[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013176362A1 - 3차원 스캐닝 시스템 및 이를 이용한 3차원 영상획득방법 - Google Patents

3차원 스캐닝 시스템 및 이를 이용한 3차원 영상획득방법 Download PDF

Info

Publication number
WO2013176362A1
WO2013176362A1 PCT/KR2012/011144 KR2012011144W WO2013176362A1 WO 2013176362 A1 WO2013176362 A1 WO 2013176362A1 KR 2012011144 W KR2012011144 W KR 2012011144W WO 2013176362 A1 WO2013176362 A1 WO 2013176362A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
optical transmission
pulsed laser
module
Prior art date
Application number
PCT/KR2012/011144
Other languages
English (en)
French (fr)
Inventor
백승호
박상덕
신진옥
조국
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120054110A external-priority patent/KR101357051B1/ko
Priority claimed from KR1020120091081A external-priority patent/KR101391298B1/ko
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to CN201280028996.6A priority Critical patent/CN103608696B/zh
Priority to US14/125,315 priority patent/US9091535B2/en
Publication of WO2013176362A1 publication Critical patent/WO2013176362A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the reflected light reflected from the target is received by the linear array type photo detector, and the distance to the target is measured.
  • the present invention relates to a three-dimensional laser scanning system capable of obtaining long-range data with excellent vertical resolution and a three-dimensional image acquisition method using the same.
  • a three-dimensional image sensor called LIDAR (LIDAR-Light Detection And Ranging) or Radar (LADAR-Laser Detection And Ranging) emits pulsed laser light toward a target and then returns light energy that is reflected back to the target. It is a system that can calculate the distance to the target, the moving speed of the target, etc. by capturing using the element) and converting it into an electrical signal.
  • lidar systems are widely applied in various fields such as sensors for detecting obstacles in front of robots and unmanned vehicles, radar guns for speed measurement, aviation geo-mapping devices, three-dimensional ground surveys, and underwater scanning.
  • the lidar system is a driving assistance application that allows the driver to automatically warn the driver or to automatically adjust the speed of the vehicle in the event of a dangerous situation, such as an obstacle in front or side, or a tractor without a driver.
  • the field of application is expanding with automatic driving devices.
  • US Patent Publication No. 2010-20306 discloses a multi-array laser diode and a multi-detector (or single detector) that detects reflection of light emitted from the laser diode. And a housing for accommodating the laser diode and the multiple detector and a rotating means for rotating the housing at a high speed of 360 [deg.].
  • the multiple arrayed laser diodes arranged in the lidar system are arranged so that the whole group is different from each other at different angles, so that the laser beams that are emitted as a whole are emitted with a predetermined vertical angle, for example, in a range of 40 °. It is possible to obtain point group data, i.e., three-dimensional data, for y, and height.
  • the system is composed of a first lidar system installed in a horizontal direction to obtain appropriate data in the height direction, and a second lidar system disposed slightly inclined downwardly compared to the first lidar system.
  • the IDA system obtains far point data.
  • the second LiDAR system is capable of obtaining information about the peripheral portion of the vehicle in operation, that is, the short-range point group data.
  • the vertical resolution is lowered, thereby lowering the reliability of the processed data.
  • the general three-dimensional laser scanning system is equipped with both the laser source and the optical transmission and reception means to rotate the rotary drive device to rotate the structure, due to the weight of the laser source and the cooling structure for cooling it, There is a problem that the manufacturing cost of the scanning system becomes large and bulky.
  • the present invention was devised to solve the above-described problems of the prior art, and the first object of the present invention is to solve the problems occurring when using a conventional multi-arrayed laser diode. It is to provide a three-dimensional scanning system that can solve the problem.
  • the second object of the present invention is to obtain a wide-angle data at a short distance and to obtain long-range data with excellent vertical resolution at a long distance without increasing the light output, so that the auxiliary driving device of a car or agricultural machine that operates at high speed.
  • Another object is to provide a three-dimensional scanning system that can be suitably used for an unmanned driving device such as an intelligent robot.
  • the third object of the present invention is to obtain a wide-angle data at a short distance and to obtain data having excellent vertical resolution at a long distance even with the same laser output, so that an auxiliary driving device or an intelligent robot of a vehicle or agricultural machine that operates at a high speed.
  • the present invention can be suitably used for an unmanned driving device such as a low cost, and can provide a three-dimensional laser scanning system that can be miniaturized.
  • a fourth object of the present invention is to provide a three-dimensional image acquisition method that can obtain reliable three-dimensional point group data for long distance and short distance without increasing the light output.
  • the first aspect of the present invention for solving the first problem is to receive a reflected light reflected from the target after the rotational emission of the pulsed laser light in the form of a line to three-dimensional image through the point group data measured the distance to the target Acquiring a three-dimensional laser scanning system, a laser source that generates pulsed laser light, an optical transmitter that emits pulsed laser light to the outside in a vertical line, and an optical receiver that receives reflected pulsed laser light and converts it into an electrical signal. It is to provide a three-dimensional scanning system including at least one optical transmission module and a motor for rotating the at least one optical transmission module.
  • the second aspect of the present invention for solving the second problem, three-dimensional through the point group data measuring the distance to the target by receiving the reflected light reflected from the target after rotating the pulsed laser light in the form of a line
  • a three-dimensional laser scanning system for acquiring images, a laser source for generating pulsed laser light, an optical transmitter for emitting the pulsed laser light to the outside in the form of a vertical line, and an optical signal for receiving and converting the reflected pulsed laser light into an electrical signal.
  • At least one light emission angle of the at least one of the two or more optical transmission and reception modules, and the motor for driving the two or more optical transmission and reception modules, including a receiver, and a motor for rotating the two or more optical transmission and reception modules are set differently It is to provide a three-dimensional scanning system characterized.
  • the optical transmitter comprises a collimator for aligning an optical axis of pulsed laser light provided from the laser source and a lens for making the light passing through the collimator into line light.
  • the optical receiver may include a lens for receiving the reflected light, a filter for filtering the light passing through the lens, and a plurality of photodiodes arranged in a line to generate an electrical signal from the filtered light.
  • the optical transmission module comprises a first optical transmission module and a second optical transmission module, the first optical transmission module and the second optical transmission module Optical transmission and reception may be arranged to face in opposite directions to each other.
  • the light emission angle of the first optical transmission module may be greater than twice the light emission angle of the second optical transmission module.
  • the light emission angle of the first optical transmission module is larger than the light emission angle of the second optical transmission module, the optical emission angle of the second optical transmission module It may be set to maintain a wide width that can cover a predetermined height set in the sense system at the reflected light detection limit distance of the first optical transmitting and receiving module.
  • the laser source may be provided corresponding to the number of the optical transmission module.
  • the third aspect of the present invention for solving the third problem is to receive a reflected light reflected from the target after rotating the pulsed laser light in the form of a line to a three-dimensional image through the point group data measured the distance to the target
  • An acquiring three-dimensional laser scanning system comprising: a fixing portion and a rotating portion rotatably coupled to an upper portion of the fixing portion, wherein the fixing portion includes a motor for driving the rotating portion and a laser source for generating the pulsed laser light.
  • the rotating part includes a rotary power supply coupled to the motor, an optical separation module for separating the pulsed laser light into two or more, and light for emitting the separated pulsed laser light to the outside in the form of a vertical line.
  • Three-dimensionally comprising two or more optical transmission and reception modules including a transmitter and an optical receiver for receiving the reflected pulsed laser light and converting it into an electrical signal It is to provide a scanning system.
  • the light emission angle of at least one of the two or more optical transmission and reception modules may be set differently from other optical transmission and reception modules.
  • the pulsed laser light generated by the laser source may be provided to the upper through the hollow formed in the center of the rotating portion to reach the optical separation module.
  • the motor is a hollow motor
  • a hollow multi-contact slip ring is disposed on the hollow motor, it may be provided to supply power to the rotating unit.
  • the rotating unit a cover having two or more windows so as to emit the pulsed laser light, and fixed to the cover for positioning the two or more optical transmitting and receiving modules
  • a separation stage may be further provided, and the separation stage may include a light receiving hole for receiving the pulsed laser light, and the optical separation module may be disposed near the light receiving hole.
  • the optical separation module the support is fixed on the separation stage and the through-hole for receiving the pulsed laser light is formed, and the through-hole on the support
  • a beam splitter disposed at the beam splitter to separate the pulsed laser light, and a plurality of mirrors fixed on the support to guide the pulsed light separated from the beam splitter to a predetermined path.
  • the optical transmission module comprises an optical transmission module and an optical reception module, and the optical transmission module vertically lines the pulsed laser light provided from the optical separation module. It may include a plurality of lenses made in the form.
  • the optical transmission module comprises an optical transmission module and an optical reception module
  • the optical reception module includes a lens for receiving the reflected light and the lens.
  • a light processor including a filter for filtering the light that has passed and a plurality of photo diodes arranged in a line to generate an electrical signal from the filtered light.
  • the two or more optical transmission and reception modules are composed of a first optical transmission and reception module and a second optical transmission and reception module, and the first optical transmission and reception module and the second optical transmission and reception module. May be arranged symmetrically such that the emission and reception of the pulsed laser light are directed in opposite directions.
  • the light emission angle of the first optical transmission module may be provided more than twice as large as the light emission angle of the second optical transmission module.
  • the light emission angle of the first optical transmission module is larger than the light emission angle of the second optical transmission module
  • the optical emission angle of the second optical transmission module May be set to maintain a wide width capable of covering a predetermined height set in the 3D laser scanning system at the reflected light detection limit distance of the first optical transmission / reception module.
  • the rotating unit includes a control board, the control board includes a controller for controlling the system, and a data processing module for generating three-dimensional image data Can be.
  • control board may be provided with a wireless transmission means for wirelessly transmitting the generated three-dimensional image data to the user.
  • the fourth aspect of the present invention for solving the fourth problem is to receive a reflected light reflected from the target after rotating the pulsed laser light in the form of a line to three-dimensional image through the point group data measured the distance to the target
  • a three-dimensional image acquisition method of obtaining, using two or more optical transmitters arranged at a right angle to emit pulsed laser light on two or more vertical lines, the light emission angle of at least one of the pulsed laser light on the two or more vertical lines is different
  • the present invention provides a method of emitting differently from the light emission angle of the pulsed laser light.
  • the optical transmitter is two, it may be provided so that the pulsed laser light is emitted in the opposite direction.
  • the three-dimensional laser scanning system is a scanning system that uses a multi-arrayed laser source by allowing laser pulsed light on a line to be emitted at one time and receiving using a line-arranged photodiode.
  • the scanning speed can be significantly increased.
  • a narrow angle line laser is used for long distance detection, and a wide angle line laser is used at a short distance, At a short distance, a wide viewing angle can be secured, and at a long distance, a dense point cloud data can be obtained, so that data having excellent vertical resolution can be obtained.
  • it is not necessary to use a laser of high power at a long distance and a laser can be used at the same output at a long distance and a short distance, so that it can be driven with a single output, which is advantageous in reducing the volume of a three-dimensional scanning system. .
  • the three-dimensional scanning system according to the third aspect of the present invention, by separating the laser source for generating a line laser and its cooling means, and the optical transmitting and receiving module for emitting light and receiving the reflected light to generate point group data, By designing the structure to rotate only the optical transmission module, it is possible to implement a system of lighter and more compact size than the conventional.
  • FIG. 1 is a perspective view of a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of only a cover of a 3D scanning system according to an exemplary embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 5 is a plan view of a three-dimensional scanning system with the cover of an embodiment of the present invention removed.
  • FIG. 6 is a perspective view of a three-dimensional scanning system with the cover of an embodiment of the present invention removed.
  • FIG. 7 is a block diagram of light processing means of a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 8 is a view showing light emitted at different angles in a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating each resolution of light emitted at different angles and each resolution of an overlapping portion in a three-dimensional scanning system according to an exemplary embodiment of the present invention.
  • FIG. 10 is a view for explaining a method of setting the light emission angle of the three-dimensional scanning system according to an embodiment of the present invention.
  • the scanning system includes a fixed part 100 and a rotating part 200 rotatably coupled to the fixed part 100, wherein the fixed part 100 is connected to a power source 110. And a laser source 120 for generating pulsed light, and a hollow motor 130 for driving the rotating part 200 to rotate.
  • the rotating part 200 includes a cover 210 and the motor 130.
  • Hollow multi-contact slip ring 220 coupled to the plurality of control boards 230 and the control board 230 disposed on the hollow multi-contact slip ring 220 and the separation separator 240 for protection separation ),
  • the light mounted on the pedestal 240 It comprises a separation module 250 and the optical transmission module 260.
  • the power source 110 is installed in the ring-shaped first case 111 and receives various external power sources (for example, a 24V power source) to operate in various ways. And a high voltage converter for supplying high voltage power to the laser source 120.
  • various external power sources for example, a 24V power source
  • a high voltage converter for supplying high voltage power to the laser source 120.
  • the laser source 120 is disposed inside the ring-shaped second case 121 in which the hollow part is formed, and the light emitting part 122 is the second case 121. It is formed to protrude into the inside of the to be curved upward, the generated pulse laser is to be emitted toward the upper direction of the center of the case 121.
  • a light focusing lens is attached to the light emitting unit 122 so that the laser emitted from the laser source 120 can be focused without being dispersed and emitted upward.
  • the second case 121 may be provided with a cooling device (not shown) for cooling the heat generated from the laser source 120, for example, a plurality of cooling fins on the outer peripheral surface of the second case It can also form and cool.
  • the motor 130 is a hollow motor is used.
  • the hollow motor includes a ring-shaped stator 131 and a hollow multi-contact slip ring 220 installed inside the stator 131 and having a hollow portion that rotates by acting with the stator.
  • the light emitted from the laser source 120 passes through the center of the hollow multi-contact slip ring 220 to pass upward through the center of the motor 130.
  • the cover 210 is processed in a hemispherical shape with synthetic resin or metal so as to emit pulsed laser light generated by the laser source 120 in a line shape at both sides.
  • the first light emitting holes 121a and the second light emitting holes 122a are formed, respectively, and pulses emitted through the first light emitting holes 121a and reflected from the target in the vicinity of the first light emitting holes 121a.
  • a first light receiving port 121b for receiving a laser light is formed, and in the vicinity of the second light emitting hole 122a, a pulsed laser light emitted through the second light emitting hole 122a and reflected from a target is received.
  • a second light receiving port 122b for forming is formed.
  • first light receiving holes 121b and the second light receiving holes 122b are formed to have a larger area than the first light emitting holes 121a and the second light emitting holes 121b.
  • first and second light emitting holes 121a and 122a and the first and second light receiving holes 121b and 122b have tubular extensions 121c and 122c formed inward, respectively, It can be designed to prevent foreign matter from getting inside.
  • the hollow multi-contact slip ring 220 is fixedly coupled to the movement member 132 provided on the inside of the motor 130 is mounted on the control board 230 having a control circuit for controlling the system thereon. At the same time, it supplies power for each component of the rotating unit 200 requiring power, and forms a data communication line for transmitting 3D image data generated by the control board 230 to an external computing device.
  • the hollow hole is formed in the center, made of a multi-contact slip ring.
  • the hollow multi-contact slip ring 220 is divided into an upper end and a lower end. The lower end 221 corresponds to a fixed part of the slip ring, and a power cable connection part and a laser source 120 for supplying power to the rotating part 200.
  • the hollow part is formed so that the pulsed laser light emitted from the light beam can be sent to the rotating part.
  • the center of the hollow part is aligned with the center part of the motor 130, so that the pulsed laser light emitted from the laser source 120 can pass to the optical separation module 250 of the rotating part as it is.
  • the upper end portion 222 of the hollow multi-contact slip ring 220 is a portion corresponding to the rotation part of the slip ring, and rotates according to the rotation of the motor 130 to rotate the power supplied from the slip ring fixing part of the rotary part 200. It is composed of a data communication line for supplying the components and for transmitting the three-dimensional image data formed in the control board 230 to the user via a fixed part.
  • the hollow multi-contact slip ring 220 can supply power up to a rotation speed of 1,200 RPM or more when using a mercury-type slip ring contact material, and can stably transmit three-dimensional image data of 20 Hz or more at a speed of 100 MHz or more.
  • the control board 230 is provided with a control circuit and a three-dimensional image data processing module for controlling various means of the scanning system of the present invention, the first hole 231 is formed in the center to pass the laser
  • internal components such as a high-performance controller and an encoder counter may be mounted to form an electric circuit. Wiring is formed.
  • the pedestal separator 240 is mounted on the control board 230, the second hole 241 is formed for placing the optical transmission and reception module 260 thereon, the second hole 241 for passing the laser through the center, A plurality of fastening holes 242 for mounting various components constituting the optical transmission module 260 are formed.
  • a plurality of fixing pins 243 protruding downward are formed on the bottom surface of the pedestal separator 240 so as to be spaced apart from the control board 230 at predetermined intervals.
  • the optical separation module 250 passes through the hollow portion of the motor 130 and the hollow multi-contact slip ring 220, the first hole 231, and the second hole 232 from the laser source 120. It is a means for guiding a pulsed laser light emitted upward into two and guiding it in a predetermined optical path.
  • a support 251 having a rectangular parallelepiped shape and having a through hole 251a formed therein for passing the pulsed laser light on one side thereof and fixed to one side on the support 251.
  • a beam splitter 252 for separating the pulsed laser light passing through the through hole 251a into two beams and two pulsed laser beams separated from the beam splitter 252.
  • first and second mirrors 253a and 253b for changing the light path toward the second light emitting hole 122a.
  • the pulsed laser light is separated into two beams by using the optical separation module 250, but only one laser source is used or two or more are used without using the optical separation module 250.
  • Laser sources may also be used to generate pulsed laser light emitted in different directions.
  • the optical transmission / reception module 260 may include first and second line generator lenses 261a and 262a for converting the laser separated by the optical separation module 250 into line-shaped laser light, and the first and second lines.
  • First and second light receiving lenses 261b and 262b for receiving the pulsed laser light emitted through the line generator lenses 261a and 262b to be returned to the target, and the first and second light receiving lenses.
  • It consists of two optical transmission and reception modules 261 and 262 including first and second optical processors 261c and 262c for generating an electrical signal from the light passing through 261b and 262b.
  • the light converging lens can be selectively arranged between 253b).
  • the first and second light processors 261c and 262C remove components below a certain frequency or above a certain frequency, respectively, to minimize the influence of external signals such as sunlight, as shown in FIG. 7.
  • An input bandpass filter an arrayed photodiode for converting light passing through the bandpass filter into an electrical signal, an amplifier for amplifying an electrical signal of the photodiode, and a peak of a reception laser light from the electrical signal passing through the amplifier
  • a peak detector for detecting a signal
  • an ADC for obtaining the intensity of reflected light from the detected signal of the peak detector
  • a time discriminator for determining the input time of the reflected light from the signal amplified through the amplifier, and a pulse from the information of the time discriminator
  • a TDC measuring the difference between the laser light output time and the reflected laser input time.
  • the data of the ADC and TDC of the first and second optical processors 261c and 262c are transferred to the 3D image processing module of the control board 230 to generate 3D image data. It is configured to transmit to an external computing device via a wireless transmission / reception means such as an RF transceiver or a wired transmission / reception means such as a data communication line of the hollow multi-contact slip ring 220.
  • a wireless transmission / reception means such as an RF transceiver or a wired transmission / reception means such as a data communication line of the hollow multi-contact slip ring 220.
  • the pulse laser having the vertical line shape can be emitted at one time by using the first and second line generator lenses 261a and 262a from one laser source, thereby greatly increasing the scanning speed.
  • two optical transmitting and receiving module is provided, for example, is formed in a circular shape on the cover 210, the three intervals such as 120 °, four cases 90 ° It may be arranged to achieve.
  • the first and second line generator lenses 261a and 262a of the two light transmitting and receiving modules may be formed to emit light at different angles.
  • the light emission angle of one of the optical transmission module is 40 °
  • the light emission angle of the other optical transmission module is set differently to be 16 °.
  • the light emission angle means an angle at which light spreads in a direction perpendicular to the ground.
  • the light emission angles of the two light transmission and reception modules are set differently, they may be emitted in the same way.
  • the vertical spacing of the point cloud data is maintained to some extent, and thus the impact of analyzing the target through data analysis is small.
  • the distance between the three-dimensional scanning system and the target is far, for example, when the distance from the three-dimensional scanning system is 200 m, even if a plurality of lights that can be emitted by the unit scanner are dense, at each 200 m point, Since the distances are very far from each other, there is a problem that the vertical resolution of the point group data obtained therefrom is greatly reduced.
  • the pulse laser emission angles of the two optical transmission and reception modules 261 and 262 are differently set, as in the embodiment of the present invention, as shown in FIG. It is possible to secure the vertical data range that can be secured by detecting the target located at a wide angle to the widest angle, and the distance of the point cloud data can be shortened even at a long distance in the case of narrow spreading light such as 16 °. The degradation of the vertical resolution of the target can be prevented, thereby making it possible to obtain reliable data on the remote target.
  • the three-dimensional scanning system according to the present invention compared with the conventional three-dimensional scanning system using one type of laser light having a wide light emission angle, it is possible to use a laser with a lower output, while increasing the vertical resolution There is an advantage.
  • the light emission angles of the optical transmission module emitting pulsed light at a wide angle and the optical transmission module emitting pulsed light at a narrow angle are different, so that two light beams are different.
  • the density of point group data obtained can be increased. Accordingly, when only a wide angle is used, the angular resolution is only 1.25 °, and even in a narrow angle, the angular resolution is 0.42 °, and in the case of overlapping portions, the angular resolution is very excellent at 0.36 °. Therefore, according to an exemplary embodiment of the present invention, there is an advantage in that an image located at a central portion of a short distance of a 3D imaging system can be obtained with excellent resolution.
  • the laser source 120, the motor 130, and the light transmitting / receiving means 260 are operated by a control circuit provided on the control board 230 by receiving power through the power source 110.
  • the rotating part fixed to the movement member 132 of the motor 130 is driven to rotate, accordingly the hollow multi-contact slip ring 220 and the control board 230
  • the rotating unit 200 including the mounting separator 240, the optical separation module 250, the optical transmission / reception module 260, and the cover 210 rotates.
  • the generated pulse laser is hollow of the motor 130, hollow multi-contact slip ring 220, control board 230 and the mounting separator 240 And the beam splitter 252 through the through hole 251a of the support 251 constituting the optical separation module 250 to reach the beam splitter 252, and as shown in FIGS. 5 and 6, the beam splitter 252 Are separated into two lasers, and each of the separated pulsed lasers is changed in its optical path through the first and second mirrors 253a and 253b, and by the first and second line generator lenses 261a and 262a. Each is dispersed at different light emission angles and emitted to the outside through the first and second light emitting holes 121a and 122a.
  • the light emission angles of the first and second line generator lenses 261a and 262a are set to 40 ° and 16 ° in the embodiment of the present invention, the light emission angles vary according to the type of point group data required for the scanning system. Can be adjusted.
  • the pulsed laser thus emitted reaches the target and is reflected, and the reflected pulsed laser is introduced into the scanning system through the first and second light receiving ports 121b and 122b, and the introduced pulsed laser is received by the first and the second light receiving. Gathered through lenses 261b and 261b and sent to first and second light processors 261c and 262c.
  • the received pulse laser is removed through a band pass filter to remove components below a specific frequency or above a specific frequency, respectively, and to photograph the light passing through the band pass filter. Converts the electrical signal through a die, amplifies the converted electrical signal through an amplifier, detects a specific peak from the amplified electrical signal through a peak detector, and then uses an ADC to intensify the pulse laser reflected from the detected signal. And the time of the reflected light from the signal amplified by the time discriminator and the TDC at the same time to generate point group data.
  • the point group data generated as described above is provided to a computing device for forming a 3D image.
  • the scanning system may obtain point angle data of a wide angle with respect to a target located at a short distance from the scanning system, and the vertical point group data may be obtained with respect to a target located far from the scanning system.
  • You can increase the resolution.
  • the density of remote or near point cloud data can be maintained similarly, thereby increasing the reliability of the processed data.
  • the angle of the light emitted from the optical transmission module is set wide, the individual light also spreads to a large area, the detection distance of the reflected light that can be detected using the same light source is shortened, and the light source is not the center of the light source Since this spreading angle is emitted into the space at the upper end, there is often no reflected light detected at a long distance, and at the lower end, too much unnecessary data is obtained because the portion near the sensor is irradiated.
  • the power of the laser in order to maintain a wide angle of emitted light, for example, to obtain data over a distance of 200 m or more, the power of the laser must be increased, which not only increases the volume and weight of the three-dimensional scanning system, but also increases the manufacturing cost. .
  • the detection distance of the reflected light can be far from the same laser output. That is, a low power laser can be used to obtain remote point cloud data.
  • FIG. 10 is a view for explaining a process of adjusting the angle of the first optical transmission module and the second optical transmission module.
  • the optical detection limit is shorter than that of the second optical transmission module, and the second optical transmission module has three-dimensional scanning at the optical detection limit point of the first optical transmission and reception module. It is desirable to set such that the angle of light can be maintained to cover the minimum detection height required by the system.
  • the scanning system can obtain highly reliable point group data using a low power laser source by setting light emission angles differently.
  • the laser source 120 that occupies a large volume and weight in the fixing portion 100, and forming a hollow portion in each component constituting the rotating unit 200, the laser generated from the laser source 120

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

본 발명은 라인 형태의 펄스레이저광을 360°로 회전 방출한 후 목표물로부터 반사된 반사광을 일렬 배열형 광수신기(Linear Array Type Photo Detector)로 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 3차원 레이저 스캐닝 시스템과 이를 이용한 3차원 영상획득방법에 관한 것이다. 본 발명에 따른 3차원 레이저 스캐닝 시스템 및 3차원 영상획득방법은, 라인 형태의 펄스레이저광과 일렬 배열형태의 디텍터를 서로 다른 시야각(Field Of View)으로 대칭(Symmetric Alignment)으로 구성함으로써 근거리에서는 광각의 데이터를 얻을 수 있고 원거리에서는 광출력을 높이지 않고도 수직 분해능이 우수한 원거리 데이터를 얻을 수 있는 것을 특징으로 한다.

Description

3차원 스캐닝 시스템 및 이를 이용한 3차원 영상획득방법
본 발명은 라인 형태의 펄스레이저광을 360°로 회전 방출한 후 목표물로부터 반사된 반사광을 일렬 배열형 광수신기(Linear Array Type Photo Detector)로 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 3차원 레이저 스캐닝 시스템과 이를 이용한 3차원 영상획득방법에 관한 것이다.
보다 상세하게는, 라인 형태의 펄스레이저광과 일렬 배열형태의 디텍터를 서로 다른 시야각(Field Of View)으로 대칭(Symmetric Alignment)으로 구성함으로써 근거리에서는 광각의 데이터를 얻을 수 있고 원거리에서는 광출력을 높이지 않고도 수직 분해능이 우수한 원거리 데이터를 얻을 수 있는 3차원 레이저 스캐닝 시스템과 이를 이용한 3차원 영상획득방법에 관한 것이다.
라이다(LIDAR - Light Detection And Ranging) 또는 레이다(LADAR - Laser Detection And Ranging)로 불리는 3차원 영상센서는 목표물을 향해 펄스레이저광을 방출한 후 목표물에 반사되어 돌아오는 빛 에너지를 광 수신소자(element)를 사용하여 포착하고 이를 전기적 신호로 변환함으로써, 목표물까지의 거리나 목표물의 이동속도 등을 산출할 수 있는 시스템이다.
이러한 라이다 시스템은 로봇 및 무인자동차의 전방 장애물 검출용 센서, 속도측정용 레이더 건, 항공 지오-맵핑장치, 3차원 지상조사, 수중 스캐닝 등 다양한 분야에서 널리 적용되고 있다.
최근, 라이다 시스템은 전방 또는 측방의 장애물 등에 의한 위험 상황이 발생할 경우 운전자에게 경고하거나 자동차의 속도를 조절하는 조치를 자동적으로 수행할 수 있게 하는 운전 보조용 애플리케이션이나, 운전자 없이 운행하는 트랙터와 같은 자동 운전장치로 그 적용 분야가 확대되고 있다.
이와 같이 고속으로 운행하는 자동차나 무인 트랙터나 로봇의 전방환경인식을 위한 용도로 라이다 시스템을 적용하기 위해서는 3차원으로 넓은 시야각(field of view)을 갖는 밀집된 점군(point cloud) 정보를 얻을 수 있어야 한다.
넓은 시야각의 3차원 점군 데이터를 얻기 위한 기술로, 미국공개특허공보 제2010-20306호에는 다중 배열된 레이저 다이오드와 이 레이저 다이오드에서 방출된 빛이 반사되어 들어오는 것을 검출하는 다중검출기(또는 단일검출기)와 상기 레이저 다이오드 및 다중검출기를 수용하는 하우징과 상기 하우징을 360°로 고속 회전시키는 회전수단을 포함하는 고해상 라이다 시스템이 개시되어 있다.
상기 라이다 시스템에 배치되는 다중 배열된 레이저 다이오드는 전체 군이 서로 다른 각도가 다르게 배치되어, 전체적으로 방출되는 레이저 빔이 소정의 수직각도 예를 들면, 40°범위로 퍼져나가게 방출되도록 되어 있어, x, y 및 높이에 대한 점군 데이터, 즉 3차원 데이터를 얻을 수 있도록 되어 있다.
그리고 상기 시스템은 높이 방향의 적절한 데이터를 얻기 위하여 수평방향으로 설치된 제 1 라이다 시스템과 상기 제 1 라이다 시스템에 비해 아래쪽으로 다소 경사지게 배치된 제 2 라이다 시스템으로 구성되어 있는데, 이중 제 1 라이다 시스템은 제 2 라이다 시스템에 비해 원거리의 점군 데이터를 얻는 것이며, 제 2 라이다 시스템은 각도 배치 상 운행 중인 차량 주변부의 정보, 즉 단거리의 점군 데이터를 얻을 수 있도록 되어 있다.
상기 시스템 중 제 1 라이다 시스템의 경우 원거리에 대한 점군 데이터를 얻기 위해서는 그에 맞추어 방출되는 레이저 출력을 높일 수밖에 없고, 이는 장치의 부피를 증가시키고 단위 장치의 비용을 높이는 문제로 연결되는 문제점이 있다.
또한, 거리가 멀어질수록 점군 데이터 간의 거리도 멀어지므로, 원거리 물체로부터 획득한 점군 데이터의 경우 수직 해상도가 떨어져 이를 가공한 데이터의 신뢰도도 저하되는 문제점도 있다. 무엇보다도 32개 또는 64개 레이저 다이오드가 각각 개별적으로 장착되므로 각각의 방출각도가 서로 상이하여 레이저 다이오드와 대응 광수신기를 개별적으로 정밀하게 보정하는 것이 매우 어려운 문제점도 있다.
또한, 일반적인 3차원 레이저 스캐닝 시스템은, 회전구동장치에 레이저 소스와 광송수신수단을 모두 장착하여 회전시키는 구조로 되어 있어 레이저 소스와 이를 냉각하기 위한 냉각구조의 중량으로 인해, 용량이 큰 회전모터가 필요하게 되어, 스캐닝 시스템의 제조비용이 많아지고 부피가 커지는 문제점이 있다.
본 발명은 전술한 종래기술의 문제점을 해결하기 위해 창안된 것으로, 본 발명의 제 1 과제는, 종래의 다중 배열된 레이저 다이오드를 사용할 때 발생하는 문제점을 해결할 수 장치의 부피가 커지고 정밀한 보정이 어려운 문제점을 해결할 수 있는 3차원 스캐닝 시스템을 제공하는 것이다.
또한, 본 발명의 제 2 과제는, 근거리에서는 광각의 데이터를 얻을 수 있고 원거리에서는 광출력을 높이지 않고도 수직 분해능이 우수한 원거리 데이터를 얻을 수 있어, 고속으로 운행하는 자동차 또는 농업용 기계의 보조운전장치 또는 지능형 로봇과 같은 무인운전장치에 적합하게 사용될 수 있는 3차원 스캐닝 시스템을 제공하는 것이다.
또한, 본 발명의 제 3 과제는, 근거리에서는 광각의 데이터를 얻을 수 있고 동일한 레이저 출력으로도 원거리에서는 수직 분해능이 우수한 데이터를 얻을 수 있어 고속으로 운행하는 자동차 또는 농업용 기계의 보조운전장치 또는 지능형 로봇과 같은 무인운전장치에 적합하게 사용될 수 있으며, 저비용으로 제조할 수 있을 뿐 아니라 소형화할 수 있는 3차원 레이저 스캐닝 시스템을 제공하는 것이다.
또한, 본 발명의 제 4 과제는, 광 출력을 높이지 않고도 원거리와 근거리에 대한 신뢰성 있는 3차원 점군 데이터를 얻을 수 있는 3차원 영상획득방법을 제공하는 것이다.
상기 제 1 과제를 해결하기 위한 본 발명의 제 1 측면은, 라인 형태의 펄스레이저광을 회전 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 3차원 레이저 스캐닝 시스템으로, 펄스레이저광을 생성하는 레이저 소스와, 펄스레이저광을 수직 라인 형태로 외부로 방출하는 광송신기와 반사된 펄스레이저광을 수신하여 전기신호로 변환하는 광수신기를 포함하는 하나 이상의 광송수신모듈과, 상기 하나 이상의 광송수신모듈을 회전구동시키는 모터를 포함하는 3차원 스캐닝 시스템을 제공하는 것이다.
또한, 상기 제 2 과제를 해결하기 위한 본 발명의 제 2 측면은, 라인 형태의 펄스레이저광을 회전 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 3차원 레이저 스캐닝 시스템으로, 펄스레이저광을 생성하는 레이저 소스와, 펄스레이저광을 수직 라인 형태로 외부로 방출하는 광송신기와 반사된 펄스레이저광을 수신하여 전기신호로 변환하는 광수신기를 포함하는 2 이상의 광송수신모듈과, 상기 2 이상의 광송수신모듈을 회전구동시키는 모터를 포함하고, 상기 2 이상의 광송수신모듈 중 적어도 하나의 광방출각도는 다른 광송수신모듈과 다르게 설정되어 있는 것을 특징으로 하는 3차원 스캐닝 시스템을 제공하는 것이다.
본 발명의 제 1 측면 또는 제 2 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 광송신기는, 상기 레이저 소스로부터 제공된 펄스레이저광의 광축을 정렬시키는 콜리메이터와 상기 콜리메이터를 통과한 광을 라인광으로 만드는 렌즈를 포함하고, 상기 광수신기는, 반사된 광을 수신하는 렌즈와, 상기 렌즈를 통과한 광을 필터링하는 필터와, 필터링된 광으로부터 전기신호를 생성하는 일렬 배열된 복수의 포토 다이오드를 포함할 수 있다.
본 발명의 제 2 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 광송수신모듈은은, 제 1 광송수신모듈과 제 2 광송수신모듈로 이루어지고, 상기 제 1 광송수신모듈과 제 2 광송수신모듈은 광송수신이 서로 반대 방향을 향하도록 배치될 수 있다.
본 발명의 제 2 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 제 1 광송수신모듈의 광 방출각도가 상기 제 2 광송수신모듈의 광 방출각도에 비해 2배 이상 크게 할 수 있다.
본 발명의 제 2 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 제 1 광송수신모듈의 광 방출각도가 상기 제 2 광송수신모듈의 광 방출각도에 비해 크고, 제 2 광송수신모듈의 광 방출각도는 제 1 광송수신모듈의 반사광 검출한계 거리에서 상기 센스 시스템에 설정된 소정 높이를 커버할 수 있는 광폭을 유지할 수 있도록 설정될 수 있다.
본 발명의 제 1 측면 또는 제 2 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 레이저 소스가 상기 광송수신모듈의 수에 대응되게 구비될 수 있다.
상기 제 3 과제를 해결하기 위한 본 발명의 제 3 측면은, 라인 형태의 펄스레이저광을 회전 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 3차원 레이저 스캐닝 시스템으로, 고정부와 이 고정부의 상부에 회전가능하게 결합되는 회전부로 구성되고, 상기 고정부에는, 상기 회전부를 구동시키기 위한 모터와 상기 펄스레이저광을 생성하는 레이저 소스를 포함하고, 상기 회전부에는, 상기 모터에 결합되는 회전형 전원공급장치와, 상기 펄스레이저광을 2 이상으로 분리하는 광분리모듈과, 분리된 펄스레이저광을 수직 라인 형태로 외부로 방출하는 광송신기와, 반사된 펄스레이저광을 수신하여 전기신호로 변환하는 광수신기를 포함하는 2이상의 광송수신모듈을 포함하는 3차원 스캐닝 시스템을 제공하는 것이다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 2 이상의 광송수신모듈 중 적어도 하나의 광 방출각도는 다른 광송수신모듈과 다르게 설정될 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 레이저 소스에서 생성된 펄스레이저광이 상기 회전부의 중앙에 형성된 중공부를 통해 상부로 방출되어 상기 광분리모듈에 도달하게 구비될 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 모터는 중공형 모터이고, 이 중공형 모터 상에는 중공형 다접점슬립링이 배치되어, 상기 회전부에 전원을 공급하도록 구비될 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 회전부는, 상기 펄스레이저광을 방출할 수 있도록 2 이상의 창이 구비된 커버와, 상기 커버에 고정되며 상기 2 이상의 광송수신모듈를 배치하기 위한 분리거치대를 추가로 구비하고, 상기 분리거치대에는 상기 펄스레이저광을 수광하기 위한 수광홀이 형성되어 있고, 상기 수광홀 부근에 상기 광분리모듈이 배치될 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 광분리모듈은, 상기 분리거치대 상에 고정되며 상기 펄스레이저광을 받기 위한 관통홀이 형성되어 있는 지지대와, 상기 지지대의 관통홀 상에 배치되어 상기 펄스레이저광을 분리하는 빔 스플리터(Beam Splitter)와, 상기 지지대 상에 고정되어 상기 빔 스플리터로부터 분리된 펄스광을 소정 경로로 유도하기 위한 복수 개의 미러를 포함할 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 광송수신모듈은, 광송신모듈과 광수신모듈로 이루어지고, 상기 광송신모듈은, 상기 광분리모듈로부터 제공된 펄스레이저광을 수직 라인 형태로 만드는 복수 개로 구성된 렌즈를 포함할 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 광송수신모듈은, 광송신모듈과 광수신모듈로 이루어지고, 상기 광수신모듈은, 반사된 광을 수신하는 렌즈와, 상기 렌즈를 통과한 광을 필터링하는 필터와 필터링된 광으로부터 전기신호를 생성하는 일렬 배열된 복수의 포토 다이오드를 포함하는 광처리기를 포함할 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 2 이상의 광송수신모듈은, 제 1 광송수신모듈과 제 2 광송수신모듈로 이루어지고, 상기 제 1 광송수신모듈과 제 2 광송수신모듈은 상기 펄스레이저광의 방출과 수신이 서로 반대 방향을 향하도록 대칭적으로 배치될 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 제 1 광송수신모듈의 광 방출각도가 상기 제 2 광송수신모듈의 광 방출각도에 비해 2배 이상 크게 구비될 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 제 1 광송수신모듈의 광 방출각도가 상기 제 2 광송수신모듈의 광 방출각도에 비해 크고, 상기 제 2 광송수신모듈의 광 방출각도는 상기 제 1 광송수신모듈의 반사광 검출한계 거리에서 상기 3차원 레이저 스캐닝 시스템에 설정된 소정 높이를 커버할 수 있는 광폭을 유지할 수 있도록 설정될 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 회전부에는 제어보드가 포함되고, 상기 제어보드는 시스템의 제어를 위한 제어기와, 3차원 영상 데이터를 생성하기 위한 데이터 프로세싱모듈을 포함할 수 있다.
본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템에 있어서, 상기 제어보드에는 추가로 생성된 3차원 영상데이터를 무선으로 사용자에 전달하기 위한 무선송신수단을 구비할 수 있다.
상기 제 4 과제를 해결하기 위한 본 발명의 제 4 측면은, 라인 형태의 펄스레이저광을 회전 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 3차원 영상 획득 방법으로, 등각으로 배치된 2 이상의 광송신기를 사용하여 2 이상의 수직 라인상의 펄스레이저광을 방출하며, 상기 2 이상의 수직 라인상의 펄스레이저광 중 적어도 하나의 광 방출각도는 다른 펄스레이저광의 광 방출각도와 다르게 방출되도록 하는 방법을 제공한다.
본 발명의 제 4 측면에 따른 3차원 영상획득방법에 있어서, 상기 광송신기는 2개이며, 서로 반대방향으로 펄스레이저광이 방출되도록 배치되게 구비될 수 있다.
본 발명의 제 1 측면에 따른 3차원 레이저 스캐닝 시스템은, 라인(line) 상의 레이저 펄스광을 한번에 방출되도록 하고, 일렬 배열된 포토 다이오드를 사용하여 수신함으로써, 다중 배열된 레이저 소스를 사용하는 스캐닝 시스템에 비해, 작은 부피로 구현될 뿐 아니라, 스캐닝 속도도 현저하게 높일 수 있다.
또한, 본 발명의 제 2 측면 및 제 4 측면에 따른 3차원 레이저 스캐닝 시스템과 스캐닝 방법에 의하면, 원거리의 감지에는 좁은 각도의 라인 레이저를 사용하고, 근거리에는 넓은 각도의 라인 레이저를 사용하기 때문에, 근거리에서는 광각의 시야각을 확보할 수 있고 원거리에서는 밀집된 점군 데이터를 얻을 수 있기 때문에 수직 분해능이 우수한 데이터를 얻을 수 있게 된다. 또한, 본 발명에 의하면, 원거리에 고출력의 레이저를 사용하지 않아도 되고, 원거리와 근거리를 동일한 출력을 레이저를 사용해도 되기 때문에, 단일 출력으로 구동할 수 있게 되어 3차원 스캐닝 시스템의 부피를 줄이는데 유리하다.
또한, 본 발명의 제 3 측면에 따른 3차원 스캐닝 시스템은, 라인 레이저를 생성하는 레이저 소스 및 이의 냉각수단과, 광을 방출하고 반사된 광을 수신하여 점군 데이터를 생성하는 광송수신모듈을 분리하여, 상기 광송수신모듈만을 회전구동시키는 구조로 설계함으로써, 종래에 비해 가볍고 컴팩트한 크기의 시스템을 구현할 수 있게 된다.
도 1은 본 발명의 실시예에 따른 3차원 스캐닝 시스템의 사시도이다.
도 2는 본 발명의 실시예에 따른 3차원 스캐닝 시스템의 커버만 분리한 분해사시도이다.
도 3은 본 발명의 실시예에 따른 3차원 스캐닝 시스템의 단면도이다.
도 4는 본 발명의 실시예에 따른 3차원 스캐닝 시스템의 분해사시도이다.
도 5는 본 발명의 실시예의 커버를 제거한 3차원 스캐닝 시스템의 평면도이다.
도 6은 본 발명의 실시예의 커버를 제거한 3차원 스캐닝 시스템의 사시도이다.
도 7은 본 발명의 실시예에 따른 3차원 스캐닝 시스템의 광처리수단의 블록도이다.
도 8은 본 발명의 실시예에 따른 3차원 스캐닝 시스템에서 이종의 각도로 방출되는 광을 보여주는 도면이다.
도 9는 본 발명의 실시예에 따른 3차원 스캐닝 시스템에서 이종의 각도로 방출되는 광의 각 분해능과, 중첩되는 부분의 각 분해능을 설명하는 도면이다.
도 10은 본 발명의 실시예에 따른 3차원 스캐닝 시스템의 광 방출 각도를 설정하는 방법을 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 기초로 본 발명을 상세히 설명하기로 한다.
또한 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자들은 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있으며 본 발명의 범위가 다음에 기술하는 실시예에 한정되는 것은 아니다.
본 발명에 따른 3차원 레이저 스캐닝 시스템은, 라인 형태의 펄스레이저광을 방출한 후 목표물로부터 반사된 반사광을 일렬배열형 포토 다이오드로 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 것으로, 상기 스캐닝 시스템은, 크게 고정부(100)와 이 고정부(100)에 회전 가능하게 결합되는 회전부(200)를 포함하여 이루어지는데, 상기 고정부(100)는 전원(110)과, 펄스광을 생성하는 레이저 소스(120)와, 상기 회전부(200)를 회전 구동시키는 중공형 모터(130)를 포함하여 이루어지고, 상기 회전부(200)는 커버(210)와, 상기 모터(130)에 결합된 중공형 다접점슬립링(220)과 상기 중공형 다접점슬립링(220) 상부에 배치되는 복수 개의 제어보드(230)와 상기 제어보드(230)를 보호 분리하는 거치분리대(240), 거치분리대(240) 위에 장착되는 광분리모듈(250)과 광송수신모듈(260)을 포함하여 이루어진다.
상기 전원(110)은 도 3 및 4에 도시된 바와 같이, 링 형상의 제 1 케이스(111)에 설치되며, 외부의 전원(예를 들어, 24V 전원)을 인가받아, 전기로 작동하는 각종 장치에 전력을 공급하는 주제어전원과, 상기 레이저 소스(120)에 고전압 전력을 제공하기 위한 고전압 변환기를 포함하여 이루어진다.
상기 레이저 소스(120)는, 도 3 및 4에 도시된 바와 같이, 중공부가 형성된 링 형상의 제 2 케이스(121)의 내부에 배치되며, 그 광방출부(122)는 상기 제 2 케이스(121)의 내부로 돌출되어 상부로 만곡되도록 형성되어, 생성된 펄스 레이저가 상기 케이스(121)의 중심부의 상방향을 향해 방출되도록 되어 있다. 또한 상기 광방출부(122)에는 광집속렌즈가 부착되어 있어 레이저 소스(120)에서 방출된 레이저가 분산되지 않고 집속되어 상방향으로 방출될 수 있게 되어 있다. 한편, 상기 제 2 케이스(121)에는 레이저 소스(120)에서 발생하는 열을 냉각시키기 위한 냉각장치(미도시)가 구비될 수 있으며, 예를 들면 상기 제 2 케이스의 외주면에 다수의 냉각핀을 형성하여 냉각시킬 수도 있다.
상기 모터(130)는 중공형태의 모터가 사용된다. 중공모터는, 링 형상의 고정자(131), 상기 고정자(131)의 내부에 설치되어 상기 고정자와 작용하여 회전하는 중공부가 형성된 중공형 다접점슬립링(220)로 이루어진다. 중공형 다접점슬립링(220)에 형성된 중공부를 통해 상기 레이저 소스(120)에서 방출된 광이 상기 모터(130)의 중심을 통과하여 상방향으로 방출되게 된다.
상기 커버(210)는, 도 1 내지 4에 도시된 바와 같이, 합성수지나 금속으로 반구형의 형상으로 가공된 것으로, 양 측부에 상기 레이저 소스(120)에서 생성된 펄스레이저광을 라인 형태로 방출되도록 하는 제 1 발광구(121a)와 제 2 발광구(122a)가 각각 형성되어 있고, 상기 제 1 발광구(121a)의 근방에는 제 1 발광구(121a)를 통해 방출되어 목표물에서 반사되어 온 펄스레이저광을 수광하기 위한 제 1 수광구(121b)가 형성되어 있고, 상기 제 2 발광구(122a)의 근방에는 제 2 발광구(122a)를 통해 방출되어 목표물에서 반사되어 온 펄스레이저광을 수광하기 위한 제 2 수광구(122b)가 형성되어 있다. 한편, 상기 제 1 수광구(121b) 및 제 2 수광구(122b)는 제 1 발광구(121a) 및 제 2 발광구(121b)에 비해 면적이 넓게 형성된다. 또한, 상기 제 1 및 제 2 발광구(121a,122a)와 제 1 및 제 2 수광구(121b,122b)는 내측으로 관 형상의 연장부(121c,122c)가 각각 형성되어 있어, 비와 같은 이물질이 내부에 쉽게 들어가지 못하도록 고안될 수 있다.
상기 중공형 다접점슬립링(220)은 상기 모터(130)의 내측에 구비된 운동부재(132)와 고정되게 결합되어 그 위에 시스템을 제어하기 위한 제어회로를 구비하는 제어보드(230)를 거치함과 동시에 전원을 필요로 하는 회전부(200)의 각 구성부품에 필요한 전원을 공급하고, 또한 제어보드(230)에서 생성한 3차원 영상데이터를 외부의 연산장치로 전송하기 위한 데이터 통신라인을 형성하기 위한 것으로, 도 4에 도시된 바와 같이, 가운데 중공홀이 형성된, 다접점 슬립링으로 이루어진다. 중공형 다접점슬립링(220)은 상단부와 하단부로 구분되는데 하단부(221)는 슬립링의 고정부에 해당하는 부분으로 회전부(200)에 필요한 전원을 공급하기 위한 전원케이블 연결부와 레이저 소스(120)로부터 방출된 펄스레이저광을 회전부로 보낼 수 있도록 중공부가 형성되어 있다. 상기 중공부의 중심은 상기 모터(130)의 중심부와 맞추어져 있어, 레이저 소스(120)에서 방출된 펄스레이저광이 회전부의 광분리모듈(250)까지 그대로 통과할 수 있도록 형성된다. 상기 중공형 다접점슬립링(220)의 상단부(222)는 슬립링의 회전부에 해당되는 부분으로 모터(130)의 회전에 따라 회전하면서 슬립링 고정부에서 공급된 전원을 회전부(200)의 각 구성품에 공급하고 제어보드(230)에서 형성된 3차원 영상데이터를 고정부를 거쳐 사용자에게 전송하기 위한 데이터 통신라인으로 구성되어 있다. 중공형 다접점슬립링(220)는 수은타입의 슬립링 접촉물질을 사용할 경우 1,200RPM이상의 회전속도까지 전원을 공급할 수 있고 20Hz이상의 3차원 영상 데이터를 100MHz이상의 속도로 안정적으로 전송할 수 있다.
상기 제어보드(230)는 본 발명의 스캐닝 시스템의 각종 수단을 제어하기 위한 제어회로와 3차원 영상데이터 처리모듈를 구비하기 위한 것으로, 중심부에는 레이저를 통과시키기 위한 제 1 구멍(231)이 형성되어 있고, 내측에는 상기 레이저 소스(120), 광송수신모듈(260) 및 상기 모터(130)를 제어하기 제어신호를 발생할 수 있도록 고성능 컨트롤러와 엔코더 카운터와 같은 소자가 장착되어 전기적으로 회로를 구성할 수 있도록 배선이 형성되어 있다.
상기 거치분리대(240)는 상기 제어보드(230) 상부에 장착되어, 그 위에 광송수신모듈(260)를 배치하기 위한 것으로 가운데 레이저를 통과시키기 위한 제 2 구멍(241)이 형성되어 있고, 내측에도 광송수신모듈(260)를 구성하는 각종 부품을 장착하기 위한 다수의 체결구멍(242)이 형성된다. 또한, 상기 거치분리대(240)의 하면에는 상기 제어보드(230)와 소정 간격을 두고 이격되게 고정될 수 있도록 하방향으로 돌출 형성된 다수의 고정핀(243)이 형성된다.
상기 광분리모듈(250)은 레이저 소스(120)로부터 상기 모터(130) 및 중공형 다접점슬립링(220)의 중공부, 상기 제 1 구멍(231), 제 2 구멍(232)을 통과하여 상방으로 방출된 펄스레이저광을 2개로 분리하여 소정의 광 경로로 유도하기 위한 수단이다. 도 5 및 6에 도시된 바와 같이, 직육면체 형상으로 이루어지고 일 측에 상기 펄스레이저광을 통과시키기 위한 관통구(251a)가 형성되어 있는 지지대(251)와 상기 지지대(251) 상의 일 측에 고정되어 배치되어 상기 관통구(251a)를 통과한 펄스레이저광을 2개의 빔으로 분리하는 빔 스플리터(252)와 상기 빔 스플리터(252)로부터 분리된 2개의 펄스레이저광을 제 1 발광구(121a) 또는 제 2 발광구(122a)로 향하게 광 경로를 변경시키는 제 1 및 제 2 미러(253a,253b)를 포함하여 이루어진다.
본 발명의 실시예에서는 광분리모듈(250)을 사용하여, 펄스레이저광을 2개의 빔으로 분리하고 있으나, 광분리모듈(250)을 사용하지 않고, 1개의 레이저 소스만을 사용하거나, 2개 이상의 레이저 소스를 사용하여 여러 방향으로 방출되는 펄스레이저광을 생성할 수도 있다.
상기 광송수신모듈(260)은 상기 광분리모듈(250)을 통해 분리된 레이저를 라인 형태의 레이저 광으로 변환시키는 제 1 및 제 2 라인 제너레이터 렌즈(261a,262a)와, 이 제 1 및 제 2 라인 제너레이터 렌즈(261a,262b)를 통해 방출된 펄스레이저광이 목표물에 반사되어 돌아오는 광을 수신하는 제 1 및 제 2 광수신렌즈(261b,262b)와, 이 제 1 및 제 2 광수신렌즈(261b,262b)를 통과한 광에서 전기신호를 생성하는 제 1 및 제 2 광처리기(261c,262c)를 포함하는 2개의 광송수신모듈(261,262)로 이루어진다. 한편 상기 제 1 및 제 2 라인 제너레이터 렌즈(261a,262b)에 안내되는 광이 퍼진 상태일 경우, 상기 제 1 및 제 2 라인 제너레이터 렌즈(261a,262b)와 상기 제 1 및 제 2 미러(253a.253b)의 사이에 광집속렌즈를 선택적으로 배치할 수 있다.
또한, 상기 제 1 및 제 2 광처리기(261c,262C)는 도 7에 도시된 바와 같이, 태양광 등과 같은 외부신호의 영향을 최소화하기 위해 각각 특정 주파수 이하의 성분이나 특정 주파수 이상의 성분을 제거하고 입력하는 밴드패스필터와, 상기 밴드패스필터를 통과한 광을 전기적 신호로 변환하는 배열형 포토다이오드와 상기 포토다이오드의 전기적 신호를 증폭시키는 증폭기와, 상기 증폭기를 통과한 전기 신호로부터 수신 레이저광의 피크를 검출하는 피크 검출기와, 상기 피크 검출기의 검출신호로부터 반사광의 강도를 구하는 ADC와, 상기 증폭기를 통과하여 증폭된 신호로부터 반사광의 입력시간을 결정하기 위한 시간 판별기와 상기 시간 판별기의 정보로부터 펄스레이저광 출력시간과 반사레이저 입력시간의 차이를 측정하는 TDC를 포함한다. 또한, 상기 제 1 및 제 2 광처리기(261c,262c)의 ADC, TDC의 데이터는 상기 제어보드(230)의 3차원 영상처리모듈에 전달되어 3차원 영상 데이터가 만들어지고 이러한 영상데이터는 구비된 RF 트랜시버와 같은 무선 송수신 수단 또는 중공형 다접점슬립링(220)의 데이터 통신라인과 같은 유선송수신 수단을 통하여 외부의 연산장치에 송신하도록 구성된다.
본 발명의 실시예에서는 하나의 레이저 소스로부터 제 1 및 제 2 라인 제너레이터 렌즈(261a,262a)를 사용하여 한번에 수직 라인 형상의 펄스 레이저를 방출할 수 있어 스캐닝 속도를 크게 높일 수 있다.
또한, 본 발명의 실시예에서는 광송수신모듈은 2개를 구비하였으나, 예를 들어, 상기 커버(210)에 원형을 이루며 배치되며, 3개인 경우 120°, 4개인 경우 90°와 같이 등 간격을 이루도록 배치할 수도 있다. 그러나, 장치의 무게, 부피 및 제조비용을 고려할 때, 광송수신모듈은 2개를 배치하는 것이 가장 바람직한데, 이 경우 서로 반대방향으로 대칭을 이루도록 배치되는 것이 바람직하다.
또한, 2개의 광송수신모듈의 제 1 및 제 2 라인 제너레이터 렌즈(261a,262a)는 서로 다른 각도로 광이 방출될 수 있도록 형성될 수 있다. 예를 들어, 광송수신모듈 중 하나의 광 방출각도가 40°인 경우, 다른 광송수신모듈의 광 방출각도는 16°가 되도록 다르게 설정한다. 여기서 '광 방출각도'란 지면에 수직한 방향으로 광이 퍼지는 각도를 의미한다. 본 발명의 실시예에서는 2개의 광송수신모듈의 광 방출각도를 다르게 설정하고 있으나, 동일하게 방출할 수도 있다.
3차원 스캐닝 시스템과 목표물 간의 거리가 가까운 경우, 레이저 방출각도가 크더라도 점군 데이터의 수직 간격이 어느 정도 유지되기 때문에 데이터 분석을 통해 목표물을 분석하는데 영향이 적다. 그런데, 3차원 스캐닝 시스템과 목표물 간의 거리가 먼 경우, 예를 들어 3차원 스캐닝 시스템으부터의 거리가 200m인 경우, 단위 스캐너가 방출할 수 있는 복수 개의 광이 조밀하다 하더라도 200m 지점에서는 각 광 간의 거리가 서로 매우 멀어져 있기 때문에, 이로부터 얻은 점군 데이터의 수직 해상도가 크게 저하되는 문제점이 있다.
그런데, 본 발명의 실시예와 같이, 2개의 광송수신모듈(261,262)의 펄스 레이저 방출각도를 다르게 설정할 경우, 도 8에 도시된 바와 같이, 40°와 같이 넓게 퍼지는 광으로부터는 3차원 스캐닝 시스템으로부터 근거리에 위치한 목표물을 광각으로 검출하여 확보할 수 있는 수직 데이터 범위를 최대한 확보할 수 있고, 16°와 같이 좁게 퍼지는 광의 경우 원거리에서도 점군 데이터의 간격을 줄일 수 있기 때문에 3차원 스캐닝 시스템으로부터 원거리에 위치한 목표물의 수직 해상도가 저하되는 것을 막을 수 있어, 원거리 목표물에 대한 신뢰성 있는 데이터를 구할 수 있게 한다.
또한, 광 방출각도를 줄일 경우 수신이 용이하게 저출력의 레이저를 사용할 수 있고, 나아가서는 원거리와 근거리를 동일한 출력을 갖는 레이저를 사용할 수 있다. 이에 따라, 본 발명에 따른 3차원 스캐닝 시스템은, 넓은 광 방출각도를 갖는 1종의 레이저광을 사용하는 종래의 3차원 스캐닝 시스템에 비해, 수직 해상도를 높이면서도 오히려 낮은 출력의 레이저를 사용할 수 있는 이점이 있다.
더욱이, 도 9에 도시된 바와 같이, 근거리의 경우에도, 넓은 각도로 펄스 광을 방출하는 광송수신모듈과 좁은 각도로 펄스 광을 방출하는 광송수신모듈의 광 방출각도가 상이하여, 2개의 광이 중첩되는 영역에서는 얻을 수 있는 점군 데이터의 밀도가 높아지는 효과가 있다. 이에 따라, 넓은 각도만으로 할 경우, 각분해능이 1.25°에 불과하고, 좁은 각도의 경우에도 각 분해능이 0.42°인데, 중첩되는 부분의 경우 각 분해능이 0.36°로 매우 우수하다. 따라서 본 발명의 실시예에 의하면, 3차원 영상 시스템의 근거리의 중앙 부분에 위치한 영상을 우수한 해상도로 획득할 수 있는 이점이 있다.
다음으로 이상과 같은 구성으로 이루어진 3차원 스캐닝 시스템의 동작에 대해 상세하게 설명한다.
상기 전원(110)을 통해 전력을 공급받아 상기 제어보드(230) 상에 구비된 제어회로에 의해 상기 레이저 소스(120), 모터(130) 및 광송수신수단(260)이 동작하게 된다.
먼저, 상기 모터(130)가 구동되면, 상기 모터(130)의 운동부재(132)에 고정된 회전부가 회전구동하게 되며, 이에 따라 중공형 다접점슬립링(220)와 상기 제어보드(230), 거치분리대(240), 광분리모듈(250), 광송수신모듈(260) 및 커버(210)를 포함하는 회전부(200)가 회전하게 된다.
이와 함께, 상기 레이저 소스(120)에서 펄스 레이저를 생성하면, 생성된 펄스 레이저는 상기 모터(130), 중공형 다접점슬립링(220), 제어보드(230) 및 거치분리대(240)의 중공부와, 상기 광분리모듈(250)을 구성하는 지지대(251)의 관통구(251a)를 통과하여 빔 스플리터(252)에 이르게 되고, 도 5 및 6에 도시된 바와 같이, 빔 스플리터(252)에 의해 2개의 레이저로 분리되며, 분리된 각각의 펄스 레이저는 제 1 및 제 2 미러(253a,253b)를 통해 광 경로가 변경되고, 제 1 및 제 2 라인 제너레이터 렌즈(261a,262a)에 의해 각각 상이한 광 방출각도로 분산되어 제 1 및 제 2 발광구(121a,122a)를 통해 외부로 방출된다.
본 발명의 실시예에 상기 제 1 및 제 2 라인 제너레이터 렌즈(261a,262a)의 광 방출각도는 40°와 16°로 설정되었으나, 광 방출각도는 스캐닝 시스템에 요구되는 점군 데이터의 종류에 따라 다양하게 조절될 수 있다.
이와 같이 방출된 펄스 레이저는 목표물에 도달하여 반사되며 반사된 펄스 레이저는 제 1 및 제 2 수광구(121b,122b)를 통해 스캐닝 시스템 내로 유입되며, 유입된 펄스 레이저는 제 1 및 제 2 광수신렌즈(261b,261b)를 통해 모여져 제 1 및 제 2 광처리기(261c,262c)로 보내진다.
상기 제 1 및 제 2 광처리기(261c,262c)에서는, 수신된 펄스 레이저를 밴드패스필터를 통해 각각 특정 주파수 이하의 성분이나 특정 주파수 이상의 성분을 제거하고, 상기 밴드패스필터를 통과한 광을 포토다이드를 통해 전기적 신호로 변환하며, 변환된 전기적 신호를 증폭기를 통해 증폭하고, 피크 검출기를 통해 증폭된 전기신호로부터 특정 피크를 검출한 후, ADC를 사용하여 검출신호로부터 반사된 펄스 레이저의 강도를 구하고, 동시에 시간 판별기 및 TDC를 통해 증폭된 신호로부터 반사광의 시간을 구하여, 점군 데이터를 생성한다. 이와 같이 생성된 점군 데이터는 3차원 영상을 형성하기 위한 연산장치에 제공된다.
본 발명의 실시예에 따른 스캐닝 시스템은 도 8에 도시된 바와 같이, 스캐닝 시스템으로부터 근거리에 위치한 목표물에 대한 넓은 각도의 점군 데이터를 얻을 수 있고, 스캐닝 시스템으로부터 원거리에 위치한 목표물에 대해서는 수직 점군 데이터의 해상도를 높일 수 있다. 이를 통해 원거리나 근거리의 점군 데이터의 밀도를 유사하게 유지할 수 있어, 이를 가공한 데이터의 신뢰성을 높일 수 있다.
한편, 광송수신모듈에서 방출된 광의 각도를 넓게 설정할 경우, 개개의 광도 넓은 면적으로 퍼지기 때문에, 같은 광원을 사용하여 검출할 수 있는 반사광의 검출거리도 짧아지게 되는 단점이 있고 광원의 중심부가 아닌 광원이 퍼지는 각도가 큰 상단부에서는 공간상으로 방출되기 때문에 원거리에서 검출되는 반사광이 없는 경우가 많고 하단부에서는 센서에 근접된 부분을 조사하기 때문에 너무 많은 불필요한 데이터가 얻어지게 된다. 또한 방출되는 광의 각도를 넓게 유지하면서 예를 들어 200m 이상의 원거리에 대한 데이터를 얻기 위해서는 레이저의 출력을 높일 수밖에 없고, 이는 3차원 스캐닝 시스템의 부피와 중량을 높일 뿐 아니라 제조비용을 상승시키는 원인이 된다. 그런데, 본 발명의 실시예와 같이, 검출하고자 하는 관심영역의 중심부에 방출 각도가 좁은 광을 사용하게 되면, 동일한 레이저 출력으로도 반사광의 검출거리를 멀리할 수 있게 된다. 즉, 원거리의 점군 데이터를 얻는데 낮은 출력의 레이저를 사용할 수 있게 된다.
도 10은 제 1 광송수신모듈과 제 2 광송수신모듈의 각도를 조절하는 과정을 설명하는 도면이다.
도시된 바와 같이, 제 1 광송수신모듈이 넓은 각도로 퍼지면 광검출한계가 제 2 광송수신모듈에 비해 짧아지며, 이때 제 2 광송수신모듈은 제 1 광송수신모듈이 광검출한계 지점에서 3차원 스캐닝 시스템에 요구되는 최소 검출 높이를 커버할 수 있을 정도의 광 각도를 유지할 수 있도록 설정되는 것이 바람직하다.
이상과 같이, 본 발명의 실시예에 따른 스캐닝 시스템은, 광 방출각도를 서로 다르게 설정함으로써 저출력의 레이저 소스를 사용하여 신뢰성 높은 점군 데이터를 얻을 수 있다. 또한, 고정부(100)에 큰 부피와 중량을 차지하는 레이저 소스(120)를 배치하고, 회전부(200)를 구성하는 각 부품에 중공부를 형성하여, 레이저 소스(120)에서 생성된 레이저를 중공부를 통해 광송수신수단(260)에 보내는 구성을 채용함으로써, 회전부(200)를 구동하게 하는 모터(130)의 용량을 낮추어 모터(130)의 크기를 줄일 수 있다.
이러한 구성을 통해, 종래에 비해 가볍고 컴팩트한 크기의 3차원 스캐닝 시스템을 구현할 수 있게 된다.
[부호의 설명]
100: 고정부
200: 회전부
110: 전원
120: 레이저 소스
130: 중공형 모터
210: 커버
220: 중공형 다접점 슬립링
230: 제어보드
240: 거치분리대
250: 광분리모듈
260: 광송수신모듈

Claims (22)

  1. 라인 형태의 펄스레이저광을 회전 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 3차원 레이저 스캐닝 시스템으로,
    펄스레이저광을 생성하는 레이저 소스와,
    펄스레이저광을 수직 라인 형태로 외부로 방출하는 광송신기와 반사된 펄스레이저광을 수신하여 전기신호로 변환하는 광수신기를 포함하는 하나 이상의 광송수신모듈과,
    상기 하나 이상의 광송수신모듈을 회전구동시키는 모터를 포함하는 3차원 스캐닝 시스템.
  2. 라인 형태의 펄스레이저광을 회전 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 3차원 레이저 스캐닝 시스템으로,
    펄스레이저광을 생성하는 레이저 소스와,
    펄스레이저광을 수직 라인 형태로 외부로 방출하는 광송신기와 반사된 펄스레이저광을 수신하여 전기신호로 변환하는 광수신기를 포함하는 2 이상의 광송수신모듈과,
    상기 2 이상의 광송수신모듈을 회전구동시키는 모터를 포함하고,
    상기 2 이상의 광송수신모듈 중 적어도 하나의 광방출각도는 다른 광송수신모듈과 다르게 설정되어 있는 것을 특징으로 하는 3차원 스캐닝 시스템.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 광송신기는, 상기 레이저 소스로부터 제공된 펄스레이저광의 광축을 정렬시키는 콜리메이터와 상기 콜리메이터를 통과한 광을 라인광으로 만드는 렌즈를 포함하고,
    상기 광수신기는, 반사된 광을 수신하는 렌즈와, 상기 렌즈를 통과한 광을 필터링하는 필터와, 필터링된 광으로부터 전기신호를 생성하는 일렬 배열형 포토 다이오드를 포함하는 것을 특징으로 하는 3차원 스캐닝 시스템.
  4. 제 2 항에 있어서,
    상기 광송수신모듈은은, 제 1 광송수신모듈과 제 2 광송수신모듈로 이루어지고, 상기 제 1 광송수신모듈과 제 2 광송수신모듈은 광송수신이 서로 반대 방향을 향하도록 배치되어 있는 것을 특징으로 하는 3차원 스캐닝 시스템.
  5. 제 4 항에 있어서,
    상기 제 1 광송수신모듈의 광 방출각도가 상기 제 2 광송수신모듈의 광 방출각도에 비해 2배 이상 큰 것을 특징으로 하는 3차원 스캐닝 시스템.
  6. 제 4 항에 있어서,
    상기 제 1 광송수신모듈의 광 방출각도가 상기 제 2 광송수신모듈의 광 방출각도에 비해 크고,
    제 2 광송수신모듈의 광 방출각도는 제 1 광송수신모듈의 반사광 검출한계 거리에서 상기 센스 시스템에 설정된 소정 높이를 커버할 수 있는 광폭을 유지할 수 있도록 설정된 것을 특징으로 하는 3차원 스캐닝 시스템.
  7. 제 1 항 또는 제 2 항에 있어서,
    상기 레이저 소스가 상기 광송수신모듈의 수에 대응되게 구비되는 것을 특징으로 하는 3차원 스캐닝 시스템.
  8. 라인 형태의 펄스레이저광을 회전 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 3차원 레이저 스캐닝 시스템으로,
    고정부와 이 고정부의 상부에 회전가능하게 결합되는 회전부로 구성되고,
    상기 고정부에는, 상기 회전부를 구동시키기 위한 모터와 상기 펄스레이저광을 생성하는 레이저 소스를 포함하고,
    상기 회전부에는, 상기 모터에 결합되는 회전형 전원공급장치와, 상기 펄스레이저광을 2 이상으로 분리하는 광분리모듈과, 분리된 펄스레이저광을 수직 라인 형태로 외부로 방출하는 광송신기와, 반사된 펄스레이저광을 수신하여 전기신호로 변환하는 광수신기를 포함하는 2이상의 광송수신모듈을 포함하는 것을 특징으로 하는 3차원 스캐닝 시스템.
  9. 제 8 항에 있어서,
    상기 2 이상의 광송수신모듈 중 적어도 하나의 광 방출각도는 다른 광송수신모듈과 다르게 설정되어 있는 것을 특징으로 하는 3차원 스캐닝 시스템.
  10. 제 8 항에 있어서,
    상기 레이저 소스에서 생성된 펄스레이저광이 상기 회전부의 중앙에 형성된 중공부를 통해 상부로 방출되어 상기 광분리모듈에 도달하는 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  11. 제 8 항에 있어서,
    상기 모터는 중공형 모터이고, 이 중공형 모터 상에는 중공형 다접점슬립링이 배치되어, 상기 회전부에 전원을 공급하도록 되어 있는 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  12. 제 8 항에 있어서,
    상기 회전부는, 상기 펄스레이저광을 방출할 수 있도록 2 이상의 창이 구비된 커버와, 상기 커버에 고정되며 상기 2 이상의 광송수신모듈를 배치하기 위한 분리거치대를 추가로 구비하고, 상기 분리거치대에는 상기 펄스레이저광을 수광하기 위한 수광홀이 형성되어 있고, 상기 수광홀 부근에 상기 광분리모듈이 배치되는 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  13. 제 12 항에 있어서,
    상기 광분리모듈은, 상기 분리거치대 상에 고정되며 상기 펄스레이저광을 받기 위한 관통홀이 형성되어 있는 지지대와, 상기 지지대의 관통홀 상에 배치되어 상기 펄스레이저광을 분리하는 빔 스플리터(Beam Splitter)와, 상기 지지대 상에 고정되어 상기 빔 스플리터로부터 분리된 펄스광을 소정 경로로 유도하기 위한 복수 개의 미러를 포함하는 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  14. 제 8 항에 있어서,
    상기 광송수신모듈은, 광송신모듈과 광수신모듈로 이루어지고,
    상기 광송신모듈은, 상기 광분리모듈로부터 제공된 펄스레이저광을 수직 라인 형태로 만드는 복수 개로 구성된 렌즈를 포함하는 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  15. 제 8 항에 있어서,
    상기 광송수신모듈은, 광송신모듈과 광수신모듈로 이루어지고,
    상기 광수신모듈은, 반사된 광을 수신하는 렌즈와, 상기 렌즈를 통과한 광을 필터링하는 필터와 필터링된 광으로부터 전기신호를 생성하는 일렬 배열형 포토 다이오드를 포함하는 광처리기를 포함하는 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  16. 제 8 항에 있어서,
    상기 2 이상의 광송수신모듈은, 제 1 광송수신모듈과 제 2 광송수신모듈로 이루어지고,
    상기 제 1 광송수신모듈과 제 2 광송수신모듈은 상기 펄스레이저광의 방출과 수신이 서로 반대 방향을 향하도록 대칭적으로 배치되는 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  17. 제 16 항에 있어서,
    상기 제 1 광송수신모듈의 광 방출각도가 상기 제 2 광송수신모듈의 광 방출각도에 비해 2배 이상 큰 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  18. 제 16 항에 있어서,
    상기 제 1 광송수신모듈의 광 방출각도가 상기 제 2 광송수신모듈의 광 방출각도에 비해 크고, 상기 제 2 광송수신모듈의 광 방출각도는 상기 제 1 광송수신모듈의 반사광 검출한계 거리에서 상기 3차원 레이저 스캐닝 시스템에 설정된 소정 높이를 커버할 수 있는 광폭을 유지할 수 있도록 설정되는 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  19. 제 8 항에 있어서,
    상기 회전부에는 제어보드가 포함되고, 상기 제어보드는 시스템의 제어를 위한 제어기와, 3차원 영상 데이터를 생성하기 위한 데이터 프로세싱모듈을 포함하는 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  20. 제 19 항에 있어서,
    상기 제어보드에는 추가로 생성된 3차원 영상데이터를 무선으로 사용자에 전달하기 위한 무선송신수단을 구비하는 것을 특징으로 하는 3차원 레이저 스캐닝 시스템.
  21. 라인 형태의 펄스레이저광을 회전 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물까지의 거리를 측정한 점군 데이터를 통해 3차원 영상을 획득하는 3차원 영상 획득 방법으로,
    등각으로 배치된 2 이상의 광송신기를 사용하여 2 이상의 수직 라인상의 펄스레이저광을 방출하며,
    상기 2 이상의 수직 라인상의 펄스레이저광 중 적어도 하나의 광 방출각도는 다른 펄스레이저광의 광 방출각도와 다르게 방출되도록 하는 것을 특징으로 하는 3차원 영상획득방법.
  22. 제 21 항에 있어서,
    상기 광송신기는 2개이며, 서로 반대방향으로 펄스레이저광이 방출되도록 배치되어 있는 것을 특징으로 하는 3차원 영상획득방법.
PCT/KR2012/011144 2012-05-22 2012-12-20 3차원 스캐닝 시스템 및 이를 이용한 3차원 영상획득방법 WO2013176362A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280028996.6A CN103608696B (zh) 2012-05-22 2012-12-20 3d扫描系统和获得3d图像的方法
US14/125,315 US9091535B2 (en) 2012-05-22 2012-12-20 3D scanning system and method of obtaining 3D image

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120054110A KR101357051B1 (ko) 2012-05-22 2012-05-22 3차원 스캐닝 시스템 및 이를 이용한 3차원 영상획득방법
KR10-2012-0054110 2012-05-22
KR10-2012-0091081 2012-08-21
KR1020120091081A KR101391298B1 (ko) 2012-08-21 2012-08-21 3차원 레이저 스캐닝 시스템

Publications (1)

Publication Number Publication Date
WO2013176362A1 true WO2013176362A1 (ko) 2013-11-28

Family

ID=49624015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011144 WO2013176362A1 (ko) 2012-05-22 2012-12-20 3차원 스캐닝 시스템 및 이를 이용한 3차원 영상획득방법

Country Status (3)

Country Link
US (1) US9091535B2 (ko)
CN (1) CN103608696B (ko)
WO (1) WO2013176362A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902800A1 (de) * 2014-02-04 2015-08-05 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsberecih
JP2016109679A (ja) * 2014-12-08 2016-06-20 ジック アーゲー 光電センサ及び物体検出方法
CN106769080A (zh) * 2016-11-30 2017-05-31 百度在线网络技术(北京)有限公司 用于测量无人驾驶车辆的行驶精度的方法和装置
CN108139481A (zh) * 2015-09-29 2018-06-08 高通股份有限公司 具有反射信号强度测量的lidar系统
CN109541625A (zh) * 2018-11-27 2019-03-29 中国农业大学 植保无人机飞行参数测量方法及系统
USRE48961E1 (en) * 2015-03-25 2022-03-08 Waymo Llc Vehicle with multiple light detection and ranging devices (LIDARs)
CN115244426A (zh) * 2020-03-20 2022-10-25 华为技术有限公司 测距系统和车辆

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9720412B1 (en) 2012-09-27 2017-08-01 Waymo Llc Modifying the behavior of an autonomous vehicle using context based parameter switching
WO2015026397A1 (en) * 2013-08-22 2015-02-26 Carr Jr George Allen System and method for illuminating an object
ITGE20130095A1 (it) * 2013-09-27 2015-03-28 Nicolo' Spallarossa Dispositivo per la rilevazione di interni e di parziali architettonici e metodo di rilevazione e ricostruzione di piante di ambienti interni
CN104266605B (zh) * 2014-06-27 2017-01-11 西北工业大学 一种三维激光扫描成像仪的成像方法
US9575184B2 (en) * 2014-07-03 2017-02-21 Continental Advanced Lidar Solutions Us, Inc. LADAR sensor for a dense environment
EP3032278B1 (de) * 2014-12-11 2017-03-22 Sick Ag Optoelektronischer Sensor
DE102015200224A1 (de) * 2015-01-09 2016-07-14 Robert Bosch Gmbh 3D-LIDAR-Sensor
US10012723B2 (en) * 2015-03-31 2018-07-03 Amazon Technologies, Inc. Modular LIDAR system
US9880263B2 (en) * 2015-04-06 2018-01-30 Waymo Llc Long range steerable LIDAR system
US10042042B2 (en) 2015-06-12 2018-08-07 Aero Vironment, Inc. Rotating lidar
AU366591S (en) * 2015-06-30 2016-01-15 Yutou Tech Hangzhou Co Robot egg
CN105222724B (zh) * 2015-09-10 2018-09-18 北京天远三维科技股份有限公司 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法
AU201611940S (en) * 2015-10-13 2016-04-14 Yutou Tech Hangzhou Co Ltd Base Unit for Intelligent Robot
KR102163117B1 (ko) * 2015-10-16 2020-10-07 한국전자기술연구원 3차원 레이저 스캐닝 장치 및 이를 포함하는 3차원 레이저 스캐닝 시스템
US9841495B2 (en) * 2015-11-05 2017-12-12 Luminar Technologies, Inc. Lidar system with improved scanning speed for high-resolution depth mapping
US10370201B2 (en) * 2015-11-13 2019-08-06 Kabushiki Kaisha Toshiba Transporting apparatus and transporting method
DE102015226502A1 (de) * 2015-12-22 2017-06-22 Robert Bosch Gmbh Lidar-Abtasteinrichtung an einem Kraftfahrzeug
US10509110B2 (en) * 2015-12-29 2019-12-17 The Boeing Company Variable resolution light radar system
USD799575S1 (en) * 2015-12-30 2017-10-10 Shenzhen Nxrobo Co., Ltd Robot
CN108352081B (zh) 2016-01-14 2021-12-31 惠普发展公司,有限责任合伙企业 排序目标尺寸
KR102159376B1 (ko) * 2016-01-29 2020-09-23 각코호진 메이지다이가쿠 레이저 스캔 시스템, 레이저 스캔 방법, 이동 레이저 스캔 시스템 및 프로그램
JP7073262B2 (ja) 2016-01-31 2022-05-23 ベロダイン ライダー ユーエスエー,インコーポレイテッド 遠視野において重なり合う照射を有するlidarに基づく三次元撮像
US10281923B2 (en) 2016-03-03 2019-05-07 Uber Technologies, Inc. Planar-beam, light detection and ranging system
CN107064873B (zh) * 2016-03-16 2019-02-15 北京国承万通信息科技有限公司 定位光束发射系统、方法及室内定位系统
USD813920S1 (en) * 2016-04-12 2018-03-27 Yutou Technology (Hangzhou) Co., Ltd. Intelligent robot
US10761195B2 (en) 2016-04-22 2020-09-01 OPSYS Tech Ltd. Multi-wavelength LIDAR system
KR20170124216A (ko) 2016-05-02 2017-11-10 삼성전자주식회사 청소로봇 및 그 제어 방법
CN107367737A (zh) * 2016-05-13 2017-11-21 北醒(北京)光子科技有限公司 一种多线旋转扫描探测方法
WO2017197617A1 (zh) * 2016-05-19 2017-11-23 深圳市速腾聚创科技有限公司 移动式三维激光扫描系统及移动式三维激光扫描方法
ES2876155T3 (es) * 2016-07-13 2021-11-12 Dds Company Escáner tridimensional y aparato para el procesamiento de objetos artificiales mediante el uso del mismo
CN109564289A (zh) * 2016-08-26 2019-04-02 深圳市大疆创新科技有限公司 用于扩大uav和其他物体的激光雷达扫描范围的光学结构以及相关系统和方法
EP3859396A1 (en) * 2016-09-20 2021-08-04 Innoviz Technologies Ltd. Lidar systems and methods
EP3306344A1 (en) * 2016-10-07 2018-04-11 Leica Geosystems AG Flying sensor
US10379540B2 (en) * 2016-10-17 2019-08-13 Waymo Llc Light detection and ranging (LIDAR) device having multiple receivers
US10845470B2 (en) * 2016-11-16 2020-11-24 Waymo Llc Methods and systems for protecting a light detection and ranging (LIDAR) device
USD826746S1 (en) * 2016-11-21 2018-08-28 Suteng Innovation Technology Co., Ltd. Lidar apparatus
US10962647B2 (en) 2016-11-30 2021-03-30 Yujin Robot Co., Ltd. Lidar apparatus based on time of flight and moving object
JP6876796B2 (ja) * 2016-11-30 2021-05-26 ブラックモア センサーズ アンド アナリティクス エルエルシー 光学測距システムによる自動リアルタイム適応走査の方法およびシステム
US10942272B2 (en) 2016-12-13 2021-03-09 Waymo Llc Power modulation for a rotary light detection and ranging (LIDAR) device
CN106767513A (zh) * 2016-12-30 2017-05-31 武汉海达数云技术有限公司 三维激光扫描装置
DE102017101945A1 (de) * 2017-02-01 2018-08-02 Osram Opto Semiconductors Gmbh Messanordnung mit einem optischen Sender und einem optischen Empfänger
KR102619582B1 (ko) 2017-03-13 2024-01-02 옵시스 테크 엘티디 눈-안전 스캐닝 lidar 시스템
CA3063605A1 (en) 2017-05-15 2018-11-22 Ouster, Inc. Optical imaging transmitter with brightness enhancement
DE102017208700A1 (de) * 2017-05-23 2018-11-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Objekterfassung und LIDAR-System
DE102017209941A1 (de) * 2017-06-13 2018-12-13 Robert Bosch Gmbh Vorrichtung zur Erfassung eines Objektes in der Umgebung
US20240027587A1 (en) 2017-06-19 2024-01-25 Hesai Technology Co., Ltd. Lidar system and method
CN113447910B (zh) * 2017-06-19 2023-04-25 上海禾赛科技有限公司 基于多个激光器的多线激光雷达以及使用其进行探测的方法
US10473767B2 (en) 2017-06-19 2019-11-12 Hesai Photonics Technology Co., Ltd. Lidar system and method
DE102017210591A1 (de) * 2017-06-23 2018-12-27 Robert Bosch Gmbh Makroskopische Lidar-Vorrichtung
JP6865492B2 (ja) 2017-07-28 2021-04-28 オプシス テック リミテッド 小角度発散を伴うvcselアレイlidar送信機
WO2019039726A1 (ko) * 2017-08-21 2019-02-28 (주)유진로봇 인공표식 인식 장치, 인공표식, 및 이동체
WO2019039727A1 (ko) * 2017-08-21 2019-02-28 (주)유진로봇 거리 측정 장치 및 이동체
DE102017214705A1 (de) * 2017-08-23 2019-02-28 Robert Bosch Gmbh Koaxiales LIDAR System mit langgezogener Spiegelöffnung
DE102017216241A1 (de) * 2017-09-14 2019-03-14 Robert Bosch Gmbh Lidar-Anordnung mit Strömungskühlung
CN107703515A (zh) * 2017-09-19 2018-02-16 深圳市镭神智能系统有限公司 一种激光雷达光路系统
US11579298B2 (en) * 2017-09-20 2023-02-14 Yujin Robot Co., Ltd. Hybrid sensor and compact Lidar sensor
CN107765231A (zh) * 2017-11-08 2018-03-06 中国人民解放军海军工程大学 一种地面三维激光雷达装置及其组装方法
JP7388720B2 (ja) 2017-11-15 2023-11-29 オプシス テック リミテッド ノイズ適応ソリッドステートlidarシステム
CN107884840B (zh) * 2017-12-15 2020-09-15 重庆锦奕祥机械科技有限公司 一种新能源汽车激光安全扫描装置
DE102017223673A1 (de) * 2017-12-22 2019-06-27 Robert Bosch Gmbh LIDAR-System zur Erfassung eines Objekts
CN110044293B (zh) * 2018-01-17 2020-11-17 深圳中科飞测科技有限公司 一种三维重构系统及三维重构方法
KR102474591B1 (ko) 2018-01-24 2022-12-05 삼성전자주식회사 광 조향 장치 및 이를 포함하는 센서 시스템
DE102018101847A1 (de) * 2018-01-26 2019-08-01 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
DE102018102601A1 (de) * 2018-02-06 2019-08-08 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
CN111919137A (zh) 2018-04-01 2020-11-10 欧普赛斯技术有限公司 噪声自适应固态lidar系统
DE102018206790A1 (de) 2018-05-03 2019-11-07 Robert Bosch Gmbh Baugruppe für einen LIDAR-Sensor, LIDAR-Sensor und Fortbewegungsmittel
US11874399B2 (en) 2018-05-16 2024-01-16 Yujin Robot Co., Ltd. 3D scanning LIDAR sensor
CN108490957A (zh) * 2018-05-16 2018-09-04 深圳市银星智能科技股份有限公司 移动机器人
US10935378B2 (en) * 2018-05-21 2021-03-02 Tusimple, Inc. System and method for angle measurement
CN112327269A (zh) * 2018-06-08 2021-02-05 上海禾赛科技股份有限公司 一种激光雷达
DE102018212735A1 (de) * 2018-07-31 2020-02-06 Robert Bosch Gmbh LIDAR-Vorrichtung mit mindestens einem Streuscheibenelement
EP3841395A1 (en) * 2018-08-22 2021-06-30 van Seeters, Josephus M. Detection systems, communications systems and induction motors
US10976420B2 (en) 2018-11-02 2021-04-13 Waymo Llc Methods and systems for detecting sensor occlusions
CN109407447A (zh) * 2018-11-16 2019-03-01 东华大学 一种水下可旋转三维扫描装置
DE102018222416B4 (de) * 2018-12-20 2023-01-26 Robert Bosch Gmbh Baugruppe für einen LiDAR-Sensor und LiDAR-Sensor
CN111766607A (zh) * 2019-03-13 2020-10-13 科沃斯机器人股份有限公司 一种自移动设备和非接触式障碍物检测装置
WO2020210176A1 (en) 2019-04-09 2020-10-15 OPSYS Tech Ltd. Solid-state lidar transmitter with laser control
CN113640815A (zh) * 2019-04-26 2021-11-12 上海禾赛科技有限公司 激光雷达及其探测装置
KR20220003600A (ko) 2019-05-30 2022-01-10 옵시스 테크 엘티디 액추에이터를 사용하는 눈-안전 장거리 lidar 시스템
JP7270477B2 (ja) * 2019-06-17 2023-05-10 株式会社ミツトヨ 測定装置
US12055629B2 (en) 2019-06-25 2024-08-06 OPSYS Tech Ltd. Adaptive multiple-pulse LIDAR system
DE102019211739A1 (de) * 2019-08-06 2021-02-11 Ibeo Automotive Systems GmbH Lidar-Messsystem mit zwei Lidar-Messvorrichtungen
CN113866784B (zh) * 2019-08-08 2023-02-03 上海禾赛科技有限公司 激光雷达及其控制方法
CN110501689B (zh) * 2019-09-24 2024-06-18 中国工程物理研究院电子工程研究所 一种水下激光周向扫描光束发射系统
US20210124018A1 (en) * 2019-10-23 2021-04-29 Waymo Llc LIDAR with Field of View Extending Window
US11899116B2 (en) * 2019-10-24 2024-02-13 Nuro, Inc. Single beam digitally modulated lidar for autonomous vehicle distance sensing
CN110992468B (zh) * 2019-11-28 2020-10-30 贝壳找房(北京)科技有限公司 基于点云数据的建模方法、装置以及设备、存储介质
US11740333B2 (en) 2019-12-04 2023-08-29 Waymo Llc Pulse energy plan for light detection and ranging (lidar) devices based on areas of interest and thermal budgets
US11493922B1 (en) * 2019-12-30 2022-11-08 Waymo Llc Perimeter sensor housings
US11557127B2 (en) 2019-12-30 2023-01-17 Waymo Llc Close-in sensing camera system
CN112840231B (zh) * 2020-01-06 2023-03-10 深圳市速腾聚创科技有限公司 激光雷达及具有激光雷达的设备
US11867837B2 (en) 2020-01-06 2024-01-09 Suteng Innovation Technology Co., Ltd. LiDAR and device having LiDAR
US20220317304A1 (en) * 2021-03-30 2022-10-06 Argo AI, LLC Closed-Loop Motor Control Using Unidirectional Data Feedback
CN113189609A (zh) * 2021-05-31 2021-07-30 阿波罗智联(北京)科技有限公司 基座、路侧传感设备以及智能交通系统
CN113777617A (zh) * 2021-09-13 2021-12-10 广州中海达卫星导航技术股份有限公司 扫描装置及激光雷达系统
CN114440762A (zh) * 2021-12-21 2022-05-06 云南电网有限责任公司 配网架空线工程三维模型构建系统
US12130363B2 (en) 2022-02-03 2024-10-29 Aurora Operations, Inc. LIDAR system
WO2024144903A2 (en) * 2022-10-03 2024-07-04 3D at Depth, Inc. Laser inspection and measurement systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297014A (ja) * 1996-05-08 1997-11-18 Mitsubishi Heavy Ind Ltd レーザレーダ三次元形状計測装置
JP2002090456A (ja) * 2000-09-21 2002-03-27 Kokusai Kogyo Co Ltd 地形計測装置
US20020059042A1 (en) * 1996-04-24 2002-05-16 Kacyra Ben K. Integrated system for quickly and accurately imaging and modeling three-dimensional objects
JP2006023083A (ja) * 2004-07-06 2006-01-26 Hitachi Eng Co Ltd 赤外線レーザー計測・画像表示方法及びその装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870220A (en) * 1996-07-12 1999-02-09 Real-Time Geometry Corporation Portable 3-D scanning system and method for rapid shape digitizing and adaptive mesh generation
US7625335B2 (en) * 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
US7411196B2 (en) * 2005-08-18 2008-08-12 Itt Manufacturing Enterprises, Inc. Multi-sensors and differential absorption LIDAR data fusion
EP2041515A4 (en) * 2006-07-13 2009-11-11 Velodyne Acoustics Inc HIGH DEFINITION LIDAR SYSTEM
EP1901093B1 (de) * 2006-09-15 2018-11-14 Triple-IN Holding AG Aufnahme von Entfernungsbildern
US7697120B2 (en) * 2006-11-27 2010-04-13 Riegl Laser Measurement Systems Gmbh Scanning apparatus
CN101256232A (zh) * 2007-02-28 2008-09-03 电装波动株式会社 用于目标三维探测的激光雷达装置
US9007600B2 (en) 2010-05-07 2015-04-14 Mitsubishi Electric Corporation Laser radar system
WO2011146523A2 (en) * 2010-05-17 2011-11-24 Velodyne Acoustics, Inc. High definition lidar system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020059042A1 (en) * 1996-04-24 2002-05-16 Kacyra Ben K. Integrated system for quickly and accurately imaging and modeling three-dimensional objects
JPH09297014A (ja) * 1996-05-08 1997-11-18 Mitsubishi Heavy Ind Ltd レーザレーダ三次元形状計測装置
JP2002090456A (ja) * 2000-09-21 2002-03-27 Kokusai Kogyo Co Ltd 地形計測装置
JP2006023083A (ja) * 2004-07-06 2006-01-26 Hitachi Eng Co Ltd 赤外線レーザー計測・画像表示方法及びその装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902800A1 (de) * 2014-02-04 2015-08-05 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsberecih
JP2015148605A (ja) * 2014-02-04 2015-08-20 ジック アーゲー 光電センサ及び監視領域内の物体の検出方法
US9606230B2 (en) 2014-02-04 2017-03-28 Sick Ag Optoelectronic sensor and method for detecting objects in a monitored zone
JP2016109679A (ja) * 2014-12-08 2016-06-20 ジック アーゲー 光電センサ及び物体検出方法
USRE48961E1 (en) * 2015-03-25 2022-03-08 Waymo Llc Vehicle with multiple light detection and ranging devices (LIDARs)
CN108139481A (zh) * 2015-09-29 2018-06-08 高通股份有限公司 具有反射信号强度测量的lidar系统
US11131756B2 (en) 2015-09-29 2021-09-28 Qualcomm Incorporated LIDAR system with reflected signal strength measurement
CN108139481B (zh) * 2015-09-29 2022-03-01 高通股份有限公司 具有反射信号强度测量的lidar系统
CN106769080A (zh) * 2016-11-30 2017-05-31 百度在线网络技术(北京)有限公司 用于测量无人驾驶车辆的行驶精度的方法和装置
CN109541625A (zh) * 2018-11-27 2019-03-29 中国农业大学 植保无人机飞行参数测量方法及系统
CN115244426A (zh) * 2020-03-20 2022-10-25 华为技术有限公司 测距系统和车辆

Also Published As

Publication number Publication date
US9091535B2 (en) 2015-07-28
CN103608696A (zh) 2014-02-26
CN103608696B (zh) 2016-05-11
US20140111812A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
WO2013176362A1 (ko) 3차원 스캐닝 시스템 및 이를 이용한 3차원 영상획득방법
KR101391298B1 (ko) 3차원 레이저 스캐닝 시스템
CN110118959B (zh) 检测监测区域中的对象的光电传感器和方法
KR101357051B1 (ko) 3차원 스캐닝 시스템 및 이를 이용한 3차원 영상획득방법
WO2018124413A1 (ko) 송수광 일체형 광학계 모듈 및 이를 구비하는 스캐닝 라이다
WO2017073982A1 (ko) 3차원 스캐닝 시스템
WO2020040390A1 (ko) 3차원 영상 생성 장치 및 방법
WO2019112164A1 (ko) 3차원 라이다 장치 및 거리측정 방법
WO2016047847A1 (ko) 라이다 시스템
US11835662B2 (en) Multi-beam LiDAR systems and methods for detection using the same
US20150188628A1 (en) Acquisition, Tracking, and Pointing Apparatus for Free Space Optical Communications with Moving Focal Plane Array
WO2019027100A1 (ko) 다채널 라이다 센서 모듈
WO2018056516A1 (ko) 광학계 모듈 및 그를 갖는 스캐닝 라이다
WO2017171140A1 (ko) 오목 반사 미러를 가지는 스캐닝 라이다
WO2021261809A1 (ko) 라이다 장치
CN113640814A (zh) 激光雷达及其探测装置
WO2021060919A1 (ko) 라이다 광학 장치 및 이의 스캐닝 방법
WO2019022548A1 (ko) 비회전형 전방향 라이다 장치
WO2017204459A1 (ko) 개선된 구조를 갖는 라이다 광학장치
KR20220080350A (ko) 라이다 센서용 광학계
CN111919401B (zh) 用于运行具有至少一个第一移动装置和第二移动装置的系统的方法和系统
WO2020116675A1 (ko) 모션 인식 기기 및 모션 인식 시스템
WO2023167492A1 (ko) 스캐너 어셈블리 모듈 및 라이다 장치
WO2022059981A1 (ko) 3차원 이미지 획득 장치
WO2017065424A1 (ko) 3차원 레이저 스캐닝 장치 및 이를 포함하는 3차원 레이저 스캐닝 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280028996.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 14125315

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877280

Country of ref document: EP

Kind code of ref document: A1