WO2013180307A1 - 可視光応答型光触媒粒子およびその製造方法 - Google Patents
可視光応答型光触媒粒子およびその製造方法 Download PDFInfo
- Publication number
- WO2013180307A1 WO2013180307A1 PCT/JP2013/065519 JP2013065519W WO2013180307A1 WO 2013180307 A1 WO2013180307 A1 WO 2013180307A1 JP 2013065519 W JP2013065519 W JP 2013065519W WO 2013180307 A1 WO2013180307 A1 WO 2013180307A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rhodium
- strontium titanate
- doped strontium
- titanate particles
- particles
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 168
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims abstract description 124
- 239000011164 primary particle Substances 0.000 claims abstract description 25
- 238000000985 reflectance spectrum Methods 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 63
- 239000007864 aqueous solution Substances 0.000 claims description 47
- 239000010936 titanium Substances 0.000 claims description 45
- 229910052719 titanium Inorganic materials 0.000 claims description 41
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 33
- 239000010948 rhodium Substances 0.000 claims description 33
- 239000008139 complexing agent Substances 0.000 claims description 20
- 230000031700 light absorption Effects 0.000 claims description 20
- 229910052703 rhodium Inorganic materials 0.000 claims description 20
- 150000003609 titanium compounds Chemical class 0.000 claims description 19
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 18
- 230000002209 hydrophobic effect Effects 0.000 claims description 14
- 229920000620 organic polymer Polymers 0.000 claims description 13
- 150000003284 rhodium compounds Chemical class 0.000 claims description 9
- 238000010304 firing Methods 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- 150000003438 strontium compounds Chemical class 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 9
- 239000011163 secondary particle Substances 0.000 abstract description 6
- 230000010748 Photoabsorption Effects 0.000 abstract 2
- 239000013078 crystal Substances 0.000 description 32
- 239000000843 powder Substances 0.000 description 29
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 18
- 239000001257 hydrogen Substances 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 18
- 239000001301 oxygen Substances 0.000 description 18
- 229910052760 oxygen Inorganic materials 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 17
- 238000002425 crystallisation Methods 0.000 description 15
- 230000008025 crystallization Effects 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 239000006185 dispersion Substances 0.000 description 13
- 229910052697 platinum Inorganic materials 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 230000007547 defect Effects 0.000 description 12
- -1 for example Inorganic materials 0.000 description 12
- 239000002243 precursor Substances 0.000 description 12
- 229910002367 SrTiO Inorganic materials 0.000 description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 238000006460 hydrolysis reaction Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000004310 lactic acid Substances 0.000 description 7
- 235000014655 lactic acid Nutrition 0.000 description 7
- 230000001699 photocatalysis Effects 0.000 description 7
- 238000006862 quantum yield reaction Methods 0.000 description 7
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 7
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000005297 pyrex Substances 0.000 description 6
- 238000000197 pyrolysis Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000007540 photo-reduction reaction Methods 0.000 description 5
- 238000006068 polycondensation reaction Methods 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000004703 alkoxides Chemical class 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 125000005594 diketone group Chemical group 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000003746 solid phase reaction Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000006303 photolysis reaction Methods 0.000 description 3
- 230000015843 photosynthesis, light reaction Effects 0.000 description 3
- 229910003450 rhodium oxide Inorganic materials 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 229910001427 strontium ion Inorganic materials 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 2
- AIFLGMNWQFPTAJ-UHFFFAOYSA-J 2-hydroxypropanoate;titanium(4+) Chemical compound [Ti+4].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O AIFLGMNWQFPTAJ-UHFFFAOYSA-J 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000511976 Hoya Species 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- SJLOMQIUPFZJAN-UHFFFAOYSA-N oxorhodium Chemical compound [Rh]=O SJLOMQIUPFZJAN-UHFFFAOYSA-N 0.000 description 2
- 238000013032 photocatalytic reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 2
- RXSHXLOMRZJCLB-UHFFFAOYSA-L strontium;diacetate Chemical compound [Sr+2].CC([O-])=O.CC([O-])=O RXSHXLOMRZJCLB-UHFFFAOYSA-L 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RZCXRDBYLLLRKH-UHFFFAOYSA-N 2-(2-ethylhexyl)-2-sulfobutanedioic acid Chemical compound CCCCC(CC)CC(S(O)(=O)=O)(C(O)=O)CC(O)=O RZCXRDBYLLLRKH-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- UDDBYTKYQIYURU-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid rhodium Chemical compound [Rh].OC(=O)CC(O)(CC(O)=O)C(O)=O UDDBYTKYQIYURU-UHFFFAOYSA-N 0.000 description 1
- JIGUICYYOYEXFS-UHFFFAOYSA-N 3-tert-butylbenzene-1,2-diol Chemical compound CC(C)(C)C1=CC=CC(O)=C1O JIGUICYYOYEXFS-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- REIYHFWZISXFKU-UHFFFAOYSA-N Butyl acetoacetate Chemical compound CCCCOC(=O)CC(C)=O REIYHFWZISXFKU-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229910021604 Rhodium(III) chloride Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- DLBDQPTYDPUKHZ-UHFFFAOYSA-K [Rh+3].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O Chemical compound [Rh+3].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O DLBDQPTYDPUKHZ-UHFFFAOYSA-K 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- ITNVWQNWHXEMNS-UHFFFAOYSA-N methanolate;titanium(4+) Chemical compound [Ti+4].[O-]C.[O-]C.[O-]C.[O-]C ITNVWQNWHXEMNS-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- DHGFMVMDBNLMKT-UHFFFAOYSA-N propyl 3-oxobutanoate Chemical compound CCCOC(=O)CC(C)=O DHGFMVMDBNLMKT-UHFFFAOYSA-N 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- SVOOVMQUISJERI-UHFFFAOYSA-K rhodium(3+);triacetate Chemical compound [Rh+3].CC([O-])=O.CC([O-])=O.CC([O-])=O SVOOVMQUISJERI-UHFFFAOYSA-K 0.000 description 1
- MMRXYMKDBFSWJR-UHFFFAOYSA-K rhodium(3+);tribromide Chemical compound [Br-].[Br-].[Br-].[Rh+3] MMRXYMKDBFSWJR-UHFFFAOYSA-K 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- BIXNGBXQRRXPLM-UHFFFAOYSA-K ruthenium(3+);trichloride;hydrate Chemical compound O.Cl[Ru](Cl)Cl BIXNGBXQRRXPLM-UHFFFAOYSA-K 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- YJPVTCSBVRMESK-UHFFFAOYSA-L strontium bromide Chemical compound [Br-].[Br-].[Sr+2] YJPVTCSBVRMESK-UHFFFAOYSA-L 0.000 description 1
- 229940074155 strontium bromide Drugs 0.000 description 1
- 229910001625 strontium bromide Inorganic materials 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- CCUZKVDGQHXAFK-UHFFFAOYSA-L strontium;2-hydroxypropanoate Chemical compound [Sr+2].CC(O)C([O-])=O.CC(O)C([O-])=O CCUZKVDGQHXAFK-UHFFFAOYSA-L 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- QGAPCDHPGCYAKM-UHFFFAOYSA-H tristrontium;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Sr+2].[Sr+2].[Sr+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QGAPCDHPGCYAKM-UHFFFAOYSA-H 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/58—Platinum group metals with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/122—Incoherent waves
- B01J19/127—Sunlight; Visible light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/464—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0211—Impregnation using a colloidal suspension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
- B01J37/033—Using Hydrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/036—Precipitation; Co-precipitation to form a gel or a cogel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/006—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the present invention relates to a visible light responsive photocatalyst particle and a production method thereof.
- the visible light responsive photocatalyst is a photocatalyst that can utilize visible light contained in a large amount of sunlight. This visible light responsive photocatalyst is expected to be applied to hydrogen production by photolysis of organic substances and water.
- a photocatalyst for water splitting for the purpose of producing hydrogen has attracted attention as a photocatalyst used in a method for producing hydrogen using renewable energy.
- the demand for a photocatalyst for water splitting that provides high activity is increasing year by year.
- Rhodium-doped strontium titanate (Rh—SrTiO 3 ) is known to have a very high ability to generate hydrogen by photolysis of water as a photocatalyst for water splitting having visible light response. Further, it is known that a Z-scheme system in which Rh—SrTiO 3 and a photocatalyst for oxygen generation are combined can obtain high energy conversion efficiency in a water splitting reaction (Japanese Patent Laid-Open No. 2004-008963 (Patent Document 1). ), Sasaki et al., J. Phys. Chem. C 17536-17542, 2009 (Non-patent Document 1)).
- the Rh—SrTiO 3 is produced by a solid-phase reaction method or a hydrothermal synthesis method, and in these methods, it is known to perform a high crystallization treatment by baking at about 1000 ° C.
- the Rh—SrTiO 3 particles thus obtained have a primary particle size of about several hundred nm to several ⁇ m, and are known to exhibit high hydrogen generation ability under visible light irradiation. Meanwhile, in order to further highly activate Rh-SrTiO 3 particles, increasing the specific surface area of the Rh-SrTiO 3 particles, that is, Rh-SrTiO 3 particles of fine crystal has been demanded.
- the present invention has been made in view of such problems, and an object thereof is to provide rhodium-doped strontium titanate particles that achieve both high crystallinity and finer primary particles.
- the rhodium-doped strontium titanate particles according to the present invention have a primary particle diameter of 70 nm or less, a light absorption at a wavelength of 570 nm, measured by a diffuse reflection spectrum, of 0.6 or more, and a light absorption at a wavelength of 1800 nm.
- the rate is 0.7 or less.
- the rhodium-doped strontium titanate particles according to the present invention exhibit high photocatalytic activity under visible light irradiation.
- 2 is a scanning electron micrograph of rhodium-doped strontium titanate particles according to the present invention.
- 2 is a transmission electron micrograph of rhodium-doped strontium titanate particles according to the present invention. It is a measurement result of the quantum yield by the water decomposition of the rhodium dope strontium titanate particles by this invention.
- rhodium-doped strontium titanate particles are characterized by having high crystallinity and a fine primary particle diameter.
- Rh—SrTiO 3 it is difficult to achieve both high crystallinity and a large specific surface area, that is, a fine crystal. That is, Rh—SrTiO 3 is a substance that is difficult to grow to be a crystal having high crystallinity while remaining as a fine crystal during crystal growth.
- the generation of oxygen defects can be considered as one of the factors that decrease the crystallinity of the metal oxide. That is, as the number of oxygen site defects in the metal oxide increases, that is, the number of oxygen defects increases, the periodicity of the crystal is disturbed, so that the crystallinity of the metal oxide decreases, that is, the crystallinity decreases.
- the absorption spectrum of titanium oxide having oxygen defects has a broad light absorption band in a wide range from the visible light region to the near infrared region (Cronemeyer et al., Phys. Rev. 113, 1222). ⁇ 1225 pages, 1959).
- the present inventors by measuring the diffuse reflection spectrum of rhodium-doped strontium titanate particles, the present inventors have produced a broad light absorption band from visible light to near-infrared light region, similar to titanium oxide. It was confirmed. Furthermore, it was confirmed that the light absorptance decreased in this near-infrared light region by increasing the firing temperature. From these facts, it was found that the improvement in crystallinity accompanying the increase in the firing temperature can be quantified by measuring the light absorption in the near infrared region from the visible light.
- the present inventors also consider the rhodium state, and light absorption derived from tetravalent rhodium (Rh 4+ ) in the strontium titanate crystal. It was found that the larger the value, the higher the crystallinity. Regarding the influence of the valence of rhodium on the crystallinity, the following mechanism is expected, but the present invention is not limited to this mechanism.
- the valence of rhodium is known as bivalent, trivalent, tetravalent and pentavalent.
- trivalent rhodium (Rh 3+ ) is most stable at room temperature and in the atmosphere.
- strontium titanate (SrTiO 3 ) is fired at high temperature and crystallized, the site of tetravalent titanium (Ti 4+ ) is known to be doped with rhodium. ing.
- Rh 3+ is substituted and dissolved in a crystal site of Ti 4+ , oxygen defects are generated in order to maintain electrical neutrality. Therefore, in order to reduce the oxygen vacancies, the present inventors need to substitute Rh 4+ capable of maintaining the electrical neutrality of the crystal into a solid solution of Ti 4+ , thereby forming particles. It has been found that the crystallinity of is improved.
- the present inventors have found that the optical property parameters of the rhodium-doped strontium titanate particles having high photocatalytic activity of the present invention can be clarified by measuring the particles by the following method.
- an ultraviolet-visible near-infrared spectrophotometer (“V-670” manufactured by JASCO Corporation) equipped with an integrating sphere unit is used.
- V-670 ultraviolet-visible near-infrared spectrophotometer
- ISV-722 an integrating sphere unit
- alumina sintered pellets are used for the baseline measurement.
- the spectral reflectance R can be measured.
- the optical characteristics of the rhodium-doped strontium titanate particles are shown by measuring a diffuse reflection spectrum in the wavelength range of 200 to 2500 nm using this apparatus.
- the rhodium-doped strontium titanate particles of the present invention have a fine primary particle diameter.
- the primary particle diameter is 70 nm or less.
- the rhodium-doped strontium titanate particles can have a high specific surface area.
- the contact area with the substance to be decomposed increases, and the photocatalytic activity of the particles improves.
- a preferable primary particle diameter is 50 nm or less.
- a more preferable primary particle diameter is 30 nm or more and 70 nm or less.
- An even more preferable primary particle size is 30 nm or more and 50 nm or less.
- the primary particle diameter of the rhodium-doped strontium titanate particles is, for example, 50 crystal particles when observed with a scanning electron microscope (manufactured by Hitachi, Ltd., “S-4100”, hereinafter, SEM) at a magnification of 40000 times. It is possible to define the average value by circular approximation.
- the rhodium-doped strontium titanate particles according to the present invention have a large specific surface area.
- rhodium-doped strontium titanate particles having a large surface area or a highly porous powder (secondary particles) in which they are aggregated are shown. Became possible.
- the R SP value is an index that correlates with the amount of water molecules adsorbed on the particle surface, and is an index that depends on the surface area of particles dispersed in water that are in contact with water. Since the rhodium-doped strontium titanate particles according to the present invention can be used as a photocatalyst for water splitting as will be described later, the particles are used in contact with water. In this case, water diffuses into the gaps between the primary particles or the pores in the secondary particles, and the water comes into contact with the surface of the particles.
- the rhodium-doped strontium titanate particles according to the present invention are used as a photocatalyst for water splitting, it is possible to accurately measure the surface area of the particles adsorbed with water using the R SP value as an index. It is effective in obtaining particles.
- BET analysis based on nitrogen adsorption / desorption measurement, which is the mainstream in the past, can be mentioned.
- nitrogen is used as a probe, and the molecular diameter of nitrogen is small. Nitrogen is adsorbed on the pore surfaces where water cannot diffuse. Therefore, the specific surface area measurement method based on BET analysis lacks effectiveness when it is intended for particles on which water is adsorbed.
- the R SP value is represented by the following formula.
- the R SP value can be measured by a pulse NMR particle interface evaluation apparatus (for example, “Acorn area”, manufactured by Nippon Lucas).
- R SP (R b ⁇ R av ) / R b (1)
- R av is an average relaxation time constant.
- the relaxation time constant is the reciprocal of the relaxation time of water that is in contact with or adsorbing to the surface when the particles are dispersed in water.
- the average relaxation time constant is a value obtained by averaging the obtained relaxation time constants.
- R b is the relaxation time constant of blank water containing no particles.
- the R SP value of the rhodium-doped strontium titanate particles according to the present invention is preferably 0.86 or more. More preferably, it is 0.88 or more. The R SP value is preferably 10 or less.
- composition of rhodium-doped strontium titanate can be represented by SrTi 1-x Rh x O 3 .
- the molar ratio of rhodium-doped strontium titanate particles represented by M (rhodium) / M (titanium + rhodium) is preferably 0.001 to 0.03, and more preferably 0.01 to 0.03. It is. By setting the molar ratio within this range, an increase in the amount of oxygen defects in the crystal can be suppressed and high photocatalytic activity can be realized.
- the rhodium-doped strontium titanate particles of the present invention can exhibit high photocatalytic activity by satisfying both the above-described light absorption rate and the fine primary particle shape measured by SEM.
- a dry reaction method or a wet reaction method can be used as a production method of rhodium-doped strontium titanate particles according to the present invention.
- the dry reaction method include a solid phase reaction method.
- the wet reaction method include a sol-gel method, a complex polymerization method, and a hydrothermal reaction method.
- the sol-gel method uses a alkoxide of titanium or a chloride of titanium as a raw material.
- a hydroxide containing titanium is generated by a hydrolysis reaction between the raw material and water. The hydroxide is baked at 600 ° C. or higher and crystallized to obtain rhodium-doped strontium titanate particles.
- a thermal decomposition method using an aqueous solution containing strontium ions, titanium ions and rhodium ions It is possible to preferably use an aqueous solution pyrolysis method.
- Aqueous solution pyrolysis method uses a metal-containing precursor as a raw material, and heats an aqueous solution containing this metal-containing precursor, thereby dehydrating polycondensation of metal-containing precursors with the evaporation of water as a solvent. It is a method of causing a reaction.
- a metal hydroxide is generated by hydrolysis of metal-containing precursors, Since these dehydration polycondensation occurs rapidly, crystal nuclei are likely to be coarsened.
- a metal-containing precursor having a slow hydrolysis reaction is used as a raw material, so that stable dissolution in water becomes possible.
- a dehydration polycondensation reaction between the metal-containing precursors can occur gradually with the evaporation of water as a solvent. This slows down the generation rate of crystal nuclei during pyrolysis, and as a result, miniaturization of crystal nuclei becomes possible.
- a rhodium-doped strontium titanate precursor is contained by mixing a titanium compound, a strontium compound, a rhodium compound and a hydrophobic complexing agent and dissolving them in water. It is preferable to prepare an aqueous solution (the aqueous solution thus obtained is hereinafter referred to as an aqueous solution A).
- rhodium-doped strontium titanate precursor means a compound having a six-membered ring structure formed by coordination of a hydrophobic complexing agent with titanium ions generated by dissociation of a titanium compound, and strontium It is a mixture of strontium ions generated by dissociating compounds and rhodium ions generated by dissociating rhodium compounds.
- an aqueous solution containing a water-soluble titanium complex is prepared by mixing a titanium compound and a hydrophobic complexing agent (the aqueous solution thus obtained is hereinafter referred to as an aqueous solution B).
- This aqueous solution B is mixed with a strontium compound and a rhodium compound to prepare an aqueous solution containing the rhodium-doped strontium titanate precursor, that is, an aqueous solution A.
- the water-soluble titanium complex is one in which a hydrophobic complexing agent is coordinated to titanium ions generated by dissociation of a titanium compound.
- a hydrophobic complexing agent as a raw material in addition to the titanium compound as a method for water-solubilizing a titanium compound containing Ti 4+ that is inherently poorly water-soluble.
- a hydrophobic complexing agent By coordinating the hydrophobic complexing agent to titanium ions and complexing the titanium ions, hydrolysis can be suppressed.
- the titanium compound an alkoxide of titanium or a chloride of titanium can be used.
- titanium alkoxide titanium tetramethoxide, titanium tetraethoxide, titanium tetra n-propoxide, titanium tetraisopropoxide, titanium tetra n-butoxide and the like can be used.
- the chloride of titanium titanium tetrachloride, titanium tetrafluoride, titanium tetrabromide, or the like can be used.
- the hydrophobic complexing agent used in the present invention can coordinate to titanium ions, and the hydrophobic part is exposed on the solvent phase side when coordinated to titanium ions.
- diketones and catechols can be preferably used.
- diketones include diketones represented by the general formula: Z 1 —CO—CH 2 —CO—Z 2 (wherein Z 1 and Z 2 are each independently an alkyl group or an alkoxy group). Can be preferably used.
- diketones represented by the general formula acetylacetone, ethyl acetoacetate, propyl acetoacetate, butyl acetoacetate and the like can be preferably used.
- catechols ascorbic acid, pyrocatechol, tert-butylcatechol and the like can be preferably used. Even more preferably, acetylacetone or ethyl acetoacetate having a very high complexing ability in an aqueous solution of titanium can be used. Thereby, it is possible to suppress intermolecular polymerization due to intermolecular dehydration polycondensation that occurs when a hydroxyl group that is a hydrophilic portion is exposed on the solvent phase side. Therefore, it is possible to refine crystal nuclei and to refine particles after the pyrolysis reaction during pyrolysis.
- a hydrophilic complexing agent may be used in addition to the hydrophobic complexing agent.
- a carboxylic acid can be preferably used, and more preferably a carboxylic acid represented by the formula R 1 —COOH (wherein R 1 is a C 1-4 alkyl group), or A hydroxy acid or dicarboxylic acid having 1 to 6 carbon atoms can be used.
- Specific examples of such a hydrophilic complexing agent include water-soluble carboxylic acids such as acetic acid, lactic acid, citric acid, butyric acid and malic acid. Even more preferred water-soluble carboxylic acid is acetic acid or lactic acid. Thereby, it becomes possible to suppress the hydrolysis reaction of the titanium compound and improve the solubility in water.
- the solvent for forming the complex may be water, but according to another preferred embodiment of the present invention, a water-soluble organic solvent may be used as the solvent.
- a water-soluble organic solvent may be used as the solvent.
- the solubility of a transition metal compound can be improved.
- Specific examples of the water-soluble organic solvent include methanol, ethanol, n-propanol, isopropanol, cellosolve solvent, and carbitol solvent.
- the water-soluble titanium complex described in JP 2012-056947 A can be used.
- a titanium complex having a coordination number of 6 with respect to a titanium ion, which is coordinated with the titanium ion is represented by the general formula: Z 1 —CO—CH 2 —CO—Z 2 (wherein , Z 1 and Z 2 are each independently an alkyl group or an alkoxy group.),
- a third ligand and a fourth ligand each independently selected from the group consisting of an alkoxide and a hydroxide ion, and a fifth ligand that is H 2 O
- a titanium complex consisting of can be used.
- strontium compound containing Sr 2+ a compound that is water-soluble and does not leave an anionic component as a residue upon heat crystallization is preferable.
- strontium nitrate, strontium acetate, strontium chloride, strontium bromide, strontium lactate, strontium citrate and the like are preferably used.
- the rhodium compound containing Rh 3+ is preferably water-soluble and does not leave an anionic component as a residue during heat crystallization.
- the rhodium compound for example, rhodium nitrate, rhodium acetate, rhodium chloride, rhodium bromide, rhodium lactate, rhodium citrate and the like are preferably used. Further, a molecule containing Rh 4+ may be used as the rhodium compound.
- a hydrophilic complexing agent such as lactic acid, butyric acid or citric acid may be used.
- the preferable mixing ratio of various raw materials in the aqueous solution A is 0.01 to 0.2 mol of titanium compound containing 1 atom of titanium with respect to 100 g of water. More preferably, it is 0.02 to 0.1 mol, the strontium compound is 1 to 1.1 times the molar amount with respect to the titanium compound containing one titanium atom, and the rhodium compound is a desired doping amount.
- the hydrophobic complexing agent is 0.005 to 0.4 mol, more preferably 0.015 to 0.15 mol, and the hydrophilic complexing agent is 0.01 to 0.2 mol, more preferably Is preferably 0.025 to 0.15 mol.
- the molar ratio of the hydrophobic complexing agent to the titanium compound is preferably 0.5 to 2 mol, more preferably 0.8 to 1 with respect to 1 mol of the titanium compound containing 1 atom of titanium. .2 moles. Within this range, it is possible to suppress the progress of the hydrolysis reaction of the titanium compound and the decrease in water solubility due to the improved hydrophobicity of the molecule.
- the molar ratio of the hydrophilic complexing agent to the titanium compound is preferably 0.2 to 2 mol, more preferably 0.3 to 1 mol with respect to 1 mol of the titanium compound containing 1 atom of titanium.
- the pH at which the stability of each ion in the aqueous solution can be maintained and the particles after crystallization can be refined is preferably 2 to 6, more preferably 3 to 5.
- the rhodium-doped strontium titanate particles of the present invention it is preferable to add water-dispersed organic polymer particles to the aqueous solution A (the water-dispersed organic polymer particles are added to the aqueous solution A thus obtained).
- This is hereinafter referred to as a dispersion).
- grains can be obtained by heating and crystallizing this dispersion.
- water-dispersed organic polymer particles spherical latex particles or oil-in-water dispersed (O / W type) emulsions can be used.
- fine rhodium-doped strontium titanate particles are obtained, and secondary particles in which such particles are aggregated are porous.
- the mechanism by which fine primary particles are obtained as a result and the porosity of the aggregated secondary particles is considered as follows, but the present invention is not limited to this mechanism. .
- water-soluble titanium complexes, strontium ions and rhodium ions which are also polar molecules, are adsorbed on the surface of the polymer particles having polarity in water.
- the titanium complex on the surface of the polymer particles is hydrolyzed to produce rhodium-doped strontium titanate crystal nuclei.
- the crystal nuclei on the surface of the polymer particles exist with a physical distance from each other, there are few opportunities for bonding between the crystal nuclei, and the crystal growth is considered to proceed slowly. As a result, it is considered that the primary particle diameter of the rhodium-doped strontium titanate particles becomes fine.
- the resulting rhodium-doped strontium titanate particles bind to each other as the polymer particles disappear due to thermal decomposition, but the presence of the polymer particles suppresses aggregation of the rhodium-doped strontium titanate particles, and as a result, It is considered that the porosity of the secondary particles becomes higher, that is, the porosity becomes higher.
- the dispersed particle diameter of the water-dispersed organic polymer particles in water is preferably 10 to 1000 nm, and more preferably 30 to 300 nm. By setting the dispersed particle diameter within this range, the physical distance between the crystal nuclei of rhodium-doped strontium titanate can be increased. Therefore, it becomes possible to refine the rhodium-doped strontium titanate particles after heat crystallization.
- the material of the water-dispersed organic polymer particles is preferably a material that does not leave a residue such as amorphous carbon, which is a heated residue of the organic polymer particles, after heat crystallization at 600 ° C. or higher.
- the amount of the water-dispersed organic polymer particles added is preferably 1 to 20 times, more preferably 3 to 15 times the weight of rhodium-doped strontium after high temperature crystallization.
- the following method is preferably used as a method for producing rhodium-doped strontium titanate particles from the dispersion in the production method of the present invention.
- the dispersion is first dried at a low temperature of 200 ° C. or lower to obtain a dry powder. By firing this dried powder for crystallization, rhodium-doped strontium titanate particles can be produced. Moreover, you may perform the drying and baking process of this dispersion continuously.
- the calcination temperature at the time of crystallization of rhodium-doped strontium titanate is more than 800 ° C. and less than 1100 ° C., more preferably 900 ° C. or more and 1050 ° C. or less. By adjusting to this temperature range, it is possible to highly crystallize high-purity rhodium-doped strontium titanate particles while thermally decomposing the water-dispersed organic polymer particles.
- the rhodium-doped strontium titanate particles of the present invention are used as a photocatalyst for the photolysis of water, it is preferable to support a cocatalyst on the particle surface so that hydrogen and oxygen are generated quickly.
- metal particles such as platinum, ruthenium, iridium and rhodium and metal oxide particles such as chromium oxide, rhodium oxide, iridium oxide and ruthenium oxide can be used. Further, a mixture of metal particles and metal oxide particles can be used.
- a suitable redox couple (Fe 2+ / Fe 3+ , I ⁇ / I 3 ⁇ , I ⁇ / IO 3 ⁇ , Co 2+ / Co 3+ etc.) is dissolved in water, and the Z scheme system It can be set as this structure.
- This Z scheme system can completely decompose water by irradiation with visible light.
- the photocatalyst for oxygen generation in the present invention is preferably BiVO 4 , WO 3 or the like.
- rhodium-doped strontium titanate particles as a photocatalyst for water splitting is provided. Furthermore, as another aspect of the present invention, there is provided a water splitting method comprising irradiating visible light to rhodium-doped strontium titanate particles in contact with water.
- acrylic-styrene-based O / W emulsions manufactured by DIC, “Dry strontium titanate” obtained after calcination as water-dispersed organic polymer particles so that the solid content is 5 times by weight.
- EC-905EF dispersed particle size 100-150 nm, pH: 7-9, solid content concentration 49-51%) was added.
- the dispersion produced as described above was dried at 80 ° C. for 1 hour, and then fired at the firing temperature shown in Table 1 for 10 hours, thereby comprising the rhodium-doped strontium titanate particles of Examples 1 to 11.
- a powder was prepared.
- Example 10 For the sample of Example 10, as described above, using a planetary mill (“Premium Line P-7”, manufactured by Fritsch) for the powder after calcination for 10 hours at 1000 ° C. and crystallization, Fine dispersion was performed. As dispersion conditions, 1 g of rhodium-doped strontium titanate powder, 4 g of ethanol, and 1 g of zirconia beads (0.5 mm ⁇ ) were placed in a zirconia pot (capacity 45 mL), and the rotation and revolution dispersion treatment was performed at 700 rpm for 30 minutes. Went.
- Premium Line P-7 manufactured by Fritsch
- the slurry in which the powder is dispersed is collected by suction filtration using a resin filter having a mesh diameter of 0.1 mm, and the slurry is dried at room temperature for 10 hours to perform the dispersion treatment.
- the rhodium-doped strontium titanate powder of Example 10 was prepared.
- Example 12 In the method for producing rhodium-doped strontium titanate particles of Examples 1 to 11, acrylic latex particles (Chemisnow 1000, manufactured by Soken Chemical Co., Ltd., average particle diameter of about 1000 nm) are used instead of using an acrylic-styrene O / W emulsion. A rhodium-doped strontium titanate particle was produced by the same production method except that a 50 wt% aqueous dispersion was used.
- Example 13 In the method for producing rhodium-doped strontium titanate particles of Examples 1 to 11, acrylic latex particles (Chemisnow 300, manufactured by Soken Chemical Co., Ltd., average particle size of about 300 nm) are used instead of using acrylic-styrene O / W type emulsions. A rhodium-doped strontium titanate particle was produced by the same production method except that a 50 wt% aqueous dispersion was used.
- Comparative Examples 1-6 As a comparative sample, rhodium-doped strontium titanate prepared by a conventional solid phase reaction method was prepared.
- Comparative Examples 7-11 The rhodium-doped strontium titanate powders of Comparative Examples 7 to 11 were prepared in the same manner as in Example 1 except that the calcination temperature for crystallization was changed to the calcination temperature shown in Table 1 under the production conditions of Example 1 above. Was made.
- Rhodium-doped strontium titanate was prepared by complex polymerization. Specifically, in the preparation method of Example 2 above, a commercially available water-soluble titanium complex, peroxocitrate titanium complex (“TAS-FINE”, manufactured by Furuuchi Chemical Co., Ltd.) was used instead of the water-soluble titanium complex. Produced the rhodium-doped strontium titanate powder of Comparative Example 12 by the same method as in Example 2.
- Rhodium-doped strontium titanate was prepared by a complex polymerization method (lactic acid polymerization method). Specifically, in the production method of Example 2, a titanium complex having lactic acid as a ligand was used instead of the water-soluble titanium complex. That is, titanium isopropoxide (manufactured by Wako Pure Chemicals, 0.01 mol) and lactic acid (manufactured by Wako Pure Chemicals, 0.02 mol) are added to 100 g of distilled water, and stirred at room temperature for one week, so that the titanium lactate complex An aqueous solution in which was dissolved in water was prepared.
- lactic acid polymerization method lactic acid polymerization method
- Example 2 the rhodium-doped strontium titanate powder of Comparative Example 13 was prepared in the same manner as in Example 2 except that this aqueous solution containing the titanium lactate complex was used instead of the aqueous solution containing the aqueous solution titanium complex. Produced.
- Comparative Example 14 In the method for producing rhodium-doped strontium titanate particles of Examples 1 to 11, a 30 wt% aqueous solution of polyallylamine, which is a water-soluble cationic polymer (Wako Pure Chemical Industries, Ltd.) was used instead of using an acrylic-styrene-based O / W emulsion. A rhodium-doped strontium titanate particle was produced by the same production method except that (manufactured by Yakuhin) was used.
- Comparative Example 15 The rhodium-doped strontium titanate particles were produced in the same manner as in the production methods of the rhodium-doped strontium titanate particles in Examples 1 to 11 except that the acrylic-styrene-based O / W emulsion was not added. did.
- Table 1 shows the production conditions and characteristics of each produced powder.
- Example 1 shows an SEM image of the powder (platinum unsupported) after firing at 1000 ° C. for 10 hours in Example 2 (or Example 3).
- the primary particle diameter was 50 nm or less, and it was confirmed that a fine particle shape was maintained even after the high temperature crystallization treatment.
- rhodium-doped strontium titanate particles The Rsp value of rhodium-doped strontium titanate particles was measured at room temperature using a pulsed NMR particle interface evaluation apparatus ("Acorn area", manufactured by Nippon Lucas). Specifically, first, 0.125 g of rhodium-doped strontium titanate particles prepared in Examples 1, 3 to 5, 7, 8 and 10 and Comparative Examples 4, 10, 13 and 15 were added to 0.23% AOT (di 2-ethylhexylsulfosuccinate) was added to 2.375 g of aqueous solution, and ultrasonic irradiation was performed for 2 minutes using a 20 W ultrasonic bath to prepare a pulsed NMR sample.
- AOT di 2-ethylhexylsulfosuccinate
- the sample put in the NMR tube is placed in a coil between two permanent magnets, and the sample is generated by a magnetic field generated by exciting the coil with an electromagnetic wave (RF) pulse of about 13 MHz.
- RF electromagnetic wave
- a temporary shift was induced in the magnetic field orientation of protons.
- the protons in the sample are again aligned with the static magnetic field B 0, and this reorganization causes a voltage drop in the coil called free induction decay (FID) and a specific pulse 1 sequence (number of RF pulses).
- FID free induction decay
- T1 longitudinal relaxation time
- T2 lateral relaxation time
- R av the average value when the relaxation time constant, which is the reciprocal of T2 was measured five times continuously was defined as R av .
- Rb of bulk water was separately measured, and an R sp value was obtained from the following equation.
- R SP (R b ⁇ R av ) / R b From the obtained Rsp value, the structure of rhodium-doped strontium titanate particles was measured.
- Hydrogen generation activity by water decomposition of rhodium-doped strontium titanate particles The hydrogen generation activity in water decomposition by irradiation with visible light of the rhodium-doped strontium titanate particles prepared in Examples 1 to 12 and Comparative Examples 1, 4, and 10 to 15 is shown below. We investigated by the method. In the measurement of the hydrogen generation activity in water decomposition by irradiation with visible light and the quantum yield described later, the rhodium-doped strontium titanate particles of each example were supported with a promoter.
- the glass flask containing the reaction solution was attached to a closed circulation device, and the atmosphere in the reaction system was replaced with argon. Then, visible light was irradiated from the Pyrex (registered trademark) window side by a 300 W xenon lamp (manufactured by Cermax, PE-300BF) equipped with a UV cut filter (L-42, manufactured by HOYA). Then, the amount of hydrogen generated by reducing water by the photocatalytic reaction was examined over time by a gas chromatograph (manufactured by Shimadzu Corporation, GC-8A, TCD detector, MS-5A column).
- a gas chromatograph manufactured by Shimadzu Corporation, GC-8A, TCD detector, MS-5A column.
- the powder composed of rhodium-doped strontium titanate particles in which 0.5 wt% of platinum is supported by a photoreduction method specifically, rhodium-doped strontium titanate particles in a glass flask with a window made of Pyrex (registered trademark).
- Example 2 and Comparative Example 1 The same procedure as in Example 1 was performed except that 0.05 g of powder composed of rhodium-doped strontium titanate particles supporting platinum as a promoter was used.
- Example 7 The same procedure as in Example 1 was carried out except that the amount of platinum as a cocatalyst was changed to 0.75 wt%.
- Example 8 The same procedure as in Example 1 was carried out except that an impregnation method was used instead of the photoreduction method as a method for supporting platinum as a promoter. Specifically, a paste was prepared by kneading 0.1 g of a powder composed of rhodium-doped strontium titanate particles, 0.4 g of water, and 0.031 g of a 1 wt% chloroplatinic acid aqueous solution at room temperature for 30 minutes in an agate mortar. . The paste was dried at room temperature for 15 hours and then calcined at 400 ° C. for 30 minutes to prepare a sample by an impregnation method.
- an impregnation method was used instead of the photoreduction method as a method for supporting platinum as a promoter.
- a paste was prepared by kneading 0.1 g of a powder composed of rhodium-doped strontium titanate particles, 0.4 g of water, and 0.031
- Example 9 The same procedure as in Example 1 was carried out except that ruthenium chloride n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of platinum and 0.5 wt% of ruthenium was supported by the photoreduction method.
- ruthenium chloride n-hydrate manufactured by Wako Pure Chemical Industries, Ltd.
- Example 11 The same procedure as in Example 1 was conducted except that the amount of platinum as a cocatalyst was 1 wt%.
- Results Table 2 shows the amount of hydrogen ( ⁇ mol) generated in 3 hours after the start of light irradiation and the rate of hydrogen production per unit powder amount ( ⁇ mol / hr) of the powder composed of rhodium-doped strontium titanate particles supporting a promoter. / G).
- the hydrogen production rate per unit powder amount is 759 ⁇ mol / hr / g, which is very high activity, whereas in the sample of Comparative Example 1, it is 120 ⁇ mol / hr / g. The activity was very low.
- the samples of Examples 1 and 3 to 7 also had high hydrogen generation activity.
- Quantum yield by water decomposition of rhodium-doped strontium titanate particles The quantum yield by visible light irradiation of the rhodium-doped strontium titanate particles prepared in Example 3 was examined by the following method.
- a glass flask with a Pyrex (registered trademark) window contains 0.1 g of rhodium-doped strontium titanate particles carrying 0.5 wt% of platinum and 10 vol% of methanol as a sacrificial reagent by a photoreduction method. 200 ml of an aqueous solution was added, and a reaction solution was prepared while stirring with a stirrer.
- the glass flask containing the reaction solution was attached to a closed circulation device, and the atmosphere in the reaction system was replaced with argon.
- the monochromatic light was irradiated from the Pyrex (trademark) window side using the wavelength variable monochromatic light source with a spectrometer (manufactured by Spectrometer, SM-25F).
- a gas chromatograph manufactured by Shimadzu Corporation, GC-8A, TCD detector, MS-5A column.
- the quantum yield (%) was calculated by the following formula.
- Quantum yield (%) ((number of generated hydrogen molecules ⁇ 2) / number of incident photons) ⁇ 100
- the illuminance (W / cm 2 / nm) at each wavelength (band wavelength width of about 10 nm) is measured using a spectroradiometer (USHIO, USR-55).
- USHIO spectroradiometer
- Figure 2 shows the results.
- the quantum yield of this sample at 420 nm was 13.2%, which showed a very high hydrogen generation activity.
- FIG. 3 shows a transmission electron microscope image of particles in which platinum is supported on the powder of Example 2.
- one side had a cubic (cubic) form having a diameter of about 45 nm, and it was confirmed that it represents a cubic perovskite structure.
- the particle diameter of platinum supported by the photoreduction method is about 2 nm.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Dispersion Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明によるロジウムドープチタン酸ストロンチウム(Rh−SrTiO3)粒子は、高い結晶性、かつ微細な一次粒子径を有することを特徴とする。
さらに、上述のように、本発明のロジウムドープチタン酸ストロンチウム粒子は、微細な一次粒子径を有している。一次粒子径は、70nm以下である。これにより、ロジウムドープチタン酸ストロンチウム粒子は高い比表面積を有することができる。また、分解対象物質との接触面積が増加し、粒子の光触媒活性が向上する。好ましい一次粒子径は50nm以下である。より好ましい一次粒子径は30nm以上70nm以下である。さらにより好ましい一次粒子径は30nm以上50nm以下である。ロジウムドープチタン酸ストロンチウム粒子の一次粒子径は、例えば、走査型電子顕微鏡(株式会社日立製作所製、“S−4100”、以下、SEM)により、倍率40000倍で観察した際の結晶粒子50個の円形近似による平均値で定義することが可能である。
さらに、本発明の好ましい態様によれば、上述のように、本発明によるロジウムドープチタン酸ストロンチウム粒子は、比表面積が大きいものである。
RSP=(Rb−Rav)/Rb (1)
ここで、Ravは、平均緩和時定数である。緩和時定数は、粒子が水に分散している際に表面に接触あるいは吸着している水の緩和時間の逆数である。平均緩和時定数は得られた緩和時定数を平均した値である。
Rbは、粒子が含まれていないブランクの水の緩和時定数である。
本発明のロジウムドープチタン酸ストロンチウムの組成は、SrTi1−xRhxO3で表わすことができる。ロジウムドープチタン酸ストロンチウム粒子の、M(ロジウム)/M(チタン+ロジウム)で表わされるモル比率は、0.001~0.03であることが好ましく、より好ましくは、0.01~0.03である。モル比率をこの範囲とすることで、結晶中の酸素欠陥量の増加を抑制し、高い光触媒活性を実現することが可能である。
本発明によるロジウムドープチタン酸ストロンチウム粒子の製造方法として、乾式反応法や湿式反応法を利用することが可能である。乾式反応法として、固相反応法等が挙げられる。また、湿式反応法として、ゾル−ゲル法、錯体重合法、水熱反応法等が挙げられる。例えば、ゾル−ゲル法による製造方法は、チタンのアルコキシドやチタンの塩化物を原料として用いる。この原料と水との加水分解反応によりチタンを含む水酸化物を生成させる。この水酸化物を600℃以上で焼成し、結晶化させることでロジウムドープチタン酸ストロンチウム粒子を得ることができる。
さらに、本発明によるロジウムドープチタン酸ストロンチウム粒子の製造方法として、ストロンチウムイオン、チタンイオン、ロジウムイオンを含む水溶液を用いた熱分解法(水溶液熱分解法)を好ましく用いることが可能である。「水溶液熱分解法」とは、金属含有前駆体を原料として用い、この金属含有前駆体を含む水溶液を加熱することで、溶媒である水の蒸発に伴い、金属含有前駆体同士の脱水重縮合反応を起こす方法である。水との加水分解反応が速やかに起こる金属化合物(例えば、金属のアルコキシドや金属の塩化物等)を用いるゾル−ゲル法では、金属含有前駆体同士の加水分解により金属水酸化物が生成し、これらの脱水重縮合が速やかに起こることで、結晶核が粗大化しやすい。これに対して、本発明で用いられる水溶液熱分解法では、加水分解反応が緩やかな金属含有前駆体を原料として用いることで、水への安定な溶解が可能となる。また、このような金属含有前駆体を含む水溶液を加熱することで、溶媒である水の蒸発に伴い、金属含有前駆体同士の脱水重縮合反応が緩やかに起こり得る。これにより、熱分解時の結晶核の生成速度が遅くなり、結果的に結晶核の微細化が可能となる。
本発明のロジウムドープチタン酸ストロンチウム粒子を光触媒として水の光分解に用いる場合、水素及び酸素の発生が速やかに起こるように、助触媒を粒子表面に担持させることが好ましい。助触媒としては、白金、ルテニウム、イリジウム、ロジウム等の金属粒子や、酸化クロム、酸化ロジウム、酸化イリジウム、酸化ルテニウム等の金属酸化物粒子を用いることが可能である。また、金属粒子と金属酸化物粒子を混合させたものを用いることができる。この助触媒の担持により、水の酸化反応及び還元反応における活性化エネルギーを減少させることが可能となるため、速やかな水素及び酸素の発生が可能となる。
ロジウムドープチタン酸ストロンチウム粒子の作製
20mLサンプル瓶に、疎水性錯化剤であるアセチルアセトン(和光純薬製)0.02mol(2.003g)を添加し、室温で撹拌しながら、チタンテトライソプロポキシド(和光純薬製)0.02mol(5.684g)を添加して、黄色の水溶性チタン錯体を含む水溶液を作製した。この水溶性チタン錯体を含む水溶液を、0.32mol/Lの酢酸水溶液50mLに、室温で攪拌しながら添加した。添加後、室温で約1時間攪拌を行い、更に60℃で約1時間撹拌を行うことで、黄色透明な水溶性チタン錯体を含む水溶液を作製した。
上記実施例1~11のロジウムドープチタン酸ストロンチウム粒子の作製方法において、アクリル−スチレン系O/W型エマルジョンを用いる代わりに、アクリル系ラテックス粒子(ケミスノー1000、綜研化学製、平均粒径約1000nm)の50wt%水分散液を用いた以外は、同様の作製方法で、ロジウムドープチタン酸ストロンチウム粒子を作製した。
上記実施例1~11のロジウムドープチタン酸ストロンチウム粒子の作製方法において、アクリル−スチレン系O/W型エマルジョンを用いる代わりに、アクリル系ラテックス粒子(ケミスノー300、綜研化学製、平均粒径約300nm)の50wt%水分散液を用いた以外は、同様の作製方法で、ロジウムドープチタン酸ストロンチウム粒子を作製した。
比較例サンプルとして、従来の固相反応法により作製したロジウムドープチタン酸ストロンチウムを作製した。固相反応法による作製方法は、以下の通りである。
炭酸ストロンチウム(関東化学製)、酸化チタン(添川理化学製、ルチル型)、および酸化ロジウム(Rh2O3:和光純薬製)の各粉末を、Sr:Ti:Rh=1.07:1−x:x(x:表1に記載の各ロジウムドープ比率)のモル比率となるように混合した。その後、表1に記載の焼成温度で10時間焼成し、比較例1~6のロジウムドープチタン酸ストロンチウム粉末を作製した。
上記の実施例1の作製条件において、結晶化の為の焼成温度を表1に記載の焼成温度とした以外は実施例1と同様の方法により、比較例7~11のロジウムドープチタン酸ストロンチウム粉末を作製した。
錯体重合法によりロジウムドープチタン酸ストロンチウムを作製した。具体的には、上記実施例2の作製方法において、水溶性チタン錯体の代わりに、市販の水溶性チタン錯体であるペルオキソクエン酸チタン錯体(“TAS−FINE”、フルウチ化学製)を用い、その他は実施例2と同様の方法により、比較例12のロジウムドープチタン酸ストロンチウム粉末を作製した。
錯体重合法(乳酸重合法)によりロジウムドープチタン酸ストロンチウムを作製した。具体的には、上記実施例2の作製方法において、水溶性チタン錯体の代わりに、乳酸を配位子とするチタン錯体を用いた。すなわち、蒸留水100gに、チタンイソプロポキシド(和光純薬製、0.01mol)と乳酸(和光純薬製、0.02mol)を添加して、室温で1週間撹拌することで、乳酸チタン錯体が水に溶解した水溶液を作製した。実施例2の作製方法において、水溶液チタン錯体を含む水溶液の代わりに、この乳酸チタン錯体を含む水溶液を用いた以外は実施例2と同様の方法により、比較例13のロジウムドープチタン酸ストロンチウム粉末を作製した。
上記実施例1~11のロジウムドープチタン酸ストロンチウム粒子の作製方法において、アクリル−スチレン系O/W型エマルジョンを用いる代わりに、水溶解性のカチオン性ポリマーであるポリアリルアミンの30wt%水溶液(和光純薬製)を用いた以外は、同様の作製方法で、ロジウムドープチタン酸ストロンチウム粒子を作製した。
上記実施例1~11のロジウムドープチタン酸ストロンチウム粒子の作製方法において、アクリルースチレン系O/W型エマルジョンを添加しなかったこと以外は、同様の作製方法で、ロジウムドープチタン酸ストロンチウム粒子を作製した。
実施例1~13および比較例1~15で作製したロジウムドープチタン酸ストロンチウムのX線回折測定を行った結果、すべてのサンプルが、単相のペロブスカイト構造を有することが確認された。次いで、走査型電子顕微鏡による観察から確認された、ロジウムドープチタン酸ストロンチウムの一次粒子径を表1に示す。具体的には、走査型電子顕微鏡(株式会社日立製作所製、“S−4100”)により、倍率40000倍で観察した際の結晶粒子50個の円形近似による平均値を一次粒子径とした。実施例の一例として、図1に実施例2(又は実施例3)の1000℃で10時間焼成した後の粉末(白金未担持)のSEM像を示す。一次粒子径は、50nm以下であり、高温結晶化処理後も、微細化な粒子形状を維持することが確認された。
実施例および比較例で作製したロジウムドープチタン酸ストロンチウムの光学特性を、紫外可視近赤外分光光度計に積分球ユニットを装着することで、拡散反射スペクトルを測定し、各波長におけるサンプルの分光反射率Rを求めた。この際、波長315nmにおける光吸収率A(=1−分光反射率R)が0.86~0.87となるように粉末量を合わせた。表1に、波長570nm、1800nmにおける各光吸収率Aをまとめる。
ロジウムドープチタン酸ストロンチウムの粒子のRsp値を、パルスNMR粒子界面評価装置(“Acorn area”、日本ルフト製)を用いて室温で測定した。具体的にはまず、実施例1、3~5、7、8および10、比較例4、10、13および15で作製したロジウムドープチタン酸ストロンチウム粒子0.125gを、0.23%AOT(di−2−ethylhexyl sodium sulfosuccinate)水溶液2.375gに添加して、20W超音波バスを用いて、2分間超音波照射を行うことで、パルスNMR試料を作製した。次いで、超音波照射直後に、NMRチューブに投入した試料を2つの永久磁石の間のコイル中に配置し、約13MHzの電磁波(RF)パルスでコイルを励起することで生じる磁場によって発生する試料中のプロトンの磁場配向に一時的なシフトが誘導された。この誘導を停止すると、試料中のプロトンは再び静磁場B0と整列し、この再編成によって、自由誘導減衰(FID)と呼ばれるコイルの電圧低下が生じ、特定のパルス1シーケンス(RFパルスの回数及び間隔の組み合わせ)から、試料のT1(縦緩和時間)とT2(横緩和時間)を測定した。ここで、T2の逆数である緩和時定数を連続5回測定した際の平均値をRavとした。同様に、バルク水のRbを別途測定し、以下の式より、Rsp値を求めた。
RSP=(Rb−Rav)/Rb
得られたRsp値からロジウムドープチタン酸ストロンチウムの粒子の構造を測定した。
Rsp値を表1に示す。実施例では、すべて0.88以上のRsp値であった。このことから、実施例で作製したロジウムドープチタン酸ストロンチウム粒子は、粒子表面と水の相互作用が大きいことが確認された。すなわち、粒子と水が接触している表面積が大きく、粒子の比表面積が大きいことが確認された。
実施例1~12および比較例1、4、10~15で作製したロジウムドープチタン酸ストロンチウム粒子の可視光照射による水分解における水素発生活性を以下の方法で調べた。この可視光照射による水分解における水素発生活性、および後述する量子収率の測定においては、各例のロジウムドープチタン酸ストロンチウム粒子に助触媒を担持させたものを用いた。
パイレックス(登録商標)製窓付きのガラスフラスコ(実施例2および比較例1のサンプルについては上方照射型、それ以外のサンプルについては側方照射型のフラスコを用いた)に、光還元法により、助触媒である白金を0.5wt%担持させたロジウムドープチタン酸ストロンチウム粒子からなる粉末0.1gと、犠牲試薬となるメタノール10vol%を含む水溶液200mlを入れて、スターラーで撹拌しながら、反応溶液とした。そして、この反応溶液を入れたガラスフラスコを閉鎖循環装置に装着し、反応系内の雰囲気をアルゴン置換した。そして、UVカットフィルター(L−42、HOYA製)を装着した300Wキセノンランプ(Cermax製、PE−300BF)により、可視光をパイレックス(登録商標)製窓側から照射した。そして、光触媒反応により、水が還元されて生成する水素の発生量を、ガスクロマトグラフ(島津製作所製、GC−8A、TCD検出器、MS−5Aカラム)により経時的に調べた。ここで、白金を光還元法により0.5wt%担持させたロジウムドープチタン酸ストロンチウム粒子からなる粉末は、具体的には、パイレックス(登録商標)製窓付きのガラスフラスコにロジウムドープチタン酸ストロンチウム粒子0.1gと、助触媒原料となる塩化白金酸・六水和物(和光純薬製)を1wt%含む水溶液0.132gと、酸化的犠牲試薬となるメタノールを10vol%含む超純水200mLを入れた。この溶液をスターラーで撹拌しながら、アルゴン雰囲気下で、UVカットフィルター(L−42、HOYA製)を装着した300Wキセノンランプ(Cermax製、PE−300BF)により、可視光をパイレックス(登録商標)製窓側から、2時間照射することで、ロジウムドープチタン酸ストロンチウム粒子表面で塩化白金酸を還元して、白金微粒子をロジウムドープチタン酸ストロンチウム粒子表面に担持させることにより作製した。
助触媒である白金を担持させたロジウムドープチタン酸ストロンチウム粒子からなる粉末を0.05g用いた以外は実施例1と同様に行った。
助触媒である白金の担持量を0.75wt%とした以外は実施例1と同様に行った。
助触媒である白金の担持方法として、光還元法の代わりに、含浸法を用いた以外は実施例1と同様に行った。具体的には、ロジウムドープチタン酸ストロンチウム粒子からなる粉末0.1gと、水0.4g、そして1wt%塩化白金酸水溶液0.031gをメノウ乳鉢で室温において30分混練することでペーストを作製した。このペーストを15時間室温で乾燥させた後、400℃で30分焼成することで、含浸法によるサンプルを作製した。
白金の代わりに、塩化ルテニウム・n水和物(和光純薬製)を用い、光還元法により、ルテニウムを0.5wt%担持させた以外は実施例1と同様に行った。
助触媒である白金の担持量を1wt%とした以外は実施例1と同様に行った。
表2に助触媒を担持させたロジウムドープチタン酸ストロンチウム粒子からなる粉末の、光照射開始後3時間の間に発生した水素量(μmol)および単位粉末量当たりの水素生成速度(μmol/hr/g)を示す。
例えば、実施例2のサンプルでは、単位粉末量当たりの水素生成速度が、759μmol/hr/gと非常に高活性であるのに対して、比較例1のサンプルでは、120μmol/hr/gとなり、活性は非常に低かった。また、実施例1、3~7のサンプルに関しても、高い水素発生活性を有することが確認された。
実施例3で作製したロジウムドープチタン酸ストロンチウム粒子の可視光照射による量子収率を以下の方法で調べた。パイレックス(登録商標)製窓付きのガラスフラスコに、光還元法により、白金を0.5wt%担持させたロジウムドープチタン酸ストロンチウム粒子からなる粉末0.1gと、犠牲試薬となるメタノール10vol%を含む水溶液200mlを入れて、スターラーで撹拌しながら、反応溶液とした。そして、この反応溶液を入れたガラスフラスコを閉鎖循環装置に装着し、反応系内の雰囲気をアルゴン置換した。そして、分光器付きの波長可変単色光源(分光計器製、SM−25F)を用いて、単色光をパイレックス(登録商標)製窓側から照射した。そして、光触媒反応により、水が還元されて生成する水素の発生量を、ガスクロマトグラフ(島津製作所製、GC−8A、TCD検出器、MS−5Aカラム)により経時的に調べた。また、量子収率(%)は下記式により計算した。
量子収率(%)=((発生した水素の分子数×2)/入射光子数)×100
ここで、単位波長当たりの入射光子数については、スペクトロラジオメーター(USHIO製、USR−55)を用いて、各波長(バンド波長幅約10nm)における照度(W/cm2/nm)を測定することで、各波長の光子1個が有するエネルギーを除することで算出した。
Claims (13)
- 一次粒子径が70nm以下であり、
拡散反射スペクトルにより測定される、
波長570nmにおける光吸収率が、0.6以上であり、かつ、
波長1800nmにおける光吸収率が、0.7以下である
ことを特徴とする、ロジウムドープチタン酸ストロンチウム粒子。 - 前記一次粒子径が50nm以下である、請求項1に記載のロジウムドープチタン酸ストロンチウム粒子。
- 前記一次粒子径が30nm以上である、請求項1または2に記載のロジウムドープチタン酸ストロンチウム粒子。
- 前記波長570nmにおける光吸収率が0.6以上0.8未満である、請求項1~3のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子。
- 前記波長1800nmにおける光吸収率が0.5以上0.7以下である、請求項1~4のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子。
- RSP値が0.86以上である、請求項1~5のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子。
- 前記ロジウムドープチタン酸ストロンチウム粒子の、M(ロジウム)/M(チタン+ロジウム)で表わされるモル比率が0.001~0.03である、請求項1~6のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子。
- 請求項1~7のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子からなる、水分解用光触媒。
- 請求項1~8のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子の製造方法であって、
チタン化合物と、ロジウム化合物と、ストロンチウム化合物と、疎水性錯化剤とを水に溶解させた水溶液を用意し、これを乾燥および焼成することを特徴とする、ロジウムドープチタン酸ストロンチウム粒子の製造方法。 - 前記水溶液がさらに水分散型有機ポリマー粒子を含んでなるものである、請求項9に記載のロジウムドープチタン酸ストロンチウム粒子の製造方法。
- 焼成が、800℃を超え1100℃未満の温度で行われる、請求項9または10に記載のロジウムドープチタン酸ストロンチウム粒子の製造方法。
- 水分解用光触媒としての、請求項1~7のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子の使用。
- 水と接触している請求項1~7のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子に可視光を照射することを含んでなる、水分解方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13797998.5A EP2857097A4 (en) | 2012-05-29 | 2013-05-29 | PHOTO CATALYST PARTICLE IN VISIBLE LIGHT AND METHOD FOR THE MANUFACTURE THEREOF |
US14/404,561 US9808791B2 (en) | 2012-05-29 | 2013-05-29 | Visible-light photocatalyst particles and method for manufacturing same |
CN201380028847.4A CN104487168B (zh) | 2012-05-29 | 2013-05-29 | 可见光应答型光触媒粒子及其制造方法 |
JP2014518772A JP5888415B2 (ja) | 2012-05-29 | 2013-05-29 | 可視光応答型光触媒粒子およびその製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-122042 | 2012-05-29 | ||
JP2012122042 | 2012-05-29 | ||
JP2012-207784 | 2012-09-21 | ||
JP2012207784 | 2012-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013180307A1 true WO2013180307A1 (ja) | 2013-12-05 |
Family
ID=49673486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/065519 WO2013180307A1 (ja) | 2012-05-29 | 2013-05-29 | 可視光応答型光触媒粒子およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9808791B2 (ja) |
EP (1) | EP2857097A4 (ja) |
JP (1) | JP5888415B2 (ja) |
CN (1) | CN104487168B (ja) |
WO (1) | WO2013180307A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014192965A1 (ja) * | 2013-05-29 | 2014-12-04 | Toto株式会社 | 金属酸化物粒子の製造方法 |
JP5920478B2 (ja) * | 2012-09-21 | 2016-05-18 | Toto株式会社 | 複合光触媒および光触媒材 |
JP2016216272A (ja) * | 2015-05-14 | 2016-12-22 | 富士フイルム株式会社 | 立方体形状を有するチタン酸ストロンチウム微粒子の製造方法、及び、立方体形状のチタン酸ストロンチウム微粒子、立方体形状の金属ドープチタン酸ストロンチウム微粒子、及びその製造方法 |
CN108057452A (zh) * | 2018-02-02 | 2018-05-22 | 辽宁大学 | 一种自组装高效转移电子的太阳光光催化剂及其制备方法和应用 |
CN108126713A (zh) * | 2018-02-02 | 2018-06-08 | 辽宁大学 | 基于极窄带半导体为固体导电通道的光催化剂及其制备方法和应用 |
CN108273522A (zh) * | 2018-02-02 | 2018-07-13 | 辽宁大学 | 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用 |
WO2024162082A1 (ja) * | 2023-01-30 | 2024-08-08 | 戸田工業株式会社 | 球状チタン酸ストロンチウム系微粒子粉末、分散体及び樹脂組成物 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105283246A (zh) * | 2013-06-21 | 2016-01-27 | Toto株式会社 | 可见光应答型光触媒材料 |
US10894757B2 (en) | 2018-03-09 | 2021-01-19 | King Abdulaziz University | Pt/SrTiO3 photocatalyst for production of cycloalkanols and cycloalkanones from cycloalkanes |
CN108579739B (zh) * | 2018-04-09 | 2020-09-22 | 华北电力大学 | 一种温和条件下选择性氧化醇以制备醛/酮的方法 |
CN110026207B (zh) * | 2019-05-06 | 2022-04-29 | 青岛科技大学 | CaTiO3@ZnIn2S4纳米复合材料及其制备方法与应用 |
CN113274995B (zh) * | 2021-05-10 | 2023-08-08 | 天津大学 | 一种掺杂型钛酸锶半导体材料及其制备方法 |
CN115072810B (zh) * | 2022-07-28 | 2023-12-22 | 西安稀有金属材料研究院有限公司 | 一种绿色合成纳米氧化钌的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004008963A (ja) | 2002-06-07 | 2004-01-15 | Japan Science & Technology Corp | 可視光照射下で水から水素を生成するRhおよび/またはIrドープSrTiO3光触媒 |
JP2006182615A (ja) * | 2004-12-28 | 2006-07-13 | Masao Kaneko | 窒素含有化合物の光分解方法 |
JP2012056947A (ja) | 2010-08-09 | 2012-03-22 | Toto Ltd | チタン錯体及びそれを含む水系コーティング液 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2051866B (en) * | 1979-05-11 | 1983-01-06 | Central Electr Generat Board | Activated electrodes-photoelectrolysis of water |
JPS6274452A (ja) * | 1985-09-27 | 1987-04-06 | Nippon Kogaku Kk <Nikon> | 水の光分解触媒 |
JP4916173B2 (ja) * | 2003-12-17 | 2012-04-11 | ダイハツ工業株式会社 | 排ガス浄化用触媒組成物 |
KR20060016218A (ko) * | 2004-08-17 | 2006-02-22 | 삼성코닝 주식회사 | 광촉매층을 구비하는 평판 램프 |
DE102008048737A1 (de) * | 2007-10-31 | 2009-07-16 | Sigrid Dr. Obenland | Monolithisches Katalysatorsystem für die Photolyse von Wasser |
EP2407419A1 (en) * | 2010-07-16 | 2012-01-18 | Universiteit Twente | Photocatalytic water splitting |
JP5642459B2 (ja) * | 2010-09-01 | 2014-12-17 | 学校法人東京理科大学 | 光触媒電極および水素生成装置、並びに水素生成方法 |
US20130277209A1 (en) * | 2010-12-28 | 2013-10-24 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Photochemical reaction device |
-
2013
- 2013-05-29 EP EP13797998.5A patent/EP2857097A4/en not_active Withdrawn
- 2013-05-29 US US14/404,561 patent/US9808791B2/en active Active
- 2013-05-29 CN CN201380028847.4A patent/CN104487168B/zh active Active
- 2013-05-29 WO PCT/JP2013/065519 patent/WO2013180307A1/ja active Application Filing
- 2013-05-29 JP JP2014518772A patent/JP5888415B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004008963A (ja) | 2002-06-07 | 2004-01-15 | Japan Science & Technology Corp | 可視光照射下で水から水素を生成するRhおよび/またはIrドープSrTiO3光触媒 |
JP2006182615A (ja) * | 2004-12-28 | 2006-07-13 | Masao Kaneko | 窒素含有化合物の光分解方法 |
JP2012056947A (ja) | 2010-08-09 | 2012-03-22 | Toto Ltd | チタン錯体及びそれを含む水系コーティング液 |
Non-Patent Citations (6)
Title |
---|
CRONEMEYER ET AL., PHYS. REV., vol. 113, 1959, pages 1222 - 1225 |
SASAKI ET AL., J. PHYS. CHEM. C, 2009, pages 17536 - 17542 |
SASAKI Y ET AL.: "Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator", J. PHYS. CHEM., vol. 113, 2009, pages 17536 - 17542, XP055175727 * |
See also references of EP2857097A4 |
YASUYOSHI SASAKI ET AL.: "Shuju no Hoho ni yori Chosei shita SrTi03: Rh Hikari Shokubai o Mochiita Co Sakutai Denshi Dentatsukei Z Scheme -gata Hikari Shokubai ni yoru Mizu no Kashiko Zenbunkai", 87TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING, 12 March 2007 (2007-03-12), pages 498, XP008175448 * |
YOSHIHIRO UEDA ET AL.: "Shuju no Yoeki Kagakuho ni yoru Ph-Dope SrTi03 Kashiko Otogata Hikari Shokubai no Gosei to Kokasseika", PROCEEDINGS OF 19TH FALL MEETING OF THE CERAMIC SOCIETY OF JAPAN, 19 September 2006 (2006-09-19), pages 78, XP008175431 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5920478B2 (ja) * | 2012-09-21 | 2016-05-18 | Toto株式会社 | 複合光触媒および光触媒材 |
JPWO2014046305A1 (ja) * | 2012-09-21 | 2016-08-18 | Toto株式会社 | 複合光触媒および光触媒材 |
WO2014192965A1 (ja) * | 2013-05-29 | 2014-12-04 | Toto株式会社 | 金属酸化物粒子の製造方法 |
JP2016216272A (ja) * | 2015-05-14 | 2016-12-22 | 富士フイルム株式会社 | 立方体形状を有するチタン酸ストロンチウム微粒子の製造方法、及び、立方体形状のチタン酸ストロンチウム微粒子、立方体形状の金属ドープチタン酸ストロンチウム微粒子、及びその製造方法 |
CN108057452A (zh) * | 2018-02-02 | 2018-05-22 | 辽宁大学 | 一种自组装高效转移电子的太阳光光催化剂及其制备方法和应用 |
CN108126713A (zh) * | 2018-02-02 | 2018-06-08 | 辽宁大学 | 基于极窄带半导体为固体导电通道的光催化剂及其制备方法和应用 |
CN108273522A (zh) * | 2018-02-02 | 2018-07-13 | 辽宁大学 | 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用 |
CN108273522B (zh) * | 2018-02-02 | 2019-07-05 | 辽宁大学 | 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用 |
WO2024162082A1 (ja) * | 2023-01-30 | 2024-08-08 | 戸田工業株式会社 | 球状チタン酸ストロンチウム系微粒子粉末、分散体及び樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
EP2857097A1 (en) | 2015-04-08 |
US20150107984A1 (en) | 2015-04-23 |
JPWO2013180307A1 (ja) | 2016-01-21 |
US9808791B2 (en) | 2017-11-07 |
CN104487168A (zh) | 2015-04-01 |
JP5888415B2 (ja) | 2016-03-22 |
CN104487168B (zh) | 2016-08-24 |
EP2857097A4 (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5888415B2 (ja) | 可視光応答型光触媒粒子およびその製造方法 | |
JP6225786B2 (ja) | 金属酸化物粒子の製造方法 | |
JP5920478B2 (ja) | 複合光触媒および光触媒材 | |
Zou et al. | Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: The effect of surface OH groups | |
Sun et al. | High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method | |
Lan et al. | Preparation of lanthanum and boron co-doped TiO2 by modified sol–gel method and study their photocatalytic activity | |
US10875011B2 (en) | Temperature tunable mesoporous gold deposited CO oxidation catalyst | |
Bodson et al. | Efficient P-and Ag-doped titania for the photocatalytic degradation of waste water organic pollutants | |
He et al. | Surface scattering and reflecting: the effect on light absorption or photocatalytic activity of TiO 2 scattering microspheres | |
Andersson et al. | Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance | |
Wei et al. | Tuning the physico-chemical properties of BiOBr via solvent adjustment: Towards an efficient photocatalyst for water treatment | |
JP2013013886A (ja) | 酸化タングステン系光触媒、及びその製造方法 | |
Kang et al. | Preparation of novel SrTiO3: Rh/Ta photocatalyst by spray pyrolysis and its activity for H2 evolution from aqueous methanol solution under visible light | |
Yang et al. | The photo-catalytic activities of neodymium and fluorine doped TiO2 nanoparticles | |
Ghanei-Zare et al. | A metal-organic framework-derived CuO microrods for fast photocatalytic degradation of methylene blue | |
JP6152890B2 (ja) | 可視光応答型光触媒材 | |
KR101548296B1 (ko) | 이종 전이금속으로 도핑된 이산화티타늄의 제조방법 | |
Bargougui et al. | Microwave-assisted polyol synthesis of mesoporous Ta doped mixed TiO2/SnO2: Application for CO2 capture | |
Goswami et al. | A novel synthetic approach for the preparation of sulfated titania with enhanced photocatalytic activity | |
JP6016199B2 (ja) | 複合金属酸化物粒子およびその製造方法 | |
JP6218116B2 (ja) | 複合金属酸化物粒子およびその製造方法 | |
JP6170352B2 (ja) | 光触媒材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13797998 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014518772 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14404561 Country of ref document: US Ref document number: 2013797998 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |