WO2013191496A1 - 목조전통건축물 재난 상황 조기 경보 시스템 - Google Patents
목조전통건축물 재난 상황 조기 경보 시스템 Download PDFInfo
- Publication number
- WO2013191496A1 WO2013191496A1 PCT/KR2013/005469 KR2013005469W WO2013191496A1 WO 2013191496 A1 WO2013191496 A1 WO 2013191496A1 KR 2013005469 W KR2013005469 W KR 2013005469W WO 2013191496 A1 WO2013191496 A1 WO 2013191496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- sensor
- time period
- disaster
- value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B31/00—Predictive alarm systems characterised by extrapolation or other computation using updated historic data
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/06—Electric actuation of the alarm, e.g. using a thermally-operated switch
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
Definitions
- the present invention relates to an early warning system for disaster situation of wooden buildings, and more particularly, in the event of a disaster situation, an environmental change occurs immediately before a disaster occurs, and data about the environmental change is collected from a sensor and collected. It is about the early warning system of wooden building disaster situation to prevent the disaster by using the data to remove the disaster occurrence factors.
- Figure 1 is a conventional disaster management system configuration, the disaster management system is composed of a fire fighting equipment group 10, a video equipment group 20 and the control device 30 to implement disaster management Was doing.
- the firefighting device group 10 transmits the detected data to the control device 30 using a sensor such as a smoke sensor, a flame detection sensor, a heat detection sensor, and the image facility device group 20 is In order to monitor the intruder to shoot with a photographing device such as CCTV and transmits the captured image to the control device (30).
- a sensor such as a smoke sensor, a flame detection sensor, a heat detection sensor
- the image facility device group 20 is In order to monitor the intruder to shoot with a photographing device such as CCTV and transmits the captured image to the control device (30).
- Such a conventional disaster management system is a wooden traditional building, the intelligent early disaster information recognition ability is weak, and most of the traditional wooden buildings (especially, cultural property, etc.) will be completely lost due to delayed on-site dispatch in case of various disasters such as fire. There was a lot of concern.
- the smoke sensor when the smoke sensor is operated by dust generated by a lantern-like event where a lot of people are mobilized in the temple or the human body sensor is operated according to outsiders' entrance, the detected information is continuously transmitted to the fire department and the police station. This is because the fire information is transmitted even though it is not a disaster situation, the disaster prevention manager has a problem that the tension on the site situation is slowed down and it is not immediately dealt with when an actual disaster situation occurs.
- the present invention has been made to solve the above-described problems, the object of the present invention is to collect data on the factors that may cause disasters to predict the factors that can cause disasters in advance to prevent disasters
- the purpose is.
- the wooden building disaster situation early warning system includes a sensor for generating the first data every set time period; A receiver for receiving a plurality of first data generated for each of the set first time periods, and a plurality of first data obtained by comparing the second data measured in the first time period with respect to each of the received plurality of first data.
- a setting unit for setting a second difference value having the largest difference value among the difference values as a setting value, an input unit to which a second time period is input by a user, and receiving a setting value set in the setting unit and inputted by the input unit.
- the analysis means for generating an analysis data the server comprising a transmission unit for transmitting the second time period input through the input unit to the sensor and the analysis data generated through the analysis unit to the manager terminal as a solution means. .
- a wooden building building disaster situation early warning system includes: a first sensor generating first data every set first time period; A second sensor generating second data every set first time period; A receiver configured to receive the generated first and second data in a plurality of pairs by binding the same first period of time, and obtain a first difference value for each of the paired first and second data to set the largest difference value.
- a setting unit configured to set the input unit, an input unit to which a second time period is input by a user, and a setting value set by the setting unit is received and a second time period inputted by the input unit is transmitted to the first and second sensors.
- a second difference value for each of the third and fourth data by tying a plurality of third data generated by the first sensor and a plurality of fourth data generated by the second sensor in the second time period to the same second time period.
- Seokbu and that transmits the second time period is input through the input unit to the sensor and comprising an analysis of data generated by the analysis unit to the server-part transmission to be transmitted to the manager terminal to the solving means.
- the present invention has an effect of preventing the risk of occurrence of a disaster by using the collected data by collecting data from a sensor that may cause a disaster.
- FIG. 1 is a configuration diagram of a conventional disaster management system
- Figure 2 is a block diagram of a wooden traditional building disaster situation early warning system according to an embodiment of the present invention
- FIG. 3 is a server block diagram according to an embodiment of the present invention.
- FIG. 4 is an exemplary graph for measuring a set value according to an embodiment of the present invention.
- FIG. 6 is an exemplary graph for disaster determination according to an embodiment of the present invention.
- Figure 7 is an illustration of a wooden traditional building disaster situation early warning system according to another embodiment of the present invention.
- fire fighting equipment group 20 video equipment installation group
- control device 100 sensor
- FIG. 2 is a block diagram of a wooden traditional building disaster situation early warning system according to the present invention, wherein the wooden traditional building disaster situation early warning system includes a sensor 100 and a server 200.
- the sensor 100 generates first data every set first time period.
- the temperature sensor 100 senses the temperature in real time, but if the set time period, for example, a one-minute period, the temperature value measured for each one-minute period is data-driven for one minute period.
- the first data are generated for each server, and the generated first data are transmitted to the server 200.
- the sensor 100 in the case of one minute period, when one minute of time period is input to the server 200, the sensor 100 generates first data every one minute, and one hour corresponds to 60 minutes, thereby generating sixty first data. In this case, 1440 data is generated and transmitted to the server 200 in one minute time period.
- the sensor 100 is preferably sensors capable of detecting a disaster, typically any one of a temperature sensor, smoke sensor, humidity sensor, the human body sensor for detecting an intruder with a temperature sensor, the human body
- the human body sensor is preferably configured with a humidity sensor, as well as the temperature sensor, smoke sensor, humidity sensor is also configured to include two or more sensors after the human body sensor is also configured together. desirable.
- the sensor 100 performs data communication with the server 200.
- the server 200 includes a receiver 210, a setup unit 220, an input unit 230, an analyzer 240, and a transmitter 250.
- the receiving unit 210 of the server 200 receives a plurality of first data generated every set first time period.
- the receiving unit 210 receives the third data generated by the second time period, the third data generated by the second time period will be described in detail below in the analysis unit 240.
- the setting unit 220 of the server 200 has a largest difference value among a plurality of first difference values obtained by comparing the second data measured in the first time period with respect to each of the plurality of received first data. Set the second difference value having the set value.
- the plurality of first data are A 'data, B' data, C 'data, D' data, and E 'data.
- 'Data, B' data, C 'data, D' data and E 'data have time information and measured values (temperature values).
- a 'data has information of 10 ° C and 30 minutes
- B' data has information of 12 ° C and 31 minutes
- C 'data has information of 16 ° C and 32 minutes
- D' data has 14 ° C.
- E 'data contains 12 degrees Celsius and 34 minutes.
- each of the data of A ', B', C ', D', and E ' is based on the first data such as A', B ', C', D ', and E' data according to a time period of 1 minute on the time axis.
- the first data such as A', B ', C', D ', and E' data
- the second data collected in the immediately preceding first time period becomes A', so the temperature value measured at B 'is 12 ° C and measured at A'.
- the 1st difference value becomes 2 degreeC because the temperature value which was made is 10 degreeC.
- the reason for setting the set value is that if a fire occurs in the event of a disaster such as a fire, for example, the wooden traditional building is damaged so that it cannot be handled after about 5 minutes. 5 minutes in advance to determine.
- the present invention may be as high as 1.6 ° C per minute per minute, and most of the temperature is 1.0 ° C.
- the set value is set to the second difference value having the largest difference value among the first difference values.
- the server 200 having the setting unit 220 obtains the setting values for each sensor in the setting unit 220 and transmits the setting values for each sensor through the transmitter 250. It is also preferable.
- the A sensor installed in the doorway, the B sensor mounted on the ceiling, the C sensor installed on the floor as shown in Figure 5 is installed in any space of the traditional wooden building A sensor is the doorway because it is the doorway from time to time As the sensor opens and closes, it is very sensitive to the influence of the external environment, so the value measured by the A sensor changes from time to time, but the B and C sensors will have a constant measured value than the A sensor. If the same setting value is given to the same value, the A sensor installed at the doorway is often misidentified that a disaster has occurred, so it is desirable to have a different setting value for each sensor.
- the setting unit 220 Since the setting unit 220 is difficult to apply a uniform set value due to environmental conditions such as place, location, and season, the setting unit 220 automatically applies the set value according to the setting cycle.
- the setting unit 220 is difficult to apply a uniform set value according to the environmental conditions such as place, location, season, so that the set value is applied by the numerical calculation of the user.
- the difference value is large depending on the seasons of spring, summer, autumn, and winter. 200).
- a second time period is input to determine whether a disaster component is generated by a user.
- the input second time period is transmitted to the sensor 100 through the transmitter 260 to generate third data according to the second time period.
- the analyzing unit 240 of the server 200 receives the setting value set by the setting unit 220 and the second time period input by the input unit 230 is transmitted to the sensor 100. By a time period, a plurality of second differences obtained by receiving a plurality of third data generated by the sensor 100 and comparing each of the received third data with the fourth data measured in the previous second time period. Comparing the value with the set value, the analysis data is generated for the second difference value when the value is higher than the set value.
- the analysis unit 240 will be described with reference to FIG. 4. First, if the set value is set to 3 ° C., the time period A 'data temperature value is 10 ° C. and B' data temperature value is 12 ° C. The difference between 'data' and 'B' data is 2 °C, the temperature of B 'data is 12 °C and the temperature of C' data is 16 °C, so the difference between B 'and C data is 4 °C. C 'data temperature value is 16 ° C and D' data temperature value is 14 ° C, so the difference between C'data and D'data is 2 ° C, D'data is 14 ° C and E'data Since the temperature value is 12 °C, the difference value is 2 °C.
- the time period over the set value 3 °C is a time period between the B 'data and the C' data to determine that there is a disaster component and the server 200 will generate the analysis data.
- the analysis data does not transmit the fact that a disaster has occurred, but it is data to remove the disaster element by notifying that there is a minimum element that can occur. It is for immediate response before.
- the analyzer 240 receives the sixth data which is less than or equal to the predetermined value in the second time period following the second second time period after receiving the fifth data exceeding the set value in the second arbitrary time period. If received, it is analyzed that no disaster is generated and the analysis data generation is blocked.
- the sensor 100 when the sensor 100 is a non-contact temperature sensor among the temperature sensors, the sensor does not measure the ambient temperature, but measures the temperature at a predetermined distance. In this case, it is not analyzed that a disaster such as fire has occurred.
- F 'data has no disaster element below the set value
- G' data has a disaster element occurrence state above the set value
- H 'data has no disaster element below the set value.
- the rapid rise in temperature as shown in time period 1, when the F 'data and the G' data are measured, corresponds to the measurement of a human temperature in front of the temperature sensor. Falling is a measure of the passing of a person in front of the temperature sensor, thus keeping the disaster free.
- the analyzer 240 is equal to or rises with the fifth data in the second time periods after the second after the second time period after receiving the fifth data exceeding the set value in the second second time period.
- the received seventh data it is analyzed that a disaster factor has occurred and generates analysis data.
- the set value is 4 ° C.
- a temperature value risen by 6 ° C. in the second time period is measured, it is in a state in which it has exceeded the set value, and in a state where a disaster element has occurred
- the temperature continues to be the same or elevated, such as 7 ° C and then 7 ° C in the second time period, the analysis data is generated as having a continuity of the disaster component.
- the analysis unit 240 sequentially receives from the sensor every second until 1 minute has elapsed from the time when the third data is generated when the third data generated in the second arbitrary time period is equal to or greater than a set value.
- the eighth data is compared with the fourth data for obtaining the second difference value generated in the second random time period, if all the eighth data received are equal to or greater than a set value, a disaster factor is analyzed and within one minute. If any one of the eighth data received is less than or equal to a predetermined value, it is analyzed that no disaster factor has occurred.
- the third data generated in any second time period is 30 ° C.
- the fourth data for obtaining a second difference value generated in the second arbitrary time period is If the set value is 25 ° C and the set value is 4 ° C, the eighth data is received every second for 1 minute when it is analyzed that a disaster factor occurs because the third data 30 ° C and the fourth data 25 ° C are higher than the set value 4 ° C.
- the reason for receiving the eighth data every second during the 1 minute is that it is difficult to extinguish the fire when about 5 minutes have elapsed in the case of the traditional wooden building, and since the wooden traditional building is largely lost, the disaster within one minute This is to analyze the factors and identify the disaster factors in the remaining 4 minutes and respond quickly.
- the reason why it is not regarded as a disaster element when any one of the eighth data is less than or equal to the set value is that the continuity is increased, whereas the temperature rises or maintains when a fire is generated and generated by fire. If there was a breakdown in this situation, it means that it did not develop into a fire at the flower garden, so that no disasters occurred.
- a security guard visits a wooden traditional building, typically a cultural property building, turns on a light in an arbitrary space under special circumstances and leaves the space after patrol, a disaster factor occurs but it cannot develop into a disaster because there is no continuity. Do not analyze as occurrence of disaster.
- the server 200 analyzes that there is continuity in the event of a disaster.
- a disaster such as a fire
- a fire source occurs and a fire occurs, it has a continuity of elements (temperature) that the fire has, and this is analyzed to prevent fire in advance 5 minutes before the fire.
- the transmitter 250 of the server 200 transmits the second time period input through the input unit 230 to the sensor 100, and also transmits the analysis data generated through the analyzer 240 to the manager terminal. To transmit.
- the analysis data is displayed on the administrator terminal so that the administrator can respond immediately.
- the wooden building disaster situation early warning system includes a first sensor 100-1, a second sensor 100-2, and a server 200-1.
- the first sensor 100-1 for generating first data every set first time period;
- a second sensor (100-2) generating second data every set first time period;
- a receiver configured to receive the generated first and second data in a plurality of pairs by binding the same first period of time, and obtain a first difference value for each of the paired first and second data to set the largest difference value.
- a setting unit configured to set the input unit; an input unit to which a second time period is input by a user; and a second time period input by the input unit to receive a setting value set by the setting unit, wherein the first and second sensors 100-1, 100-3) a plurality of third data generated by the first sensor 100-1 and a plurality of fourth data generated by the second sensor 100-2 in the second time period.
- the server 200-1 includes an analyzer configured to generate data and a transmitter configured to transmit a second time period input through the input unit to a sensor and transmit the analyzed data generated through the analyzer to a manager terminal.
- another embodiment of the present invention is to analyze whether a disaster element has occurred by using the environmental conditions between the two sensors, as described with reference to Figure 7, a certain environment in any space inside the wooden traditional building The condition is fulfilled.
- the first sensor 100-1 when the first sensor 100-1 is disposed above the wooden traditional building and the second sensor 100-2 is disposed below the wooden traditional building, the first sensor 100-1 is measured and generated by the first sensor 100-1.
- the value between the first data generated and the second data measured by the second sensor is always within a stable range in the absence of a disaster.
- the first difference value of the first and second data generated by the first and second sensors 100-1 and 100-2 is calculated for each same first time period, and the highest value is obtained. It is to set the set value (stable range).
- the first difference value between the first sensor 100-1 and the second sensor 100-2 in which the flower source is generated will be analyzed to be higher than the set value. This implies that the garden eventually occurred.
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Alarm Systems (AREA)
- Fire-Detection Mechanisms (AREA)
Abstract
본 발명은 재난 상황이 발생할 경우에는 재난이 발생하기 직전에 환경변화가 발생하게 되고 상기 환경변화를 센서를 통해 데이터를 수집하여 미연에 재난 발생 요소를 제거하여 재난을 방지하기 위한 목조전통건축물 재난 상황 조기 경보 시스템에 관한 것이다. 이에 따른, 본 발명은 재난이 발생할 우려가 있는 정보를 데이터화하여 센서로부터 수집하고 수집된 데이터를 이용하여 재난이 발생될 수 있는 요소를 미연에 판단하여 방지할 수 있는 효과가 있다.
Description
본 발명은 목조전통건축물 재난 상황 조기 경보 시스템에 관한 것으로서, 더욱 상세하게는 재난 상황이 발생할 경우에 재난이 발생하기 직전에 환경변화가 발생하게 되고 상기 환경변화에 대한 데이터를 센서로부터 수집하고 수집된 데이터를 이용하여 미연에 재난 발생 요소를 제거함에 따라 재난을 방지하기 위한 목조전통건축물 재난 상황 조기 경보 시스템에 관한 것이다.
종래의 기술로서, 도 1은 종래의 재난관리 시스템 구성도로서, 상기 재난관리 시스템은 소방시설 장치군(10)과 영상시설 장치군(20) 및 제어장치(30)로 구성되어 재난관리를 시행하고 있었다.
더욱 상세하게, 상기 소방시설 장치군(10)은 연기센서, 불꽃감지센서, 열감지센서와 같은 센서를 이용하여 감지된 데이터를 제어장치(30)로 전달하고, 영상시설 장치군(20)은 침입자를 감시하기 위하여 CCTV와 같은 촬영기기로 촬영하고 촬영된 영상을 제어장치(30)로 전달한다.
이와 같은 종래의 재난관리 시스템은 목조전통건축물인 경우에, 지능화된 초기 재난 정보 인지 능력이 취약하여 화재 등 각종 재난 발생 시 현장 출동 지연으로 목조전통건축물(특히, 문화재 같은 것) 대부분이 완전 소실될 우려가 매우 많이 있었다.
특히, 목조전통건축물은 소방관계법규상 건축물 규정에 적용되지 않기 때문에 착화빈도와 화재위험이 일반 건축물보다 높은 실정임에도 건물 내부에 적용되는 지능형 감지 설비의 부족으로 화재 대응이 취약한 상황이다.
예컨대, 상기 종래의 재난관리 시스템이 사찰에 설치되어 있는 경우에 상기 사찰에서 행해지는 각종 종교행사나 생활요인에 의해서 화재로 오인되어 감지시설 오작동이 빈번히 발생하고 있는 실정이다.
일례로 사찰에 사람들이 많이 동원되는 연등행사로 인하여 발생되는 먼지에 의해서 연기센서가 동작하거나 외부인 출입에 따른 인체감지센서가 동작하게 되면 감지된 정보가 소방서, 경찰서 등에 지속적으로 전달된다. 이는 재난 상황이 아님에도 불구하고 화재정보가 전달되기 때문에 재난방지 관리자가 현장상황에 대해서 긴장감이 늦춰지게 되고 실제 재난 상황이 발생된 경우에 즉각 대처하지 못하는 문제점이 있었다.
결과적으로 목조전통건축물 현재의 상황에 대한 재난위험 여부를 정확히 분석한 정보를 이용하여 재난방지를 적극적으로 재난상황에 맞게 대처할 수 있는 분석 시스템이 없었다.
특히, 목조전통건축물에 발생하는 화재의 경우는 화원발생 후 약 5분이 지나면 화재 진압이 매우 어려울 뿐만 아니라, 이미 문화재의 많은 부분이 소실됨으로 종래의 기술에 의해서는 화원의 발생을 확인한 후에 화재를 진압하려는 것일 뿐, 화원이 발생할 수 있는 요소를 극초기에 분석하지 못하는 문제점이 있었다.
따라서, 본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 재난이 발생될 우려가 있는 요소에 대한 데이터를 수집하여 재난이 발생할 수 있는 요소를 미연에 예측하여 재난을 방지하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 일실시예에 따르면, 목조전통건축물 재난 상황 조기 경보 시스템은 설정된 제 1 시간주기마다 제 1 데이터를 생성하는 센서와; 상기 설정된 제 1 시간주기마다 생성된 다수의 제 1 데이터를 수신하는 수신부, 상기 수신된 다수의 제 1 데이터 각각에 대하여 바로 전 제 1 시간주기에서 측정된 제 2 데이터와 비교하여 구해진 다수의 제 1 차이값 중에서 가장 큰 차이값을 갖는 제 2 차이값을 설정값으로 설정하는 설정부, 사용자에 의해서 제 2 시간주기가 입력되는 입력부, 상기 설정부에 설정된 설정값을 수신하고 상기 입력부에 의해서 입력된 제 2 시간주기가 센서에 전송됨에 따라 상기 제 2 시간주기에 의하여 상기 센서가 생성한 다수의 제 3 데이터를 수신하고 수신된 제 3 데이터 각각에 대하여 바로 전 제 2 시간주기에서 측정된 제 4 데이터와 비교하여 구해진 다수의 제 2 차이값과 상기 설정값을 각각 비교하여 상기 설정값보다 높은 경우의 제 2 차이값에 대하여 재난요소가 발생하였다는 분석데이터를 생성하는 분석부, 상기 입력부를 통해 입력된 제 2 시간주기를 센서에 전송하고 상기 분석부를 통해 생성된 분석데이터를 관리자 단말기에 전송하는 전송부로 구성된 서버로 이루어진 것을 해결 수단으로 한다.
본 발명의 다른 일실시예에 따르면 목조전통건축물 재난 상황 조기 경보 시스템은 설정된 제 1 시간주기마다 제 1 데이터를 생성하는 제 1 센서와; 상기 설정된 제 1 시간주기마다 제 2 데이터를 생성하는 제 2 센서와; 상기 생성된 제 1, 2 데이터를 동일한 제 1 시간주기끼리 묶어 다수의 쌍을 이루어 수신하는 수신부, 상기 쌍을 이룬 제 1, 2 데이터 각각에 대하여 제 1 차이값을 구하여 가장 큰 차이값을 설정값으로 설정하는 설정부, 사용자에 의해서 제 2 시간주기가 입력되는 입력부, 상기 설정부에 설정된 설정값을 수신하고 상기 입력부에 의해서 입력된 제 2 시간주기가 상기 제 1, 2 센서에 전송됨에 따라 상기 제 2 시간주기에서 제 1 센서에 의해 생성된 다수의 제 3 데이터와 제 2 센서에 의해 생성된 다수의 제 4 데이터를 동일한 제 2 시간주기끼리 묶어 제 3, 4 데이터 각각에 대하여 제 2 차이값을 구하고 상기 각각의 제 2 차이값과 상기 설정값을 비교하여 상기 설정값보다 높은 경우의 임의의 제 2 차이값에 대하여 재난요소가 발생하였다는 분석데이터를 생성하는 분석부, 상기 입력부를 통해 입력된 제 2 시간주기를 센서에 전송하고 상기 분석부를 통해 생성된 분석데이터를 관리자 단말기에 전송하는 전송부로 구성된 서버로 이루어진 것을 해결 수단으로 한다.
이상 설명한 바와 같이, 본 발명은 재난이 발생할 우려가 있는 정보를 데이터화하여 센서로부터 수집하고 수집된 데이터를 이용하여 재난이 발생될 수 있는 요소를 미연에 판단하여 방지할 수 있는 효과가 있다.
도 1은 종래의 재난관리 시스템 구성도
도 2는 본 발명의 일실시예에 따른 목조전통건축물 재난 상황 조기 경보 시스템 구성도
도 3은 본 발명의 일실시예에 따른 서버 블록도
도 4는 본 발명의 일실시예에 따른 설정값 측정을 위한 예시 그래프
도 5는 본 발명의 일실시예에 따른 센서 배치 예시도
도 6은 본 발명의 일실시예에 따른 재난 판단을 위한 예시 그래프
도 7은 본 발명의 다른 일실시예에 따른 목조전통건축물 재난 상황 조기 경보 시스템 예시도
[부호의 설명]
10 : 소방시설 장치군 20 : 영상시설 장치군
30 : 제어장치 100 : 센서
100-1 : 제 1 센서 100-2 : 제 2 센서
200, 200-1 : 서버 210 : 수신부
220 : 설정부 230 : 입력부
240 : 분석부 250 : 전송부
이하, 본 발명의 최적 실시예에 대하여 첨부된 도면을 참조하여 그 구성 및 작용을 설명한다.
도 2는 본 발명에 따른 목조전통건축물 재난 상황 조기 경보 시스템 구성도로서, 상기 목조전통건축물 재난 상황 조기 경보 시스템은 센서(100)와 서버(200)로 이루어진다.
더욱 상세하게, 상기 센서(100)는 설정된 제 1 시간주기마다 제 1 데이터를 생성한다.
예컨대, 상기 센서(100)가 온도센서라고 가정하면, 상기 온도센서는 실시간으로 온도를 감지하지만, 설정된 시간주기 예를 들어 1분 주기라면 상기 1분 주기별로 측정된 온도값이 데이터화되어 1분 주기별로 제 1 데이터들을 생성하고 생성된 제 1 데이터들은 서버(200)에 전송된다.
이때, 1분 주기인 경우는 상기 서버(200)에 시간주기 1분이 입력되면 상기 센서(100)는 1분마다 제 1 데이터를 생성하며 1시간이 60분에 해당함으로 60개의 제 1 데이터를 생성하여 상기 서버(200)에 전송하고 1분 시간주기로 하루면 1440개의 데이터를 생성하여 상기 서버(200)에 전송하는 것이다.
한편, 센서(100)는 재난을 감지할 수 있는 센서들이 바람직하고, 대표적으로 온도센서, 연기센서, 습도센서 중 어느 하나가 바람직하고, 침입자 감지를 위한 인체감지센서가 온도센서와 함께, 상기 인체감지센서가 연기센서와 함께, 상기 인체감지센서가 습도센서와 함께 구성되는 것이 바람직함은 물론 상기 온도센서, 연기센서, 습도센서 중 둘 이상의 센서를 포함되게 구성한 후 인체감지센서가 함께 구성되는 것도 바람직하다.
이는 침입자가 목조전통건축물 내부에 들어와 방화와 같은 행위에 대처하기 위한 것이다.
또한, 상기 센서(100)는 서버(200)와 데이터통신을 수행한다.
상기 서버(200)는 도 3에 도시된 바와 같이, 수신부(210)와 설정부(220)와 입력부(230), 분석부(240) 및 전송부(250)로 이루어진다.
더욱 상세하게, 상기 서버(200)의 수신부(210)는 상기 설정된 제 1 시간주기 마다 생성된 다수의 제 1 데이터를 수신한다.
또한, 상기 수신부(210)는 제 2 시간주기에 의해서 생성된 제 3 데이터를 수신하며, 제 2 시간주기에 의해서 생성된 제 3 데이터는 이하, 분석부(240)에서 상세히 설명한다.
상기 서버(200)의 설정부(220)는 상기 수신된 다수의 제 1 데이터 각각에 대하여 바로 전 제 1 시간주기에서 측정된 제 2 데이터와 비교하여 구해진 다수의 제 1 차이값 중에서 가장 큰 차이값을 갖는 제 2 차이값을 설정값으로 설정한다.
예컨대, 본 발명의 이해를 돕기 위하여 도 4의 그래프를 참조하여 설명하면, 상기 다수의 제 1 데이터는 A'데이터, B'데이터, C'데이터, D'데이터, E'데이터라 가정하고 상기 A'데이터, B'데이터, C'데이터, D'데이터, E'데이터는 시간정보와 측정된 값(온도값)을 갖는다.
즉, A' 데이터는 10℃와 30분이라는 정보를 갖고 있고 B'데이터는 12℃와 31분이라는 정보를 갖고 있고 C'데이터는 16℃와 32분이라는 정보를 갖고 있고 D'데이터는 14℃와 33분이라는 정보를 갖고 있으며, E'데이터는 12℃와 34분이라는 정보를 갖는다.
이때, A', B', C', D', E' 각각의 데이터는 시간축으로 1분의 시간주기에 따라 A', B', C', D', E' 데이터와 같은 제 1 데이터를 생성함에 있어서, 상기 임의의 제 1 데이터가 B'라 가정하면 바로 전 제 1 시간주기에서 수집된 제 2 데이터는 A'가 되는 바, B'에서 측정된 온도값이 12℃이고 A'에서 측정된 온도값이 10℃ 임으로 제 1 차이값은 2℃가 된다.
이와 같은 과정을 반복하면 C'와 B' 차이값은 4℃가 되고 D'와 C' 차이값은 2℃가 되고 E'와 D' 차이값은 2℃가 되며 이러한 다수개의 제 1 차이값 중에서 가장 큰 차이값을 갖는 제 2 차이값 즉, C'와 B'의 4℃가 설정값으로 설정되는 것이다.
상기 설정값을 설정하는 이유는 재난, 예를 들어 화재와 같은 재난의 경우에 화원이 발생되면 목조전통건축물은 약 5분이 지나면 감당하기 어려울 정도로 훼손되기 때문에 상기 화원과 같은 재난요소가 있는지 화원발생 약 5분 전에 미리 판별하기 위한 것이다.
상기 설정값을 생성하기 위하여 본 발명과 온도센서를 이용하여 대한민국 경상북도 안동 도산서원을 대상으로 측정한 결과에 의하면 시간주기 1분당 최고 1.6℃ 오른 경우가 있고, 대부분 1.0℃ 정도가 평균적인 것으로 나타났다.
상기 1분당 최고 1.6℃ 오른 경우는 도산서원에서 특별한 행사로 인하여 난방시설, 조리시설 등 온도가 오를 수 있는 요소들이 작용하였던 것으로 분석되었지만 결국, 화재가 발생할 수 있는 최소한의 요소가 나타나더라도 즉각 그 상황을 대처하기 위한 것이기 때문에 설정값을 제 1 차이값 중에서 가장 큰 차이값을 갖는 제 2 차이값으로 설정하는 것이다.
상기 설정부(220)를 갖는 서버(200)는 다수개의 센서(100)가 구성된 경우에 설정부(220)에서 센서별로 설정값을 구하여 전송부(250)를 통해 각 센서별로 설정값을 전송하는 것도 바람직하다.
예컨대, 도 5에 도시된 바와 같이 출입구에 설치된 A센서, 천장에 설치된 B센서, 바닥에 설치된 C센서가 목조전통건축물의 임의의 공간에서 설치된 경우라면 A센서의 경우는 출입구이기 때문에 출입자에 의해서 수시로 열리고 닫히게 됨으로 외부환경 영향에 매우 민감하게 되어 A센서가 측정하는 값이 수시로 변화하게 되지만, B센서와 C센서는 A센서보다 일정한 측정값을 가질 것임으로 A센서, B센서, C센서의 평균값과 같은 값으로 동일하게 설정값을 부여하면 출입구에 설치된 A센서는 수시로 재난이 발생하였다는 오인탐지를 하게 됨으로 센서별로 설정값을 다르게 갖는 것이 바람직한 것이다.
상기 설정부(220)는 장소, 위치, 계절과 같은 환경조건에 의하여 균일한 설정값 적용이 곤란함으로 설정주기를 두어 자동으로 설정주기에 따라 설정값이 적용된다.
또한, 설정부(220)는 장소, 위치, 계절과 같은 환경조건에 의하여 균일한 설정값 적용이 곤란함으로 사용자의 수치적 계산에 의하여 설정값이 적용된다.
즉, 온도센서의 경우에는 봄, 여름, 가을, 겨울 계절에 따라 차이값이 크게 작용함으로 이 차이값을 계절에 맞게 적용하기 위하여 설정주기를 두어 설정값을 설정함에 있어서, 자동 또는 수동으로 서버(200)에 설정하는 것이다.
상기 서버(200)의 입력부(230)는 사용자에 의해서 재난요소의 발생여부를 판별하기 위하여 제 2 시간주기가 입력된다.
즉, 상기 제 2 시간주기가 입력되면, 입력된 제 2 시간주기는 상기 전송부(260)를 통하여 센서(100)에 전달되어 제 2 시간주기에 따라 제 3 데이터를 생성하게 된다.
상기 서버(200)의 분석부(240)는 상기 설정부(220)에서 설정된 설정값을 수신하고 상기 입력부(230)에 의해서 입력된 제 2 시간주기가 센서(100)에 전송됨에 따라 상기 제 2 시간주기에 의하여, 상기 센서(100)가 생성한 다수의 제 3 데이터를 수신하고 수신된 제 3 데이터 각각에 대하여 바로 전 제 2 시간주기에서 측정된 제 4 데이터와 비교하여 구해진 다수의 제 2 차이값과 상기 설정값을 비교하여 상기 설정값보다 높은 경우의 제 2 차이값에 대하여 재난요소가 발생하였다는 분석데이터를 생성한다.
예컨대, 도 4를 참조하여 상기 분석부(240)를 설명하는바, 우선, 설정값이 3℃로 설정되었다고 한다면 시간주기 A'데이터 온도값이 10℃이고 B'데이터 온도값이 12℃임으로 A'데이터와 B'데이터 사이의 차이값은 2℃가 되고, B'데이터 온도값이 12℃이고 C'데이터는 온도값이 16℃임으로 B'데이터와, C데이터 사이의 차이값은 4℃가 되고, C'데이터 온도값은 16℃이고 D'데이터 온도값은 14℃임으로 C'데이터와 D'데이터 사이의 차이값은 2℃가 되고, D'데이터는 온도값은 14℃이고 E'데이터는 온도값은 12℃임으로 차이값은 2℃가된다.
이때, 설정값 3℃를 넘은 시간주기는 B'데이터와 C'데이터 사이의 시간주기가 됨으로 이를 재난요소가 있음을 판단하고 서버(200)는 분석데이터를 생성하게 되는 것이다.
즉, 분석데이터는 재난이 발생되었다는 사실을 전송하는 것이 아니고 재난이 발생할 수 있는 최소한의 요소가 있음을 알려줌으로써 미연에 재난요소를 제거하기 위한 데이터이고 이와 같은 분석데이터를 이용하여 재난발생 약 5분 전에 즉각 대처하기 위한 것이다.
또한, 상기 분석부(240)는 임의의 제 2 시간주기에서 설정값을 초과한 제 5 데이터가 수신된 후 상기 임의의 제 2 시간주기 다음의 제 2 시간주기에서 설정값 이하의 제 6 데이터가 수신된 경우는 재난 요소가 발생되지 않는 것으로 분석하여 분석데이터 생성이 차단된다.
예컨대, 상기 센서(100)가 온도센서 중에서 비접촉식 온도센서인 경우에 주변 온도를 측정하는 것이 아니고, 일정거리에 있는 온도를 측정하기 때문에 온도센서 앞으로 사람이 지나간 경우에는 급격히 온도가 상승한 후 바로 정상온도로 전환됨으로 이러한 경우는 화재와 같은 재난요소가 발생하였다고 분석하지 않는 것이다.
더욱 상세하게, 도 6을 참조하여 설명하면, F'데이터는 설정값 이하의 재난요소가 없는 상태, G'데이터는 설정값 이상의 재난요소 발생상태, H'데이터는 설정값 이하의 재난요소가 없는 상태인 경우에 F'데이터와 G'데이터가 측정되는 시간주기 1에서 도시된 바와 같이 급격히 온도가 상승한 것은 온도센서 앞에 사람에 의한 온도를 측정한 것에 해당하고 시간주기 2에서 도시된 바와 같이 급격히 온도가 하강한 것은 온도센서 앞에 있던 사람이 지나간 후를 측정한 것이기 때문에 재난요소가 없는 상태를 유지하는 것이다.
이와 같이, 적어도 3번 내지 5번의 시간주기 내에서 측정된 값이 재난요소가 발생된 상태에서 다시 재난요소가 없는 상태로 돌아오는 경우는 재난이 발생될 수 없는 상황으로 판단한다.
다음, 상기 분석부(240)는 임의의 제 2 시간주기에서 설정값을 초과한 제 5 데이터가 수신된 후 상기 임의의 제 2 시간주기 이후의 제 2 시간주기들에서 제 5 데이터와 동일 또는 상승된 제 7 데이터가 수신된 경우는 재난요소가 발생한 것으로 분석하여 분석데이터를 생성한다.
예컨대, 설정값이 4℃라 가정한다면, 제 2 시간주기에서 6℃ 상승된 온도값이 측정되면, 이는 설정값을 초과한 상태임으로 재난요소가 발생된 상태에서, 다음의 제 2 시간주기에서 6℃가 되고 그 다음 제 2 시간주기에서 7℃가 되는 등 지속적으로 온도가 동일 또는 상승된 경우라면 재난요소의 연속성을 갖는 것임으로 분석데이터를 생성한다.
설사, 외부환경에 의해서 위와 같이 연속성을 갖는 데이터가 수신된다 할지라도 예방차원에서 분석데이터를 생성하는 것이다.
특히, 상기 분석부(240)는 임의의 제 2 시간주기에서 생성된 제 3 데이터가 설정값 이상인 경우에 상기 제 3 데이터가 생성된 시점부터 1분이 경과할 때까지 매초단위로 센서로부터 순차적으로 수신되는 제 8 데이터와 상기 임의의 제 2 시간주기에서 생성된 제 2 차이값을 구하기 위한 제 4 데이터를 비교하여 수신된 모든 제 8 데이터가 설정값 이상이면 재난요소가 발생한 것으로 분석하고, 1분 이내에 수신된 모든 제 8 데이터 중에서 어느 한 제 8 데이터가 설정값 이하이면 재난요소가 발생하지 않은 것으로 분석한다.
예컨대, 온도센서로부터 데이터들이 수신되는 경우에 임의의 제 2 시간주기에서 생성된 제 3 데이터가 30℃라 하고, 상기 임의의 제 2 시간주기에서 생성된 제 2 차이값을 구하기 위한 제 4 데이터가 25℃라 하고 설정값이 4℃라면, 제 3 데이터 30℃와 제 4 데이터 25℃가 설정값 4℃보다 높기 때문에 재난요소가 발생한 것으로 분석되면 1분 동안 매초 단위로 제 8 데이터들을 수신한다.
이때, 다수의 제 8 데이터 모두가 1분이 경과할 때까지 설정값 4℃ 이상의 값을 갖는다면 이는 재난요소가 발생한 것이고, 다수의 제 4 데이터 중 어느 한 제 4 데이터가 설정값 이하로 나타난 경우는 재난요소가 발생한 것으로 보지 않는 것이다.
한편, 상기 1분 동안 매초 단위로 제 8 데이터를 수신하는 이유는 목조전통건축물의 경우에 약 5분이 경과하면 화재 진압이 어려울 뿐만 아니라, 이미 목조 전통건축물은 많은 부분이 소실되기 때문에 1분 이내에 재난요소를 분석하고 나머지 4분에 재난요소 파악 후 신속히 대처하기 위한 것이다.
또한, 다수의 제 8 데이터 중 어느 한 제 8 데이터가 설정값 이하로 나타난 경우에 재난 요소로 보지 않는 이유는 화원이 발생하여 화재로 발전하면 온도가 상승하거나 유지하는 연속성을 갖고 있는데 비하여, 상기 연속성에 끊김현상이 있었다면 이는 화원에서 화재로 발전하지 않았음을 의미함으로 재난요소가 발생하지 않은 것으로 분석한다.
예를 들면, 목조전통건축물, 대표적으로 문화재 건축물에 방문한 경비원이 특별한 상황에서 임의의 공간에 전등을 켜고 순찰 후 임의의 공간을 벗어나면 재난요소가 발생하였지만 연속성이 없기 때문에 재난으로 발전할 수 없음으로 재난요소의 발생으로 분석하지 않는다.
결국, 재난 발생시 연속성을 갖는 있다는 점을 서버(200)가 분석하는 것이다. 즉 화재와 같은 재난의 경우에 화원이 발생하여 화재가 발생하였다면 화재가 갖는 요소(온도)의 연속성을 갖고 있기 때문이 이를 분석하여 화재 발생 5분 전에 미리 화재를 예방하는 것이다.
상기 서버(200)의 전송부(250)는 상기 입력부(230)를 통해 입력된 제 2 시간주기를 센서(100)에 전송하고, 또한 상기 분석부(240)를 통해 생성된 분석데이터를 관리자 단말기에 전송한다.
이때, 상기 분석데이터는 관리자 단말기에서 표시되어 관리자가 즉각 대처할 수 있도록 한다.
본 발명의 다른 일실시예에 따른 목조전통건축물 재난 상황 조기 경보 시스템은 제 1 센서(100-1)와 제 2 센서(100-2) 및 서버(200-1)로 이루어진다.
더욱 상세하게, 설정된 제 1 시간주기마다 제 1 데이터를 생성하는 제 1 센서(100-1)와; 상기 설정된 제 1 시간주기마다 제 2 데이터를 생성하는 제 2 센서(100-2)와; 상기 생성된 제 1, 2 데이터를 동일한 제 1 시간주기끼리 묶어 다수의 쌍을 이루어 수신하는 수신부, 상기 쌍을 이룬 제 1, 2 데이터 각각에 대하여 제 1 차이값을 구하여 가장 큰 차이값을 설정값으로 설정하는 설정부, 사용자에 의해서 제 2 시간주기가 입력되는 입력부, 상기 설정부에 설정된 설정값을 수신하고 상기 입력부에 의해서 입력된 제 2 시간주기가 상기 제 1, 2 센서(100-1, 100-2)에 전송됨에 따라 상기 제 2 시간주기에서 제 1 센서(100-1)에 의해 생성된 다수의 제 3 데이터와 제 2 센서(100-2)에 의해 생성된 다수의 제 4 데이터가 동일한 제 2 시간주기끼리 묶어 제 3, 4데이터 각각에 대하여 제 2 차이값을 구하고 상기 각각의 제 2 차이값과 상기 설정값을 비교하여 상기 설정값보다 높은 경우의 임의의 제 2 차이값에 대하여 재난요소가 발생하였다는 분석데이터를 생성하는 분석부, 상기 입력부를 통해 입력된 제 2 시간주기를 센서에 전송하고 상기 분석부를 통해 생성된 분석데이터를 관리자 단말기에 전송하는 전송부로 구성된 서버(200-1)로 이루어진다.
보다 상세하게, 본 발명의 다른 일실시예는 두 센서 사이의 환경조건을 이용하여 재난요소가 발생하였는지 분석하는 것으로서, 도 7을 참조하여 설명하는바, 목조전통건축물 내부의 임의의 공간에서 일정한 환경조건이 이루어진다.
예컨대, 상기 제 1 센서(100-1)는 목조전통건축물 상부에 배치되고 상기 제 2 센서(100-2)는 목조전통건축물 하부에 배치된 경우라면 제 1 센서(100-1)에서 측정하여 생성된 제 1 데이터와 제 2 센서에서 측정하여 생성된 제 2 데이터 사이의 값은 재난요소가 없는 경우라면 항상 안정된 범위를 갖는다.
따라서, 상기 안정된 범위를 설정하기 위하여 동일한 제 1 시간주기별로 제 1, 2 센서(100-1, 100-2)가 생성한 제 1, 2 데이터의 제 1 차이값을 구하고 그 중 가장 높은 값을 설정값(안정된 범위)으로 설정하는 것이다.
만약, 제 1 센서(100-1)에서 화원이 발생하였다면, 화원이 발생한 제 1 센서(100-1)와 제 2 센서(100-2) 사이의 제 1 차이값은 설정값보다 높게 분석될 것이고, 이는 결국 화원이 발생하였다는 것을 암시하는 것이다.
또한, 두 센서(100-1, 100-2)를 이용한 본 발명은 상기 도 2 내지 도 6을 바탕으로 설명한 한 개의 센서로 구성된 발명과 접목하여 발생될 수 있는 부분에 대해서는 그 설명을 생략한다.
도면과 상세한 설명에서 최적 실시예들이 개시되고, 이상에서 사용된 특정한 용어는 단지 본 발명을 설명하기 위한 목적에서 사용된 것일 뿐, 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것이 아니다.
그러므로 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하고, 본 발명의 진정한 기술적 보호 범위는 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
Claims (10)
- 설정된 제 1 시간주기마다 제 1 데이터를 생성하는 센서와;상기 설정된 제 1 시간주기마다 생성된 다수의 제 1 데이터를 수신하는 수신부, 상기 수신된 다수의 제 1 데이터 각각에 대하여 바로 전 제 1 시간주기에서 측정된 제 2 데이터와 비교하여 구해진 다수의 제 1 차이값 중에서 가장 큰 차이값을 갖는 제 2 차이값을 설정값으로 설정하는 설정부, 사용자에 의해서 제 2 시간주기가 입력되는 입력부, 상기 설정부에 설정된 설정값을 수신하고 상기 입력부에 의해서 입력된 제 2 시간주기가 센서에 전송됨에 따라 상기 제 2 시간주기에 의하여 상기 센서가 생성한 다수의 제 3 데이터를 수신하고 수신된 제 3 데이터 각각에 대하여 바로 전 제 2 시간주기에서 측정된 제 4 데이터와 비교하여 구해진 다수의 제 2 차이값과 상기 설정값을 각각 비교하여 상기 설정값보다 높은 경우의 제 2 차이값에 대하여 재난요소가 발생하였다는 분석데이터를 생성하는 분석부, 상기 입력부를 통해 입력된 제 2 시간주기를 센서에 전송하고 상기 분석부를 통해 생성된 분석데이터를 관리자 단말기에 전송하는 전송부로 구성된 서버로 이루어진 목조전통건축물 재난 상황 조기 경보 시스템.
- 청구항 1에 있어서, 상기 분석부는임의의 제 2 시간주기에서 설정값을 초과한 제 5 데이터가 수신된 후 임의의 제 2 시간주기 다음의 제 2 시간주기에서 설정값 이하의 제 6 데이터가 수신된 경우는 재난요소가 발생되지 않은 것으로 분석하여 분석데이터 생성이 차단되는 것을 특징으로 하는 목조전통건축물 재난 상황 조기 경보 시스템.
- 청구항 1 또는 청구항 2에 있어서, 상기 분석부는임의의 제 2 시간주기에서 설정값을 초과한 제 5 데이터가 수신된 후 상기 임의의 제 2 시간주기 이후의 제 2 시간주기들에서 제 5 데이터와 동일 또는 상승된 제 7 데이터가 수신된 경우는 재난요소가 발생한 것으로 분석하여 분석데이터를 생성하는 것을 특징으로 하는 목조전통건축물 재난 상황 조기 경보 시스템.
- 청구항 1에 있어서, 상기 분석부는임의의 제 2 시간주기에서 생성된 제 3 데이터가 설정값 이상인 경우에 상기 제 3 데이터가 생성된 시점부터 1분±15초가 경과할 때까지 매초단위로 센서로부터 순차적으로 수신되는 제 8 데이터와 상기 임의의 제 2 시간주기에서 생성된 제 2 차이값을 구하기 위한 제 4 데이터를 비교하여 수신된 모든 제 8 데이터가 설정값 이상이면 재난요소가 발생한 것으로 분석하여 1분 이내에 수신된 모든 제 8 데이터 중에서 어느 한 제 8 데이터가 설정값 이하이면 재난요소가 발생하지 않은 것으로 분석하는 것을 특징으로 하는 목조전통건축물 재난 상황 조기 경보 시스템.
- 청구항 1에 있어서, 상기 설정부는장소, 위치, 계절과 같은 환경조건에 의하여 균일한 설정값 적용이 곤란함으로 설정주기를 두어 자동으로 설정주기에 따라 설정값이 적용되는 것을 특징으로 하는 목조전통건축물 재난 상황 조기 경보 시스템.
- 청구항 1 또는 청구항 5에 있어서, 상기 설정부는장소, 위치, 계절과 같은 환경조건에 의하여 균일한 설정값 적용이 곤란함으로 사용자의 수치적 계산에 의하여 설정값이 적용되는 것을 특징으로 하는 목조전통건축물 재난 상황 조기 경보 시스템.
- 청구항 1에 있어서, 상기 센서는온도센서, 연기센서, 습도센서 중 어느 하나인 것을 특징으로 하는 목조전통건축물 재난 상황 조기 경보 시스템.
- 청구항 7에 있어서, 상기 센서는상기 온도센서, 연기센서, 습도센서 중 적어도 어느 하나 이상 포함되게 구성한 후 인체감지센서를 함께 구성한 것을 특징으로 하는 목조전통 건축물 재난 상황 조기 경보 시스템.
- 청구항 1에 있어서, 상기 서버는다수개의 센서가 구성된 경우에 설정부에서 센서별로 설정값을 구하여 전송부를 통해 각 센서별로 설정값을 전송하는 것을 특징으로 하는 목조전통건축물 재난 상황 조기 경보 시스템.
- 설정된 제 1 시간주기마다 제 1 데이터를 생성하는 제 1 센서와;상기 설정된 제 1 시간주기마다 제 2 데이터를 생성하는 제 2 센서와;상기 생성된 제 1, 2 데이터를 동일한 제 1 시간주기끼리 묶어 다수의 쌍을 이루어 수신하는 수신부, 상기 쌍을 이룬 제 1, 2 데이터 각각에 대하여 제 1 차이값을 구하여 가장 큰 차이값을 설정값으로 설정하는 설정부, 사용자에 의해서 제 2 시간주기가 입력되는 입력부, 상기 설정부에 설정된 설정값을 수신하고 상기 입력부에 의해서 입력된 제 2 시간주기가 상기 제 1, 2 센서에 전송됨에 따라 상기 제 2 시간주기에서 제 1 센서에 의해 생성된 다수의 제 3 데이터와 제 2 센서에 의해 생성된 다수의 제 4 데이터를 동일한 제 2 시간주기끼리 묶어 제 3, 4데이터 각각에 대하여 제 2 차이값을 구하고 상기 각각의 제 2 차이값과 상기 설정값을 비교하여 상기 설정값보다 높은 경우의 임의의 제 2 차이값에 대하여 재난요소가 발생하였다는 분석데이터를 생성하는 분석부, 상기 입력부를 통해 입력된 제 2 시간주기를 센서에 전송하고 상기 분석부를 통해 생성된 분석데이터를 관리자 단말기에 전송하는 전송부로 구성된 서버로 이루어진 것을 특징으로 하는 목조전통건축물 재난 상황 조기 경보 시스템.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380031970.1A CN104395942B (zh) | 2012-06-21 | 2013-06-21 | 传统木结构建筑物灾难情况早期警报系统 |
JP2014558694A JP5883162B2 (ja) | 2012-06-21 | 2013-06-21 | 木造伝統建築物の災難状況の早期警報システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120066528A KR101263291B1 (ko) | 2012-06-21 | 2012-06-21 | 목조전통건축물 재난 상황 조기 경보 시스템 |
KR10-2012-0066528 | 2012-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013191496A1 true WO2013191496A1 (ko) | 2013-12-27 |
Family
ID=48666020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/005469 WO2013191496A1 (ko) | 2012-06-21 | 2013-06-21 | 목조전통건축물 재난 상황 조기 경보 시스템 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5883162B2 (ko) |
KR (1) | KR101263291B1 (ko) |
CN (1) | CN104395942B (ko) |
WO (1) | WO2013191496A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160010896A (ko) | 2014-07-16 | 2016-01-29 | 주식회사 상민이엔지 | 스마트 문화재 소방 관리 시스템 및 그 방법 |
CN105894710B (zh) * | 2016-05-25 | 2019-12-06 | 北京易方通达科技有限公司 | 一种温度监测警告装置及消防警示系统 |
KR102013728B1 (ko) | 2018-12-10 | 2019-08-23 | 대한민국(행정안전부 국립재난안전연구원장) | 재난 상황 정보 공유 장치 및 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100021057A (ko) * | 2008-08-14 | 2010-02-24 | (주)에스에이치아이앤씨 | 유비쿼터스 센서 네트워크환경에서의 멀티감시장치 및 방법 |
KR100985804B1 (ko) * | 2010-04-02 | 2010-10-06 | 주식회사 포드림 | 통합 재난관리 시스템 |
KR20110071150A (ko) * | 2009-12-21 | 2011-06-29 | 정영진 | 센서의 감지 오류를 활용한 센서 샘플링 주기 조정 기법 |
KR101142849B1 (ko) * | 2011-08-29 | 2012-05-08 | (주)이시컨트롤 | 목조 건축물의 화재 예방 방법 및 그 시스템 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06168386A (ja) * | 1992-11-30 | 1994-06-14 | Matsushita Electric Works Ltd | アナログ型差動式熱感知器及びその火災判断方法 |
JP2894173B2 (ja) * | 1993-09-27 | 1999-05-24 | 松下電工株式会社 | 差動式熱感知器 |
JPH09218990A (ja) * | 1996-02-08 | 1997-08-19 | Sogo Keibi Hosho Co Ltd | 火災検出方法及び火災検出器 |
JP3859360B2 (ja) * | 1998-06-04 | 2006-12-20 | 能美防災株式会社 | 差動式火災警報装置 |
JP3845218B2 (ja) * | 1998-12-28 | 2006-11-15 | ホーチキ株式会社 | 差動式熱感知器 |
KR100385694B1 (ko) * | 2000-05-02 | 2003-05-27 | 길종진 | 스프링클러장치용 전열식 앰플 |
JP3972597B2 (ja) * | 2001-04-24 | 2007-09-05 | 松下電工株式会社 | 複合型火災感知器 |
JP2003248873A (ja) * | 2002-02-25 | 2003-09-05 | Matsushita Electric Works Ltd | 複合型火災感知器 |
JP3769259B2 (ja) * | 2002-12-06 | 2006-04-19 | 東芝プラントシステム株式会社 | 防災支援システム |
JP4254270B2 (ja) * | 2003-02-21 | 2009-04-15 | パナソニック電工株式会社 | 熱感知回路 |
US20090045937A1 (en) * | 2007-08-15 | 2009-02-19 | Larry Zimmerman | Hazard and Threat Assessment System |
US7969296B1 (en) * | 2008-08-01 | 2011-06-28 | Williams-Pyro, Inc. | Method and system for fire detection |
CN101567117B (zh) * | 2009-05-17 | 2011-02-09 | 宁波汉迪传感技术有限公司 | 一种用于火灾报警的分布式光纤温度测量数据的处理方法 |
JP5396175B2 (ja) * | 2009-07-02 | 2014-01-22 | ホーチキ株式会社 | 警報器 |
-
2012
- 2012-06-21 KR KR1020120066528A patent/KR101263291B1/ko active IP Right Grant
-
2013
- 2013-06-21 CN CN201380031970.1A patent/CN104395942B/zh active Active
- 2013-06-21 WO PCT/KR2013/005469 patent/WO2013191496A1/ko active Application Filing
- 2013-06-21 JP JP2014558694A patent/JP5883162B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100021057A (ko) * | 2008-08-14 | 2010-02-24 | (주)에스에이치아이앤씨 | 유비쿼터스 센서 네트워크환경에서의 멀티감시장치 및 방법 |
KR20110071150A (ko) * | 2009-12-21 | 2011-06-29 | 정영진 | 센서의 감지 오류를 활용한 센서 샘플링 주기 조정 기법 |
KR100985804B1 (ko) * | 2010-04-02 | 2010-10-06 | 주식회사 포드림 | 통합 재난관리 시스템 |
KR101142849B1 (ko) * | 2011-08-29 | 2012-05-08 | (주)이시컨트롤 | 목조 건축물의 화재 예방 방법 및 그 시스템 |
Also Published As
Publication number | Publication date |
---|---|
KR101263291B1 (ko) | 2013-05-10 |
JP5883162B2 (ja) | 2016-03-09 |
CN104395942A (zh) | 2015-03-04 |
JP2015517130A (ja) | 2015-06-18 |
CN104395942B (zh) | 2017-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101775463B1 (ko) | 건물 내에 설치되는 자동화재 탐지설비용 화재 감지기 및 이를 포함하는 통합제어시스템 | |
KR101223680B1 (ko) | 스마트형 화재 감시 감지 시스템 | |
WO2014196721A1 (ko) | 합성 영상을 이용한 화재감지시스템 및 방법 | |
WO2020141676A1 (ko) | 스마트 팩토리 모니터링 시스템 | |
KR100985804B1 (ko) | 통합 재난관리 시스템 | |
CN209821986U (zh) | 火灾监控系统 | |
KR102084884B1 (ko) | 인공지능 기반의 화재 예방 감지 시스템 | |
WO2012064115A9 (ko) | 폐쇄회로 텔레비전 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법 | |
WO2022131388A1 (ko) | 이동식 무인탐지장치를 이용한 인공지능 기반 안전관리 시스템 | |
TWI411978B (zh) | 電梯安全監控系統及方法 | |
CN113018728B (zh) | 一种电缆隧道火灾分级研判消防系统 | |
KR101863530B1 (ko) | 가시광 및 적외선 열화상 이미지를 이용한 화재 예측 보전시스템 | |
JP2014203450A (ja) | 火災映像監視記録及び公共安全監視制御可能な火災検知システム | |
WO2022215841A1 (ko) | 건물 소방안전 관리 시스템 및 방법 | |
WO2016099084A1 (ko) | 비콘신호를 이용한 안전 서비스 제공 시스템 및 방법 | |
WO2024090880A1 (ko) | 열화상 카메라를 이용한 화재 예방 시스템 및 방법 | |
WO2013191496A1 (ko) | 목조전통건축물 재난 상황 조기 경보 시스템 | |
KR20220076374A (ko) | 화재 안전 모니터링 시스템 | |
KR102690443B1 (ko) | 화재감지기 및 종단 시험 방법 | |
WO2013157801A1 (ko) | 네트워크를 통한 현장 모니터링 방법, 및 이에 사용되는 관리 서버 | |
WO2021118101A1 (ko) | 휴대용 화재 감지 장치 | |
WO2021086002A1 (ko) | 재난 안전형 스마트 수배전반 관리시스템 | |
CN116959197A (zh) | 用于确认火灾的自测试火灾感测设备 | |
KR101975021B1 (ko) | 공동주택의 통신시설을 이용한 소방 안전관리 시스템 | |
WO2012030011A1 (ko) | 무선센서 네트워크 기반의 가스 및 화재 정보 디스플레이 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13806496 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014558694 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13806496 Country of ref document: EP Kind code of ref document: A1 |