably 85, still more preferably 80.
  • the Abbe number ( ⁇ d) of the optical glass of the present invention preferably satisfies the relationship of nd ⁇ ⁇ 0.00254 ⁇ ⁇ d + 1.760 with the refractive index (nd), and nd ⁇ ⁇ 0.00254 ⁇ . It is more preferable to satisfy the relationship of ⁇ d + 1.770, and it is most preferable that the relationship of nd ⁇ ⁇ 0.00254 ⁇ ⁇ d + 1.790 is satisfied.
  • a high refractive index By having such a high refractive index, a large amount of light can be obtained even if the optical element is thinned.
  • focus shift (chromatic aberration) due to the wavelength of light is reduced.
  • the refractive index and the Abbe number have such a relationship, it is possible to perform high-power optical design when combined with optical glasses having optical properties of high refraction and high dispersion that have been announced recently.
  • Optical glass can be obtained. Therefore, the optical glass of the present invention is useful in optical design, and the optical system can be highly accurate and downsized, so that the degree of freedom in optical design can be expanded.
  • the refractive index (nd) and Abbe number ( ⁇ d) mean values obtained by measurement based on the Japan Optical Glass Industry Association Standard JOGIS01-2003.
  • the optical glass of the present invention preferably has high devitrification resistance when the glass is formed from a molten state. Thereby, since stability of glass is improved and crystallization is reduced, an adverse effect on optical characteristics, particularly transmittance, of an optical element manufactured from glass can be reduced.
  • a dedialysis start temperature (Tx) described later can be used as an index of devitrification resistance.
  • the optical dialysis start temperature (Tx) of the optical glass of the present invention is preferably 1200 ° C., more preferably 1100 ° C. or less, still more preferably 1000 ° C. or less, and further preferably 950 ° C. or less.
  • the optical glass of the present invention preferably has little volatilization of various components including the F component when melting the glass raw material. Thereby, generation
  • the volatilization amount of various components can be measured by the following method, for example. That is, about 200 mg of the prepared glass raw material was weighed, put into an alumina DTA crucible, heated to 1100 ° C. at a temperature rising rate of 40 ° C./min, and held for 30 minutes. Starting from this 30-minute hold, it was held at 1100 ° C. for a further 60 minutes. The mass change amount after 60 minutes from the start point and the start point was defined as the volatilization amount, and the amount was determined.
  • the volatilization amount of various components can also be evaluated by the following method. That is, 100cm 3 of glass material is melted sufficiently at 1000-1200 ° C in a 300cc platinum crucible with a lid, and the resulting melt is taken out of the furnace together with the melting vessel and generated immediately after the lid is removed. The amount of white smoke to be confirmed was confirmed visually. At this time, the case where there was little white smoke was evaluated as “ ⁇ very good” or “good”, and the case where there was much white smoke was evaluated as “ ⁇ bad” or “ ⁇ very bad”. Here, even when there is little white smoke, especially when there is little white smoke, it was evaluated as “ ⁇ very good”, and when there was much white smoke, especially when there was a lot of white smoke, it was evaluated as “ ⁇ very bad” .
  • the optical glass of the present invention is useful for various optical elements and optical designs. Among them, a preform is formed from the optical glass of the present invention, and polishing or precision press molding is performed on the preform. It is preferable to produce an optical element such as a lens, a prism, or a mirror using the means. As a result, when used in an optical device that transmits visible light to an optical element such as a camera or a projector, high-definition and high-precision imaging characteristics can be realized.
  • the optical glass of the present invention since the optical glass of the present invention has a small change in refractive index due to temperature changes, it can realize high-definition and high-precision imaging characteristics even when used in applications where the temperature is high during use, such as a projector.
  • the method for producing the preform material is not particularly limited.
  • a glass gob forming method described in JP-A-8-319124 and an optical glass manufacturing method and manufacturing apparatus described in JP-A-8-73229 are disclosed.
  • a method for producing a preform material directly from molten glass can also be used.
  • Tables 1 to 5 show the Abbe number ( ⁇ d) and the degree of volatilization during raw material melting (in the table, simply “degree of volatilization”).
  • Table 6 shows the volatilization amount and devitrification resistance of the glasses of Examples and Comparative Examples when melting the raw materials.
  • the following examples are merely for illustrative purposes, and are not limited to these examples.
  • the optical glasses of the examples of the present invention and the comparative examples are high-grade glass used for ordinary fluorophosphate glasses such as oxides, carbonates, nitrates, fluorides, and metaphosphate compounds corresponding to the raw materials of the respective components.
  • Purity raw materials are selected, weighed so as to have the composition ratios of the respective examples shown in Tables 1 to 5 and mixed uniformly, and then put into a platinum crucible. Electricity is selected according to the melting difficulty of the glass composition. After melting in a furnace at 900-1200 ° C for 2-10 hours, stirring and homogenizing to remove bubbles, etc., the temperature is lowered to 850 ° C or lower, cast into a mold, and slowly cooled to produce glass did.
  • the refractive index and the Abbe number of the optical glasses of Examples and Comparative Examples were measured based on Japan Optical Glass Industry Association Standard JOGIS01-2003. Then, the intercept b in the relational expression nd ⁇ ⁇ 0.00254 ⁇ ⁇ d + b was obtained for the obtained refractive index and Abbe number. (Section b is represented as “nd + 0.00254 * ⁇ d” in the table.) The glass used in this measurement was processed in a slow cooling furnace with a slow cooling rate of ⁇ 25 ° C./hr. What was done was used.
  • the degree of volatilization at the time of melting the raw materials of the glass of the examples and comparative examples was as follows: a platinum crucible (300 cc in diameter) having an inner diameter of 85 mm and a height of 65 mm obtained by covering a glass raw material of 100 cm 3 with a lid made of platinum or refractory. ), And the melt obtained is taken out of the furnace together with the melting vessel, a blackboard of 30 cm x 30 cm is placed on the back of the crucible, and white is generated immediately after the lid is removed. The amount of smoke was confirmed visually. At this time, it was installed so that the horizontal center line of the blackboard overlapped with the horizontal center line of the crucible.
  • dissolving of the glass of an Example and a comparative example was also measured with the following method.
  • About 200 mg of the prepared glass raw material was weighed, put into an alumina DTA crucible, heated to 1100 ° C. at a temperature rising rate of 40 ° C./min, and held for 30 minutes. Starting from this 30-minute hold, it was held at 1100 ° C. for a further 60 minutes.
  • the mass change amount after 60 minutes from the start point and the start point was defined as the volatilization amount, and the amount was determined.
  • the devitrification resistance of the glass of Examples and Comparative Examples was determined by crushing the obtained glass to a particle size of 425 to 600 ⁇ m, weighing about 200 mg of the crushed glass sample, and putting it in an alumina DTA crucible. Heat to 950 ° C. at 10 ° C./min. After the heating temperature reached 950 ° C., the highest exothermic start temperature Tx ( ⁇ 5) of the suggested heat curve detected when the temperature was cooled to 600 ° C. at a temperature decrease rate of 5 ° C./min was measured. Similarly, after the heating temperature reaches 950 ° C., the highest exothermic start temperature Tx ( ⁇ 2.5) of the suggested heat curve detected when cooling to 600 ° C.
  • Tx dialysis start temperature
  • optical glasses of the examples of the present invention all have an Abbe number of 60 or more, more specifically 65 or more, and this Abbe number is 80 or less, more specifically 70 or less. Met.
  • the Abbe number ( ⁇ d) of the optical glass of the example of the present invention has a relationship of nd ⁇ ⁇ 0.00254 ⁇ ⁇ d + 1.760 with the refractive index (nd), more specifically, nd ⁇ ⁇ 0.
  • nd refractive index
  • 00254 ⁇ ⁇ d + 1.767 was satisfied, and it was within the desired range.
  • the optical glass of the example of the present invention has a “degree of volatilization” in the table of “ ⁇ ” or “ ⁇ ”, and it has been clarified that the generation of white smoke during melting is small. Further, the optical glass of the example of the present invention had a volatilization amount of 3.00% or less, more specifically 2.15% or less. On the other hand, the volatilization amount of the glass of the comparative example of the present invention was 3.15%. Therefore, it is speculated that the optical glass of the present invention has less volatilization of each component including the F component at the time of melting than the glass of the comparative example.
  • the optical glass of the examples of the present invention had a dedialysis start temperature of 1200 ° C. or less, more specifically 940 ° C. or less, and was within a desired range.
  • the optical glass of the example of the present invention has high refractive index and devitrification resistance and low volatilization of components during melting, while the Abbe number is within a desired range. .
  • a glass block was formed using the optical glass of the example of the present invention, and this glass block was ground and polished to be processed into the shape of a lens and a prism. As a result, it was possible to stably process into various lens and prism shapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Provided are: optical glass which has higher refractive index and high devitrification resistance, while having a desirably high Abbe number; and a preform and an optical element, each of which uses the optical glass. This optical glass contains P5+ and Al3+ as cation components, and the content of Al3+ is 25.0% or less in cation % based on the molar ratio. This optical glass contains O2- and F- as anion components, and has a refractive index (nd) of 1.53 or more. A preform for polishing and/or precision press molding and an optical element are formed of this optical glass.

Description

光学ガラス、光学素子及びプリフォームOptical glass, optical element and preform
 本発明は、光学ガラス、光学素子及びプリフォームに関する。 The present invention relates to an optical glass, an optical element, and a preform.
 光学機器のレンズ系は、通常、異なる光学的性質を持つ複数のガラスレンズを組み合わせて設計されている。近年、多様化する光学機器のレンズ系の設計の自由度をさらに広げるため、従来用いられなかった光学特性を有する光学ガラスが、球面及び非球面レンズ等の光学素子として用いられるようになった。特に、光学設計を行うに当たり、光学系全体での色収差を小さくする等の目的に沿って、屈折率や分散傾向の異なるものが開発されている。 The lens system of an optical device is usually designed by combining a plurality of glass lenses having different optical properties. In recent years, optical glasses having optical properties that have not been used in the past have been used as optical elements such as spherical and aspherical lenses in order to further increase the degree of freedom in designing lens systems of diversifying optical devices. In particular, when performing optical design, those having different refractive indices and dispersion tendencies have been developed for the purpose of reducing chromatic aberration in the entire optical system.
 光学素子を作製する光学ガラスの中でも特に、光学素子の軽量化及び小型化を図ることが可能な、高い屈折率(nd)と高いアッベ数(νd)を有するガラスの需要が非常に高まっている。このような高屈折率低分散ガラスとしては、例えば1.53以上の屈折率を有し、60以上のアッベ数を有する光学ガラスとして、特許文献1に代表されるようなガラスが知られている。 Among optical glasses for producing optical elements, in particular, there is a great demand for glass having a high refractive index (nd) and a high Abbe number (νd) that can reduce the weight and size of optical elements. . As such a high refractive index and low dispersion glass, for example, a glass represented by Patent Document 1 is known as an optical glass having a refractive index of 1.53 or more and an Abbe number of 60 or more. .
特開2007-055883号公報JP 2007-055883 A
 しかしながら、特許文献1に記載のような従来の光学ガラスでは、屈折率の高さが不十分であった。すなわち、60以上の高いアッベ数を有しながらも、より屈折率の高い光学ガラスの開発が望まれている。 However, the conventional optical glass as described in Patent Document 1 has an insufficient refractive index. That is, development of an optical glass having a higher refractive index while having a high Abbe number of 60 or more is desired.
 一方で、光学ガラスから光学素子を作製する方法としては、例えば、光学ガラスから形成されたゴブ又はガラスブロックに対して研削及び研磨を行って光学素子の形状を得る方法、光学ガラスから形成されたゴブ又はガラスブロックを再加熱して成形(リヒートプレス成形)して得られたガラス成形体を研削及び研磨する方法、及び、ゴブ又はガラスブロックから得られたプリフォーム材を超精密加工された金型で成形(精密モールドプレス成形)して光学素子の形状を得る方法が知られている。いずれの方法であっても、熔融したガラス原料からゴブ又はガラスブロックを形成する際に、安定なガラスが得られることが求められる。ここで、得られるゴブ又はガラスブロックを構成するガラスの失透に対する安定性(耐失透性)が低下してガラスの内部に結晶が発生した場合、もはや光学素子として好適なガラスを得ることができない。 On the other hand, as a method of producing an optical element from optical glass, for example, a method of obtaining a shape of an optical element by grinding and polishing a gob or glass block formed from optical glass, formed from optical glass A method of grinding and polishing a glass molding obtained by reheating and molding a gob or glass block (reheat press molding), and a gold obtained by ultra-precision processing a preform obtained from the gob or glass block A method for obtaining the shape of an optical element by molding with a mold (precision mold press molding) is known. Any method is required to obtain a stable glass when a gob or glass block is formed from a molten glass raw material. Here, when the stability (devitrification resistance) with respect to devitrification of the glass which comprises the gob or glass block obtained falls and a crystal | crystallization generate | occur | produces inside glass, it can no longer obtain glass suitable as an optical element. Can not.
 本発明は、このような課題を解決することを目的とする。
 すなわち、本発明の目的は、所望の高いアッベ数を有しながらも、より屈折率が高く、且つ耐失透性の高い光学ガラスと、これを用いたプリフォーム及び光学素子を提供することにある。
The present invention aims to solve such problems.
That is, an object of the present invention is to provide an optical glass having a higher refractive index and higher devitrification resistance while having a desired high Abbe number, and a preform and an optical element using the optical glass. is there.
 本発明者らは、上記課題を解決するために鋭意検討し、本発明を完成させた。具体的には、本発明は以下のようなものを提供する。 The present inventors diligently studied to solve the above problems and completed the present invention. Specifically, the present invention provides the following.
 (1) カチオン成分としてP5+及びAl3+を含有し、Al3+の含有量が25.0%以下であり、アニオン成分としてO2-及びFを含有し、
 屈折率(nd)が1.53以上である光学ガラス。
(1) P 5+ and Al 3+ are contained as the cation component, the content of Al 3+ is 25.0% or less, O 2− and F are contained as the anion component,
An optical glass having a refractive index (nd) of 1.53 or more.
 (2) カチオン%(モル%)表示で、P5+を10.0~70.0%含有する(1)記載の光学ガラス。 (2) The optical glass according to (1), containing 10.0 to 70.0% of P 5+ in terms of cation% (mol%).
 (3) カチオン%(モル%)表示で、B3+を0.1~15.0%さらに含有する(1)又は(2)記載の光学ガラス。 (3) The optical glass according to (1) or (2), further containing 0.1 to 15.0% of B 3+ in terms of cation% (mol%).
 (4) カチオン%(モル%)表示で、
Mg2+の含有率が0~20.0%
Ca2+の含有率が0~30.0%、
Sr2+の含有率が0~30.0%、
Ba2+の含有率が0~50.0%、
である(1)から(3)のいずれか記載の光学ガラス。
(4) In cation% (mol%) display,
Mg 2+ content 0-20.0%
Ca 2+ content is 0-30.0%,
Sr 2+ content is 0-30.0%,
Ba 2+ content is 0-50.0%,
The optical glass according to any one of (1) to (3).
 (5) カチオン%(モル%)表示で、Ba2+を20.0%以上含有する(4)記載の光学ガラス。 (5) The optical glass according to (4), containing 20.0% or more of Ba 2+ in terms of cation% (mol%).
 (6) P5+、B3+及びBa2+の合計含有率(カチオン%)が30.0~80.0%である(1)から(5)のいずれか記載の光学ガラス。 (6) The optical glass according to any one of (1) to (5), wherein the total content (cation%) of P 5+ , B 3+ and Ba 2+ is 30.0 to 80.0%.
 (7) P5+、B3+、Ba2+及びAl3+の合計含有率(カチオン%)が95.0%以下である(1)から(6)のいずれか記載の光学ガラス。 (7) The optical glass according to any one of (1) to (6), wherein the total content (cation%) of P 5+ , B 3+ , Ba 2+ and Al 3+ is 95.0% or less.
 (8) アルカリ土類金属の合計含有率(R2+:カチオン%)が60.0%以下である(1)から(7)のいずれか記載の光学ガラス。 (8) The optical glass according to any one of (1) to (7), wherein the total content of alkaline earth metals (R 2+ : cation%) is 60.0% or less.
 (9) カチオン%(モル%)表示で、
La3+の含有率が0~10.0%、
Gd3+の含有率が0~10.0%、
3+の含有率が0~10.0%、
Yb3+の含有率が0~20.0%、
Lu3+の含有率が0~10.0%
である(1)から(8)のいずれか記載の光学ガラス。
(9) In cation% (mol%) display,
La 3+ content is 0-10.0%,
The content of Gd 3+ is 0 to 10.0%,
The content of Y 3+ is 0 to 10.0%;
Yb 3+ content is 0-20.0%,
Lu 3+ content is 0-10.0%
The optical glass according to any one of (1) to (8).
 (10) La3+、Gd3+、Y3+、Yb3+及びLu3+の合計含有率(Ln3+:カチオン%)が20.0%以下である(1)から(9)のいずれか記載の光学ガラス。 (10) The optical glass according to any one of (1) to (9), wherein the total content of La 3+ , Gd 3+ , Y 3+ , Yb 3+ and Lu 3+ (Ln 3+ : cation%) is 20.0% or less. .
 (11) カチオン%(モル%)表示で、
Liの含有率が0~20.0%、
Naの含有率が0~10.0%、
の含有率が0~10.0%
である(1)から(10)のいずれか記載の光学ガラス。
(11) In terms of cation% (mol%),
Li + content is 0-20.0%,
Na + content is 0 to 10.0%,
Content of K + is 0 to 10.0%
The optical glass according to any one of (1) to (10).
 (12) アルカリ金属の合計含有率(Rn:カチオン%)が20%以下である(1)から(11)のいずれか記載の光学ガラス。 (12) The optical glass according to any one of (1) to (11), wherein the total content of alkali metals (Rn + : cation%) is 20% or less.
 (13) カチオン%(モル%)表示で、
Si4+の含有率が0~10.0%、
Zn2+の含有率が0~30.0%、
Nb5+の含有率が0~10.0%、
Ti4+の含有率が0~10.0%、
Zr4+の含有率が0~10.0%、
Ta5+の含有率が0~10.0%、
6+の含有率が0~10.0%、
Ge4+の含有率が0~10.0%、
Bi3+の含有率が0~10.0%、
Te4+の含有率が0~15.0%
である(1)から(12)のいずれか記載の光学ガラス。
(13) In cation% (mol%) display,
Si 4+ content is 0-10.0%,
Zn 2+ content 0-30.0%,
Nb 5+ content is 0 to 10.0%,
Ti 4+ content is 0-10.0%,
The content of Zr 4+ is 0 to 10.0%,
Ta 5+ content is 0-10.0%,
The content of W 6+ is 0 to 10.0%,
Ge 4+ content is 0-10.0%,
Bi 3+ content is 0-10.0%,
Te 4+ content is 0-15.0%
The optical glass according to any one of (1) to (12).
 (14) アニオン%(モル%)表示で、
の含有率が20.0~70.0%、
2-の含有率が30.0~80.0%、
である(1)から(13)のいずれか記載の光学ガラス。
(14) In terms of anion% (mol%),
The content of F is 20.0 to 70.0%,
The content of O 2− is 30.0-80.0%,
The optical glass according to any one of (1) to (13).
 (15) 60以上のアッベ数(νd)を有する(1)から(14)のいずれか記載の光学ガラス。 (15) The optical glass according to any one of (1) to (14), which has an Abbe number (νd) of 60 or more.
 (16) 屈折率(nd)がアッベ数(νd)との間でnd≧-0.00254×νd+1.760の関係を満たす(1)から(15)のいずれか記載の光学ガラス。 (16) The optical glass according to any one of (1) to (15), wherein the refractive index (nd) satisfies the relationship of nd ≧ −0.00254 × νd + 1.760 with the Abbe number (νd).
 (17) (1)から(16)のいずれか記載の光学ガラスからなる光学素子。 (17) An optical element made of the optical glass according to any one of (1) to (16).
 (18) (1)から(16)のいずれか記載の光学ガラスからなる研磨加工用及び/又は精密プレス成形用のプリフォーム。 (18) A preform for polishing and / or precision press molding comprising the optical glass according to any one of (1) to (16).
 (19) (18)記載のプリフォームを精密プレスしてなる光学素子。 (19) An optical element obtained by precision pressing the preform described in (18).
 本発明によれば、所望の高いアッベ数を有しながらも、より高い屈折率を有し、且つ耐失透性の高い光学ガラスと、これを用いたプリフォーム及び光学素子を提供することができる。 According to the present invention, it is possible to provide an optical glass having a higher refractive index and a higher devitrification resistance while having a desired high Abbe number, and a preform and an optical element using the optical glass. it can.
 本発明の光学ガラスは、カチオン成分としてP5+及びAl3+を含有し、Al3+の含有量が25.0%以下であり、アニオン成分としてO2-及びFを含有し、屈折率(nd)が1.53以上である。カチオン成分であるAl3+の含有量を低減することで、ガラスの屈折率及びアッベ数が高められる。また、カチオン成分としてP5+を含有し、且つアニオン成分としてFを含有することで、所望の高いアッベ数が得られながらも、ガラスの耐失透性が高められる。そのため、所望の高いアッベ数を有しながらも、より高い屈折率を有し、且つ耐失透性の高い光学ガラスを得ることができる。 The optical glass of the present invention contains P 5+ and Al 3+ as the cation component, the content of Al 3+ is 25.0% or less, contains O 2− and F as the anion component, and has a refractive index (nd ) Is 1.53 or more. By reducing the content of Al 3+ which is a cationic component, the refractive index and Abbe number of the glass can be increased. Further, by containing P 5+ as the cation component and F as the anion component, the devitrification resistance of the glass is enhanced while a desired high Abbe number is obtained. Therefore, it is possible to obtain an optical glass having a higher refractive index and high devitrification resistance while having a desired high Abbe number.
 以下、本発明の光学ガラスについて説明する。本発明は、以下の態様に限定されるものではなく、本発明の目的の範囲内で適宜変更を加えて実施できる。なお、説明が重複する箇所について説明を省略する場合があるが、発明の趣旨を限定するものではない。 Hereinafter, the optical glass of the present invention will be described. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, although description may be abbreviate | omitted about the location where description overlaps, the meaning of invention is not limited.
<ガラス成分>
 本発明の光学ガラスを構成する各成分について説明する。
 本明細書中において、各成分の含有率は特に断りがない場合は、全てモル比に基づくカチオン%又はアニオン%で表示されるものとする。ここで、「カチオン%」及び「アニオン%」(以下、「カチオン%(モル%)」及び「アニオン%(モル%)」と表記することがある)は、本発明の光学ガラスのガラス構成成分をカチオン成分及びアニオン成分に分離し、それぞれにおいて合計割合を100モル%として、ガラス中に含有される各成分の含有率を表記した組成である。
 なお、各成分のイオン価は便宜的に代表値を用いているに過ぎないため、他のイオン価のものと区別するものではない。光学ガラス中に存在する各成分のイオン価は、代表値以外である可能性がある。例えば、Pは、通常イオン価が5価の状態でガラス中に存在するので、本明細書中では「P5+」と表しているが、他のイオン価の状態で存在する可能性がある。このように、厳密には他のイオン価の状態で存在するものであっても、本明細書では、各成分が代表値のイオン価でガラス中に存在するものとして扱う。
<Glass component>
Each component which comprises the optical glass of this invention is demonstrated.
In the present specification, unless otherwise specified, the content of each component is expressed in terms of cation% or anion% based on the molar ratio. Here, “cation%” and “anion%” (hereinafter sometimes referred to as “cation% (mol%)” and “anion% (mol%)”) are glass constituents of the optical glass of the present invention. Is divided into a cation component and an anion component, and the total ratio is 100 mol% in each, and the content of each component contained in the glass is described.
In addition, since the ionic value of each component uses only a representative value for convenience, it is not distinguished from other ionic values. The ionic valence of each component present in the optical glass may be other than the representative value. For example, since P is normally present in the glass in a state where the ionic valence is pentavalent, it is expressed as “P 5+ ” in this specification, but may exist in other ionic valence states. Thus, strictly speaking, in the present specification, each component is treated as being present in the glass with a representative ionic valence even if it exists in another ionic valence state.
[カチオン成分について]
 P5+は、ガラス形成成分であるため、必須成分として0%超含有すべきである。特に、P5+を10.0%以上含有することで、ガラスの耐失透性を高められる。そのため、P5+の含有率は、好ましくは10.0%、より好ましくは20.0%、さらに好ましくは30.0%を下限とする。
 一方で、P5+の含有量を70.0%にすることで、P5+による屈折率やアッベ数の低下を抑えられる。従って、P5+の含有率は、好ましくは70.0%、より好ましくは60.0%、より好ましくは50.0%、より好ましくは45.0%を上限とする。
 P5+は、原料としてAl(PO、Ca(PO、Ba(PO、Zn(PO、BPO、HPO等を用いることができる。
[Cation component]
Since P 5+ is a glass forming component, it should be contained in excess of 0% as an essential component. In particular, the devitrification resistance of glass can be improved by containing 10.0% or more of P 5+ . Therefore, the content of P 5+ is preferably 10.0%, more preferably 20.0%, and still more preferably 30.0%.
On the other hand, by setting the content of P 5+ to 70.0%, a decrease in the refractive index and Abbe number due to P 5+ can be suppressed. Accordingly, the upper limit of the content of P 5+ is preferably 70.0%, more preferably 60.0%, more preferably 50.0%, and more preferably 45.0%.
As P 5+ , Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , Zn (PO 3 ) 2 , BPO 4 , H 3 PO 4 and the like can be used as raw materials.
 Al3+は、ガラスの微細構造の骨格形成に寄与することで耐失透性を高められるため、必須成分として0%超含有すべきである。従って、Al3+の含有率は、好ましくは0%超、より好ましくは1.0%、より好ましくは5.0%、さらに好ましくは10.0%を下限とする。
 一方で、Al3+の含有量を25.0%以下にすることで、Al3+による屈折率やアッベ数の低下を抑えられる。従って、Al3+の含有率の上限は、好ましくは25.0%、より好ましくは22.0%、さらに好ましくは20.0%を上限とし、さらに好ましくは17.0%未満とする。
 Al3+は、原料としてAl(PO、AlF、Al等を用いることができる。
Since Al 3+ contributes to the formation of a skeleton having a fine structure of glass, the devitrification resistance can be improved, so it should contain more than 0% as an essential component. Accordingly, the content of Al 3+ is preferably more than 0%, more preferably 1.0%, more preferably 5.0%, and still more preferably 10.0%.
On the other hand, by making the content of Al 3+ 25.0% or less, it is possible to suppress a decrease in refractive index and Abbe number due to Al 3+ . Therefore, the upper limit of the Al 3+ content is preferably 25.0%, more preferably 22.0%, even more preferably 20.0%, and even more preferably less than 17.0%.
Al 3+ can use Al (PO 3 ) 3 , AlF 3 , Al 2 O 3 or the like as a raw material.
 B3+は、それ自体が屈折率を高める成分であり、且つ、他の屈折率を高める成分であるYb3+やBa2+成分を用いた場合に耐失透性を高められる任意成分である。すなわち、B3+は、0%超含有する場合に、ガラスの屈折率と耐失透性を高められる。従って、B3+の含有率は、好ましくは0%超、より好ましくは0.1%、さらに好ましくは1.0%、さらに好ましくは3.0%を下限としてもよい。
 一方で、B3+の含有率を15.0%以下にすることで、化学的耐久性の悪化を抑えられる。従って、B3+の含有率は、好ましくは15.0%、より好ましくは12.0%、さらに好ましくは10.0%を上限とする。
 B3+は、原料としてHBO、Na、BPO等を用いることができる。
B 3+ is a component that itself increases the refractive index, and is an optional component that can increase the devitrification resistance when using Yb 3+ or Ba 2+ components, which are other components that increase the refractive index. That is, when B 3+ is contained more than 0%, the refractive index and devitrification resistance of the glass can be improved. Therefore, the content of B 3+ is preferably more than 0%, more preferably 0.1%, still more preferably 1.0%, and even more preferably 3.0%.
On the other hand, deterioration of chemical durability can be suppressed by setting the content of B 3+ to 15.0% or less. Therefore, the upper limit of the content of B 3+ is preferably 15.0%, more preferably 12.0%, and still more preferably 10.0%.
B 3+ can be used H 3 BO 3, Na 2 B 4 O 7, BPO 4 , etc. as a raw material.
 Mg2+は、0%超含有する場合に、ガラスの耐失透性を高められる任意成分である。
 一方で、Mg2+の含有率を20.0%以下にすることで、ガラスの屈折率の低下を抑えられる。従って、Mg2+の含有率は、好ましくは20.0%、より好ましくは10.0%、さらに好ましくは7.0%、さらに好ましくは3.0%を上限とする。
 Mg2+は、原料としてMgO、MgF等を用いることができる。
Mg 2+ is an optional component that can enhance the devitrification resistance of the glass when it is contained in an amount of more than 0%.
On the other hand, the fall of the refractive index of glass can be suppressed by making content rate of Mg2 + into 20.0% or less. Accordingly, the upper limit of the Mg 2+ content is preferably 20.0%, more preferably 10.0%, still more preferably 7.0%, and even more preferably 3.0%.
Mg 2+ may be used MgO, the MgF 2 or the like as a raw material.
 Ca2+は、0%超含有する場合に、ガラスの耐失透性を高められ、且つ屈折率の低下を抑えられる任意成分である。従って、Ca2+の含有率は、好ましくは0%超、より好ましくは1.0%、さらに好ましくは2.0%を下限としてもよい。
 一方で、Ca2+の含有率を30.0%以下にすることで、Ca2+の過剰な含有によるガラスの耐失透性や屈折率の低下を抑えられる。従って、Ca2+の含有率は、好ましくは30.0%、より好ましくは20.0%、さらに好ましくは10.0%を上限とする。
 Ca2+は、原料としてCa(PO、CaCO、CaF等を用いることができる。
Ca 2+ is an optional component that can increase the devitrification resistance of the glass and suppress the decrease in the refractive index when it is contained in excess of 0%. Therefore, the Ca 2+ content is preferably more than 0%, more preferably 1.0%, and even more preferably 2.0%.
On the other hand, by setting the Ca 2+ content to 30.0% or less, it is possible to suppress devitrification resistance and a decrease in refractive index of the glass due to excessive Ca 2+ content. Therefore, the Ca 2+ content is preferably 30.0%, more preferably 20.0%, and even more preferably 10.0%.
Ca 2+ can use Ca (PO 3 ) 2 , CaCO 3 , CaF 2 or the like as a raw material.
 Sr2+は、0%超含有する場合に、ガラスの耐失透性を高められ、且つ屈折率の低下を抑えられる任意成分である。
 一方で、Sr2+の含有率を30.0%以下にすることで、Sr2+の過剰な含有によるガラスの耐失透性や屈折率の低下を抑えられる。従って、Sr2+の含有率は、好ましくは30.0%、より好ましくは20.0%、さらに好ましくは10.0%を上限とする。
 Sr2+は、原料としてSr(NO、SrF等を用いることができる。
Sr 2+ is an optional component that can enhance the devitrification resistance of the glass and suppress the decrease in the refractive index when it is contained in an amount of more than 0%.
On the other hand, by making the content rate of Sr 2+ 30.0% or less, the devitrification resistance and the refractive index of the glass due to the excessive content of Sr 2+ can be suppressed. Therefore, the Sr 2+ content is preferably 30.0%, more preferably 20.0%, and still more preferably 10.0%.
Sr 2+ can use Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
 Ba2+は、0%超含有する場合に、ガラスの耐失透性を高めながらも、低い分散性を維持し、且つ屈折率を高められる任意成分である。従って、Ba2+の含有率は、好ましくは0%超、より好ましくは10.0%、さらに好ましくは20.0%、さらに好ましくは25.0%超、さらに好ましくは29.0%を下限としてもよい。
 一方で、Ba2+の含有率を50.0%以下にすることで、Ba2+の過剰な含有によるガラスの耐失透性の低下を抑えられる。従って、Ba2+の含有率は、好ましくは50.0%、より好ましくは40.0%、より好ましくは37.0%を上限とする。
 Ba2+は、原料としてBa(PO、BaCO、Ba(NO、BaF等を用いることができる。
Ba 2+ is an optional component that can maintain low dispersibility and increase the refractive index while increasing the devitrification resistance of the glass when it contains more than 0%. Accordingly, the Ba 2+ content is preferably more than 0%, more preferably 10.0%, even more preferably 20.0%, even more preferably more than 25.0%, and even more preferably 29.0%. Also good.
On the other hand, the fall of the devitrification resistance of the glass by excessive containing of Ba2 + is suppressed by making the content rate of Ba2 + into 50.0% or less. Accordingly, the upper limit of the Ba 2+ content is preferably 50.0%, more preferably 40.0%, more preferably 37.0%.
As Ba 2+ , Ba (PO 3 ) 2 , BaCO 3 , Ba (NO 3 ) 2 , BaF 2, or the like can be used as a raw material.
 本発明の光学ガラスは、P5+、B3+及びBa2+の合計含有率が30.0%以上80.0%以下であることが好ましい。
 特に、この合計含有率を30.0%以上にすることで、Al3+の含有量を低減しても耐失透性を高めることが可能である。従って、合計含有率(P5++B3++Ba2+)は、好ましくは30.0%、より好ましくは50.0%、さらに好ましくは55.0%、さらに好ましくは60.0%を下限とし、さらに好ましくは65.0%超とする。
 一方で、この合計含有率を80.0%以下にすることで、これらの成分の過剰な含有による耐失透性の低下を抑えられる。従って、合計含有率(P5++B3++Ba2+)は、好ましくは80.0%、より好ましくは78.0%、さらに好ましくは76.0%を上限とする。
In the optical glass of the present invention, the total content of P 5+ , B 3+ and Ba 2+ is preferably 30.0% or more and 80.0% or less.
In particular, by setting the total content to 30.0% or more, devitrification resistance can be improved even if the content of Al 3+ is reduced. Therefore, the total content (P 5+ + B 3+ + Ba 2+ ) is preferably 30.0%, more preferably 50.0%, further preferably 55.0%, more preferably 60.0%, Preferably it is over 65.0%.
On the other hand, the fall of devitrification resistance by excessive inclusion of these components can be suppressed by making this total content rate into 80.0% or less. Therefore, the total content (P 5+ + B 3+ + Ba 2+ ) is preferably 80.0%, more preferably 78.0%, and still more preferably 76.0%.
 また、本発明の光学ガラスは、P5+、B3+、Ba2+及びAl3+の合計含有率が95.0%以下であることが好ましい。これにより、所望の高屈折率を有しながらも、高い耐失透性を維持できる。従って、合計含有率(P5++B3++Ba2++Al3+)は、好ましくは95.0%、より好ましくは93.0%、さらに好ましくは91.0%を上限とする。
 一方で、この合計含有率を30.0%以上にすることで、これらの成分によって耐失透性を向上できる。従って、合計含有率(P5++B3++Ba2++Al3+)は、好ましくは30.0%、より好ましくは50.0%、さらに好ましくは70.0%、さらに好ましくは80.0%、さらに好ましくは85.0%を下限としてもよい。
In the optical glass of the present invention, the total content of P 5+ , B 3+ , Ba 2+ and Al 3+ is preferably 95.0% or less. Thereby, high devitrification resistance can be maintained while having a desired high refractive index. Therefore, the total content (P 5+ + B 3+ + Ba 2+ + Al 3+ ) is preferably 95.0%, more preferably 93.0%, and still more preferably 91.0%.
On the other hand, devitrification resistance can be improved by these components by making this total content rate 30.0% or more. Therefore, the total content (P 5+ + B 3+ + Ba 2+ + Al 3+ ) is preferably 30.0%, more preferably 50.0%, still more preferably 70.0%, still more preferably 80.0%, and even more preferably May be 85.0% as a lower limit.
 アルカリ土類金属は、Mg2+、Ca2+、Sr2+及びBa2+からなる群から選ばれる1種以上を意味する。また、Mg2+、Ca2+、Sr2+及びBa2+からなる群から選ばれる1種以上をR2+と表す場合がある。
 また、R2+の合計含有率とは、これら4つのイオンのうち1種以上の合計含有率(例えばMg2++Ca2++Sr2++Ba2+)を意味するものとする。
 R2+の合計含有率は60.0%以下であることが好ましい。これにより、R2+の過剰な含有による失透を低減できる。従って、R2+の合計含有率は、好ましくは60.0%、より好ましくは50.0%、より好ましくは45.0%、さらに好ましくは41.0%を上限とする。
 一方で、R2+の合計含有率は、0%超にしてもよい。これにより、より耐失透性の高いガラスを得ることができる。従って、R2+の合計含有率は、好ましくは0%超、より好ましくは10.0%、さらに好ましくは20.0%、さらに好ましくは30.0%を下限としてもよい。
Alkaline earth metal means one or more selected from the group consisting of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ . One or more selected from the group consisting of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ may be represented as R 2+ .
The total content of R 2+ means the total content of one or more of these four ions (for example, Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ ).
The total content of R 2+ is preferably 60.0% or less. Thereby, devitrification due to excessive inclusion of R 2+ can be reduced. Therefore, the total content of R 2+ is preferably 60.0%, more preferably 50.0%, more preferably 45.0%, and still more preferably 41.0%.
On the other hand, the total content of R 2+ may be more than 0%. Thereby, glass with higher devitrification resistance can be obtained. Therefore, the total content of R 2+ is preferably more than 0%, more preferably 10.0%, even more preferably 20.0%, and even more preferably 30.0%.
 La3+、Gd3+、Y3+、Yb3+及びLu3+は、少なくともいずれかを0%超含有する場合に、高屈折率及び高アッベ数を維持しながらも、耐失透性を高められる任意成分である。特に、La3+を0%超含有することで耐失透性を高め易くできるため、La3+の含有率は、好ましくは0%超、より好ましくは0.1%、さらに好ましくは0.5%、さらに好ましくは1.0%を下限としてもよい。また、Yb3+を0%超含有することで、屈折率を高め、且つ熔解時におけるF等の揮発を低減できるため、Yb3+の含有率は、好ましくは0%超、より好ましくは0.1%、さらに好ましくは0.7%、さらに好ましくは2.0%を下限としてもよい。
 一方で、La3+、Gd3+、Y3+及びLu3+の各々の含有量を10.0%以下にすること、及び/又は、Yb3+の含有量を20.0%以下にすることで、これら成分の過剰な含有による失透を低減できる。従って、La3+、Gd3+、Y3+及びLu3+の各々の含有量は、好ましくは10.0%、より好ましくは8.0%、さらに好ましくは5.0%、さらに好ましくは3.0%を上限とする。また、Yb3+の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは5.0%を上限とする。
 La3+、Gd3+、Y3+、Yb3+及びLu3+は、原料としてLa、LaF、Gd、GdF、Y、YF、Yb、Lu等を用いることができる。
La 3+ , Gd 3+ , Y 3+ , Yb 3+, and Lu 3+ are optional components that can increase devitrification resistance while maintaining a high refractive index and a high Abbe number when at least one of them contains more than 0%. It is. In particular, since the devitrification resistance can be easily improved by containing La 3+ exceeding 0%, the La 3+ content is preferably more than 0%, more preferably 0.1%, and even more preferably 0.5%. More preferably, 1.0% may be set as the lower limit. Further, by containing more than 0% of Yb 3+ , the refractive index can be increased, and volatilization of F − and the like during melting can be reduced. Therefore, the content of Yb 3+ is preferably more than 0%, more preferably 0.8%. The lower limit may be 1%, more preferably 0.7%, and even more preferably 2.0%.
On the other hand, by making each content of La 3+ , Gd 3+ , Y 3+ and Lu 3+ 10.0% or less and / or making Yb 3+ content 20.0% or less, these Devitrification due to excessive inclusion of components can be reduced. Accordingly, the content of each of La 3+ , Gd 3+ , Y 3+ and Lu 3+ is preferably 10.0%, more preferably 8.0%, still more preferably 5.0%, and even more preferably 3.0%. Is the upper limit. Further, the upper limit of the Yb 3+ content is preferably 20.0%, more preferably 15.0%, still more preferably 10.0%, and even more preferably 5.0%.
La 3+ , Gd 3+ , Y 3+ , Yb 3+ and Lu 3+ are La 2 O 3 , LaF 3 , Gd 2 O 3 , GdF 3 , Y 2 O 3 , YF 3 , Yb 2 O 3 and Lu 2 O as raw materials. 3 etc. can be used.
 Ln3+は、Y3+、La3+、Gd3+、Yb3+及びLu3+からなる群から選ばれる少なくとも1つを意味する。また、Ln3+の合計含有率は、これらの5つのイオンの合計含有率(Y3++La3++Gd3++Yb3++Lu3+)を表す場合がある。
 特に、Ln3+の合計含有率を20.0%以下にすることで、Ln3+の過剰な含有による失透を低減できる。従って、Ln3+の合計含有率は、好ましくは20.0%、より好ましくは10.0%、さらに好ましくは6.0%を上限とする。
 一方で、Ln3+は含有しなくてもよいが、Ln3+を0%超含有することで、高屈折率及び高アッベ数を維持しながらも、耐失透性を高められる。そのため、Ln3+の合計含有率を、好ましくは0.1%、より好ましくは1.0%、さらに好ましくは3.0%を下限としてもよい。
Ln 3+ means at least one selected from the group consisting of Y 3+ , La 3+ , Gd 3+ , Yb 3+ and Lu 3+ . The total content of Ln 3+ may represent the total content of these five ions (Y 3+ + La 3+ + Gd 3+ + Yb 3+ + Lu 3+ ).
In particular, by setting the total content of Ln 3+ to 20.0% or less, devitrification due to excessive inclusion of Ln 3+ can be reduced. Therefore, the total content of Ln 3+ is preferably 20.0%, more preferably 10.0%, and still more preferably 6.0%.
On the other hand, Ln 3+ does not need to be contained, but by containing more than 0% of Ln 3+ , devitrification resistance can be enhanced while maintaining a high refractive index and a high Abbe number. Therefore, the total content of Ln 3+ is preferably 0.1%, more preferably 1.0%, and still more preferably 3.0%.
 Li、Na及びKは、0%超含有する場合に、ガラス形成時の耐失透性を高く維持しつつ、ガラス転移点を下げられる任意成分である。特にLiは耐失透性を高める作用が強いため、Liの含有率は、好ましくは0%超、より好ましくは0.1%、さらに好ましくは0.3%を下限としてもよい。
 一方で、Liの含有率を20.0%以下含有すること、及び/又は、Na及びKのうち1種以上の含有率を10.0%以下にすることで、屈折率の低下や、化学的耐久性の悪化を抑えられる。従って、Liの含有率は、より好ましくは20.0%、より好ましくは10.0%、さらに好ましくは5.0%を上限とする。また、NaびKの各々の含有率は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。
 Li、Na及びKは、原料としてLiCO、LiNO、LiF、NaCO、NaNO、NaF、NaSiF、KCO、KNO、KF、KHF、KSiF等を用いることができる。
Li + , Na + and K + are optional components that can lower the glass transition point while maintaining high devitrification resistance during glass formation when contained in excess of 0%. In particular, since Li + has a strong effect of increasing devitrification resistance, the Li + content is preferably more than 0%, more preferably 0.1%, and even more preferably 0.3%.
On the other hand, the content of Li + is 20.0% or less and / or the content of one or more of Na + and K + is 10.0% or less, thereby reducing the refractive index. In addition, deterioration of chemical durability can be suppressed. Therefore, the upper limit of the content of Li + is preferably 20.0%, more preferably 10.0%, and still more preferably 5.0%. Further, the content of each of Na + and K + is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
Li + , Na + and K + are Li 2 CO 3 , LiNO 3 , LiF, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 , K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like can be used.
 本発明においてRnは、Li、Na及びKからなる群から選ばれる少なくとも1つを意味する。また、Rnの合計含有率は、これらの3つのイオンの合計含有率(Li+Na+K)を表す場合がある。
 特に、Rnの合計含有率を20.0%以下にすることで、ガラスの屈折率の低下や、化学的耐久性の悪化を抑えられる。従って、Rnの合計含有率は、好ましくは20.0%、より好ましくは10.0%、さらに好ましくは5.0%を上限とする。
 一方で、Rnは含有しなくてもよいが、Rnを0%超含有することで、耐失透性を高め、且つガラス転移点を低くできる。そのため、Rnの合計含有率を、好ましくは0%超、より好ましくは0.1%、さらに好ましくは0.3%を下限としてもよい。
In the present invention, Rn + means at least one selected from the group consisting of Li + , Na + and K + . In addition, the total content of Rn + may represent the total content of these three ions (Li + + Na + + K + ).
In particular, by setting the total content of Rn + to 20.0% or less, a decrease in the refractive index of the glass and a deterioration in chemical durability can be suppressed. Therefore, the total content of Rn + is preferably 20.0%, more preferably 10.0%, and still more preferably 5.0%.
On the other hand, it is not necessary to contain Rn + , but by containing Rn + more than 0%, devitrification resistance can be increased and the glass transition point can be lowered. Therefore, the total content of Rn + is preferably more than 0%, more preferably 0.1%, and even more preferably 0.3%.
 Si4+は、0%超含有する場合に、ガラスの耐失透性を高め、屈折率を高め、磨耗度を低下できる任意成分である。
 一方で、Si4+の含有率を10.0%以下にすることで、Si4+の過剰な含有による失透を低減できる。従って、Si4+の含有率は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。
 Si4+は、原料としてSiO、KSiF、NaSiF等を用いることができる。
Si 4+ is an optional component that can increase the devitrification resistance of the glass, increase the refractive index, and decrease the degree of wear when it contains more than 0%.
On the other hand, by making the content of Si 4+ to 10.0% or less, it can be reduced devitrification due to excessive content of Si 4+. Therefore, the upper limit of the Si 4+ content is preferably 10.0%, more preferably 5.0%, and even more preferably 3.0%.
Si 4+ can use SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like as a raw material.
 Zn2+は、0%超含有する場合に、ガラスの耐失透性を高められる任意成分である。
 一方で、Zn2+の含有率は30.0%以下にすることで、屈折率の低下を抑えられる。従って、Zn2+の含有率は、好ましくは30.0%、より好ましくは15.0%、さらに好ましくは5.0%、さらに好ましくは3.0%を上限とする。
 Zn2+は、原料としてZn(PO、ZnO、ZnF等を用いることができる。
Zn 2+ is an optional component that can enhance the devitrification resistance of the glass when it contains more than 0%.
On the other hand, when the Zn 2+ content is 30.0% or less, a decrease in the refractive index can be suppressed. Therefore, the upper limit of the Zn 2+ content is preferably 30.0%, more preferably 15.0%, still more preferably 5.0%, and still more preferably 3.0%.
As Zn 2+ , Zn (PO 3 ) 2 , ZnO, ZnF 2 or the like can be used as a raw material.
 Nb5+、Ti4+及びW6+は、0%超含有する場合に、ガラスの屈折率を高められる任意成分である。加えて、Nb5+は、0%超含有する場合に化学的耐久性を高められる。また、W6+は、0%超含有する場合にガラス転移点を低くできる。
 一方で、Nb5+、Ti4+及びW6+の各々の含有率を10.0%以下にすることで、アッベ数の低下を抑えられ、且つガラスの着色による可視光透過率の低下を抑えられる。従って、Nb5+、Ti4+及びW6+の各々の含有率は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。
 Nb5+、Ti4+及びW6+は、原料としてNb、TiO、WO等を用いることができる。
Nb 5+ , Ti 4+ and W 6+ are optional components that can increase the refractive index of the glass when contained over 0%. In addition, Nb 5+ can increase chemical durability when it contains more than 0%. Further, when W 6+ is contained in an amount exceeding 0%, the glass transition point can be lowered.
On the other hand, when the content of each of Nb 5+ , Ti 4+ and W 6+ is 10.0% or less, a decrease in Abbe number can be suppressed, and a decrease in visible light transmittance due to glass coloring can be suppressed. Therefore, the upper limit of the content of each of Nb 5+ , Ti 4+ and W 6+ is preferably 10.0%, more preferably 5.0%, and even more preferably 3.0%.
Nb 2+ , Ti 4+ and W 6+ can use Nb 2 O 5 , TiO 2 , WO 3 or the like as a raw material.
 Zr4+は、0%超含有する場合に、ガラスの屈折率を高められる任意成分である。
 一方で、Zr4+の含有率を10.0%以下にすることで、ガラス中の成分の揮発によるガラスの脈理を抑えられる。従って、Zr4+の含有率は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。
 Zr4+は、原料としてZrO、ZrF等を用いることができる。
Zr 4+ is an optional component that can increase the refractive index of glass when it contains more than 0%.
On the other hand, the striae of the glass by volatilization of the component in glass can be suppressed by making the content rate of Zr4 + 10.0% or less. Therefore, the upper limit of the content of Zr 4+ is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
Zr 4+ may use ZrO 2, ZrF 4, etc. as a raw material.
 Ta5+は、0%超含有する場合に、ガラスの屈折率を高められる任意成分である。
 一方で、Ta5+の含有率を10.0%以下にすることで、ガラスの失透を低減できる。従って、Ta5+の含有率は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。
 Ta5+は、原料としてTa等を用いることができる。
Ta 5+ is an optional component that can increase the refractive index of glass when it is contained in excess of 0%.
On the other hand, devitrification of glass can be reduced by making the content rate of Ta 5+ 10.0% or less. Accordingly, the upper limit of the Ta 5+ content is preferably 10.0%, more preferably 5.0%, and even more preferably 3.0%.
Ta 5+ can use Ta 2 O 5 or the like as a raw material.
 Ge4+は、0%超含有する場合に、ガラスの屈折率を高め、耐失透性を高められる任意成分である。
 一方で、Ge4+の含有率を10.0%以下にすることで、高価なGe4+の含有量が減少することで、ガラスの材料コストを低減できる。そのため、Ge4+の含有率は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%とする。
 Ge4+は、原料としてGeO等を用いることができる。
Ge 4+ is an optional component that can increase the refractive index of the glass and increase the resistance to devitrification when it contains more than 0%.
On the other hand, when the content rate of Ge 4+ is 10.0% or less, the content of expensive Ge 4+ is reduced, so that the material cost of the glass can be reduced. Therefore, the Ge 4+ content is preferably 10.0%, more preferably 5.0%, and even more preferably 3.0%.
For Ge 4+ , GeO 2 or the like can be used as a raw material.
 Bi3+及びTe4+は、0%超含有する場合に、ガラスの屈折率を高め、ガラス転移点を低くできる任意成分である。
 一方で、Bi3+の含有率は10.0%以下にし、及び/又は、Te4+の含有率を15.0%以下にすることで、ガラスの失透や、着色による可視光透過率の低下を抑えられる。従って、Bi3+の含有率は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。また、Te4+の含有率は、好ましくは15.0%、より好ましくは10.0%、さらに好ましくは5.0%を上限とする。
 Bi3+及びTe4+は、原料としてBi、TeO等を用いることができる。
Bi 3+ and Te 4+ are optional components that can increase the refractive index of the glass and lower the glass transition point when it is contained in excess of 0%.
On the other hand, the Bi 3+ content is set to 10.0% or less and / or the Te 4+ content is set to 15.0% or less, so that the glass is devitrified and the visible light transmittance decreases due to coloring. Can be suppressed. Accordingly, the upper limit of the Bi 3+ content is preferably 10.0%, more preferably 5.0%, and even more preferably 3.0%. The Te 4+ content is preferably 15.0%, more preferably 10.0%, and still more preferably 5.0%.
Bi 3+ and Te 4+ can use Bi 2 O 3 , TeO 2 or the like as a raw material.
[アニオン成分について]
 本発明の光学ガラスはFを含有する。Fの含有率は、例えば20.0%~70.0%にすることが好ましい。
 特に、Fを20.0%以上含有することで、ガラスの異常分散性やアッベ数を高め、且つガラスの耐失透性を高められる。従って、Fの含有率は、好ましくは20.0%、より好ましくは23.0%、さらに好ましくは26.0%とする。
 一方で、Fの含有率を70.0%以下にすることで、ガラスの磨耗度の低下を抑えられる。従って、Fの含有率は、好ましくは70.0%、より好ましくは60.0%、より好ましくは50.0%、さらに好ましくは40.0%を上限とする。
 Fは、原料としてAlF、MgF、BaF等の各種カチオン成分のフッ化物を用いることができる。
[About anion component]
The optical glass of the present invention F - containing. The content of F is preferably 20.0% to 70.0%, for example.
In particular, by containing 20.0% or more of F , the anomalous dispersibility and Abbe number of the glass can be increased, and the devitrification resistance of the glass can be increased. Therefore, the content of F is preferably 20.0%, more preferably 23.0%, and further preferably 26.0%.
On the other hand, when the content of F is 70.0% or less, a decrease in the degree of wear of the glass can be suppressed. Therefore, the upper limit of the content of F is preferably 70.0%, more preferably 60.0%, more preferably 50.0%, and still more preferably 40.0%.
F - it may be used AlF 3, various cationic components of MgF 2, BaF 2 and the like fluoride as a raw material.
 本発明の光学ガラスはO2-を含有する。O2-の含有率は、例えば30.0%~80.0%にすることが好ましい。
 特に、O2-を30.0%以上含有することで、ガラスの失透や、磨耗度の上昇を抑制できる。従って、O2-の含有率の下限は、好ましくは30.0%、より好ましくは40.0%、さらに好ましくは50.0%、さらに好ましくは60.0%とする。
 一方で、O2-の含有率を80.0%以下にすることで、他のアニオン成分による効果を得易くできる。従って、O2-の含有率の上限は、好ましくは80.0%、より好ましくは77.0%、さらに好ましくは74.0%とする。
 また、ガラスの失透を抑制する観点から、O2-の含有率とFの含有率の合計は、好ましくは98.0%、より好ましくは99.0%を下限とし、さらに好ましくは100%とする。
 O2-は、原料としてAl、MgO、BaO等の各種カチオン成分の酸化物や、Al(PO)、Mg(PO)、Ba(PO)等の各種カチオン成分の燐酸塩等を用いることができる。
The optical glass of the present invention contains O 2− . The content of O 2− is preferably 30.0% to 80.0%, for example.
In particular, by containing 30.0% or more of O 2− , devitrification of glass and an increase in the degree of wear can be suppressed. Therefore, the lower limit of the content of O 2− is preferably 30.0%, more preferably 40.0%, still more preferably 50.0%, and even more preferably 60.0%.
On the other hand, when the content of O 2− is 80.0% or less, the effect of other anion components can be easily obtained. Therefore, the upper limit of the content of O 2− is preferably 80.0%, more preferably 77.0%, and still more preferably 74.0%.
Further, from the viewpoint of suppressing the devitrification of the glass, the total of the content of O 2− and the content of F is preferably 98.0%, more preferably 99.0%, more preferably 100%. %.
O 2− is an oxide of various cation components such as Al 2 O 3 , MgO and BaO as raw materials, and phosphate of various cation components such as Al (PO) 3 , Mg (PO) 2 and Ba (PO) 2. Etc. can be used.
[その他の成分について]
 本発明の光学ガラスには、他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加できる。
[Other ingredients]
If necessary, other components can be added to the optical glass of the present invention as long as the properties of the glass of the present invention are not impaired.
[含有すべきでない成分について]
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。 
[About ingredients that should not be contained]
Next, components that should not be contained in the optical glass of the present invention and components that are not preferably contained will be described.
 Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の遷移金属のカチオンは、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。 Cations of transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, are each single or composite. Even if it is contained in a small amount, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. Therefore, it is preferable that the glass is not substantially contained particularly in optical glass using a wavelength in the visible range.
 Pb、Th、Cd、Tl、Os、Be及びSeのカチオンは、近年有害な化学物質として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、不可避な混入を除き、これらを実質的に含有しないことが好ましい。これにより、光学ガラスに環境を汚染する物質が実質的に含まれなくなる。そのため、特別な環境対策上の措置を講じなくとも、この光学ガラスを製造し、加工し、及び廃棄できる。 Cb of Pb, Th, Cd, Tl, Os, Be, and Se have tended to refrain from being used as harmful chemical substances in recent years, leading to not only the glass manufacturing process but also the processing process and disposal after commercialization. Environmental measures are required. Therefore, when importance is placed on the environmental impact, it is preferable not to substantially contain them except for inevitable mixing. As a result, the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking special environmental measures.
 SbやAsのカチオンは、脱泡剤として有用ではあるが、環境に不利益を及ぼす成分として、近年光学ガラスに含めないようにする傾向がある。そのため、本発明の光学ガラスは、このような点からSbやAsを含まないことが好ましい。 Although cations such as Sb and As are useful as a defoaming agent, they tend to be excluded from optical glass in recent years as components that adversely affect the environment. Therefore, it is preferable that the optical glass of this invention does not contain Sb and As from such a point.
[製造方法]
 本発明の光学ガラスの製造方法は特に限定されない。例えば、上記原料を各成分が所定の含有率の範囲内になるように均一に混合し、作製した混合物を石英坩堝又はアルミナ坩堝又は白金坩堝に投入して粗溶融した後、白金坩堝、白金合金坩堝又はイリジウム坩堝に入れて900~1200℃の温度範囲で2~10時間溶融し、攪拌均質化して泡切れ等を行った後、850℃以下の温度に下げてから仕上げ攪拌を行って脈理を除去し、金型に鋳込んで徐冷することにより製造することができる。
[Production method]
The method for producing the optical glass of the present invention is not particularly limited. For example, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a quartz crucible, an alumina crucible or a platinum crucible and roughly melted, and then a platinum crucible, a platinum alloy Stir in a crucible or iridium crucible for 2-10 hours at 900-1200 ° C, stir to homogenize, blow out bubbles, etc., then lower the temperature to 850 ° C or lower, then stir to finish and stir It is possible to manufacture by removing the above, casting into a mold and slow cooling.
[物性]
 本発明の光学ガラスは、高屈折率を有する。また、本発明の光学ガラスは、高アッベ数(低分散)を有することが好ましい。
 特に、本発明の光学ガラスの屈折率(nd)は、好ましくは1.53、より好ましくは1.57、さらに好ましくは1.59、さらに好ましくは1.60、さらに好ましくは1.607を下限とする。この屈折率の上限は、好ましくは2.00、より好ましくは1.90、さらに好ましくは1.80であってもよい。
 また、本発明の光学ガラスのアッベ数(νd)は、好ましくは60、より好ましくは63、さらに好ましくは66を下限とし、好ましくは90、より好ましくは85、さらに好ましくは80を上限とする。
 また、本発明の光学ガラスのアッベ数(νd)は、屈折率(nd)との間で、nd≧-0.00254×νd+1.760の関係を満たすことが好ましく、nd≧-0.00254×νd+1.770の関係を満たすことがより好ましく、nd≧-0.00254×νd+1.790の関係を満たすことが最も好ましい。
 このような高屈折率を有することで、光学素子の薄型化を図っても大きな光の屈折量を得ることができる。また、このような低分散を有することで、単レンズであっても光の波長による焦点のずれ(色収差)が小さくなる。また、屈折率及びアッベ数がこのような関係を有することで、近年発表されている高屈折・高分散の光学特性を有する光学ガラスと組み合わせたときに、高パワーの光学設計を行うことが可能な光学ガラスを得ることができる。
 従って、本発明の光学ガラスは、光学設計上有用であり、光学系の高精度化及び小型化を図ることができるため、光学設計の自由度を広げることができる。
 なお、屈折率(nd)及びアッベ数(νd)は、日本光学硝子工業会規格JOGIS01-2003に基づいて測定して得た値を意味するものとする。
[Physical properties]
The optical glass of the present invention has a high refractive index. The optical glass of the present invention preferably has a high Abbe number (low dispersion).
In particular, the refractive index (nd) of the optical glass of the present invention is preferably 1.53, more preferably 1.57, even more preferably 1.59, still more preferably 1.60, and even more preferably 1.607. And The upper limit of this refractive index is preferably 2.00, more preferably 1.90, and even more preferably 1.80.
Further, the Abbe number (νd) of the optical glass of the present invention is preferably 60, more preferably 63, still more preferably 66, the lower limit, preferably 90, more preferably 85, still more preferably 80.
The Abbe number (νd) of the optical glass of the present invention preferably satisfies the relationship of nd ≧ −0.00254 × νd + 1.760 with the refractive index (nd), and nd ≧ −0.00254 ×. It is more preferable to satisfy the relationship of νd + 1.770, and it is most preferable that the relationship of nd ≧ −0.00254 × νd + 1.790 is satisfied.
By having such a high refractive index, a large amount of light can be obtained even if the optical element is thinned. In addition, by having such low dispersion, even with a single lens, focus shift (chromatic aberration) due to the wavelength of light is reduced. In addition, since the refractive index and the Abbe number have such a relationship, it is possible to perform high-power optical design when combined with optical glasses having optical properties of high refraction and high dispersion that have been announced recently. Optical glass can be obtained.
Therefore, the optical glass of the present invention is useful in optical design, and the optical system can be highly accurate and downsized, so that the degree of freedom in optical design can be expanded.
The refractive index (nd) and Abbe number (νd) mean values obtained by measurement based on the Japan Optical Glass Industry Association Standard JOGIS01-2003.
 本発明の光学ガラスは、溶融状態からガラスを形成したときの耐失透性が高いことが好ましい。これにより、ガラスの安定性が高められて結晶化が低減されるため、ガラスから作製される光学素子の光学特性、特に透過率への悪影響を低減できる。
 耐失透性の指標として、後述する失透析出開始温度(Tx)を用いることができる。本発明の光学ガラスの失透析出開始温度(Tx)は、好ましくは1200℃、より好ましくは1100℃以下、さらに好ましくは1000℃以下、さらに好ましくは950℃以下である。
The optical glass of the present invention preferably has high devitrification resistance when the glass is formed from a molten state. Thereby, since stability of glass is improved and crystallization is reduced, an adverse effect on optical characteristics, particularly transmittance, of an optical element manufactured from glass can be reduced.
As an index of devitrification resistance, a dedialysis start temperature (Tx) described later can be used. The optical dialysis start temperature (Tx) of the optical glass of the present invention is preferably 1200 ° C., more preferably 1100 ° C. or less, still more preferably 1000 ° C. or less, and further preferably 950 ° C. or less.
 本発明の光学ガラスは、ガラス原料を熔解する際における、F成分をはじめとする各種成分の揮発が少ないことが好ましい。これにより、環境に対して有害なガスの発生が低減されるため、光学ガラスを製造する際の作業環境をより改善し易くできる。より具体的には、ガラス原料を熔解する際の揮発量(原料熔解時の揮発量)は、好ましくは3.00%以下、より好ましくは2.50%以下、さらに好ましくは2.30%以下である。 The optical glass of the present invention preferably has little volatilization of various components including the F component when melting the glass raw material. Thereby, generation | occurrence | production of the gas harmful | toxic to an environment is reduced, Therefore The working environment at the time of manufacturing optical glass can be improved more easily. More specifically, the volatilization amount at the time of melting the glass raw material (the volatilization amount at the time of melting the raw material) is preferably 3.00% or less, more preferably 2.50% or less, and still more preferably 2.30% or less. It is.
 ここで、各種成分の揮発量は、例えば以下の方法で測定できる。
 すなわち、調合したガラス原料を約200mg量り取り、アルミナ製のDTA坩堝に入れ、昇温速度40℃/分で1100℃まで加熱し、30分間保持した。この30分保持したときを開始点として、1100℃でさらに60分間保持した。開始点と開始点から60分間後の質量変化量を揮発量と定義し、その量を求めた。
Here, the volatilization amount of various components can be measured by the following method, for example.
That is, about 200 mg of the prepared glass raw material was weighed, put into an alumina DTA crucible, heated to 1100 ° C. at a temperature rising rate of 40 ° C./min, and held for 30 minutes. Starting from this 30-minute hold, it was held at 1100 ° C. for a further 60 minutes. The mass change amount after 60 minutes from the start point and the start point was defined as the volatilization amount, and the amount was determined.
 また、各種成分の揮発量は、以下の方法で評価することもできる。
 すなわち、100cmのガラス原料を、蓋をした300ccの白金るつぼで1000~1200℃で十分に熔解させた後、得られた融液を熔解容器ごと炉外に取り出し、蓋を外した直後に発生する白煙の量を目視により確認した。このとき、白煙が少ない場合を「◎非常に良い」又は「○良い」と評価し、白煙が多い場合を「△悪い」又は「×非常に悪い」と評価した。ここで、白煙が少ない場合の中でも特に白煙が少ない場合を「◎非常に良い」と評価し、白煙が多い場合の中でも特に白煙が多い場合を「×非常に悪い」と評価した。
Moreover, the volatilization amount of various components can also be evaluated by the following method.
That is, 100cm 3 of glass material is melted sufficiently at 1000-1200 ° C in a 300cc platinum crucible with a lid, and the resulting melt is taken out of the furnace together with the melting vessel and generated immediately after the lid is removed. The amount of white smoke to be confirmed was confirmed visually. At this time, the case where there was little white smoke was evaluated as “◎ very good” or “good”, and the case where there was much white smoke was evaluated as “△ bad” or “× very bad”. Here, even when there is little white smoke, especially when there is little white smoke, it was evaluated as “◎ very good”, and when there was much white smoke, especially when there was a lot of white smoke, it was evaluated as “× very bad” .
[プリフォーム及び光学素子]
 本発明の光学ガラスは、様々な光学素子及び光学設計に有用であるが、その中でも特に、本発明の光学ガラスからプリフォームを形成し、このプリフォームに対して研磨加工や精密プレス成形等の手段を用いて、レンズやプリズム、ミラー等の光学素子を作製することが好ましい。これにより、カメラやプロジェクタ等のような光学素子に可視光を透過させる光学機器に用いたときに、高精細で高精度な結像特性を実現することができる。特に、本発明の光学ガラスは温度変化による屈折率の変動が小さいため、例えばプロジェクタのように使用時に高温になる用途に用いても、高精細で高精度な結像特性を実現することができる。ここで、プリフォーム材を製造する方法は特に限定されるものではなく、例えば特開平8-319124に記載のガラスゴブの成形方法や特開平8-73229に記載の光学ガラスの製造方法及び製造装置のように溶融ガラスから直接プリフォーム材を製造する方法を用いることもできる。また、光学ガラスから形成したストリップ材に対して研削研磨等の冷間加工を行って製造する方法を用いることもできる。
[Preforms and optical elements]
The optical glass of the present invention is useful for various optical elements and optical designs. Among them, a preform is formed from the optical glass of the present invention, and polishing or precision press molding is performed on the preform. It is preferable to produce an optical element such as a lens, a prism, or a mirror using the means. As a result, when used in an optical device that transmits visible light to an optical element such as a camera or a projector, high-definition and high-precision imaging characteristics can be realized. In particular, since the optical glass of the present invention has a small change in refractive index due to temperature changes, it can realize high-definition and high-precision imaging characteristics even when used in applications where the temperature is high during use, such as a projector. . Here, the method for producing the preform material is not particularly limited. For example, a glass gob forming method described in JP-A-8-319124 and an optical glass manufacturing method and manufacturing apparatus described in JP-A-8-73229 are disclosed. Thus, a method for producing a preform material directly from molten glass can also be used. Moreover, it is also possible to use a method of manufacturing by performing cold processing such as grinding and polishing on a strip material formed from optical glass.
 本発明の光学ガラスである実施例(No.1~No.38)及び比較例(No.A)のガラスの組成(カチオン%表示又はアニオン%表示のモル%で示す)、屈折率(nd)、アッベ数(νd)、及び、原料熔解時の揮発の度合い(表中では単に「揮発の度合い」とする)を表1~表5に示す。また、実施例及び比較例のガラスの、原料熔解時の揮発量と耐失透性を表6に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。 Composition of glass of Examples (No. 1 to No. 38) and Comparative Example (No. A) which are optical glasses of the present invention (indicated by mol% of cation% display or anion% display), refractive index (nd) Tables 1 to 5 show the Abbe number (νd) and the degree of volatilization during raw material melting (in the table, simply “degree of volatilization”). Table 6 shows the volatilization amount and devitrification resistance of the glasses of Examples and Comparative Examples when melting the raw materials. The following examples are merely for illustrative purposes, and are not limited to these examples.
 本発明の実施例及び比較例の光学ガラスは、いずれも各成分の原料として各々相当する酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の弗燐酸塩ガラスに使用される高純度原料を選定し、表1~表5に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス組成の溶融難易度に応じて電気炉で900~1200℃の温度範囲で2~10時間溶解し、攪拌均質化して泡切れ等を行った後、850℃以下に温度を下げてから金型に鋳込み、徐冷してガラスを作製した。 The optical glasses of the examples of the present invention and the comparative examples are high-grade glass used for ordinary fluorophosphate glasses such as oxides, carbonates, nitrates, fluorides, and metaphosphate compounds corresponding to the raw materials of the respective components. Purity raw materials are selected, weighed so as to have the composition ratios of the respective examples shown in Tables 1 to 5 and mixed uniformly, and then put into a platinum crucible. Electricity is selected according to the melting difficulty of the glass composition. After melting in a furnace at 900-1200 ° C for 2-10 hours, stirring and homogenizing to remove bubbles, etc., the temperature is lowered to 850 ° C or lower, cast into a mold, and slowly cooled to produce glass did.
 ここで、実施例及び比較例の光学ガラスの屈折率及びアッベ数は、日本光学硝子工業会規格JOGIS01-2003に基づいて測定した。そして、求められた屈折率及びアッベ数の値について、関係式nd≧-0.00254×νd+bにおける切片bを求めた。(切片bは、表中では「nd+0.00254*νd」と表した。)なお、本測定に用いたガラスとして、アニール条件は徐冷降下速度を-25℃/hrとして、徐冷炉にて処理を行ったものを用いた。 Here, the refractive index and the Abbe number of the optical glasses of Examples and Comparative Examples were measured based on Japan Optical Glass Industry Association Standard JOGIS01-2003. Then, the intercept b in the relational expression nd ≧ −0.00254 × νd + b was obtained for the obtained refractive index and Abbe number. (Section b is represented as “nd + 0.00254 * νd” in the table.) The glass used in this measurement was processed in a slow cooling furnace with a slow cooling rate of −25 ° C./hr. What was done was used.
 また、実施例及び比較例のガラスの原料熔解時の揮発の度合いは、100cmのガラス原料を、白金又は耐火物からなる蓋をした、内法の直径85mm、高さ65mmの白金るつぼ(300cc)で1000~1200℃で十分に熔解させた後、得られた融液を熔解容器ごと炉外に取り出し、るつぼの背面に30cm×30cmの黒板を設置し、蓋を外した直後に発生する白煙の量を目視により確認した。このとき、黒板の水平方向の中心線がるつぼの水平方向の中心線と重なるように設置した。
 このとき、白煙が少ない場合を「◎非常に良い」又は「○良い」と評価し、白煙が多い場合を「△悪い」又は「×非常に悪い」と評価した。ここで、白煙が少ない場合の中でも特に白煙が少ない場合を「◎非常に良い」と評価し、白煙が多い場合の中でも特に白煙が多い場合を「×非常に悪い」と評価した。
Further, the degree of volatilization at the time of melting the raw materials of the glass of the examples and comparative examples was as follows: a platinum crucible (300 cc in diameter) having an inner diameter of 85 mm and a height of 65 mm obtained by covering a glass raw material of 100 cm 3 with a lid made of platinum or refractory. ), And the melt obtained is taken out of the furnace together with the melting vessel, a blackboard of 30 cm x 30 cm is placed on the back of the crucible, and white is generated immediately after the lid is removed. The amount of smoke was confirmed visually. At this time, it was installed so that the horizontal center line of the blackboard overlapped with the horizontal center line of the crucible.
At this time, the case where there was little white smoke was evaluated as “◎ very good” or “good”, and the case where there was much white smoke was evaluated as “△ bad” or “× very bad”. Here, even when there is little white smoke, especially when there is little white smoke, it was evaluated as “◎ very good”, and when there was much white smoke, especially when there was a lot of white smoke, it was evaluated as “× very bad” .
 また、実施例及び比較例のガラスの原料熔解時の揮発性は、以下の方法でも測定した。
 調合したガラス原料を約200mg量り取り、アルミナ製のDTA坩堝に入れ、昇温速度40℃/分で1100℃まで加熱し、30分間保持した。この30分保持したときを開始点として、1100℃でさらに60分間保持した。開始点と開始点から60分間後の質量変化量を揮発量と定義し、その量を求めた。
Moreover, the volatility at the time of the raw material melting | dissolving of the glass of an Example and a comparative example was also measured with the following method.
About 200 mg of the prepared glass raw material was weighed, put into an alumina DTA crucible, heated to 1100 ° C. at a temperature rising rate of 40 ° C./min, and held for 30 minutes. Starting from this 30-minute hold, it was held at 1100 ° C. for a further 60 minutes. The mass change amount after 60 minutes from the start point and the start point was defined as the volatilization amount, and the amount was determined.
 また、実施例及び比較例のガラスの耐失透性は、得られたガラスを粒度425~600μmに破砕し、粉砕したガラス試料を約200mg量り取ってアルミナ製のDTA坩堝に入れ、昇温速度10℃/分で950℃まで加熱した。加熱温度が950℃に達した後、降温速度5℃/分で600℃まで冷却したときに検出される示唆熱曲線の最も高い発熱開始温度Tx(-5)を測定した。また、同様に加熱温度が950℃に達した後、降温速度2.5℃/分で600℃まで冷却したときに検出される示唆熱曲線の最も高い発熱開始温度Tx(-2.5)を測定した。測定されたTx(-5)とTx(-2.5)の値から、降温速度0℃/分に外挿した温度を失透析出開始温度(Tx)と定義し、その温度を求めた。 In addition, the devitrification resistance of the glass of Examples and Comparative Examples was determined by crushing the obtained glass to a particle size of 425 to 600 μm, weighing about 200 mg of the crushed glass sample, and putting it in an alumina DTA crucible. Heat to 950 ° C. at 10 ° C./min. After the heating temperature reached 950 ° C., the highest exothermic start temperature Tx (−5) of the suggested heat curve detected when the temperature was cooled to 600 ° C. at a temperature decrease rate of 5 ° C./min was measured. Similarly, after the heating temperature reaches 950 ° C., the highest exothermic start temperature Tx (−2.5) of the suggested heat curve detected when cooling to 600 ° C. at a cooling rate of 2.5 ° C./min. It was measured. From the measured values of Tx (−5) and Tx (−2.5), the temperature extrapolated to a temperature decrease rate of 0 ° C./min was defined as the dialysis start temperature (Tx), and the temperature was determined.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1~表6に表されるように、本発明の実施例の光学ガラスは、いずれも屈折率が1.53以上、より詳細には1.59以上であり、所望の範囲内であった。一方、比較例(No.A)は、屈折率が1.53を下回っていた。このため、本発明の実施例の光学ガラスは、比較例のガラスに比べて屈折率が高いことが明らかになった。 As shown in Tables 1 to 6, all of the optical glasses of the examples of the present invention had a refractive index of 1.53 or more, more specifically 1.59 or more, and were within a desired range. . On the other hand, the comparative example (No. A) had a refractive index lower than 1.53. For this reason, it became clear that the optical glass of the Example of this invention has a high refractive index compared with the glass of a comparative example.
 また、本発明の実施例の光学ガラスは、いずれもアッベ数が60以上、より詳細には65以上であるとともに、このアッベ数は80以下、より詳細には70以下であり、所望の範囲内であった。 In addition, the optical glasses of the examples of the present invention all have an Abbe number of 60 or more, more specifically 65 or more, and this Abbe number is 80 or less, more specifically 70 or less. Met.
 また、本発明の実施例の光学ガラスのアッベ数(νd)は、屈折率(nd)との間で、nd≧-0.00254×νd+1.760の関係、より詳細にはnd≧-0.00254×νd+1.767の関係を満たしており、所望の範囲内であった。 Further, the Abbe number (νd) of the optical glass of the example of the present invention has a relationship of nd ≧ −0.00254 × νd + 1.760 with the refractive index (nd), more specifically, nd ≧ −0. The relationship of 00254 × νd + 1.767 was satisfied, and it was within the desired range.
 また、本発明の実施例の光学ガラスは、表中の「揮発の度合い」が「◎」又は「○」であり、熔解時における白煙の発生が少ないことが明らかになった。また、本発明の実施例の光学ガラスは、揮発量が3.00%以下、より具体的には2.15%以下であった。その一方で、本発明の比較例のガラスは、揮発量が3.15%であった。そのため、本発明の光学ガラスは、比較例のガラスに比べて、熔解時におけるF成分をはじめとする各成分の揮発が少ないことが推察される。 In addition, the optical glass of the example of the present invention has a “degree of volatilization” in the table of “◎” or “○”, and it has been clarified that the generation of white smoke during melting is small. Further, the optical glass of the example of the present invention had a volatilization amount of 3.00% or less, more specifically 2.15% or less. On the other hand, the volatilization amount of the glass of the comparative example of the present invention was 3.15%. Therefore, it is speculated that the optical glass of the present invention has less volatilization of each component including the F component at the time of melting than the glass of the comparative example.
 また、本発明の実施例の光学ガラスは、失透析出開始温度が1200℃以下、より具体的には940℃以下であり、所望の範囲内であった。 In addition, the optical glass of the examples of the present invention had a dedialysis start temperature of 1200 ° C. or less, more specifically 940 ° C. or less, and was within a desired range.
 従って、本発明の実施例の光学ガラスは、アッベ数が所望の範囲内にありながらも、屈折率及び耐失透性が高く、且つ、熔解時における成分の揮発が少ないことが明らかになった。 Therefore, it has been clarified that the optical glass of the example of the present invention has high refractive index and devitrification resistance and low volatilization of components during melting, while the Abbe number is within a desired range. .
 さらに、本発明の実施例の光学ガラスを用いて、ガラスブロックを形成し、このガラスブロックに対して研削及び研磨を行い、レンズ及びプリズムの形状に加工した。その結果、安定に様々なレンズ及びプリズムの形状に加工することができた。 Furthermore, a glass block was formed using the optical glass of the example of the present invention, and this glass block was ground and polished to be processed into the shape of a lens and a prism. As a result, it was possible to stably process into various lens and prism shapes.
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。 Although the present invention has been described in detail for the purpose of illustration, this embodiment is only for the purpose of illustration, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. Will be understood.

Claims (19)

  1.  カチオン成分としてP5+及びAl3+を含有し、Al3+の含有量が25.0%以下であり、アニオン成分としてO2-及びFを含有し、
     屈折率(nd)が1.53以上である光学ガラス。
    P 5+ and Al 3+ are contained as the cation component, the content of Al 3+ is 25.0% or less, O 2− and F are contained as the anion component,
    An optical glass having a refractive index (nd) of 1.53 or more.
  2.  カチオン%(モル%)表示で、P5+を10.0~70.0%含有する請求項1記載の光学ガラス。 The optical glass according to claim 1, comprising 10.0 to 70.0% of P 5+ in terms of cation% (mol%).
  3.  カチオン%(モル%)表示で、B3+を0.1~15.0%さらに含有する請求項1又は2記載の光学ガラス。 3. The optical glass according to claim 1, further comprising 0.1 to 15.0% of B 3+ in terms of cation% (mol%).
  4.  カチオン%(モル%)表示で、
    Mg2+の含有率が0~20.0%
    Ca2+の含有率が0~30.0%、
    Sr2+の含有率が0~30.0%、
    Ba2+の含有率が0~50.0%、
    である請求項1から3のいずれか記載の光学ガラス。
    In cation% (mol%) display,
    Mg 2+ content 0-20.0%
    Ca 2+ content is 0-30.0%,
    Sr 2+ content is 0-30.0%,
    Ba 2+ content is 0-50.0%,
    The optical glass according to any one of claims 1 to 3.
  5.  カチオン%(モル%)表示で、Ba2+を20.0%以上含有する請求項4記載の光学ガラス。 The optical glass according to claim 4, which contains 20.0% or more of Ba 2+ in terms of cation% (mol%).
  6.  P5+、B3+及びBa2+の合計含有率(カチオン%)が30.0~80.0%である請求項1から5のいずれか記載の光学ガラス。 6. The optical glass according to claim 1, wherein the total content (cation%) of P 5+ , B 3+ and Ba 2+ is 30.0 to 80.0%.
  7.  P5+、B3+、Ba2+及びAl3+の合計含有率(カチオン%)が95.0%以下である請求項1から6のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 6, wherein a total content (cation%) of P 5+ , B 3+ , Ba 2+ and Al 3+ is 95.0% or less.
  8.  アルカリ土類金属の合計含有率(R2+:カチオン%)が60.0%以下である請求項1から7のいずれか記載の光学ガラス。 8. The optical glass according to claim 1, wherein the total content of alkaline earth metals (R 2+ : cation%) is 60.0% or less.
  9.  カチオン%(モル%)表示で、
    La3+の含有率が0~10.0%、
    Gd3+の含有率が0~10.0%、
    3+の含有率が0~10.0%、
    Yb3+の含有率が0~20.0%、
    Lu3+の含有率が0~10.0%
    である請求項1から8のいずれか記載の光学ガラス。
    In cation% (mol%) display,
    La 3+ content is 0-10.0%,
    The content of Gd 3+ is 0 to 10.0%,
    The content of Y 3+ is 0 to 10.0%;
    Yb 3+ content is 0-20.0%,
    Lu 3+ content is 0-10.0%
    The optical glass according to any one of claims 1 to 8.
  10.  La3+、Gd3+、Y3+、Yb3+及びLu3+の合計含有率(Ln3+:カチオン%)が20.0%以下である請求項1から9のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 9, wherein the total content of La 3+ , Gd 3+ , Y 3+ , Yb 3+ and Lu 3+ (Ln 3+ : cation%) is 20.0% or less.
  11.  カチオン%(モル%)表示で、
    Liの含有率が0~20.0%、
    Naの含有率が0~10.0%、
    の含有率が0~10.0%
    である請求項1から10のいずれか記載の光学ガラス。
    In cation% (mol%) display,
    Li + content is 0-20.0%,
    Na + content is 0 to 10.0%,
    Content of K + is 0 to 10.0%
    The optical glass according to any one of claims 1 to 10.
  12.  アルカリ金属の合計含有率(Rn:カチオン%)が20%以下である請求項1から11のいずれか記載の光学ガラス。 12. The optical glass according to claim 1, wherein the total content of alkali metals (Rn + : cation%) is 20% or less.
  13.  カチオン%(モル%)表示で、
    Si4+の含有率が0~10.0%、
    Zn2+の含有率が0~30.0%、
    Nb5+の含有率が0~10.0%、
    Ti4+の含有率が0~10.0%、
    Zr4+の含有率が0~10.0%、
    Ta5+の含有率が0~10.0%、
    6+の含有率が0~10.0%、
    Ge4+の含有率が0~10.0%、
    Bi3+の含有率が0~10.0%、
    Te4+の含有率が0~15.0%
    である請求項1から12のいずれか記載の光学ガラス。
    In cation% (mol%) display,
    Si 4+ content is 0-10.0%,
    Zn 2+ content 0-30.0%,
    Nb 5+ content is 0 to 10.0%,
    Ti 4+ content is 0-10.0%,
    The content of Zr 4+ is 0 to 10.0%,
    Ta 5+ content is 0-10.0%,
    The content of W 6+ is 0 to 10.0%,
    Ge 4+ content is 0-10.0%,
    Bi 3+ content is 0-10.0%,
    Te 4+ content is 0-15.0%
    The optical glass according to any one of claims 1 to 12.
  14.  アニオン%(モル%)表示で、
    の含有率が20.0~70.0%、
    2-の含有率が30.0~80.0%、
    である請求項1から13のいずれか記載の光学ガラス。
    Anion% (mol%) display,
    The content of F is 20.0 to 70.0%,
    The content of O 2− is 30.0-80.0%,
    The optical glass according to any one of claims 1 to 13.
  15.  60以上のアッベ数(νd)を有する請求項1から14のいずれか記載の光学ガラス。 The optical glass according to claim 1, which has an Abbe number (νd) of 60 or more.
  16.  屈折率(nd)がアッベ数(νd)との間でnd≧-0.00254×νd+1.760の関係を満たす請求項1から15のいずれか記載の光学ガラス。 The optical glass according to claim 1, wherein the refractive index (nd) satisfies the relationship of nd ≧ −0.00254 × νd + 1.760 with the Abbe number (νd).
  17.  請求項1から16のいずれか記載の光学ガラスからなる光学素子。 An optical element made of the optical glass according to any one of claims 1 to 16.
  18.  請求項1から16のいずれか記載の光学ガラスからなる研磨加工用及び/又は精密プレス成形用のプリフォーム。 A preform for polishing and / or precision press molding comprising the optical glass according to any one of claims 1 to 16.
  19.  請求項18記載のプリフォームを精密プレスしてなる光学素子。 An optical element obtained by precision pressing the preform according to claim 18.
PCT/JP2012/083996 2011-12-28 2012-12-27 Optical glass, optical element, and preform WO2013100107A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011289955 2011-12-28
JP2011-289955 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013100107A1 true WO2013100107A1 (en) 2013-07-04

Family

ID=48697585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083996 WO2013100107A1 (en) 2011-12-28 2012-12-27 Optical glass, optical element, and preform

Country Status (3)

Country Link
JP (1) JP6174317B2 (en)
TW (1) TW201335100A (en)
WO (1) WO2013100107A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156325A (en) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 Fluorphosphate glass, gas preform, optical element and the optical instrument with it
CN110156324A (en) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 Fluorphosphate glass, gas preform, optical element and the optical instrument with it
CN112010556A (en) * 2019-05-31 2020-12-01 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
CN112010555A (en) * 2019-05-31 2020-12-01 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
CN114450256A (en) * 2019-08-06 2022-05-06 株式会社尼康 Optical glass, optical element, optical system, interchangeable lens, and optical device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961547B2 (en) * 2017-08-02 2021-11-05 Hoya株式会社 Optical glass and optical elements
JP7410677B2 (en) * 2018-09-19 2024-01-10 Hoya株式会社 Optical glass and optical elements
CN112811815B (en) * 2021-01-21 2022-04-12 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055883A (en) * 2005-07-28 2007-03-08 Hoya Corp Optical glass, optical element and process for production thereof
JP2009286670A (en) * 2008-05-30 2009-12-10 Hoya Corp Optical glass, glass raw material for press molding, optical element blank, optical element, and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3204625C2 (en) * 1982-02-10 1986-07-10 Schott Glaswerke, 6500 Mainz Alumosilico-phosphate spectacle lens with an Abbe number over 46, with a refractive index over 1.56 and a very low density
JPH0774083B2 (en) * 1989-08-28 1995-08-09 ホーヤ株式会社 Fluorophosphate glass
JP3075908B2 (en) * 1994-03-08 2000-08-14 ホーヤ株式会社 Optical glass filter and method for calibrating transmittance or absorbance in ultraviolet region using the same
JP4106476B2 (en) * 1995-11-27 2008-06-25 株式会社ニコン Manufacturing method of optical glass
JP5709301B2 (en) * 2010-10-26 2015-04-30 Hoya株式会社 Method for producing fluorophosphate optical glass and method for producing optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055883A (en) * 2005-07-28 2007-03-08 Hoya Corp Optical glass, optical element and process for production thereof
JP2009286670A (en) * 2008-05-30 2009-12-10 Hoya Corp Optical glass, glass raw material for press molding, optical element blank, optical element, and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156325A (en) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 Fluorphosphate glass, gas preform, optical element and the optical instrument with it
CN110156324A (en) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 Fluorphosphate glass, gas preform, optical element and the optical instrument with it
CN112010556A (en) * 2019-05-31 2020-12-01 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
CN112010555A (en) * 2019-05-31 2020-12-01 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
CN112010556B (en) * 2019-05-31 2022-04-22 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
CN112010555B (en) * 2019-05-31 2022-04-22 成都光明光电股份有限公司 Fluorophosphate glass, glass preform, optical element and optical instrument having the same
CN114450256A (en) * 2019-08-06 2022-05-06 株式会社尼康 Optical glass, optical element, optical system, interchangeable lens, and optical device

Also Published As

Publication number Publication date
TW201335100A (en) 2013-09-01
JP2013151411A (en) 2013-08-08
JP6174317B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6740422B2 (en) Optical glass and optical element
JP6409039B2 (en) Optical glass and optical element
JP6174317B2 (en) Optical glass, optical element and preform
JP6143706B2 (en) Optical glass, optical element and preform
JP2013151410A (en) Optical glass, optical element and preform
JP2010235429A (en) Optical glass, optical element and preform
JP2011037637A (en) Optical glass, optical element and preform
JP5680307B2 (en) Optical glass, preform, and optical element
WO2011086855A1 (en) Optical glass, preform and optical element
WO2013084706A1 (en) Optical glass, preform, and optical element
JP6188553B2 (en) Optical glass, preform material and optical element
JP2010006692A (en) Optical glass, optical element and preform for precision press molding
JP2014156394A (en) Optical glass, optical element and preform
JP5875572B2 (en) Optical glass, preform material and optical element
JP6363141B2 (en) Optical glass, preform material and optical element
JP5721780B2 (en) Optical glass, optical element and preform
JP2010195674A (en) Optical glass, optical element and preform for precision press molding
JP5721781B2 (en) Optical glass, optical element and preform
JP2010260742A (en) Optical glass, optical element, and preform for precision press molding
JP5694647B2 (en) Optical glass, optical element and precision press molding preform
JP6049591B2 (en) Optical glass, preform material and optical element
JP2013227197A (en) Optical glass, lens preform, and optical element
JP2013209232A (en) Optical glass and optical element
JP6091251B2 (en) Optical glass and optical element
JP5630968B2 (en) Optical glass, optical element and precision press molding preform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863819

Country of ref document: EP

Kind code of ref document: A1