WO2013183584A1 - Ion permeable diaphragm - Google Patents
Ion permeable diaphragm Download PDFInfo
- Publication number
- WO2013183584A1 WO2013183584A1 PCT/JP2013/065342 JP2013065342W WO2013183584A1 WO 2013183584 A1 WO2013183584 A1 WO 2013183584A1 JP 2013065342 W JP2013065342 W JP 2013065342W WO 2013183584 A1 WO2013183584 A1 WO 2013183584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ion
- microporous membrane
- membrane
- metal oxide
- porous
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
- C25B13/08—Diaphragms; Spacing elements characterised by the material based on organic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/286—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/322—Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/10—Batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the present invention relates to an ion permeable diaphragm.
- This ion-permeable diaphragm shows wettability to water based on the wettability of a large amount of hydrophilic inorganic material added, and has ion permeability because it is porous. Since it is essentially hydrophobic, there is a problem that the wettability with respect to alkaline water is insufficient, and in electrolysis using alkaline water as an electrolytic solution, there is a problem that electrical resistance characteristics and electrolytic performance are insufficient. Moreover, the voltage rise by the gas produced
- the present invention has been made in order to solve the above-described conventional problems.
- the object of the present invention is to provide characteristics (i.e., (1) ions required for ion-permeable membranes generally used for alkaline water electrolysis). (2) Mechanical strength and chemical stability against alkaline water, (3) No gas passage through the diaphragm, and (4) Short circuit prevention between electrodes It is an object to provide an ion-permeable diaphragm that is excellent in that the gas generated by the electrode during electrolysis adheres to the surface of the diaphragm (particularly the outermost surface).
- the ion-permeable diaphragm of the present invention includes a microporous membrane, and at least one metal oxide selected from titanium oxide and zirconium oxide is attached to the microporous membrane.
- the ion permeable membrane of the present invention further comprises a porous reinforcement.
- at least one metal oxide selected from titanium oxide and zirconium oxide is attached to the porous reinforcing body.
- the microporous membrane is composed of polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, ultrahigh molecular weight polyethylene, high density polyethylene, polypropylene, poly-4-methylpentene-1, polysulfone, or polyethersulfone.
- the porous reinforcing body is composed of polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, polyethylene, ultrahigh molecular weight polyethylene, poly-4-methylpentene-1, polysulfone, polyethersulfone, or polyphenylene sulfide.
- the manufacturing method of the said ion permeable diaphragm is provided.
- the microporous membrane or the laminate of the microporous membrane and the porous reinforcing body is immersed in a solution containing a metal fluoride complex and a fluorine ion scavenger, and the microporous membrane or the laminate is laminated. It includes immersing in alkaline water after depositing a metal oxide on the body. In a preferred embodiment, a heat treatment is performed after depositing a metal oxide on the microporous film or laminate.
- the present invention by providing a microporous film to which at least one metal oxide selected from titanium oxide and zirconium oxide is attached, excellent wettability with respect to alkaline water is exhibited.
- the ion permeability is excellent in ion permeability (that can contribute to lowering the electrolysis voltage), and can prevent the gas generated during electrolysis from adhering to the outermost surface of the diaphragm and suppress the increase in electrolysis voltage.
- a diaphragm can be obtained.
- the ion-permeable membrane of the present invention is excellent in durability over time even in high-concentration alkaline water, and can suppress an increase in electrical resistance (an increase in electrolysis voltage) without losing wettability with respect to alkaline water. .
- the ion-permeable diaphragm of the present invention is excellent in durability, it is a salt electrolysis battery, a battery using a strong alkaline to strongly acidic aqueous electrolyte, an organic solvent battery such as a lithium battery, an alkaline fuel cell, etc. It is also useful as a diaphragm for electrochemical cells.
- (A) is a schematic sectional drawing of the ion permeable diaphragm by preferable embodiment of this invention.
- (B) is a schematic sectional view of an ion permeable membrane according to another preferred embodiment of the present invention.
- (C) is a schematic sectional view of an ion permeable membrane according to still another preferred embodiment of the present invention.
- 1 is a schematic cross-sectional view of an ion permeable diaphragm according to a preferred embodiment of the present invention.
- FIG. 1A is a schematic cross-sectional view of an ion permeable diaphragm according to a preferred embodiment of the present invention.
- An ion permeable diaphragm 100 shown in FIG. 1A includes a microporous membrane 10. At least one metal oxide 20 selected from titanium oxide and zirconium oxide is attached to the microporous film 10.
- FIG. 1 (b) is a schematic cross-sectional view of an ion-permeable diaphragm according to another preferred embodiment of the present invention.
- FIG. 1 (c) is a schematic cross-sectional view of an ion permeable membrane according to still another preferred embodiment of the present invention.
- An ion permeable diaphragm 300 shown in FIG. 1C further includes porous reinforcing bodies 30 on both sides of the microporous membrane 10.
- the porous reinforcing body 30 may be disposed on one side of the microporous membrane 10 as shown in FIG. 1 (b), and on both sides of the microporous membrane 10 as shown in FIG. 1 (c). It may be arranged.
- the ion permeable diaphragm 200 of the present invention may be used with the microporous membrane 10 disposed on the anode electrode side. You may arrange
- the ion-permeable diaphragm of the present invention includes a porous reinforcing body, the metal oxide 20 is preferably attached to the microporous membrane 10 and the porous reinforcing body 30.
- FIG. 2 is a schematic view of an ion permeable membrane according to another preferred embodiment of the present invention.
- An ion permeable diaphragm 400 shown in FIG. 2 includes microporous membranes 10 and 10 on both sides of the porous reinforcing body 30.
- the ion-permeable diaphragm of the present invention has excellent wettability with respect to alkaline water due to the adhesion of at least one metal oxide selected from titanium oxide and zirconium oxide as described above, and The wettability is not easily lost for a long time.
- the gas generated during electrolysis can be prevented from adhering to the outermost surface of the diaphragm, so that the electrolysis voltage can be lowered and the voltage rise can be suppressed. can do.
- the ion-permeable membrane of the present invention exhibits good wettability (specifically, wettability such that the aqueous solution can penetrate in the thickness direction) with respect to an aqueous solution of potassium hydroxide having a concentration of 30% by weight.
- wettability is not easily lost for a long time in the aqueous solution.
- the fact that wettability is not easily lost for a long time is also referred to as excellent wet durability.
- “showing wet durability with respect to an aqueous potassium hydroxide solution” means that the ion-permeable diaphragm is immersed in an aqueous potassium hydroxide solution at a temperature of 80 ° C./concentration of 30% by weight for 100 hours. It also means that wettability is not lost.
- the ion-permeable membrane is referred to as an ion-permeable membrane that “shows wet durability against an aqueous potassium hydroxide solution”.
- the thickness of the ion-permeable membrane of the present invention is preferably 15 ⁇ m to 1500 ⁇ m, more preferably 35 ⁇ m to 1000 ⁇ m, still more preferably 55 ⁇ m to 600 ⁇ m, and particularly preferably 80 ⁇ m to 400 ⁇ m.
- microporous membrane The material constituting the microporous membrane is sufficient as an ion permeable membrane (specifically, for example, a membrane for alkaline water electrolysis) under a condition where a high potential is applied in a high-temperature strongly alkaline aqueous solution.
- a material having chemical stability and capable of maintaining sufficient mechanical strength is preferably used. More specifically, the diaphragm for alkaline water electrolysis under the condition that a potential of 1.5 V to 3 V is applied in a potassium hydroxide aqueous solution or sodium hydroxide having a concentration of 10 wt% to 40 wt% / temperature of 60 ° C. to 100 ° C.
- a material having sufficient chemical stability and capable of maintaining sufficient mechanical strength is preferably used. Examples of such a material include a fluorine polymer, an olefin polymer, and an aromatic hydrocarbon polymer.
- fluorine-based polymer examples include polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. And polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, and the like. Of these, polytetrafluoroethylene and polyvinylidene fluoride are preferable. It is because it is excellent in chemical stability.
- the olefin polymer examples include low density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, polypropylene, polybutene, poly-4-methylpentene-1, and a copolymer having a repeating unit constituting these compounds. Etc. Among these, polypropylene, ultrahigh molecular weight polyethylene, high density polyethylene, polypropylene, and poly-4-methylpentene-1 are preferable. It is because it is excellent in chemical stability.
- the viscosity average molecular weight of the ultra high molecular weight polyethylene is preferably 500,000 to 10,000,000, more preferably 1,000,000 to 7,000,000. In addition, the said viscosity average molecular weight can be measured by the viscosity method prescribed
- aromatic hydrocarbon polymer examples include polyether ether ketone, polyether ketone, polysulfone, polyether sulfone, polyphenylene sulfide, polyarylate, polyether imide, polyimide, thermoplastic polyimide, and compounds thereof.
- examples thereof include a copolymer having a constituting repeating unit. Of these, polysulfone and polyethersulfone are preferable. It is because it is excellent in chemical stability.
- the microporous membrane can be obtained by making the material porous by any appropriate method.
- the method for making porous include a phase conversion method (microphase separation method), an extraction method, a stretching method, a wet gel stretching method, and the like.
- the phase inversion method is a method of forming a film with a solution obtained by dissolving a polymer material in a good solvent and coagulating it in a poor solvent.
- the extraction method is a method in which an inorganic powder such as calcium carbonate is kneaded into a polymer material to form a film, and after the film formation, the inorganic powder is dissolved and extracted, and further stretched as necessary.
- the stretching method is a method in which a film is formed from a polymer material having a predetermined crystal structure and then stretched under predetermined conditions.
- the wet gel stretching method is a method in which a mixture of ultra high molecular weight polyethylene and high density polyethylene is thermally swollen with liquid paraffin to form a gel-like sheet, which is biaxially stretched, and then liquid paraffin is extracted and removed.
- the microporous membrane preferably has hydrophilicity. If the microporous membrane has hydrophilicity, a necessary and sufficient metal oxide can be uniformly attached to the microporous membrane. Hydrophilization of the microporous membrane can be performed by any appropriate hydrophilic treatment, but hydrophilic treatment that can impart hydrophilic durability that does not impair the hydrophilicity in the operation of depositing metal oxide (described later). Is preferred. By performing such a hydrophilic treatment on the microporous film before adhering the metal oxide, the metal oxide precipitation reaction first occurs in the form of dots, and then the microporous film with the point as a nucleus. Spread to cover the entire surface.
- a microporous film having hydrophilicity it is possible to prevent the attached metal oxide from falling off.
- gas phase treatment such as UV ozone treatment, corona treatment, sputter etching treatment, plasma treatment; potassium dichromate / concentrated sulfuric acid treatment, metallic sodium / naphthalene / tetrahydrofuran treatment, hydrophilicity And chemical treatments such as graft polymerization treatment of hydrophilic monomers, crosslinking or coating treatment of hydrophilic polymers, and the like.
- potassium dichromate / concentrated sulfuric acid treatment metallic sodium / naphthalene / tetrahydrofuran treatment, hydrophilic monomer graft polymerization treatment, hydrophilic polymer Chemical treatment such as crosslinking or coating treatment.
- hydrophilic monomer graft polymerization treatment hydrophilic polymer Chemical treatment such as crosslinking or coating treatment.
- the microporous film excellent in hydrophilic durability can be obtained.
- any appropriate method can be adopted as the graft polymerization treatment method.
- the hydrophilic monomer used in the graft polymerization treatment include acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2 -Hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, vinyl acetate, allylamine, acrylamide, methacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, N, N-dimethylaminopropylacrylamide, N, N-dimethylamino Ethyl acrylate 2- (dimethylamino) ethyl acrylate, N- (2-hydroxyethyl) acrylamide, acryloylmorpholine, N-isopropyla Rilamide, acrylonitrile, methacrylonitrile, 1-vin
- acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, acrylamide or methacrylamide are preferable.
- These monomers may be used alone or in combination of two or more.
- hydrophilic polymer used for the crosslinking or coating treatment of the hydrophilic polymer examples include polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyvinyl acetate, polyacrylamide, polymethacrylamide, poly (N, N-dimethylacrylamide), Examples include polyvinyl pyrrolidone, styrene sulfonic acid, vinyl sulfonic acid, and polyethylene glycol.
- the coating of the hydrophilic polymer can be performed, for example, by immersing a microporous membrane wetted with alcohol in an aqueous hydrophilic polymer solution.
- the thickness of the microporous membrane is preferably 10 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 150 ⁇ m. Within such a range, when used as a diaphragm for electrolysis, it is possible to obtain an ion permeable diaphragm having excellent product gas separation performance and excellent ion permeability.
- the pore diameter of the microporous membrane is preferably 0.001 ⁇ m to 10 ⁇ m, more preferably 0.01 ⁇ m to 2 ⁇ m, and still more preferably 0.02 ⁇ m to 1.0 ⁇ m. Within such a range, when used as a diaphragm for electrolysis, it is possible to obtain an ion permeable diaphragm having excellent product gas separation performance and excellent ion permeability.
- the porosity of the microporous membrane is preferably 10% to 90%, more preferably 30% to 85%, and further preferably 50% to 85%.
- the porosity is lower than 10%, the ion permeation resistance may be increased.
- the porosity is higher than 90%, the strength of the membrane is insufficient, the membrane may be crushed, and the ion permeation resistance may be increased.
- a higher porosity within the range allowed by the film strength is preferable because the ion permeation resistance can be lowered.
- the porosity of the microporous membrane refers to a value calculated by the formula ⁇ 1- (apparent density of microporous membrane / true specific gravity of the material constituting the microporous membrane) ⁇ ⁇ 100. .
- metal oxide At least one metal oxide selected from titanium oxide and zirconium oxide is attached to the microporous film. More specifically, the metal oxide is attached to the surface of the microporous film.
- the surface of the microporous membrane refers to the interface (pore surface) between the material constituting the microporous membrane and air when no metal oxide is attached. That is, the metal oxide can exist not only near the outside of the microporous membrane (near the outer surface) but also inside the microporous membrane.
- the metal oxide may be attached so as to cover the entire surface of the microporous film, or may be attached so as to cover a part of the surface.
- the metal oxide can be adhered over a wide range by previously hydrophilizing the microporous membrane.
- the metal oxide is preferably attached so as to form a coating on at least a part of the surface of the microporous membrane, and more preferably attached so as to form a coating on the entire surface of the microporous membrane.
- the adhesion rate of the metal oxide is preferably 10% to 200%, more preferably 15% to 100%, still more preferably 20% to 100%, and particularly preferably 20% to 70%. is there. If the adhesion rate is less than 10%, the wettability with respect to alkaline water and the wet durability may be insufficient. When the adhesion rate is higher than 200%, the metal oxide may block the pores of the microporous membrane and the ion permeability may be reduced. In the present specification, the adhesion rate is the weight of the metal oxide relative to the weight of the microporous membrane (the total weight of the microporous membrane and the porous reinforcing body in the case of having a porous reinforcing body as described later).
- Examples of the method for attaching the metal oxide to the microporous film include a liquid phase precipitation method described in JP-A-2008-44826.
- the liquid phase precipitation method is a method utilizing a hydrolysis equilibrium reaction of a metal fluoride complex.
- F ⁇ Fluorine ion scavenger for example, H 3 BO 3 as shown in the following reaction formula (2)
- the equilibrium reaction of the chemical formula (1) is moved to the oxide production side, and a method of depositing a metal oxide is used. More specifically, the metal oxide can be deposited on the microporous film by immersing the microporous film in a solution containing the metal fluoride complex and the fluorine ion scavenger.
- the metal fluoride complexes for example, (NH 4) 2 TiF 6 , include (NH 4) 2 ZrF 6 and the like.
- fluorine ion scavenger a compound capable of forming a stable complex with fluorine ions can be used.
- fluorine ion scavenger include H 3 BO 3 , sodium hydroxide, potassium hydroxide, aluminum chloride, aluminum hydroxide, and metal aluminum.
- the concentration of the metal fluoride complex in the solution containing the metal fluoride complex and the fluorine ion scavenger is preferably 0.01 mol / L to 2 mol / L, more preferably 0.05 mol / L to 0.5 mol. / L. If the concentration of the metal fluoride complex is too low, the amount of metal oxide attached may be insufficient. On the other hand, if the concentration is too high, it may be difficult to dissolve the metal oxide, and / or metal There is a possibility that oxides are generated excessively and clog the pores of the microporous membrane.
- the concentration of the fluorine ion scavenger in the solution containing the metal fluoride complex and the fluorine ion scavenger is preferably 0.05 mol / L to 2 mol / L, more preferably 0.1 mol / L to 0.5 mol. / L. If the concentration of the fluorine ion scavenger is too low, the amount of metal oxide attached may be insufficient. On the other hand, when the concentration is too high, the deposition reaction rate of the metal oxide is increased, and there is a possibility that the precipitation in the solution is larger than the precipitation in the microporous film.
- any appropriate solvent can be used as the solvent of the solution containing the metal fluoride complex and the fluorine ion scavenger as long as the solvent can dissolve the metal fluoride complex and the fluorine ion scavenger.
- Specific examples of the solvent include water, acetonitrile and the like.
- reaction temperature reaction temperature
- immersion time reaction time
- heat treatment may be further performed in a gas phase such as an inert gas.
- the inert gas include air, nitrogen, and the like.
- the heat treatment can be performed when the composition and / or crystal structure of the metal oxide is incomplete.
- the reaction represented by the above reaction formula (1) is promoted, and a metal oxide having a desired composition and / or crystal structure can be obtained.
- the temperature of the heat treatment is, for example, 100 ° C. to 400 ° C.
- the heat treatment time is, for example, 1 minute to 24 hours.
- the heating temperature is preferably set in a range that does not adversely affect the structure of the microporous membrane. Moreover, if it is such a range, the time of heat processing can be shortened, so that temperature is high.
- the microporous film is immersed in alkaline water.
- alkaline water for example, a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution having a concentration of 10 to 40% by weight can be used.
- the temperature of the alkaline water is preferably 60 ° C. to 120 ° C., more preferably 70 ° C. to 90 ° C.
- the immersion time is preferably 1 hour to 200 hours, more preferably 2 hours to 100 hours.
- an ion-permeable diaphragm that is remarkably excellent in wettability and wettability with respect to alkaline water (for example, potassium hydroxide aqueous solution) can be obtained.
- alkaline water for example, potassium hydroxide aqueous solution
- the mechanism by which such an ion permeable membrane is obtained is not clear, but by soaking in alkaline water, the hydrophilic functional groups of the polymer or metal oxide constituting the microporous membrane are increased, resulting in wettability and wettability. It is thought that durability is improved.
- the ion-permeable diaphragm of the present invention may include a porous reinforcement.
- the strength as the diaphragm for electrolysis can be improved, and the short-circuit preventing property between the electrodes can be improved.
- the diaphragm is generally easily damaged and short-circuited by the unevenness of the electrode.
- the porous reinforcing body is porous, the above effects can be exhibited without impairing ion permeability. Furthermore, the strength is improved by providing the porous reinforcing body, and an ion-permeable diaphragm having sufficient strength can be obtained even if the thickness is reduced.
- the microporous membrane and the porous reinforcing body are preferably integrated by, for example, thermal lamination.
- thermal lamination is performed by applying a predetermined pressure to a material constituting the microporous membrane and the porous reinforcing body at a temperature equal to or higher than the melting point of at least one of the materials by a pair of heating rolls, a hot press, or the like. be able to.
- the microporous membrane and the porous reinforcing body may be integrated through an adhesive layer. Any appropriate adhesive can be used as the adhesive constituting the adhesive layer as long as the effects of the present invention can be obtained. Examples of the adhesive layer include an adhesive layer obtained by applying a polyolefin-based hot melt material in a mesh shape.
- the material constituting the porous reinforcing body a polymer having excellent strength and having mechanical durability and chemical durability against alkaline water is preferably used.
- the material constituting the porous reinforcing body include polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, polyethylene, ultrahigh molecular weight polyethylene, poly-4-methylpentene-1, polysulfone, polyethersulfone, and polyphenylene sulfide. It is done.
- the porous reinforcing body is porous.
- Examples of the form of the porous reinforcing body include a woven fabric, a nonwoven fabric, a net, a mesh, and a sintered porous membrane.
- a nonwoven fabric, a mesh or a sintered porous membrane is preferred, and a sintered porous membrane is more preferred.
- a sintered porous membrane is excellent in strength and ion permeability. Examples of a method for obtaining a sintered porous film include a sintering method described in JP-A-2-214647.
- the thickness of the porous reinforcing body is preferably 30 ⁇ m to 800 ⁇ m, more preferably 50 ⁇ m to 500 ⁇ m. If it is a porous reinforcement body which has the thickness of such a range, it has sufficient intensity
- the porosity of the porous reinforcing body is preferably 10% to 80%, more preferably 20% to 60%. When the porosity is lower than 10%, the ion permeation resistance may be increased. If the porosity is higher than 80%, the strength may be insufficient.
- the porous reinforcing body preferably has hydrophilicity. If the porous reinforcing body has hydrophilicity, a necessary and sufficient metal oxide can be uniformly attached to the porous reinforcing body. Hydrophilization of the porous reinforcing body can be performed, for example, by the method described in the above section B.
- the hydrophilic treatment of the porous reinforcement may be performed separately from the hydrophilic treatment of the microporous membrane.
- the microporous membrane and the porous reinforcement Hydrophilic treatment may be performed on the laminate.
- At least one metal oxide selected from titanium oxide and zirconium oxide is attached to the porous reinforcing body. More specifically, the metal oxide is attached to the surfaces of the microporous membrane and the porous reinforcing body.
- the surface of the microporous membrane is as described in the above section C.
- the surface of the porous reinforcing body refers to the interface between the material constituting the porous reinforcing body and air when no metal oxide is attached. That is, the metal oxide can be present not only near the outside (near the outer surface) of the microporous membrane and / or porous reinforcing body but also inside the microporous membrane and / or porous reinforcing body.
- the metal oxide may be attached so as to cover the entire surface of the porous reinforcing body, or may be attached so as to cover a part of the surface.
- the metal oxide can be adhered over a wide range by hydrophilizing the porous reinforcing body in advance.
- the metal oxide is preferably attached so as to form a film on at least a part of the surface of the porous reinforcing body, and more preferably attached so as to form a film on the entire surface of the porous reinforcing body.
- Examples of the method for attaching the metal oxide to the porous reinforcing body include the method described in the above section C. It is preferable that a microporous membrane and a porous reinforcing body are laminated, and a metal oxide is attached to the obtained laminated body by the liquid phase precipitation method described in the above section C.
- the heat treatment as described in the above section C may be performed.
- a microporous membrane and a porous reinforcing body are laminated, and a heat treatment is performed on the obtained laminated body.
- a laminate of the microporous membrane and the porous reinforcing body is formed.
- the alkaline water for example, a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution having a concentration of 10 to 40% by weight can be used.
- the temperature of the alkaline water is preferably 60 ° C. to 120 ° C., more preferably 70 ° C. to 90 ° C.
- the immersion time is preferably 1 hour to 200 hours, more preferably 2 hours to 100 hours.
- Adhesion rate (%) (total weight of microporous membrane and porous reinforcing body after metal oxide deposition ⁇ total weight of microporous membrane and porous reinforcing body before metal oxide deposition) / (before metal oxide deposition) Total weight of microporous membrane and porous reinforcing body) (3) Wettability with respect to aqueous potassium hydroxide solution An ion-permeable membrane was immersed in an aqueous 30 wt% potassium hydroxide solution maintained at 80 ° C. for 100 hours. Thereafter, the porous reinforcing body was pulled up, and the remaining potassium hydroxide aqueous solution was sufficiently washed and removed, and then dried.
- a pH test paper (manufactured by ASONE, product number “1-1745-01”) is applied to one surface (back surface) of the porous reinforcing body, and hydroxylation at a concentration of 30% by weight from the other surface (front surface).
- One drop (about 50 mg) of an aqueous potassium solution was added dropwise. After 10 minutes from dropping, when the potassium hydroxide aqueous solution reached the back surface and the pH test paper was discolored, it was judged that there was wettability.
- Alkaline water electrolysis evaluation Alkaline water electrolysis evaluation of the ion-permeable diaphragms obtained in Examples and Comparative Examples was performed using an H-cell made of acrylic resin.
- the electrolyte used was an aqueous solution of potassium hydroxide having a concentration of 30% by weight, and the electrode used was an electrode (effective electrode diameter of ⁇ 30 mm, aperture ratio of 40%) having 90 holes of ⁇ 2 mm in a 1 mm thick Ni plate. .
- the liquid temperature at the time of measurement was set to 25 ° C.
- the current density was 0.2 A / cm 2 , the voltage when a constant current was applied continuously for 1 hour was measured, and alkaline water electrolysis was evaluated based on the average value of the measured values 55 minutes to 1 hour after the start of measurement. Went.
- the measurement was performed after the ion-permeable diaphragm was immersed in the electrolyte for 10 minutes. In the case where the ion-permeable diaphragm has a two-layer structure (Examples 1 to 9 and Comparative Example 6), the measurement was performed with the microporous membrane placed on the anode side.
- Example 1 A polytetrafluoroethylene (PTFE) porous membrane (trade name “TEMISH NTF-1122” manufactured by Nitto Denko Corporation, pore size 0.2 ⁇ m, thickness 85 ⁇ m) is dipped in 2-propanol and wetted, and then the membrane is not dried. And then immersed in an aqueous solution of polyvinyl alcohol (PVA, degree of polymerization 2000) (concentration: 1.2% by weight) and allowed to stand at 25 ° C. for 30 minutes for replacement.
- PVA polyvinyl alcohol
- this porous PTFE membrane was immersed in a crosslinking liquid (liquid temperature: 35 ° C.) prepared by mixing 90 g of a glutaraldehyde aqueous solution (concentration 25 wt%), 15 g of 6 molar hydrochloric acid and 795 g of pure water for 1 hour. And a crosslinking reaction was carried out.
- a crosslinking reaction was carried out.
- the PTFE porous membrane is fixed to the stainless steel frame with a clip in a wet state, and a hot air circulating dryer at 80 ° C. And dried for 30 minutes to obtain a hydrophilic microporous membrane.
- the “total weight of the microporous membrane and the porous reinforcing body before the metal oxide adhesion” refers to the weight of the microporous membrane subjected to the hydrophilic treatment.
- the hydrophilic microporous membrane (80 ⁇ 120 mm) is immersed in 100 g of this solution, heated at 60 ° C. for 9 hours, and further at 80 ° C. for 3 hours, and TiO 2 is added to the microporous membrane. Precipitated. Thereafter, the microporous membrane is taken out from the solution, fixed with a clip to a stainless steel frame in a wet state, and heat-treated for 30 minutes with a hot air circulating dryer at 80 ° C. to obtain an ion-permeable membrane (thickness: 84 ⁇ m).
- the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited refers to the weight of the ion-permeable diaphragm.
- the obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
- Example 2 Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1131” manufactured by Nitto Denko Corporation, pore size 1.0 ⁇ m, thickness 85 ⁇ m) as a microporous membrane, and spun pond non-woven fabric (Unitika) as a porous reinforcement
- Product name “T0303 / WD0” core: polyester / sheath: polyethylene, weight per unit area 30 g / m 2 , thickness 170 ⁇ m) are thermally bonded with a heating roll at 135 ° C. to obtain a laminate (microporous membrane / porous) Strength reinforcement).
- This laminate was dipped in 2-propanol and wetted, and then dipped in an aqueous solution of polyvinyl alcohol (PVA, polymerization degree 2000) (concentration: 1.2% by weight) so that the laminate was not dried, at 25 ° C. Replaced by standing for 30 minutes. Thereafter, this laminate was immersed in a crosslinking liquid (liquid temperature: 35 ° C.) prepared by mixing 90 g of a glutaraldehyde aqueous solution (concentration 25% by weight), 15 g of 6 molar hydrochloric acid and 795 g of pure water, and crosslinked for 1 hour. Reacted.
- PVA polyvinyl alcohol
- the laminate is taken out of the cross-linking solution, washed 5 times with pure water, then fixed with a clip on a stainless steel frame in a wet state, and dried for 30 minutes with a hot air circulating dryer at 80 ° C.
- a laminate subjected to hydrophilic treatment was obtained.
- the total weight of the microporous membrane and the porous reinforcing body before the metal oxide is adhered refers to the weight of the hydrophilically treated laminate.
- the laminate is taken out of the solution, fixed in a stainless steel frame with a clip in a wet state, and heat-treated for 30 minutes with a hot air circulating dryer at 80 ° C. to obtain an ion-permeable diaphragm (thickness: 146 ⁇ m).
- ion-permeable diaphragm thickness: 146 ⁇ m.
- the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited refers to the weight of the ion-permeable diaphragm.
- the obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
- Example 3 Polytetrafluoroethylene (PTFE) porous membrane (manufactured by Nitto Denko Corporation, trade name “Temish NTF-1131”, pore diameter 1.0 ⁇ m, thickness 85 ⁇ m), polytetrafluoroethylene (PTFE) porous membrane (Nitto Denko Corporation) An ion-permeable membrane (thickness: 120 ⁇ m) was obtained in the same manner as in Example 2 except that the product name “Temisch NTF-1026”, pore diameter 0.6 ⁇ m, thickness 25 ⁇ m) was used. The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
- Example 4 As the microporous membrane, a hydrophilic polyvinylidene fluoride (PVdF) porous membrane (trade name “Durapore membrane filter GVWP14250”, pore size 0.22 ⁇ m, manufactured by Millipore) was used.
- PVdF polyvinylidene fluoride
- the “total weight of the microporous membrane and the porous reinforcing body before the metal oxide adhesion” refers to the hydrophilic polyvinylidene fluoride (PVdF) porous membrane. Refers to weight.
- the microporous membrane is taken out from the solution, fixed in a wet state with a clip to a stainless steel frame, and heat-treated for 30 minutes with a hot air circulating dryer at 80 ° C. to obtain an ion-permeable membrane (thickness: 123 ⁇ m).
- the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited refers to the weight of the ion-permeable diaphragm.
- the obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
- Example 5 Hydrophilic polyvinylidene fluoride (PVdF) porous membrane (Millipore's product name “Durapore membrane filter GVWP14250”, pore size 0.22 ⁇ m), instead of hydrophilic polyvinylidene fluoride (PVdF) porous membrane (Millipore product)
- An ion permeable membrane (thickness: 111 ⁇ m) was obtained in the same manner as in Example 4 except that the name “Durapore membrane filter HVLP14250” (pore diameter 0.45 ⁇ m) was used.
- the obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
- PTFE polytetrafluoroethylene
- HEP-60HCF core: polypropylene / sheath: polyethylene, basis weight 60 g / m 2 , thickness 160 ⁇ m) and heat bonded with a heating roll at 145 ° C. to laminate (microporous membrane / porous) Reinforcing body) was obtained.
- PTFE polytetrafluoroethylene
- HEP-60HCF core: polypropylene / sheath: polyethylene, basis weight 60 g / m 2 , thickness 160 ⁇ m) and heat bonded with a heating roll at 145 ° C. to laminate (microporous membrane / porous) Reinforcing body) was obtained.
- the laminate was subjected to a hydrophilic treatment in the same manner as in Example 2 to obtain a hydrophilic treated laminate.
- An aluminum plate (A1050, thickness 0.2 mm ⁇ 100 mm ⁇ 100 mm) and the hydrophilically treated laminate (80 ⁇ 120 mm) are immersed in 95.0 g of this solution, and left at 25 ° C. for 150 hours. Then, ZrO 2 was deposited on the laminate (that is, the microporous film and the porous reinforcing body). Thereafter, the laminate is taken out of the solution, fixed with a clip to a stainless steel frame in a wet state, and heat-treated for 30 minutes with a hot air circulation dryer at 80 ° C. to obtain an ion-permeable diaphragm (thickness: 240 ⁇ m). Got.
- the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited refers to the weight of the ion-permeable diaphragm.
- the obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
- Example 8 In the same manner as in Example 1, a microporous membrane subjected to hydrophilic treatment was obtained. Separately, a solution obtained by dissolving 7.77 g of zircon hydrofluoric acid (Morita Chemical Co., Ltd.) in 67.2 g of pure water; A solution obtained by dissolving 0.62 g of boric acid (manufactured by Wako Pure Chemical Industries, Ltd.) in 19.4 g of pure water was mixed to prepare a solution for precipitation of zirconium oxide.
- zircon hydrofluoric acid Morita Chemical Co., Ltd.
- boric acid manufactured by Wako Pure Chemical Industries, Ltd.
- An aluminum plate (A1050, thickness 0.2 mm ⁇ 100 mm ⁇ 100 mm) and the above-mentioned hydrophilic microporous film (80 ⁇ 120 mm) were immersed in 95.0 g of this solution, and the plate was allowed to stand at 25 ° C. for 150 hours. And ZrO 2 was deposited on the microporous membrane. Thereafter, the microporous membrane is taken out from the solution, fixed in a stainless steel frame with a clip in a wet state, and heat-treated for 30 minutes with a hot air circulating dryer at 150 ° C. to obtain an ion-permeable membrane (thickness: 73 ⁇ m).
- the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited refers to the weight of the ion-permeable diaphragm.
- the obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
- Example 9 An ion permeable membrane (thickness: 85 ⁇ m) was obtained in the same manner as in Example 1 except that the temperature of the heat treatment after depositing TiO 2 on the microporous membrane was 200 ° C. The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
- a 200-mesh, 190- ⁇ m thick polyethylene net (nip (polyethylene) strong net, manufactured by NBC Co., Ltd.) was stretched and 10 ml of the suspension was poured onto a 10 cm ⁇ 10 cm glass frame placed on the bottom. . Thereafter, the frame into which the suspension was poured was immersed in pure water at 25 ° C. and left at room temperature for 10 minutes to extract 1-methyl-2-pyrrolidone. Thereafter, the solidified sheet-like material is peeled off from the frame, further washed in pure water at 25 ° C. for 30 minutes, air-dried at 25 ° C., and then dried in a dryer at 80 ° C.
- the ion permeable membrane obtained in Comparative Example 1 has many irregularities on the surface, the film thickness varies from 570 ⁇ m to 1170 ⁇ m, and electrolyte leakage due to poor sealing is generated, so alkaline water electrolysis evaluation is not possible. There wasn't.
- the obtained ion permeable diaphragm had a smooth surface and a uniform film thickness of around 340 ⁇ m.
- the obtained ion-permeable diaphragm was used for the evaluations (1), (3) and (4). The results are shown in Table 1.
- Example 3 The hydrophilic microporous membrane obtained in Example 1, that is, a microporous membrane (thickness: 77 ⁇ m) to which no metal oxide was adhered was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
- the ion-permeable diaphragm of this invention is excellent in durability in alkaline water, can maintain the wettability with respect to alkaline water over a long period of time, and can suppress an increase in electrolytic voltage.
- the ion-permeable diaphragm shown in the comparative example cannot maintain wettability in high-temperature and high-concentration alkaline water. In such an ion-permeable diaphragm, the electrolysis voltage increases with time.
- the ion-permeable membrane of the present invention can be suitably used as a membrane used in alkaline water electrolysis and a membrane for batteries.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Cell Separators (AREA)
- Fuel Cell (AREA)
Abstract
Provided is an ion permeable diaphragm that has excellent characteristics generally required for ion permeable diaphragms to be used in alkaline water electrolysis [i.e., (1) being ion permeable, (2) having sufficient mechanical strength and chemical stability against alkaline water, (3) being gas-impermeable through the diaphragm, and (4) being capable of preventing short-circuit between electrodes] and, at the same time, is capable of preventing an increase in voltage caused by gas sticking to the diaphragm surface, said gas being generated from electrodes during electrolysis.
The ion permeable diaphragm according to the present invention is provided with a microporous film and at least one kind of metal oxide selected from titanium oxide and zirconium oxide sticks to said microporous film.
Description
本発明は、イオン透過性隔膜に関する。
The present invention relates to an ion permeable diaphragm.
従来、化石燃料を中心としたエネルギー構図が構築されているが、化石燃料は限りある資源であることに加えて産出可能な地域が限定されているため、今後のエネルギー事情を考慮すると、自然エネルギー利用の必要性が高まっている。また、自然エネルギーを利用した発電は、必要な時に必ずしも発電が行えず、得られた電力を一時的に蓄える蓄電の重要性が高まっている。この蓄電の方法のひとつとして、2次電池を用いる方法が挙げられるが、2次電池の大容量化は高コストとなる問題がある。このような背景から、水を電気分解して、電力を水素に変換して貯蔵する方法が、水素を高効率で電気に再変換出来る燃料電池の技術進歩と相まって、注目されている。水素の工業的製造方法として、高分子電解質を用いた水電解法が挙げられるが、これは白金のような貴金属を触媒として使用するため、コストが高くなる問題がある。そこで、アルカリ水電解法が、高価な貴金属触媒を使用することなく、安価に安定して水素を得られる方法として期待されている。
Conventionally, an energy composition centered on fossil fuels has been established, but in addition to limited resources, fossil fuels are limited in areas where they can be produced. The need for use is increasing. In addition, power generation using natural energy cannot always generate power when necessary, and the importance of power storage for temporarily storing the obtained power is increasing. As one of the storage methods, there is a method using a secondary battery, but there is a problem that increasing the capacity of the secondary battery is expensive. Against this background, a method of electrolyzing water and converting electric power into hydrogen and storing it has been attracting attention, coupled with technological progress in fuel cells that can reconvert hydrogen into electricity with high efficiency. As an industrial production method of hydrogen, there is a water electrolysis method using a polymer electrolyte. However, this uses a noble metal such as platinum as a catalyst, which causes a problem of high cost. Therefore, the alkaline water electrolysis method is expected as a method for stably obtaining hydrogen at a low cost without using an expensive noble metal catalyst.
アルカリ水電解用の隔膜には、アスベスト布やセラミック多孔膜などが知られている。しかし、アスベスト布は100℃以上での耐久性に問題があり、健康被害の問題もある。セラミック多孔膜は、加工時に非常な高温処理の工程を要するという問題があり、厚みが厚く高抵抗となる問題もある。また、アルカリ水電解法に用いられる隔膜として、親水性無機材料を含有するイオン透過性隔膜が提案されている(特許文献1)。このイオン透過性隔膜は、大量に添加された親水性無機材料の濡れ性に基づき水への濡れ性を示し、多孔質であるためイオン透過性を有するが、マトリックスとなっている高分子材料は本質的に疎水性であるためアルカリ水に対する濡れ性が不十分であるという問題があり、アルカリ水を電解液とする電解において、電気抵抗特性および電解性能が不十分であるという問題がある。また、電解時に電極で生成したガスが隔膜表面に付着することによる電圧上昇が問題となる。
As membranes for alkaline water electrolysis, asbestos cloth and ceramic porous membranes are known. However, asbestos cloth has a problem in durability at 100 ° C. or more, and there is also a problem of health damage. The ceramic porous membrane has a problem that it requires a very high-temperature treatment process at the time of processing, and also has a problem that the thickness is high and the resistance becomes high. In addition, an ion-permeable diaphragm containing a hydrophilic inorganic material has been proposed as a diaphragm used in the alkaline water electrolysis method (Patent Document 1). This ion-permeable diaphragm shows wettability to water based on the wettability of a large amount of hydrophilic inorganic material added, and has ion permeability because it is porous. Since it is essentially hydrophobic, there is a problem that the wettability with respect to alkaline water is insufficient, and in electrolysis using alkaline water as an electrolytic solution, there is a problem that electrical resistance characteristics and electrolytic performance are insufficient. Moreover, the voltage rise by the gas produced | generated by the electrode at the time of electrolysis adheres to the diaphragm surface becomes a problem.
本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、一般的にアルカリ水電解に用いられるイオン透過性隔膜に要求される特性(すなわち、(1)イオンの透過性があること、(2)アルカリ水に対して機械的強度および化学的安定性、(3)隔膜を通じてガスの通過がないこと、ならびに(4)電極間での短絡防止性があることが備わっていること)に優れ、かつ、電解時に電極で生成したガスが隔膜表面(特に最外面)に付着することによる電圧上昇を抑制し得るイオン透過性隔膜を提供することにある。
The present invention has been made in order to solve the above-described conventional problems. The object of the present invention is to provide characteristics (i.e., (1) ions required for ion-permeable membranes generally used for alkaline water electrolysis). (2) Mechanical strength and chemical stability against alkaline water, (3) No gas passage through the diaphragm, and (4) Short circuit prevention between electrodes It is an object to provide an ion-permeable diaphragm that is excellent in that the gas generated by the electrode during electrolysis adheres to the surface of the diaphragm (particularly the outermost surface).
本発明のイオン透過性隔膜は、微多孔膜を備え、該微多孔膜に、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物が付着している。
好ましい実施形態においては、本発明のイオン透過性隔膜は、多孔性補強体をさらに備える。
好ましい実施形態においては、上記多孔性補強体に、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物が付着している。
好ましい実施形態においては、上記微多孔膜が、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリプロピレン、超高分子量ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ-4-メチルペンテン-1、ポリスルホンまたはポリエーテルスルホンから構成されている。
好ましい実施形態においては、上記多孔性補強体が、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、超高分子量ポリエチレン、ポリ-4-メチルペンテン-1、ポリスルホン、ポリエーテルスルホンまたはポリフェニレンサルファイドから構成されている。
本発明の別の局面によれば、上記イオン透過性隔膜の製造方法が提供される。この製造方法は、上記微多孔膜または上記微多孔膜と上記多孔性補強体との積層体を、金属フッ化物錯体およびフッ素イオン捕捉剤を含む溶液に浸漬させて、該微多孔膜または該積層体に金属酸化物を析出させた後、アルカリ水に浸漬させることを含む。
好ましい実施形態においては、上記該微多孔膜または積層体に金属酸化物を析出させた後、加熱処理を行うことを含む。 The ion-permeable diaphragm of the present invention includes a microporous membrane, and at least one metal oxide selected from titanium oxide and zirconium oxide is attached to the microporous membrane.
In a preferred embodiment, the ion permeable membrane of the present invention further comprises a porous reinforcement.
In a preferred embodiment, at least one metal oxide selected from titanium oxide and zirconium oxide is attached to the porous reinforcing body.
In a preferred embodiment, the microporous membrane is composed of polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, ultrahigh molecular weight polyethylene, high density polyethylene, polypropylene, poly-4-methylpentene-1, polysulfone, or polyethersulfone. Has been.
In a preferred embodiment, the porous reinforcing body is composed of polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, polyethylene, ultrahigh molecular weight polyethylene, poly-4-methylpentene-1, polysulfone, polyethersulfone, or polyphenylene sulfide. Has been.
According to another situation of this invention, the manufacturing method of the said ion permeable diaphragm is provided. In this production method, the microporous membrane or the laminate of the microporous membrane and the porous reinforcing body is immersed in a solution containing a metal fluoride complex and a fluorine ion scavenger, and the microporous membrane or the laminate is laminated. It includes immersing in alkaline water after depositing a metal oxide on the body.
In a preferred embodiment, a heat treatment is performed after depositing a metal oxide on the microporous film or laminate.
好ましい実施形態においては、本発明のイオン透過性隔膜は、多孔性補強体をさらに備える。
好ましい実施形態においては、上記多孔性補強体に、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物が付着している。
好ましい実施形態においては、上記微多孔膜が、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリプロピレン、超高分子量ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ-4-メチルペンテン-1、ポリスルホンまたはポリエーテルスルホンから構成されている。
好ましい実施形態においては、上記多孔性補強体が、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、超高分子量ポリエチレン、ポリ-4-メチルペンテン-1、ポリスルホン、ポリエーテルスルホンまたはポリフェニレンサルファイドから構成されている。
本発明の別の局面によれば、上記イオン透過性隔膜の製造方法が提供される。この製造方法は、上記微多孔膜または上記微多孔膜と上記多孔性補強体との積層体を、金属フッ化物錯体およびフッ素イオン捕捉剤を含む溶液に浸漬させて、該微多孔膜または該積層体に金属酸化物を析出させた後、アルカリ水に浸漬させることを含む。
好ましい実施形態においては、上記該微多孔膜または積層体に金属酸化物を析出させた後、加熱処理を行うことを含む。 The ion-permeable diaphragm of the present invention includes a microporous membrane, and at least one metal oxide selected from titanium oxide and zirconium oxide is attached to the microporous membrane.
In a preferred embodiment, the ion permeable membrane of the present invention further comprises a porous reinforcement.
In a preferred embodiment, at least one metal oxide selected from titanium oxide and zirconium oxide is attached to the porous reinforcing body.
In a preferred embodiment, the microporous membrane is composed of polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, ultrahigh molecular weight polyethylene, high density polyethylene, polypropylene, poly-4-methylpentene-1, polysulfone, or polyethersulfone. Has been.
In a preferred embodiment, the porous reinforcing body is composed of polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, polyethylene, ultrahigh molecular weight polyethylene, poly-4-methylpentene-1, polysulfone, polyethersulfone, or polyphenylene sulfide. Has been.
According to another situation of this invention, the manufacturing method of the said ion permeable diaphragm is provided. In this production method, the microporous membrane or the laminate of the microporous membrane and the porous reinforcing body is immersed in a solution containing a metal fluoride complex and a fluorine ion scavenger, and the microporous membrane or the laminate is laminated. It includes immersing in alkaline water after depositing a metal oxide on the body.
In a preferred embodiment, a heat treatment is performed after depositing a metal oxide on the microporous film or laminate.
本発明によれば、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物が付着した微多孔膜を備えることにより、アルカリ水に対して優れた濡れ性を示し、その結果、アルカリ水電解において、イオン透過性に優れ(すなわち、電解電圧の低下に寄与し得)、かつ、電解時に生成したガスが隔膜の最外面に付着することを防止して電解電圧上昇を抑制し得るイオン透過性隔膜を得ることができる。また、本発明のイオン透過性隔膜は、高濃度のアルカリ水中でも経時の耐久性に優れ、アルカリ水に対する濡れ性を失うことなく、電気抵抗の増大(電解電圧の上昇)を抑制することができる。また、本発明のイオン透過性隔膜は、耐久性に優れるため、食塩電気分解、強アルカリ性から強酸性の水系電解液を使用する電池、リチウム電池などの有機溶媒系の電池、アルカリ型燃料電池等の電気化学セルの隔膜としても有用である。
According to the present invention, by providing a microporous film to which at least one metal oxide selected from titanium oxide and zirconium oxide is attached, excellent wettability with respect to alkaline water is exhibited. The ion permeability is excellent in ion permeability (that can contribute to lowering the electrolysis voltage), and can prevent the gas generated during electrolysis from adhering to the outermost surface of the diaphragm and suppress the increase in electrolysis voltage. A diaphragm can be obtained. The ion-permeable membrane of the present invention is excellent in durability over time even in high-concentration alkaline water, and can suppress an increase in electrical resistance (an increase in electrolysis voltage) without losing wettability with respect to alkaline water. . Further, since the ion-permeable diaphragm of the present invention is excellent in durability, it is a salt electrolysis battery, a battery using a strong alkaline to strongly acidic aqueous electrolyte, an organic solvent battery such as a lithium battery, an alkaline fuel cell, etc. It is also useful as a diaphragm for electrochemical cells.
以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.イオン透過性隔膜の全体構成
図1(a)は、本発明の好ましい実施形態によるイオン透過性隔膜の概略断面図である。図1(a)に示すイオン透過性隔膜100は、微多孔膜10を備える。微多孔膜10には、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物20が付着している。図1(b)は、本発明の別の好ましい実施形態によるイオン透過性隔膜の概略断面図である。図1(b)に示すイオン透過性隔膜200は、微多孔膜10の片側に多孔性補強体30をさらに備える。図1(c)は、本発明のさらに別の好ましい実施形態によるイオン透過性隔膜の概略断面図である。図1(c)に示すイオン透過性隔膜300は、微多孔膜10の両側に多孔性補強体30、30をさらに備える。本発明において、多孔性補強体30は、図1(b)に示すように微多孔膜10の片側に配置されていてもよく、図1(c)に示すように微多孔膜10の両側に配置されていてもよい。また、多孔性補強体30が微多孔膜10の片側に配置される場合、本発明のイオン透過性隔膜200は、微多孔膜10をアノード電極側に配置して用いてもよく、カソード電極側に配置して用いてもよい。本発明のイオン透過性隔膜が多孔性補強体を備える場合、上記金属酸化物20は、好ましくは微多孔膜10および多孔性補強体30に付着している。 Hereinafter, although preferable embodiment of this invention is described, this invention is not limited to these embodiment.
A. FIG. 1A is a schematic cross-sectional view of an ion permeable diaphragm according to a preferred embodiment of the present invention. An ionpermeable diaphragm 100 shown in FIG. 1A includes a microporous membrane 10. At least one metal oxide 20 selected from titanium oxide and zirconium oxide is attached to the microporous film 10. FIG. 1 (b) is a schematic cross-sectional view of an ion-permeable diaphragm according to another preferred embodiment of the present invention. An ion permeable membrane 200 shown in FIG. 1B further includes a porous reinforcing body 30 on one side of the microporous membrane 10. FIG. 1 (c) is a schematic cross-sectional view of an ion permeable membrane according to still another preferred embodiment of the present invention. An ion permeable diaphragm 300 shown in FIG. 1C further includes porous reinforcing bodies 30 on both sides of the microporous membrane 10. In the present invention, the porous reinforcing body 30 may be disposed on one side of the microporous membrane 10 as shown in FIG. 1 (b), and on both sides of the microporous membrane 10 as shown in FIG. 1 (c). It may be arranged. When the porous reinforcing body 30 is disposed on one side of the microporous membrane 10, the ion permeable diaphragm 200 of the present invention may be used with the microporous membrane 10 disposed on the anode electrode side. You may arrange | position and use. When the ion-permeable diaphragm of the present invention includes a porous reinforcing body, the metal oxide 20 is preferably attached to the microporous membrane 10 and the porous reinforcing body 30.
A.イオン透過性隔膜の全体構成
図1(a)は、本発明の好ましい実施形態によるイオン透過性隔膜の概略断面図である。図1(a)に示すイオン透過性隔膜100は、微多孔膜10を備える。微多孔膜10には、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物20が付着している。図1(b)は、本発明の別の好ましい実施形態によるイオン透過性隔膜の概略断面図である。図1(b)に示すイオン透過性隔膜200は、微多孔膜10の片側に多孔性補強体30をさらに備える。図1(c)は、本発明のさらに別の好ましい実施形態によるイオン透過性隔膜の概略断面図である。図1(c)に示すイオン透過性隔膜300は、微多孔膜10の両側に多孔性補強体30、30をさらに備える。本発明において、多孔性補強体30は、図1(b)に示すように微多孔膜10の片側に配置されていてもよく、図1(c)に示すように微多孔膜10の両側に配置されていてもよい。また、多孔性補強体30が微多孔膜10の片側に配置される場合、本発明のイオン透過性隔膜200は、微多孔膜10をアノード電極側に配置して用いてもよく、カソード電極側に配置して用いてもよい。本発明のイオン透過性隔膜が多孔性補強体を備える場合、上記金属酸化物20は、好ましくは微多孔膜10および多孔性補強体30に付着している。 Hereinafter, although preferable embodiment of this invention is described, this invention is not limited to these embodiment.
A. FIG. 1A is a schematic cross-sectional view of an ion permeable diaphragm according to a preferred embodiment of the present invention. An ion
図2は、本発明の別の好ましい実施形態によるイオン透過性隔膜の概略図である。図2に示すイオン透過性隔膜400は、多孔性補強体30の両側に、微多孔膜10、10を備える。
FIG. 2 is a schematic view of an ion permeable membrane according to another preferred embodiment of the present invention. An ion permeable diaphragm 400 shown in FIG. 2 includes microporous membranes 10 and 10 on both sides of the porous reinforcing body 30.
本発明のイオン透過性隔膜は、上記のように酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物が付着していることにより、アルカリ水に対する濡れ性に優れ、かつ、アルカリ水中において該濡れ性が長時間にわたり失われ難い。このようなイオン透過性隔膜をアルカリ水電解に用いた場合、電解時に生成したガスが隔膜の最外面に付着することを防止して、電解電圧を低くすることができ、また、電圧上昇を抑制することができる。好ましくは、本発明のイオン透過性隔膜は、濃度30重量%の水酸化カリウム水溶液に対して良好な濡れ性(具体的には、該水溶液が厚み方向に浸透し得る程度の濡れ性)を示し、かつ、該水溶液中において濡れ性が長時間にわたり失われ難い。以下、本明細書において、濡れ性が長時間にわたり失われ難いことを、濡れ耐久性に優れるともいう。また、本明細書において、「水酸化カリウム水溶液に対して濡れ耐久性を示す」とは、イオン透過性隔膜を温度80℃/濃度30重量%の水酸化カリウム水溶液中に100時間浸漬させた場合にも、濡れ性が失われないことをいう。具体的には、上記のように水酸化カリウム水溶液中に浸漬させた後のイオン透過性隔膜の最外面に濃度30重量%の水酸化カリウム水溶液を滴下した際に、滴下した水酸化カリウム水溶液が反対側の面にまで到る場合、該イオン透過性隔膜を「水酸化カリウム水溶液に対して濡れ耐久性を示す」イオン透過性隔膜という。
The ion-permeable diaphragm of the present invention has excellent wettability with respect to alkaline water due to the adhesion of at least one metal oxide selected from titanium oxide and zirconium oxide as described above, and The wettability is not easily lost for a long time. When such an ion permeable diaphragm is used for alkaline water electrolysis, the gas generated during electrolysis can be prevented from adhering to the outermost surface of the diaphragm, so that the electrolysis voltage can be lowered and the voltage rise can be suppressed. can do. Preferably, the ion-permeable membrane of the present invention exhibits good wettability (specifically, wettability such that the aqueous solution can penetrate in the thickness direction) with respect to an aqueous solution of potassium hydroxide having a concentration of 30% by weight. In addition, wettability is not easily lost for a long time in the aqueous solution. Hereinafter, in the present specification, the fact that wettability is not easily lost for a long time is also referred to as excellent wet durability. In the present specification, “showing wet durability with respect to an aqueous potassium hydroxide solution” means that the ion-permeable diaphragm is immersed in an aqueous potassium hydroxide solution at a temperature of 80 ° C./concentration of 30% by weight for 100 hours. It also means that wettability is not lost. Specifically, when the potassium hydroxide aqueous solution having a concentration of 30% by weight is dropped on the outermost surface of the ion-permeable diaphragm after being immersed in the potassium hydroxide aqueous solution as described above, the dropped potassium hydroxide aqueous solution is When reaching the surface on the opposite side, the ion-permeable membrane is referred to as an ion-permeable membrane that “shows wet durability against an aqueous potassium hydroxide solution”.
本発明のイオン透過性隔膜の厚みは、好ましくは15μm~1500μmであり、より好ましくは35μm~1000μmであり、さらに好ましくは55μm~600μmであり、特に好ましくは80μm~400μmである。
The thickness of the ion-permeable membrane of the present invention is preferably 15 μm to 1500 μm, more preferably 35 μm to 1000 μm, still more preferably 55 μm to 600 μm, and particularly preferably 80 μm to 400 μm.
B.微多孔膜
上記微多孔膜を構成する材料としては、高温の強アルカリ性水溶液中、高電位が加わる条件下で、イオン透過性隔膜(具体的には、例えば、アルカリ水電解用隔膜)として十分な化学的安定性を有し、十分な機械強度を維持し得る材料が好ましく用いられる。より具体的には、濃度10重量%~40重量%/温度60℃~100℃の水酸化カリウム水溶液または水酸化ナトリウム中、1.5V~3Vの電位が加わる条件下で、アルカリ水電解用隔膜として十分な化学的安定性を有し、十分な機械強度を維持し得る材料が好ましく用いられる。このような材料としては、例えば、フッ素系高分子、オレフィン系高分子、芳香族炭化水素系高分子等が挙げられる。 B. Microporous membrane The material constituting the microporous membrane is sufficient as an ion permeable membrane (specifically, for example, a membrane for alkaline water electrolysis) under a condition where a high potential is applied in a high-temperature strongly alkaline aqueous solution. A material having chemical stability and capable of maintaining sufficient mechanical strength is preferably used. More specifically, the diaphragm for alkaline water electrolysis under the condition that a potential of 1.5 V to 3 V is applied in a potassium hydroxide aqueous solution or sodium hydroxide having a concentration of 10 wt% to 40 wt% / temperature of 60 ° C. to 100 ° C. A material having sufficient chemical stability and capable of maintaining sufficient mechanical strength is preferably used. Examples of such a material include a fluorine polymer, an olefin polymer, and an aromatic hydrocarbon polymer.
上記微多孔膜を構成する材料としては、高温の強アルカリ性水溶液中、高電位が加わる条件下で、イオン透過性隔膜(具体的には、例えば、アルカリ水電解用隔膜)として十分な化学的安定性を有し、十分な機械強度を維持し得る材料が好ましく用いられる。より具体的には、濃度10重量%~40重量%/温度60℃~100℃の水酸化カリウム水溶液または水酸化ナトリウム中、1.5V~3Vの電位が加わる条件下で、アルカリ水電解用隔膜として十分な化学的安定性を有し、十分な機械強度を維持し得る材料が好ましく用いられる。このような材料としては、例えば、フッ素系高分子、オレフィン系高分子、芳香族炭化水素系高分子等が挙げられる。 B. Microporous membrane The material constituting the microporous membrane is sufficient as an ion permeable membrane (specifically, for example, a membrane for alkaline water electrolysis) under a condition where a high potential is applied in a high-temperature strongly alkaline aqueous solution. A material having chemical stability and capable of maintaining sufficient mechanical strength is preferably used. More specifically, the diaphragm for alkaline water electrolysis under the condition that a potential of 1.5 V to 3 V is applied in a potassium hydroxide aqueous solution or sodium hydroxide having a concentration of 10 wt% to 40 wt% / temperature of 60 ° C. to 100 ° C. A material having sufficient chemical stability and capable of maintaining sufficient mechanical strength is preferably used. Examples of such a material include a fluorine polymer, an olefin polymer, and an aromatic hydrocarbon polymer.
上記フッ素系高分子としては、例えば、ポリフッ化ビニリデン、エチレン-テトラフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン-フッ化ビニリデン共重合体等が挙げられる。なかでも好ましくは、ポリテトラフルオロエチレン、ポリフッ化ビニリデンである。化学的安定性に優れるからである。
Examples of the fluorine-based polymer include polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. And polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, and the like. Of these, polytetrafluoroethylene and polyvinylidene fluoride are preferable. It is because it is excellent in chemical stability.
上記オレフィン系高分子としては、例えば、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、ポリプロピレン、ポリブテン、ポリ-4-メチルペンテン-1、およびこれらの化合物を構成する繰り返し単位を有する共重合体等が挙げられる。なかでも好ましくは、ポリプロピレン、超高分子量ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ-4-メチルペンテン-1である。化学的安定性に優れるからである。超高分子量ポリエチレンの粘度平均分子量は好ましくは50万~1000万であり、より好ましくは100万~700万である。なお、上記粘度平均分子量は、ASTMD4020に規定の粘度法により測定することができる。
Examples of the olefin polymer include low density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, polypropylene, polybutene, poly-4-methylpentene-1, and a copolymer having a repeating unit constituting these compounds. Etc. Among these, polypropylene, ultrahigh molecular weight polyethylene, high density polyethylene, polypropylene, and poly-4-methylpentene-1 are preferable. It is because it is excellent in chemical stability. The viscosity average molecular weight of the ultra high molecular weight polyethylene is preferably 500,000 to 10,000,000, more preferably 1,000,000 to 7,000,000. In addition, the said viscosity average molecular weight can be measured by the viscosity method prescribed | regulated to ASTMD4020.
上記芳香族炭化水素系高分子としては、例えば、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリアリーレート、ポリエーテルイミド、ポリイミド、熱可塑性ポリイミド、およびこれらの化合物を構成する繰り返し単位を有する共重合体等が挙げられる。なかでも好ましくは、ポリスルホン、ポリエーテルスルホンである。化学的安定性に優れるからである。
Examples of the aromatic hydrocarbon polymer include polyether ether ketone, polyether ketone, polysulfone, polyether sulfone, polyphenylene sulfide, polyarylate, polyether imide, polyimide, thermoplastic polyimide, and compounds thereof. Examples thereof include a copolymer having a constituting repeating unit. Of these, polysulfone and polyethersulfone are preferable. It is because it is excellent in chemical stability.
上記微多孔膜は、上記材料を任意の適切な方法で多孔質化して得られる。多孔質化する方法としては、例えば、相転換法(ミクロ相分離法)、抽出法、延伸法、湿式ゲル延伸法等が挙げられる。相転換法(ミクロ相分離法)とは、高分子材料を良溶媒に溶解して得られた溶液により製膜し、これを貧溶媒中で凝固する方法である。抽出法とは、高分子材料に炭酸カルシウムなどの無機粉体を混練して製膜し、製膜後に、該無機粉体を溶解抽出し、必要に応じてさらに延伸する方法である。延伸法とは、所定の結晶構造を有する高分子材料によりフィルムを形成した後、所定の条件で延伸する方法である。湿式ゲル延伸法とは、超高分子量ポリエチレンと高密度ポリエチレンの混合物を流動パラフィンで熱膨潤させてゲル状シートとし、これを2軸延伸したのち流動パラフィンを抽出除去する方法である。
The microporous membrane can be obtained by making the material porous by any appropriate method. Examples of the method for making porous include a phase conversion method (microphase separation method), an extraction method, a stretching method, a wet gel stretching method, and the like. The phase inversion method (microphase separation method) is a method of forming a film with a solution obtained by dissolving a polymer material in a good solvent and coagulating it in a poor solvent. The extraction method is a method in which an inorganic powder such as calcium carbonate is kneaded into a polymer material to form a film, and after the film formation, the inorganic powder is dissolved and extracted, and further stretched as necessary. The stretching method is a method in which a film is formed from a polymer material having a predetermined crystal structure and then stretched under predetermined conditions. The wet gel stretching method is a method in which a mixture of ultra high molecular weight polyethylene and high density polyethylene is thermally swollen with liquid paraffin to form a gel-like sheet, which is biaxially stretched, and then liquid paraffin is extracted and removed.
上記微多孔膜は、好ましくは親水性を有する。微多孔膜が親水性を有していれば、該微多孔膜に必要十分な金属酸化物を均一に付着させることができる。微多孔膜の親水化は、任意の適切な親水処理により行うことができるが、金属酸化物を付着させる操作(後述)において、親水性が損なわれないような親水耐久性を付与し得る親水処理が好ましい。金属酸化物を付着させる前の微多孔膜に対して、このような親水処理を行うことにより、金属酸化物の析出反応は、最初に点状に発生し、次いで該点を核として微多孔膜の表面全体を覆うように拡がる。また、親水性を有する微多孔膜を用いれば、付着した金属酸化物の脱落を防止することができる。微多孔膜を親水化する方法としては、例えば、UVオゾン処理、コロナ処理、スパッタエッチング処理、プラズマ処理等の気相処理;重クロム酸カリウム/濃硫酸処理、金属ナトリウム/ナフタリン/テトラヒドロフラン処理、親水性モノマーのグラフト重合処理、親水性ポリマーの架橋またはコーティング処理等の化学的処理等が挙げられる。なかでも好ましくは、微多孔膜の内部の孔表面をも親水化できる点で、重クロム酸カリウム/濃硫酸処理、金属ナトリウム/ナフタリン/テトラヒドロフラン処理、親水性モノマーのグラフト重合処理、親水性ポリマーの架橋またはコーティング処理等の化学的処理である。また、このような処理を行えば、親水耐久性に優れる微多孔膜を得ることができる。
The microporous membrane preferably has hydrophilicity. If the microporous membrane has hydrophilicity, a necessary and sufficient metal oxide can be uniformly attached to the microporous membrane. Hydrophilization of the microporous membrane can be performed by any appropriate hydrophilic treatment, but hydrophilic treatment that can impart hydrophilic durability that does not impair the hydrophilicity in the operation of depositing metal oxide (described later). Is preferred. By performing such a hydrophilic treatment on the microporous film before adhering the metal oxide, the metal oxide precipitation reaction first occurs in the form of dots, and then the microporous film with the point as a nucleus. Spread to cover the entire surface. Further, if a microporous film having hydrophilicity is used, it is possible to prevent the attached metal oxide from falling off. As a method for hydrophilizing the microporous membrane, for example, gas phase treatment such as UV ozone treatment, corona treatment, sputter etching treatment, plasma treatment; potassium dichromate / concentrated sulfuric acid treatment, metallic sodium / naphthalene / tetrahydrofuran treatment, hydrophilicity And chemical treatments such as graft polymerization treatment of hydrophilic monomers, crosslinking or coating treatment of hydrophilic polymers, and the like. Of these, potassium dichromate / concentrated sulfuric acid treatment, metallic sodium / naphthalene / tetrahydrofuran treatment, hydrophilic monomer graft polymerization treatment, hydrophilic polymer Chemical treatment such as crosslinking or coating treatment. Moreover, if such a process is performed, the microporous film excellent in hydrophilic durability can be obtained.
上記グラフト重合処理の方法としては、任意の適切な方法が採用され得る。上記グラフト重合処理に用いられる親水性モノマーとしては、アクリル酸、メタクリル酸、2-ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート、酢酸ビニル、アリルアミン、アクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノエチルアクリレートアクリル酸2-(ジメチルアミノ)エチル、N-(2-ヒドロキシエチル)アクリルアミド、アクリロイルモルフォリン、N-イソプロピルアクリルアミド、アクリロニトリル、メタクリロニトリル、1-ビニルイミダゾール、2-ビニルピリジン、4-ビニルピリジン、メチルビニルピリジン、エチルビニルピリジン、ビニルピロリドン、ビニルカルバゾール、アミノスチレン、アルキルアミノスチレン、ジアルキルアミノスチレン、トリアルキルアミノスチレン、ビニルベンジルトリメチルアンモニウムクロリド、スチレンスルホン酸、スチレンスルホン酸ナトリウム、スチレンスルホン酸カリウム、スチレンスルホン酸リチウム、ビニルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等が挙げられる。なかでも好ましくは、アクリル酸、メタクリル酸、2-ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート、アクリルアミドまたはメタクリルアミドである。これらのモノマーは、単独で、または2種以上組み合わせて用いてもよい。
Any appropriate method can be adopted as the graft polymerization treatment method. Examples of the hydrophilic monomer used in the graft polymerization treatment include acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2 -Hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, vinyl acetate, allylamine, acrylamide, methacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, N, N-dimethylaminopropylacrylamide, N, N-dimethylamino Ethyl acrylate 2- (dimethylamino) ethyl acrylate, N- (2-hydroxyethyl) acrylamide, acryloylmorpholine, N-isopropyla Rilamide, acrylonitrile, methacrylonitrile, 1-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, methylvinylpyridine, ethylvinylpyridine, vinylpyrrolidone, vinylcarbazole, aminostyrene, alkylaminostyrene, dialkylaminostyrene, trialkyl Examples include aminostyrene, vinylbenzyltrimethylammonium chloride, styrenesulfonic acid, sodium styrenesulfonate, potassium styrenesulfonate, lithium styrenesulfonate, vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and the like. Of these, acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, acrylamide or methacrylamide are preferable. These monomers may be used alone or in combination of two or more.
上記親水性ポリマーの架橋またはコーティング処理に用いられる親水性ポリマーとしては、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、ポリ酢酸ビニル、ポリアクリルアミド、ポリメタクリルアミド、ポリ(N,N-ジメチルアクリルアミド)、ポリビニルピロリドン、スチレンスルホン酸、ビニルスルホン酸、ポリエチレングリコール等が挙げられる。親水性ポリマーのコーティングは、例えば、アルコールに濡らした微多孔膜を、親水性ポリマー水溶液に浸漬させることにより行うことができる。
Examples of the hydrophilic polymer used for the crosslinking or coating treatment of the hydrophilic polymer include polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyvinyl acetate, polyacrylamide, polymethacrylamide, poly (N, N-dimethylacrylamide), Examples include polyvinyl pyrrolidone, styrene sulfonic acid, vinyl sulfonic acid, and polyethylene glycol. The coating of the hydrophilic polymer can be performed, for example, by immersing a microporous membrane wetted with alcohol in an aqueous hydrophilic polymer solution.
上記微多孔膜の厚みは、好ましくは10μm~200μmであり、より好ましくは20μm~150μmである。このような範囲であれば、電解用隔膜として用いた場合に生成ガスの分離性能に優れ、かつ、イオン透過性に優れるイオン透過性隔膜を得ることができる。
The thickness of the microporous membrane is preferably 10 μm to 200 μm, more preferably 20 μm to 150 μm. Within such a range, when used as a diaphragm for electrolysis, it is possible to obtain an ion permeable diaphragm having excellent product gas separation performance and excellent ion permeability.
上記微多孔膜の孔径は、好ましくは0.001μm~10μmであり、より好ましくは0.01μm~2μmであり、さらに好ましくは0.02μm~1.0μmである。このような範囲であれば、電解用隔膜として用いた場合に生成ガスの分離性能に優れ、かつ、イオン透過性に優れるイオン透過性隔膜を得ることができる。
The pore diameter of the microporous membrane is preferably 0.001 μm to 10 μm, more preferably 0.01 μm to 2 μm, and still more preferably 0.02 μm to 1.0 μm. Within such a range, when used as a diaphragm for electrolysis, it is possible to obtain an ion permeable diaphragm having excellent product gas separation performance and excellent ion permeability.
上記微多孔膜の気孔率は、好ましくは10%~90%であり、より好ましくは30%~85%であり、さらに好ましくは50%~85%である。気孔率が10%より低い場合、イオン透過抵抗が大きくなるおそれがある。気孔率が90%より高い場合、膜の強度が不足して膜が潰れ、イオン透過抵抗の増大を引き起こすおそれがある。膜強度が許容する範囲で気孔率は高い方が、イオン透過抵抗を低くする事が出来るために好ましい。なお、本明細書において、微多孔膜の気孔率とは、{1-(微多孔膜の見掛け密度/微多孔膜を構成する材料の真比重)}×100の式で算出される値をいう。
The porosity of the microporous membrane is preferably 10% to 90%, more preferably 30% to 85%, and further preferably 50% to 85%. When the porosity is lower than 10%, the ion permeation resistance may be increased. When the porosity is higher than 90%, the strength of the membrane is insufficient, the membrane may be crushed, and the ion permeation resistance may be increased. A higher porosity within the range allowed by the film strength is preferable because the ion permeation resistance can be lowered. In the present specification, the porosity of the microporous membrane refers to a value calculated by the formula {1- (apparent density of microporous membrane / true specific gravity of the material constituting the microporous membrane)} × 100. .
C.金属酸化物
上記微多孔膜には、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物が付着している。より具体的には、金属酸化物は、微多孔膜の表面に付着している。ここで、微多孔膜の表面とは、金属酸化物が付着していない場合における、微多孔膜を構成する材料と空気との界面(孔の表面)をいう。すなわち、金属酸化物は、微多孔膜の外部近傍(外面近傍)のみならず、微多孔膜内部にも存在し得る。上記金属酸化物は、微多孔膜の表面の全部を覆うように付着していてもよく、表面の一部を覆うように付着していてもよい。例えば、上記B項で説明したように、微多孔膜をあらかじめ親水化処理しておくことにより、広範囲に金属酸化物を付着させることができる。上記金属酸化物は、好ましくは微多孔膜の表面の少なくとも一部において被膜を形成するように付着し、より好ましくは微多孔膜の表面の全部において被膜を形成するように付着している。 C. Metal oxide At least one metal oxide selected from titanium oxide and zirconium oxide is attached to the microporous film. More specifically, the metal oxide is attached to the surface of the microporous film. Here, the surface of the microporous membrane refers to the interface (pore surface) between the material constituting the microporous membrane and air when no metal oxide is attached. That is, the metal oxide can exist not only near the outside of the microporous membrane (near the outer surface) but also inside the microporous membrane. The metal oxide may be attached so as to cover the entire surface of the microporous film, or may be attached so as to cover a part of the surface. For example, as described in the above section B, the metal oxide can be adhered over a wide range by previously hydrophilizing the microporous membrane. The metal oxide is preferably attached so as to form a coating on at least a part of the surface of the microporous membrane, and more preferably attached so as to form a coating on the entire surface of the microporous membrane.
上記微多孔膜には、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物が付着している。より具体的には、金属酸化物は、微多孔膜の表面に付着している。ここで、微多孔膜の表面とは、金属酸化物が付着していない場合における、微多孔膜を構成する材料と空気との界面(孔の表面)をいう。すなわち、金属酸化物は、微多孔膜の外部近傍(外面近傍)のみならず、微多孔膜内部にも存在し得る。上記金属酸化物は、微多孔膜の表面の全部を覆うように付着していてもよく、表面の一部を覆うように付着していてもよい。例えば、上記B項で説明したように、微多孔膜をあらかじめ親水化処理しておくことにより、広範囲に金属酸化物を付着させることができる。上記金属酸化物は、好ましくは微多孔膜の表面の少なくとも一部において被膜を形成するように付着し、より好ましくは微多孔膜の表面の全部において被膜を形成するように付着している。 C. Metal oxide At least one metal oxide selected from titanium oxide and zirconium oxide is attached to the microporous film. More specifically, the metal oxide is attached to the surface of the microporous film. Here, the surface of the microporous membrane refers to the interface (pore surface) between the material constituting the microporous membrane and air when no metal oxide is attached. That is, the metal oxide can exist not only near the outside of the microporous membrane (near the outer surface) but also inside the microporous membrane. The metal oxide may be attached so as to cover the entire surface of the microporous film, or may be attached so as to cover a part of the surface. For example, as described in the above section B, the metal oxide can be adhered over a wide range by previously hydrophilizing the microporous membrane. The metal oxide is preferably attached so as to form a coating on at least a part of the surface of the microporous membrane, and more preferably attached so as to form a coating on the entire surface of the microporous membrane.
上記金属酸化物の付着率は、好ましくは10%~200%であり、より好ましくは15%~100%であり、さらに好ましくは20%~100%であり、特に好ましくは20%~70%である。付着率が10%未満の場合、アルカリ水に対する濡れ性および濡れ耐久性が不十分となるおそれがある。付着率が200%より高い場合、金属酸化物が微多孔膜の孔を塞ぎイオンの透過性が低下するおそれがある。なお、本明細書において、付着率とは、微多孔膜の重量(後述のように多孔性補強体を有する場合は、微多孔膜と多孔性補強体との合計重量)に対する金属酸化物の重量割合をいい、具体的には、(金属酸化物付着後の微多孔膜および多孔性補強体の合計重量-金属酸化物付着前の微多孔膜および多孔性補強体の合計重量)/(金属酸化物付着前の微多孔膜および多孔性補強体の合計重量)の式で算出される値をいう。
The adhesion rate of the metal oxide is preferably 10% to 200%, more preferably 15% to 100%, still more preferably 20% to 100%, and particularly preferably 20% to 70%. is there. If the adhesion rate is less than 10%, the wettability with respect to alkaline water and the wet durability may be insufficient. When the adhesion rate is higher than 200%, the metal oxide may block the pores of the microporous membrane and the ion permeability may be reduced. In the present specification, the adhesion rate is the weight of the metal oxide relative to the weight of the microporous membrane (the total weight of the microporous membrane and the porous reinforcing body in the case of having a porous reinforcing body as described later). Specifically, (the total weight of the microporous membrane and the porous reinforcing body after adhesion of the metal oxide-the total weight of the microporous membrane and the porous reinforcing body before the deposition of the metal oxide) / (metal oxidation) It is a value calculated by the formula of the total weight of the microporous membrane and the porous reinforcing body before adhesion of an object).
上記金属酸化物を上記微多孔膜に付着させる方法としては、例えば、特開2008-44826号公報に記載の液相析出法が挙げられる。液相析出法とは、金属フッ化物錯体の加水分解平衡反応を利用する方法であり、例えば、下記反応式(1)に示すような金属フッ化物錯体の加水分解反応の系内に、F-イオンを配位子として取り込み該金属フッ化物錯体よりも安定なフッ化物錯体もしくは化合物を形成するようなフッ素イオン捕捉剤(例えば、下記反応式(2)に示すようなH3BO3)を添加することにより、化学式(1)の平衡反応を酸化物生成側へと移動させて、金属酸化物を析出させる反応を利用する方法である。より具体的には、上記金属フッ化物錯体およびフッ素イオン捕捉剤を含む溶液に、微多孔膜を浸漬させることにより、微多孔膜に金属酸化物を析出させることができる。
Examples of the method for attaching the metal oxide to the microporous film include a liquid phase precipitation method described in JP-A-2008-44826. The liquid phase precipitation method is a method utilizing a hydrolysis equilibrium reaction of a metal fluoride complex. For example, in the hydrolysis reaction of a metal fluoride complex as shown in the following reaction formula (1), F − Fluorine ion scavenger (for example, H 3 BO 3 as shown in the following reaction formula (2)) that adds ions as a ligand and forms a fluoride complex or compound that is more stable than the metal fluoride complex is added. In this way, the equilibrium reaction of the chemical formula (1) is moved to the oxide production side, and a method of depositing a metal oxide is used. More specifically, the metal oxide can be deposited on the microporous film by immersing the microporous film in a solution containing the metal fluoride complex and the fluorine ion scavenger.
上記金属フッ化物錯体としては、例えば、(NH4)2TiF6、(NH4)2ZrF6等が挙げられる。
The metal fluoride complexes, for example, (NH 4) 2 TiF 6 , include (NH 4) 2 ZrF 6 and the like.
上記フッ素イオン捕捉剤としては、フッ素イオンと安定な錯体を形成し得る化合物が用いられ得る。上記フッ素イオン捕捉剤としては、例えば、H3BO3、水酸化ナトリウム、水酸化カリウム、塩化アルミニウム、水酸化アルミニウム、金属アルミニウム等が挙げられる。
As the fluorine ion scavenger, a compound capable of forming a stable complex with fluorine ions can be used. Examples of the fluorine ion scavenger include H 3 BO 3 , sodium hydroxide, potassium hydroxide, aluminum chloride, aluminum hydroxide, and metal aluminum.
上記金属フッ化物錯体およびフッ素イオン捕捉剤を含む溶液における、上記金属フッ化物錯体の濃度は、好ましくは0.01mol/L~2mol/Lであり、より好ましくは0.05mol/L~0.5mol/Lである。金属フッ化物錯体の濃度が低すぎる場合は、金属酸化物の付着量が不足するおそれがあり、一方、濃度が高すぎる場合には、金属酸化物の溶解が困難になるおそれ、および/または金属酸化物が過剰に生成し、微多孔膜の孔を閉塞するおそれがある。
The concentration of the metal fluoride complex in the solution containing the metal fluoride complex and the fluorine ion scavenger is preferably 0.01 mol / L to 2 mol / L, more preferably 0.05 mol / L to 0.5 mol. / L. If the concentration of the metal fluoride complex is too low, the amount of metal oxide attached may be insufficient. On the other hand, if the concentration is too high, it may be difficult to dissolve the metal oxide, and / or metal There is a possibility that oxides are generated excessively and clog the pores of the microporous membrane.
上記金属フッ化物錯体およびフッ素イオン捕捉剤を含む溶液における、上記フッ素イオン捕捉剤の濃度は、好ましくは0.05mol/L~2mol/Lであり、より好ましくは0.1mol/L~0.5mol/Lである。フッ素イオン捕捉剤の濃度が低すぎる場合は、金属酸化物の付着量が不足するおそれがある。一方、濃度が高すぎる場合には、金属酸化物の析出反応速度が速くなり、微多孔膜での析出よりも、溶液中での析出が多くなるおそれがある。
The concentration of the fluorine ion scavenger in the solution containing the metal fluoride complex and the fluorine ion scavenger is preferably 0.05 mol / L to 2 mol / L, more preferably 0.1 mol / L to 0.5 mol. / L. If the concentration of the fluorine ion scavenger is too low, the amount of metal oxide attached may be insufficient. On the other hand, when the concentration is too high, the deposition reaction rate of the metal oxide is increased, and there is a possibility that the precipitation in the solution is larger than the precipitation in the microporous film.
上記金属フッ化物錯体およびフッ素イオン捕捉剤を含む溶液の溶媒としては、金属フッ化物錯体およびフッ素イオン捕捉剤を溶解し得る溶媒であれば、任意の適切な溶媒が用いられ得る。該溶媒の具体例としては、水、アセトニトリル等が挙げられる。
Any appropriate solvent can be used as the solvent of the solution containing the metal fluoride complex and the fluorine ion scavenger as long as the solvent can dissolve the metal fluoride complex and the fluorine ion scavenger. Specific examples of the solvent include water, acetonitrile and the like.
上記金属フッ化物錯体およびフッ素イオン捕捉剤を含む溶液に微多孔膜を浸漬させる際の温度(反応温度)および浸漬時間(反応時間)は、任意の適切な条件に設定し得る。代表的には、反応温度は、好ましくは25℃~100℃である。浸漬時間(反応時間)は、好ましくは10分~48時間である。この様にして、微多孔膜に金属酸化物が付着している、イオン透過性隔膜を得る事が出来る。
The temperature (reaction temperature) and the immersion time (reaction time) when the microporous membrane is immersed in a solution containing the metal fluoride complex and the fluorine ion scavenger can be set to any appropriate condition. Typically, the reaction temperature is preferably 25 ° C to 100 ° C. The immersion time (reaction time) is preferably 10 minutes to 48 hours. In this way, it is possible to obtain an ion-permeable diaphragm in which a metal oxide is attached to the microporous film.
上記のようにして微多孔膜の表面に金属酸化物を付着させた後、さらに、不活性ガスなどの気相中で加熱処理を行ってもよい。該不活性ガスとしては、例えば、空気、窒素等が挙げられる。該加熱処理は、金属酸化物の組成および/または結晶構造が不完全な場合に行われ得る。加熱処理を行えば、上記反応式(1)で表される反応が促進され、所望の組成および/または結晶構造を有する金属酸化物を得ることができる。その結果、実際の使用環境下において耐久性に優れるイオン透過性隔膜を得ることができる。加熱処理の温度は、例えば、100℃~400℃である。また、加熱処理の時間は、例えば、1分~24時間である。加熱温度は、微多孔膜の構造に悪影響を及ぼさない範囲で設定されることが好ましい。また、このような範囲であれば、温度が高いほど加熱処理の時間を短くすることができる。
After the metal oxide is adhered to the surface of the microporous film as described above, heat treatment may be further performed in a gas phase such as an inert gas. Examples of the inert gas include air, nitrogen, and the like. The heat treatment can be performed when the composition and / or crystal structure of the metal oxide is incomplete. When heat treatment is performed, the reaction represented by the above reaction formula (1) is promoted, and a metal oxide having a desired composition and / or crystal structure can be obtained. As a result, it is possible to obtain an ion-permeable diaphragm that is excellent in durability under an actual use environment. The temperature of the heat treatment is, for example, 100 ° C. to 400 ° C. The heat treatment time is, for example, 1 minute to 24 hours. The heating temperature is preferably set in a range that does not adversely affect the structure of the microporous membrane. Moreover, if it is such a range, the time of heat processing can be shortened, so that temperature is high.
一つの実施形態においては、上記のようにして微多孔膜に金属酸化物を析出させた後(加熱処理を行う場合は加熱処理の後)、該微多孔膜をアルカリ水に浸漬させる。アルカリ水としては、例えば、濃度が10重量%~40重量%の水酸化ナトリウム水溶液または水酸化カリウム水溶液が用いられ得る。アルカリ水の温度は、好ましくは60℃~120℃であり、より好ましくは70℃~90℃である。浸漬時間は、好ましくは1時間~200時間であり、より好ましくは2時間~100時間である。このように、アルカリ水に浸漬させることにより、アルカリ水(例えば、水酸化カリウム水溶液)に対する濡れ性および濡れ耐久性に顕著に優れるイオン透過性隔膜を得ることができる。このようなイオン透過性隔膜が得られるメカニズムは明らかではないが、アルカリ水に浸漬することにより、微多孔膜を構成する高分子または金属酸化物の親水性官能基が増加して濡れ性および濡れ耐久性が向上すると考えられる。
In one embodiment, after depositing a metal oxide on the microporous film as described above (after heat treatment when heat treatment is performed), the microporous film is immersed in alkaline water. As the alkaline water, for example, a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution having a concentration of 10 to 40% by weight can be used. The temperature of the alkaline water is preferably 60 ° C. to 120 ° C., more preferably 70 ° C. to 90 ° C. The immersion time is preferably 1 hour to 200 hours, more preferably 2 hours to 100 hours. Thus, by immersing in alkaline water, an ion-permeable diaphragm that is remarkably excellent in wettability and wettability with respect to alkaline water (for example, potassium hydroxide aqueous solution) can be obtained. The mechanism by which such an ion permeable membrane is obtained is not clear, but by soaking in alkaline water, the hydrophilic functional groups of the polymer or metal oxide constituting the microporous membrane are increased, resulting in wettability and wettability. It is thought that durability is improved.
D.多孔性補強体
上記のとおり、本発明のイオン透過性隔膜は、多孔性補強体を備えてもよい。多孔性補強体により微多孔膜を補強することにより、電解用隔膜としての強度を向上させ、かつ、電極間での短絡防止性を向上させることができる。具体的には、アルカリ水電解において、印加電圧を下げるために隔膜/電極間のギャップを実質的に無くす場合、一般に、電極の凹凸により、隔膜の損傷および短絡が生じやすくなるが、本発明においては、上記のように多孔性補強体を備えることにより、損傷および短絡の生じ難いイオン透過性隔膜を得ることができる。また、多孔性補強体は、多孔性であるため、イオン透過性を阻害することなく上記効果を発現し得る。さらに、多孔性補強体を備えることで強度が向上し、薄膜化しても、十分な強度を有するイオン透過性隔膜を得ることができる。 D. Porous reinforcement As described above, the ion-permeable diaphragm of the present invention may include a porous reinforcement. By reinforcing the microporous membrane with the porous reinforcing body, the strength as the diaphragm for electrolysis can be improved, and the short-circuit preventing property between the electrodes can be improved. Specifically, in alkaline water electrolysis, when the gap between the diaphragm and the electrode is substantially eliminated in order to reduce the applied voltage, the diaphragm is generally easily damaged and short-circuited by the unevenness of the electrode. By providing the porous reinforcing body as described above, an ion-permeable diaphragm that is less likely to be damaged or short-circuited can be obtained. In addition, since the porous reinforcing body is porous, the above effects can be exhibited without impairing ion permeability. Furthermore, the strength is improved by providing the porous reinforcing body, and an ion-permeable diaphragm having sufficient strength can be obtained even if the thickness is reduced.
上記のとおり、本発明のイオン透過性隔膜は、多孔性補強体を備えてもよい。多孔性補強体により微多孔膜を補強することにより、電解用隔膜としての強度を向上させ、かつ、電極間での短絡防止性を向上させることができる。具体的には、アルカリ水電解において、印加電圧を下げるために隔膜/電極間のギャップを実質的に無くす場合、一般に、電極の凹凸により、隔膜の損傷および短絡が生じやすくなるが、本発明においては、上記のように多孔性補強体を備えることにより、損傷および短絡の生じ難いイオン透過性隔膜を得ることができる。また、多孔性補強体は、多孔性であるため、イオン透過性を阻害することなく上記効果を発現し得る。さらに、多孔性補強体を備えることで強度が向上し、薄膜化しても、十分な強度を有するイオン透過性隔膜を得ることができる。 D. Porous reinforcement As described above, the ion-permeable diaphragm of the present invention may include a porous reinforcement. By reinforcing the microporous membrane with the porous reinforcing body, the strength as the diaphragm for electrolysis can be improved, and the short-circuit preventing property between the electrodes can be improved. Specifically, in alkaline water electrolysis, when the gap between the diaphragm and the electrode is substantially eliminated in order to reduce the applied voltage, the diaphragm is generally easily damaged and short-circuited by the unevenness of the electrode. By providing the porous reinforcing body as described above, an ion-permeable diaphragm that is less likely to be damaged or short-circuited can be obtained. In addition, since the porous reinforcing body is porous, the above effects can be exhibited without impairing ion permeability. Furthermore, the strength is improved by providing the porous reinforcing body, and an ion-permeable diaphragm having sufficient strength can be obtained even if the thickness is reduced.
上記微多孔膜と多孔性補強体とは、例えば熱ラミネート等により、一体化されていることが好ましい。一体化することにより、電解槽組み立て時の作業性が改善され、また、微多孔膜と多孔性補強体との間にガスが溜まることを防止して電解抵抗の増大を防ぐことができる。熱ラミネートは、一対の加熱ロール、熱プレス等により、微多孔膜および多孔性補強体を構成する材料に、少なくとも該材料のいずれか一方の融点以上の温度下で所定の圧力をかけることにより行うことができる。また、微多孔膜と多孔性補強体とを接着層を介して一体化してもよい。接着層を構成する接着剤としては、本発明の効果が得られる限りにおいて任意の適切な接着剤が用いられ得る。接着層としては、例えば、ポリオレフィン系ホットメルト材を網目状に塗工して得られる接着層等が挙げられる。
The microporous membrane and the porous reinforcing body are preferably integrated by, for example, thermal lamination. By integrating, the workability at the time of assembling the electrolytic cell can be improved, and gas can be prevented from accumulating between the microporous membrane and the porous reinforcing body, thereby preventing an increase in electrolytic resistance. Thermal lamination is performed by applying a predetermined pressure to a material constituting the microporous membrane and the porous reinforcing body at a temperature equal to or higher than the melting point of at least one of the materials by a pair of heating rolls, a hot press, or the like. be able to. Further, the microporous membrane and the porous reinforcing body may be integrated through an adhesive layer. Any appropriate adhesive can be used as the adhesive constituting the adhesive layer as long as the effects of the present invention can be obtained. Examples of the adhesive layer include an adhesive layer obtained by applying a polyolefin-based hot melt material in a mesh shape.
上記多孔性補強体を構成する材料としては、強度に優れ、かつ、アルカリ水に対して機械的耐久性および化学的耐久性を有する高分子が好ましく用いられる。上記多孔性補強体を構成する材料としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、超高分子量ポリエチレン、ポリ-4-メチルペンテン-1、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド等が挙げられる。
As the material constituting the porous reinforcing body, a polymer having excellent strength and having mechanical durability and chemical durability against alkaline water is preferably used. Examples of the material constituting the porous reinforcing body include polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, polyethylene, ultrahigh molecular weight polyethylene, poly-4-methylpentene-1, polysulfone, polyethersulfone, and polyphenylene sulfide. It is done.
上記多孔性補強体は、多孔性である。上記多孔性補強体の形態としては、例えば、織布、不織布、ネット、メッシュ、焼結多孔膜等が挙げられる。好ましくは不織布、メッシュまたは焼結多孔膜であり、より好ましくは、焼結多孔膜である。焼結多孔膜であれば、強度およびイオン透過性に優れる。焼結多孔膜を得る方法としては、例えば、特開平2-214647号公報に記載された焼結法が挙げられる。
The porous reinforcing body is porous. Examples of the form of the porous reinforcing body include a woven fabric, a nonwoven fabric, a net, a mesh, and a sintered porous membrane. A nonwoven fabric, a mesh or a sintered porous membrane is preferred, and a sintered porous membrane is more preferred. A sintered porous membrane is excellent in strength and ion permeability. Examples of a method for obtaining a sintered porous film include a sintering method described in JP-A-2-214647.
上記多孔性補強体の厚みは、好ましくは30μm~800μmであり、より好ましくは50μm~500μmである。このような範囲の厚みを有する多孔性補強体であれば、補強体として十分な強度を有し、十分なイオン透過性を有し、かつ、電極の短絡を防止することができる。
The thickness of the porous reinforcing body is preferably 30 μm to 800 μm, more preferably 50 μm to 500 μm. If it is a porous reinforcement body which has the thickness of such a range, it has sufficient intensity | strength as a reinforcement body, sufficient ion permeability, and can prevent the short circuit of an electrode.
上記多孔性補強体の形態が焼結多孔質膜の場合、上記多孔性補強体の気孔率は、好ましくは10%~80%であり、より好ましくは20%~60%である。気孔率が10%より低い場合、イオン透過抵抗が大きくなるおそれがある。気孔率が80%より高い場合、強度が不足するおそれがある。
When the form of the porous reinforcing body is a sintered porous membrane, the porosity of the porous reinforcing body is preferably 10% to 80%, more preferably 20% to 60%. When the porosity is lower than 10%, the ion permeation resistance may be increased. If the porosity is higher than 80%, the strength may be insufficient.
上記多孔性補強体は、好ましくは親水性を有する。多孔性補強体が親水性を有していれば、該多孔性補強体に必要十分な金属酸化物を均一に付着させることができる。多孔性補強体の親水化は、例えば、上記B項で説明した方法により行うことができる。本発明のイオン透過性隔膜が、多孔性補強体を備える場合、多孔性補強体の親水化処理は上記微多孔膜の親水化処理とは別に行ってもよく、微多孔膜と多孔性補強体との積層体に対して親水化処理を行ってもよい。
The porous reinforcing body preferably has hydrophilicity. If the porous reinforcing body has hydrophilicity, a necessary and sufficient metal oxide can be uniformly attached to the porous reinforcing body. Hydrophilization of the porous reinforcing body can be performed, for example, by the method described in the above section B. When the ion-permeable membrane of the present invention includes a porous reinforcement, the hydrophilic treatment of the porous reinforcement may be performed separately from the hydrophilic treatment of the microporous membrane. The microporous membrane and the porous reinforcement Hydrophilic treatment may be performed on the laminate.
好ましくは、上記多孔性補強体には、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物が付着している。より具体的には、金属酸化物は、微多孔膜および多孔性補強体の表面に付着している。微多孔膜の表面とは、上記C項で説明したとおりである。多孔性補強体の表面とは、金属酸化物が付着していない場合における、多孔性補強体を構成する材料と空気との界面をいう。すなわち、金属酸化物は、微多孔膜および/または多孔性補強体の外部近傍(外面近傍)のみならず、微多孔膜および/または多孔性補強体の内部にも存在し得る。上記金属酸化物は、多孔性補強体の表面の全部を覆うように付着していてもよく、表面の一部を覆うように付着していてもよい。例えば、多孔性補強体をあらかじめ親水化処理しておくことにより、広範囲に金属酸化物を付着させることができる。上記金属酸化物は、好ましくは多孔性補強体の表面の少なくとも一部において被膜を形成するように付着し、より好ましくは多孔性補強体の表面の全部において被膜を形成するように付着している。多孔性補強体に金属酸化物を付着させる方法としては、上記C項で説明した方法が挙げられる。微多孔膜と多孔性補強体とを積層し、得られた積層体に対して、上記C項で説明した液相析出法により金属酸化物を付着させることが好ましい。
Preferably, at least one metal oxide selected from titanium oxide and zirconium oxide is attached to the porous reinforcing body. More specifically, the metal oxide is attached to the surfaces of the microporous membrane and the porous reinforcing body. The surface of the microporous membrane is as described in the above section C. The surface of the porous reinforcing body refers to the interface between the material constituting the porous reinforcing body and air when no metal oxide is attached. That is, the metal oxide can be present not only near the outside (near the outer surface) of the microporous membrane and / or porous reinforcing body but also inside the microporous membrane and / or porous reinforcing body. The metal oxide may be attached so as to cover the entire surface of the porous reinforcing body, or may be attached so as to cover a part of the surface. For example, the metal oxide can be adhered over a wide range by hydrophilizing the porous reinforcing body in advance. The metal oxide is preferably attached so as to form a film on at least a part of the surface of the porous reinforcing body, and more preferably attached so as to form a film on the entire surface of the porous reinforcing body. . Examples of the method for attaching the metal oxide to the porous reinforcing body include the method described in the above section C. It is preferable that a microporous membrane and a porous reinforcing body are laminated, and a metal oxide is attached to the obtained laminated body by the liquid phase precipitation method described in the above section C.
多孔性補強体に金属酸化物を付着させた後、上記C項で説明したような加熱処理を行ってもよい。1つの実施形態においては、微多孔膜と多孔性補強体とを積層し、得られた積層体に対して、加熱処理を行う。
After the metal oxide is attached to the porous reinforcing body, the heat treatment as described in the above section C may be performed. In one embodiment, a microporous membrane and a porous reinforcing body are laminated, and a heat treatment is performed on the obtained laminated body.
一つの実施形態においては、微多孔膜および多孔性補強体に金属酸化物を析出させた後(加熱処理を行う場合は加熱処理の後)、微多孔膜と多孔性補強体との積層体をアルカリ水に浸漬させる。アルカリ水としては、例えば、濃度が10重量%~40重量%の水酸化ナトリウム水溶液または水酸化カリウム水溶液が用いられ得る。アルカリ水の温度は、好ましくは60℃~120℃であり、より好ましくは70℃~90℃である。浸漬時間は、好ましくは1時間~200時間であり、より好ましくは2時間~100時間である。このように、アルカリ水に浸漬させることにより、アルカリ水(例えば、水酸化カリウム水溶液)に対する濡れ性および濡れ耐久性に顕著に優れるイオン透過性隔膜を得ることができる。
In one embodiment, after depositing a metal oxide on the microporous membrane and the porous reinforcing body (after heat treatment when heat treatment is performed), a laminate of the microporous membrane and the porous reinforcing body is formed. Immerse in alkaline water. As the alkaline water, for example, a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution having a concentration of 10 to 40% by weight can be used. The temperature of the alkaline water is preferably 60 ° C. to 120 ° C., more preferably 70 ° C. to 90 ° C. The immersion time is preferably 1 hour to 200 hours, more preferably 2 hours to 100 hours. Thus, by immersing in alkaline water, an ion-permeable diaphragm that is remarkably excellent in wettability and wettability with respect to alkaline water (for example, potassium hydroxide aqueous solution) can be obtained.
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における評価方法は以下のとおりである。また、実施例において、特に明記しない限り、「部」および「%」は重量基準である。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. The evaluation methods in the examples are as follows. In Examples, unless otherwise specified, “parts” and “%” are based on weight.
(1)厚みの測定
厚みはデジタルアップライトゲージR1-205(尾崎製作所社製;測定子:Φ5mm、測定力:1.1N以下)を使用した。特に断りがない場合は、25±2℃、65±20%RHでの測定値である。
(2)金属酸化物の付着率
金属酸化物の付着率は、下記式により算出した。
付着率(%)=(金属酸化物付着後の微多孔膜および多孔性補強体の合計重量-金属酸化物付着前の微多孔膜および多孔性補強体の合計重量)/(金属酸化物付着前の微多孔膜および多孔性補強体の合計重量)
(3)水酸化カリウム水溶液に対する濡れ性
80℃に維持された濃度30重量%の水酸化カリウム水溶液中に、イオン透過性隔膜を100時間浸漬した。その後、多孔性補強体を引き上げ、残存した水酸化カリウム水溶液を十分に洗浄、除去した後、乾燥させた。次いで、多孔性補強体の一方の面(裏面)にpH試験紙(アズワン社製、品番「1-1745-01」)をあてておき、他方の面(表面)から濃度30重量%の水酸化カリウム水溶液1滴(約50mg)を滴下した。滴下して10分間経過した後、該水酸化カリウム水溶液が裏面まで到り、pH試験紙が変色した場合は、濡れ性ありと判断した。
(4)アルカリ水電解評価
実施例および比較例で得られたイオン透過性隔膜のアルカリ水電解評価は、アクリル樹脂製のH型セルを用いて行った。電解液は、濃度30重量%の水酸化カリウム水溶液を用い、電極としては、厚さ1mmのNi板にΦ2mmの穴を90個開けた電極(有効電極直径Φ30mm、開口率40%)を用いた。測定時の液温は25℃に設定した。電流密度を0.2A/cm2とし、定電流を1時間連続して印加した時の電圧を測定し、測定開始から55分後~1時間後における測定値の平均値により、アルカリ水電解評価を行った。測定は、イオン透過性隔膜を電解液に10分間浸漬させた後に行った。なお、イオン透過性隔膜が2層構成(実施例1~9および比較例6)の場合は、微多孔膜がアノード側に来るように配置して測定した。 (1) Measurement of thickness Digital upright gauge R1-205 (manufactured by Ozaki Seisakusho; measuring element: Φ5 mm, measuring force: 1.1 N or less) was used for the thickness. Unless otherwise specified, the values are measured at 25 ± 2 ° C. and 65 ± 20% RH.
(2) Metal oxide adhesion rate The metal oxide adhesion rate was calculated by the following equation.
Adhesion rate (%) = (total weight of microporous membrane and porous reinforcing body after metal oxide deposition−total weight of microporous membrane and porous reinforcing body before metal oxide deposition) / (before metal oxide deposition) Total weight of microporous membrane and porous reinforcing body)
(3) Wettability with respect to aqueous potassium hydroxide solution An ion-permeable membrane was immersed in an aqueous 30 wt% potassium hydroxide solution maintained at 80 ° C. for 100 hours. Thereafter, the porous reinforcing body was pulled up, and the remaining potassium hydroxide aqueous solution was sufficiently washed and removed, and then dried. Next, a pH test paper (manufactured by ASONE, product number “1-1745-01”) is applied to one surface (back surface) of the porous reinforcing body, and hydroxylation at a concentration of 30% by weight from the other surface (front surface). One drop (about 50 mg) of an aqueous potassium solution was added dropwise. After 10 minutes from dropping, when the potassium hydroxide aqueous solution reached the back surface and the pH test paper was discolored, it was judged that there was wettability.
(4) Alkaline water electrolysis evaluation Alkaline water electrolysis evaluation of the ion-permeable diaphragms obtained in Examples and Comparative Examples was performed using an H-cell made of acrylic resin. The electrolyte used was an aqueous solution of potassium hydroxide having a concentration of 30% by weight, and the electrode used was an electrode (effective electrode diameter of Φ30 mm, aperture ratio of 40%) having 90 holes of Φ2 mm in a 1 mm thick Ni plate. . The liquid temperature at the time of measurement was set to 25 ° C. The current density was 0.2 A / cm 2 , the voltage when a constant current was applied continuously for 1 hour was measured, and alkaline water electrolysis was evaluated based on the average value of the measured values 55 minutes to 1 hour after the start of measurement. Went. The measurement was performed after the ion-permeable diaphragm was immersed in the electrolyte for 10 minutes. In the case where the ion-permeable diaphragm has a two-layer structure (Examples 1 to 9 and Comparative Example 6), the measurement was performed with the microporous membrane placed on the anode side.
厚みはデジタルアップライトゲージR1-205(尾崎製作所社製;測定子:Φ5mm、測定力:1.1N以下)を使用した。特に断りがない場合は、25±2℃、65±20%RHでの測定値である。
(2)金属酸化物の付着率
金属酸化物の付着率は、下記式により算出した。
付着率(%)=(金属酸化物付着後の微多孔膜および多孔性補強体の合計重量-金属酸化物付着前の微多孔膜および多孔性補強体の合計重量)/(金属酸化物付着前の微多孔膜および多孔性補強体の合計重量)
(3)水酸化カリウム水溶液に対する濡れ性
80℃に維持された濃度30重量%の水酸化カリウム水溶液中に、イオン透過性隔膜を100時間浸漬した。その後、多孔性補強体を引き上げ、残存した水酸化カリウム水溶液を十分に洗浄、除去した後、乾燥させた。次いで、多孔性補強体の一方の面(裏面)にpH試験紙(アズワン社製、品番「1-1745-01」)をあてておき、他方の面(表面)から濃度30重量%の水酸化カリウム水溶液1滴(約50mg)を滴下した。滴下して10分間経過した後、該水酸化カリウム水溶液が裏面まで到り、pH試験紙が変色した場合は、濡れ性ありと判断した。
(4)アルカリ水電解評価
実施例および比較例で得られたイオン透過性隔膜のアルカリ水電解評価は、アクリル樹脂製のH型セルを用いて行った。電解液は、濃度30重量%の水酸化カリウム水溶液を用い、電極としては、厚さ1mmのNi板にΦ2mmの穴を90個開けた電極(有効電極直径Φ30mm、開口率40%)を用いた。測定時の液温は25℃に設定した。電流密度を0.2A/cm2とし、定電流を1時間連続して印加した時の電圧を測定し、測定開始から55分後~1時間後における測定値の平均値により、アルカリ水電解評価を行った。測定は、イオン透過性隔膜を電解液に10分間浸漬させた後に行った。なお、イオン透過性隔膜が2層構成(実施例1~9および比較例6)の場合は、微多孔膜がアノード側に来るように配置して測定した。 (1) Measurement of thickness Digital upright gauge R1-205 (manufactured by Ozaki Seisakusho; measuring element: Φ5 mm, measuring force: 1.1 N or less) was used for the thickness. Unless otherwise specified, the values are measured at 25 ± 2 ° C. and 65 ± 20% RH.
(2) Metal oxide adhesion rate The metal oxide adhesion rate was calculated by the following equation.
Adhesion rate (%) = (total weight of microporous membrane and porous reinforcing body after metal oxide deposition−total weight of microporous membrane and porous reinforcing body before metal oxide deposition) / (before metal oxide deposition) Total weight of microporous membrane and porous reinforcing body)
(3) Wettability with respect to aqueous potassium hydroxide solution An ion-permeable membrane was immersed in an aqueous 30 wt% potassium hydroxide solution maintained at 80 ° C. for 100 hours. Thereafter, the porous reinforcing body was pulled up, and the remaining potassium hydroxide aqueous solution was sufficiently washed and removed, and then dried. Next, a pH test paper (manufactured by ASONE, product number “1-1745-01”) is applied to one surface (back surface) of the porous reinforcing body, and hydroxylation at a concentration of 30% by weight from the other surface (front surface). One drop (about 50 mg) of an aqueous potassium solution was added dropwise. After 10 minutes from dropping, when the potassium hydroxide aqueous solution reached the back surface and the pH test paper was discolored, it was judged that there was wettability.
(4) Alkaline water electrolysis evaluation Alkaline water electrolysis evaluation of the ion-permeable diaphragms obtained in Examples and Comparative Examples was performed using an H-cell made of acrylic resin. The electrolyte used was an aqueous solution of potassium hydroxide having a concentration of 30% by weight, and the electrode used was an electrode (effective electrode diameter of Φ30 mm, aperture ratio of 40%) having 90 holes of Φ2 mm in a 1 mm thick Ni plate. . The liquid temperature at the time of measurement was set to 25 ° C. The current density was 0.2 A / cm 2 , the voltage when a constant current was applied continuously for 1 hour was measured, and alkaline water electrolysis was evaluated based on the average value of the measured values 55 minutes to 1 hour after the start of measurement. Went. The measurement was performed after the ion-permeable diaphragm was immersed in the electrolyte for 10 minutes. In the case where the ion-permeable diaphragm has a two-layer structure (Examples 1 to 9 and Comparative Example 6), the measurement was performed with the microporous membrane placed on the anode side.
[実施例1]
ポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1122」、孔径0.2μm、厚み85μm)を、2-プロパノールに浸漬させて濡らし、次いで膜を乾燥させない様にしてポリビニルアルコール(PVA、重合度2000)水溶液(濃度1.2重量%)に浸漬し、25℃にて30分間静置して置換した。その後、このPTFE多孔質膜を、グルタールアルデヒド水溶液(濃度25重量%)90g、6モル塩酸15gおよび純水795gを混合して調製した架橋液(液温:35℃)に浸漬させ、1時間、架橋反応させた。次いで、PTFE多孔質膜を架橋液から取り出し、純水で5回洗浄した後、湿潤したままの状態でPTFE多孔質膜をステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間乾燥して、親水処理された微多孔膜を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着前の微多孔膜および多孔性補強体の合計重量」とは、この親水処理された微多孔膜の重量をいう。
別に、六フッ化チタン酸アンモニウム(和光純薬製)17.4gを純水440gに溶解して得られた溶液と、ホウ酸(和光純薬製)5.4gを純水176gに溶解して得られた溶液とを混合して、酸化チタン析出用の溶液を調製した。この溶液100gに対して、上記親水処理された微多孔膜(80×120mm)を浸漬し、60℃にて9時間、さらに80℃にて3時間加温して、微多孔膜にTiO2を析出させた。その後、微多孔膜を溶液から取り出し、湿潤したままの状態でステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間加熱処理して、イオン透過性隔膜(厚み:84μm)を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着後の微多孔膜および多孔性補強体の合計重量」とは、このイオン透過性隔膜の重量をいう。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 1]
A polytetrafluoroethylene (PTFE) porous membrane (trade name “TEMISH NTF-1122” manufactured by Nitto Denko Corporation, pore size 0.2 μm, thickness 85 μm) is dipped in 2-propanol and wetted, and then the membrane is not dried. And then immersed in an aqueous solution of polyvinyl alcohol (PVA, degree of polymerization 2000) (concentration: 1.2% by weight) and allowed to stand at 25 ° C. for 30 minutes for replacement. Thereafter, this porous PTFE membrane was immersed in a crosslinking liquid (liquid temperature: 35 ° C.) prepared by mixing 90 g of a glutaraldehyde aqueous solution (concentration 25 wt%), 15 g of 6 molar hydrochloric acid and 795 g of pure water for 1 hour. And a crosslinking reaction was carried out. Next, after removing the PTFE porous membrane from the cross-linking liquid, washing with pure water 5 times, the PTFE porous membrane is fixed to the stainless steel frame with a clip in a wet state, and a hot air circulating dryer at 80 ° C. And dried for 30 minutes to obtain a hydrophilic microporous membrane. In the above formula for calculating the adhesion rate of the metal oxide, the “total weight of the microporous membrane and the porous reinforcing body before the metal oxide adhesion” refers to the weight of the microporous membrane subjected to the hydrophilic treatment.
Separately, 17.4 g of ammonium hexafluorotitanate (manufactured by Wako Pure Chemical Industries) was dissolved in 440 g of pure water, and 5.4 g of boric acid (manufactured by Wako Pure Chemical Industries) was dissolved in 176 g of pure water. The obtained solution was mixed to prepare a solution for titanium oxide precipitation. The hydrophilic microporous membrane (80 × 120 mm) is immersed in 100 g of this solution, heated at 60 ° C. for 9 hours, and further at 80 ° C. for 3 hours, and TiO 2 is added to the microporous membrane. Precipitated. Thereafter, the microporous membrane is taken out from the solution, fixed with a clip to a stainless steel frame in a wet state, and heat-treated for 30 minutes with a hot air circulating dryer at 80 ° C. to obtain an ion-permeable membrane (thickness: 84 μm). ) In the equation for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited” refers to the weight of the ion-permeable diaphragm.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
ポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1122」、孔径0.2μm、厚み85μm)を、2-プロパノールに浸漬させて濡らし、次いで膜を乾燥させない様にしてポリビニルアルコール(PVA、重合度2000)水溶液(濃度1.2重量%)に浸漬し、25℃にて30分間静置して置換した。その後、このPTFE多孔質膜を、グルタールアルデヒド水溶液(濃度25重量%)90g、6モル塩酸15gおよび純水795gを混合して調製した架橋液(液温:35℃)に浸漬させ、1時間、架橋反応させた。次いで、PTFE多孔質膜を架橋液から取り出し、純水で5回洗浄した後、湿潤したままの状態でPTFE多孔質膜をステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間乾燥して、親水処理された微多孔膜を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着前の微多孔膜および多孔性補強体の合計重量」とは、この親水処理された微多孔膜の重量をいう。
別に、六フッ化チタン酸アンモニウム(和光純薬製)17.4gを純水440gに溶解して得られた溶液と、ホウ酸(和光純薬製)5.4gを純水176gに溶解して得られた溶液とを混合して、酸化チタン析出用の溶液を調製した。この溶液100gに対して、上記親水処理された微多孔膜(80×120mm)を浸漬し、60℃にて9時間、さらに80℃にて3時間加温して、微多孔膜にTiO2を析出させた。その後、微多孔膜を溶液から取り出し、湿潤したままの状態でステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間加熱処理して、イオン透過性隔膜(厚み:84μm)を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着後の微多孔膜および多孔性補強体の合計重量」とは、このイオン透過性隔膜の重量をいう。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 1]
A polytetrafluoroethylene (PTFE) porous membrane (trade name “TEMISH NTF-1122” manufactured by Nitto Denko Corporation, pore size 0.2 μm, thickness 85 μm) is dipped in 2-propanol and wetted, and then the membrane is not dried. And then immersed in an aqueous solution of polyvinyl alcohol (PVA, degree of polymerization 2000) (concentration: 1.2% by weight) and allowed to stand at 25 ° C. for 30 minutes for replacement. Thereafter, this porous PTFE membrane was immersed in a crosslinking liquid (liquid temperature: 35 ° C.) prepared by mixing 90 g of a glutaraldehyde aqueous solution (concentration 25 wt%), 15 g of 6 molar hydrochloric acid and 795 g of pure water for 1 hour. And a crosslinking reaction was carried out. Next, after removing the PTFE porous membrane from the cross-linking liquid, washing with pure water 5 times, the PTFE porous membrane is fixed to the stainless steel frame with a clip in a wet state, and a hot air circulating dryer at 80 ° C. And dried for 30 minutes to obtain a hydrophilic microporous membrane. In the above formula for calculating the adhesion rate of the metal oxide, the “total weight of the microporous membrane and the porous reinforcing body before the metal oxide adhesion” refers to the weight of the microporous membrane subjected to the hydrophilic treatment.
Separately, 17.4 g of ammonium hexafluorotitanate (manufactured by Wako Pure Chemical Industries) was dissolved in 440 g of pure water, and 5.4 g of boric acid (manufactured by Wako Pure Chemical Industries) was dissolved in 176 g of pure water. The obtained solution was mixed to prepare a solution for titanium oxide precipitation. The hydrophilic microporous membrane (80 × 120 mm) is immersed in 100 g of this solution, heated at 60 ° C. for 9 hours, and further at 80 ° C. for 3 hours, and TiO 2 is added to the microporous membrane. Precipitated. Thereafter, the microporous membrane is taken out from the solution, fixed with a clip to a stainless steel frame in a wet state, and heat-treated for 30 minutes with a hot air circulating dryer at 80 ° C. to obtain an ion-permeable membrane (thickness: 84 μm). ) In the equation for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited” refers to the weight of the ion-permeable diaphragm.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[実施例2]
微多孔膜としてのポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1131」、孔径1.0μm、厚み85μm)と、多孔性補強体としてのスパンポンド不織布(ユニチカ社製 商品名「T0303/WD0」、芯:ポリエステル/鞘:ポリエチレン、目付重量30g/m2、厚み170μm)とを、135℃の加熱ロールにて熱接着して積層体(微多孔膜/多孔性補強体)を得た。
この積層体を、2-プロパノールに浸漬させて濡らし、次いで該積層体を乾燥させない様にしてポリビニルアルコール(PVA、重合度2000)水溶液(濃度1.2重量%)に浸漬し、25℃にて30分間静置して置換した。その後、この積層体を、グルタールアルデヒド水溶液(濃度25重量%)90g、6モル塩酸15gおよび純水795gを混合して調製した架橋液(液温:35℃)に浸漬させ、1時間、架橋反応させた。次いで、積層体を架橋液から取り出し、純水で5回洗浄した後、湿潤したままの状態で積層体をステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間乾燥して、親水処理された積層体を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着前の微多孔膜および多孔性補強体の合計重量」とは、この親水処理された積層体の重量をいう。
別に、六フッ化チタン酸アンモニウム(和光純薬製)17.4gを純水440gに溶解して得られた溶液と、ホウ酸(和光純薬製)5.4gを純水176gに溶解して得られた溶液とを混合して、酸化チタン析出用の溶液を調製した。この溶液100gに対して、上記親水処理された積層体(80×120mm)を浸漬し、60℃にて9時間、さらに80℃にて3時間加温して、積層体(すなわち、微多孔膜および多孔性補強体)にTiO2を析出させた。その後、積層体を溶液から取り出し、湿潤したままの状態でステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間加熱処理して、イオン透過性隔膜(厚み:146μm)を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着後の微多孔膜および多孔性補強体の合計重量」とは、このイオン透過性隔膜の重量をいう。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 2]
Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1131” manufactured by Nitto Denko Corporation, pore size 1.0 μm, thickness 85 μm) as a microporous membrane, and spun pond non-woven fabric (Unitika) as a porous reinforcement Product name “T0303 / WD0”, core: polyester / sheath: polyethylene, weight per unit area 30 g / m 2 , thickness 170 μm) are thermally bonded with a heating roll at 135 ° C. to obtain a laminate (microporous membrane / porous) Strength reinforcement).
This laminate was dipped in 2-propanol and wetted, and then dipped in an aqueous solution of polyvinyl alcohol (PVA, polymerization degree 2000) (concentration: 1.2% by weight) so that the laminate was not dried, at 25 ° C. Replaced by standing for 30 minutes. Thereafter, this laminate was immersed in a crosslinking liquid (liquid temperature: 35 ° C.) prepared by mixing 90 g of a glutaraldehyde aqueous solution (concentration 25% by weight), 15 g of 6 molar hydrochloric acid and 795 g of pure water, and crosslinked for 1 hour. Reacted. Next, the laminate is taken out of the cross-linking solution, washed 5 times with pure water, then fixed with a clip on a stainless steel frame in a wet state, and dried for 30 minutes with a hot air circulating dryer at 80 ° C. Thus, a laminate subjected to hydrophilic treatment was obtained. In the formula for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body before the metal oxide is adhered” refers to the weight of the hydrophilically treated laminate.
Separately, 17.4 g of ammonium hexafluorotitanate (manufactured by Wako Pure Chemical Industries) was dissolved in 440 g of pure water, and 5.4 g of boric acid (manufactured by Wako Pure Chemical Industries) was dissolved in 176 g of pure water. The obtained solution was mixed to prepare a solution for titanium oxide precipitation. The hydrophilically treated laminate (80 × 120 mm) is immersed in 100 g of this solution and heated at 60 ° C. for 9 hours and further at 80 ° C. for 3 hours to obtain a laminate (that is, a microporous membrane). TiO 2 was deposited on the porous reinforcing body). Thereafter, the laminate is taken out of the solution, fixed in a stainless steel frame with a clip in a wet state, and heat-treated for 30 minutes with a hot air circulating dryer at 80 ° C. to obtain an ion-permeable diaphragm (thickness: 146 μm). Got. In the equation for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited” refers to the weight of the ion-permeable diaphragm.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
微多孔膜としてのポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1131」、孔径1.0μm、厚み85μm)と、多孔性補強体としてのスパンポンド不織布(ユニチカ社製 商品名「T0303/WD0」、芯:ポリエステル/鞘:ポリエチレン、目付重量30g/m2、厚み170μm)とを、135℃の加熱ロールにて熱接着して積層体(微多孔膜/多孔性補強体)を得た。
この積層体を、2-プロパノールに浸漬させて濡らし、次いで該積層体を乾燥させない様にしてポリビニルアルコール(PVA、重合度2000)水溶液(濃度1.2重量%)に浸漬し、25℃にて30分間静置して置換した。その後、この積層体を、グルタールアルデヒド水溶液(濃度25重量%)90g、6モル塩酸15gおよび純水795gを混合して調製した架橋液(液温:35℃)に浸漬させ、1時間、架橋反応させた。次いで、積層体を架橋液から取り出し、純水で5回洗浄した後、湿潤したままの状態で積層体をステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間乾燥して、親水処理された積層体を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着前の微多孔膜および多孔性補強体の合計重量」とは、この親水処理された積層体の重量をいう。
別に、六フッ化チタン酸アンモニウム(和光純薬製)17.4gを純水440gに溶解して得られた溶液と、ホウ酸(和光純薬製)5.4gを純水176gに溶解して得られた溶液とを混合して、酸化チタン析出用の溶液を調製した。この溶液100gに対して、上記親水処理された積層体(80×120mm)を浸漬し、60℃にて9時間、さらに80℃にて3時間加温して、積層体(すなわち、微多孔膜および多孔性補強体)にTiO2を析出させた。その後、積層体を溶液から取り出し、湿潤したままの状態でステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間加熱処理して、イオン透過性隔膜(厚み:146μm)を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着後の微多孔膜および多孔性補強体の合計重量」とは、このイオン透過性隔膜の重量をいう。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 2]
Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1131” manufactured by Nitto Denko Corporation, pore size 1.0 μm, thickness 85 μm) as a microporous membrane, and spun pond non-woven fabric (Unitika) as a porous reinforcement Product name “T0303 / WD0”, core: polyester / sheath: polyethylene, weight per unit area 30 g / m 2 , thickness 170 μm) are thermally bonded with a heating roll at 135 ° C. to obtain a laminate (microporous membrane / porous) Strength reinforcement).
This laminate was dipped in 2-propanol and wetted, and then dipped in an aqueous solution of polyvinyl alcohol (PVA, polymerization degree 2000) (concentration: 1.2% by weight) so that the laminate was not dried, at 25 ° C. Replaced by standing for 30 minutes. Thereafter, this laminate was immersed in a crosslinking liquid (liquid temperature: 35 ° C.) prepared by mixing 90 g of a glutaraldehyde aqueous solution (concentration 25% by weight), 15 g of 6 molar hydrochloric acid and 795 g of pure water, and crosslinked for 1 hour. Reacted. Next, the laminate is taken out of the cross-linking solution, washed 5 times with pure water, then fixed with a clip on a stainless steel frame in a wet state, and dried for 30 minutes with a hot air circulating dryer at 80 ° C. Thus, a laminate subjected to hydrophilic treatment was obtained. In the formula for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body before the metal oxide is adhered” refers to the weight of the hydrophilically treated laminate.
Separately, 17.4 g of ammonium hexafluorotitanate (manufactured by Wako Pure Chemical Industries) was dissolved in 440 g of pure water, and 5.4 g of boric acid (manufactured by Wako Pure Chemical Industries) was dissolved in 176 g of pure water. The obtained solution was mixed to prepare a solution for titanium oxide precipitation. The hydrophilically treated laminate (80 × 120 mm) is immersed in 100 g of this solution and heated at 60 ° C. for 9 hours and further at 80 ° C. for 3 hours to obtain a laminate (that is, a microporous membrane). TiO 2 was deposited on the porous reinforcing body). Thereafter, the laminate is taken out of the solution, fixed in a stainless steel frame with a clip in a wet state, and heat-treated for 30 minutes with a hot air circulating dryer at 80 ° C. to obtain an ion-permeable diaphragm (thickness: 146 μm). Got. In the equation for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited” refers to the weight of the ion-permeable diaphragm.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[実施例3]
ポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1131」、孔径1.0μm、厚み85μm)に代えて、ポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1026」、孔径0.6μm、厚み25μm)を用いた以外は、実施例2と同様にして、イオン透過性隔膜(厚み:120μm)を得た。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 3]
Polytetrafluoroethylene (PTFE) porous membrane (manufactured by Nitto Denko Corporation, trade name “Temish NTF-1131”, pore diameter 1.0 μm, thickness 85 μm), polytetrafluoroethylene (PTFE) porous membrane (Nitto Denko Corporation) An ion-permeable membrane (thickness: 120 μm) was obtained in the same manner as in Example 2 except that the product name “Temisch NTF-1026”, pore diameter 0.6 μm, thickness 25 μm) was used.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
ポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1131」、孔径1.0μm、厚み85μm)に代えて、ポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1026」、孔径0.6μm、厚み25μm)を用いた以外は、実施例2と同様にして、イオン透過性隔膜(厚み:120μm)を得た。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 3]
Polytetrafluoroethylene (PTFE) porous membrane (manufactured by Nitto Denko Corporation, trade name “Temish NTF-1131”, pore diameter 1.0 μm, thickness 85 μm), polytetrafluoroethylene (PTFE) porous membrane (Nitto Denko Corporation) An ion-permeable membrane (thickness: 120 μm) was obtained in the same manner as in Example 2 except that the product name “Temisch NTF-1026”, pore diameter 0.6 μm, thickness 25 μm) was used.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[実施例4]
微多孔膜として、親水化ポリフッ化ビニリデン(PVdF)多孔質膜(ミリポア社製 商品名「デュラポアメンブレンフィルターGVWP14250」、孔径0.22μm)を用いた。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着前の微多孔膜および多孔性補強体の合計重量」とは、この親水化ポリフッ化ビニリデン(PVdF)多孔質膜の重量をいう。
別に、六フッ化チタン酸アンモニウム(和光純薬製)17.4gを純水440gに溶解して得られた溶液と、ホウ酸(和光純薬製)5.4gを純水176gに溶解して得られた溶液とを混合して、酸化チタン析出用の溶液を調製した。この溶液100gに対して、上記親水化ポリフッ化ビニリデン多孔質膜(80×120mm)を浸漬し、60℃にて9時間、さらに80℃にて3時間加温して、微多孔膜にTiO2を析出させた。その後、微多孔膜を溶液から取り出し、湿潤したままの状態でステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間加熱処理して、イオン透過性隔膜(厚み:123μm)を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着後の微多孔膜および多孔性補強体の合計重量」とは、このイオン透過性隔膜の重量をいう。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 4]
As the microporous membrane, a hydrophilic polyvinylidene fluoride (PVdF) porous membrane (trade name “Durapore membrane filter GVWP14250”, pore size 0.22 μm, manufactured by Millipore) was used. In the formula for calculating the adhesion rate of the metal oxide, the “total weight of the microporous membrane and the porous reinforcing body before the metal oxide adhesion” refers to the hydrophilic polyvinylidene fluoride (PVdF) porous membrane. Refers to weight.
Separately, 17.4 g of ammonium hexafluorotitanate (manufactured by Wako Pure Chemical Industries) was dissolved in 440 g of pure water, and 5.4 g of boric acid (manufactured by Wako Pure Chemical Industries) was dissolved in 176 g of pure water. The obtained solution was mixed to prepare a solution for titanium oxide precipitation. The hydrophilized polyvinylidene fluoride porous membrane (80 × 120 mm) is immersed in 100 g of this solution, heated at 60 ° C. for 9 hours, and further at 80 ° C. for 3 hours to form TiO 2 on the microporous membrane. Was precipitated. Thereafter, the microporous membrane is taken out from the solution, fixed in a wet state with a clip to a stainless steel frame, and heat-treated for 30 minutes with a hot air circulating dryer at 80 ° C. to obtain an ion-permeable membrane (thickness: 123 μm). ) In the equation for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited” refers to the weight of the ion-permeable diaphragm.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
微多孔膜として、親水化ポリフッ化ビニリデン(PVdF)多孔質膜(ミリポア社製 商品名「デュラポアメンブレンフィルターGVWP14250」、孔径0.22μm)を用いた。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着前の微多孔膜および多孔性補強体の合計重量」とは、この親水化ポリフッ化ビニリデン(PVdF)多孔質膜の重量をいう。
別に、六フッ化チタン酸アンモニウム(和光純薬製)17.4gを純水440gに溶解して得られた溶液と、ホウ酸(和光純薬製)5.4gを純水176gに溶解して得られた溶液とを混合して、酸化チタン析出用の溶液を調製した。この溶液100gに対して、上記親水化ポリフッ化ビニリデン多孔質膜(80×120mm)を浸漬し、60℃にて9時間、さらに80℃にて3時間加温して、微多孔膜にTiO2を析出させた。その後、微多孔膜を溶液から取り出し、湿潤したままの状態でステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間加熱処理して、イオン透過性隔膜(厚み:123μm)を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着後の微多孔膜および多孔性補強体の合計重量」とは、このイオン透過性隔膜の重量をいう。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 4]
As the microporous membrane, a hydrophilic polyvinylidene fluoride (PVdF) porous membrane (trade name “Durapore membrane filter GVWP14250”, pore size 0.22 μm, manufactured by Millipore) was used. In the formula for calculating the adhesion rate of the metal oxide, the “total weight of the microporous membrane and the porous reinforcing body before the metal oxide adhesion” refers to the hydrophilic polyvinylidene fluoride (PVdF) porous membrane. Refers to weight.
Separately, 17.4 g of ammonium hexafluorotitanate (manufactured by Wako Pure Chemical Industries) was dissolved in 440 g of pure water, and 5.4 g of boric acid (manufactured by Wako Pure Chemical Industries) was dissolved in 176 g of pure water. The obtained solution was mixed to prepare a solution for titanium oxide precipitation. The hydrophilized polyvinylidene fluoride porous membrane (80 × 120 mm) is immersed in 100 g of this solution, heated at 60 ° C. for 9 hours, and further at 80 ° C. for 3 hours to form TiO 2 on the microporous membrane. Was precipitated. Thereafter, the microporous membrane is taken out from the solution, fixed in a wet state with a clip to a stainless steel frame, and heat-treated for 30 minutes with a hot air circulating dryer at 80 ° C. to obtain an ion-permeable membrane (thickness: 123 μm). ) In the equation for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited” refers to the weight of the ion-permeable diaphragm.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[実施例5]
親水化ポリフッ化ビニリデン(PVdF)多孔質膜(ミリポア社製 商品名「デュラポアメンブレンフィルターGVWP14250」、孔径0.22μm)に代えて、親水化ポリフッ化ビニリデン(PVdF)多孔質膜(ミリポア社製 商品名「デュラポアメンブレンフィルターHVLP14250」、孔径0.45μm)を用いた以外は、実施例4と同様にして、イオン透過性隔膜(厚み:111μm)を得た。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 5]
Hydrophilic polyvinylidene fluoride (PVdF) porous membrane (Millipore's product name “Durapore membrane filter GVWP14250”, pore size 0.22 μm), instead of hydrophilic polyvinylidene fluoride (PVdF) porous membrane (Millipore product) An ion permeable membrane (thickness: 111 μm) was obtained in the same manner as in Example 4 except that the name “Durapore membrane filter HVLP14250” (pore diameter 0.45 μm) was used.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
親水化ポリフッ化ビニリデン(PVdF)多孔質膜(ミリポア社製 商品名「デュラポアメンブレンフィルターGVWP14250」、孔径0.22μm)に代えて、親水化ポリフッ化ビニリデン(PVdF)多孔質膜(ミリポア社製 商品名「デュラポアメンブレンフィルターHVLP14250」、孔径0.45μm)を用いた以外は、実施例4と同様にして、イオン透過性隔膜(厚み:111μm)を得た。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 5]
Hydrophilic polyvinylidene fluoride (PVdF) porous membrane (Millipore's product name “Durapore membrane filter GVWP14250”, pore size 0.22 μm), instead of hydrophilic polyvinylidene fluoride (PVdF) porous membrane (Millipore product) An ion permeable membrane (thickness: 111 μm) was obtained in the same manner as in Example 4 except that the name “Durapore membrane filter HVLP14250” (pore diameter 0.45 μm) was used.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[実施例6]
微多孔膜としてのポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1122」、孔径0.2μm、厚み80μm)と、多孔性補強体としての不織布(広瀬製紙社製 商品名「HOP‐60HCF」、芯:ポリプロピレン/鞘:ポリエチレン、目付重量60g/m2、厚み160μm)とを、145℃の加熱ロールにて熱接着して積層体(微多孔膜/多孔性補強体)を得た。
該積層体を用い、積層体(すなわち、微多孔膜および多孔性補強体)にTiO2を析出させた後の加熱処理の温度を100℃とした以外は、実施例2と同様にして、イオン透過性隔膜(厚み:218μm)を得た。 [Example 6]
Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1122” manufactured by Nitto Denko Corporation, pore diameter 0.2 μm, thickness 80 μm) as a microporous membrane and non-woven fabric (Hirose Paper Co., Ltd.) as a porous reinforcement Product name “HOP-60HCF”, core: polypropylene / sheath: polyethylene, basis weight 60 g / m 2 , thickness 160 μm) and heat bonded with a heating roll at 145 ° C. to laminate (microporous membrane / porous) Reinforcing body) was obtained.
Except that the temperature of the heat treatment after depositing TiO 2 on the laminate (that is, the microporous membrane and the porous reinforcing body) was 100 ° C. using the laminate, A permeable membrane (thickness: 218 μm) was obtained.
微多孔膜としてのポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1122」、孔径0.2μm、厚み80μm)と、多孔性補強体としての不織布(広瀬製紙社製 商品名「HOP‐60HCF」、芯:ポリプロピレン/鞘:ポリエチレン、目付重量60g/m2、厚み160μm)とを、145℃の加熱ロールにて熱接着して積層体(微多孔膜/多孔性補強体)を得た。
該積層体を用い、積層体(すなわち、微多孔膜および多孔性補強体)にTiO2を析出させた後の加熱処理の温度を100℃とした以外は、実施例2と同様にして、イオン透過性隔膜(厚み:218μm)を得た。 [Example 6]
Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1122” manufactured by Nitto Denko Corporation, pore diameter 0.2 μm, thickness 80 μm) as a microporous membrane and non-woven fabric (Hirose Paper Co., Ltd.) as a porous reinforcement Product name “HOP-60HCF”, core: polypropylene / sheath: polyethylene, basis weight 60 g / m 2 , thickness 160 μm) and heat bonded with a heating roll at 145 ° C. to laminate (microporous membrane / porous) Reinforcing body) was obtained.
Except that the temperature of the heat treatment after depositing TiO 2 on the laminate (that is, the microporous membrane and the porous reinforcing body) was 100 ° C. using the laminate, A permeable membrane (thickness: 218 μm) was obtained.
[実施例7]
微多孔膜としてのポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1122」、孔径0.2μm、厚み80μm)と、多孔性補強体としての不織布(広瀬製紙社製 商品名「HOP‐60HCF」、芯:ポリプロピレン/鞘:ポリエチレン、目付重量60g/m2、厚み160μm)とを、145℃の加熱ロールにて熱接着して積層体(微多孔膜/多孔性補強体)を得た。
さらに、該積層体を、実施例2と同様の方法で親水処理し、親水処理された積層体を得た。
別に、ジルコンフッ化水素酸(森田化学製)7.77gを純水67.2gに溶解して得られた溶液と、
ホウ酸(和光純薬製)0.62gを純水19.4gに溶解して得られた溶液を混合して、酸化ジルコニウム析出用の溶液を調製した。この溶液95.0gに対して、アルミニウム板(A1050、厚み0.2mm×100mm×100mm)と、上記親水処理された積層体(80×120mm)とを浸漬し、25℃にて150時間静置して、積層体(すなわち、微多孔膜および多孔性補強体)にZrO2を析出させた。その後、積層体を溶液から取り出し、湿潤したままの状態でステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間加熱処理して、イオン透過性隔膜(厚み:240μm)を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着後の微多孔膜および多孔性補強体の合計重量」とは、このイオン透過性隔膜の重量をいう。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 7]
Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1122” manufactured by Nitto Denko Corporation, pore diameter 0.2 μm, thickness 80 μm) as a microporous membrane and non-woven fabric (Hirose Paper Co., Ltd.) as a porous reinforcement Product name “HOP-60HCF”, core: polypropylene / sheath: polyethylene, basis weight 60 g / m 2 , thickness 160 μm) and heat bonded with a heating roll at 145 ° C. to laminate (microporous membrane / porous) Reinforcing body) was obtained.
Further, the laminate was subjected to a hydrophilic treatment in the same manner as in Example 2 to obtain a hydrophilic treated laminate.
Separately, a solution obtained by dissolving 7.77 g of zircon hydrofluoric acid (Morita Chemical Co., Ltd.) in 67.2 g of pure water;
A solution obtained by dissolving 0.62 g of boric acid (manufactured by Wako Pure Chemical Industries, Ltd.) in 19.4 g of pure water was mixed to prepare a solution for precipitation of zirconium oxide. An aluminum plate (A1050, thickness 0.2 mm × 100 mm × 100 mm) and the hydrophilically treated laminate (80 × 120 mm) are immersed in 95.0 g of this solution, and left at 25 ° C. for 150 hours. Then, ZrO 2 was deposited on the laminate (that is, the microporous film and the porous reinforcing body). Thereafter, the laminate is taken out of the solution, fixed with a clip to a stainless steel frame in a wet state, and heat-treated for 30 minutes with a hot air circulation dryer at 80 ° C. to obtain an ion-permeable diaphragm (thickness: 240 μm). Got. In the equation for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited” refers to the weight of the ion-permeable diaphragm.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
微多孔膜としてのポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1122」、孔径0.2μm、厚み80μm)と、多孔性補強体としての不織布(広瀬製紙社製 商品名「HOP‐60HCF」、芯:ポリプロピレン/鞘:ポリエチレン、目付重量60g/m2、厚み160μm)とを、145℃の加熱ロールにて熱接着して積層体(微多孔膜/多孔性補強体)を得た。
さらに、該積層体を、実施例2と同様の方法で親水処理し、親水処理された積層体を得た。
別に、ジルコンフッ化水素酸(森田化学製)7.77gを純水67.2gに溶解して得られた溶液と、
ホウ酸(和光純薬製)0.62gを純水19.4gに溶解して得られた溶液を混合して、酸化ジルコニウム析出用の溶液を調製した。この溶液95.0gに対して、アルミニウム板(A1050、厚み0.2mm×100mm×100mm)と、上記親水処理された積層体(80×120mm)とを浸漬し、25℃にて150時間静置して、積層体(すなわち、微多孔膜および多孔性補強体)にZrO2を析出させた。その後、積層体を溶液から取り出し、湿潤したままの状態でステンレス製の枠にクリップで固定し、80℃の熱風循環式乾燥機で30分間加熱処理して、イオン透過性隔膜(厚み:240μm)を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着後の微多孔膜および多孔性補強体の合計重量」とは、このイオン透過性隔膜の重量をいう。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 7]
Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1122” manufactured by Nitto Denko Corporation, pore diameter 0.2 μm, thickness 80 μm) as a microporous membrane and non-woven fabric (Hirose Paper Co., Ltd.) as a porous reinforcement Product name “HOP-60HCF”, core: polypropylene / sheath: polyethylene, basis weight 60 g / m 2 , thickness 160 μm) and heat bonded with a heating roll at 145 ° C. to laminate (microporous membrane / porous) Reinforcing body) was obtained.
Further, the laminate was subjected to a hydrophilic treatment in the same manner as in Example 2 to obtain a hydrophilic treated laminate.
Separately, a solution obtained by dissolving 7.77 g of zircon hydrofluoric acid (Morita Chemical Co., Ltd.) in 67.2 g of pure water;
A solution obtained by dissolving 0.62 g of boric acid (manufactured by Wako Pure Chemical Industries, Ltd.) in 19.4 g of pure water was mixed to prepare a solution for precipitation of zirconium oxide. An aluminum plate (A1050, thickness 0.2 mm × 100 mm × 100 mm) and the hydrophilically treated laminate (80 × 120 mm) are immersed in 95.0 g of this solution, and left at 25 ° C. for 150 hours. Then, ZrO 2 was deposited on the laminate (that is, the microporous film and the porous reinforcing body). Thereafter, the laminate is taken out of the solution, fixed with a clip to a stainless steel frame in a wet state, and heat-treated for 30 minutes with a hot air circulation dryer at 80 ° C. to obtain an ion-permeable diaphragm (thickness: 240 μm). Got. In the equation for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited” refers to the weight of the ion-permeable diaphragm.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[実施例8]
実施例1と同様にして、親水処理された微多孔膜を得た。
別に、ジルコンフッ化水素酸(森田化学製)7.77gを純水67.2gに溶解して得られた溶液と、
ホウ酸(和光純薬製)0.62gを純水19.4gに溶解して得られた溶液を混合して、酸化ジルコニウム析出用の溶液を調製した。この溶液95.0gに対して、アルミニウム板(A1050、厚み0.2mm×100mm×100mm)と、上記親水処理された微多孔膜(80×120mm)とを浸漬し、25℃にて150時間静置して、微多孔膜にZrO2を析出させた。その後、微多孔膜を溶液から取り出し、湿潤したままの状態でステンレス製の枠にクリップで固定し、150℃の熱風循環式乾燥機で30分間加熱処理して、イオン透過性隔膜(厚み:73μm)を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着後の微多孔膜および多孔性補強体の合計重量」とは、このイオン透過性隔膜の重量をいう。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 8]
In the same manner as in Example 1, a microporous membrane subjected to hydrophilic treatment was obtained.
Separately, a solution obtained by dissolving 7.77 g of zircon hydrofluoric acid (Morita Chemical Co., Ltd.) in 67.2 g of pure water;
A solution obtained by dissolving 0.62 g of boric acid (manufactured by Wako Pure Chemical Industries, Ltd.) in 19.4 g of pure water was mixed to prepare a solution for precipitation of zirconium oxide. An aluminum plate (A1050, thickness 0.2 mm × 100 mm × 100 mm) and the above-mentioned hydrophilic microporous film (80 × 120 mm) were immersed in 95.0 g of this solution, and the plate was allowed to stand at 25 ° C. for 150 hours. And ZrO 2 was deposited on the microporous membrane. Thereafter, the microporous membrane is taken out from the solution, fixed in a stainless steel frame with a clip in a wet state, and heat-treated for 30 minutes with a hot air circulating dryer at 150 ° C. to obtain an ion-permeable membrane (thickness: 73 μm). ) In the equation for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited” refers to the weight of the ion-permeable diaphragm.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
実施例1と同様にして、親水処理された微多孔膜を得た。
別に、ジルコンフッ化水素酸(森田化学製)7.77gを純水67.2gに溶解して得られた溶液と、
ホウ酸(和光純薬製)0.62gを純水19.4gに溶解して得られた溶液を混合して、酸化ジルコニウム析出用の溶液を調製した。この溶液95.0gに対して、アルミニウム板(A1050、厚み0.2mm×100mm×100mm)と、上記親水処理された微多孔膜(80×120mm)とを浸漬し、25℃にて150時間静置して、微多孔膜にZrO2を析出させた。その後、微多孔膜を溶液から取り出し、湿潤したままの状態でステンレス製の枠にクリップで固定し、150℃の熱風循環式乾燥機で30分間加熱処理して、イオン透過性隔膜(厚み:73μm)を得た。なお、上記金属酸化物の付着率を算出する式において、「金属酸化物付着後の微多孔膜および多孔性補強体の合計重量」とは、このイオン透過性隔膜の重量をいう。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 8]
In the same manner as in Example 1, a microporous membrane subjected to hydrophilic treatment was obtained.
Separately, a solution obtained by dissolving 7.77 g of zircon hydrofluoric acid (Morita Chemical Co., Ltd.) in 67.2 g of pure water;
A solution obtained by dissolving 0.62 g of boric acid (manufactured by Wako Pure Chemical Industries, Ltd.) in 19.4 g of pure water was mixed to prepare a solution for precipitation of zirconium oxide. An aluminum plate (A1050, thickness 0.2 mm × 100 mm × 100 mm) and the above-mentioned hydrophilic microporous film (80 × 120 mm) were immersed in 95.0 g of this solution, and the plate was allowed to stand at 25 ° C. for 150 hours. And ZrO 2 was deposited on the microporous membrane. Thereafter, the microporous membrane is taken out from the solution, fixed in a stainless steel frame with a clip in a wet state, and heat-treated for 30 minutes with a hot air circulating dryer at 150 ° C. to obtain an ion-permeable membrane (thickness: 73 μm). ) In the equation for calculating the adhesion rate of the metal oxide, “the total weight of the microporous membrane and the porous reinforcing body after the metal oxide is deposited” refers to the weight of the ion-permeable diaphragm.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[実施例9]
微多孔膜にTiO2を析出させた後の加熱処理の温度を200℃とした以外は、実施例1と同様にして、イオン透過性隔膜(厚み:85μm)を得た。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 9]
An ion permeable membrane (thickness: 85 μm) was obtained in the same manner as in Example 1 except that the temperature of the heat treatment after depositing TiO 2 on the microporous membrane was 200 ° C.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
微多孔膜にTiO2を析出させた後の加熱処理の温度を200℃とした以外は、実施例1と同様にして、イオン透過性隔膜(厚み:85μm)を得た。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 9]
An ion permeable membrane (thickness: 85 μm) was obtained in the same manner as in Example 1 except that the temperature of the heat treatment after depositing TiO 2 on the microporous membrane was 200 ° C.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[実施例10]
微多孔膜としてのポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1122」、孔径0.2μm、厚み80μm)と、多孔性補強体としての不織布(広瀬製紙社製 商品名「HOP‐60HCF」、芯:ポリプロピレン/鞘:ポリエチレン、目付重量60g/m2、厚み160μm)とを、145℃の加熱ロールにて熱接着して3層からなる積層体(微多孔膜/多孔性補強体/微多孔膜、厚み260μm)を得た。
この積層体を用いた以外は、実施例2と同様にして、イオン透過性隔膜(厚み:265μm)を得た。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 10]
Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1122” manufactured by Nitto Denko Corporation, pore diameter 0.2 μm, thickness 80 μm) as a microporous membrane and non-woven fabric (Hirose Paper Co., Ltd.) as a porous reinforcement Product name “HOP-60HCF”, core: polypropylene / sheath: polyethylene, weight per unit area 60 g / m 2 , thickness 160 μm) are thermally bonded with a heating roll at 145 ° C. to form a laminate (microporous) Membrane / porous reinforcing body / microporous membrane, thickness 260 μm).
An ion-permeable diaphragm (thickness: 265 μm) was obtained in the same manner as in Example 2 except that this laminate was used.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
微多孔膜としてのポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1122」、孔径0.2μm、厚み80μm)と、多孔性補強体としての不織布(広瀬製紙社製 商品名「HOP‐60HCF」、芯:ポリプロピレン/鞘:ポリエチレン、目付重量60g/m2、厚み160μm)とを、145℃の加熱ロールにて熱接着して3層からなる積層体(微多孔膜/多孔性補強体/微多孔膜、厚み260μm)を得た。
この積層体を用いた以外は、実施例2と同様にして、イオン透過性隔膜(厚み:265μm)を得た。
得られたイオン透過性隔膜を、上記評価(1)~(4)に供した。結果を表1に示す。 [Example 10]
Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1122” manufactured by Nitto Denko Corporation, pore diameter 0.2 μm, thickness 80 μm) as a microporous membrane and non-woven fabric (Hirose Paper Co., Ltd.) as a porous reinforcement Product name “HOP-60HCF”, core: polypropylene / sheath: polyethylene, weight per unit area 60 g / m 2 , thickness 160 μm) are thermally bonded with a heating roll at 145 ° C. to form a laminate (microporous) Membrane / porous reinforcing body / microporous membrane, thickness 260 μm).
An ion-permeable diaphragm (thickness: 265 μm) was obtained in the same manner as in Example 2 except that this laminate was used.
The obtained ion-permeable diaphragm was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[比較例1]
初めに1-メチル-2-ピロリドン(和光純薬社製)30gと、フッ化カルシウム(和光純薬社製)12gとを混合してホモミクサーで十分に撹拌した。ここにポリスルホン(BASF社製 商品名「ULTRASON S6010」)4g、を添加して60℃に加温し、再度十分に撹拌、溶解した後、脱泡して懸濁液を調製した。
200メッシュ、厚み190μmのポリエチレン網(ニップ(ポリエチレン)強力網、NBC社製)を、伸長状態で、底面に設置した10cm×10cmのガラス製の枠体上に、上記懸濁液10mlを流し込んだ。その後、懸濁液を流し込んだ枠体ごと25℃の純水中に浸漬し、室温で10分間放置して1-メチル-2-ピロリドンを抽出した。その後、凝固したシート状物を枠体より剥離し、さらに25℃の純水中で30分間洗浄し、25℃で風乾後、80℃の乾燥機で30分間乾燥し、シート状のイオン透過性隔膜(厚み:841μm)を得た。
得られたイオン透過性隔膜を、上記評価(1)および(3)に供した。結果を表1に示す。なお、比較例1で得られたイオン透過性隔膜は、表面に凹凸が多く見られ、膜厚みが570μm~1170μmとばらついており、シール不良により電解液漏れがひどく発生したためアルカリ水電解評価はできなかった。 [Comparative Example 1]
First, 30 g of 1-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) and 12 g of calcium fluoride (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and sufficiently stirred with a homomixer. 4 g of polysulfone (trade name “ULTRASON S6010” manufactured by BASF) was added thereto, heated to 60 ° C., sufficiently stirred and dissolved again, and then defoamed to prepare a suspension.
A 200-mesh, 190-μm thick polyethylene net (nip (polyethylene) strong net, manufactured by NBC Co., Ltd.) was stretched and 10 ml of the suspension was poured onto a 10 cm × 10 cm glass frame placed on the bottom. . Thereafter, the frame into which the suspension was poured was immersed in pure water at 25 ° C. and left at room temperature for 10 minutes to extract 1-methyl-2-pyrrolidone. Thereafter, the solidified sheet-like material is peeled off from the frame, further washed in pure water at 25 ° C. for 30 minutes, air-dried at 25 ° C., and then dried in a dryer at 80 ° C. for 30 minutes, to form a sheet-like ion permeability A diaphragm (thickness: 841 μm) was obtained.
The obtained ion-permeable diaphragm was used for the evaluations (1) and (3). The results are shown in Table 1. The ion permeable membrane obtained in Comparative Example 1 has many irregularities on the surface, the film thickness varies from 570 μm to 1170 μm, and electrolyte leakage due to poor sealing is generated, so alkaline water electrolysis evaluation is not possible. There wasn't.
初めに1-メチル-2-ピロリドン(和光純薬社製)30gと、フッ化カルシウム(和光純薬社製)12gとを混合してホモミクサーで十分に撹拌した。ここにポリスルホン(BASF社製 商品名「ULTRASON S6010」)4g、を添加して60℃に加温し、再度十分に撹拌、溶解した後、脱泡して懸濁液を調製した。
200メッシュ、厚み190μmのポリエチレン網(ニップ(ポリエチレン)強力網、NBC社製)を、伸長状態で、底面に設置した10cm×10cmのガラス製の枠体上に、上記懸濁液10mlを流し込んだ。その後、懸濁液を流し込んだ枠体ごと25℃の純水中に浸漬し、室温で10分間放置して1-メチル-2-ピロリドンを抽出した。その後、凝固したシート状物を枠体より剥離し、さらに25℃の純水中で30分間洗浄し、25℃で風乾後、80℃の乾燥機で30分間乾燥し、シート状のイオン透過性隔膜(厚み:841μm)を得た。
得られたイオン透過性隔膜を、上記評価(1)および(3)に供した。結果を表1に示す。なお、比較例1で得られたイオン透過性隔膜は、表面に凹凸が多く見られ、膜厚みが570μm~1170μmとばらついており、シール不良により電解液漏れがひどく発生したためアルカリ水電解評価はできなかった。 [Comparative Example 1]
First, 30 g of 1-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) and 12 g of calcium fluoride (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and sufficiently stirred with a homomixer. 4 g of polysulfone (trade name “ULTRASON S6010” manufactured by BASF) was added thereto, heated to 60 ° C., sufficiently stirred and dissolved again, and then defoamed to prepare a suspension.
A 200-mesh, 190-μm thick polyethylene net (nip (polyethylene) strong net, manufactured by NBC Co., Ltd.) was stretched and 10 ml of the suspension was poured onto a 10 cm × 10 cm glass frame placed on the bottom. . Thereafter, the frame into which the suspension was poured was immersed in pure water at 25 ° C. and left at room temperature for 10 minutes to extract 1-methyl-2-pyrrolidone. Thereafter, the solidified sheet-like material is peeled off from the frame, further washed in pure water at 25 ° C. for 30 minutes, air-dried at 25 ° C., and then dried in a dryer at 80 ° C. for 30 minutes, to form a sheet-like ion permeability A diaphragm (thickness: 841 μm) was obtained.
The obtained ion-permeable diaphragm was used for the evaluations (1) and (3). The results are shown in Table 1. The ion permeable membrane obtained in Comparative Example 1 has many irregularities on the surface, the film thickness varies from 570 μm to 1170 μm, and electrolyte leakage due to poor sealing is generated, so alkaline water electrolysis evaluation is not possible. There wasn't.
[比較例2]
初めに1-メチル-2-ピロリドン(和光純薬社製)30gと、フッ化カルシウム(和光純薬社製)24gとを混合してホモミクサーで十分に撹拌した。ここにポリスルホン(BASF社製 商品名「ULTRASON S6010」)8g、を添加して60℃に加温し、再度十分に撹拌、溶解した後、脱泡して懸濁液を調製した。
次いで、ガラス板にベーカー式アプリケータを用いて、ギャップ300μmで上記懸濁液を塗布した。この上に200メッシュ、厚み190μmのポリエチレン網(ニップ(ポリエチレン)強力網、NBC社製)を載せ、ハンドローラーにて面圧を加えてメッシュに懸濁液を十分に浸みこませた。その後、同じ様にベーカー式アプリケータを用いて、ギャップ400μmで再度上記懸濁液を塗布した。その後、ガラス板ごと25℃の純水中に浸漬し、室温で10分間放置して1-メチル-2-ピロリドンを抽出した。凝固したシート状物を剥離し、さらにこれを25℃の純水中で30分間洗浄し、25℃で風乾後、80℃の乾燥機で30分間乾燥し、シート状のイオン透過性隔膜(厚み:343μm)を得た。得られたイオン透過性隔膜は、表面が平滑で、膜厚みが340μm前後で均一であった。
得られたイオン透過性隔膜を、上記評価(1)、(3)および(4)に供した。結果を表1に示す。 [Comparative Example 2]
First, 30 g of 1-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) and 24 g of calcium fluoride (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and sufficiently stirred with a homomixer. 8 g of polysulfone (trade name “ULTRASON S6010” manufactured by BASF) was added thereto, heated to 60 ° C., sufficiently stirred and dissolved again, and then defoamed to prepare a suspension.
Next, the suspension was applied to a glass plate with a gap of 300 μm using a Baker type applicator. A 200 mesh, 190 μm thick polyethylene net (nip (polyethylene) strong net, manufactured by NBC)) was placed on this, and surface pressure was applied by a hand roller to sufficiently soak the suspension in the mesh. Thereafter, the suspension was applied again at a gap of 400 μm using a Baker type applicator in the same manner. Thereafter, the glass plate was immersed in pure water at 25 ° C. and left at room temperature for 10 minutes to extract 1-methyl-2-pyrrolidone. The solidified sheet is peeled off, further washed in pure water at 25 ° C. for 30 minutes, air-dried at 25 ° C., and then dried in an oven at 80 ° C. for 30 minutes to obtain a sheet-like ion-permeable membrane (thickness). : 343 μm). The obtained ion permeable diaphragm had a smooth surface and a uniform film thickness of around 340 μm.
The obtained ion-permeable diaphragm was used for the evaluations (1), (3) and (4). The results are shown in Table 1.
初めに1-メチル-2-ピロリドン(和光純薬社製)30gと、フッ化カルシウム(和光純薬社製)24gとを混合してホモミクサーで十分に撹拌した。ここにポリスルホン(BASF社製 商品名「ULTRASON S6010」)8g、を添加して60℃に加温し、再度十分に撹拌、溶解した後、脱泡して懸濁液を調製した。
次いで、ガラス板にベーカー式アプリケータを用いて、ギャップ300μmで上記懸濁液を塗布した。この上に200メッシュ、厚み190μmのポリエチレン網(ニップ(ポリエチレン)強力網、NBC社製)を載せ、ハンドローラーにて面圧を加えてメッシュに懸濁液を十分に浸みこませた。その後、同じ様にベーカー式アプリケータを用いて、ギャップ400μmで再度上記懸濁液を塗布した。その後、ガラス板ごと25℃の純水中に浸漬し、室温で10分間放置して1-メチル-2-ピロリドンを抽出した。凝固したシート状物を剥離し、さらにこれを25℃の純水中で30分間洗浄し、25℃で風乾後、80℃の乾燥機で30分間乾燥し、シート状のイオン透過性隔膜(厚み:343μm)を得た。得られたイオン透過性隔膜は、表面が平滑で、膜厚みが340μm前後で均一であった。
得られたイオン透過性隔膜を、上記評価(1)、(3)および(4)に供した。結果を表1に示す。 [Comparative Example 2]
First, 30 g of 1-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) and 24 g of calcium fluoride (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and sufficiently stirred with a homomixer. 8 g of polysulfone (trade name “ULTRASON S6010” manufactured by BASF) was added thereto, heated to 60 ° C., sufficiently stirred and dissolved again, and then defoamed to prepare a suspension.
Next, the suspension was applied to a glass plate with a gap of 300 μm using a Baker type applicator. A 200 mesh, 190 μm thick polyethylene net (nip (polyethylene) strong net, manufactured by NBC)) was placed on this, and surface pressure was applied by a hand roller to sufficiently soak the suspension in the mesh. Thereafter, the suspension was applied again at a gap of 400 μm using a Baker type applicator in the same manner. Thereafter, the glass plate was immersed in pure water at 25 ° C. and left at room temperature for 10 minutes to extract 1-methyl-2-pyrrolidone. The solidified sheet is peeled off, further washed in pure water at 25 ° C. for 30 minutes, air-dried at 25 ° C., and then dried in an oven at 80 ° C. for 30 minutes to obtain a sheet-like ion-permeable membrane (thickness). : 343 μm). The obtained ion permeable diaphragm had a smooth surface and a uniform film thickness of around 340 μm.
The obtained ion-permeable diaphragm was used for the evaluations (1), (3) and (4). The results are shown in Table 1.
[比較例3]
実施例1で得られた親水処理された微多孔膜、すなわち金属酸化物が付着していない微多孔膜(厚み:77μm)を、上記評価(1)~(4)に供した。結果を表1に示す。 [Comparative Example 3]
The hydrophilic microporous membrane obtained in Example 1, that is, a microporous membrane (thickness: 77 μm) to which no metal oxide was adhered was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
実施例1で得られた親水処理された微多孔膜、すなわち金属酸化物が付着していない微多孔膜(厚み:77μm)を、上記評価(1)~(4)に供した。結果を表1に示す。 [Comparative Example 3]
The hydrophilic microporous membrane obtained in Example 1, that is, a microporous membrane (thickness: 77 μm) to which no metal oxide was adhered was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[比較例4]
親水化ポリフッ化ビニリデン(PVdF)多孔質膜(ミリポア社製 商品名「デュラポアメンブレンフィルターGVWP14250」、孔径0.22μm、厚み:116μm)を、上記評価(1)~(4)に供した。結果を表1に示す。 [Comparative Example 4]
A hydrophilic polyvinylidene fluoride (PVdF) porous membrane (trade name “Durapore membrane filter GVWP14250” manufactured by Millipore, pore diameter 0.22 μm, thickness: 116 μm) was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
親水化ポリフッ化ビニリデン(PVdF)多孔質膜(ミリポア社製 商品名「デュラポアメンブレンフィルターGVWP14250」、孔径0.22μm、厚み:116μm)を、上記評価(1)~(4)に供した。結果を表1に示す。 [Comparative Example 4]
A hydrophilic polyvinylidene fluoride (PVdF) porous membrane (trade name “Durapore membrane filter GVWP14250” manufactured by Millipore, pore diameter 0.22 μm, thickness: 116 μm) was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[比較例5]
親水化ポリフッ化ビニリデン(PVdF)多孔質膜(ミリポア社製 商品名「デュラポアメンブレンフィルターHVLP14250」、孔径0.45μm、厚み:104μm)を、上記評価(1)~(4)に供した。結果を表1に示す。 [Comparative Example 5]
A hydrophilic polyvinylidene fluoride (PVdF) porous membrane (trade name “Durapore membrane filter HVLP14250” manufactured by Millipore, pore diameter 0.45 μm, thickness: 104 μm) was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
親水化ポリフッ化ビニリデン(PVdF)多孔質膜(ミリポア社製 商品名「デュラポアメンブレンフィルターHVLP14250」、孔径0.45μm、厚み:104μm)を、上記評価(1)~(4)に供した。結果を表1に示す。 [Comparative Example 5]
A hydrophilic polyvinylidene fluoride (PVdF) porous membrane (trade name “Durapore membrane filter HVLP14250” manufactured by Millipore, pore diameter 0.45 μm, thickness: 104 μm) was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[比較例6]
ポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1122」、孔径0.2μm、厚み80μm)と、不織布(広瀬製紙社製 商品名「HOP‐60HCF」、芯:ポリプロピレン/鞘:ポリエチレン、目付重量60g/m2、厚み160μm)とを、145℃の加熱ロールにて熱接着して得られた積層体(PTFE多孔質膜/不織布、厚み:191μm)を、上記評価(1)~(4)に供した。結果を表1に示す。 [Comparative Example 6]
Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1122” manufactured by Nitto Denko Corporation, pore diameter 0.2 μm, thickness 80 μm) and non-woven fabric (trade name “HOP-60HCF” manufactured by Hirose Paper Co., Ltd.), core: A laminate (PTFE porous membrane / nonwoven fabric, thickness: 191 μm) obtained by thermally bonding polypropylene / sheath: polyethylene, basis weight 60 g / m 2 , thickness 160 μm) with a heating roll at 145 ° C. It used for evaluation (1)-(4). The results are shown in Table 1.
ポリテトラフルオロエチレン(PTFE)多孔質膜(日東電工社製 商品名「テミッシュNTF-1122」、孔径0.2μm、厚み80μm)と、不織布(広瀬製紙社製 商品名「HOP‐60HCF」、芯:ポリプロピレン/鞘:ポリエチレン、目付重量60g/m2、厚み160μm)とを、145℃の加熱ロールにて熱接着して得られた積層体(PTFE多孔質膜/不織布、厚み:191μm)を、上記評価(1)~(4)に供した。結果を表1に示す。 [Comparative Example 6]
Polytetrafluoroethylene (PTFE) porous membrane (trade name “Temisch NTF-1122” manufactured by Nitto Denko Corporation, pore diameter 0.2 μm, thickness 80 μm) and non-woven fabric (trade name “HOP-60HCF” manufactured by Hirose Paper Co., Ltd.), core: A laminate (PTFE porous membrane / nonwoven fabric, thickness: 191 μm) obtained by thermally bonding polypropylene / sheath: polyethylene, basis weight 60 g / m 2 , thickness 160 μm) with a heating roll at 145 ° C. It used for evaluation (1)-(4). The results are shown in Table 1.
表1から明らかなように、本発明によれば、金属酸化物を付着させることにより、高濃度のアルカリ水においても濡れ性を失わず、アルカリ水電解において低電解電圧での水素生成に寄与し得るイオン透過性隔膜を得ることができる。また、本発明のイオン透過性隔膜は、アルカリ水中での耐久性に優れ、長期にわたりアルカリ水に対する濡れ性を維持することができ、電解電圧上昇を抑制することができる。なお、比較例に示すイオン透過性隔膜は、高温高濃度のアルカリ水中で濡れ性を維持することができない。このようなイオン透過性隔膜は、時間経過とともに電解電圧が上昇する。
As is apparent from Table 1, according to the present invention, by attaching a metal oxide, wettability is not lost even in high-concentration alkaline water, and it contributes to hydrogen generation at low electrolysis voltage in alkaline water electrolysis. The resulting ion permeable membrane can be obtained. Moreover, the ion-permeable diaphragm of this invention is excellent in durability in alkaline water, can maintain the wettability with respect to alkaline water over a long period of time, and can suppress an increase in electrolytic voltage. In addition, the ion-permeable diaphragm shown in the comparative example cannot maintain wettability in high-temperature and high-concentration alkaline water. In such an ion-permeable diaphragm, the electrolysis voltage increases with time.
本発明のイオン透過性隔膜は、アルカリ水電解法に用いられる隔膜、および電池用の隔膜として好適に用いられ得る。
The ion-permeable membrane of the present invention can be suitably used as a membrane used in alkaline water electrolysis and a membrane for batteries.
10 微多孔膜
20 金属酸化物
30 多孔性補強体
100、200、300 イオン透過性隔膜 DESCRIPTION OFSYMBOLS 10 Microporous membrane 20 Metal oxide 30 Porous reinforcement 100, 200, 300 Ion permeable diaphragm
20 金属酸化物
30 多孔性補強体
100、200、300 イオン透過性隔膜 DESCRIPTION OF
Claims (7)
- 微多孔膜を備え、
該微多孔膜に、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物が付着している、
イオン透過性隔膜。 With a microporous membrane,
At least one metal oxide selected from titanium oxide and zirconium oxide is attached to the microporous film.
Ion permeable diaphragm. - 多孔性補強体をさらに備える、請求項1に記載のイオン透過性隔膜。 The ion permeable membrane according to claim 1, further comprising a porous reinforcement.
- 前記多孔性補強体に、酸化チタンおよび酸化ジルコニウムから選ばれる少なくとも1種の金属酸化物が付着している、請求項2に記載のイオン透過性隔膜。 The ion permeable membrane according to claim 2, wherein at least one metal oxide selected from titanium oxide and zirconium oxide is attached to the porous reinforcing body.
- 前記微多孔膜が、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリプロピレン、超高分子量ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ-4-メチルペンテン-1、ポリスルホンまたはポリエーテルスルホンから構成されている、請求項1から3のいずれかに記載のイオン透過性隔膜。 The microporous membrane is composed of polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, ultrahigh molecular weight polyethylene, high density polyethylene, polypropylene, poly-4-methylpentene-1, polysulfone, or polyethersulfone. The ion-permeable diaphragm according to any one of 1 to 3.
- 前記多孔性補強体が、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、超高分子量ポリエチレン、ポリ-4-メチルペンテン-1、ポリスルホン、ポリエーテルスルホンまたはポリフェニレンサルファイドから構成されている、請求項1から4のいずれかに記載のイオン透過性隔膜。 The porous reinforcing body is composed of polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, polyethylene, ultrahigh molecular weight polyethylene, poly-4-methylpentene-1, polysulfone, polyethersulfone, or polyphenylene sulfide. 5. The ion permeable diaphragm according to any one of 1 to 4.
- 前記微多孔膜または前記微多孔膜と前記多孔性補強体との積層体を、金属フッ化物錯体およびフッ素イオン捕捉剤を含む溶液に浸漬させて、該微多孔膜または該積層体に金属酸化物を析出させた後、アルカリ水に浸漬させることを含む、
請求項1から5のいずれかに記載のイオン透過性隔膜の製造方法。 The microporous membrane or a laminate of the microporous membrane and the porous reinforcing body is immersed in a solution containing a metal fluoride complex and a fluorine ion scavenger, and a metal oxide is added to the microporous membrane or the laminate. Including immersing in alkaline water,
The manufacturing method of the ion-permeable diaphragm in any one of Claim 1 to 5. - 前記該微多孔膜または前記積層体に金属酸化物を析出させた後、加熱処理を行うことを含む、請求項6に記載のイオン透過性隔膜の製造方法。 The method for producing an ion permeable membrane according to claim 6, comprising performing a heat treatment after depositing a metal oxide on the microporous membrane or the laminate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-130413 | 2012-06-08 | ||
JP2012130413 | 2012-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013183584A1 true WO2013183584A1 (en) | 2013-12-12 |
Family
ID=49711976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/065342 WO2013183584A1 (en) | 2012-06-08 | 2013-06-03 | Ion permeable diaphragm |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014012889A (en) |
WO (1) | WO2013183584A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015117407A (en) * | 2013-12-18 | 2015-06-25 | 川崎重工業株式会社 | Diaphragm for alkaline water electrolysis and method for producing the same, and alkaline water electrolysis apparatus |
WO2016148302A1 (en) * | 2015-03-18 | 2016-09-22 | 旭化成株式会社 | Diaphragm for alkaline water electrolysis, alkaline water electrolysis apparatus, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis |
KR20170132302A (en) * | 2015-03-30 | 2017-12-01 | 인두스트리에 데 노라 에스.피.에이. | Diaphragm-electrode assembly for use in an alkaline water electrolyzer |
WO2018174199A1 (en) | 2017-03-22 | 2018-09-27 | 旭化成株式会社 | Electrolysis electrode, layered body, wound body, electrolytic cell, method for manufacturing electrolytic cell, method for renewing electrode, method for renewing layered body, and method for manufacturing wound body |
JP2018154909A (en) * | 2017-03-21 | 2018-10-04 | 株式会社東芝 | Method for producing diaphragm and method for producing electrode unit using the same |
US20190085470A1 (en) * | 2017-09-20 | 2019-03-21 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
CN109790636A (en) * | 2017-01-27 | 2019-05-21 | 旭化成株式会社 | Amberplex and electrolytic cell |
WO2020059623A1 (en) | 2018-09-21 | 2020-03-26 | 旭化成株式会社 | Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell |
WO2020059627A1 (en) | 2018-09-21 | 2020-03-26 | 旭化成株式会社 | Laminate, laminate storage method, laminate shipping method, protective laminate, and wound body thereof |
WO2020059888A1 (en) | 2018-09-21 | 2020-03-26 | 旭化成株式会社 | Electrode for electrolysis, and laminate |
WO2020059884A1 (en) | 2018-09-21 | 2020-03-26 | 旭化成株式会社 | Jig for manufacturing laminate, method for manufacturing laminate, package, laminate, electrolytic cell, and method for manufacturing electrolytic cell |
EP3529396A4 (en) * | 2017-04-19 | 2020-10-14 | PH Matter, LLC | Electrochemical cell and method of using same |
WO2021172508A1 (en) | 2020-02-26 | 2021-09-02 | 旭化成株式会社 | Electrolytic tank and method for manufacturing electrolytic tank |
CN114561654A (en) * | 2022-03-25 | 2022-05-31 | 中山市刻沃刻科技有限公司 | Coating type hydrogen diaphragm prepared from alkaline electrolyzed water |
CN114600308A (en) * | 2019-09-20 | 2022-06-07 | Li-S能源有限公司 | Flexible lithium-sulfur battery |
EP4060087A1 (en) | 2021-03-18 | 2022-09-21 | Kabushiki Kaisha Toshiba | Carbon dioxide electrolysis device |
EP4060088A2 (en) | 2021-03-18 | 2022-09-21 | Kabushiki Kaisha Toshiba | Carbon dioxide electrolytic device |
WO2023085400A1 (en) * | 2021-11-12 | 2023-05-19 | 国立大学法人東京工業大学 | Membrane, composite membrane, membrane electrode assembly, and water electrolysis device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6542265B2 (en) * | 2015-01-21 | 2019-07-10 | 株式会社東芝 | Porous diaphragm, method for producing the same, electrode unit for producing hypochlorous acid water, and apparatus for producing hypochlorous acid water using the same |
CN109072462B (en) * | 2016-03-18 | 2021-05-18 | 株式会社东芝 | Method for manufacturing electrode unit and method for manufacturing electrolyzed water production apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62280231A (en) * | 1986-05-30 | 1987-12-05 | Asahi Glass Co Ltd | Novel multilayer diaphragm |
JP2604734B2 (en) * | 1986-01-08 | 1997-04-30 | ハイドロジエン・システムズ・エヌ・ベ− | Ion-permeable membrane and method for producing the same |
JP2004323946A (en) * | 2003-04-28 | 2004-11-18 | New Industry Research Organization | Micropatterning method by liquid phase deposition |
-
2013
- 2013-05-31 JP JP2013115298A patent/JP2014012889A/en active Pending
- 2013-06-03 WO PCT/JP2013/065342 patent/WO2013183584A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2604734B2 (en) * | 1986-01-08 | 1997-04-30 | ハイドロジエン・システムズ・エヌ・ベ− | Ion-permeable membrane and method for producing the same |
JPS62280231A (en) * | 1986-05-30 | 1987-12-05 | Asahi Glass Co Ltd | Novel multilayer diaphragm |
JP2004323946A (en) * | 2003-04-28 | 2004-11-18 | New Industry Research Organization | Micropatterning method by liquid phase deposition |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105829580B (en) * | 2013-12-18 | 2018-11-16 | 川崎重工业株式会社 | Alkaline water electrolytic diaphragm and its manufacturing method and alkaline water electrolytic device |
WO2015093047A1 (en) * | 2013-12-18 | 2015-06-25 | 川崎重工業株式会社 | Diaphragm for alkaline water electrolysis, method for producing same, and alkaline water electrolysis apparatus |
CN105829580A (en) * | 2013-12-18 | 2016-08-03 | 川崎重工业株式会社 | Diaphragm For Alkaline Water Electrolysis, Method For Producing Same, And Alkaline Water Electrolysis Apparatus |
EP3085815A1 (en) | 2013-12-18 | 2016-10-26 | Kawasaki Jukogyo Kabushiki Kaisha | Diaphragm for alkaline water electrolysis, method for producing same, and alkaline water electrolysis apparatus |
JP2015117407A (en) * | 2013-12-18 | 2015-06-25 | 川崎重工業株式会社 | Diaphragm for alkaline water electrolysis and method for producing the same, and alkaline water electrolysis apparatus |
WO2016148302A1 (en) * | 2015-03-18 | 2016-09-22 | 旭化成株式会社 | Diaphragm for alkaline water electrolysis, alkaline water electrolysis apparatus, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis |
JPWO2016148302A1 (en) * | 2015-03-18 | 2017-11-24 | 旭化成株式会社 | Diaphragm for alkaline water electrolysis, alkaline water electrolysis apparatus, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis |
US10975483B2 (en) | 2015-03-18 | 2021-04-13 | Asahi Kasei Kabushiki Kaisha | Diaphragm for alkaline water electrolysis, alkaline water electrolysis device, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis |
US20180073155A1 (en) * | 2015-03-18 | 2018-03-15 | Asahi Kasei Kabushiki Kaisha | Diaphragm for alkaline water electrolysis, alkaline water electrolysis device, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis |
KR20170132302A (en) * | 2015-03-30 | 2017-12-01 | 인두스트리에 데 노라 에스.피.에이. | Diaphragm-electrode assembly for use in an alkaline water electrolyzer |
JP2018513272A (en) * | 2015-03-30 | 2018-05-24 | インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ | Diaphragm electrode assembly used in alkaline water electrolyzer |
KR102475005B1 (en) | 2015-03-30 | 2022-12-07 | 인두스트리에 데 노라 에스.피.에이. | Diaphragm-electrode assembly for use in alkaline water electrolyzers |
CN109790636B (en) * | 2017-01-27 | 2020-11-03 | 旭化成株式会社 | Ion exchange membrane and electrolytic cell |
CN109790636A (en) * | 2017-01-27 | 2019-05-21 | 旭化成株式会社 | Amberplex and electrolytic cell |
JP2018154909A (en) * | 2017-03-21 | 2018-10-04 | 株式会社東芝 | Method for producing diaphragm and method for producing electrode unit using the same |
WO2018174199A1 (en) | 2017-03-22 | 2018-09-27 | 旭化成株式会社 | Electrolysis electrode, layered body, wound body, electrolytic cell, method for manufacturing electrolytic cell, method for renewing electrode, method for renewing layered body, and method for manufacturing wound body |
EP4219794A2 (en) | 2017-03-22 | 2023-08-02 | Asahi Kasei Kabushiki Kaisha | Electrode for electrolysis, laminate, wound body, electrolyzer, method for producing electrolyzer, method for renewing electrode, method for renewing laminate, and method for producing wound body |
EP4112783A2 (en) | 2017-03-22 | 2023-01-04 | Asahi Kasei Kabushiki Kaisha | Laminate, wound body and electrolyzer |
EP3529396A4 (en) * | 2017-04-19 | 2020-10-14 | PH Matter, LLC | Electrochemical cell and method of using same |
EP3757254A1 (en) * | 2017-04-19 | 2020-12-30 | Ph Matter, LLC | Method of using an electrochemical cell |
EP3757255A1 (en) * | 2017-04-19 | 2020-12-30 | Ph Matter, LLC | Electrochemical cell |
EP3460103A1 (en) * | 2017-09-20 | 2019-03-27 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
US20190085470A1 (en) * | 2017-09-20 | 2019-03-21 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
US10883180B2 (en) | 2017-09-20 | 2021-01-05 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
WO2020059884A1 (en) | 2018-09-21 | 2020-03-26 | 旭化成株式会社 | Jig for manufacturing laminate, method for manufacturing laminate, package, laminate, electrolytic cell, and method for manufacturing electrolytic cell |
WO2020059627A1 (en) | 2018-09-21 | 2020-03-26 | 旭化成株式会社 | Laminate, laminate storage method, laminate shipping method, protective laminate, and wound body thereof |
WO2020059623A1 (en) | 2018-09-21 | 2020-03-26 | 旭化成株式会社 | Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell |
WO2020059888A1 (en) | 2018-09-21 | 2020-03-26 | 旭化成株式会社 | Electrode for electrolysis, and laminate |
CN114600308B (en) * | 2019-09-20 | 2024-04-16 | Li-S能源有限公司 | Flexible lithium-sulfur battery |
CN114600308A (en) * | 2019-09-20 | 2022-06-07 | Li-S能源有限公司 | Flexible lithium-sulfur battery |
WO2021172508A1 (en) | 2020-02-26 | 2021-09-02 | 旭化成株式会社 | Electrolytic tank and method for manufacturing electrolytic tank |
EP4060087A1 (en) | 2021-03-18 | 2022-09-21 | Kabushiki Kaisha Toshiba | Carbon dioxide electrolysis device |
EP4060088A2 (en) | 2021-03-18 | 2022-09-21 | Kabushiki Kaisha Toshiba | Carbon dioxide electrolytic device |
EP4234763A2 (en) | 2021-03-18 | 2023-08-30 | Kabushiki Kaisha Toshiba | Carbon dioxide electrolysis device |
US12012663B2 (en) | 2021-03-18 | 2024-06-18 | Kabushiki Kaisha Toshiba | Carbon dioxide electrolysis device |
JP7524118B2 (en) | 2021-03-18 | 2024-07-29 | 株式会社東芝 | Carbon Dioxide Electrolysis Device |
WO2023085400A1 (en) * | 2021-11-12 | 2023-05-19 | 国立大学法人東京工業大学 | Membrane, composite membrane, membrane electrode assembly, and water electrolysis device |
CN114561654A (en) * | 2022-03-25 | 2022-05-31 | 中山市刻沃刻科技有限公司 | Coating type hydrogen diaphragm prepared from alkaline electrolyzed water |
Also Published As
Publication number | Publication date |
---|---|
JP2014012889A (en) | 2014-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013183584A1 (en) | Ion permeable diaphragm | |
CN110023542B (en) | Multi-pole electrolytic cell for alkaline water electrolysis and hydrogen production method | |
AU760343B2 (en) | Battery diaphragm | |
EP3652362B1 (en) | A reinforced separator for alkaline hydrolysis | |
EP2831312B1 (en) | Assembly of a porous metal diffusion substrate and a polymeric separator membrane | |
JP5495210B2 (en) | Composite porous membrane, method for producing composite porous membrane, and battery separator using the same | |
US20020127474A1 (en) | Proton-selective conducting membranes | |
Zeng et al. | Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries | |
JP6993522B2 (en) | Pore-filled amphoteric membrane for the purpose of low permeation of vanadium ions and its manufacturing method | |
JP6016197B2 (en) | Membrane for redox flow battery | |
CN109075369B (en) | Composite membrane for flow battery | |
JP2016049774A (en) | Laminate, separator for nonaqueous electrolyte secondary battery including laminate and nonaqueous electrolyte secondary battery including separator for nonaqueous electrolyte secondary battery | |
KR101814716B1 (en) | Porous Polymer Membranes Fabricated by the Combination Method of Phase Inversion and Roll-Press and Redox-Flow Battery Comprising the Same | |
TW202040860A (en) | Ion exchange membrane, method of making the ion exchange membrane, and flow battery comprising the ion exchange membrane | |
JPWO2018182006A1 (en) | Diaphragm, electrolytic cell, and hydrogen production method | |
JP2023175715A (en) | Integral composite membrane with continuous ionomer phase | |
JP2012226921A (en) | Porous laminate film | |
KR20230053637A (en) | composite electrolyte membrane | |
JP2019525387A (en) | Ion exchange membrane and method for producing the same, membrane electrode assembly, and redox flow battery | |
JP2015101775A (en) | Method for producing diaphragm for alkali water electrolysis | |
JP2004204119A (en) | Porous film and electrochemical element using the same | |
JP2014148709A (en) | Electrolytic diaphragm | |
CN116199934A (en) | Proton conducting membrane and method for preparing proton conducting membrane | |
KR20150094041A (en) | Oxy-PAN seperator for secondary cell with excellent heat-resisting property and its method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13801291 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13801291 Country of ref document: EP Kind code of ref document: A1 |