[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013180307A1 - 可視光応答型光触媒粒子およびその製造方法 - Google Patents

可視光応答型光触媒粒子およびその製造方法 Download PDF

Info

Publication number
WO2013180307A1
WO2013180307A1 PCT/JP2013/065519 JP2013065519W WO2013180307A1 WO 2013180307 A1 WO2013180307 A1 WO 2013180307A1 JP 2013065519 W JP2013065519 W JP 2013065519W WO 2013180307 A1 WO2013180307 A1 WO 2013180307A1
Authority
WO
WIPO (PCT)
Prior art keywords
rhodium
strontium titanate
doped strontium
titanate particles
particles
Prior art date
Application number
PCT/JP2013/065519
Other languages
English (en)
French (fr)
Inventor
徳留 弘優
さゆり 奥中
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to EP13797998.5A priority Critical patent/EP2857097A4/en
Priority to US14/404,561 priority patent/US9808791B2/en
Priority to CN201380028847.4A priority patent/CN104487168B/zh
Priority to JP2014518772A priority patent/JP5888415B2/ja
Publication of WO2013180307A1 publication Critical patent/WO2013180307A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a visible light responsive photocatalyst particle and a production method thereof.
  • the visible light responsive photocatalyst is a photocatalyst that can utilize visible light contained in a large amount of sunlight. This visible light responsive photocatalyst is expected to be applied to hydrogen production by photolysis of organic substances and water.
  • a photocatalyst for water splitting for the purpose of producing hydrogen has attracted attention as a photocatalyst used in a method for producing hydrogen using renewable energy.
  • the demand for a photocatalyst for water splitting that provides high activity is increasing year by year.
  • Rhodium-doped strontium titanate (Rh—SrTiO 3 ) is known to have a very high ability to generate hydrogen by photolysis of water as a photocatalyst for water splitting having visible light response. Further, it is known that a Z-scheme system in which Rh—SrTiO 3 and a photocatalyst for oxygen generation are combined can obtain high energy conversion efficiency in a water splitting reaction (Japanese Patent Laid-Open No. 2004-008963 (Patent Document 1). ), Sasaki et al., J. Phys. Chem. C 17536-17542, 2009 (Non-patent Document 1)).
  • the Rh—SrTiO 3 is produced by a solid-phase reaction method or a hydrothermal synthesis method, and in these methods, it is known to perform a high crystallization treatment by baking at about 1000 ° C.
  • the Rh—SrTiO 3 particles thus obtained have a primary particle size of about several hundred nm to several ⁇ m, and are known to exhibit high hydrogen generation ability under visible light irradiation. Meanwhile, in order to further highly activate Rh-SrTiO 3 particles, increasing the specific surface area of the Rh-SrTiO 3 particles, that is, Rh-SrTiO 3 particles of fine crystal has been demanded.
  • the present invention has been made in view of such problems, and an object thereof is to provide rhodium-doped strontium titanate particles that achieve both high crystallinity and finer primary particles.
  • the rhodium-doped strontium titanate particles according to the present invention have a primary particle diameter of 70 nm or less, a light absorption at a wavelength of 570 nm, measured by a diffuse reflection spectrum, of 0.6 or more, and a light absorption at a wavelength of 1800 nm.
  • the rate is 0.7 or less.
  • the rhodium-doped strontium titanate particles according to the present invention exhibit high photocatalytic activity under visible light irradiation.
  • 2 is a scanning electron micrograph of rhodium-doped strontium titanate particles according to the present invention.
  • 2 is a transmission electron micrograph of rhodium-doped strontium titanate particles according to the present invention. It is a measurement result of the quantum yield by the water decomposition of the rhodium dope strontium titanate particles by this invention.
  • rhodium-doped strontium titanate particles are characterized by having high crystallinity and a fine primary particle diameter.
  • Rh—SrTiO 3 it is difficult to achieve both high crystallinity and a large specific surface area, that is, a fine crystal. That is, Rh—SrTiO 3 is a substance that is difficult to grow to be a crystal having high crystallinity while remaining as a fine crystal during crystal growth.
  • the generation of oxygen defects can be considered as one of the factors that decrease the crystallinity of the metal oxide. That is, as the number of oxygen site defects in the metal oxide increases, that is, the number of oxygen defects increases, the periodicity of the crystal is disturbed, so that the crystallinity of the metal oxide decreases, that is, the crystallinity decreases.
  • the absorption spectrum of titanium oxide having oxygen defects has a broad light absorption band in a wide range from the visible light region to the near infrared region (Cronemeyer et al., Phys. Rev. 113, 1222). ⁇ 1225 pages, 1959).
  • the present inventors by measuring the diffuse reflection spectrum of rhodium-doped strontium titanate particles, the present inventors have produced a broad light absorption band from visible light to near-infrared light region, similar to titanium oxide. It was confirmed. Furthermore, it was confirmed that the light absorptance decreased in this near-infrared light region by increasing the firing temperature. From these facts, it was found that the improvement in crystallinity accompanying the increase in the firing temperature can be quantified by measuring the light absorption in the near infrared region from the visible light.
  • the present inventors also consider the rhodium state, and light absorption derived from tetravalent rhodium (Rh 4+ ) in the strontium titanate crystal. It was found that the larger the value, the higher the crystallinity. Regarding the influence of the valence of rhodium on the crystallinity, the following mechanism is expected, but the present invention is not limited to this mechanism.
  • the valence of rhodium is known as bivalent, trivalent, tetravalent and pentavalent.
  • trivalent rhodium (Rh 3+ ) is most stable at room temperature and in the atmosphere.
  • strontium titanate (SrTiO 3 ) is fired at high temperature and crystallized, the site of tetravalent titanium (Ti 4+ ) is known to be doped with rhodium. ing.
  • Rh 3+ is substituted and dissolved in a crystal site of Ti 4+ , oxygen defects are generated in order to maintain electrical neutrality. Therefore, in order to reduce the oxygen vacancies, the present inventors need to substitute Rh 4+ capable of maintaining the electrical neutrality of the crystal into a solid solution of Ti 4+ , thereby forming particles. It has been found that the crystallinity of is improved.
  • the present inventors have found that the optical property parameters of the rhodium-doped strontium titanate particles having high photocatalytic activity of the present invention can be clarified by measuring the particles by the following method.
  • an ultraviolet-visible near-infrared spectrophotometer (“V-670” manufactured by JASCO Corporation) equipped with an integrating sphere unit is used.
  • V-670 ultraviolet-visible near-infrared spectrophotometer
  • ISV-722 an integrating sphere unit
  • alumina sintered pellets are used for the baseline measurement.
  • the spectral reflectance R can be measured.
  • the optical characteristics of the rhodium-doped strontium titanate particles are shown by measuring a diffuse reflection spectrum in the wavelength range of 200 to 2500 nm using this apparatus.
  • the rhodium-doped strontium titanate particles of the present invention have a fine primary particle diameter.
  • the primary particle diameter is 70 nm or less.
  • the rhodium-doped strontium titanate particles can have a high specific surface area.
  • the contact area with the substance to be decomposed increases, and the photocatalytic activity of the particles improves.
  • a preferable primary particle diameter is 50 nm or less.
  • a more preferable primary particle diameter is 30 nm or more and 70 nm or less.
  • An even more preferable primary particle size is 30 nm or more and 50 nm or less.
  • the primary particle diameter of the rhodium-doped strontium titanate particles is, for example, 50 crystal particles when observed with a scanning electron microscope (manufactured by Hitachi, Ltd., “S-4100”, hereinafter, SEM) at a magnification of 40000 times. It is possible to define the average value by circular approximation.
  • the rhodium-doped strontium titanate particles according to the present invention have a large specific surface area.
  • rhodium-doped strontium titanate particles having a large surface area or a highly porous powder (secondary particles) in which they are aggregated are shown. Became possible.
  • the R SP value is an index that correlates with the amount of water molecules adsorbed on the particle surface, and is an index that depends on the surface area of particles dispersed in water that are in contact with water. Since the rhodium-doped strontium titanate particles according to the present invention can be used as a photocatalyst for water splitting as will be described later, the particles are used in contact with water. In this case, water diffuses into the gaps between the primary particles or the pores in the secondary particles, and the water comes into contact with the surface of the particles.
  • the rhodium-doped strontium titanate particles according to the present invention are used as a photocatalyst for water splitting, it is possible to accurately measure the surface area of the particles adsorbed with water using the R SP value as an index. It is effective in obtaining particles.
  • BET analysis based on nitrogen adsorption / desorption measurement, which is the mainstream in the past, can be mentioned.
  • nitrogen is used as a probe, and the molecular diameter of nitrogen is small. Nitrogen is adsorbed on the pore surfaces where water cannot diffuse. Therefore, the specific surface area measurement method based on BET analysis lacks effectiveness when it is intended for particles on which water is adsorbed.
  • the R SP value is represented by the following formula.
  • the R SP value can be measured by a pulse NMR particle interface evaluation apparatus (for example, “Acorn area”, manufactured by Nippon Lucas).
  • R SP (R b ⁇ R av ) / R b (1)
  • R av is an average relaxation time constant.
  • the relaxation time constant is the reciprocal of the relaxation time of water that is in contact with or adsorbing to the surface when the particles are dispersed in water.
  • the average relaxation time constant is a value obtained by averaging the obtained relaxation time constants.
  • R b is the relaxation time constant of blank water containing no particles.
  • the R SP value of the rhodium-doped strontium titanate particles according to the present invention is preferably 0.86 or more. More preferably, it is 0.88 or more. The R SP value is preferably 10 or less.
  • composition of rhodium-doped strontium titanate can be represented by SrTi 1-x Rh x O 3 .
  • the molar ratio of rhodium-doped strontium titanate particles represented by M (rhodium) / M (titanium + rhodium) is preferably 0.001 to 0.03, and more preferably 0.01 to 0.03. It is. By setting the molar ratio within this range, an increase in the amount of oxygen defects in the crystal can be suppressed and high photocatalytic activity can be realized.
  • the rhodium-doped strontium titanate particles of the present invention can exhibit high photocatalytic activity by satisfying both the above-described light absorption rate and the fine primary particle shape measured by SEM.
  • a dry reaction method or a wet reaction method can be used as a production method of rhodium-doped strontium titanate particles according to the present invention.
  • the dry reaction method include a solid phase reaction method.
  • the wet reaction method include a sol-gel method, a complex polymerization method, and a hydrothermal reaction method.
  • the sol-gel method uses a alkoxide of titanium or a chloride of titanium as a raw material.
  • a hydroxide containing titanium is generated by a hydrolysis reaction between the raw material and water. The hydroxide is baked at 600 ° C. or higher and crystallized to obtain rhodium-doped strontium titanate particles.
  • a thermal decomposition method using an aqueous solution containing strontium ions, titanium ions and rhodium ions It is possible to preferably use an aqueous solution pyrolysis method.
  • Aqueous solution pyrolysis method uses a metal-containing precursor as a raw material, and heats an aqueous solution containing this metal-containing precursor, thereby dehydrating polycondensation of metal-containing precursors with the evaporation of water as a solvent. It is a method of causing a reaction.
  • a metal hydroxide is generated by hydrolysis of metal-containing precursors, Since these dehydration polycondensation occurs rapidly, crystal nuclei are likely to be coarsened.
  • a metal-containing precursor having a slow hydrolysis reaction is used as a raw material, so that stable dissolution in water becomes possible.
  • a dehydration polycondensation reaction between the metal-containing precursors can occur gradually with the evaporation of water as a solvent. This slows down the generation rate of crystal nuclei during pyrolysis, and as a result, miniaturization of crystal nuclei becomes possible.
  • a rhodium-doped strontium titanate precursor is contained by mixing a titanium compound, a strontium compound, a rhodium compound and a hydrophobic complexing agent and dissolving them in water. It is preferable to prepare an aqueous solution (the aqueous solution thus obtained is hereinafter referred to as an aqueous solution A).
  • rhodium-doped strontium titanate precursor means a compound having a six-membered ring structure formed by coordination of a hydrophobic complexing agent with titanium ions generated by dissociation of a titanium compound, and strontium It is a mixture of strontium ions generated by dissociating compounds and rhodium ions generated by dissociating rhodium compounds.
  • an aqueous solution containing a water-soluble titanium complex is prepared by mixing a titanium compound and a hydrophobic complexing agent (the aqueous solution thus obtained is hereinafter referred to as an aqueous solution B).
  • This aqueous solution B is mixed with a strontium compound and a rhodium compound to prepare an aqueous solution containing the rhodium-doped strontium titanate precursor, that is, an aqueous solution A.
  • the water-soluble titanium complex is one in which a hydrophobic complexing agent is coordinated to titanium ions generated by dissociation of a titanium compound.
  • a hydrophobic complexing agent as a raw material in addition to the titanium compound as a method for water-solubilizing a titanium compound containing Ti 4+ that is inherently poorly water-soluble.
  • a hydrophobic complexing agent By coordinating the hydrophobic complexing agent to titanium ions and complexing the titanium ions, hydrolysis can be suppressed.
  • the titanium compound an alkoxide of titanium or a chloride of titanium can be used.
  • titanium alkoxide titanium tetramethoxide, titanium tetraethoxide, titanium tetra n-propoxide, titanium tetraisopropoxide, titanium tetra n-butoxide and the like can be used.
  • the chloride of titanium titanium tetrachloride, titanium tetrafluoride, titanium tetrabromide, or the like can be used.
  • the hydrophobic complexing agent used in the present invention can coordinate to titanium ions, and the hydrophobic part is exposed on the solvent phase side when coordinated to titanium ions.
  • diketones and catechols can be preferably used.
  • diketones include diketones represented by the general formula: Z 1 —CO—CH 2 —CO—Z 2 (wherein Z 1 and Z 2 are each independently an alkyl group or an alkoxy group). Can be preferably used.
  • diketones represented by the general formula acetylacetone, ethyl acetoacetate, propyl acetoacetate, butyl acetoacetate and the like can be preferably used.
  • catechols ascorbic acid, pyrocatechol, tert-butylcatechol and the like can be preferably used. Even more preferably, acetylacetone or ethyl acetoacetate having a very high complexing ability in an aqueous solution of titanium can be used. Thereby, it is possible to suppress intermolecular polymerization due to intermolecular dehydration polycondensation that occurs when a hydroxyl group that is a hydrophilic portion is exposed on the solvent phase side. Therefore, it is possible to refine crystal nuclei and to refine particles after the pyrolysis reaction during pyrolysis.
  • a hydrophilic complexing agent may be used in addition to the hydrophobic complexing agent.
  • a carboxylic acid can be preferably used, and more preferably a carboxylic acid represented by the formula R 1 —COOH (wherein R 1 is a C 1-4 alkyl group), or A hydroxy acid or dicarboxylic acid having 1 to 6 carbon atoms can be used.
  • Specific examples of such a hydrophilic complexing agent include water-soluble carboxylic acids such as acetic acid, lactic acid, citric acid, butyric acid and malic acid. Even more preferred water-soluble carboxylic acid is acetic acid or lactic acid. Thereby, it becomes possible to suppress the hydrolysis reaction of the titanium compound and improve the solubility in water.
  • the solvent for forming the complex may be water, but according to another preferred embodiment of the present invention, a water-soluble organic solvent may be used as the solvent.
  • a water-soluble organic solvent may be used as the solvent.
  • the solubility of a transition metal compound can be improved.
  • Specific examples of the water-soluble organic solvent include methanol, ethanol, n-propanol, isopropanol, cellosolve solvent, and carbitol solvent.
  • the water-soluble titanium complex described in JP 2012-056947 A can be used.
  • a titanium complex having a coordination number of 6 with respect to a titanium ion, which is coordinated with the titanium ion is represented by the general formula: Z 1 —CO—CH 2 —CO—Z 2 (wherein , Z 1 and Z 2 are each independently an alkyl group or an alkoxy group.),
  • a third ligand and a fourth ligand each independently selected from the group consisting of an alkoxide and a hydroxide ion, and a fifth ligand that is H 2 O
  • a titanium complex consisting of can be used.
  • strontium compound containing Sr 2+ a compound that is water-soluble and does not leave an anionic component as a residue upon heat crystallization is preferable.
  • strontium nitrate, strontium acetate, strontium chloride, strontium bromide, strontium lactate, strontium citrate and the like are preferably used.
  • the rhodium compound containing Rh 3+ is preferably water-soluble and does not leave an anionic component as a residue during heat crystallization.
  • the rhodium compound for example, rhodium nitrate, rhodium acetate, rhodium chloride, rhodium bromide, rhodium lactate, rhodium citrate and the like are preferably used. Further, a molecule containing Rh 4+ may be used as the rhodium compound.
  • a hydrophilic complexing agent such as lactic acid, butyric acid or citric acid may be used.
  • the preferable mixing ratio of various raw materials in the aqueous solution A is 0.01 to 0.2 mol of titanium compound containing 1 atom of titanium with respect to 100 g of water. More preferably, it is 0.02 to 0.1 mol, the strontium compound is 1 to 1.1 times the molar amount with respect to the titanium compound containing one titanium atom, and the rhodium compound is a desired doping amount.
  • the hydrophobic complexing agent is 0.005 to 0.4 mol, more preferably 0.015 to 0.15 mol, and the hydrophilic complexing agent is 0.01 to 0.2 mol, more preferably Is preferably 0.025 to 0.15 mol.
  • the molar ratio of the hydrophobic complexing agent to the titanium compound is preferably 0.5 to 2 mol, more preferably 0.8 to 1 with respect to 1 mol of the titanium compound containing 1 atom of titanium. .2 moles. Within this range, it is possible to suppress the progress of the hydrolysis reaction of the titanium compound and the decrease in water solubility due to the improved hydrophobicity of the molecule.
  • the molar ratio of the hydrophilic complexing agent to the titanium compound is preferably 0.2 to 2 mol, more preferably 0.3 to 1 mol with respect to 1 mol of the titanium compound containing 1 atom of titanium.
  • the pH at which the stability of each ion in the aqueous solution can be maintained and the particles after crystallization can be refined is preferably 2 to 6, more preferably 3 to 5.
  • the rhodium-doped strontium titanate particles of the present invention it is preferable to add water-dispersed organic polymer particles to the aqueous solution A (the water-dispersed organic polymer particles are added to the aqueous solution A thus obtained).
  • This is hereinafter referred to as a dispersion).
  • grains can be obtained by heating and crystallizing this dispersion.
  • water-dispersed organic polymer particles spherical latex particles or oil-in-water dispersed (O / W type) emulsions can be used.
  • fine rhodium-doped strontium titanate particles are obtained, and secondary particles in which such particles are aggregated are porous.
  • the mechanism by which fine primary particles are obtained as a result and the porosity of the aggregated secondary particles is considered as follows, but the present invention is not limited to this mechanism. .
  • water-soluble titanium complexes, strontium ions and rhodium ions which are also polar molecules, are adsorbed on the surface of the polymer particles having polarity in water.
  • the titanium complex on the surface of the polymer particles is hydrolyzed to produce rhodium-doped strontium titanate crystal nuclei.
  • the crystal nuclei on the surface of the polymer particles exist with a physical distance from each other, there are few opportunities for bonding between the crystal nuclei, and the crystal growth is considered to proceed slowly. As a result, it is considered that the primary particle diameter of the rhodium-doped strontium titanate particles becomes fine.
  • the resulting rhodium-doped strontium titanate particles bind to each other as the polymer particles disappear due to thermal decomposition, but the presence of the polymer particles suppresses aggregation of the rhodium-doped strontium titanate particles, and as a result, It is considered that the porosity of the secondary particles becomes higher, that is, the porosity becomes higher.
  • the dispersed particle diameter of the water-dispersed organic polymer particles in water is preferably 10 to 1000 nm, and more preferably 30 to 300 nm. By setting the dispersed particle diameter within this range, the physical distance between the crystal nuclei of rhodium-doped strontium titanate can be increased. Therefore, it becomes possible to refine the rhodium-doped strontium titanate particles after heat crystallization.
  • the material of the water-dispersed organic polymer particles is preferably a material that does not leave a residue such as amorphous carbon, which is a heated residue of the organic polymer particles, after heat crystallization at 600 ° C. or higher.
  • the amount of the water-dispersed organic polymer particles added is preferably 1 to 20 times, more preferably 3 to 15 times the weight of rhodium-doped strontium after high temperature crystallization.
  • the following method is preferably used as a method for producing rhodium-doped strontium titanate particles from the dispersion in the production method of the present invention.
  • the dispersion is first dried at a low temperature of 200 ° C. or lower to obtain a dry powder. By firing this dried powder for crystallization, rhodium-doped strontium titanate particles can be produced. Moreover, you may perform the drying and baking process of this dispersion continuously.
  • the calcination temperature at the time of crystallization of rhodium-doped strontium titanate is more than 800 ° C. and less than 1100 ° C., more preferably 900 ° C. or more and 1050 ° C. or less. By adjusting to this temperature range, it is possible to highly crystallize high-purity rhodium-doped strontium titanate particles while thermally decomposing the water-dispersed organic polymer particles.
  • the rhodium-doped strontium titanate particles of the present invention are used as a photocatalyst for the photolysis of water, it is preferable to support a cocatalyst on the particle surface so that hydrogen and oxygen are generated quickly.
  • metal particles such as platinum, ruthenium, iridium and rhodium and metal oxide particles such as chromium oxide, rhodium oxide, iridium oxide and ruthenium oxide can be used. Further, a mixture of metal particles and metal oxide particles can be used.
  • a suitable redox couple (Fe 2+ / Fe 3+ , I ⁇ / I 3 ⁇ , I ⁇ / IO 3 ⁇ , Co 2+ / Co 3+ etc.) is dissolved in water, and the Z scheme system It can be set as this structure.
  • This Z scheme system can completely decompose water by irradiation with visible light.
  • the photocatalyst for oxygen generation in the present invention is preferably BiVO 4 , WO 3 or the like.
  • rhodium-doped strontium titanate particles as a photocatalyst for water splitting is provided. Furthermore, as another aspect of the present invention, there is provided a water splitting method comprising irradiating visible light to rhodium-doped strontium titanate particles in contact with water.
  • acrylic-styrene-based O / W emulsions manufactured by DIC, “Dry strontium titanate” obtained after calcination as water-dispersed organic polymer particles so that the solid content is 5 times by weight.
  • EC-905EF dispersed particle size 100-150 nm, pH: 7-9, solid content concentration 49-51%) was added.
  • the dispersion produced as described above was dried at 80 ° C. for 1 hour, and then fired at the firing temperature shown in Table 1 for 10 hours, thereby comprising the rhodium-doped strontium titanate particles of Examples 1 to 11.
  • a powder was prepared.
  • Example 10 For the sample of Example 10, as described above, using a planetary mill (“Premium Line P-7”, manufactured by Fritsch) for the powder after calcination for 10 hours at 1000 ° C. and crystallization, Fine dispersion was performed. As dispersion conditions, 1 g of rhodium-doped strontium titanate powder, 4 g of ethanol, and 1 g of zirconia beads (0.5 mm ⁇ ) were placed in a zirconia pot (capacity 45 mL), and the rotation and revolution dispersion treatment was performed at 700 rpm for 30 minutes. Went.
  • Premium Line P-7 manufactured by Fritsch
  • the slurry in which the powder is dispersed is collected by suction filtration using a resin filter having a mesh diameter of 0.1 mm, and the slurry is dried at room temperature for 10 hours to perform the dispersion treatment.
  • the rhodium-doped strontium titanate powder of Example 10 was prepared.
  • Example 12 In the method for producing rhodium-doped strontium titanate particles of Examples 1 to 11, acrylic latex particles (Chemisnow 1000, manufactured by Soken Chemical Co., Ltd., average particle diameter of about 1000 nm) are used instead of using an acrylic-styrene O / W emulsion. A rhodium-doped strontium titanate particle was produced by the same production method except that a 50 wt% aqueous dispersion was used.
  • Example 13 In the method for producing rhodium-doped strontium titanate particles of Examples 1 to 11, acrylic latex particles (Chemisnow 300, manufactured by Soken Chemical Co., Ltd., average particle size of about 300 nm) are used instead of using acrylic-styrene O / W type emulsions. A rhodium-doped strontium titanate particle was produced by the same production method except that a 50 wt% aqueous dispersion was used.
  • Comparative Examples 1-6 As a comparative sample, rhodium-doped strontium titanate prepared by a conventional solid phase reaction method was prepared.
  • Comparative Examples 7-11 The rhodium-doped strontium titanate powders of Comparative Examples 7 to 11 were prepared in the same manner as in Example 1 except that the calcination temperature for crystallization was changed to the calcination temperature shown in Table 1 under the production conditions of Example 1 above. Was made.
  • Rhodium-doped strontium titanate was prepared by complex polymerization. Specifically, in the preparation method of Example 2 above, a commercially available water-soluble titanium complex, peroxocitrate titanium complex (“TAS-FINE”, manufactured by Furuuchi Chemical Co., Ltd.) was used instead of the water-soluble titanium complex. Produced the rhodium-doped strontium titanate powder of Comparative Example 12 by the same method as in Example 2.
  • Rhodium-doped strontium titanate was prepared by a complex polymerization method (lactic acid polymerization method). Specifically, in the production method of Example 2, a titanium complex having lactic acid as a ligand was used instead of the water-soluble titanium complex. That is, titanium isopropoxide (manufactured by Wako Pure Chemicals, 0.01 mol) and lactic acid (manufactured by Wako Pure Chemicals, 0.02 mol) are added to 100 g of distilled water, and stirred at room temperature for one week, so that the titanium lactate complex An aqueous solution in which was dissolved in water was prepared.
  • lactic acid polymerization method lactic acid polymerization method
  • Example 2 the rhodium-doped strontium titanate powder of Comparative Example 13 was prepared in the same manner as in Example 2 except that this aqueous solution containing the titanium lactate complex was used instead of the aqueous solution containing the aqueous solution titanium complex. Produced.
  • Comparative Example 14 In the method for producing rhodium-doped strontium titanate particles of Examples 1 to 11, a 30 wt% aqueous solution of polyallylamine, which is a water-soluble cationic polymer (Wako Pure Chemical Industries, Ltd.) was used instead of using an acrylic-styrene-based O / W emulsion. A rhodium-doped strontium titanate particle was produced by the same production method except that (manufactured by Yakuhin) was used.
  • Comparative Example 15 The rhodium-doped strontium titanate particles were produced in the same manner as in the production methods of the rhodium-doped strontium titanate particles in Examples 1 to 11 except that the acrylic-styrene-based O / W emulsion was not added. did.
  • Table 1 shows the production conditions and characteristics of each produced powder.
  • Example 1 shows an SEM image of the powder (platinum unsupported) after firing at 1000 ° C. for 10 hours in Example 2 (or Example 3).
  • the primary particle diameter was 50 nm or less, and it was confirmed that a fine particle shape was maintained even after the high temperature crystallization treatment.
  • rhodium-doped strontium titanate particles The Rsp value of rhodium-doped strontium titanate particles was measured at room temperature using a pulsed NMR particle interface evaluation apparatus ("Acorn area", manufactured by Nippon Lucas). Specifically, first, 0.125 g of rhodium-doped strontium titanate particles prepared in Examples 1, 3 to 5, 7, 8 and 10 and Comparative Examples 4, 10, 13 and 15 were added to 0.23% AOT (di 2-ethylhexylsulfosuccinate) was added to 2.375 g of aqueous solution, and ultrasonic irradiation was performed for 2 minutes using a 20 W ultrasonic bath to prepare a pulsed NMR sample.
  • AOT di 2-ethylhexylsulfosuccinate
  • the sample put in the NMR tube is placed in a coil between two permanent magnets, and the sample is generated by a magnetic field generated by exciting the coil with an electromagnetic wave (RF) pulse of about 13 MHz.
  • RF electromagnetic wave
  • a temporary shift was induced in the magnetic field orientation of protons.
  • the protons in the sample are again aligned with the static magnetic field B 0, and this reorganization causes a voltage drop in the coil called free induction decay (FID) and a specific pulse 1 sequence (number of RF pulses).
  • FID free induction decay
  • T1 longitudinal relaxation time
  • T2 lateral relaxation time
  • R av the average value when the relaxation time constant, which is the reciprocal of T2 was measured five times continuously was defined as R av .
  • Rb of bulk water was separately measured, and an R sp value was obtained from the following equation.
  • R SP (R b ⁇ R av ) / R b From the obtained Rsp value, the structure of rhodium-doped strontium titanate particles was measured.
  • Hydrogen generation activity by water decomposition of rhodium-doped strontium titanate particles The hydrogen generation activity in water decomposition by irradiation with visible light of the rhodium-doped strontium titanate particles prepared in Examples 1 to 12 and Comparative Examples 1, 4, and 10 to 15 is shown below. We investigated by the method. In the measurement of the hydrogen generation activity in water decomposition by irradiation with visible light and the quantum yield described later, the rhodium-doped strontium titanate particles of each example were supported with a promoter.
  • the glass flask containing the reaction solution was attached to a closed circulation device, and the atmosphere in the reaction system was replaced with argon. Then, visible light was irradiated from the Pyrex (registered trademark) window side by a 300 W xenon lamp (manufactured by Cermax, PE-300BF) equipped with a UV cut filter (L-42, manufactured by HOYA). Then, the amount of hydrogen generated by reducing water by the photocatalytic reaction was examined over time by a gas chromatograph (manufactured by Shimadzu Corporation, GC-8A, TCD detector, MS-5A column).
  • a gas chromatograph manufactured by Shimadzu Corporation, GC-8A, TCD detector, MS-5A column.
  • the powder composed of rhodium-doped strontium titanate particles in which 0.5 wt% of platinum is supported by a photoreduction method specifically, rhodium-doped strontium titanate particles in a glass flask with a window made of Pyrex (registered trademark).
  • Example 2 and Comparative Example 1 The same procedure as in Example 1 was performed except that 0.05 g of powder composed of rhodium-doped strontium titanate particles supporting platinum as a promoter was used.
  • Example 7 The same procedure as in Example 1 was carried out except that the amount of platinum as a cocatalyst was changed to 0.75 wt%.
  • Example 8 The same procedure as in Example 1 was carried out except that an impregnation method was used instead of the photoreduction method as a method for supporting platinum as a promoter. Specifically, a paste was prepared by kneading 0.1 g of a powder composed of rhodium-doped strontium titanate particles, 0.4 g of water, and 0.031 g of a 1 wt% chloroplatinic acid aqueous solution at room temperature for 30 minutes in an agate mortar. . The paste was dried at room temperature for 15 hours and then calcined at 400 ° C. for 30 minutes to prepare a sample by an impregnation method.
  • an impregnation method was used instead of the photoreduction method as a method for supporting platinum as a promoter.
  • a paste was prepared by kneading 0.1 g of a powder composed of rhodium-doped strontium titanate particles, 0.4 g of water, and 0.031
  • Example 9 The same procedure as in Example 1 was carried out except that ruthenium chloride n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of platinum and 0.5 wt% of ruthenium was supported by the photoreduction method.
  • ruthenium chloride n-hydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 11 The same procedure as in Example 1 was conducted except that the amount of platinum as a cocatalyst was 1 wt%.
  • Results Table 2 shows the amount of hydrogen ( ⁇ mol) generated in 3 hours after the start of light irradiation and the rate of hydrogen production per unit powder amount ( ⁇ mol / hr) of the powder composed of rhodium-doped strontium titanate particles supporting a promoter. / G).
  • the hydrogen production rate per unit powder amount is 759 ⁇ mol / hr / g, which is very high activity, whereas in the sample of Comparative Example 1, it is 120 ⁇ mol / hr / g. The activity was very low.
  • the samples of Examples 1 and 3 to 7 also had high hydrogen generation activity.
  • Quantum yield by water decomposition of rhodium-doped strontium titanate particles The quantum yield by visible light irradiation of the rhodium-doped strontium titanate particles prepared in Example 3 was examined by the following method.
  • a glass flask with a Pyrex (registered trademark) window contains 0.1 g of rhodium-doped strontium titanate particles carrying 0.5 wt% of platinum and 10 vol% of methanol as a sacrificial reagent by a photoreduction method. 200 ml of an aqueous solution was added, and a reaction solution was prepared while stirring with a stirrer.
  • the glass flask containing the reaction solution was attached to a closed circulation device, and the atmosphere in the reaction system was replaced with argon.
  • the monochromatic light was irradiated from the Pyrex (trademark) window side using the wavelength variable monochromatic light source with a spectrometer (manufactured by Spectrometer, SM-25F).
  • a gas chromatograph manufactured by Shimadzu Corporation, GC-8A, TCD detector, MS-5A column.
  • the quantum yield (%) was calculated by the following formula.
  • Quantum yield (%) ((number of generated hydrogen molecules ⁇ 2) / number of incident photons) ⁇ 100
  • the illuminance (W / cm 2 / nm) at each wavelength (band wavelength width of about 10 nm) is measured using a spectroradiometer (USHIO, USR-55).
  • USHIO spectroradiometer
  • Figure 2 shows the results.
  • the quantum yield of this sample at 420 nm was 13.2%, which showed a very high hydrogen generation activity.
  • FIG. 3 shows a transmission electron microscope image of particles in which platinum is supported on the powder of Example 2.
  • one side had a cubic (cubic) form having a diameter of about 45 nm, and it was confirmed that it represents a cubic perovskite structure.
  • the particle diameter of platinum supported by the photoreduction method is about 2 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

高い結晶性と一次粒子の微細化を両立させた可視光応答型光触媒が開示されている。また、微細な一次粒子が集合した多孔質度が高い二次粒子からなる光触媒が開示されている。本発明による可視光応答型光触媒であるロジウムドープチタン酸ストロンチウムは、一次粒子径が70nm以下であり、拡散反射スペクトルにより測定される、波長570nmにおける光吸収率が、0.6以上であり、かつ、波長1800nmにおける光吸収率が、0.7以下であることで、光触媒としての高い水分解活性を有する。

Description

可視光応答型光触媒粒子およびその製造方法
 本発明は、可視光応答型光触媒粒子とその製造方法に関する。
 可視光応答型光触媒は、太陽光に多く含まれる可視光線を利用することが可能な光触媒である。この可視光応答型光触媒は、有機物の光分解や、水の光分解による水素製造への応用に期待されている。中でも、水素の製造を目的とした水分解用光触媒は、再生可能エネルギーを利用した水素製造方法に用いられる光触媒として注目されている。その結果、高い活性が得られる水分解用光触媒への要求が年々高まっている。
 可視光応答性がある水分解用光触媒として、ロジウムドープチタン酸ストロンチウム(Rh−SrTiO)は、水の光分解による水素発生能が非常に高いことが知られている。また、Rh−SrTiOと酸素発生用の光触媒を組合せたZスキーム型システムは、水分解反応において高いエネルギー変換効率が得られることが知られている(特開2004−008963号公報(特許文献1)、Sasakiら、J.Phys.Chem.C 17536~17542ページ、2009年(非特許文献1))。
 従来、上記Rh−SrTiOは、固相反応法や水熱合成法により作製され、これら方法においては1000℃程度で焼成する高結晶化処理を行うことが知られている。これにより得られたRh−SrTiO粒子は、一次粒子径が、数百nm~数μm程度のものであり、可視光照射下で、高い水素発生能を示すことが知られている。一方、Rh−SrTiO粒子を更に高活性化させるため、Rh−SrTiO粒子の比表面積を増大させる、すなわち微細結晶のRh−SrTiO粒子が求められている。
特開2004−008963号公報 特開2012−056947号公報
Sasakiら、J.Phys.Chem.C 17536~17542ページ、2009年
 そこで、本発明は、このような課題に鑑みてなされたものであり、その目的は、高い結晶性と一次粒子の微細化を両立させたロジウムドープチタン酸ストロンチウム粒子を提供することにある。
 本発明によるロジウムドープチタン酸ストロンチウム粒子は、一次粒子径が70nm以下であり、拡散反射スペクトルにより測定される、波長570nmにおける光吸収率が、0.6以上であり、かつ、波長1800nmにおける光吸収率が、0.7以下であることを特徴とするものである。
 本発明によるロジウムドープチタン酸ストロンチウム粒子は、可視光照射下において高い光触媒活性を発現する。
本発明によるロジウムドープチタン酸ストロンチウム粒子の走査型電子顕微鏡写真である。 本発明によるロジウムドープチタン酸ストロンチウム粒子の透過型電子顕微鏡写真である。 本発明によるロジウムドープチタン酸ストロンチウム粒子の水分解による量子収率の測定結果である。
ロジウムドープチタン酸ストロンチウム粒子の結晶性
 本発明によるロジウムドープチタン酸ストロンチウム(Rh−SrTiO)粒子は、高い結晶性、かつ微細な一次粒子径を有することを特徴とする。
 本発明者らは、従来のロジウムドープチタン酸ストロンチウム粒子に比べて、結晶中のRh4+に由来する光吸収率が大きいことと、結晶中に存在する酸素欠陥に由来する光吸収率が小さいことを両立した粒子が、「高い」結晶性を有し、かつ高い光触媒活性を示すことを見出した。Rh−SrTiOにおいて、高い結晶性と、比表面積の大きい、すなわち微細結晶であることを両立させることには困難が伴う。つまり、Rh−SrTiOは、結晶成長にあたり微細結晶のままで、高い結晶性を有する結晶となるように成長させることが難しい物質である。このようなRh−SrTiO粒子において、結晶中のRh4+に由来する光吸収率と、結晶中に存在する酸素欠陥に由来する光吸収率とを指標とすることで、微細結晶でかつ高い結晶性を有する結晶を得ることが可能となった。
 通常、金属酸化物の結晶性が低下する要因の一つとして、酸素欠陥の生成が考えられる。つまり、金属酸化物の酸素サイトの欠損部位が多い、すなわち酸素欠陥が多いほど、結晶としての周期性が乱れるため、金属酸化物の結晶化度が低下する、つまり結晶性が低下する。
 本発明のロジウムドープチタン酸ストロンチウム粒子の酸素欠陥量は、ロジウムドープチタン酸ストロンチウム粒子からなる粉末の紫外光、可視光、近赤外光領域における拡散反射スペクトル測定により定量評価できる光吸収率A(=1−分光反射率R)を指標として評価することが可能である。金属酸化物、例えば、酸化チタンの中に存在する酸素欠陥は、酸化チタンのバンド構造において、Ti−3d軌道からなる伝導帯の下端から0.75~1.18eV程度低い電子エネルギーの領域に、酸素欠陥により生成するTi3+からなるドナー準位を生じさせる。また、酸素欠陥を有する酸化チタンの吸収スペクトルは、可視光域から近赤外域に渡る幅広い領域でブロードな光吸収帯を持つことが知られている(Cronemeyerら、Phys.Rev.113号、1222~1225ページ、1959年)。今般、本発明者らは、ロジウムドープチタン酸ストロンチウム粒子の拡散反射スペクトルを測定することで、酸化チタンと同様に、可視光から近赤外光領域に渡って、ブロードな光吸収帯が生じることを確認した。さらに、焼成温度を上昇させることで、この近赤外光領域において光吸収率が減少することを確認した。これらのことから、可視光から近赤外域における光吸収を測定することで、焼成温度の上昇に伴う結晶性の向上を定量化できることを見出した。
 また、本発明者らは、高い光触媒活性を有するロジウムドープチタン酸ストロンチウム粒子においては、ロジウムの状態も重要であり、チタン酸ストロンチウム結晶中の4価のロジウム(Rh4+)に由来する光吸収が大きいほど、結晶性が高くなることを見出した。このロジウムの価数による結晶性への影響に関して、以下のメカニズムが予想されるが、本発明はこのメカニズムに限定されるものではない。
 通常、ロジウムの価数は、2価、3価、4価および5価が知られている。これらの価数を有するロジウムのうち、室温及び大気中で最も安定なのは3価のロジウム(Rh3+)である。3価のロジウムを含む出発原料を用いた場合、チタン酸ストロンチウム(SrTiO)を高温で焼成し結晶化する際、4価のチタン(Ti4+)のサイトにロジウムがドープされることが知られている。この際、Rh3+がTi4+の結晶サイトに置換固溶した場合、電気的中性を保つために、酸素欠陥が生じてしまう。よって、本発明者らは、この酸素欠陥を減少させるためには、結晶の電気的中性を維持可能なRh4+が、Ti4+の結晶サイトに置換固溶する必要があり、このことにより粒子の結晶性が向上することを見出した。
 そこで、本発明者らは、以下の方法で粒子を測定することにより、本発明の高い光触媒活性を有するロジウムドープチタン酸ストロンチウム粒子の光学特性パラメータを明らかにできることを見出した。
 本発明のロジウムドープチタン酸ストロンチウム粒子の光学特性の測定方法として、例えば、積分球ユニットを装着した、紫外可視近赤外分光光度計(日本分光株式会社製、“V−670”)を用いることが可能である。具体的には、紫外可視近赤外分光光度計に、積分球ユニット(日本分光株式会社製、“ISV−722”)を装着する。ここで、ベースライン測定には、アルミナ焼結ペレットを用いる。その上で、微量粉末セル(日本分光株式会社製、“PSH−003”)の窓部(φ5mm)に、充填率が50%以上となるように粒子粉末30mgを詰めた際の拡散反射スペクトルを測定することで、分光反射率Rの測定が可能となる。ロジウムドープチタン酸ストロンチウム粒子の光学特性は、この装置を用いて、波長200~2500nmまでの範囲で、拡散反射スペクトルを測定することで示される。そして、本発明のロジウムドープチタン酸ストロンチウム粒子は、波長315nmにおける光吸収率A315(=1−R315[波長315nmにおける分光反射率])が、0.86~0.87の範囲になるような条件下で、チタン酸ストロンチウム結晶中のRh4+に由来する光吸収に帰属される、波長570nmにおける光吸収率A570(=1−R570[波長570nmにおける分光反射率])が、0.6以上であり、かつ、結晶中の酸素欠陥に由来する光吸収に帰属される、波長1800nmにおける光吸収率A1800(=1−R1800[波長1800nmにおける分光反射率])が、0.7以下であることを特徴とする。本発明の好ましい態様によれば、波長570nmにおける光吸収率A570は、0.6以上0.8未満である。また、本発明の別の好ましい態様によれば、波長1800nmにおける光吸収率A1800は、0.3以上0.7以下である。
ロジウムドープチタン酸ストロンチウム粒子の一次粒子径
 さらに、上述のように、本発明のロジウムドープチタン酸ストロンチウム粒子は、微細な一次粒子径を有している。一次粒子径は、70nm以下である。これにより、ロジウムドープチタン酸ストロンチウム粒子は高い比表面積を有することができる。また、分解対象物質との接触面積が増加し、粒子の光触媒活性が向上する。好ましい一次粒子径は50nm以下である。より好ましい一次粒子径は30nm以上70nm以下である。さらにより好ましい一次粒子径は30nm以上50nm以下である。ロジウムドープチタン酸ストロンチウム粒子の一次粒子径は、例えば、走査型電子顕微鏡(株式会社日立製作所製、“S−4100”、以下、SEM)により、倍率40000倍で観察した際の結晶粒子50個の円形近似による平均値で定義することが可能である。
ロジウムドープチタン酸ストロンチウム粒子の構造
 さらに、本発明の好ましい態様によれば、上述のように、本発明によるロジウムドープチタン酸ストロンチウム粒子は、比表面積が大きいものである。
 本発明においては、ロジウムドープチタン酸ストロンチウム粒子のRSP値を指標として用いることで、表面積の大きいロジウムドープチタン酸ストロンチウム粒子又はこれが集合した多孔質度の高い粉体(二次粒子)を示すことが可能となった。
 RSP値は粒子表面に吸着した水分子の吸着量に相関する指標であり、水中に分散する粒子が水と接触している表面積に依存する指標である。本発明によるロジウムドープチタン酸ストロンチウム粒子は後述するように水分解用光触媒として利用することができるため、この粒子は水と接触させて利用されるものである。この場合、水は一次粒子間の間隙あるいは二次粒子内の細孔に拡散し、粒子の表面に水が接触する状態となる。従って、本発明によるロジウムドープチタン酸ストロンチウム粒子を水分解用光触媒として利用する場合、水が吸着している粒子の表面積をRSP値を指標として正確に測定可能であることは、比表面積の大きい粒子を得る上で有効である。なお、粒子の比表面積を測定する方法として、従来主流である窒素吸脱着測定を元にしたBET解析が挙げられるが、このBET解析では、プローブとして窒素用いており、窒素の分子直径は小さいため、水が拡散できない細孔表面に窒素が吸着してしまう。従って、BET解析による比表面積測定方法は水が吸着している粒子を対象とする場合有効性に欠ける。
 RSP値は以下の式で表される。また、RSP値は、パルスNMR粒子界面評価装置(例えば、“Acorn area”、日本ルフト製)により測定することが可能である。
 RSP=(R−Rav)/R    (1)
 ここで、Ravは、平均緩和時定数である。緩和時定数は、粒子が水に分散している際に表面に接触あるいは吸着している水の緩和時間の逆数である。平均緩和時定数は得られた緩和時定数を平均した値である。
 Rは、粒子が含まれていないブランクの水の緩和時定数である。
 Rsp値が大きいほど、粒子表面と水の相互作用が大きいことを示す。すなわち、粒子と水が接触している面積が大きく、粒子の比表面積が大きいことを示す。
 本発明によるロジウムドープチタン酸ストロンチウム粒子のRSP値は、0.86以上であることが好ましい。より好ましくは0.88以上である。またRSP値は、10以下であることが好ましい。
ロジウムドープチタン酸ストロンチウムの組成
 本発明のロジウムドープチタン酸ストロンチウムの組成は、SrTi1−xRhで表わすことができる。ロジウムドープチタン酸ストロンチウム粒子の、M(ロジウム)/M(チタン+ロジウム)で表わされるモル比率は、0.001~0.03であることが好ましく、より好ましくは、0.01~0.03である。モル比率をこの範囲とすることで、結晶中の酸素欠陥量の増加を抑制し、高い光触媒活性を実現することが可能である。
 以上のように、本発明のロジウムドープチタン酸ストロンチウム粒子は、上記に示す光吸収率と、SEMにより測定される微細な一次粒子形状を両立することで、高い光触媒活性の発現が可能となる。
ロジウムドープチタン酸ストロンチウム粒子の製造方法
 本発明によるロジウムドープチタン酸ストロンチウム粒子の製造方法として、乾式反応法や湿式反応法を利用することが可能である。乾式反応法として、固相反応法等が挙げられる。また、湿式反応法として、ゾル−ゲル法、錯体重合法、水熱反応法等が挙げられる。例えば、ゾル−ゲル法による製造方法は、チタンのアルコキシドやチタンの塩化物を原料として用いる。この原料と水との加水分解反応によりチタンを含む水酸化物を生成させる。この水酸化物を600℃以上で焼成し、結晶化させることでロジウムドープチタン酸ストロンチウム粒子を得ることができる。
ロジウムドープチタン酸ストロンチウム前駆体を含む水溶液を用いた粒子の製造
 さらに、本発明によるロジウムドープチタン酸ストロンチウム粒子の製造方法として、ストロンチウムイオン、チタンイオン、ロジウムイオンを含む水溶液を用いた熱分解法(水溶液熱分解法)を好ましく用いることが可能である。「水溶液熱分解法」とは、金属含有前駆体を原料として用い、この金属含有前駆体を含む水溶液を加熱することで、溶媒である水の蒸発に伴い、金属含有前駆体同士の脱水重縮合反応を起こす方法である。水との加水分解反応が速やかに起こる金属化合物(例えば、金属のアルコキシドや金属の塩化物等)を用いるゾル−ゲル法では、金属含有前駆体同士の加水分解により金属水酸化物が生成し、これらの脱水重縮合が速やかに起こることで、結晶核が粗大化しやすい。これに対して、本発明で用いられる水溶液熱分解法では、加水分解反応が緩やかな金属含有前駆体を原料として用いることで、水への安定な溶解が可能となる。また、このような金属含有前駆体を含む水溶液を加熱することで、溶媒である水の蒸発に伴い、金属含有前駆体同士の脱水重縮合反応が緩やかに起こり得る。これにより、熱分解時の結晶核の生成速度が遅くなり、結果的に結晶核の微細化が可能となる。
 本発明の一つの態様によれば、本発明による製造方法において、チタン化合物、ストロンチウム化合物、ロジウム化合物と疎水性錯化剤を混合し、水に溶解させることでロジウムドープチタン酸ストロンチウム前駆体を含む水溶液を調製することが好ましい(これにより得られる水溶液を、以下、水溶液Aという。)。ここで、「ロジウムドープチタン酸ストロンチウム前駆体」とは、チタン化合物が解離して生成するチタンイオンに疎水性錯化剤が配位して、形成される六員環構造を有する化合物と、ストロンチウム化合物が解離して生成するストロンチウムイオン及びロジウム化合物が解離して生成するロジウムイオンの混合物である。水溶液Aを調製する方法は、まずチタン化合物と疎水性錯化剤を混合し水溶性チタン錯体を含む水溶液を調製する(これにより得られる水溶液を、以下、水溶液Bという。)。この水溶液Bにストロンチウム化合物及びロジウム化合物を混合し、ロジウムドープチタン酸ストロンチウム前駆体を含む水溶液、つまり水溶液Aを調製する。ここで、水溶性チタン錯体とは、チタン化合物が解離して生成するチタンイオンに疎水性錯化剤が配位したものである。
 本発明による製造方法において、本来難水溶性であるTi4+を含むチタン化合物を水溶化させる方法として、原料としてチタン化合物の他に、疎水性錯化剤を添加することが好ましい。疎水性錯化剤をチタンイオンに配位させて、チタンイオンを錯化させることで、加水分解を抑制させることが可能となる。ここで、チタン化合物としては、チタンのアルコキシドやチタンの塩化物を用いることができる。チタンのアルコキシドとしては、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラn−プロポキシド、チタンテトライソプロポキシド、チタンテトラn−ブトキシド等を用いることができる。チタンの塩化物としては、四塩化チタン、四フッ化チタン、四臭化チタン等を用いることができる。
 また、本発明に用いる疎水性錯化剤は、チタンイオンに配位でき、チタンイオンに配位した際に溶媒相側に疎水部が露出するものである。このような疎水性錯化剤として、例えばジケトン類、カテコール類を好ましく用いることができる。ジケトン類としては、一般式:Z−CO−CH−CO−Z(式中、ZおよびZは、独立して、アルキル基またはアルコキシ基である。)で表されるジケトン類を好ましく用いることができる。前記一般式で表されるジケトン類としては、アセチルアセトン、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸ブチル等を好ましく用いることができる。カテコール類としては、アスコルビン酸、ピロカテコール、tert−ブチルカテコール等を好ましく用いることができる。さらにより好ましくは、チタンへの水溶液中での錯化能が極めて高いアセチルアセトン、アセト酢酸エチルを用いることができる。これにより、親水部である水酸基が溶媒相側に露出した場合に起こる分子間の脱水重縮合による分子間重合を抑制できる。よって、熱分解時において結晶核の微細化や、熱分解反応後の粒子の微細化が可能となる。
 また、本発明の好ましい態様によれば、疎水性錯化剤に加えて、親水性錯化剤を用いても良い。親水性錯化剤としては、好ましくはカルボン酸を用いることができ、より好ましくは、式R−COOH(式中、RはC1−4アルキル基である)で表わされるカルボン酸、または炭素数1~6のヒドロキシ酸またはジカルボン酸を用いることができる。このような親水性錯化剤の具体例としては、酢酸、乳酸、クエン酸、酪酸、リンゴ酸等の水溶性カルボン酸等が挙げられる。さらにより好ましい水溶性カルボン酸は、酢酸または乳酸である。これにより、チタン化合物の加水分解反応の抑制や水への溶解性を向上させることが可能となる。
 また、錯体形成のための溶媒は水であってもよいが、本発明の別の好ましい態様によれば、溶媒として水溶性有機溶剤を用いても良い。これにより、遷移金属化合物の溶解性を向上させることができる。水溶性有機溶剤の具体例としては、メタノール、エタノール、n−プロパノール、イソプロパノール、セロソルブ系溶媒、カルビトール系溶剤が挙げられる。
 本発明の好ましい態様によれば、水溶性チタン錯体として特開2012−056947号公報に記載のものを用いることができる。具体的には、チタンイオンに対する配位数が6であるチタン錯体であって、チタンイオンと、それに配位してなる、一般式:Z−CO−CH−CO−Z(式中、ZおよびZは、独立して、アルキル基またはアルコキシ基である。)で表され、二座配位子として機能する第1の配位子と、カルボキシラートである第2の配位子と、アルコキシドおよび水酸化物イオンからなる群から、独立してそれぞれ選択される第3の配位子および第4の配位子と、HOである第5の配位子とを含んでなるチタン錯体を用いることができる。
 また、Sr2+を含むストロンチウム化合物として、水溶性であり、加熱結晶化の際に、残渣としてアニオン成分が残らないものが好ましい。例えば、硝酸ストロンチウム、酢酸ストロンチウム、塩化ストロンチウム、臭化ストロンチウム、乳酸ストロンチウム、クエン酸ストロンチウム等が好ましく用いられる。
 また、Rh3+を含むロジウム化合物として、水溶性であり、加熱結晶化の際に、残渣としてアニオン成分が残らないものが好ましい。ロジウム化合物として、例えば、硝酸ロジウム、酢酸ロジウム、塩化ロジウム、臭化ロジウム、乳酸ロジウム、クエン酸ロジウム等が好ましく用いられる。また、ロジウム化合物として、Rh4+を含む分子を用いても良い。ストロンチウム化合物あるいはロジウム化合物の水への溶解性を向上させるために、乳酸、酪酸、クエン酸等の親水性錯化剤を用いてもよい。
 本発明のロジウムドープチタン酸ストロンチウム粒子の製造において、前記水溶液Aにおける各種原料の好ましい混合比率としては、水100グラムに対して、チタン1原子を含むチタン化合物は、0.01~0.2モル、より好ましくは0.02~0.1モルであり、ストロンチウム化合物は、チタン1原子を含むチタン化合物に対して1~1.1倍のモル量であり、ロジウム化合物は、所望のドープ量であり、疎水性錯化剤は、0.005~0.4モル、より好ましくは0.015~0.15モルであり、親水性錯化剤は、0.01~0.2モル、より好ましくは0.025~0.15モルであることが好ましい。この比率で混合することで、チタン化合物が良好に水溶化し、熱分解後の粒子の高結晶化及び微細化が可能となる。また、チタン化合物に対する、疎水性錯化剤のモル比率としては、チタン1原子を含むチタン化合物1モルに対して、0.5~2モルであることが好ましく、より好ましくは0.8~1.2モルである。この範囲内では、チタン化合物の加水分解反応の進行や、分子の疎水性向上による水溶性の低下を抑制することが可能となる。また、チタン化合物に対する、親水性錯化剤のモル比率としては、チタン1原子を含むチタン化合物1モルに対して、0.2~2モルであることが好ましく、より好ましくは0.3~1.5モルである。この範囲内では、チタン化合物の加水分解反応の進行を抑制し、チタン化合物の水への溶解性を向上させることが可能となる。また、水溶液Aにおいて、水溶液中での各イオンの安定性を維持し、結晶化後の粒子の微細化が可能なpHは、好ましくは、2~6、より好ましくは、3~5である。この範囲とすることで、強酸や強アルカリ雰囲気による加水分解重縮合の促進による結晶の粗大化を抑制できる。
 また、本発明のロジウムドープチタン酸ストロンチウム粒子の製造においては、前記水溶液Aに、水中分散型有機ポリマー粒子を添加することが好ましい(これにより得られる水溶液Aに水中分散型有機ポリマー粒子を添加したものを、以下、分散体という。)。また、この分散体を加熱し結晶化することでロジウムドープチタン酸ストロンチウム粒子からなる粉体を得ることができる。水溶液Aに水中分散型有機ポリマー粒子を添加することで、ロジウムドープチタン酸ストロンチウム粒子同士の凝集度を低減させ、ロジウムドープチタン酸ストロンチウム粒子からなる粉体の多孔質度や空隙率を向上させることが可能となる。
 この水中分散型有機ポリマー粒子として、球状ラテックス粒子や、水中油滴分散型(O/W型)エマルジョンを用いることが可能である。この水中分散型有機ポリマー粒子の添加により、微細なロジウムドープチタン酸ストロンチウム粒子が得られ、このような粒子が集合した二次粒子は多孔質となる。このように微細な一次粒子が得られ、その結果それが集合した二次粒子の多孔質度が高くなるメカニズムは、以下のように考えられるが、本発明はこのメカニズムに限定されるものではない。水中分散型有機ポリマー粒子を添加することで、水中で極性を持つポリマー粒子表面に、同じく極性分子である水溶性チタン錯体、ストロンチウムイオンおよびロジウムイオンが吸着する。加熱結晶化の工程で、ポリマー粒子の表面にあるチタン錯体は加水分解され、ロジウムドープチタン酸ストロンチウムの結晶核が生じる。ここで、ポリマー粒子の表面にある結晶核は互いに物理的距離をもって存在するため、結晶核同士の結合の機会が少なく、結晶の成長は緩やかに進行すると考えられる。この結果、ロジウムドープチタン酸ストロンチウム粒子の一次粒子径が微細になるものと考えられる。さらに、生じたロジウムドープチタン酸ストロンチウム粒子は熱分解によるポリマー粒子の消失にともない互いに結着するが、ポリマー粒子の存在がロジウムドープチタン酸ストロンチウム粒子の凝集を抑制し、その結果、その集合体としての二次粒子の空隙率が高くなり、すなわち多孔質度が高くなるものと考えられる。
 この水中分散型有機ポリマー粒子の水中での分散粒子径は、好ましくは10~1000nmであり、より好ましくは、30~300nmである。この範囲の分散粒子径とすることで、ロジウムドープチタン酸ストロンチウムの結晶核同士の物理的距離を大きくすることできる。よって、加熱結晶化後に、ロジウムドープチタン酸ストロンチウム粒子を微細化することが可能となる。また、水中分散型有機ポリマー粒子の材質としては、600℃以上の加熱結晶化後に、有機ポリマー粒子の加熱残存物であるアモルファス状炭素等の残渣が残らないものが好ましい。例えば、スチレン、アクリル、ウレタン、エポキシ等のモノマーユニットが重合されたもの、もしくは複数種類のモノマーユニットを含むものが好適に用いられる。そして、水中分散型有機ポリマー粒子の添加量は、高温結晶化後のロジウムドープストロンチウムの重量に対して、好ましくは、1~20倍、より好ましくは、3~15倍量であり、この範囲の量のポリマー粒子を、水溶液Aに添加することで、結晶化後の粒子の凝集を抑制でき、粒子の一次粒子径の微細化が可能となる。
 本発明の製造方法における、前記分散体から、ロジウムドープチタン酸ストロンチウム粒子を作製する方法として、以下の方法が好ましく用いられる。前記分散体を200℃以下の低温で乾燥することで、まず乾燥粉体を得る。この乾燥粉体を結晶化する為に焼成することで、ロジウムドープチタン酸ストロンチウム粒子を製造することが可能である。また、この分散体の乾燥および焼成工程を、連続的に行っても良い。ロジウムドープチタン酸ストロンチウムの結晶化の際の焼成温度は、800℃を超え1100℃未満であり、より好ましくは、900℃以上1050℃以下である。この温度範囲とすることで、水中分散型有機ポリマー粒子を熱分解しつつ、高純度なロジウムドープチタン酸ストロンチウム粒子を高度に結晶化することが可能となる。
光触媒の用途
 本発明のロジウムドープチタン酸ストロンチウム粒子を光触媒として水の光分解に用いる場合、水素及び酸素の発生が速やかに起こるように、助触媒を粒子表面に担持させることが好ましい。助触媒としては、白金、ルテニウム、イリジウム、ロジウム等の金属粒子や、酸化クロム、酸化ロジウム、酸化イリジウム、酸化ルテニウム等の金属酸化物粒子を用いることが可能である。また、金属粒子と金属酸化物粒子を混合させたものを用いることができる。この助触媒の担持により、水の酸化反応及び還元反応における活性化エネルギーを減少させることが可能となるため、速やかな水素及び酸素の発生が可能となる。
 また、酸素発生用光触媒とともに、水中に適当なレドックス対(Fe2+/Fe3+、I/I 、I/IO 、Co2+/Co3+等)を溶解させて、Zスキームシステムの構成とすることができる。このZスキームシステムは、可視光照射により、水を完全分解できる。本発明における酸素発生用光触媒として、好ましくは、BiVO,WO等が挙げられる。
 従って、本発明によれば、水分解用光触媒としてのロジウムドープチタン酸ストロンチウム粒子の使用が提供される。さらに、本発明の別の態様として、水と接触しているロジウムドープチタン酸ストロンチウム粒子に可視光を照射することを含んでなる水分解方法が提供される。
 以下の実施例によって本発明をさらに詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。
実施例1~11
ロジウムドープチタン酸ストロンチウム粒子の作製
 20mLサンプル瓶に、疎水性錯化剤であるアセチルアセトン(和光純薬製)0.02mol(2.003g)を添加し、室温で撹拌しながら、チタンテトライソプロポキシド(和光純薬製)0.02mol(5.684g)を添加して、黄色の水溶性チタン錯体を含む水溶液を作製した。この水溶性チタン錯体を含む水溶液を、0.32mol/Lの酢酸水溶液50mLに、室温で攪拌しながら添加した。添加後、室温で約1時間攪拌を行い、更に60℃で約1時間撹拌を行うことで、黄色透明な水溶性チタン錯体を含む水溶液を作製した。
 次いで、上記で作製した水溶性チタン錯体を含む水溶液を10g分取した(金属チタン換算で、3.41mmolのチタンを含有)。そして、酢酸ストロンチウム・0.5水和物(和光純薬製)3.75mmol(0.84g)および親水性錯化剤である乳酸(和光純薬製)0.70gを蒸留水3.16gに溶解したものをこの水溶液に添加し、さらに、M(チタン+ロジウム)に対するM(ロジウム)で表わされるモル比率が所望の濃度となるように、三塩化ロジウム(和光純薬製)の5wt%水溶液をこの水溶液に添加して、室温で3時間撹拌を行った。これにより、橙色透明なロジウムドープチタン酸ストロンチウムの前駆体を含む水溶液を得た。この水溶液のpHは、およそ4であった。
 さらに、水中分散型有機ポリマー粒子として、焼成後に得られるロジウムドープチタン酸ストロンチウムに対して、重量比で5倍の固形分となるように、アクリルースチレン系O/W型エマルジョン(DIC製、“EC−905EF”,分散粒子径100~150nm、pH:7~9、固形分濃度49~51%)を添加した。
 以上のように作製した、分散体を、80℃で1時間乾燥させた後、表1に記載の焼成温度で10時間焼成することで、実施例1~11のロジウムドープチタン酸ストロンチウム粒子からなる粉末を作製した。
 実施例10のサンプルについては、上記のとおり1000℃で10時間焼成し結晶化した後の粉末に対して、さらに遊星型ミル(“Premium Line P−7”、フリッチュ製)を用いて、粉末の微細分散化を行った。分散条件としては、ジルコニア製ポット(容量45mL)に、ロジウムドープチタン酸ストロンチウム粉末を1g、エタノール4g、そしてジルコニア製ビーズ(0.5mmφ)1gを入れて、700rpmで30分、自転公転式分散処理を行った。分散処理後、メッシュ径0.1mmの樹脂製フィルターを用いて、吸引ろ過を行うことで、粉末が分散したスラリーを回収し、このスラリーを室温で10時間乾燥を行うことで、分散処理を施し、実施例10のロジウムドープチタン酸ストロンチウム粉末を作製した。
実施例12
 上記実施例1~11のロジウムドープチタン酸ストロンチウム粒子の作製方法において、アクリル−スチレン系O/W型エマルジョンを用いる代わりに、アクリル系ラテックス粒子(ケミスノー1000、綜研化学製、平均粒径約1000nm)の50wt%水分散液を用いた以外は、同様の作製方法で、ロジウムドープチタン酸ストロンチウム粒子を作製した。
実施例13
 上記実施例1~11のロジウムドープチタン酸ストロンチウム粒子の作製方法において、アクリル−スチレン系O/W型エマルジョンを用いる代わりに、アクリル系ラテックス粒子(ケミスノー300、綜研化学製、平均粒径約300nm)の50wt%水分散液を用いた以外は、同様の作製方法で、ロジウムドープチタン酸ストロンチウム粒子を作製した。
比較例1~6
 比較例サンプルとして、従来の固相反応法により作製したロジウムドープチタン酸ストロンチウムを作製した。固相反応法による作製方法は、以下の通りである。
 炭酸ストロンチウム(関東化学製)、酸化チタン(添川理化学製、ルチル型)、および酸化ロジウム(Rh:和光純薬製)の各粉末を、Sr:Ti:Rh=1.07:1−x:x(x:表1に記載の各ロジウムドープ比率)のモル比率となるように混合した。その後、表1に記載の焼成温度で10時間焼成し、比較例1~6のロジウムドープチタン酸ストロンチウム粉末を作製した。
比較例7~11
 上記の実施例1の作製条件において、結晶化の為の焼成温度を表1に記載の焼成温度とした以外は実施例1と同様の方法により、比較例7~11のロジウムドープチタン酸ストロンチウム粉末を作製した。
比較例12
 錯体重合法によりロジウムドープチタン酸ストロンチウムを作製した。具体的には、上記実施例2の作製方法において、水溶性チタン錯体の代わりに、市販の水溶性チタン錯体であるペルオキソクエン酸チタン錯体(“TAS−FINE”、フルウチ化学製)を用い、その他は実施例2と同様の方法により、比較例12のロジウムドープチタン酸ストロンチウム粉末を作製した。
比較例13
 錯体重合法(乳酸重合法)によりロジウムドープチタン酸ストロンチウムを作製した。具体的には、上記実施例2の作製方法において、水溶性チタン錯体の代わりに、乳酸を配位子とするチタン錯体を用いた。すなわち、蒸留水100gに、チタンイソプロポキシド(和光純薬製、0.01mol)と乳酸(和光純薬製、0.02mol)を添加して、室温で1週間撹拌することで、乳酸チタン錯体が水に溶解した水溶液を作製した。実施例2の作製方法において、水溶液チタン錯体を含む水溶液の代わりに、この乳酸チタン錯体を含む水溶液を用いた以外は実施例2と同様の方法により、比較例13のロジウムドープチタン酸ストロンチウム粉末を作製した。
比較例14
 上記実施例1~11のロジウムドープチタン酸ストロンチウム粒子の作製方法において、アクリル−スチレン系O/W型エマルジョンを用いる代わりに、水溶解性のカチオン性ポリマーであるポリアリルアミンの30wt%水溶液(和光純薬製)を用いた以外は、同様の作製方法で、ロジウムドープチタン酸ストロンチウム粒子を作製した。
比較例15
 上記実施例1~11のロジウムドープチタン酸ストロンチウム粒子の作製方法において、アクリルースチレン系O/W型エマルジョンを添加しなかったこと以外は、同様の作製方法で、ロジウムドープチタン酸ストロンチウム粒子を作製した。
 作製した各粉末の作製条件及び特性を表1に示す。
ロジウムドープチタン酸ストロンチウム粒子の結晶構造と微細構造
 実施例1~13および比較例1~15で作製したロジウムドープチタン酸ストロンチウムのX線回折測定を行った結果、すべてのサンプルが、単相のペロブスカイト構造を有することが確認された。次いで、走査型電子顕微鏡による観察から確認された、ロジウムドープチタン酸ストロンチウムの一次粒子径を表1に示す。具体的には、走査型電子顕微鏡(株式会社日立製作所製、“S−4100”)により、倍率40000倍で観察した際の結晶粒子50個の円形近似による平均値を一次粒子径とした。実施例の一例として、図1に実施例2(又は実施例3)の1000℃で10時間焼成した後の粉末(白金未担持)のSEM像を示す。一次粒子径は、50nm以下であり、高温結晶化処理後も、微細化な粒子形状を維持することが確認された。
ロジウムドープチタン酸ストロンチウム粒子の光学特性
 実施例および比較例で作製したロジウムドープチタン酸ストロンチウムの光学特性を、紫外可視近赤外分光光度計に積分球ユニットを装着することで、拡散反射スペクトルを測定し、各波長におけるサンプルの分光反射率Rを求めた。この際、波長315nmにおける光吸収率A(=1−分光反射率R)が0.86~0.87となるように粉末量を合わせた。表1に、波長570nm、1800nmにおける各光吸収率Aをまとめる。
ロジウムドープチタン酸ストロンチウムの粒子の構造測定
 ロジウムドープチタン酸ストロンチウムの粒子のRsp値を、パルスNMR粒子界面評価装置(“Acorn area”、日本ルフト製)を用いて室温で測定した。具体的にはまず、実施例1、3~5、7、8および10、比較例4、10、13および15で作製したロジウムドープチタン酸ストロンチウム粒子0.125gを、0.23%AOT(di−2−ethylhexyl sodium sulfosuccinate)水溶液2.375gに添加して、20W超音波バスを用いて、2分間超音波照射を行うことで、パルスNMR試料を作製した。次いで、超音波照射直後に、NMRチューブに投入した試料を2つの永久磁石の間のコイル中に配置し、約13MHzの電磁波(RF)パルスでコイルを励起することで生じる磁場によって発生する試料中のプロトンの磁場配向に一時的なシフトが誘導された。この誘導を停止すると、試料中のプロトンは再び静磁場Bと整列し、この再編成によって、自由誘導減衰(FID)と呼ばれるコイルの電圧低下が生じ、特定のパルス1シーケンス(RFパルスの回数及び間隔の組み合わせ)から、試料のT1(縦緩和時間)とT2(横緩和時間)を測定した。ここで、T2の逆数である緩和時定数を連続5回測定した際の平均値をRavとした。同様に、バルク水のRを別途測定し、以下の式より、Rsp値を求めた。
 RSP=(R−Rav)/R
 得られたRsp値からロジウムドープチタン酸ストロンチウムの粒子の構造を測定した。
結果
 Rsp値を表1に示す。実施例では、すべて0.88以上のRsp値であった。このことから、実施例で作製したロジウムドープチタン酸ストロンチウム粒子は、粒子表面と水の相互作用が大きいことが確認された。すなわち、粒子と水が接触している表面積が大きく、粒子の比表面積が大きいことが確認された。
Figure JPOXMLDOC01-appb-T000001
ロジウムドープチタン酸ストロンチウム粒子の水分解による水素発生活性
 実施例1~12および比較例1、4、10~15で作製したロジウムドープチタン酸ストロンチウム粒子の可視光照射による水分解における水素発生活性を以下の方法で調べた。この可視光照射による水分解における水素発生活性、および後述する量子収率の測定においては、各例のロジウムドープチタン酸ストロンチウム粒子に助触媒を担持させたものを用いた。
実施例1、3~6、10および12、比較例4、10~15
 パイレックス(登録商標)製窓付きのガラスフラスコ(実施例2および比較例1のサンプルについては上方照射型、それ以外のサンプルについては側方照射型のフラスコを用いた)に、光還元法により、助触媒である白金を0.5wt%担持させたロジウムドープチタン酸ストロンチウム粒子からなる粉末0.1gと、犠牲試薬となるメタノール10vol%を含む水溶液200mlを入れて、スターラーで撹拌しながら、反応溶液とした。そして、この反応溶液を入れたガラスフラスコを閉鎖循環装置に装着し、反応系内の雰囲気をアルゴン置換した。そして、UVカットフィルター(L−42、HOYA製)を装着した300Wキセノンランプ(Cermax製、PE−300BF)により、可視光をパイレックス(登録商標)製窓側から照射した。そして、光触媒反応により、水が還元されて生成する水素の発生量を、ガスクロマトグラフ(島津製作所製、GC−8A、TCD検出器、MS−5Aカラム)により経時的に調べた。ここで、白金を光還元法により0.5wt%担持させたロジウムドープチタン酸ストロンチウム粒子からなる粉末は、具体的には、パイレックス(登録商標)製窓付きのガラスフラスコにロジウムドープチタン酸ストロンチウム粒子0.1gと、助触媒原料となる塩化白金酸・六水和物(和光純薬製)を1wt%含む水溶液0.132gと、酸化的犠牲試薬となるメタノールを10vol%含む超純水200mLを入れた。この溶液をスターラーで撹拌しながら、アルゴン雰囲気下で、UVカットフィルター(L−42、HOYA製)を装着した300Wキセノンランプ(Cermax製、PE−300BF)により、可視光をパイレックス(登録商標)製窓側から、2時間照射することで、ロジウムドープチタン酸ストロンチウム粒子表面で塩化白金酸を還元して、白金微粒子をロジウムドープチタン酸ストロンチウム粒子表面に担持させることにより作製した。
実施例2、比較例1
 助触媒である白金を担持させたロジウムドープチタン酸ストロンチウム粒子からなる粉末を0.05g用いた以外は実施例1と同様に行った。
実施例7
 助触媒である白金の担持量を0.75wt%とした以外は実施例1と同様に行った。
実施例8
 助触媒である白金の担持方法として、光還元法の代わりに、含浸法を用いた以外は実施例1と同様に行った。具体的には、ロジウムドープチタン酸ストロンチウム粒子からなる粉末0.1gと、水0.4g、そして1wt%塩化白金酸水溶液0.031gをメノウ乳鉢で室温において30分混練することでペーストを作製した。このペーストを15時間室温で乾燥させた後、400℃で30分焼成することで、含浸法によるサンプルを作製した。
実施例9
 白金の代わりに、塩化ルテニウム・n水和物(和光純薬製)を用い、光還元法により、ルテニウムを0.5wt%担持させた以外は実施例1と同様に行った。
実施例11
 助触媒である白金の担持量を1wt%とした以外は実施例1と同様に行った。
結果
 表2に助触媒を担持させたロジウムドープチタン酸ストロンチウム粒子からなる粉末の、光照射開始後3時間の間に発生した水素量(μmol)および単位粉末量当たりの水素生成速度(μmol/hr/g)を示す。
 例えば、実施例2のサンプルでは、単位粉末量当たりの水素生成速度が、759μmol/hr/gと非常に高活性であるのに対して、比較例1のサンプルでは、120μmol/hr/gとなり、活性は非常に低かった。また、実施例1、3~7のサンプルに関しても、高い水素発生活性を有することが確認された。
ロジウムドープチタン酸ストロンチウム粒子の水分解による量子収率
 実施例3で作製したロジウムドープチタン酸ストロンチウム粒子の可視光照射による量子収率を以下の方法で調べた。パイレックス(登録商標)製窓付きのガラスフラスコに、光還元法により、白金を0.5wt%担持させたロジウムドープチタン酸ストロンチウム粒子からなる粉末0.1gと、犠牲試薬となるメタノール10vol%を含む水溶液200mlを入れて、スターラーで撹拌しながら、反応溶液とした。そして、この反応溶液を入れたガラスフラスコを閉鎖循環装置に装着し、反応系内の雰囲気をアルゴン置換した。そして、分光器付きの波長可変単色光源(分光計器製、SM−25F)を用いて、単色光をパイレックス(登録商標)製窓側から照射した。そして、光触媒反応により、水が還元されて生成する水素の発生量を、ガスクロマトグラフ(島津製作所製、GC−8A、TCD検出器、MS−5Aカラム)により経時的に調べた。また、量子収率(%)は下記式により計算した。
 量子収率(%)=((発生した水素の分子数×2)/入射光子数)×100
 ここで、単位波長当たりの入射光子数については、スペクトロラジオメーター(USHIO製、USR−55)を用いて、各波長(バンド波長幅約10nm)における照度(W/cm/nm)を測定することで、各波長の光子1個が有するエネルギーを除することで算出した。
 図2に、その結果を示す。このサンプルの420nmにおける量子収率は、13.2%であり、非常に高い水素発生活性を示した。
 また、実施例2の粉末に白金を担持させた粒子の透過型電子顕微鏡像を図3に示す。これにより、1辺が約45nmのキュービック(立方体)の形態を示すことが明らかであり、立方晶ペロブスカイト構造を表わすことが確認された。さらに、光還元法で担持した白金の粒子径が2nm程度であることも確認された。
Figure JPOXMLDOC01-appb-T000002

Claims (13)

  1.  一次粒子径が70nm以下であり、
    拡散反射スペクトルにより測定される、
    波長570nmにおける光吸収率が、0.6以上であり、かつ、
    波長1800nmにおける光吸収率が、0.7以下である
    ことを特徴とする、ロジウムドープチタン酸ストロンチウム粒子。
  2.  前記一次粒子径が50nm以下である、請求項1に記載のロジウムドープチタン酸ストロンチウム粒子。
  3.  前記一次粒子径が30nm以上である、請求項1または2に記載のロジウムドープチタン酸ストロンチウム粒子。
  4.  前記波長570nmにおける光吸収率が0.6以上0.8未満である、請求項1~3のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子。
  5.  前記波長1800nmにおける光吸収率が0.5以上0.7以下である、請求項1~4のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子。
  6.  RSP値が0.86以上である、請求項1~5のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子。
  7.  前記ロジウムドープチタン酸ストロンチウム粒子の、M(ロジウム)/M(チタン+ロジウム)で表わされるモル比率が0.001~0.03である、請求項1~6のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子。
  8.  請求項1~7のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子からなる、水分解用光触媒。
  9.  請求項1~8のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子の製造方法であって、
     チタン化合物と、ロジウム化合物と、ストロンチウム化合物と、疎水性錯化剤とを水に溶解させた水溶液を用意し、これを乾燥および焼成することを特徴とする、ロジウムドープチタン酸ストロンチウム粒子の製造方法。
  10.  前記水溶液がさらに水分散型有機ポリマー粒子を含んでなるものである、請求項9に記載のロジウムドープチタン酸ストロンチウム粒子の製造方法。
  11.  焼成が、800℃を超え1100℃未満の温度で行われる、請求項9または10に記載のロジウムドープチタン酸ストロンチウム粒子の製造方法。
  12.  水分解用光触媒としての、請求項1~7のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子の使用。
  13.  水と接触している請求項1~7のいずれか一項に記載のロジウムドープチタン酸ストロンチウム粒子に可視光を照射することを含んでなる、水分解方法。
PCT/JP2013/065519 2012-05-29 2013-05-29 可視光応答型光触媒粒子およびその製造方法 WO2013180307A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13797998.5A EP2857097A4 (en) 2012-05-29 2013-05-29 PHOTO CATALYST PARTICLE IN VISIBLE LIGHT AND METHOD FOR THE MANUFACTURE THEREOF
US14/404,561 US9808791B2 (en) 2012-05-29 2013-05-29 Visible-light photocatalyst particles and method for manufacturing same
CN201380028847.4A CN104487168B (zh) 2012-05-29 2013-05-29 可见光应答型光触媒粒子及其制造方法
JP2014518772A JP5888415B2 (ja) 2012-05-29 2013-05-29 可視光応答型光触媒粒子およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-122042 2012-05-29
JP2012122042 2012-05-29
JP2012-207784 2012-09-21
JP2012207784 2012-09-21

Publications (1)

Publication Number Publication Date
WO2013180307A1 true WO2013180307A1 (ja) 2013-12-05

Family

ID=49673486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065519 WO2013180307A1 (ja) 2012-05-29 2013-05-29 可視光応答型光触媒粒子およびその製造方法

Country Status (5)

Country Link
US (1) US9808791B2 (ja)
EP (1) EP2857097A4 (ja)
JP (1) JP5888415B2 (ja)
CN (1) CN104487168B (ja)
WO (1) WO2013180307A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192965A1 (ja) * 2013-05-29 2014-12-04 Toto株式会社 金属酸化物粒子の製造方法
JP5920478B2 (ja) * 2012-09-21 2016-05-18 Toto株式会社 複合光触媒および光触媒材
JP2016216272A (ja) * 2015-05-14 2016-12-22 富士フイルム株式会社 立方体形状を有するチタン酸ストロンチウム微粒子の製造方法、及び、立方体形状のチタン酸ストロンチウム微粒子、立方体形状の金属ドープチタン酸ストロンチウム微粒子、及びその製造方法
CN108057452A (zh) * 2018-02-02 2018-05-22 辽宁大学 一种自组装高效转移电子的太阳光光催化剂及其制备方法和应用
CN108126713A (zh) * 2018-02-02 2018-06-08 辽宁大学 基于极窄带半导体为固体导电通道的光催化剂及其制备方法和应用
CN108273522A (zh) * 2018-02-02 2018-07-13 辽宁大学 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用
WO2024162082A1 (ja) * 2023-01-30 2024-08-08 戸田工業株式会社 球状チタン酸ストロンチウム系微粒子粉末、分散体及び樹脂組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283246A (zh) * 2013-06-21 2016-01-27 Toto株式会社 可见光应答型光触媒材料
US10894757B2 (en) 2018-03-09 2021-01-19 King Abdulaziz University Pt/SrTiO3 photocatalyst for production of cycloalkanols and cycloalkanones from cycloalkanes
CN108579739B (zh) * 2018-04-09 2020-09-22 华北电力大学 一种温和条件下选择性氧化醇以制备醛/酮的方法
CN110026207B (zh) * 2019-05-06 2022-04-29 青岛科技大学 CaTiO3@ZnIn2S4纳米复合材料及其制备方法与应用
CN113274995B (zh) * 2021-05-10 2023-08-08 天津大学 一种掺杂型钛酸锶半导体材料及其制备方法
CN115072810B (zh) * 2022-07-28 2023-12-22 西安稀有金属材料研究院有限公司 一种绿色合成纳米氧化钌的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008963A (ja) 2002-06-07 2004-01-15 Japan Science & Technology Corp 可視光照射下で水から水素を生成するRhおよび/またはIrドープSrTiO3光触媒
JP2006182615A (ja) * 2004-12-28 2006-07-13 Masao Kaneko 窒素含有化合物の光分解方法
JP2012056947A (ja) 2010-08-09 2012-03-22 Toto Ltd チタン錯体及びそれを含む水系コーティング液

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2051866B (en) * 1979-05-11 1983-01-06 Central Electr Generat Board Activated electrodes-photoelectrolysis of water
JPS6274452A (ja) * 1985-09-27 1987-04-06 Nippon Kogaku Kk <Nikon> 水の光分解触媒
JP4916173B2 (ja) * 2003-12-17 2012-04-11 ダイハツ工業株式会社 排ガス浄化用触媒組成物
KR20060016218A (ko) * 2004-08-17 2006-02-22 삼성코닝 주식회사 광촉매층을 구비하는 평판 램프
DE102008048737A1 (de) * 2007-10-31 2009-07-16 Sigrid Dr. Obenland Monolithisches Katalysatorsystem für die Photolyse von Wasser
EP2407419A1 (en) * 2010-07-16 2012-01-18 Universiteit Twente Photocatalytic water splitting
JP5642459B2 (ja) * 2010-09-01 2014-12-17 学校法人東京理科大学 光触媒電極および水素生成装置、並びに水素生成方法
US20130277209A1 (en) * 2010-12-28 2013-10-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Photochemical reaction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008963A (ja) 2002-06-07 2004-01-15 Japan Science & Technology Corp 可視光照射下で水から水素を生成するRhおよび/またはIrドープSrTiO3光触媒
JP2006182615A (ja) * 2004-12-28 2006-07-13 Masao Kaneko 窒素含有化合物の光分解方法
JP2012056947A (ja) 2010-08-09 2012-03-22 Toto Ltd チタン錯体及びそれを含む水系コーティング液

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CRONEMEYER ET AL., PHYS. REV., vol. 113, 1959, pages 1222 - 1225
SASAKI ET AL., J. PHYS. CHEM. C, 2009, pages 17536 - 17542
SASAKI Y ET AL.: "Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator", J. PHYS. CHEM., vol. 113, 2009, pages 17536 - 17542, XP055175727 *
See also references of EP2857097A4
YASUYOSHI SASAKI ET AL.: "Shuju no Hoho ni yori Chosei shita SrTi03: Rh Hikari Shokubai o Mochiita Co Sakutai Denshi Dentatsukei Z Scheme -gata Hikari Shokubai ni yoru Mizu no Kashiko Zenbunkai", 87TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING, 12 March 2007 (2007-03-12), pages 498, XP008175448 *
YOSHIHIRO UEDA ET AL.: "Shuju no Yoeki Kagakuho ni yoru Ph-Dope SrTi03 Kashiko Otogata Hikari Shokubai no Gosei to Kokasseika", PROCEEDINGS OF 19TH FALL MEETING OF THE CERAMIC SOCIETY OF JAPAN, 19 September 2006 (2006-09-19), pages 78, XP008175431 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920478B2 (ja) * 2012-09-21 2016-05-18 Toto株式会社 複合光触媒および光触媒材
JPWO2014046305A1 (ja) * 2012-09-21 2016-08-18 Toto株式会社 複合光触媒および光触媒材
WO2014192965A1 (ja) * 2013-05-29 2014-12-04 Toto株式会社 金属酸化物粒子の製造方法
JP2016216272A (ja) * 2015-05-14 2016-12-22 富士フイルム株式会社 立方体形状を有するチタン酸ストロンチウム微粒子の製造方法、及び、立方体形状のチタン酸ストロンチウム微粒子、立方体形状の金属ドープチタン酸ストロンチウム微粒子、及びその製造方法
CN108057452A (zh) * 2018-02-02 2018-05-22 辽宁大学 一种自组装高效转移电子的太阳光光催化剂及其制备方法和应用
CN108126713A (zh) * 2018-02-02 2018-06-08 辽宁大学 基于极窄带半导体为固体导电通道的光催化剂及其制备方法和应用
CN108273522A (zh) * 2018-02-02 2018-07-13 辽宁大学 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用
CN108273522B (zh) * 2018-02-02 2019-07-05 辽宁大学 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用
WO2024162082A1 (ja) * 2023-01-30 2024-08-08 戸田工業株式会社 球状チタン酸ストロンチウム系微粒子粉末、分散体及び樹脂組成物

Also Published As

Publication number Publication date
EP2857097A1 (en) 2015-04-08
US20150107984A1 (en) 2015-04-23
JPWO2013180307A1 (ja) 2016-01-21
US9808791B2 (en) 2017-11-07
CN104487168A (zh) 2015-04-01
JP5888415B2 (ja) 2016-03-22
CN104487168B (zh) 2016-08-24
EP2857097A4 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5888415B2 (ja) 可視光応答型光触媒粒子およびその製造方法
JP6225786B2 (ja) 金属酸化物粒子の製造方法
JP5920478B2 (ja) 複合光触媒および光触媒材
Zou et al. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: The effect of surface OH groups
Sun et al. High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method
Lan et al. Preparation of lanthanum and boron co-doped TiO2 by modified sol–gel method and study their photocatalytic activity
US10875011B2 (en) Temperature tunable mesoporous gold deposited CO oxidation catalyst
Bodson et al. Efficient P-and Ag-doped titania for the photocatalytic degradation of waste water organic pollutants
He et al. Surface scattering and reflecting: the effect on light absorption or photocatalytic activity of TiO 2 scattering microspheres
Andersson et al. Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance
Wei et al. Tuning the physico-chemical properties of BiOBr via solvent adjustment: Towards an efficient photocatalyst for water treatment
JP2013013886A (ja) 酸化タングステン系光触媒、及びその製造方法
Kang et al. Preparation of novel SrTiO3: Rh/Ta photocatalyst by spray pyrolysis and its activity for H2 evolution from aqueous methanol solution under visible light
Yang et al. The photo-catalytic activities of neodymium and fluorine doped TiO2 nanoparticles
Ghanei-Zare et al. A metal-organic framework-derived CuO microrods for fast photocatalytic degradation of methylene blue
JP6152890B2 (ja) 可視光応答型光触媒材
KR101548296B1 (ko) 이종 전이금속으로 도핑된 이산화티타늄의 제조방법
Bargougui et al. Microwave-assisted polyol synthesis of mesoporous Ta doped mixed TiO2/SnO2: Application for CO2 capture
Goswami et al. A novel synthetic approach for the preparation of sulfated titania with enhanced photocatalytic activity
JP6016199B2 (ja) 複合金属酸化物粒子およびその製造方法
JP6218116B2 (ja) 複合金属酸化物粒子およびその製造方法
JP6170352B2 (ja) 光触媒材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518772

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14404561

Country of ref document: US

Ref document number: 2013797998

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE