WO2013187271A1 - ブロア - Google Patents
ブロア Download PDFInfo
- Publication number
- WO2013187271A1 WO2013187271A1 PCT/JP2013/065321 JP2013065321W WO2013187271A1 WO 2013187271 A1 WO2013187271 A1 WO 2013187271A1 JP 2013065321 W JP2013065321 W JP 2013065321W WO 2013187271 A1 WO2013187271 A1 WO 2013187271A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blower
- piezoelectric
- suction port
- actuator
- central axis
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/0009—Special features
- F04B43/0054—Special features particularities of the flexible members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/0009—Special features
- F04B43/0027—Special features without valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/047—Pumps having electric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F7/00—Pumps displacing fluids by using inertia thereof, e.g. by generating vibrations therein
Definitions
- the present invention relates to a blower that transports gas.
- Patent Document 1 discloses a microblower for cooling the heat generated inside a portable electronic device or supplying oxygen necessary for power generation by a fuel cell.
- FIG. 12 is a cross-sectional view of a micro blower 900 according to Patent Document 1.
- the micro blower 900 includes an inner case 2, an elastic metal plate 5 ⁇ / b> A, a piezoelectric element 5 ⁇ / b> B, an outer case 3 that covers the outer side of the inner case 2, and a lid member 9.
- the inner case 2 is elastically supported with respect to the outer case 3 by a plurality of connecting portions 4.
- the inner case 2 has a U-shaped cross section with an opening at the bottom, and an elastic metal plate 5A is joined so as to close the opening. Thereby, the inner case 2 forms the blower chamber 6 together with the elastic metal plate 5A.
- the inner case 2 is formed with an opening 8 that communicates the inside and outside of the blower chamber 6.
- a piezoelectric element 5B is attached to the main surface of the elastic metal plate 5A opposite to the blower chamber 6.
- a discharge port 3 ⁇ / b> A is formed in the region of the outer case 3 facing the opening 8.
- the outer case 3 has a lid member 9 so as to accommodate the inner case 2.
- a suction port 9 ⁇ / b> A is formed in the center of the lid member 9.
- the central axis passing through the center of the suction port 9A extending in the thickness direction of the lid member 9 coincides with the central axis passing through the center of the piezoelectric element 5B extending in the thickness direction of the lid member 9.
- An air inflow passage 7 is formed between the joined body of the inner case 2, the elastic metal plate 5A and the piezoelectric element 5B and the outer case 3.
- the piezoelectric element 5B when an AC drive voltage is applied to the piezoelectric element 5B, the piezoelectric element 5B expands and contracts, and the elastic metal plate 5A bends and vibrates due to the expansion and contraction of the piezoelectric element 5B. And the volume of the blower chamber 6 changes periodically by the bending deformation of the elastic metal plate 5A.
- the air flow discharged from the blower chamber 6 is discharged from the discharge port 3A while drawing air outside the micro blower 900 through the suction port 9A and the inflow passage 7. Therefore, the flow rate of the air discharged from the discharge port 3A increases by the flow rate of the drawn air.
- the discharge flow rate per power consumption is increased.
- an object of the present invention is to provide a blower that can greatly increase the discharge flow rate per power consumption and can secure a necessary discharge flow rate with low power consumption.
- the blower of the present invention has the following configuration in order to solve the above problems.
- an actuator having a driving body and bending and oscillating concentrically by applying a voltage to the driving body;
- a first housing that forms a blower chamber together with the actuator, and has a vent hole that communicates the inside and the outside of the blower chamber;
- a suction port is formed, and a wall portion facing the actuator;
- a second housing that covers the actuator and the first housing together with the wall to form a ventilation path between the actuator and the first housing by covering the actuator and the first housing;
- a discharge port is formed at a location of the second casing facing the vent hole, The central axis of the suction port does not coincide with the central axis of the driving body.
- the driving body when a driving voltage is applied to the driving body, the driving body causes the actuator to bend and vibrate concentrically.
- the volume of the blower chamber periodically changes due to the deformation of the actuator, and the gas in the blower chamber flows out from the vent hole. Then, the airflow flowing out from the blower chamber through the vent hole is discharged from the discharge port while drawing the gas existing outside the blower through the vent passage. Thereby, the discharge flow rate of the blower is increased by the flow rate of the drawn gas.
- the central axis of the suction port passing through the center of the suction port does not match the central axis of the drive body passing through the center of the drive body. For this reason, compared with the conventional blower in which the central axis of the suction port and the central axis of the driving body coincide with each other, the area of the suction port facing the region where the vibration energy is high in the actuator (that is, the region where the displacement amount is large in the actuator). The percentage of decrease. That is, when the actuator is in bending vibration, the flow rate of the gas leaking from the ventilation path to the outside of the blower through the suction port decreases, and the flow rate of the gas colliding with the wall portion increases.
- the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
- the center of the driving body is opposed to a region other than the suction port of the wall portion.
- the center of the actuator having the highest vibration energy faces the region other than the suction port of the wall portion. Therefore, when the actuator is bending and vibrating, the flow rate of the gas leaking from the air passage through the suction port to the outside of the blower is further reduced, and the flow rate of the gas colliding with the wall portion is further increased.
- the diameter of the suction port is 1 ⁇ 2 or less of the diameter of the driving body.
- the discharge flow rate per power consumption can be significantly increased more effectively, and the required discharge flow rate can be secured while maintaining low power consumption.
- the actuator bends and vibrates in an odd-order vibration mode equal to or higher than a third-order mode that forms a plurality of vibration antinodes by the driving body,
- the suction port is formed in a region outside the wall portion facing the vibration node having the shortest distance from the center of the actuator among the vibration nodes formed by the bending vibration of the actuator. Is preferred.
- the wall portion faces all of the high vibration energy region in the actuator. Therefore, when the actuator bends and vibrates in the vibration mode described above, the flow rate of the gas leaking from the air passage through the suction port to the outside of the blower is further reduced, and the flow rate of the gas colliding with the wall portion is further increased.
- the said wall part in which the said suction port is formed is detachably attached with respect to the said 2nd housing.
- the discharge pressure and the discharge flow rate can be adjusted without changing the configuration other than the wall portion by adjusting the shape of the wall portion attached to the second casing.
- the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
- FIG. 1 is an external perspective view of a piezoelectric blower 100 according to a first embodiment of the present invention. It is a disassembled perspective view of the piezoelectric blower 100 shown in FIG. It is a bottom view of the piezoelectric blower 100 shown in FIG.
- FIG. 2 is a sectional view taken along line SS of the piezoelectric blower 100 shown in FIG. 5A and 5B are cross-sectional views taken along the line SS of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated at the frequency (fundamental wave) of the primary mode.
- FIG. 5A is a diagram when the volume of the blower chamber 36 is increased
- FIG. 5B is a diagram when the volume of the blower chamber 36 is decreased.
- FIG. 6 (A) and 6 (B) show the SS line of the piezoelectric blower 200 when the piezoelectric blower 200 according to the second embodiment of the present invention is operated at the third-order mode frequency (third harmonic wave).
- FIG. 6A is a diagram when the volume of the blower chamber 36 is increased
- FIG. 6B is a diagram when the volume of the blower chamber 36 is decreased. It is a schematic sectional drawing of the piezoelectric actuator 41 shown to FIG. 6 (B).
- FIG. 6A and 6B shows the relationship between the distance of the central axis of the suction port 253 relative to the central axis of the piezoelectric element 40 and the pump characteristics (discharge pressure and discharge flow rate) of the piezoelectric blower 200 in the piezoelectric blower 200 shown in FIGS. FIG. It is an external appearance perspective view of the piezoelectric blower 300 which concerns on 3rd Embodiment of this invention.
- FIG. 10 is a cross-sectional view taken along line TT of the piezoelectric blower 300 shown in FIG. 9.
- FIGS. 11A and 11B are cross-sectional views taken along the line TT of the piezoelectric blower 300 when the piezoelectric blower 300 shown in FIG.
- FIG. 9 is operated at a primary mode frequency (fundamental wave).
- 11A is a diagram when the volume of the blower chamber 36 is increased
- FIG. 11B is a diagram when the volume of the blower chamber 36 is decreased. It is sectional drawing of the micro blower 900 which concerns on patent document 1.
- FIG. 11A is a diagram when the volume of the blower chamber 36 is increased
- FIG. 11B is a diagram when the volume of the blower chamber 36 is decreased.
- FIG. 1 is an external perspective view of the piezoelectric blower 100 according to the first embodiment of the present invention.
- FIG. 2 is an exploded perspective view of the piezoelectric blower 100 shown in FIG.
- FIG. 3 is a bottom view of the piezoelectric blower 100 shown in FIG.
- FIG. 4 is a cross-sectional view taken along line SS of the piezoelectric blower 100 shown in FIG.
- the piezoelectric blower 100 includes a housing 17, a top plate 37, a side plate 38, a vibration plate 39, a piezoelectric element 40, and a cap 42 in order from the top, and has a structure in which these are stacked in order.
- the top plate 37, the side plate 38, and the diaphragm 39 constitute a blower chamber 36.
- the piezoelectric blower 100 has dimensions of a width of 20 mm ⁇ a length of 20 mm ⁇ a height of 1.85 mm in a region other than the nozzle 18.
- the housing 17 has a nozzle 18 formed around a discharge port 24 through which air is discharged.
- the nozzle 18 has a size of an outer diameter of 2.0 mm ⁇ an inner shape (that is, a discharge port 24) of a diameter of 0.8 mm ⁇ a height of 1.6 mm.
- Screw holes 56A to 56D are formed in the square of the housing 17.
- the housing 17 is formed in a U-shaped cross-section with an opening at the bottom, and the housing 17 houses the top plate 37 of the blower chamber 36, the side plate 38 of the blower chamber 36, the vibration plate 39, and the piezoelectric element 40.
- the housing 17 is made of, for example, resin.
- the top plate 37 of the blower chamber 36 has a disk shape and is made of, for example, metal.
- the top plate 37 is formed with a central portion 61, a key-like protruding portion 62 that protrudes horizontally from the central portion 61 and contacts the inner wall of the housing 17, and an external terminal 63 for connecting to an external circuit. ing.
- the central portion 61 of the top plate 37 is provided with a vent hole 45 that allows the inside and outside of the blower chamber 36 to communicate with each other.
- the vent hole 45 is formed at a position facing the discharge port 24 of the housing 17.
- the top plate 37 is joined to the upper surface of the side plate 38.
- the side plate 38 of the blower chamber 36 has an annular shape, and is made of, for example, metal.
- the side plate 38 is joined to the upper surface of the diaphragm 39. Therefore, the thickness of the side plate 38 is the height of the blower chamber 36.
- the piezoelectric element 40 has a disk shape, and is made of, for example, lead zirconate titanate ceramic.
- the diameter of the piezoelectric element 40 is 13.8 mm, and the area of the main surface on the wall 43 side of the piezoelectric element 40 is 150 mm 2 .
- the piezoelectric element 40 is bonded to the main surface of the diaphragm 39 opposite to the blower chamber 36 and expands and contracts according to the applied AC voltage.
- the joined body of the piezoelectric element 40 and the diaphragm 39 constitutes a piezoelectric actuator 41.
- the joined body of the top plate 37, the side plate 38, the vibration plate 39, and the piezoelectric element 40 is elastically supported with respect to the housing 17 by the four protrusions 62 provided on the top plate 37. .
- the electrode conduction plate 70 includes an internal terminal 73 for connection to the piezoelectric element 40 and an external terminal 72 for connection to an external circuit.
- the tip of the internal terminal 73 is soldered to the flat surface of the piezoelectric element 40. By setting the soldering position to a position corresponding to the bending vibration node of the piezoelectric element 40, the vibration of the internal terminal 73 can be further suppressed.
- the diameter of the suction port 53 is 1/2 or less of the diameter of the piezoelectric element 40, and is 5 mm in this embodiment.
- the area of the opening surface of the suction port 53 is 19.6 mm 2 .
- the ratio (area ratio) of the area of the opening surface of the suction port 53 to the area of the main surface on the wall 43 side of the piezoelectric element 40 is about 0.13.
- the cap 42 has a protruding portion 52 that protrudes toward the top plate 37 on the outer peripheral edge.
- the cap 42 holds the casing 17 with the protruding portion 52, and stores the top plate 37 of the blower chamber 36, the side plate 38 of the blower chamber 36, the vibration plate 39, and the piezoelectric element 40 together with the casing 17.
- the cap 42 is made of, for example, a glass epoxy resin.
- FIG. 5A and 5B are cross-sectional views of the SS line of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated at a primary mode frequency (hereinafter, fundamental wave).
- FIG. 5A is a diagram when the volume of the blower chamber 36 is increased
- FIG. 5B is a diagram when the volume of the blower chamber 36 is decreased.
- the arrows in the figure indicate the flow of air.
- the top plate 37 is concentric in the primary mode with the bending vibration of the piezoelectric actuator 41 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the blower chamber 36 accompanying the bending vibration of the piezoelectric actuator 41. Bends and vibrates.
- the air flow discharged from the blower chamber 36 is discharged from the discharge port 24 while drawing air outside the piezoelectric blower 100 through the suction port 53 and the air passage 31. Therefore, if the pressure applied to the discharge hole from the outside of the piezoelectric blower 100 is 0 (hereinafter referred to as no load), the flow rate of the air discharged from the discharge port 24 increases by the flow rate of the drawn air.
- the central axis X passing through the center of the suction port 53 does not coincide with the central axis Y passing through the center of the piezoelectric element 40 (see FIG. 4). . Therefore, in the piezoelectric blower 100 of this embodiment, in the piezoelectric actuator 41, compared to the conventional micro blower 900 (see FIG. 12) in which the central axis passing through the center of the suction port coincides with the central axis passing through the center of the piezoelectric element. The ratio of the area of the suction port 53 facing the region with high vibration energy (that is, the region with a large displacement amount in the piezoelectric actuator 41) is reduced.
- the center of the piezoelectric actuator 41 having the highest vibration energy faces the region other than the suction port 53 of the wall 43. ing.
- the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
- FIG. 6 (A) and 6 (B) show the SS line of the piezoelectric blower 200 when the piezoelectric blower 200 according to the second embodiment of the present invention is operated at the third-order mode frequency (third harmonic wave).
- FIG. 6A is a diagram when the volume of the blower chamber 36 is increased
- FIG. 6B is a diagram when the volume of the blower chamber 36 is decreased.
- FIG. 7 is a schematic cross-sectional view of the piezoelectric actuator 41 shown in FIG. In FIG. 7, the bending of the piezoelectric actuator 41 shown in FIG.
- the difference between the piezoelectric blower 200 of the second embodiment and the piezoelectric blower 100 of the first embodiment is a cap 242.
- Other configurations are the same.
- the cap 242 has a circular shape in a region outside the portion facing the vibration node F having the shortest distance from the center of the piezoelectric actuator 41 among the vibration nodes formed by the bending vibration of the piezoelectric actuator 41.
- a plate-shaped suction port 253 is formed. The central axis X passing through the center of the suction port 253 and the central axis Y passing through the center of the piezoelectric element 40 do not match. The other points are the same as the cap 42.
- the piezoelectric actuator 41 when an AC driving voltage having a third-order mode frequency (third harmonic wave) is applied from the external terminals 63 and 72 to the piezoelectric element 40, the piezoelectric actuator 41 has one node. B and vibrate in a concentric manner in a third-order mode that produces F and two antinodes.
- a third-order mode frequency third harmonic wave
- the top plate 37 is also in the third-order mode according to the bending vibration of the piezoelectric actuator 41 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the blower chamber 36 accompanying the bending vibration of the piezoelectric actuator 41. Bend and vibrate concentrically.
- the air flow discharged from the blower chamber 36 is discharged from the discharge port 24 while drawing air outside the piezoelectric blower 200 through the suction port 253 and the air passage 31. Therefore, if the pressure applied to the discharge hole from the outside of the piezoelectric blower 200 is unloaded, the flow rate of air discharged from the discharge port 24 increases by the flow rate of drawn air.
- the central axis X passing through the center of the suction port 253 and the central axis Y passing through the center of the piezoelectric element 40 do not coincide (FIGS. 6A and 6B). )reference). Therefore, also in the piezoelectric blower 200 of this embodiment, compared with the conventional micro blower 900 (see FIG. 12) in which the central axis passing through the center of the suction port and the central axis passing through the center of the piezoelectric element coincide, The ratio of the area of the suction port 253 facing the region with high vibration energy (that is, the region with a large displacement amount in the piezoelectric actuator 41) is decreased.
- a high vibration region that is, vibration energy of the wall portion 243 inside the vibration node F of the piezoelectric actuator 41.
- the suction port 253 is not formed in a region facing the high region.
- the center of the piezoelectric actuator 41 having the highest vibration energy faces the region other than the suction port 253 of the wall portion 243. ing.
- the piezoelectric blower 200 of the second embodiment the same effect as that of the piezoelectric blower 200 of the first embodiment can be obtained.
- FIG. 8 shows the distance of the central axis of the suction port 253 relative to the central axis of the piezoelectric element 40 and the pump characteristics (discharge pressure and discharge flow rate) of the piezoelectric blower 200 in the piezoelectric blower 200 shown in FIGS. It is a figure which shows the relationship.
- FIG. 8 shows the result of measuring the discharge pressure and the discharge flow rate of the piezoelectric blower 200 by changing the distance from the center axis Y of the piezoelectric element 40 to the center axis X of the suction port 253.
- the fact that the distance from the central axis Y of the piezoelectric element 40 to the central axis X of the suction port 253 is 0 means that the central axis X of the suction port 253 and the piezoelectric element shown in FIGS. It means that the central axis Y of 40 coincides.
- the central axis Y of the piezoelectric element 40 is compared with the discharge pressure and discharge flow rate of the piezoelectric blower 200 in which the distance from the central axis Y of the piezoelectric element 40 to the central axis X of the suction port 253 is zero. It became clear that the discharge pressure and the discharge flow rate of the piezoelectric blower 200 that increased the distance from the suction port 253 to the central axis X of the suction port 253 increased.
- the discharge pressure and the discharge flow rate of the piezoelectric blower 200 in which the distance from the central axis Y of the piezoelectric element 40 to the central axis X of the suction port 253 is set to 100%
- the suction port from the central axis Y of the piezoelectric element 40 is set. It was revealed that the discharge pressure of the piezoelectric blower 200 with the distance to the central axis X of 253 being 4 mm increased to 155% and the discharge flow rate also increased to 125%.
- the reason for the above results is that in the piezoelectric blower 200 in which the central axis X of the suction port 253 and the central axis Y of the piezoelectric element 40 do not coincide with each other, the central axis of the suction port and the central axis of the piezoelectric element are This is considered to be because the ratio of the area of the suction port 253 facing the region with high vibration energy in the piezoelectric actuator 41 (that is, the region with a large displacement amount in the piezoelectric actuator 41) is reduced compared to the corresponding conventional piezoelectric blower. .
- FIG. 9 is an external perspective view of the piezoelectric blower 300 according to the third embodiment of the present invention.
- FIG. 10 is a cross-sectional view taken along line TT of the piezoelectric blower 300 shown in FIG.
- the differences between the piezoelectric blower 300 of the third embodiment and the piezoelectric blower 100 of the first embodiment are a cap 342, a discharge side case 301, and a suction side case 302. Other configurations are the same.
- the piezoelectric blower 300 includes a main body 310, a discharge side case 301, and a suction side case 302.
- the main body 310 is a laminated body including the housing 17, the top plate 37, the side plate 38, the vibration plate 39, the piezoelectric element 40, and the cap 342.
- the cap 342 is formed with a disk-shaped first suction port 353 and a first wall portion 343 whose center axis coincides with the center axis Y passing through the center of the piezoelectric element 40.
- the diameter of the first suction port 353 is 11 mm, and the area of the opening surface of the first suction port 353 is 95 mm 2 .
- the ratio (area ratio) of the area of the opening surface of the first suction port 353 to the area of the main surface on the first wall 343 side of the piezoelectric element 40 is 0.63. The other points are the same as the cap 42.
- the diameter of the piezoelectric element 40 is 13.8 mm, and the area of the main surface on the wall 43 side of the piezoelectric element 40 is 150 mm 2 .
- the discharge-side case 301 has a nozzle 305 formed with a cylindrical second discharge port 306 for discharging air at the center.
- the nozzle 305 surrounds the nozzle 18, and the second discharge port 306 communicates with the first discharge port 24.
- the discharge side case 301 is made of, for example, acrylic resin.
- the suction side case 302 has a nozzle 307 formed around a cylindrical second suction port 308 for sucking air and a second wall portion 303 facing the piezoelectric actuator 41.
- the central axis X of the second suction port 308 formed in the second wall portion 303 of the suction side case 302 and the central axis Y of the piezoelectric element 40 coincide with each other. Absent.
- the suction side case 302 is made of acrylic resin, for example.
- the diameter of the second suction port 308 is preferably less than or equal to 1 ⁇ 2 of the diameter of the piezoelectric element 40, and in this embodiment is 5 mm.
- the area of the opening surface of the second suction port 308 is 19.6 mm 2 .
- the ratio of the area of the opening surface of the second suction port 308 to the area of the main surface of the piezoelectric element 40 on the first wall 343 side is 0.13.
- the distance between the central axis X of the second suction port 308 and the central axis Y of the piezoelectric element 40 is 4 mm.
- the discharge-side case 301 and the suction-side case 302 are joined to each other so as to be detachable and house the main body 310. As shown in FIG. 10, a ventilation path is formed between the joined body of the top plate 37, the side plate 38 and the piezoelectric actuator 41 and the joined body of the casing 17, the cap 342, the discharge side case 301 and the suction side case 302. 331 is formed.
- the joined body of the top plate 37 and the side plate 38 corresponds to the “first housing” of the present invention
- the joined body of the housing 17 and the cap 342 corresponds to the “second housing” of the present invention.
- the second wall portion 303 corresponds to the “wall portion” of the present invention.
- FIGS. 11A and 11B are cross-sectional views taken along line TT of the piezoelectric blower 300 when the piezoelectric blower 300 shown in FIG. 9 is operated at the primary mode frequency (fundamental wave).
- 11A is a diagram when the volume of the blower chamber 36 is increased
- FIG. 11B is a diagram when the volume of the blower chamber 36 is decreased.
- the air flow discharged from the blower chamber 36 is discharged from the second discharge port 306 while drawing air outside the piezoelectric blower 300 through the second suction port 308 and the air passage 331. Therefore, if the pressure applied to the discharge hole from the outside of the piezoelectric blower 300 is unloaded, the flow rate of the air discharged from the second discharge port 306 increases by the flow rate of the drawn air.
- the central axis X passing through the center of the second suction port 308 of the suction side case 302 does not coincide with the central axis Y passing through the center of the piezoelectric element 40.
- the region of higher vibration energy in the piezoelectric actuator 41 (see FIG. 12) compared to the conventional micro blower 900 (see FIG. 12) in which the central axis of the suction port and the central axis of the piezoelectric element coincide. That is, the ratio of the area of the suction port facing the region where the displacement amount in the piezoelectric actuator 41 is large) is reduced.
- the center of the piezoelectric actuator 41 having the highest vibration energy faces the second wall portion 303.
- the piezoelectric blower 300 of the third embodiment the same effect as that of the piezoelectric blower 100 of the first embodiment can be obtained.
- the relationship between the distance from the central axis Y of the piezoelectric element 40 to the central axis X of the second suction port 308 and the pump characteristics of the piezoelectric blower 300 is described in the second embodiment.
- the same measurement result (see FIG. 8) as that of the piezoelectric blower 200 of the embodiment is obtained.
- the piezoelectric blower 300 of the third embodiment by adjusting the shape of the second wall portion 303 of the suction side case 302 attached to the main body 310, the configuration other than the second wall portion 303 (the main body 310 and the like). ) Can be changed without changing the distance from the central axis Y of the piezoelectric element 40 to the central axis X of the second suction port 308. That is, by adjusting the shape of the second wall portion 303, the discharge pressure and the discharge flow rate can be adjusted without changing the configuration other than the second wall portion 303 (main body 310, etc.).
- the discharge side case 301 and the suction side case 302 having any shape can be selected without changing the pump characteristics of the main body 310, the versatility of the piezoelectric blower 300 is enhanced.
- air is used as the fluid, but the present invention is not limited to this. It can be applied even if the fluid is a gas other than air.
- the piezoelectric element 40 is provided as a blower drive source, but the present invention is not limited to this.
- it may be configured as a blower that performs pumping by electromagnetic driving.
- the piezoelectric element 40 is made of a lead zirconate titanate ceramic, but is not limited thereto.
- a unimorph type piezoelectric vibrator is used, but the present invention is not limited to this.
- a bimorph type piezoelectric vibrator in which the piezoelectric elements 40 are attached to both surfaces of the vibration plate 39 may be used.
- the disk-shaped piezoelectric element 40, the disk-shaped diaphragm 39, and the disk-shaped top plate 37 are used, but the present invention is not limited to this.
- these shapes may be rectangular or polygonal.
- the vibration plate of the piezoelectric blower is bent and vibrated at the frequency of the primary mode and the tertiary mode.
- the present invention is not limited to this.
- the diaphragm may be bent and vibrated in an odd-order vibration mode that is a third-order mode or more that forms a plurality of vibration antinodes.
- the top plate 37 bends and vibrates concentrically with the bending vibration of the diaphragm 39.
- the present invention is not limited to this. At the time of implementation, only the diaphragm 39 is flexibly vibrated, and the top plate 37 may not be flexibly vibrated with the flexural vibration of the diaphragm 39.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
Abstract
圧電ブロア(100)は、筐体(17)、天板(37)、側板(38)、振動板(39)、圧電素子(40)、及びキャップ(42)を備える。天板(37)、側板(38)、及び振動板(39)は、ブロア室(36)を構成する。天板(37)には通気孔(45)が設けられている。振動板(39)及び圧電素子(40)は圧電アクチュエータ(41)を構成する。キャップ(42)には、圧電アクチュエータ(41)に対向する壁部(43)と円板形状の吸引口(53)とが形成されている。ここで、壁部(43)の厚み方向に延びる吸引口(53)の中心軸(X)と、壁部(43)の厚み方向に延びる圧電素子(40)の中心軸(Y)とは一致していない。そして、天板(37)、側板(38)及び圧電アクチュエータ(41)の接合体と筐体(17)及びキャップ(42)との間には通気路(31)が形成されている。
Description
本発明は、気体の輸送を行うブロアに関するものである。
特許文献1には、携帯型電子機器の内部で発生する熱を冷却するため、あるいは燃料電池で発電するのに必要な酸素を供給するためのマイクロブロアが開示されている。
図12は、特許文献1に係るマイクロブロア900の断面図である。マイクロブロア900は、内ケース2と、弾性金属板5Aと、圧電素子5Bと、内ケース2の外側を覆う外ケース3と、蓋部材9と、を備えている。内ケース2は複数個の連結部4によって外ケース3に対して弾性的に支持されている。
内ケース2は下方が開口した断面コの字形状であり、開口を閉じるように、弾性金属板5Aが接合されている。これにより、内ケース2は、弾性金属板5Aとともにブロア室6を構成している。そして、内ケース2には、ブロア室6の内部と外部を連通する開口部8が形成されている。また、弾性金属板5Aのブロア室6とは逆側の主面には、圧電素子5Bが貼付されている。
開口部8に対向する外ケース3の領域には、吐出口3Aが形成されている。外ケース3は、内ケース2を収納するよう、蓋部材9を有している。蓋部材9の中央には、吸引口9Aが形成されている。ここで、蓋部材9の厚み方向に延びる吸引口9Aの中心を通る中心軸と、蓋部材9の厚み方向に延びる圧電素子5Bの中心を通る中心軸とは一致している。
そして、内ケース2、弾性金属板5A及び圧電素子5Bの接合体と外ケース3との間には、空気の流入通路7が形成されている。
以上の構成において、交流駆動電圧が圧電素子5Bに印加されると、圧電素子5Bが伸縮し、圧電素子5Bの伸縮により弾性金属板5Aが屈曲振動する。そして、弾性金属板5Aの屈曲変形によりブロア室6の体積が周期的に変化する。
詳述すると、交流駆動電圧が圧電素子5Bに印加されて弾性金属板5Aが圧電素子5B側へ屈曲すると、ブロア室6の容積が増大する。これに伴い、マイクロブロア900の外部の空気が吸引口9A、流入通路7、及び開口部8を介してブロア室6内に吸引される。このとき、ブロア室6からの空気の流出は無いものの、吐出口3Aからマイクロブロア900の外部への空気の流れの慣性力が働いている。
次に、交流駆動電圧が圧電素子5Bに印加されて弾性金属板5Aがブロア室6側へ屈曲すると、ブロア室6の容積が減少する。これに伴い、ブロア室6内の空気が開口部8、流入通路7を介して吐出口3Aから吐出される。
このとき、ブロア室6から吐出される気流は,マイクロブロア900の外部の空気を吸引口9A及び流入通路7を介して引き込みながら吐出口3Aから吐出される。そのため、吐出口3Aから吐出される空気の流量は、引き込まれる空気の流量分増大する。
以上により、マイクロブロア900では、消費電力あたりの吐出流量を増大させている。
しかしながら、本願の発明者は、前記特許文献1のマイクロブロア900において、弾性金属板5Aが圧電素子5B側へ屈曲する時、吸引口9Aからマイクロブロア900の外部へ漏れる気流BFが生じているという知見を得た。
すなわち、この気流BFによりマイクロブロア900の外部へ漏れる空気の流量分、流入通路7に引き込まれる空気の流量が減少するため、吐出口3Aから吐出される吐出流量が減少してしまうことが分かった。
一方、近年、前述の図12に示すような構造のマイクロブロアを搭載する電子機器には、低消費電力化の傾向がある。そのため、低消費電力で吐出流量の多いマイクロブロアが求められている。
そこで本発明は、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できるブロアを提供することを目的とする。
本発明のブロアは、前記課題を解決するために以下の構成を備えている。
(1)駆動体を有し、前記駆動体への電圧の印加により同心円状に屈曲振動するアクチュエータと、
前記アクチュエータとともにブロア室を構成し、前記ブロア室の内部と外部とを連通させる通気孔を有する第1筐体と、
吸引口が形成され、前記アクチュエータに対向する壁部と、
前記壁部とともに前記アクチュエータ及び前記第1筐体を、間隔を設けて被覆して前記アクチュエータ及び前記第1筐体との間に通気路を形成する第2筐体と、を備え、
前記通気孔に対向する前記第2筐体の箇所には、吐出口が形成され、
前記吸引口の中心軸と前記駆動体の中心軸とは、一致していない。
前記アクチュエータとともにブロア室を構成し、前記ブロア室の内部と外部とを連通させる通気孔を有する第1筐体と、
吸引口が形成され、前記アクチュエータに対向する壁部と、
前記壁部とともに前記アクチュエータ及び前記第1筐体を、間隔を設けて被覆して前記アクチュエータ及び前記第1筐体との間に通気路を形成する第2筐体と、を備え、
前記通気孔に対向する前記第2筐体の箇所には、吐出口が形成され、
前記吸引口の中心軸と前記駆動体の中心軸とは、一致していない。
この構成では、駆動電圧が駆動体に印加されると、駆動体によりアクチュエータが同心円状に屈曲振動する。そして、このアクチュエータの変形によりブロア室の体積が周期的に変化し、ブロア室の気体が通気孔から流出する。そして、ブロア室から通気孔を介して流出する気流が、通気路を介してブロアの外部に存在する気体を引き込みながら吐出口から吐出される。これにより、ブロアの吐出流量が引き込まれる気体の流量分増大する。
この構成では、吸引口の中心を通る吸引口の中心軸と、駆動体の中心を通る駆動体の中心軸とが、一致していない。このため、吸引口の中心軸と駆動体の中心軸とが一致する従来のブロアに比べて、アクチュエータにおける振動エネルギーの高い領域(即ち、アクチュエータにおける変位量の大きい領域)に対向する吸引口の面積の割合が減少する。すなわち、アクチュエータが屈曲振動をしているとき、通気路から吸引口を介してブロアの外部へ漏れる気体の流量が減少し、壁部に衝突する気体の流量が増加する。
なお、壁部に衝突して分散する気流は通気路内に残留する。このため、アクチュエータが屈曲振動をしているとき、ブロア室から通気孔を介して流出する気流に引き込まれる気体の流量が増加する。すなわち、吐出口から吐出される吐出流量が増加する。
したがって、この構成によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。
(2)前記駆動体の中心は、前記壁部の前記吸引口以外の領域と対向していることが好ましい。
この構成では、振動エネルギーの最も高いアクチュエータの中心(即ち、変位量の最も大きいアクチュエータの中心)が、壁部の吸引口以外の領域に対向する。そのため、アクチュエータが屈曲振動をしているとき、通気路から吸引口を介してブロアの外部へ漏れる気体の流量がより減少し、壁部に衝突する気体の流量がより増加する。
この結果、アクチュエータが屈曲振動をしているとき、ブロア室から通気孔を介して流出する気流に引き込まれる気体の流量がより増加し、吐出口から吐出される吐出流量がより増加する。
(3)前記吸引口の直径は、前記駆動体の直径の1/2以下であることが好ましい。
この構成では、より効果的に消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。
(4)前記アクチュエータは、前記駆動体により、複数の振動の腹を形成する3次モード以上の奇数次の振動モードで屈曲振動し、
前記吸引口は、前記アクチュエータの屈曲振動により形成される振動の節のうち、前記アクチュエータの中心から最も距離が短い振動の節に対向する前記壁部の箇所より外側の領域に形成されていることが好ましい。
前記吸引口は、前記アクチュエータの屈曲振動により形成される振動の節のうち、前記アクチュエータの中心から最も距離が短い振動の節に対向する前記壁部の箇所より外側の領域に形成されていることが好ましい。
この構成では、壁部が、アクチュエータにおける振動エネルギーの高い領域の全てに対向する。そのため、前述の振動モードでアクチュエータが屈曲振動をした場合、通気路から吸引口を介してブロアの外部へ漏れる気体の流量がより減少し、壁部に衝突する気体の流量がより増加する。
この結果、前述の振動モードでアクチュエータが屈曲振動をした場合、ブロア室から通気孔を介して流出する気流に引き込まれる気体の流量がより増加し、吐出口から吐出される吐出流量がより増加する。
(5)前記吸引口が形成されている前記壁部は、前記第2筺体に対して着脱自在に取り付けられていることが好ましい。
この構成では、第2筺体に装着する壁部の形状を調整することによって、壁部以外の構成を変更せずに、吐出圧力および吐出流量を調整することができる。
この発明によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。
《本発明の第1実施形態》
以下、本発明の第1実施形態に係る圧電ブロア100について説明する。
以下、本発明の第1実施形態に係る圧電ブロア100について説明する。
図1は、本発明の第1実施形態に係る圧電ブロア100の外観斜視図である。図2は、図1に示す圧電ブロア100の分解斜視図である。図3は、図1に示す圧電ブロア100の底面図である。図4は、図1に示す圧電ブロア100のS-S線の断面図である。
圧電ブロア100は、上から順に、筐体17、天板37、側板38、振動板39、圧電素子40、及びキャップ42を備え、それらを順に積層した構造を有している。天板37、側板38、及び振動板39は、ブロア室36を構成している。圧電ブロア100は、幅20mm×長さ20mm×ノズル18以外の領域の高さ1.85mmの寸法となっている。
なお、この実施形態では、天板37及び側板38の接合体が本発明の「第1筐体」に相当し、筐体17が本発明の「第2筐体」に相当する。また、圧電素子40が本発明の「駆動体」に相当する。
筐体17は、空気が吐出される吐出口24が中心に形成されたノズル18を有する。このノズル18は、外形の直径2.0mm×内形(即ち吐出口24)の直径0.8mm×高さ1.6mmの寸法となっている。筐体17の四角には、ネジ穴56A~56Dが形成されている。
筐体17は、下方が開口した断面コ字状に形成されており、筐体17は、ブロア室36の天板37、ブロア室36の側板38、振動板39及び圧電素子40を収納する。筐体17は、例えば樹脂から構成されている。
ブロア室36の天板37は、円板状であり、例えば金属から構成されている。天板37には、中央部61と、中央部61から水平方向に突出し、筐体17の内壁に当接する鍵状の突出部62と、外部回路に接続するための外部端子63とが形成されている。
また、天板37の中央部61には、ブロア室36の内部と外部とを連通させる通気孔45が設けられている。この通気孔45は、筐体17の吐出口24と対向する位置に形成されている。天板37は、側板38の上面に接合する。
ブロア室36の側板38は、円環状であり、例えば金属から構成されている。側板38は、振動板39の上面に接合する。そのため、側板38の厚みは、ブロア室36の高さとなる。
振動板39は、円板状であり、例えば金属から構成されている。振動板39は、ブロア室36の底面を構成する。
圧電素子40は、円板形状であり、例えばチタン酸ジルコン酸鉛系セラミックスから構成されている。圧電素子40の直径は、13.8mmであり、圧電素子40の壁部43側の主面の面積は、150mm2である。圧電素子40は、振動板39のブロア室36とは逆側の主面に接合されており、印加された交流電圧に応じて伸縮する。圧電素子40及び振動板39の接合体は、圧電アクチュエータ41を構成する。
そして、天板37、側板38、振動板39、及び圧電素子40の接合体は、天板37に設けられている4個の突出部62によって筐体17に対して弾性的に支持されている。
電極導通用板70は、圧電素子40に接続するための内部端子73と、外部回路に接続するための外部端子72とで構成されている。内部端子73の先端は圧電素子40の平板面にはんだ付けされている。はんだ付け位置を圧電素子40の屈曲振動の節に相当する位置とすることにより、内部端子73の振動がより抑制できる。
キャップ42には、圧電アクチュエータ41に対向する壁部43と円板形状の吸引口53とが形成されている。この実施形態において、壁部43と圧電素子40との間隔は0.3mmであり、壁部43の厚みは0.1mmである。
また、吸引口53の直径は、圧電素子40の直径の1/2以下であることが好ましく、この実施形態では5mmである。吸引口53の開口面の面積は、19.6mm2である。また、圧電素子40の壁部43側の主面の面積に対する吸引口53の開口面の面積の割合(面積比)は、約0.13である。
そして、図4に示すように、壁部43の厚み方向に延びる吸引口53の中心を通る中心軸Xと、壁部43の厚み方向に延びる圧電素子40の中心を通る中心軸Yとは、一致していない。また、キャップ42には、筐体17のネジ穴56A~56Dに対応する位置に切欠き55A~55Dが形成されている。
また、キャップ42は、外周縁に、天板37側へ突出する突出部52を有する。キャップ42は、突出部52で筐体17を挟持することで、筐体17とともに、ブロア室36の天板37、ブロア室36の側板38、振動板39及び圧電素子40を収納する。キャップ42は、例えばガラスエポキシ樹脂から構成されている。
そして、図4に示すように、天板37、側板38及び圧電アクチュエータ41の接合体と筐体17及びキャップ42との間には通気路31が形成されている。
以下、圧電ブロア100が動作しているときにおける空気の流れについて説明する。
図5(A)(B)は、図1に示す圧電ブロア100を1次モードの周波数(以下、基本波)で動作させた場合における圧電ブロア100のS-S線の断面図である。図5(A)は、ブロア室36の容積が増大したときの図であり、図5(B)は、ブロア室36の容積が減少したときの図である。ここで、図中の矢印は、空気の流れを示している。
図4に示す状態において、1次モードの周波数(基本波)の交流駆動電圧が外部端子63,72から圧電素子40に印加されると、圧電アクチュエータ41は1次モードで同心円状に屈曲振動する。
同時に、天板37は、圧電アクチュエータ41の屈曲振動に伴うブロア室36の圧力変動により、圧電アクチュエータ41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)1次モードで同心円状に屈曲振動する。
これにより、図5(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。
図5(A)に示すように、圧電素子40に交流電圧を印加して振動板39を圧電素子40側へ屈曲させると、ブロア室36の容積が増大する。これに伴い、圧電ブロア100の外部の空気が吸引口53、通気路31、及び通気孔45を介してブロア室36内に吸引される。このとき、ブロア室36からの空気の流出は無いものの、吐出口24から圧電ブロア100の外部への空気の流れの慣性力が働いている。
図5(B)に示すように、圧電素子40に交流電圧を印加して振動板39をブロア室36側へ屈曲させると、ブロア室36の容積が減少する。これに伴い、ブロア室36内の空気が通気孔45、通気路31を介して吐出口24から吐出される。
このとき、ブロア室36から吐出される気流は,圧電ブロア100の外部の空気を吸引口53及び通気路31を介して引き込みながら吐出口24から吐出される。そのため、圧電ブロア100の外部から吐出孔に付与される圧力を0(以下、無負荷)とすると、吐出口24から吐出される空気の流量は、引き込まれる空気の流量分増大する。
ここで、この実施形態の圧電ブロア100では前述したように、吸引口53の中心を通る中心軸Xと、圧電素子40の中心を通る中心軸Yとは、一致していない(図4参照)。そのため、この実施形態の圧電ブロア100では、吸引口の中心を通る中心軸と圧電素子の中心を通る中心軸とが一致する従来のマイクロブロア900(図12参照)に比べて、圧電アクチュエータ41における振動エネルギーの高い領域(即ち、圧電アクチュエータ41における変位量の大きい領域)に対向する吸引口53の面積の割合が減少している。
特に、この実施形態の圧電ブロア100では、振動エネルギーの最も高い圧電アクチュエータ41の中心(即ち、変位量の最も大きい圧電アクチュエータ41の中心)が、壁部43の吸引口53以外の領域に対向している。
そのため、圧電アクチュエータ41が屈曲振動をしているとき、通気路31から吸引口53を介して圧電ブロア100の外部へ漏れる空気の流量が減少し、壁部43に衝突する空気の流量が増加する。
この結果、図5(A)に示すように壁部43に衝突して分散する気流が通気路31内に残留する。このため、ブロア室36から通気孔45を介して流出する気流に引き込まれる空気の流量が増加する。すなわち、吐出口24から吐出される吐出流量が増加する。
従って、この実施形態の圧電ブロア100によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。
《本発明の第2実施形態》
以下、本発明の第2実施形態に係る圧電ブロア200について説明する。
以下、本発明の第2実施形態に係る圧電ブロア200について説明する。
図6(A)(B)は、本発明の第2実施形態に係る圧電ブロア200を3次モードの周波数(基本波の3倍波)で動作させた場合における圧電ブロア200のS-S線の断面図である。図6(A)は、ブロア室36の容積が増大したときの図であり、図6(B)は、ブロア室36の容積が減少したときの図である。図7は、図6(B)に示す圧電アクチュエータ41の概略断面図である。図7では、図6(B)に示す圧電アクチュエータ41の屈曲を強調して示している。
この第2実施形態の圧電ブロア200が前記第1実施形態の圧電ブロア100と相違する点は、キャップ242である。その他の構成については同じである。
詳述すると、キャップ242には、圧電アクチュエータ41の屈曲振動により形成される振動の節のうち、圧電アクチュエータ41の中心から最も距離が短い振動の節Fに対向する箇所より外側の領域に、円板形状の吸引口253が形成されている。そして、この吸引口253の中心を通る中心軸Xと、圧電素子40の中心を通る中心軸Yとが一致していない。その他の点についてはキャップ42と同じである。
以下、圧電ブロア200が動作しているときにおける空気の流れについて説明する。
この実施形態の圧電ブロア200では、3次モードの周波数(基本波の3倍波)の交流駆動電圧が外部端子63,72から圧電素子40に印加されると、圧電アクチュエータ41は、1つの節Fと2つの腹を生じる3次モードで同心円状に屈曲振動する。
同時に、天板37は、圧電アクチュエータ41の屈曲振動に伴うブロア室36の圧力変動により、圧電アクチュエータ41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)同じく3次モードで同心円状に屈曲振動する。
これにより、圧電ブロア200においても、図6(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。
図6(A)に示すように、圧電素子40に交流電圧を印加して振動板39を圧電素子40側へ屈曲させると、ブロア室36の容積が増大する。これに伴い、圧電ブロア200の外部の空気が吸引口253、通気路31、及び通気孔45を介してブロア室36内に吸引される。このとき、ブロア室36からの空気の流出は無いものの、吐出口24から圧電ブロア200の外部への空気の流れの慣性力が働いている。
図6(B)に示すように、圧電素子40に交流電圧を印加して振動板39をブロア室36側へ屈曲させると、ブロア室36の容積が減少する。これに伴い、ブロア室36内の空気が通気孔45、通気路31を介して吐出口24から吐出される。
このとき、ブロア室36から吐出される気流が,圧電ブロア200の外部の空気を吸引口253及び通気路31を介して引き込みながら吐出口24から吐出される。そのため、圧電ブロア200の外部から吐出孔に付与される圧力を無負荷とすると、吐出口24から吐出される空気の流量は、引き込まれる空気の流量分増大する。
ここで、この実施形態の圧電ブロア200においても、吸引口253の中心を通る中心軸Xと、圧電素子40の中心を通る中心軸Yとは、一致していない(図6(A)(B)参照)。そのため、この実施形態の圧電ブロア200でも、吸引口の中心を通る中心軸と圧電素子の中心を通る中心軸とが一致する従来のマイクロブロア900(図12参照)に比べて、圧電アクチュエータ41における振動エネルギーの高い領域(即ち、圧電アクチュエータ41における変位量の大きい領域)に対向する吸引口253の面積の割合が減少している。
この実施形態の圧電ブロア200では、図6(A)(B)と図7に示すように、壁部243のうち、圧電アクチュエータ41における振動の節Fより内側の高振動領域(即ち振動エネルギーの高い領域)に対向している領域に吸引口253が形成されていない。
また、この実施形態の圧電ブロア200でも、振動エネルギーの最も高い圧電アクチュエータ41の中心(即ち、変位量の最も大きい圧電アクチュエータ41の中心)は、壁部243の吸引口253以外の領域に対向している。
そのため、圧電アクチュエータ41が屈曲振動をしているとき、通気路31から吸引口253を介して圧電ブロア200の外部へ漏れる空気の流量が減少し、壁部243に衝突する空気の流量が増加する。
この結果、図6(A)に示すように壁部243に衝突して分散する気流が通気路31内に残留する。このため、ブロア室36から通気孔45を介して流出する気流に引き込まれる空気の流量が増加する。すなわち、吐出口24から吐出される吐出流量が増加する。
従って、この第2実施形態の圧電ブロア200によれば、前記第1実施形態の圧電ブロア200と同様の効果を奏する。
次に、圧電ブロア200の圧電素子40の中心軸Yを基準としたときの、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離と圧電ブロア200のポンプ特性(即ち吐出圧力および吐出流量)との関係について説明する。
図8は、図6(A)(B)に示す圧電ブロア200における、圧電素子40の中心軸に対する吸引口253の中心軸の距離と、圧電ブロア200のポンプ特性(吐出圧力および吐出流量)との関係を示す図である。図8では、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離を変化させて、圧電ブロア200の吐出圧力および吐出流量を測定した結果を示している。
ここで、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離が0であるということは、図6(A)(B)に示した吸引口253の中心軸Xと圧電素子40の中心軸Yとが一致していることを意味する。
図8に示す測定結果より、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離を0にした圧電ブロア200の吐出圧力および吐出流量に比べて、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離を増加させた圧電ブロア200の吐出圧力および吐出流量は増大することが明らかとなった。
特に、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離を0にした圧電ブロア200の吐出圧力および吐出流量を100%としたとき、圧電素子40の中心軸Yから吸引口253の中心軸Xまでの距離を4mmにした圧電ブロア200の吐出圧力は155%まで増大し、吐出流量も125%まで増大することが明らかとなった。
以上のような結果になった理由は、吸引口253の中心軸Xと圧電素子40の中心軸Yとが一致していない圧電ブロア200では、吸引口の中心軸と圧電素子の中心軸とが一致する従来の圧電ブロアに比べて、圧電アクチュエータ41における振動エネルギーの高い領域(即ち、圧電アクチュエータ41における変位量の大きい領域)に対向する吸引口253の面積の割合が減少したためであると考えられる。
《本発明の第3実施形態》
以下、本発明の第3実施形態に係る圧電ブロア300について説明する。
以下、本発明の第3実施形態に係る圧電ブロア300について説明する。
図9は、本発明の第3実施形態に係る圧電ブロア300の外観斜視図である。図10は、図9に示す圧電ブロア300のT-T線の断面図である。
この第3実施形態の圧電ブロア300が前記第1実施形態の圧電ブロア100と相違する点は、キャップ342、吐出側ケース301、及び吸引側ケース302である。その他の構成については同じである。
詳述すると、圧電ブロア300は、本体310と、吐出側ケース301と、吸引側ケース302とを備える。この本体310は、筐体17、天板37、側板38、振動板39、圧電素子40、及びキャップ342からなる積層体である。
キャップ342には、圧電素子40の中心を通る中心軸Yと中心軸が一致する円板形状の第1吸引口353と第1壁部343とが形成されている。第1吸引口353の直径は11mmであり、第1吸引口353の開口面の面積は、95mm2である。また、圧電素子40の第1壁部343側の主面の面積に対する第1吸引口353の開口面の面積の割合(面積比)は、0.63である。その他の点についてはキャップ42と同じである。
なお、前述したように、圧電素子40の直径は、13.8mmであり、圧電素子40の壁部43側の主面の面積は、150mm2である。
また、吐出側ケース301には、空気を吐出するための円柱形状の第2吐出口306が中心に形成されたノズル305を有する。ここで、ノズル305はノズル18を囲み、第2吐出口306は第1吐出口24に連通している。吐出側ケース301は例えばアクリル樹脂から構成されている。
また、吸引側ケース302には、空気を吸引するための円柱形状の第2吸引口308が中心に形成されたノズル307と圧電アクチュエータ41に対向する第2壁部303とを有する。ここで、この実施形態の圧電ブロア300では、吸引側ケース302の第2壁部303に形成されている第2吸引口308の中心軸Xと、圧電素子40の中心軸Yとは一致していない。吸引側ケース302は例えばアクリル樹脂から構成されている。
また、第2吸引口308の直径は、圧電素子40の直径の1/2以下であることが好ましく、この実施形態では5mmである。第2吸引口308の開口面の面積は、19.6mm2である。また、圧電素子40の第1壁部343側の主面の面積に対する第2吸引口308の開口面の面積の割合は、0.13である。また、この実施形態における第2吸引口308の中心軸Xと圧電素子40の中心軸Yとの距離は4mmである。
吐出側ケース301及び吸引側ケース302は、互いに接合して本体310に着脱自在に装着され、本体310を収納する。そして、図10に示すように、天板37、側板38及び圧電アクチュエータ41の接合体と、筐体17、キャップ342、吐出側ケース301及び吸引側ケース302の接合体との間には通気路331が形成されている。
なお、この実施形態では、天板37及び側板38の接合体が本発明の「第1筐体」に相当し、筐体17及びキャップ342の接合体が本発明の「第2筐体」に相当する。また、第2壁部303が本発明の「壁部」に相当する。
以下、圧電ブロア300が動作しているときにおける空気の流れについて説明する。
図11(A)(B)は、図9に示す圧電ブロア300を1次モードの周波数(基本波)で動作させた場合における圧電ブロア300のT-T線の断面図である。図11(A)は、ブロア室36の容積が増大したときの図であり、図11(B)は、ブロア室36の容積が減少したときの図である。
図10に示す状態において、1次モードの周波数(基本波)の交流駆動電圧が外部端子63,72から圧電素子40に印加されると、圧電アクチュエータ41は同心円状に屈曲振動する。同時に、天板37は、圧電アクチュエータ41の屈曲振動に伴うブロア室36の圧力変動により、圧電アクチュエータ41の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)同心円状に屈曲振動する。
これにより、図11(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。
図11(A)に示すように、圧電素子40に交流電圧を印加して振動板39を圧電素子40側へ屈曲させると、ブロア室36の容積が増大する。これに伴い、圧電ブロア300の外部の空気が第2吸引口308、通気路331、及び通気孔45を介してブロア室36内に吸引される。このとき、ブロア室36からの空気の流出は無いものの、第2吐出口306から圧電ブロア300の外部への空気の流れの慣性力が働いている。
図11(B)に示すように、圧電素子40に交流電圧を印加して振動板39をブロア室36側へ屈曲させると、ブロア室36の容積が減少する。これに伴い、ブロア室36内の空気が通気孔45、通気路331を介して第2吐出口306から吐出される。
このとき、ブロア室36から吐出される気流が,圧電ブロア300の外部の空気を第2吸引口308及び通気路331を介して引き込みながら第2吐出口306から吐出される。そのため、圧電ブロア300の外部から吐出孔に付与される圧力を無負荷とすると、第2吐出口306から吐出される空気の流量は、引き込まれる空気の流量分増大する。
ここで、この実施形態の圧電ブロア300では、吸引側ケース302の第2吸引口308の中心を通る中心軸Xと、圧電素子40の中心を通る中心軸Yとが一致していない。そのため、この実施形態の圧電ブロア300でも、吸引口の中心軸と圧電素子の中心軸とが一致する従来のマイクロブロア900(図12参照)に比べて、圧電アクチュエータ41における振動エネルギーの高い領域(即ち、圧電アクチュエータ41における変位量の大きい領域)に対向する吸引口の面積の割合が減少している。
特に、この実施形態の圧電ブロア300では、振動エネルギーの最も高い圧電アクチュエータ41の中心(即ち、変位量の最も大きい圧電アクチュエータ41の中心)が、第2壁部303に対向している。
そのため、圧電アクチュエータ41が屈曲振動をしているとき、通気路331から第2吸引口308を介して圧電ブロア300の外部へ漏れる空気の流量が減少し、第2壁部303に衝突する空気の流量が増加する。
この結果、図11(A)に示すように第2壁部303に衝突して分散する気流が通気路331内に残留する。このため、ブロア室36から通気孔45を介して流出する気流に引き込まれる空気の流量が増加する。すなわち、第2吐出口306から吐出される吐出流量が増加する。
従って、この第3実施形態の圧電ブロア300によれば、前記第1実施形態の圧電ブロア100と同様の効果を奏する。なお、この第3実施形態の圧電ブロア300においても、圧電素子40の中心軸Yから第2吸引口308の中心軸Xまでの距離と圧電ブロア300のポンプ特性との関係について、前記第2実施形態の圧電ブロア200と同様の測定結果(図8参照)が得られている。
さらに、この第3実施形態の圧電ブロア300によれば、本体310に装着する吸引側ケース302の第2壁部303の形状を調整することによって、第2壁部303以外の構成(本体310など)を変更せずに、圧電素子40の中心軸Yから第2吸引口308の中心軸Xまでの距離を変化させることができる。即ち、第2壁部303の形状を調整することによって、第2壁部303以外の構成(本体310など)を変更せずに、吐出圧力および吐出流量を調整することができる。
したがって、本体310のポンプ特性を変化させることなく、任意の形状の吐出側ケース301及び吸引側ケース302を選択することができるため、圧電ブロア300の汎用性が高まる。
《その他の実施形態》
前記実施形態では流体として空気を用いているが、これに限るものではない。当該流体が、空気以外の気体であっても適用できる。
前記実施形態では流体として空気を用いているが、これに限るものではない。当該流体が、空気以外の気体であっても適用できる。
また、前記実施形態ではブロアの駆動源として圧電素子40を設けたが、これに限るものではない。例えば、電磁駆動でポンピングを行うブロアとして構成されていても構わない。
また、前記実施形態では、圧電素子40はチタン酸ジルコン酸鉛系セラミックスから構成されているが、これに限るものではない。例えば、ニオブ酸カリウムナトリウム系及びアルカリニオブ酸系セラミックス等の非鉛系圧電体セラミックスの圧電材料などから構成してもよい。
また、前記実施形態ではユニモルフ型の圧電振動子を使用しているが、これに限るものではない。振動板39の両面に圧電素子40を貼着したバイモルフ型の圧電振動子を使用してもよい。
また、前記実施形態では円板状の圧電素子40、円板状の振動板39及び円板状の天板37を用いたが、これに限るものではない。例えば、これらの形状が矩形や多角形であってもよい。
また、前記実施形態では、1次モード及び3次モードの周波数で圧電ブロアの振動板を屈曲振動させたが、これに限るものではない。実施の際は、複数の振動の腹を形成する、3次モード以上の奇数次の振動モードで振動板を屈曲振動させても良い。
また、前記実施形態では、天板37が、振動板39の屈曲振動に伴って同心円状に屈曲振動するが、これに限るものではない。実施の際は、振動板39のみが屈曲振動し、天板37が、振動板39の屈曲振動に伴って屈曲振動しなくても良い。
最後に、前記実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
2…内ケース
3…外ケース
3A…吐出口
4…連結部
5A…弾性金属板
5B…圧電素子
6…ブロア室
7…流入通路
8…開口部
9…蓋部材
9A…吸引口
17…筐体
18…ノズル
24…吐出口
31…通気路
36…ブロア室
37…天板
38…側板
39…振動板
40…圧電素子
41…圧電アクチュエータ
42…キャップ
43…壁部
45…通気孔
52…突出部
53…吸引口
55A~55D…切欠き
56A~56D…ネジ穴
61…中央部
62…突出部
63…外部端子
70…電極導通用板
72…外部端子
73…内部端子
100、200、300…圧電ブロア
242…キャップ
243…壁部
253…吸引口
301…吐出側ケース
302…吸引側ケース
303…第2壁部
305…ノズル
306…第2吐出口
307…ノズル
308…第2吸引口
310…本体
331…通気路
342…キャップ
343…第1壁部
353…第1吸引口
900…マイクロブロア
3…外ケース
3A…吐出口
4…連結部
5A…弾性金属板
5B…圧電素子
6…ブロア室
7…流入通路
8…開口部
9…蓋部材
9A…吸引口
17…筐体
18…ノズル
24…吐出口
31…通気路
36…ブロア室
37…天板
38…側板
39…振動板
40…圧電素子
41…圧電アクチュエータ
42…キャップ
43…壁部
45…通気孔
52…突出部
53…吸引口
55A~55D…切欠き
56A~56D…ネジ穴
61…中央部
62…突出部
63…外部端子
70…電極導通用板
72…外部端子
73…内部端子
100、200、300…圧電ブロア
242…キャップ
243…壁部
253…吸引口
301…吐出側ケース
302…吸引側ケース
303…第2壁部
305…ノズル
306…第2吐出口
307…ノズル
308…第2吸引口
310…本体
331…通気路
342…キャップ
343…第1壁部
353…第1吸引口
900…マイクロブロア
Claims (5)
- 駆動体を有し、前記駆動体への電圧の印加により同心円状に屈曲振動するアクチュエータと、
前記アクチュエータとともにブロア室を構成し、前記ブロア室の内部と外部とを連通させる通気孔を有する第1筐体と、
吸引口が形成され、前記アクチュエータに対向する壁部と、
前記壁部とともに前記アクチュエータ及び前記第1筐体を、間隔を設けて被覆して前記アクチュエータ及び前記第1筐体との間に通気路を形成する第2筐体と、を備え、
前記通気孔に対向する前記第2筐体の箇所には、吐出口が形成され、
前記吸引口の中心軸と前記駆動体の中心軸とは、一致していない、ブロア。 - 前記駆動体の中心は、前記壁部の前記吸引口以外の領域と対向している、請求項1に記載のブロア。
- 前記吸引口の直径は、前記駆動体の直径の1/2以下である、請求項1又は2に記載のブロア。
- 前記アクチュエータは、前記駆動体により、複数の振動の腹を形成する3次モード以上の奇数次の振動モードで屈曲振動し、
前記吸引口は、前記アクチュエータの屈曲振動により形成される振動の節のうち、前記アクチュエータの中心から最も距離が短い振動の節に対向する前記壁部の箇所より外側の領域に形成されている、請求項1から3のいずれか1項に記載のブロア。 - 前記吸引口が形成されている前記壁部は、前記第2筺体に対して着脱自在に取り付けられている、請求項1から4のいずれか1項に記載のブロア。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014521269A JP5692465B2 (ja) | 2012-06-11 | 2013-06-03 | ブロア |
CN201380030418.0A CN104364526B (zh) | 2012-06-11 | 2013-06-03 | 鼓风机 |
US14/548,431 US10626861B2 (en) | 2012-06-11 | 2014-11-20 | Blower |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012131542 | 2012-06-11 | ||
JP2012-131542 | 2012-06-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/548,431 Continuation US10626861B2 (en) | 2012-06-11 | 2014-11-20 | Blower |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013187271A1 true WO2013187271A1 (ja) | 2013-12-19 |
Family
ID=49758097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/065321 WO2013187271A1 (ja) | 2012-06-11 | 2013-06-03 | ブロア |
Country Status (4)
Country | Link |
---|---|
US (1) | US10626861B2 (ja) |
JP (1) | JP5692465B2 (ja) |
CN (1) | CN104364526B (ja) |
WO (1) | WO2013187271A1 (ja) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015125843A1 (ja) * | 2014-02-21 | 2015-08-27 | 株式会社村田製作所 | 流体制御装置およびポンプ |
WO2016014586A1 (en) * | 2014-07-23 | 2016-01-28 | Microdose Therapeutx, Inc. | Dry powder medicament de-agglomerator |
US20160348666A1 (en) * | 2014-02-21 | 2016-12-01 | Murata Manufacturing Co., Ltd. | Blower |
WO2017038565A1 (ja) * | 2015-08-31 | 2017-03-09 | 株式会社村田製作所 | ブロア |
WO2017061349A1 (ja) * | 2015-10-05 | 2017-04-13 | 株式会社村田製作所 | 流体制御装置、減圧装置、および、加圧装置 |
JP2017133511A (ja) * | 2016-01-29 | 2017-08-03 | 研能科技股▲ふん▼有限公司 | 小型流体制御装置 |
JP2017133507A (ja) * | 2016-01-29 | 2017-08-03 | 研能科技股▲ふん▼有限公司 | 小型流体制御装置 |
JP2018040355A (ja) * | 2016-09-05 | 2018-03-15 | 研能科技股▲ふん▼有限公司 | 流体制御装置の製造方法 |
JP2018076865A (ja) * | 2016-11-10 | 2018-05-17 | 研能科技股▲ふん▼有限公司 | 小型空気圧動力装置 |
US10343404B2 (en) | 2016-09-05 | 2019-07-09 | Microjet Technology Co., Ltd. | Manufacturing method of fluid control device |
US10371136B2 (en) | 2016-01-29 | 2019-08-06 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10378529B2 (en) | 2016-01-29 | 2019-08-13 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10388849B2 (en) | 2016-01-29 | 2019-08-20 | Microjet Technology Co., Ltd. | Piezoelectric actuator |
US10388850B2 (en) | 2016-01-29 | 2019-08-20 | Microjet Technology Co., Ltd. | Piezoelectric actuator |
US10451051B2 (en) | 2016-01-29 | 2019-10-22 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10487821B2 (en) | 2016-01-29 | 2019-11-26 | Microjet Technology Co., Ltd. | Miniature fluid control device |
US10487820B2 (en) | 2016-01-29 | 2019-11-26 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10529911B2 (en) | 2016-01-29 | 2020-01-07 | Microjet Technology Co., Ltd. | Piezoelectric actuator |
JP2020020283A (ja) * | 2018-07-31 | 2020-02-06 | セイコーエプソン株式会社 | ダイヤフラム式圧縮機、冷却機、プロジェクター及び流体の圧縮方法 |
US10584695B2 (en) | 2016-01-29 | 2020-03-10 | Microjet Technology Co., Ltd. | Miniature fluid control device |
US10615329B2 (en) | 2016-01-29 | 2020-04-07 | Microjet Technology Co., Ltd. | Piezoelectric actuator |
US10655620B2 (en) | 2016-11-10 | 2020-05-19 | Microjet Technology Co., Ltd. | Miniature fluid control device |
US10683861B2 (en) | 2016-11-10 | 2020-06-16 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10746169B2 (en) | 2016-11-10 | 2020-08-18 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201322103D0 (en) * | 2013-12-13 | 2014-01-29 | The Technology Partnership Plc | Fluid pump |
US20150192119A1 (en) * | 2014-01-08 | 2015-07-09 | Samsung Electro-Mechanics Co., Ltd. | Piezoelectric blower |
DE112016001938B4 (de) | 2015-04-27 | 2024-07-25 | Murata Manufacturing Co., Ltd. | Pumpe |
TWI557321B (zh) * | 2015-06-25 | 2016-11-11 | 科際精密股份有限公司 | 壓電泵及其操作方法 |
WO2017059660A1 (zh) * | 2015-10-08 | 2017-04-13 | 广东奥迪威传感科技股份有限公司 | 一种压电微气泵结构 |
JP6574452B2 (ja) * | 2016-01-29 | 2019-09-11 | 研能科技股▲ふん▼有限公司 | 小型空気圧動力装置 |
CN212672033U (zh) * | 2016-01-29 | 2021-03-09 | 研能科技股份有限公司 | 微型气压动力装置 |
TWI599868B (zh) | 2016-09-05 | 2017-09-21 | 研能科技股份有限公司 | 流體控制裝置之製造方法 |
TWI683959B (zh) * | 2016-09-05 | 2020-02-01 | 研能科技股份有限公司 | 壓電致動器及其所適用之微型流體控制裝置 |
TWI613367B (zh) | 2016-09-05 | 2018-02-01 | 研能科技股份有限公司 | 流體控制裝置 |
TWI616351B (zh) | 2016-09-05 | 2018-03-01 | 研能科技股份有限公司 | 流體控制裝置之製造方法 |
TWI602995B (zh) | 2016-09-05 | 2017-10-21 | 研能科技股份有限公司 | 流體控制裝置 |
TWI625468B (zh) | 2016-09-05 | 2018-06-01 | 研能科技股份有限公司 | 流體控制裝置 |
TWI606936B (zh) * | 2016-09-05 | 2017-12-01 | 研能科技股份有限公司 | 流體控制裝置 |
CN108071579A (zh) * | 2016-11-10 | 2018-05-25 | 研能科技股份有限公司 | 压电致动器 |
TWI634264B (zh) * | 2017-01-13 | 2018-09-01 | 研能科技股份有限公司 | 空氣馬達 |
WO2019013164A1 (ja) * | 2017-07-14 | 2019-01-17 | 株式会社村田製作所 | 振動構造、振動装置、および触覚提示装置 |
TWI626775B (zh) * | 2017-08-22 | 2018-06-11 | 研能科技股份有限公司 | 致動器 |
CN109420387A (zh) * | 2017-08-25 | 2019-03-05 | 研能科技股份有限公司 | 气体清净装置 |
TW201912248A (zh) * | 2017-08-31 | 2019-04-01 | 研能科技股份有限公司 | 氣體輸送裝置 |
TWI635291B (zh) * | 2017-12-29 | 2018-09-11 | 研能科技股份有限公司 | 微型丙酮檢測裝置 |
CN109991420A (zh) * | 2017-12-29 | 2019-07-09 | 研能科技股份有限公司 | 微型丙酮检测装置 |
WO2019159502A1 (ja) * | 2018-02-16 | 2019-08-22 | 株式会社村田製作所 | 流体制御装置 |
TWI678523B (zh) * | 2018-03-30 | 2019-12-01 | 研能科技股份有限公司 | 致動傳感模組 |
TWI682156B (zh) | 2018-03-30 | 2020-01-11 | 研能科技股份有限公司 | 致動傳感模組 |
WO2019230189A1 (ja) * | 2018-05-29 | 2019-12-05 | 株式会社村田製作所 | 流体制御装置 |
CN109838367A (zh) * | 2019-04-04 | 2019-06-04 | 常州威图流体科技有限公司 | 一种高性能微型压电泵 |
IT201900005808A1 (it) * | 2019-04-15 | 2020-10-15 | St Microelectronics Srl | Dispositivo mems a micropompa per la movimentazione o eiezione di un fluido, in particolare microsoffiante o flussimetro |
EP4030055A4 (en) * | 2019-09-11 | 2023-10-04 | Kyocera Corporation | PIEZOELECTRIC PUMP AND PUMP UNIT |
TWI747076B (zh) * | 2019-11-08 | 2021-11-21 | 研能科技股份有限公司 | 行動裝置散熱組件 |
US20210180723A1 (en) * | 2019-12-16 | 2021-06-17 | Frore Systems Inc. | Virtual valve in a mems-based cooling system |
JP7327514B2 (ja) * | 2019-12-26 | 2023-08-16 | 株式会社村田製作所 | ポンプ装置 |
US11692776B2 (en) * | 2021-03-02 | 2023-07-04 | Frore Systems Inc. | Mounting and use of piezoelectric cooling systems in devices |
CN113464410B (zh) * | 2021-08-19 | 2022-03-22 | 浙江大学 | 一种压力无级可调的大流量压电泵 |
WO2023019493A1 (zh) * | 2021-08-19 | 2023-02-23 | 浙江大学 | 一种压力无级可调的大流量压电泵 |
USD991984S1 (en) * | 2021-11-30 | 2023-07-11 | Murata Manufacturing Co., Ltd. | Piezoelectric pump |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005113918A (ja) * | 2003-10-07 | 2005-04-28 | Samsung Electronics Co Ltd | バルブレスマイクロ空気供給装置 |
JP2009250132A (ja) * | 2008-04-07 | 2009-10-29 | Sony Corp | 冷却装置及び電子機器 |
JP2011027079A (ja) * | 2009-07-29 | 2011-02-10 | Murata Mfg Co Ltd | マイクロブロア |
WO2011040320A1 (ja) * | 2009-10-01 | 2011-04-07 | 株式会社村田製作所 | 圧電マイクロブロア |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090162720A1 (en) * | 2005-10-28 | 2009-06-25 | Sanyo Electric Co., Ltd. | Fluid transfer device, and fuel cell and electronic apparatus using the same |
AT9232U1 (de) * | 2006-05-22 | 2007-06-15 | Acc Austria Gmbh | Kältemittelverdichter |
JP2009156253A (ja) * | 2007-12-05 | 2009-07-16 | Star Micronics Co Ltd | ポンプ |
GB0804739D0 (en) * | 2008-03-14 | 2008-04-16 | The Technology Partnership Plc | Pump |
EP2306018B1 (en) * | 2008-06-03 | 2016-05-11 | Murata Manufacturing Co. Ltd. | Piezoelectric micro-blower |
EP2312158B1 (en) * | 2008-06-05 | 2016-04-27 | Murata Manufacturing Co. Ltd. | Piezoelectric microblower |
US8371829B2 (en) * | 2010-02-03 | 2013-02-12 | Kci Licensing, Inc. | Fluid disc pump with square-wave driver |
-
2013
- 2013-06-03 WO PCT/JP2013/065321 patent/WO2013187271A1/ja active Application Filing
- 2013-06-03 JP JP2014521269A patent/JP5692465B2/ja active Active
- 2013-06-03 CN CN201380030418.0A patent/CN104364526B/zh active Active
-
2014
- 2014-11-20 US US14/548,431 patent/US10626861B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005113918A (ja) * | 2003-10-07 | 2005-04-28 | Samsung Electronics Co Ltd | バルブレスマイクロ空気供給装置 |
JP2009250132A (ja) * | 2008-04-07 | 2009-10-29 | Sony Corp | 冷却装置及び電子機器 |
JP2011027079A (ja) * | 2009-07-29 | 2011-02-10 | Murata Mfg Co Ltd | マイクロブロア |
WO2011040320A1 (ja) * | 2009-10-01 | 2011-04-07 | 株式会社村田製作所 | 圧電マイクロブロア |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9976547B2 (en) * | 2014-02-21 | 2018-05-22 | Murata Manufacturing Co., Ltd. | Piezoelectric blower |
WO2015125843A1 (ja) * | 2014-02-21 | 2015-08-27 | 株式会社村田製作所 | 流体制御装置およびポンプ |
US11598330B2 (en) | 2014-02-21 | 2023-03-07 | Murata Manufacturing Co., Ltd. | Fluid control device and pump |
US10233918B2 (en) | 2014-02-21 | 2019-03-19 | Murata Manufacturing Co., Ltd. | Blower |
US10480502B2 (en) | 2014-02-21 | 2019-11-19 | Murata Manufacturing Co., Ltd. | Fluid control device and pump |
US10890171B2 (en) | 2014-02-21 | 2021-01-12 | Murata Manufacturing Co., Ltd. | Fluid control device and pump |
US20160348666A1 (en) * | 2014-02-21 | 2016-12-01 | Murata Manufacturing Co., Ltd. | Blower |
CN106030108B (zh) * | 2014-02-21 | 2018-02-23 | 株式会社村田制作所 | 流体控制装置以及泵 |
CN106030108A (zh) * | 2014-02-21 | 2016-10-12 | 株式会社村田制作所 | 流体控制装置以及泵 |
WO2016014586A1 (en) * | 2014-07-23 | 2016-01-28 | Microdose Therapeutx, Inc. | Dry powder medicament de-agglomerator |
JP2017521181A (ja) * | 2014-07-23 | 2017-08-03 | マイクロドース セラピューテクス,インコーポレイテッド | 乾燥粉末薬剤解砕装置 |
WO2017038565A1 (ja) * | 2015-08-31 | 2017-03-09 | 株式会社村田製作所 | ブロア |
US10947965B2 (en) | 2015-08-31 | 2021-03-16 | Murata Manufacturing Co., Ltd. | Blower |
GB2557088A (en) * | 2015-08-31 | 2018-06-13 | Murata Manufacturing Co | Blower |
US20180187672A1 (en) * | 2015-08-31 | 2018-07-05 | Murata Manufacturing Co., Ltd. | Blower |
JPWO2017038565A1 (ja) * | 2015-08-31 | 2018-04-05 | 株式会社村田製作所 | ブロア |
US11661935B2 (en) | 2015-08-31 | 2023-05-30 | Murata Manufacturing Co., Ltd. | Blower |
GB2557088B (en) * | 2015-08-31 | 2021-05-19 | Murata Manufacturing Co | Blower |
US10794378B2 (en) | 2015-10-05 | 2020-10-06 | Murata Manufacturing Co., Ltd. | Fluid control device, decompression device, and compression device |
JPWO2017061349A1 (ja) * | 2015-10-05 | 2018-05-17 | 株式会社村田製作所 | 流体制御装置、減圧装置、および、加圧装置 |
WO2017061349A1 (ja) * | 2015-10-05 | 2017-04-13 | 株式会社村田製作所 | 流体制御装置、減圧装置、および、加圧装置 |
JP2017133507A (ja) * | 2016-01-29 | 2017-08-03 | 研能科技股▲ふん▼有限公司 | 小型流体制御装置 |
US10388849B2 (en) | 2016-01-29 | 2019-08-20 | Microjet Technology Co., Ltd. | Piezoelectric actuator |
US10385838B2 (en) | 2016-01-29 | 2019-08-20 | Microjet Technology Co., Ltd. | Miniature fluid control device |
US10388850B2 (en) | 2016-01-29 | 2019-08-20 | Microjet Technology Co., Ltd. | Piezoelectric actuator |
US10451051B2 (en) | 2016-01-29 | 2019-10-22 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10378529B2 (en) | 2016-01-29 | 2019-08-13 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10487821B2 (en) | 2016-01-29 | 2019-11-26 | Microjet Technology Co., Ltd. | Miniature fluid control device |
US10487820B2 (en) | 2016-01-29 | 2019-11-26 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10529911B2 (en) | 2016-01-29 | 2020-01-07 | Microjet Technology Co., Ltd. | Piezoelectric actuator |
US10371136B2 (en) | 2016-01-29 | 2019-08-06 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10584695B2 (en) | 2016-01-29 | 2020-03-10 | Microjet Technology Co., Ltd. | Miniature fluid control device |
US10615329B2 (en) | 2016-01-29 | 2020-04-07 | Microjet Technology Co., Ltd. | Piezoelectric actuator |
US9976673B2 (en) | 2016-01-29 | 2018-05-22 | Microjet Technology Co., Ltd. | Miniature fluid control device |
JP2017133511A (ja) * | 2016-01-29 | 2017-08-03 | 研能科技股▲ふん▼有限公司 | 小型流体制御装置 |
JP2018040355A (ja) * | 2016-09-05 | 2018-03-15 | 研能科技股▲ふん▼有限公司 | 流体制御装置の製造方法 |
US10343404B2 (en) | 2016-09-05 | 2019-07-09 | Microjet Technology Co., Ltd. | Manufacturing method of fluid control device |
US10746169B2 (en) | 2016-11-10 | 2020-08-18 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10683861B2 (en) | 2016-11-10 | 2020-06-16 | Microjet Technology Co., Ltd. | Miniature pneumatic device |
US10655620B2 (en) | 2016-11-10 | 2020-05-19 | Microjet Technology Co., Ltd. | Miniature fluid control device |
JP2018076865A (ja) * | 2016-11-10 | 2018-05-17 | 研能科技股▲ふん▼有限公司 | 小型空気圧動力装置 |
JP2020020283A (ja) * | 2018-07-31 | 2020-02-06 | セイコーエプソン株式会社 | ダイヤフラム式圧縮機、冷却機、プロジェクター及び流体の圧縮方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013187271A1 (ja) | 2016-02-04 |
CN104364526B (zh) | 2016-08-24 |
CN104364526A (zh) | 2015-02-18 |
US20150071797A1 (en) | 2015-03-12 |
US10626861B2 (en) | 2020-04-21 |
JP5692465B2 (ja) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5692465B2 (ja) | ブロア | |
JP5692468B2 (ja) | ブロア | |
JP5962848B2 (ja) | 圧電ブロア | |
JP6528849B2 (ja) | ブロア | |
JP6414625B2 (ja) | ブロア | |
KR101333542B1 (ko) | 유체 펌프 | |
JP5177331B1 (ja) | ポンプ装置 | |
JP6269907B1 (ja) | バルブ、気体制御装置 | |
JP6065160B2 (ja) | ブロア | |
JP2016053371A (ja) | 流体制御装置およびポンプ | |
JP6575634B2 (ja) | ブロア | |
JP5652551B2 (ja) | 流体制御装置 | |
WO2013187270A1 (ja) | ブロア | |
JP6572619B2 (ja) | ブロア | |
JP6089584B2 (ja) | ブロア |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13803812 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014521269 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13803812 Country of ref document: EP Kind code of ref document: A1 |