WO2013179829A1 - Oil separator for internal combustion engine - Google Patents
Oil separator for internal combustion engine Download PDFInfo
- Publication number
- WO2013179829A1 WO2013179829A1 PCT/JP2013/062023 JP2013062023W WO2013179829A1 WO 2013179829 A1 WO2013179829 A1 WO 2013179829A1 JP 2013062023 W JP2013062023 W JP 2013062023W WO 2013179829 A1 WO2013179829 A1 WO 2013179829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blow
- gas
- separator
- oil
- chamber
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M13/00—Crankcase ventilating or breathing
- F01M13/04—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
- F01M13/0416—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil arranged in valve-covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M13/00—Crankcase ventilating or breathing
- F01M13/04—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
- F01M2013/0433—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with a deflection device, e.g. screen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M13/00—Crankcase ventilating or breathing
- F01M13/04—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
- F01M2013/0438—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with a filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M13/00—Crankcase ventilating or breathing
- F01M13/04—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
- F01M2013/045—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil using compression or decompression of the gas
Definitions
- the present invention relates to an improvement in an oil separator that is provided in a cylinder head cover of an internal combustion engine and separates oil mist from blow-by gas taken out through the cylinder head cover.
- blow-by gas containing unburned components leaked from the combustion chamber into the crankcase is introduced into the engine intake system together with fresh air taken from outside and burned. ing.
- the blow-by gas that has passed through the crankcase contains oil mist, in order to prevent the oil from being taken away into the engine intake system, as disclosed in Patent Documents 1 and 2,
- An oil separator is provided in a part of the cylinder head cover, and the blow-by gas is taken out after separating and removing the oil through the oil separator.
- two blow-by gas passages are connected to the cylinder head cover, and fresh air is introduced from one passage under normal operating conditions.
- blow-by gas passes through both passages under high load conditions. Since it flows, an oil separator is provided for each of the cylinder head covers.
- the oil separators of Patent Documents 1 and 2 are so-called inertial collision type oil separators, and a partition wall provided with a large number of passage holes is disposed in the oil separator chamber, and is opposed to the passage holes adjacent to the partition walls.
- the collision plate is arranged, and the blow-by gas containing oil mist passes through the passage hole of the partition wall to increase the flow velocity, and when it exits the passage hole and collides with the collision plate at high speed, the oil mist Adheres to the collision plate and is collected.
- a slit-like opening is provided at the lower end of the collision plate, and the oil that has been separated by the collision plate and has grown into large droplets flows downstream through the opening to the bottom of the oil separator chamber. Is dropped from the lower end discharge port of the drain pipe provided in the valve chamber.
- Patent Document 3 a filter made of a block-like fiber assembly is provided in the separator chamber instead of the partition wall having a large number of passage holes, and a fiber assembly is formed on the surface of the separation plate facing the filter.
- An oil separator having an auxiliary filter made of is attached.
- the oil mist is basically removed by filtering when blow-by gas passes through the filter, and further, the blow-by gas that has passed through the filter collides with the separator and flows in a meandering manner. Removal is performed.
- the method by filtering using a filter made of a fiber assembly as in Patent Document 3 is not preferable because the pressure loss is further increased as compared with an inertial collision type oil separator.
- the present invention is an oil separator that is provided in a cylinder head cover of an internal combustion engine and separates oil mist from blow-by gas taken out through the cylinder head cover.
- the oil separator has a blow-by gas inlet at one end and a blow-by gas at the other end.
- a separator chamber having an outlet, a partition wall provided to partition the separator chamber into an inlet chamber on the blow-by gas inlet side and an outlet chamber on the blow-by gas outlet side, and having a plurality of passage holes formed therethrough, and
- a collision plate provided in the outlet chamber adjacent to the partition wall so as to face the passage hole, and a lower end of the collision plate and a bottom surface of the separator chamber over a part or all of the width of the collision plate.
- An opening provided in the form of a slit in between and the separated oil from the bottom surface of the separator chamber to the valve chamber of the internal combustion engine Is provided with a drain portion that out, the.
- the said collision board is comprised from the fiber material layer of the surface facing the said channel
- the fiber material layer is composed of a nonwoven fabric, particularly a nonwoven fabric using aramid fibers.
- the mesh member is made of expanded metal.
- blow-by gas flows through the separator chamber due to a pressure difference between the pressure on the blow-by gas inlet side and the pressure on the blow-by gas outlet side.
- the flow rate of the blow-by gas is increased by passing through the plurality of passage holes in the partition wall, and oil mist adheres to the collision plate and is recovered when it exits the passage hole and collides with the collision plate at high speed.
- the oil that has been separated by the collision plate and has grown into large droplets drops from the lower end of the collision plate and is discharged into the valve chamber through the drain portion on the bottom surface of the separator chamber.
- the collision plate is composed of a fiber material layer and a mesh member. Therefore, at least a part of the high-speed gas flow that has passed through the passage hole of the partition wall flows through the collision plate. . That is, in the downstream of the partition wall, a part of the gas flow passes through the opening between the bottom of the collision plate and the bottom surface of the separator chamber in the same manner as the conventional oil separator, and a part of the gas flow The pressure loss as an oil separator is reduced accordingly.
- the collision plate facing the passage hole of the partition wall is composed of the fiber material layer and the mesh member, so that the oil mist capturing performance and the pressure loss of the oil separator are compatible at a higher level. Can do.
- FIG. 1 is a schematic cross-sectional view of an internal combustion engine provided with an oil separator according to the present invention.
- Sectional drawing which shows one Example of an oil separator.
- FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
- the front view of the partition provided with the passage hole.
- the front view which shows one Example of a mesh member.
- Explanatory drawing which contrasted and showed the basic composition and the flow of gas and oil mist.
- the characteristic view which showed the pressure loss of the oil separator by contrasting with the 1st, 2nd comparative example, and an Example The characteristic view which showed the oil mist capture
- FIG. 1 schematically shows the configuration of an internal combustion engine provided with an oil separator 1 according to the present invention.
- a crankcase 4 is defined by a cylinder block 2 and an oil pan 3.
- the valve operating chamber 6 in the cylinder head 5 communicate with each other.
- a cylinder head cover 7 forming a part of the blow-by gas processing device includes a fresh air inlet 8 connected to a throttle valve upstream side (for example, an air cleaner) of an intake system (not shown), and a throttle valve downstream side (for example, an intake manifold).
- a blow-by gas take-out port 9 connected to a), and the blow-by gas take-out port 9 is provided with a known PCV valve 10 for controlling the flow rate of the blow-by gas in accordance with the pressure difference.
- the oil separator 1 is integrally provided inside the cylinder head cover 7 in which the blowby gas outlet 9 is provided.
- FIG. 1 The arrows in FIG. 1 indicate the gas flow when the internal combustion engine is at low and medium loads. However, when the throttle valve is close to full open, a part of the blow-by gas flows from the fresh air inlet 8. Is also discharged into the intake system. Accordingly, a similar oil separator is generally provided also on the fresh air inlet 8 side, and the oil separator 1 of the present invention is an oil separator on the blow-by gas outlet 9 side or an oil on the fresh air inlet 8 side. It can be applied to any separator.
- FIG. 2 and 3 show the oil separator 1 integrated with the cylinder head cover 7 as described above as a single unit.
- the oil separator 1 is formed on the ceiling surface of the cylinder head cover 7 as a part of the synthetic resin cylinder head cover 7 and covers the lower surface opening of the housing part 21 as a part of the synthetic resin cylinder head cover 7.
- the synthetic resin separator cover 22 is attached to the cylinder head cover 7.
- this invention is not limited to this, It can also be set as the structure provided with the independent housing part 21 shape
- the oil separator 1 elongates along, for example, a direction perpendicular to the cylinder row (the engine width direction), and an elongated separator chamber 23 having a rectangular cross section is defined between the housing portion 21 and the separator cover 22. It is made.
- the blow-by gas inlet 24 is located at one end of the separator chamber 23 in the longitudinal direction, and the blow-by gas outlet 25 is located at the other end. Therefore, the blow-by gas basically passes through the separator chamber 23. It flows linearly along the longitudinal direction.
- the separator chamber 23 is formed along a plane substantially perpendicular to the cylinder center axis of the internal combustion engine. However, the cylinder center axis is taken into consideration that the internal combustion engine is mounted in an inclined posture on the vehicle. You may form in the form inclined with respect to. In a state where the separator chamber 23 is mounted on the internal combustion engine, it is desirable that the separator chamber 23 is substantially along the horizontal plane.
- the blow-by gas inlet 24 comprises a rectangular opening formed in the separator cover 22.
- the blow-by gas inlet 24 opens to the bottom surface of the separator chamber 23, and the separator chamber 23 communicates with the valve operating chamber 6 through the blow-by gas inlet 24.
- the blow-by gas outlet 25 is disposed on the upper surface of the housing portion 21, in other words, provided so as to penetrate the ceiling wall of the cylinder head cover 7. As described above, when the oil separator 1 is provided on the blow-by gas outlet 9 side, the blow-by gas outlet 25 becomes the blow-by gas outlet 9, and a PCV valve (not shown) is attached.
- the blow-by gas outlet 25 may be disposed on the end surface (relatively upper position) of the elongated separator chamber 23.
- a plate-like partition wall 27 orthogonal to the longitudinal direction of the separator chamber 23 is provided in the middle portion of the separator chamber 23 in the longitudinal direction.
- the partition wall 27 allows the separator chamber 23 to be on the blow-by gas inlet 24 side. It is divided into an inlet chamber 28 and an outlet chamber 29 on the blow-by gas outlet 25 side.
- the partition wall 27 is formed integrally with the separator cover 22 and extends upward to a height that reaches the ceiling surface of the housing portion 21.
- the partition wall 27 may be formed integrally with the housing portion 21, that is, the cylinder head cover 7.
- the partition wall 27 has a plurality of passage holes 30 serving as throttles for increasing the flow rate of blow-by gas.
- the partition wall 27 has a rectangular shape which is long in the right and left in this embodiment, and a total of 14 passages are arranged on the partition wall 27 in three rows of an upper stage, a middle stage and a lower stage.
- a hole 30 is disposed. These fourteen passage holes 30 are arranged so as to be offset upward as a whole in the rectangular partition wall 27, and the communication hole 30 does not exist in the lower part of the partition wall 27.
- Each passage hole 30 is formed as a hole having a circular cross section. The diameter of each passage hole 30 is set so that a desired flow velocity (for example, 5 m / sec or more) necessary for separating oil mist in blow-by gas can be obtained.
- the passage length of the passage hole 30 (that is, the thickness of the partition wall 27) is twice or more the diameter of the passage hole 30.
- the passage hole 30 does not necessarily have a circular cross section, and may have a rectangular cross section or a triangular cross section.
- a collision plate 32 is disposed adjacent to the partition wall 27 and parallel to the partition wall 27.
- the collision plate 32 faces the passage hole 30 with an appropriate interval so as to separate the oil mist from the blow-by gas flowing at high speed through the communication hole 30.
- the collision plate 32 is composed of a fiber material layer 41 on the front surface facing the passage hole 30 and a mesh member 42 on the back surface side that supports the fiber material layer 41.
- the collision plate 32 extends downward from the ceiling surface of the housing portion 21 to a predetermined height position, and an opening 33 that opens in a slit shape between the lower end 32a of the collision plate 32 and the bottom surface of the separator chamber 23. Is provided.
- the vertical dimension of the collision plate 32 corresponds to the positions of the plurality of communication holes 30 arranged in the partition wall 27, that is, the high-speed gas flow that has passed through each communication hole 30 collides with the collision plate 32.
- the position of the lower end 32a is set.
- the oil separated from the blow-by gas in the collision plate 32 flows down from the lower end 32a and flows downstream along the bottom surface of the separator chamber 23 through the opening 33.
- a drain pipe 35 is integrally formed with the separator cover 22 on the bottom surface of the outlet chamber 29 as a drain portion for discharging the collected oil to the valve operating chamber 6 side.
- the drain pipe 35 extends downward in a cylindrical shape toward the valve operating chamber 6 and has a small discharge port at the lower end.
- the blow-by gas flowing in the separator chamber 23 from the blow-by gas inlet 24 to the blow-by gas outlet 25 is reduced in the passage area by the passage hole 30 penetrating the partition wall 27. It becomes a high-speed flow and collides with the collision plate 32. Therefore, the oil mist contained in the blow-by gas is separated and adheres to the collision plate 32.
- the oil mist trapped in this way gradually grows into large droplets, drops from the lower end 32a of the collision plate 32 to the bottom surface of the separator chamber 23, and flows downstream on this bottom surface. Finally, it is dropped from the drain pipe 35 to the valve operating chamber 6.
- liquid oil accumulates to a certain height, so that the blow-by gas from the discharge port at the lower end of the drain pipe 35 (that is, blow-by gas from the valve operating chamber 6 (see FIG. 1) to the outlet chamber 29). Inflow) is prevented.
- the blow-by gas backflow through the drain pipe 35 is likely to occur.
- the diameter of the passage hole 30 is set to be large in order to reduce the pressure loss, the pressure loss is reduced, but the flow rate of the blow-by gas exiting from each passage hole 30 is lowered, so that the oil mist capturing performance is lowered. To do.
- a collision plate 32 facing the passage hole 30 is provided with a fiber material layer 41 on the surface facing the passage hole 30 and the fiber material. And a net-like member 42 on the back surface side that supports the layer 41 and has air permeability as a whole.
- a fiber such as a polyester fiber, an acrylic fiber, an aramid fiber, or a PPS (polyphenylene sulfide) fiber can be used. It is possible to use various forms such as those formed into a shape. That is, any form may be used as long as the fine flow path can be configured so that the oil mist can be separated and removed while having sufficient air permeability.
- a fiber such as a polyester fiber, an acrylic fiber, an aramid fiber, or a PPS (polyphenylene sulfide) fiber
- PPS polyphenylene sulfide
- the fiber material layer 41 has a thickness of 3 to 10 mm (free state) obtained by processing aramid fibers (100%) by the needle punch method, and 0.01 to 0.00 mm.
- a nonwoven fabric having a density of 05 g / cm 3 is used.
- the fiber material layer 41 basically used as a non-replaceable part inside the internal combustion engine has oil resistance, durability under high temperature environment, resistance to hydrolysis under high temperature and high humidity, gasoline, light oil, methanol, etc. At least resistance to fuel and resistance to condensed water are required, but aramid fibers are superior in properties to polyester fibers, acrylic fibers, and PPS fibers. No deterioration in durability is observed, and all characteristics are excellent on average.
- aramid fibers can maintain a high restoring force over a long period of time even if blow-by gas or oil mist collides (that is, there is little sag over time), resulting in a decrease in thickness over time and an increase in density. Therefore, it is possible to maintain the desired oil separation performance over a long period of time.
- Table 1 below shows specific examples of the fiber material layer 41 made of aramid fibers.
- “1 ⁇ m efficiency (%)” is the capture efficiency of oil mist with a particle size of 1 ⁇ m contained in blow-by gas, and “total efficiency (%)” is for various particle sizes. It is the capture efficiency about the whole oil mist containing.
- These are the trapping efficiencies of the oil separator 1 configured as shown in FIGS. 2 and 3 as well as the fiber material layer 41.
- “Air permeability resistance Pa (60 L / min)” is also the air resistance as the oil separator 1. Table 1 shows 11 specifications, any of which can be used.
- each specification has different oil mist capture efficiency and ventilation resistance as the oil separator 1, and can be appropriately selected according to the requirements of each internal combustion engine.
- the fiber material layer 41 shown as “Specification 2” in Table 1 is excellent.
- the specification 2 A fiber material layer 41 is used.
- the density is particularly important, and it is necessary to make the density relatively small with a certain thickness. According to the formation of the nonwoven fabric by the needle punch method, the density can be easily controlled, and the fiber material layer 41 having a desired density can be stably obtained.
- a large number of rhombus meshes are formed by forming a large number of slits in a metal plate and extending the slits in a direction perpendicular to the slits.
- So-called expanded metal is used.
- various forms such as a general wire mesh knitted wire, a so-called punching metal in which a large number of small holes are formed in a metal plate, a lattice plate or a perforated plate made of a synthetic resin can be used.
- the mesh member 42 is made of synthetic resin, it can be molded integrally with the housing portion 21 and the separator cover 22.
- a fiber material layer 41 made of non-woven fabric is adhered to the surface of a net-like member 42 made of expanded metal by means such as adhesion or welding, and the net-like member 42 is attached to the housing part 21 or the separator cover 22. It is attached by appropriate means (for example, holding by a ditch or a locking claw, a screw, etc.).
- the metal mesh member 42 may be inserted when molding the synthetic resin housing 21 and the separator cover 22, and then the fiber material layer 41 may be attached to the mesh member 42 surface.
- FIG. 6 shows a first comparative example (a) in which the collision plate 32 is composed only of a hard plate-like member 51, a second comparative example (b) in which a fiber material layer 41 is provided on the surface of the hard plate-like member 51, and It is explanatory drawing which showed the flow of the blowby gas and oil mist in Example (c) of this invention in contrast.
- Arrow G indicates the flow of blow-by gas
- arrow M indicates the flow of oil mist.
- the oil mist M advances straight through the passage hole 30, collides with the plate member 51, and grows into a large droplet here. .
- the blow-by gas G changes the flow direction along the plate member 51 and flows to the opening 33 between the plate member 51 and the bottom surface of the separator chamber 23.
- the basic flow of the blow-by gas G and the oil mist M is the same in the second comparative example of FIG. 2B in which the fiber material layer 41 is provided on the surface of the hard plate member 51, and the blow-by gas G is downward.
- the direction of flow is changed, and the flow flows to the opening 33 between the collision plate 32 and the bottom surface of the separator chamber 23.
- the oil mist M goes straight through the passage hole 30, collides with the fiber material layer 41 and the plate-like member 51, and drops downward as a large liquid droplet.
- the collision plate 32 that receives the high-speed blow-by gas flow through the passage hole 30 is composed of the fiber material layer 41 and the mesh member 42, and the blow-by gas that has collided there can pass downstream. Further, it is possible to reduce the ventilation resistance and thus the pressure loss.
- FIG. 7 shows the oil separator 1 for the first comparative example, the second comparative example, and the embodiment of the present invention whose basic configuration is shown in FIGS. 6 (a), (b), and (c).
- the pressure loss was measured by changing the flow rate of the flowing gas, and the results were summarized. As shown in the figure, the pressure loss is clearly reduced in the example (c) compared to the first and second comparative examples (a) and (b).
- FIG. 8 is a summary of the results of measuring the oil mist capturing performance (capturing efficiency) for the above three components by passing a gas containing a constant oil mist at various flow rates.
- the fiber material layer 41 of the 2nd comparative example the same thing as the fiber material layer 41 of an Example was used.
- the second comparative example (b) including the fiber material layer 41 is superior in oil mist capturing performance as compared with the first comparative example (a) including only the simple hard plate-like member 51.
- Example (c) of the present invention higher capture performance was obtained than in the second comparative example (b).
- the blow-by gas flowing into the opening 33 includes a relatively large amount of oil mist as shown in FIG. 6B, whereas in the embodiment, the oil mist moves into the opening 33. This is thought to be because there are few detours.
- FIG. 9 shows the relationship between oil mist trapping performance and pressure loss based on these measurement results, with pressure loss on the horizontal axis and oil mist trapping performance on the vertical axis.
- the embodiment (c) of the present invention can obtain higher capture performance under the same pressure loss. That is, according to the present embodiment, it is possible to achieve both a high level of capture performance and pressure loss that are in a trade-off relationship with each other.
- the opening 33 is provided over the entire width of the collision plate 32, but the opening 33 is provided only in a part of the width of the collision plate 32, for example, the central portion in the width direction. It may be.
- the outer shape of the mesh member 42 and the outer shape of the fiber material layer 41 do not necessarily coincide completely.
- the opening 33 is provided only at the center in the width direction of the mesh member 42, and the fibers
- the material layer 41 may have a simple rectangular shape, and only the mesh member 42 may exist on both sides of the opening 33.
- the housing portion 21 as a complete rectangular parallelepiped, but in practice, it is generally a slightly different shape depending on the outer shape of the cylinder head cover 7 and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
Abstract
An oil separator (1) provided within the cylinder head cover of an internal combustion engine has a partition wall (27) between a blow-by gas inlet (24) and a blow-by gas outlet (25), the partition wall (27) having passage holes (30) penetrating therethrough. Blow-by gas which has become a high-speed flow in the passage holes (30) strikes a strike plate (32). There is a slit-like opening (33) between the lower edge (32a) of the strike plate (32) and the bottom face of a separator chamber (23), and separated oil is discharged from a drain pipe (35). The strike plate (32) is constituted by a fiber material layer (41) on the front face side and by a mesh-like member (42) on the back face side. A large part of a high-speed blow-by gas flow exited from the passage holes (30) passes through the fiber-like material layer (41) and through the mesh-like member (42), and as a result, both the oil mist collection performance and pressure loss are achieved simultaneously at a high level.
Description
この発明は、内燃機関のシリンダヘッドカバー内に設けられ、該シリンダヘッドカバーを通して外部に取り出されるブローバイガスからオイルミストを分離するオイルセパレータの改良に関する。
The present invention relates to an improvement in an oil separator that is provided in a cylinder head cover of an internal combustion engine and separates oil mist from blow-by gas taken out through the cylinder head cover.
例えば自動車用内燃機関などにおいては、周知のように、燃焼室からクランクケース内に漏洩した未燃成分を含むブローバイガスを、外部から取り込んだ新気とともに機関吸気系に導いて燃焼させるようになっている。そして、クランクケース内を通ったブローバイガスは、オイルミストを含んだものとなるので、機関吸気系へのオイルの持ち去りを防止するために、特許文献1,2に開示されているように、シリンダヘッドカバーの一部にオイルセパレータが設けられており、このオイルセパレータを介してオイルを分離除去した後に、ブローバイガスを取り出す構成となっている。なお、一般にシリンダヘッドカバーに2本のブローバイガス通路が接続され、通常の運転条件下では一方の通路から新気が導入されるようになっているが、高負荷条件では双方の通路をブローバイガスが流れるので、シリンダヘッドカバーには、それぞれに対しオイルセパレータが設けられる。
For example, in an internal combustion engine for automobiles, as is well known, blow-by gas containing unburned components leaked from the combustion chamber into the crankcase is introduced into the engine intake system together with fresh air taken from outside and burned. ing. And since the blow-by gas that has passed through the crankcase contains oil mist, in order to prevent the oil from being taken away into the engine intake system, as disclosed in Patent Documents 1 and 2, An oil separator is provided in a part of the cylinder head cover, and the blow-by gas is taken out after separating and removing the oil through the oil separator. In general, two blow-by gas passages are connected to the cylinder head cover, and fresh air is introduced from one passage under normal operating conditions. However, blow-by gas passes through both passages under high load conditions. Since it flows, an oil separator is provided for each of the cylinder head covers.
特許文献1,2のオイルセパレータは、いわゆる慣性衝突方式のオイルセパレータであって、オイルセパレータ室内に多数の通路孔を備えた隔壁を配設するとともに、この隔壁に隣接して通路孔に対向する衝突板を配設した構成となっており、オイルミストを含んだブローバイガスが隔壁の通路孔を通ることで流速が高くなり、通路孔を出て衝突板に高速で衝突する際に、オイルミストが衝突板に付着して回収される。衝突板の下端にはスリット状の開口部が設けられており、衝突板で分離して大きな液滴に成長したオイルは、この開口部を通してオイルセパレータ室底面を下流側へ流れ、オイルセパレータ室底面に設けられたドレンパイプの下端排出口から動弁室内に滴下する。
The oil separators of Patent Documents 1 and 2 are so-called inertial collision type oil separators, and a partition wall provided with a large number of passage holes is disposed in the oil separator chamber, and is opposed to the passage holes adjacent to the partition walls. The collision plate is arranged, and the blow-by gas containing oil mist passes through the passage hole of the partition wall to increase the flow velocity, and when it exits the passage hole and collides with the collision plate at high speed, the oil mist Adheres to the collision plate and is collected. A slit-like opening is provided at the lower end of the collision plate, and the oil that has been separated by the collision plate and has grown into large droplets flows downstream through the opening to the bottom of the oil separator chamber. Is dropped from the lower end discharge port of the drain pipe provided in the valve chamber.
また特許文献3には、多数の通路孔を備えた上記の隔壁に代えてブロック状の繊維集合体からなるフィルタをセパレータ室内に設けるとともに、このフィルタに対向した分離板の表面に、繊維集合体からなる補助フィルタを貼着したオイルセパレータが開示されている。このものでは、基本的にはブローバイガスがフィルタを通過する際のフィルタリングによってオイルミストが除去され、さらに、フィルタを通過したブローバイガスが分離板に衝突し、蛇行して流れることで、オイルミストの除去が行われる。
In Patent Document 3, a filter made of a block-like fiber assembly is provided in the separator chamber instead of the partition wall having a large number of passage holes, and a fiber assembly is formed on the surface of the separation plate facing the filter. An oil separator having an auxiliary filter made of is attached. In this case, the oil mist is basically removed by filtering when blow-by gas passes through the filter, and further, the blow-by gas that has passed through the filter collides with the separator and flows in a meandering manner. Removal is performed.
特許文献1,2のような慣性衝突方式のオイルセパレータにおいて、オイルミストの捕捉性能をさらに高めるためには、通路孔を細く形成して該通路孔から噴出するブローバイガスのガス流速を高めることが必要である。
In the inertial collision type oil separator as in Patent Documents 1 and 2, in order to further improve the oil mist capturing performance, it is necessary to form a narrow passage hole and increase the gas flow rate of blow-by gas ejected from the passage hole. is necessary.
しかしながら、このように通路孔の通路断面積を小さくすると、これに応じて隔壁前後での圧力損失が高くなってしまう。そのため、この圧力損失によって隔壁の下流側におけるオイルセパレータ室内の圧力が低くなり、動弁室側からドレンパイプを通してオイルが逆流しやすくなる、という問題がある。
However, if the passage cross-sectional area of the passage hole is reduced in this way, the pressure loss before and after the partition wall is increased accordingly. Therefore, there is a problem that the pressure loss causes the pressure in the oil separator chamber on the downstream side of the partition wall to be low, and the oil easily flows back from the valve operating chamber side through the drain pipe.
つまり、従来の構成では、互いにトレードオフの関係となるオイルミストの捕捉性能とオイルセパレータにおける圧力損失とを十分なレベルで両立させることができない。
That is, with the conventional configuration, it is impossible to achieve both a sufficient level of oil mist capturing performance and pressure loss in the oil separator, which are in a trade-off relationship with each other.
なお、特許文献3のように繊維集合体からなるフィルタを用いたフィルタリングによる方式では、慣性衝突方式のオイルセパレータに比較してさらに圧力損失が高くなり、好ましくない。
In addition, the method by filtering using a filter made of a fiber assembly as in Patent Document 3 is not preferable because the pressure loss is further increased as compared with an inertial collision type oil separator.
本発明は、内燃機関のシリンダヘッドカバー内に設けられ、該シリンダヘッドカバーを通して外部に取り出されるブローバイガスからオイルミストを分離するオイルセパレータであって、一端部にブローバイガス入口を有するとともに他端にブローバイガス出口を有するセパレータ室と、上記セパレータ室内を上記ブローバイガス入口側の入口室と上記ブローバイガス出口側の出口室とに仕切るように設けられ、かつ複数の通路孔が貫通形成された隔壁と、上記通路孔に対向するように上記隔壁に隣接して上記出口室内に設けられた衝突板と、この衝突板の幅の一部ないし全体に亘って、該衝突板の下端と上記セパレータ室底面との間にスリット状に設けられた開口部と、分離したオイルを上記セパレータ室底面から内燃機関の動弁室内に排出するドレン部と、を備えている。そして、上記衝突板が、上記通路孔に対向した表面の繊維材料層と、この繊維材料層を支持する裏面側の網状部材と、から構成されている。
The present invention is an oil separator that is provided in a cylinder head cover of an internal combustion engine and separates oil mist from blow-by gas taken out through the cylinder head cover. The oil separator has a blow-by gas inlet at one end and a blow-by gas at the other end. A separator chamber having an outlet, a partition wall provided to partition the separator chamber into an inlet chamber on the blow-by gas inlet side and an outlet chamber on the blow-by gas outlet side, and having a plurality of passage holes formed therethrough, and A collision plate provided in the outlet chamber adjacent to the partition wall so as to face the passage hole, and a lower end of the collision plate and a bottom surface of the separator chamber over a part or all of the width of the collision plate. An opening provided in the form of a slit in between and the separated oil from the bottom surface of the separator chamber to the valve chamber of the internal combustion engine Is provided with a drain portion that out, the. And the said collision board is comprised from the fiber material layer of the surface facing the said channel | path hole, and the net-like member of the back surface side which supports this fiber material layer.
好ましい一つの態様では、上記繊維材料層が不織布、特にアラミド繊維を用いた不織布から構成されている。
In a preferred embodiment, the fiber material layer is composed of a nonwoven fabric, particularly a nonwoven fabric using aramid fibers.
また好ましい一つの態様では、上記網状部材がエキスパンドメタルから構成されている。
In a preferred embodiment, the mesh member is made of expanded metal.
上記構成のオイルセパレータにあっては、ブローバイガス入口側の圧力とブローバイガス出口側の圧力との圧力差によってセパレータ室をブローバイガスが流れる。このブローバイガスの流れは、隔壁の複数の通路孔を通ることで流速が高くなり、通路孔を出て衝突板に高速で衝突する際に、オイルミストが衝突板に付着して回収される。衝突板で分離して大きな液滴に成長したオイルは、該衝突板の下端から滴下し、セパレータ室底面のドレン部を介して動弁室内に排出される。
In the oil separator configured as described above, blow-by gas flows through the separator chamber due to a pressure difference between the pressure on the blow-by gas inlet side and the pressure on the blow-by gas outlet side. The flow rate of the blow-by gas is increased by passing through the plurality of passage holes in the partition wall, and oil mist adheres to the collision plate and is recovered when it exits the passage hole and collides with the collision plate at high speed. The oil that has been separated by the collision plate and has grown into large droplets drops from the lower end of the collision plate and is discharged into the valve chamber through the drain portion on the bottom surface of the separator chamber.
ここで、上記衝突板は、本発明では、繊維材料層と網状部材とから構成されており、従って、隔壁の通路孔を通過した高速のガス流の少なくとも一部は衝突板を貫通して流れる。すなわち、隔壁の下流において、一部のガス流が、従来のオイルセパレータと同様に衝突板下端とセパレータ室底面との間の開口部を通過することに加えて、一部のガス流が衝突板を貫通して流れることとなり、それだけオイルセパレータとしての圧力損失が低減する。
Here, in the present invention, the collision plate is composed of a fiber material layer and a mesh member. Therefore, at least a part of the high-speed gas flow that has passed through the passage hole of the partition wall flows through the collision plate. . That is, in the downstream of the partition wall, a part of the gas flow passes through the opening between the bottom of the collision plate and the bottom surface of the separator chamber in the same manner as the conventional oil separator, and a part of the gas flow The pressure loss as an oil separator is reduced accordingly.
また、ブローバイガス中のオイルミストは、繊維材料層によって効果的に分離されるので、オイルミストの捕捉性能を高く得ることが可能である。
Also, since oil mist in blow-by gas is effectively separated by the fiber material layer, it is possible to obtain high oil mist capturing performance.
この発明によれば、隔壁の通路孔に対向する衝突板を、繊維材料層と網状部材とから構成することにより、オイルミストの捕捉性能とオイルセパレータの圧力損失とをより高いレベルで両立させることができる。
According to the present invention, the collision plate facing the passage hole of the partition wall is composed of the fiber material layer and the mesh member, so that the oil mist capturing performance and the pressure loss of the oil separator are compatible at a higher level. Can do.
以下、この発明の一実施例を図面に基づいて詳細に説明する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
図1は、この発明に係るオイルセパレータ1を備えた内燃機関の構成を概略的に示しており、シリンダブロック2とオイルパン3とによってクランクケース4が画成されているとともに、このクランクケース4とシリンダヘッド5内の動弁室6とが互いに連通している。ブローバイガス処理装置の一部をなすシリンダヘッドカバー7には、図示せぬ内燃機関吸気系のスロットル弁上流側(例えばエアクリーナ)に接続される新気導入口8と、スロットル弁下流側(例えばインテークマニホルド)に接続されるブローバイガス取出口9と、が設けられており、ブローバイガス取出口9には、ブローバイガスの流量を圧力差に応じて制御する公知のPCVバルブ10が設けられている。
FIG. 1 schematically shows the configuration of an internal combustion engine provided with an oil separator 1 according to the present invention. A crankcase 4 is defined by a cylinder block 2 and an oil pan 3. And the valve operating chamber 6 in the cylinder head 5 communicate with each other. A cylinder head cover 7 forming a part of the blow-by gas processing device includes a fresh air inlet 8 connected to a throttle valve upstream side (for example, an air cleaner) of an intake system (not shown), and a throttle valve downstream side (for example, an intake manifold). And a blow-by gas take-out port 9 connected to a), and the blow-by gas take-out port 9 is provided with a known PCV valve 10 for controlling the flow rate of the blow-by gas in accordance with the pressure difference.
このような構成においては、スロットル弁上下の圧力差によって新気導入口8から新気が導入され、クランクケース4内ならびに動弁室6内が換気される。クランクケース4内や動弁室6内のブローバイガスは、この新気とともにブローバイガス取出口9のPCVバルブ10を介してスロットル弁下流側に導入される。
In such a configuration, fresh air is introduced from the fresh air inlet 8 due to the pressure difference between the throttle valve and the vent, and the crankcase 4 and the valve chamber 6 are ventilated. The blow-by gas in the crankcase 4 and the valve operating chamber 6 is introduced to the downstream side of the throttle valve through the PCV valve 10 at the blow-by gas outlet 9 together with the fresh air.
そして、このブローバイガスに混入しているオイルミストを除去するために、上記ブローバイガス取出口9が設けられるシリンダヘッドカバー7の内側に、オイルセパレータ1が一体に設けられている。
In order to remove the oil mist mixed in the blowby gas, the oil separator 1 is integrally provided inside the cylinder head cover 7 in which the blowby gas outlet 9 is provided.
なお、図1の矢印は、内燃機関の低・中負荷時のガスの流れを示しているが、スロットル弁が全開付近にある高負荷時には、ブローバイガスの一部は、新気導入口8からも吸気系に排出される。従って、新気導入口8側にも同様のオイルセパレータが設けられるのが一般的であり、本発明のオイルセパレータ1は、ブローバイガス取出口9側のオイルセパレータあるいは新気導入口8側のオイルセパレータのいずれにも適用することが可能である。
The arrows in FIG. 1 indicate the gas flow when the internal combustion engine is at low and medium loads. However, when the throttle valve is close to full open, a part of the blow-by gas flows from the fresh air inlet 8. Is also discharged into the intake system. Accordingly, a similar oil separator is generally provided also on the fresh air inlet 8 side, and the oil separator 1 of the present invention is an oil separator on the blow-by gas outlet 9 side or an oil on the fresh air inlet 8 side. It can be applied to any separator.
図2および図3は、上記のようにシリンダヘッドカバー7に一体化されたオイルセパレータ1を単体で示している。このオイルセパレータ1は、下面が開口した細長い通路状をなすハウジング部21を合成樹脂製シリンダヘッドカバー7の一部として該シリンダヘッドカバー7の天井面に成形するとともに、このハウジング部21の下面開口を覆うように、合成樹脂製セパレータカバー22をシリンダヘッドカバー7に取り付けることによって構成されている。なお、本発明はこれには限定されず、シリンダヘッドカバー7とは別に成形される独立したハウジング部21を備えた構成とすることも可能である。
2 and 3 show the oil separator 1 integrated with the cylinder head cover 7 as described above as a single unit. The oil separator 1 is formed on the ceiling surface of the cylinder head cover 7 as a part of the synthetic resin cylinder head cover 7 and covers the lower surface opening of the housing part 21 as a part of the synthetic resin cylinder head cover 7. In this manner, the synthetic resin separator cover 22 is attached to the cylinder head cover 7. In addition, this invention is not limited to this, It can also be set as the structure provided with the independent housing part 21 shape | molded separately from the cylinder head cover 7. FIG.
上記オイルセパレータ1は、例えば気筒列と直交する方向(機関の幅方向)に沿って細長く延びており、上記ハウジング部21と上記セパレータカバー22との間に、断面矩形の細長いセパレータ室23が画成されている。このセパレータ室23の長手方向の一端部には、ブローバイガス入口24が位置し、他端部には、ブローバイガス出口25が位置し、従って、基本的に、ブローバイガスはセパレータ室23内をその長手方向に沿って直線的に流れていく。なお、上記セパレータ室23は、内燃機関のシリンダ中心軸線に対しほぼ直交する面に沿って形成されているが、内燃機関が車両に傾いた姿勢で搭載されることを考慮して、シリンダ中心軸線に対し傾斜した形で形成してもよい。内燃機関に搭載した状態において、セパレータ室23は水平面にほぼ沿っていることが望ましい。
The oil separator 1 elongates along, for example, a direction perpendicular to the cylinder row (the engine width direction), and an elongated separator chamber 23 having a rectangular cross section is defined between the housing portion 21 and the separator cover 22. It is made. The blow-by gas inlet 24 is located at one end of the separator chamber 23 in the longitudinal direction, and the blow-by gas outlet 25 is located at the other end. Therefore, the blow-by gas basically passes through the separator chamber 23. It flows linearly along the longitudinal direction. The separator chamber 23 is formed along a plane substantially perpendicular to the cylinder center axis of the internal combustion engine. However, the cylinder center axis is taken into consideration that the internal combustion engine is mounted in an inclined posture on the vehicle. You may form in the form inclined with respect to. In a state where the separator chamber 23 is mounted on the internal combustion engine, it is desirable that the separator chamber 23 is substantially along the horizontal plane.
上記ブローバイガス入口24は、上記セパレータカバー22に開口形成された矩形の開口部からなる。つまり、この実施例では、ブローバイガス入口24は、セパレータ室23の底面に開口しており、このブローバイガス入口24を介してセパレータ室23が動弁室6に連通している。また、上記ブローバイガス出口25は、この実施例では、ハウジング部21の上面に配置され、換言すれば、シリンダヘッドカバー7の天井壁を貫通して設けられている。前述したようにこのオイルセパレータ1がブローバイガス取出口9側に設けられる場合には、上記ブローバイガス出口25がブローバイガス取出口9となり、図示せぬPCVバルブが取り付けられる。なお、上記ブローバイガス出口25は、細長いセパレータ室23の端面(比較的上方の位置)に配置されることもある。
The blow-by gas inlet 24 comprises a rectangular opening formed in the separator cover 22. In other words, in this embodiment, the blow-by gas inlet 24 opens to the bottom surface of the separator chamber 23, and the separator chamber 23 communicates with the valve operating chamber 6 through the blow-by gas inlet 24. Further, in this embodiment, the blow-by gas outlet 25 is disposed on the upper surface of the housing portion 21, in other words, provided so as to penetrate the ceiling wall of the cylinder head cover 7. As described above, when the oil separator 1 is provided on the blow-by gas outlet 9 side, the blow-by gas outlet 25 becomes the blow-by gas outlet 9, and a PCV valve (not shown) is attached. The blow-by gas outlet 25 may be disposed on the end surface (relatively upper position) of the elongated separator chamber 23.
上記セパレータ室23の長手方向の中間部には、該セパレータ室23の長手方向と直交する板状の隔壁27が設けられており、この隔壁27によって、セパレータ室23は、ブローバイガス入口24側の入口室28と、ブローバイガス出口25側の出口室29と、に2分割されている。この隔壁27は、図示例では、セパレータカバー22と一体に成形され、ハウジング部21の天井面に達する高さまで上方に延びている。これとは逆に、隔壁27をハウジング部21つまりシリンダヘッドカバー7と一体に成形するようにしてもよい。この隔壁27は、ブローバイガスの流速を高めるための絞りとなる複数の通路孔30を有している。
A plate-like partition wall 27 orthogonal to the longitudinal direction of the separator chamber 23 is provided in the middle portion of the separator chamber 23 in the longitudinal direction. The partition wall 27 allows the separator chamber 23 to be on the blow-by gas inlet 24 side. It is divided into an inlet chamber 28 and an outlet chamber 29 on the blow-by gas outlet 25 side. In the illustrated example, the partition wall 27 is formed integrally with the separator cover 22 and extends upward to a height that reaches the ceiling surface of the housing portion 21. On the contrary, the partition wall 27 may be formed integrally with the housing portion 21, that is, the cylinder head cover 7. The partition wall 27 has a plurality of passage holes 30 serving as throttles for increasing the flow rate of blow-by gas.
図4に示すように、上記隔壁27は、この実施例では、左右に長い長方形状をなし、この隔壁27上に、上段、中段、下段の3列に整列した形に、計14個の通路孔30が配置されている。これらの14個の通路孔30は、長方形状をなす隔壁27の中で、全体として上方へ片寄った形に配置されており、隔壁27の下部には連通孔30は存在しない。各々の通路孔30は、断面円形の孔として貫通形成されている。各通路孔30は、ブローバイガス中のオイルミストの分離に必要な所望の流速(例えば5m/sec以上)が得られるように、その口径が設定されている。また、オイルミストを十分な慣性で直進させるためには、通路孔30の通路長(つまり隔壁27の厚さ)が通路孔30の直径の2倍以上であることが望ましい。なお、本発明においては、通路孔30は必ずしも円形断面である必要はなく、断面矩形のものや断面三角形の孔などであってもよい。
As shown in FIG. 4, the partition wall 27 has a rectangular shape which is long in the right and left in this embodiment, and a total of 14 passages are arranged on the partition wall 27 in three rows of an upper stage, a middle stage and a lower stage. A hole 30 is disposed. These fourteen passage holes 30 are arranged so as to be offset upward as a whole in the rectangular partition wall 27, and the communication hole 30 does not exist in the lower part of the partition wall 27. Each passage hole 30 is formed as a hole having a circular cross section. The diameter of each passage hole 30 is set so that a desired flow velocity (for example, 5 m / sec or more) necessary for separating oil mist in blow-by gas can be obtained. In order to make the oil mist go straight with sufficient inertia, it is desirable that the passage length of the passage hole 30 (that is, the thickness of the partition wall 27) is twice or more the diameter of the passage hole 30. In the present invention, the passage hole 30 does not necessarily have a circular cross section, and may have a rectangular cross section or a triangular cross section.
出口室29内には、上記隔壁27に隣接して該隔壁27と平行な衝突板32が配設されている。この衝突板32は、連通孔30を通して高速で流れてくるブローバイガスからオイルミストを分離するように上記通路孔30に適宜な間隔を介して対向している。この衝突板32は、後述するように、通路孔30に対向した表面の繊維材料層41と、この繊維材料層41を支持する裏面側の網状部材42と、から構成されている。
In the outlet chamber 29, a collision plate 32 is disposed adjacent to the partition wall 27 and parallel to the partition wall 27. The collision plate 32 faces the passage hole 30 with an appropriate interval so as to separate the oil mist from the blow-by gas flowing at high speed through the communication hole 30. As will be described later, the collision plate 32 is composed of a fiber material layer 41 on the front surface facing the passage hole 30 and a mesh member 42 on the back surface side that supports the fiber material layer 41.
上記衝突板32は、ハウジング部21の天井面から所定の高さ位置まで下方へ延びており、衝突板32の下端32aとセパレータ室23底面との間には、スリット状に開口する開口部33が設けられている。上記衝突板32の上下方向の寸法は、上記隔壁27に配置された複数の連通孔30の位置に対応しており、つまり各連通孔30を通過した高速ガス流が衝突板32に衝突するように、その下端32aの位置が設定されている。
The collision plate 32 extends downward from the ceiling surface of the housing portion 21 to a predetermined height position, and an opening 33 that opens in a slit shape between the lower end 32a of the collision plate 32 and the bottom surface of the separator chamber 23. Is provided. The vertical dimension of the collision plate 32 corresponds to the positions of the plurality of communication holes 30 arranged in the partition wall 27, that is, the high-speed gas flow that has passed through each communication hole 30 collides with the collision plate 32. In addition, the position of the lower end 32a is set.
上記衝突板32においてブローバイガスから分離したオイルは、下端32aから下方へ流れ落ち、上記開口部33を通してセパレータ室23底面に沿って下流側へ流れる。
The oil separated from the blow-by gas in the collision plate 32 flows down from the lower end 32a and flows downstream along the bottom surface of the separator chamber 23 through the opening 33.
そして、上記出口室29の底面には、集まったオイルを動弁室6側へ排出するためのドレン部としてドレンパイプ35がセパレータカバー22と一体に成形されている。このドレンパイプ35は、動弁室6へ向かって下方へ筒状に延びており、下端に小さな排出口を備えている。
A drain pipe 35 is integrally formed with the separator cover 22 on the bottom surface of the outlet chamber 29 as a drain portion for discharging the collected oil to the valve operating chamber 6 side. The drain pipe 35 extends downward in a cylindrical shape toward the valve operating chamber 6 and has a small discharge port at the lower end.
上記のように構成されたオイルセパレータ1においては、ブローバイガス入口24からブローバイガス出口25へとセパレータ室23内を流れるブローバイガスは、隔壁27を貫通した通路孔30で通路面積が絞られることにより高速流となり、衝突板32に衝突する。そのため、ブローバイガスに含まれていたオイルミストが分離して衝突板32に付着する。このように捕捉されたオイルミストは徐々に大きな液滴に成長し、衝突板32の下端32aからセパレータ室23底面に滴下し、この底面上を下流側へ流れる。そして、最終的にはドレンパイプ35から動弁室6へと滴下する。ドレンパイプ35内には、液状のオイルがある程度の高さまで溜まるため、ドレンパイプ35下端の排出口からのブローバイガスの逆流(つまり動弁室6(図1参照)から出口室29へのブローバイガスの流入)が阻止される。
In the oil separator 1 configured as described above, the blow-by gas flowing in the separator chamber 23 from the blow-by gas inlet 24 to the blow-by gas outlet 25 is reduced in the passage area by the passage hole 30 penetrating the partition wall 27. It becomes a high-speed flow and collides with the collision plate 32. Therefore, the oil mist contained in the blow-by gas is separated and adheres to the collision plate 32. The oil mist trapped in this way gradually grows into large droplets, drops from the lower end 32a of the collision plate 32 to the bottom surface of the separator chamber 23, and flows downstream on this bottom surface. Finally, it is dropped from the drain pipe 35 to the valve operating chamber 6. In the drain pipe 35, liquid oil accumulates to a certain height, so that the blow-by gas from the discharge port at the lower end of the drain pipe 35 (that is, blow-by gas from the valve operating chamber 6 (see FIG. 1) to the outlet chamber 29). Inflow) is prevented.
ここで、オイルセパレータ1各部の通路抵抗に起因した圧力損失が大きいほど、入口室28と出口室29との間の圧力差ひいては動弁室6と出口室29との間の圧力差が大きくなり、ドレンパイプ35を通したブローバイガスの逆流が生じやすくなる。このブローバイガスの逆流が生じると、ドレンパイプ35内からオイルが出口室29内に飛散し、ブローバイガス取出口9へと持ち出されてしまう。一方、この圧力損失を低減するために、仮に通路孔30の口径を大きく設定すると、圧力損失は低減するものの、各通路孔30から出るブローバイガスの流速が低くなるため、オイルミスト捕捉性能が低下する。
Here, the greater the pressure loss due to the passage resistance of each part of the oil separator 1, the greater the pressure difference between the inlet chamber 28 and the outlet chamber 29 and hence the pressure difference between the valve chamber 6 and the outlet chamber 29. The blow-by gas backflow through the drain pipe 35 is likely to occur. When this reverse flow of blow-by gas occurs, oil scatters from the drain pipe 35 into the outlet chamber 29 and is taken out to the blow-by gas outlet 9. On the other hand, if the diameter of the passage hole 30 is set to be large in order to reduce the pressure loss, the pressure loss is reduced, but the flow rate of the blow-by gas exiting from each passage hole 30 is lowered, so that the oil mist capturing performance is lowered. To do.
本発明では、オイルミスト捕捉性能を確保しつつ圧力損失の低減を実現するために、通路孔30に対向する衝突板32が、通路孔30に対向した表面の繊維材料層41と、この繊維材料層41を支持する裏面側の網状部材42と、から構成されており、全体として通気性を有するものとなっている。
In the present invention, in order to realize a reduction in pressure loss while ensuring oil mist capturing performance, a collision plate 32 facing the passage hole 30 is provided with a fiber material layer 41 on the surface facing the passage hole 30 and the fiber material. And a net-like member 42 on the back surface side that supports the layer 41 and has air permeability as a whole.
上記繊維材料層41としては、例えば、ポリエステル繊維、アクリル繊維、アラミド繊維、PPS(ポリフェニレンスルファイド)繊維、などの繊維を用いることができ、かつ、不織布、フリース等の織物、繊維をバインダとともに板状に成形したもの、など種々の形態のものを用いることが可能である。つまり、十分な通気度を有しつつオイルミストの分離除去が行えるように微細な流路を構成し得るものであれば、どのような形態のものであってもよい。
As the fiber material layer 41, for example, a fiber such as a polyester fiber, an acrylic fiber, an aramid fiber, or a PPS (polyphenylene sulfide) fiber can be used. It is possible to use various forms such as those formed into a shape. That is, any form may be used as long as the fine flow path can be configured so that the oil mist can be separated and removed while having sufficient air permeability.
ここで、上記実施例では、上記繊維材料層41として、アラミド繊維(100%)をニードルパンチ法により処理してなる3~10mmの厚さ(自由状態)で、かつ、0.01~0.05g/cm3の密度を有する不織布が用いられている。内燃機関の内部で基本的に無交換部品として用いられる繊維材料層41としては、耐油性、高温環境下での耐久性、高温高湿度下での加水分解に対する耐性、ガソリンや軽油、メタノール等の燃料に対する耐性、凝縮水に対する耐性、が少なくとも要求されるが、アラミド繊維は、ポリエステル繊維、アクリル繊維、PPS繊維に比較して、これらの特性が優れており、特に、種々の特性のいずれでも大きな耐久性低下が見られず、平均的に全ての特性が優れている。また、アラミド繊維は、ブローバイガスやオイルミストが衝突しても長期に亘って高い復元力を維持でき(つまり経時的なへたりが少ない)、経時的な厚みの低下ひいては密度の上昇を生じることがないので、長期に亘って所期のオイル分離性能を維持することが可能である。
Here, in the above embodiment, the fiber material layer 41 has a thickness of 3 to 10 mm (free state) obtained by processing aramid fibers (100%) by the needle punch method, and 0.01 to 0.00 mm. A nonwoven fabric having a density of 05 g / cm 3 is used. The fiber material layer 41 basically used as a non-replaceable part inside the internal combustion engine has oil resistance, durability under high temperature environment, resistance to hydrolysis under high temperature and high humidity, gasoline, light oil, methanol, etc. At least resistance to fuel and resistance to condensed water are required, but aramid fibers are superior in properties to polyester fibers, acrylic fibers, and PPS fibers. No deterioration in durability is observed, and all characteristics are excellent on average. In addition, aramid fibers can maintain a high restoring force over a long period of time even if blow-by gas or oil mist collides (that is, there is little sag over time), resulting in a decrease in thickness over time and an increase in density. Therefore, it is possible to maintain the desired oil separation performance over a long period of time.
下記の表1は、アラミド繊維からなる繊維材料層41として具体的な実施例を示している。なお、表1における「1μmの効率(%)」は、ブローバイガスに含まれる粒径1μmのオイルミストについての捕捉効率であり、「全体での効率(%)」は、種々の粒径のものを含むオイルミスト全体についての捕捉効率である。これらは、繊維材料層41のみではなく図2,図3のように構成されたオイルセパレータ1としての捕捉効率である。「通気抵抗Pa(60L/min)」も同じくオイルセパレータ1としての通気抵抗である。表1には、11の仕様が示されているが、いずれも使用が可能である。表1に示すように、各仕様は、オイルセパレータ1としてのオイルミストの捕捉効率および通気抵抗がそれぞれ異なるので、内燃機関毎の要求に応じて適宜に選択することができる。オイルミストの捕捉効率と通気抵抗とのバランスの点では、例えば、表1中の「仕様2」として示す繊維材料層41が優れており、本発明の好ましい一つの実施例では、この仕様2の繊維材料層41が用いられている。
Table 1 below shows specific examples of the fiber material layer 41 made of aramid fibers. In Table 1, “1 μm efficiency (%)” is the capture efficiency of oil mist with a particle size of 1 μm contained in blow-by gas, and “total efficiency (%)” is for various particle sizes. It is the capture efficiency about the whole oil mist containing. These are the trapping efficiencies of the oil separator 1 configured as shown in FIGS. 2 and 3 as well as the fiber material layer 41. “Air permeability resistance Pa (60 L / min)” is also the air resistance as the oil separator 1. Table 1 shows 11 specifications, any of which can be used. As shown in Table 1, each specification has different oil mist capture efficiency and ventilation resistance as the oil separator 1, and can be appropriately selected according to the requirements of each internal combustion engine. In terms of the balance between oil mist capture efficiency and ventilation resistance, for example, the fiber material layer 41 shown as “Specification 2” in Table 1 is excellent. In one preferred embodiment of the present invention, the specification 2 A fiber material layer 41 is used.
なお、本発明において網状部材42と組み合わされる繊維材料層41にあっては、特に密度が重要であり、ある程度の厚みとともに比較的小さい密度とする必要がある。ニードルパンチ法による不織布の形成によれば、密度の制御が容易であり、所望の密度の繊維材料層41を安定的に得ることができる。
In the present invention, in the fiber material layer 41 combined with the mesh member 42, the density is particularly important, and it is necessary to make the density relatively small with a certain thickness. According to the formation of the nonwoven fabric by the needle punch method, the density can be easily controlled, and the fiber material layer 41 having a desired density can be stably obtained.
また網状部材42としては、例えば、図5に示すように、金属板に多数のスリットを形成し、かつこれをスリットと直交する方向に引き延ばすことで、多数の菱形の網目を形成してなる、いわゆるエキスパンドメタルが用いられている。このほか、ワイヤを編んだ一般的な金網、金属板に多数の小孔を開口形成したいわゆるパンチングメタル、合成樹脂製の格子状の板や多孔板、など種々の形態のものを用いることができる。網状部材42を合成樹脂製とする場合には、ハウジング部21やセパレータカバー22と一体に成形することも可能である。図示例では、不織布からなる繊維材料層41がエキスパンドメタルからなる網状部材42の表面に例えば接着や溶着等の手段によって貼着されており、かつ上記網状部材42がハウジング部21ないしセパレータカバー22に適宜な手段(例えば、凹溝や係止爪による保持、ネジなど)で取り付けられている。金属製の網状部材42を合成樹脂製のハウジング部21やセパレータカバー22の成形時にインサートしておき、その後に、網状部材42表面に繊維材料層41を取り付けるようにしてもよい。
Further, as the mesh member 42, for example, as shown in FIG. 5, a large number of rhombus meshes are formed by forming a large number of slits in a metal plate and extending the slits in a direction perpendicular to the slits. So-called expanded metal is used. In addition to this, various forms such as a general wire mesh knitted wire, a so-called punching metal in which a large number of small holes are formed in a metal plate, a lattice plate or a perforated plate made of a synthetic resin can be used. . When the mesh member 42 is made of synthetic resin, it can be molded integrally with the housing portion 21 and the separator cover 22. In the illustrated example, a fiber material layer 41 made of non-woven fabric is adhered to the surface of a net-like member 42 made of expanded metal by means such as adhesion or welding, and the net-like member 42 is attached to the housing part 21 or the separator cover 22. It is attached by appropriate means (for example, holding by a ditch or a locking claw, a screw, etc.). The metal mesh member 42 may be inserted when molding the synthetic resin housing 21 and the separator cover 22, and then the fiber material layer 41 may be attached to the mesh member 42 surface.
図6は、衝突板32が硬質の板状部材51のみからなる第1比較例(a)と、硬質板状部材51の表面に繊維材料層41を備えた第2比較例(b)と、本発明の実施例(c)と、におけるブローバイガスとオイルミストの流れを対比して示した説明図である。矢印Gがブローバイガスの流れを示し、矢印Mがオイルミストの流れを示す。
FIG. 6 shows a first comparative example (a) in which the collision plate 32 is composed only of a hard plate-like member 51, a second comparative example (b) in which a fiber material layer 41 is provided on the surface of the hard plate-like member 51, and It is explanatory drawing which showed the flow of the blowby gas and oil mist in Example (c) of this invention in contrast. Arrow G indicates the flow of blow-by gas, and arrow M indicates the flow of oil mist.
図示するように、図(a)の従来の構成に相当する第1比較例では、オイルミストMは通路孔30を通して直進し、板状部材51に衝突して、ここで大きな液滴に成長する。ブローバイガスGは、板状部材51に沿って流れの向きを変え、板状部材51とセパレータ室23底面との間の開口部33へと流れる。
As shown in the drawing, in the first comparative example corresponding to the conventional configuration of FIG. 1 (a), the oil mist M advances straight through the passage hole 30, collides with the plate member 51, and grows into a large droplet here. . The blow-by gas G changes the flow direction along the plate member 51 and flows to the opening 33 between the plate member 51 and the bottom surface of the separator chamber 23.
硬質板状部材51の表面に繊維材料層41を備えた図(b)の第2比較例でも、ブローバイガスGとオイルミストMの基本的な流れは同様であり、ブローバイガスGは、下方へと流れの向きを変え、衝突板32とセパレータ室23底面との間の開口部33へと流れる。オイルミストMは、通路孔30を通して直進し、繊維材料層41および板状部材51に衝突して、大きな液滴となって下方へ滴下する。
The basic flow of the blow-by gas G and the oil mist M is the same in the second comparative example of FIG. 2B in which the fiber material layer 41 is provided on the surface of the hard plate member 51, and the blow-by gas G is downward. The direction of flow is changed, and the flow flows to the opening 33 between the collision plate 32 and the bottom surface of the separator chamber 23. The oil mist M goes straight through the passage hole 30, collides with the fiber material layer 41 and the plate-like member 51, and drops downward as a large liquid droplet.
これらに対し、図(c)に示す本発明の実施例では、オイルミストMとともに通路孔30から直進して繊維材料層41に衝突したブローバイガスGは、その大部分が繊維材料層41および網状部材42をそのまま通過し、下流側へと流れる。そして、一部のブローバイガスGは、破線矢印で示すように、衝突板32とセパレータ室23底面との間の開口部33へ回り込んで流れる。オイルミストMは、一部が繊維材料層41表面に衝突して分離されるとともに、残部が繊維材料層41を通過する間に捕捉され、大きな液滴に成長した段階で下方へ滴下する。なお、繊維材料層41が極端に薄い場合や、繊維材料層41の目が極端に粗い場合には、オイルミストMが繊維材料層41を吹き抜けてしまうので、このような吹き抜けが生じない程度の目の細かさならびに厚さが必要である。
On the other hand, in the embodiment of the present invention shown in FIG. 2C, most of the blow-by gas G that has traveled straight with the oil mist M from the passage hole 30 and collided with the fiber material layer 41 is mostly the fiber material layer 41 and the net-like shape. It passes through the member 42 as it is and flows downstream. Then, a part of the blow-by gas G flows around the opening 33 between the collision plate 32 and the bottom surface of the separator chamber 23 as indicated by a broken line arrow. Part of the oil mist M collides with the surface of the fiber material layer 41 and is separated, and the remaining part is captured while passing through the fiber material layer 41, and drops downward when it grows into large droplets. In addition, when the fiber material layer 41 is extremely thin or when the fiber material layer 41 is extremely rough, the oil mist M blows through the fiber material layer 41, so that such a blow-out does not occur. Fineness and thickness of the eyes are required.
このように、本発明では、通路孔30を通した高速ブローバイガス流を受ける衝突板32が繊維材料層41と網状部材42とからなり、ここに衝突したブローバイガスが下流側へ通過し得るため、通気抵抗ひいては圧力損失の低減が可能である。
As described above, in the present invention, the collision plate 32 that receives the high-speed blow-by gas flow through the passage hole 30 is composed of the fiber material layer 41 and the mesh member 42, and the blow-by gas that has collided there can pass downstream. Further, it is possible to reduce the ventilation resistance and thus the pressure loss.
図7は、図6(a),(b),(c)に基本的構成を示した第1比較例と第2比較例と本発明の実施例との三者について、オイルセパレータ1を通流するガス流量を大小変化させて圧力損失を測定し、その結果をまとめて示したものである。図示するように、第1,第2比較例(a),(b)に比べて、実施例(c)では、圧力損失が明らかに低減する。
FIG. 7 shows the oil separator 1 for the first comparative example, the second comparative example, and the embodiment of the present invention whose basic configuration is shown in FIGS. 6 (a), (b), and (c). The pressure loss was measured by changing the flow rate of the flowing gas, and the results were summarized. As shown in the figure, the pressure loss is clearly reduced in the example (c) compared to the first and second comparative examples (a) and (b).
図8は、同じく上記の三者について、一定のオイルミストを含むガスを種々の流量でもって通流させ、そのオイルミストの捕捉性能(捕捉効率)を測定した結果をまとめたものである。なお、第2比較例の繊維材料層41としては、実施例の繊維材料層41と同一のものを用いた。図示するように、単純な硬質板状部材51のみからなる第1比較例(a)に比べて、繊維材料層41を具備した第2比較例(b)はオイルミスト捕捉性能に優れたものとなるが、本発明の実施例(c)では、第2比較例(b)よりもさらに高い捕捉性能が得られた。これは、第2比較例では図6(b)に示すように開口部33へと流れるブローバイガスが比較的多量のオイルミストを含むのに対し、実施例では、オイルミストが開口部33へと迂回することが少ないため、と考えられる。
FIG. 8 is a summary of the results of measuring the oil mist capturing performance (capturing efficiency) for the above three components by passing a gas containing a constant oil mist at various flow rates. In addition, as the fiber material layer 41 of the 2nd comparative example, the same thing as the fiber material layer 41 of an Example was used. As shown in the figure, the second comparative example (b) including the fiber material layer 41 is superior in oil mist capturing performance as compared with the first comparative example (a) including only the simple hard plate-like member 51. However, in Example (c) of the present invention, higher capture performance was obtained than in the second comparative example (b). In the second comparative example, the blow-by gas flowing into the opening 33 includes a relatively large amount of oil mist as shown in FIG. 6B, whereas in the embodiment, the oil mist moves into the opening 33. This is thought to be because there are few detours.
図9は、これらの測定結果に基づき、圧力損失を横軸に、オイルミストの捕捉性能を縦軸にとって、オイルミスト捕捉性能と圧力損失との関係を示したものである。図示するように、第1,第2比較例(a),(b)に比べて、本発明の実施例(c)は、同じ圧力損失の下でより高い捕捉性能が得られる。つまり、本実施例によれば、互いにトレードオフの関係にある捕捉性能と圧力損失とを高いレベルで両立させることができる。
FIG. 9 shows the relationship between oil mist trapping performance and pressure loss based on these measurement results, with pressure loss on the horizontal axis and oil mist trapping performance on the vertical axis. As shown in the figure, compared with the first and second comparative examples (a) and (b), the embodiment (c) of the present invention can obtain higher capture performance under the same pressure loss. That is, according to the present embodiment, it is possible to achieve both a high level of capture performance and pressure loss that are in a trade-off relationship with each other.
以上、この発明の一実施例を詳細に説明したが、この発明は上記実施例に限定されず、種々の変更が可能である。例えば、上記実施例では、衝突板32の幅の全体に亘って開口部33が設けられているが、衝突板32の幅の一部、例えば幅方向の中央部のみに開口部33を設けるようにしてもよい。また、網状部材42の外形状と繊維材料層41の外形状とが必ずしも完全に一致している必要はなく、例えば、網状部材42の幅方向の中央部のみに開口部33を設け、かつ繊維材料層41は単純な長方形状として、開口部33の両側では網状部材42のみが存在するようにした構成なども可能である。
As mentioned above, although one Example of this invention was described in detail, this invention is not limited to the said Example, A various change is possible. For example, in the above embodiment, the opening 33 is provided over the entire width of the collision plate 32, but the opening 33 is provided only in a part of the width of the collision plate 32, for example, the central portion in the width direction. It may be. Further, the outer shape of the mesh member 42 and the outer shape of the fiber material layer 41 do not necessarily coincide completely. For example, the opening 33 is provided only at the center in the width direction of the mesh member 42, and the fibers The material layer 41 may have a simple rectangular shape, and only the mesh member 42 may exist on both sides of the opening 33.
なお、図2,図3は、完全な直方体としてハウジング部21を示しているが、実際には、シリンダヘッドカバー7の外形状等に応じて、若干異形な形状となるのが一般的である。
2 and 3 show the housing portion 21 as a complete rectangular parallelepiped, but in practice, it is generally a slightly different shape depending on the outer shape of the cylinder head cover 7 and the like.
Claims (4)
- 内燃機関のシリンダヘッドカバー内に設けられ、該シリンダヘッドカバーを通して外部に取り出されるブローバイガスからオイルミストを分離するオイルセパレータであって、
一端部にブローバイガス入口を有するとともに他端にブローバイガス出口を有するセパレータ室と、
上記セパレータ室内を上記ブローバイガス入口側の入口室と上記ブローバイガス出口側の出口室とに仕切るように設けられ、かつ複数の通路孔が貫通形成された隔壁と、
上記通路孔に対向するように上記隔壁に隣接して上記出口室内に設けられた衝突板と、
この衝突板の幅の一部ないし全体に亘って、該衝突板の下端と上記セパレータ室底面との間にスリット状に設けられた開口部と、
分離したオイルを上記セパレータ室底面から内燃機関の動弁室内に排出するドレン部と、
を備え、
上記衝突板が、上記通路孔に対向した表面の繊維材料層と、この繊維材料層を支持する裏面側の網状部材と、から構成されている内燃機関のオイルセパレータ。 An oil separator provided in a cylinder head cover of an internal combustion engine, for separating oil mist from blow-by gas taken out through the cylinder head cover,
A separator chamber having a blow-by gas inlet at one end and a blow-by gas outlet at the other end;
A partition wall provided so as to partition the separator chamber into an inlet chamber on the blow-by gas inlet side and an outlet chamber on the blow-by gas outlet side, and a plurality of passage holes formed therethrough;
A collision plate provided in the outlet chamber adjacent to the partition wall so as to face the passage hole;
An opening provided in a slit shape between the lower end of the collision plate and the bottom surface of the separator chamber, over a part or the whole of the width of the collision plate;
A drain portion for discharging the separated oil from the bottom surface of the separator chamber into the valve chamber of the internal combustion engine;
With
An oil separator for an internal combustion engine, wherein the collision plate is composed of a fiber material layer on a surface facing the passage hole and a mesh member on a back surface side that supports the fiber material layer. - 上記繊維材料層が不織布からなる請求項1に記載の内燃機関のオイルセパレータ。 The oil separator for an internal combustion engine according to claim 1, wherein the fiber material layer is made of a nonwoven fabric.
- 上記繊維材料層がアラミド繊維の不織布からなる請求項2に記載の内燃機関のオイルセパレータ。 The oil separator for an internal combustion engine according to claim 2, wherein the fiber material layer is made of an aramid fiber nonwoven fabric.
- 上記網状部材がエキスパンドメタルからなる請求項1に記載の内燃機関のオイルセパレータ。 The oil separator for an internal combustion engine according to claim 1, wherein the mesh member is made of expanded metal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-125562 | 2012-06-01 | ||
JP2012125562A JP2015158132A (en) | 2012-06-01 | 2012-06-01 | Internal combustion engine oil separator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013179829A1 true WO2013179829A1 (en) | 2013-12-05 |
Family
ID=49673034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/062023 WO2013179829A1 (en) | 2012-06-01 | 2013-04-24 | Oil separator for internal combustion engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015158132A (en) |
WO (1) | WO2013179829A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3034821A1 (en) * | 2014-12-18 | 2016-06-22 | MAHLE Filter Systems Japan Corporation | Oil mist separator |
CN106894861A (en) * | 2015-12-21 | 2017-06-27 | 爱信精机株式会社 | Oil eliminator |
GB2552986A (en) * | 2016-08-17 | 2018-02-21 | Nifco Inc | An oil separating device |
CN110259544A (en) * | 2019-07-29 | 2019-09-20 | 广西玉柴机器股份有限公司 | A kind of high-efficiency oil-gas separating device being integrated in cylinder cover of engine |
CN110748396A (en) * | 2018-07-23 | 2020-02-04 | 本田技研工业株式会社 | Ventilator structure of engine |
WO2020052662A1 (en) * | 2018-09-14 | 2020-03-19 | 广西玉柴机器股份有限公司 | Partition-plate oil-gas separation device for engine |
CN111051656A (en) * | 2017-09-01 | 2020-04-21 | 本田技研工业株式会社 | Ventilation device and snow remover with ventilation device |
CN114929996A (en) * | 2019-12-02 | 2022-08-19 | 雷诺股份公司 | Oil separator comprising a fresh air chamber |
DE112018003854B4 (en) | 2017-07-28 | 2023-02-16 | Nifco Inc. | Oil separation structure for an engine |
EP3985234A4 (en) * | 2019-06-12 | 2023-07-05 | Kubota Corporation | Blow-by gas recirculating device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0676614U (en) * | 1993-03-31 | 1994-10-28 | 株式会社土屋製作所 | Oil mist separator |
JPH0996209A (en) * | 1995-09-29 | 1997-04-08 | Tenetsukusu:Kk | Oil mist separator |
JP2009160510A (en) * | 2007-12-29 | 2009-07-23 | Ceramics Craft Co Ltd | Heat-resistant incombustible smoke consuming/deodorizing filter medium |
JP2010248935A (en) * | 2009-04-10 | 2010-11-04 | Toyota Boshoku Corp | Oil separator |
JP2011094506A (en) * | 2009-10-28 | 2011-05-12 | Toyota Boshoku Corp | Oil mist separator |
JP2011163226A (en) * | 2010-02-10 | 2011-08-25 | Toyota Boshoku Corp | Oil separator |
-
2012
- 2012-06-01 JP JP2012125562A patent/JP2015158132A/en active Pending
-
2013
- 2013-04-24 WO PCT/JP2013/062023 patent/WO2013179829A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0676614U (en) * | 1993-03-31 | 1994-10-28 | 株式会社土屋製作所 | Oil mist separator |
JPH0996209A (en) * | 1995-09-29 | 1997-04-08 | Tenetsukusu:Kk | Oil mist separator |
JP2009160510A (en) * | 2007-12-29 | 2009-07-23 | Ceramics Craft Co Ltd | Heat-resistant incombustible smoke consuming/deodorizing filter medium |
JP2010248935A (en) * | 2009-04-10 | 2010-11-04 | Toyota Boshoku Corp | Oil separator |
JP2011094506A (en) * | 2009-10-28 | 2011-05-12 | Toyota Boshoku Corp | Oil mist separator |
JP2011163226A (en) * | 2010-02-10 | 2011-08-25 | Toyota Boshoku Corp | Oil separator |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3034821A1 (en) * | 2014-12-18 | 2016-06-22 | MAHLE Filter Systems Japan Corporation | Oil mist separator |
US9938937B2 (en) | 2014-12-18 | 2018-04-10 | Mahle Filter Systems Japan Corporation | Oil mist separator |
CN106894861A (en) * | 2015-12-21 | 2017-06-27 | 爱信精机株式会社 | Oil eliminator |
EP3184765A1 (en) * | 2015-12-21 | 2017-06-28 | Aisin Seiki Kabushiki Kaisha | Oil separator |
US10151226B2 (en) | 2015-12-21 | 2018-12-11 | Aisin Seiki Kabushiki Kaisha | Oil separator |
GB2552986A (en) * | 2016-08-17 | 2018-02-21 | Nifco Inc | An oil separating device |
CN109642483A (en) * | 2016-08-17 | 2019-04-16 | 株式会社利富高 | Oil separating device |
GB2552986B (en) * | 2016-08-17 | 2020-09-16 | Nifco Inc | A device for separating oil from a blow-by gas |
DE112018003854B4 (en) | 2017-07-28 | 2023-02-16 | Nifco Inc. | Oil separation structure for an engine |
CN111051656A (en) * | 2017-09-01 | 2020-04-21 | 本田技研工业株式会社 | Ventilation device and snow remover with ventilation device |
EP3677756A4 (en) * | 2017-09-01 | 2020-10-28 | Honda Motor Co., Ltd. | Breather device, and snow removal machine with breather device |
AU2018327187B2 (en) * | 2017-09-01 | 2021-04-08 | Honda Motor Co., Ltd. | Breather device, and snow removal machine with breather device |
US11156136B2 (en) | 2017-09-01 | 2021-10-26 | Honda Motor Co., Ltd. | Breather device, and snow removal machine with breather device |
CN110748396A (en) * | 2018-07-23 | 2020-02-04 | 本田技研工业株式会社 | Ventilator structure of engine |
US10968796B2 (en) | 2018-07-23 | 2021-04-06 | Honda Motor Co., Ltd. | Breather structure of engine |
CN110748396B (en) * | 2018-07-23 | 2021-09-07 | 本田技研工业株式会社 | Ventilator structure of engine |
WO2020052662A1 (en) * | 2018-09-14 | 2020-03-19 | 广西玉柴机器股份有限公司 | Partition-plate oil-gas separation device for engine |
EP3985234A4 (en) * | 2019-06-12 | 2023-07-05 | Kubota Corporation | Blow-by gas recirculating device |
CN110259544A (en) * | 2019-07-29 | 2019-09-20 | 广西玉柴机器股份有限公司 | A kind of high-efficiency oil-gas separating device being integrated in cylinder cover of engine |
CN114929996A (en) * | 2019-12-02 | 2022-08-19 | 雷诺股份公司 | Oil separator comprising a fresh air chamber |
Also Published As
Publication number | Publication date |
---|---|
JP2015158132A (en) | 2015-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013179829A1 (en) | Oil separator for internal combustion engine | |
JP5847445B2 (en) | Oil separator for internal combustion engine | |
JP5890153B2 (en) | Oil separator for internal combustion engine | |
US8449637B2 (en) | Oil mist separator of an internal combustion engine | |
JP5447197B2 (en) | Oil separator | |
CN106460735B (en) | Inlet air moisture is from device | |
JP5375524B2 (en) | Oil mist separator | |
US6290738B1 (en) | Inertial gas-liquid separator having an inertial collector spaced from a nozzle structure | |
JP5954333B2 (en) | Oil mist separator | |
JP6181058B2 (en) | Method and apparatus for oil decantation in gas flow | |
US20080264018A1 (en) | Inertial gas-liquid separator with slot nozzle | |
JP6216304B2 (en) | Oil mist separator | |
JP5482514B2 (en) | Oil separator | |
JP2010248935A (en) | Oil separator | |
JP5304542B2 (en) | Oil mist separator | |
WO2012157309A1 (en) | Oil separator for internal combustion engine | |
JP2010248934A (en) | Oil separator | |
KR102436946B1 (en) | Oil management scheme in crankcase ventilation | |
JP5338568B2 (en) | Oil mist separator | |
JP2009156087A (en) | Engine oil-mist separating device | |
JP4332051B2 (en) | Breather equipment | |
JP2005282390A5 (en) | ||
JP5509898B2 (en) | Oil separator | |
US20230338881A1 (en) | Impactor/separator element and devices comprising an impactor separator/element of this type | |
JP5223728B2 (en) | Oil mist separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13796928 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13796928 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |