[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013176149A1 - Chromium plated article and chromium plating film - Google Patents

Chromium plated article and chromium plating film Download PDF

Info

Publication number
WO2013176149A1
WO2013176149A1 PCT/JP2013/064126 JP2013064126W WO2013176149A1 WO 2013176149 A1 WO2013176149 A1 WO 2013176149A1 JP 2013064126 W JP2013064126 W JP 2013064126W WO 2013176149 A1 WO2013176149 A1 WO 2013176149A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
plating film
plating
particles
film
Prior art date
Application number
PCT/JP2013/064126
Other languages
French (fr)
Japanese (ja)
Inventor
學 品田
鈴木 正行
Original Assignee
日本化学工業株式会社
株式会社クリタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社, 株式会社クリタ filed Critical 日本化学工業株式会社
Publication of WO2013176149A1 publication Critical patent/WO2013176149A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires

Definitions

  • the present invention relates to a chromium plating product and a chromium plating film manufactured using a chromium plating bath.
  • Chrome plating is widely used as decorative plating because it does not corrode in the atmosphere and does not lose its luster. In addition, since it has a high hardness and a low coefficient of friction, it is widely used for machine parts that require wear resistance. However, a large amount of hexavalent chromium is used in the plating solution used for this plating. Hexavalent chromium is feared to have a high environmental load, and various developments of chromium plating using a trivalent chromium plating solution with little concern are being studied.
  • Patent Document 1 describes that trivalent chromium plating film contains hard wear-resistant particles and self-lubricating particles. According to the technique described in this document, since trivalent chromium is used as the chromium source, the environmental load is smaller than when hexavalent chromium is used. In addition, since the plating film contains hard particles and the like, the wear resistance of the plating film is improved.
  • An object of the present invention is to provide a chromium plating product and a chromium plating film capable of solving various disadvantages of the above-described conventional technology.
  • the present invention is a chromium plating product in which a chromium plating film is provided on the surface of a base material, In the chromium plating film, a plurality of particles made of nitride, carbide or oxide are uniformly dispersed, By providing the chromium plating product, wherein the particles are contained in the chromium plating film in an amount of 10 to 30% by volume, and are present in the chromium plating film in a monodispersed state, The problem is solved.
  • the present invention is a chromium plating film in which a plurality of ceramic particles are uniformly dispersed, By providing the chromium plating film, wherein the ceramic particles are contained in the chromium plating film in an amount of 10 to 30% by volume and are present in the chromium plating film in a monodispersed state. The above-mentioned problem is solved.
  • a chromium plating product and a chromium plating film which are manufactured using trivalent chromium as a chromium source and have improved wear resistance.
  • FIGS. 1A and 1B are a scanning electron microscope image of a longitudinal section and a surface of a plating film in the chromium plating product obtained in Example 1.
  • FIG. 2A and 2B are a scanning electron microscopic image of the longitudinal section and surface of the plating film in the chromium plating product obtained in Example 1.
  • FIG. 3 is a scanning electron microscope image of the surface of the plating film in the chromium plating product obtained in Example 4.
  • FIG. 4 is a scanning electron microscope image of the surface of the plating film in the chromium plating product obtained in Example 5.
  • the chrome plated product of the present invention has a chrome plating film provided on the surface of a base material.
  • This chromium plating film is manufactured using a plating solution containing trivalent chromium and substantially free of hexavalent chromium.
  • trivalent chromium as the chromium source, a dense plating film can be produced.
  • hexavalent chromium when used, the film does not become dense, and a plating film having a large number of cracks on the surface is formed.
  • a material capable of chrome plating using the plating solution can be used as a material constituting the base material of the chrome plating product.
  • a material generally includes a metal material, but may be a non-metal material.
  • the metal material include cast products and forged products of iron, aluminum, or alloys containing them.
  • the chromium plating film in the chromium plating product may be formed on the entire surface of the base material, or may be formed only on a part of the surface of the base material, depending on the specific use of the chromium plating product. Good.
  • the portion excluding the particles is substantially composed of chromium (metallic chromium), but may further contain an element other than chromium.
  • chromium carbide may be included.
  • the chromium plating film preferably contains 93 to 99.5% by mass of chromium, and further contains 0.5 to 7% by mass of carbon, excluding the particles, and 99.3 to 99.99% of chromium. It is preferable that 5% by mass is contained, and further 0.5 to 0.7% by mass of carbon is contained.
  • the amount of chromium and carbon contained in the chromium plating film is measured by elemental analysis of the chromium plating film with EPMA.
  • ⁇ Particles are contained in the chrome plating film. These particles are contained for the purpose of increasing the wear resistance of the chromium plating film (in this sense, these particles are hereinafter also referred to as “hard particles”).
  • the hard particles are dispersed in the matrix using chromium deposited by plating as a matrix. Hard particles are mainly present at grain boundaries and defects, thereby suppressing the propagation of cracks and effectively mitigating fatigue, destruction, and peeling.
  • the hard particles exposed on the surface act as a sliding surface in contact with the mating sliding surface in the friction and wear action with the mating sliding surface, thereby improving wear resistance and seizure resistance and helping to form an oil film. Become.
  • the present invention has one of the characteristics in the dispersion state of the hard particles in the chromium plating film.
  • the hard particles are uniformly dispersed in the plating film.
  • Uniformly dispersed means that the number of hard particles present in the plating film is substantially constant when an arbitrary cross section of the plating film is observed. For example, when an arbitrary cross section of the plating film is observed with an electron microscope at five magnifications of 100 ⁇ m ⁇ 100 ⁇ m at a magnification of 1000 times, the distribution state of the hard particles present therein is uneven or unevenly distributed. If this is not observed, it can be said that the hard particles are uniformly dispersed.
  • the hard particles are uniformly dispersed in the plating film, whereby the wear resistance of the plating film is improved.
  • a plating film is formed using a hexavalent chromium plating solution
  • a crack extending in the thickness direction of the plating film is formed, and hard particles are unevenly distributed in the crack. It has been.
  • the plating film formed using the hexavalent chromium plating solution has a limit in improving the wear resistance even if it contains hard particles.
  • the hard particles contained in the plating film are present in a monodispersed state in addition to being uniformly dispersed in the film.
  • the monodispersed state is a state in which primary hard particles are present without substantially agglomerating.
  • the total number of hard particles (the total number of primary particles and secondary particles)
  • the ratio of the total number of secondary particles to the total number of particles) is 5% or less, it can be said that the hard particles exist in a monodispersed state.
  • the hard particles contained in the plating film have a high content of 10 to 30% by volume in the plating film.
  • the wear resistance of the plating film can be improved by a synergistic effect with the dispersion of the hard particles uniformly and in a monodispersed state.
  • the content of the hard particles is less than 10% by volume, the effect of containing the hard particles is insufficient, and the wear resistance of the plating film cannot be sufficiently increased.
  • the content of hard particles is more than 30% by volume, the balance of the ratio between chromium and hard particles is lost, and as a result, improvement in wear resistance cannot be expected.
  • the content of hard particles in the plating film is preferably 15 to 30% by volume.
  • the ratio of the hard particles contained in the plating film is observed at a magnification of 1000 times using a laser microscope. And the ratio of the area which the ceramic particle which exists in a 30 micrometers square frame occupies is calculated. Strictly speaking, the value measured by this method is the area% occupied by the ceramic particles, but in the present invention, this is called “volume%” for convenience (the same applies hereinafter).
  • chromium plating may be performed using a plating solution described later.
  • the thickness of the plating film may be appropriately set according to the specific use of the chrome plating.
  • the chromium plated product of the present invention is applicable to both hard plating and decorative plating, and the thickness of the plating film including both hard plating and decorative plating is 1 to 500 ⁇ m, particularly 3 to 300 ⁇ m. It is preferable. Particularly in the case of hard plating, the thickness is preferably 10 to 500 ⁇ m, particularly preferably 5 to 300 ⁇ m, and in the case of decorative plating, the thickness is preferably 1 to 5 ⁇ m, particularly 2 to 4 ⁇ m.
  • the thickness of the plating film can be measured by enlarging the longitudinal section thereof at a magnification of 400 times using a laser microscope (LEXTO OLS1100 manufactured by OLYMPUS).
  • the hard particles contained in the plating film those capable of improving the wear resistance of the film can be used.
  • the hard particles for example, those made of nitride, carbide or oxide can be used. These hard particles can be used alone or in combination of two or more.
  • the hard particles are preferably ceramic particles from the viewpoint of improving the wear resistance of the plating film. Examples of such ceramic particles include metal or semimetal nitrides such as AlN, Si 3 N 4 and BN, metal or semimetal carbides such as TiC, SiC, Cr 3 C 2 , B 4 C and WC, Examples thereof include metal oxides such as Al 2 O 3 , Fe 3 O 4 and TiO 2 .
  • the size of the hard particles can be appropriately selected according to the specific use of the chromium plating product, the thickness of the plating film, and the like. In particular, when the particle size is preferably 0.1 to 10 ⁇ m, more preferably 0.3 to 5 ⁇ m, the effects such as fatigue, breakage, and separation described above are effectively relieved. .
  • the average particle diameter of the hard particles in the plating film is measured by a laser microscope (OLS1100 manufactured by OLYMPUS).
  • the shape of the hard particles can also be appropriately selected according to the specific use of the chrome plating product, the thickness of the plating film, and the like.
  • a spherical shape, a polyhedral shape, a spindle shape, a needle shape, or a combination thereof can be used.
  • Spherical particles are preferably used from the viewpoint of reducing friction with the mating sliding surface and improving the wear action.
  • the wear resistance of the plating film can be further improved.
  • the self-lubricating particles include graphite, molybdenum disulfide, tungsten disulfide, fluororesin, and boron nitride. These particles are preferably contained in the plating film in an amount of 10 to 30% by volume, more preferably 15 to 30% by volume. Similar to the hard particles described above, these particles may be uniformly dispersed in the plating film, or may be contained in the microcracks (A1) described later.
  • the shape of these particles can be, for example, spherical, polyhedral, spindle-shaped, needle-shaped, or a combination thereof.
  • a spherical shape is particularly preferable.
  • the plating film has a groove width of preferably 0.1 to 6.0 ⁇ m, more preferably 0.2 to 6.0 ⁇ m, in addition to the above method. More preferably, there is a method in which a plurality of microcracks (A1) of 0.2 to 2.0 ⁇ m are actively generated and particles having self-lubricating properties are contained in the microcracks (A1).
  • the plurality of microcracks (A1) preferably have a surface occupancy ratio of 2 to 12 area%, more preferably 4 to 10 area%, on the surface of the chromium plating product.
  • the distribution density is preferably 200 to 2000 lines / cm, more preferably 250 to 1500 lines / cm. It is preferable that the surface occupancy rate and the distribution density are within this range because the wear resistance of the chromium plated product can be further improved without deteriorating various physical properties such as the strength of the chromium plated film.
  • the groove widths of the microcracks (A1) were obtained by observing the surface of the plating film with a microscope at a magnification of 1000, extracting arbitrarily five cracks in a field of 100 ⁇ m ⁇ 100 ⁇ m, measuring the groove widths, The average value of
  • the surface occupancy of the microcrack (A1) is determined by image analysis from a scanning electron micrograph of the plating film surface. Specifically, a scanning electron micrograph of the exposed surface is taken, the obtained photograph is taken into an image processing analysis apparatus, and image processing is performed using image software. The area of the surface of the plating film in the photograph (128 ⁇ m ⁇ 16 ⁇ m) minus the total area of the portions without microcracks is defined as the area of microcracks. Then, the ratio of the area of the microcracks is obtained by setting the area (128 ⁇ m ⁇ 16 ⁇ m) of the plating film surface to 100 area%.
  • the distribution density (lines / cm) of the microcracks (A1) formed in the plating film was obtained by taking a photograph of the exposed surface at an area magnification of 10 ⁇ 10 times, and having a length of 10 cm on the film surface of the obtained photograph. It is obtained by arbitrarily drawing 5 to 10 straight lines, counting the intersections of the straight lines and microcracks, and averaging them.
  • the self-lubricating particles contained in the microcracks (A1) may be (i) completely located in the microcracks (A1) and not exposed outward from the surface of the plating film. Good. Or conversely, (ii) the particles having self-lubricating properties may be exposed outward from the surface of the plating film.
  • the use of the chromium plating product of the present invention causes the plating film to be depleted, so that the self-lubricating particles present in the microcracks (A1) are more than the surface of the plating film. It begins to be exposed to the outside and exerts a lubricating effect.
  • a specific method for incorporating self-lubricating particles in the chromium plating film includes the following steps (A) and (B).
  • the chromium plating film is heat-treated (P1), and the groove width is preferably 0.1 to 6.0 ⁇ m, more preferably 0.2 to 6.0 ⁇ m, and still more preferably 0.2 to 4.
  • This is a step of generating a micro crack of 0 ⁇ m.
  • the conditions for heat-treating (P1) the chromium plating film are preferably 200 ° C. or higher, particularly 200 to 400 ° C. in the atmosphere.
  • the heating time is preferably 30 to 120 minutes, provided that the temperature is within this range.
  • step (b) particles having self-lubricating properties are contained in the microcracks (A1).
  • the chromium plating product having the microcracks (A1) is immersed in a solution in which particles having self-lubricating properties are dissolved under reduced pressure or in a vacuum atmosphere.
  • grains which have self-lubricating property in a micro crack (A1) can be penetrate
  • drying and removing the solvent can precipitate and contain particles having self-lubricating properties in the microcracks (A1).
  • the concentration of the solution in which the self-lubricating particles are dissolved is not particularly limited, and may be not more than the saturation solubility of the self-lubricating particles.
  • the chromium plating film of the present invention has a groove width of preferably 0.2 to 2.0 ⁇ m, more preferably 0.2 to 0.5 ⁇ m among those obtained in the step (a) microcrack (A1) generation step.
  • Those having a chromium plating film having a micro crack (A1) can be used as they are as a chromium plating product.
  • the oil film penetrates into the microcrack (A1) and a stable oil film is maintained.
  • the plurality of micro cracks (A1) has a surface occupancy of preferably 2 to 15 area%, more preferably 4 to 12 area%, and a distribution density of 150 to 2000 on the surface of the chromium plating. / Cm, more preferably 200 to 1500 / cm, a stable oil film can be formed.
  • the chromium plating film of the present invention preferably has a plurality of network-like fine particles having a groove width of preferably 0.1 to 2.0 ⁇ m, more preferably 0.2 to 2.0 ⁇ m, and still more preferably 0.2 to 0.5 ⁇ m. It may be a chromium plating film having a crack (A2) and having a surface occupation ratio of the microcrack (A2) of preferably 2 to 12 area%, more preferably 5 to 10 area%.
  • the plating film having a mesh-like microcrack (A2) is formed by a crack that extends in the thickness direction of the plating film so that the crack reaches the base material, or the groove width of the microcrack (A2) is widened. Since the deterioration of physical properties can be suppressed, it has excellent corrosion resistance.
  • the distribution density of the mesh-like microcracks (A2) is preferably 150 to 1500 / cm, and more preferably 200 to 1500 / cm, the corrosion resistance of the chromium plated product can be further improved.
  • the measurement of the groove width, the surface occupancy, and the distribution density in the fine mesh crack (A2) can be performed according to the measurement for the fine crack (A1) described above.
  • one or more base films may be provided between the surface of the base material and the plating film.
  • one layer or two or more upper layers may be provided on the plating film.
  • the undercoat film for example, a hard particle composite dispersed plating film made of alumina particles or a nitride layer can be used.
  • the upper layer film for example, a film composed of a solid lubricating particle composite dispersion plating film made of molybdenum disulfide particles or a nickel-cobalt-phosphorus alloy composite plating film containing silicon nitride particles can be used.
  • the plating film is produced using a plating solution containing trivalent chromium and substantially free of hexavalent chromium.
  • the phrase “substantially free of hexavalent chromium” means that trace amounts of hexavalent chromium inevitably mixed in and / or remaining in the plating solution manufacturing process, for example, hexavalent chromium present at 2 ppm or less are allowed. In other words, the hexavalent chromium added and / or left behind is excluded.
  • This plating solution preferably contains a trivalent chromium compound, a pH buffer, an aminocarboxylic acid compound, a sulfamate compound, an aminocarbonyl compound, and hard particles.
  • a water-soluble compound having a trivalent chromium valence can be used without particular limitation.
  • examples of such compounds include inorganic acid chromium such as chromium chloride, chromium nitrate, chromium sulfate and chromium phosphate, chromium lactate, chromium gluconate, chromium glycolate, chromium oxalate, chromium malate, chromium maleate, and malon.
  • Organic acid chromium such as chromium acid chromium, chromium citrate, chromium acetate and chromium tartrate can be mentioned.
  • trivalent chromium compounds can be used singly or in combination of two or more.
  • concentration of trivalent chromium in the plating solution is preferably from 0.2 to 1.4 mol / liter, more preferably from 0.4 to 1.1, from the viewpoint that a chromium plating film having a target structure can be successfully formed. 2 mol / liter.
  • the pH buffer contained in the plating solution is blended for the purpose of successfully forming a chromium plating film having a desired structure by adjusting the pH at the time of chromium plating.
  • Suitable pH buffering agents for this purpose include, for example, boric acid, sodium borate, potassium borate, ammonium sulfate, phosphoric acid, disodium hydrogen phosphate, dipotassium hydrogen phosphate, sodium carbonate, and sodium bicarbonate. . It is particularly preferable to use boric acid, sodium borate or potassium borate. These compounds can be used alone or as a buffer system combining two or more.
  • the blending amount of the pH buffering agent may be an amount that can maintain the pH of the plating solution preferably at 0.5 to 2.0, more preferably at 0.8 to 1.5.
  • boric acid when used as a pH buffering agent, there is an advantage that, in addition to the pH buffering action, the metal chromium crystals produced by the reduction become finer.
  • the aminocarboxylic acid compound contained in the plating solution forms a complex with trivalent chromium in the plating solution to stabilize the plating solution and to successfully form a chromium plating film with the desired structure.
  • An aminocarboxylic acid compound is a compound having at least one amino group and at least one carboxyl group in the molecule.
  • the aminocarboxylic acid compound include glycine, alanine, aspartic acid, glutamic acid, and arginine. In particular, glycine or alanine is preferably used. These compounds can be used alone or in combination of two or more.
  • the aminocarboxylic acid compound When the aminocarboxylic acid compound is blended in an amount of 0.3 to 2 mol, particularly 0.5 to 1.7 mol, with respect to 1 mol of trivalent chromium in the plating solution, a stable plating solution of a chromium complex is obtained. This is preferable because proper electrolytic plating can be performed.
  • the concentration of the aminocarboxylic acid compound in the plating solution is preferably 0.4 to 1.7 mol / liter, particularly 0.5 to 0.9 mol / liter.
  • the sulfamate compound contained in the plating solution mainly has a role as a supporting electrolyte in the plating solution, and is blended for the purpose of increasing the electrical conductivity of the plating solution to a predetermined level. Further, since the sulfamate compound also has a pH buffering action of the plating solution, the pH of the plating solution is further stabilized by the combined use with the pH buffer described above. Further, the sulfamate compound also has a catalytic action when trivalent chromium is reduced, thereby exhibiting the effect of refining metal chromium crystals and the effect of glossing the chromium film.
  • sulfamate for example, ammonium sulfamate, sodium sulfamate, or potassium sulfamate can be used. These compounds can be used alone or in combination of two or more.
  • the sulfamate is preferably added in an amount of 0.3 to 2.5 mol, particularly 0.5 to 2 mol, with respect to 1 mol of trivalent chromium in the plating solution.
  • the concentration of the sulfamate in the plating solution is preferably 0.4 to 2.1 mol / liter, particularly 0.8 to 1.9 mol / liter.
  • the aminocarbonyl compound contained in the plating solution is a compound having at least one carbonyl group and at least one amino group in the molecule.
  • the aminocarbonyl compound has the effect of increasing the reduction rate of trivalent chromium.
  • the reason is considered as follows. That is, in the process where trivalent chromium is reduced to metallic chromium, divalent chromium is generated. It is considered that divalent chromium is present adsorbed on the cathode or in the electric double layer.
  • the reduction of trivalent chromium to metallic chromium is the rate-limiting step.
  • the aminocarbonyl compound has a function of increasing the rate at which divalent chromium is reduced to metallic chromium.
  • the present inventor believes that the rate at which trivalent chromium is reduced to metallic chromium is increased.
  • the aminocarbonyl compound has an action of suppressing the triation of trivalent chromium.
  • trivalent chromium is reduced to metallic chromium
  • hydrolysis and olation reactions occur near the cathode, which may inhibit metal chromium electrodeposition.
  • an aminocarbonyl compound is present in the plating solution, the compound forms a complex with trivalent chromium. Since this complex formation reaction is a competitive reaction with the trivalent chromium olation, the trivalent chromium olation can be minimized. This also increases the reduction rate of trivalent chromium.
  • the aminocarbonyl compound serves as a pH buffer that hardens the plating film by supplying nitrogen atoms contained in the compound to the plating film and maintains the pH of the plating solution. It also has an effect.
  • aminocarbonyl compounds have a remarkable effect when used in combination with the sulfamate compounds described above. Details are as follows. The advantages of blending the sulfamate compound in the plating solution are as described above, and the electrodeposition stress of the plating film tends to increase due to the use of the sulfamate compound. An increase in electrodeposition stress causes cracks in the plating film. On the other hand, when the sulfamate compound and the aminocarbonyl compound coexist, the growth rate of the chromium crystal is increased by the aminocarbonyl compound, so that the development of the magnetic field is inhibited, and as a result, the electrodeposition stress is lowered.
  • the amount of sulfamate added to the aminocarbonyl compound is preferably in the range of 0.4 to 1.5 in terms of molar ratio.
  • the hard particles are mixed in the plating solution so as to be 10 to 100 g / liter, particularly 20 to 60 g / liter, because the fluidity of the plating solution is suitable, so that the hard particles are taken into the plating film. It is preferable from the viewpoint that the amount becomes an appropriate amount.
  • Surfactants include anionic surfactants such as monoalkyl sulfates and alkylpolyoxyethylene sulfates, cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts, polyoxyethylene alkyl ethers and fatty acid sorbitans
  • anionic surfactants such as esters are exemplified.
  • aluminum chloride exhibits an advantageous effect of controlling the zeta potential of hard particles to improve the dispersibility of the particles and preventing aggregation of the hard particles. Moreover, it becomes easy to take in hard particles uniformly in a plating film. From the viewpoint of making these effects even more prominent, 0.005 to 0.5 mol, particularly 0.01 to 0.3 mol, of aluminum chloride is added to 1 mol of trivalent chromium in the plating solution. Is preferred. For the same reason, the concentration of aluminum chloride in the plating solution is preferably 0.02 to 0.5 mol / liter, particularly 0.05 to 0.3 mol / liter.
  • hard particles having a zeta potential of 20 to 100 mV, particularly 40 to 70 mV from the viewpoint of dispersion of the particles in a uniform and monodispersed state.
  • the zeta potential of the hard particles is measured by, for example, Zetasizer Nano Series (manufactured by Malvern Instruments Ltd.).
  • a water-soluble organic solvent can be added to the plating solution.
  • the water-soluble organic solvent By blending the water-soluble organic solvent, it is possible to effectively prevent plating plating. Further, the dispersibility of the hard particles is improved. From these viewpoints, the water-soluble organic solvent is preferably blended in an amount of 0.4 to 2.1 mol, particularly 0.6 to 1.3 mol, with respect to 1 mol of trivalent chromium in the plating solution.
  • the water-soluble organic solvent include glycerin, polyethylene glycol, ethanol, methanol, and n-propanol.
  • the plating solution contains a pH buffer, and the pH of the solution is preferably kept in the range of 0.5 to 2.0, more preferably 0.8 to 1.5.
  • Examples of water used as a plating solution medium include pure water, ion exchange water, industrial water, tap water, and distilled water. Among these, it is preferable to use industrial water and tap water from the economical aspect on the premise that the storage stability of the plating solution and the film properties are not affected.
  • the sulfonic acid group-containing compound or a salt thereof By adding a sulfonic acid group-containing compound or a salt thereof to the plating solution, it is possible to form the chromium plating film having the plurality of network-like microcracks (A2) described above.
  • the sulfonic acid group-containing compound or a salt thereof has an action of increasing the density of microcracks (A2) of the film, and imparts excellent corrosion resistance to the chromium plating film.
  • sulfonic acid group-containing compound or salt thereof that can be used
  • sulfonic acid, disulfonic acid, and salts thereof are preferable.
  • Specific examples of the sulfonic acid and disulfonic acid include aliphatic sulfonic acid (eg, methanesulfonic acid, ethanesulfonic acid, etc.), aliphatic disulfonic acid (eg, methanedisulfonic acid, ethanedisulfonic acid, etc.), and aromatic sulfonic acid (eg, benzene).
  • Sulfonic acid Sulfonic acid, p-toluenesulfonic acid, etc.
  • aromatic disulfonic acid for example, benzene disulfonic acid, etc.
  • concentration of the sulfonic acid group-containing compound or salt thereof in the plating solution is preferably 0.02 to 0.1 mol / L, more preferably 0.04 to 0.07 mol / L, based on the sulfonic acid group.
  • the temperature of the plating bath is preferably set to 30 to 60 ° C., more preferably 40 to 60 ° C.
  • the current density is preferably set to 15 to 60 A / dm 2 , more preferably 20 to 40 A / dm 2 .
  • the anode graphite or various dimensionally stabilized anodes (DSA) such as a Ti—Pt electrode can be used, and as the cathode, an object to be plated can be used.
  • the thickness of the plating film can be controlled by the plating time. Hard particles are taken into the plating film in the process of electrodeposition of chromium metal.
  • chromium is generally amorphous. Amorphous chromium plating films tend to have lower hardness than crystalline ones. Therefore, the plating film formed by electrolytic plating can be crystallized by heat treatment (P2) to form a crystalline chromium film.
  • the conditions for the heat treatment are preferably 150 to 300 ° C. in the atmosphere.
  • the heating time is preferably 30 to 60 minutes, provided that the temperature is within this range.
  • the said heat processing (P2) may serve as the heat processing (P1) mentioned above in the chromium plating film.
  • the plating film formed by electrolytic plating generally contains a carbon component derived from a carbon-containing compound contained in the plating solution.
  • the carbon component and chromium react to generate chromium carbide in the plating film.
  • This carbide is preferable because it contributes to increasing the hardness of the plating film.
  • the degree of formation of this carbide can be controlled by controlling the amount of the carbon-containing compound remaining in the plating film depending on the degree of formation of the organic complex of the plating film formed by electrolytic plating.
  • An additional step can be performed prior to and / or after the electrolytic plating on the surface of the base material.
  • a step of forming one or more additional base films between the surface of the base material and the plating film can be performed prior to performing electrolytic plating on the surface of the base material.
  • a step of forming one or more additional upper layer films on the plating film can be performed.
  • a method known in the technical field can be appropriately employed.
  • the step (a) may be performed in order to form the above-described minute crack (A1), and further, particles having self-lubricating properties are contained in the minute crack (A1).
  • the step (b) may be performed following the step.
  • the chrome plated product thus manufactured is particularly suitable as a sliding member for, for example, a piston ring, various rolls, and a shock absorber of a reciprocating internal combustion engine.
  • Examples 1 and 2 and Comparative Example 1 The components shown in Table 1 below were added to water to prepare a trivalent chromium plating solution having the composition shown in the same table. Using the obtained plating solution, electrolytic plating was performed under the conditions shown in the same table. A high density graphite plate was used as the anode. An S45C polished steel plate was used as the cathode. The longitudinal section of the plating film and the scanning electron microscope image of the surface of the chromium plating product obtained in Examples 1 and 2 are shown in FIGS.
  • Example 2 The follow-up test of Example 1 of Patent Document 1 (Japanese Patent Laid-Open No. 6-316789) was conducted. That is, the trivalent chromium plating bath composition contained 100 g / l CrCl 3 6H 2 O, 80 g / l HCOOK, 10 g / l NH 3 Br, 50 g / l NH 4 Cl, and was adjusted to pH 3.0. Using a bath, an anodic ferrite electrode, a brass plate as the cathode, 5 g / l of ⁇ -SiC (average particle size 0.5 ⁇ m) as hard particles were added, and electrodeposition was performed at 8 A / dm 2 for 120 minutes.
  • the trivalent chromium plating bath composition contained 100 g / l CrCl 3 6H 2 O, 80 g / l HCOOK, 10 g / l NH 3 Br, 50 g / l NH 4 Cl, and was adjusted to pH 3.
  • the amount of chromium and carbon contained in the chromium plating film in the obtained plated product was measured by the following method. Moreover, the thickness of the plating film was measured by the method described above. Furthermore, the appearance of the surface of the plating film was visually observed to evaluate the degree of gloss and the presence or absence of cracks. Further, the content of hard particles in the plating film was measured by the following method, and the dispersibility of the hard particles was evaluated by the following method. Further, the Vickers hardness of the plating film was measured by the following method, and the wear resistance was evaluated by the following method. The results are shown in Table 2 below.
  • the area ratio (volume%) of the ceramic particles in the observation field per unit area was determined. This area ratio is measured by the following method. That is, the longitudinal section of the plating film is observed at a magnification of 1000 times using a laser microscope (LEXTO OLS1100 manufactured by OLYMPUS). Then, the ratio of the total number of secondary particles to the ratio of the area occupied by the ceramic particles present in the 30 ⁇ m square frame and the total number of hard particles is measured and measured using the laser microscope.
  • the evaluation of the dispersibility of the hard particles was evaluated by observing whether or not the hard particles were uniformly present in the 30 ⁇ m square using a laser microscope (LEXTO OLS1100 manufactured by OLYMPUS). When it was uniform, it was evaluated as “ ⁇ ”, and when it was not uniform, it was evaluated as “x”.
  • the wear resistance of the plating film was evaluated using a Kaken type corrosion wear tester.
  • Cast iron FC250 conforming to JIS G 5501-1995
  • the contact load in the friction tester was 39N.
  • the temperature of the corrosive liquid was normal temperature.
  • the amount of wear of the plating film was measured, and the value was used as an index of wear resistance.
  • the plated product of each example has higher hardness and wear resistance than the plated product of each comparative example. Moreover, in the plated product of each Example, the hard particles are uniformly and monodispersed in the plating film. On the other hand, in the plated product of Comparative Example 2, cracks are generated, the dispersion of hard particles is non-uniform, and particle aggregation is observed.
  • Example 3 The chromium plated product obtained in Example 2 was heat-treated at 400 ° C. for 1 hour in the atmosphere.
  • the chromium plated product after the heat treatment was measured for Vickers hardness in the same manner as in Example 1. The result was 1550. It was found that a plating film having a higher hardness than that before the heat treatment was formed.
  • Example 4 (A) process The chromium plating product (T1) obtained in Example 2 was heat-treated at 200 ° C. for 1 hour to obtain a chromium plating product (T2) having a minute crack (A1).
  • the physical properties of the chromium plating product (T2) were evaluated by the method described above.
  • the plating film on the chromium plating product (T2) had a groove width of 0.2 ⁇ m, a surface occupation ratio of 5 area%, and a distribution density of It was confirmed that the micro cracks (A1) were 400 / cm.
  • a scanning electron microscope image of the surface of the plating film in the chromium plating product (T2) is shown in FIG.
  • (B) step (Molybdenum disulfide) was used as self-lubricating particles, which were dissolved in ethanol to prepare a 10% solution.
  • 50 g of a chromium plating product having a microcrack (A1) obtained in the step (ii) and the 10% solution prepared above were charged into the flask.
  • the inside of the flask was gradually evacuated and allowed to stand for 1 hour at 20 ° C. with stirring.
  • the chromium plating product having a microcrack (A1) was collected by filtration, and dried at 200 ° C. to obtain a chromium plating product (T3) containing particles having self-lubricating properties in the microcrack (A1). .
  • the chromium plating product (T3) was subjected to fluorescent X-ray analysis, and the amount of self-lubricating particles contained in the microcracks (A1) was measured and found to be 3%.
  • Example 5 The chromium plated product obtained in Example 1 was heat-treated at 200 ° C. for 1 hour to obtain a chromium plated product (T4) having a minute crack (A1).
  • a scanning electron microscope image of the surface of the plating film in the chromium plating product (T4) is shown in FIG.
  • the physical properties of the chromium plating product (T4) were evaluated by the method described above.
  • the plating film on the chromium plating product (T4) had a groove width of 3.5 ⁇ m, a surface occupation ratio of 12 area%, and a distribution density of It was confirmed that the micro cracks (A1) were 350 / cm.
  • a chromium plated product containing self-lubricating particles (molybdenum disulfide) in microcracks (A1) was obtained.
  • the chromium plating product was subjected to fluorescent X-ray analysis, and the amount of self-lubricating particles contained in the microcracks (A1) was measured and found to be 11.5 area%.
  • Example 6 The following components were added to water to prepare a trivalent chromium plating solution having the composition shown in Table 3 below. Using the obtained plating solution, electrolytic plating was performed under the conditions shown in the same table to obtain a chromium plating product (T5). A high density graphite plate was used as the anode, and an S45C polished steel plate was used as the cathode.
  • the groove width was 0.5 ⁇ m
  • the surface occupation ratio was 6.0 area%
  • the distribution density was 650 lines / cm, and before the heat treatment It was confirmed that there was almost no change from the chromium plating product (T5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The purpose of the present invention is to provide a chromium plated article and a chromium plating film, each of which is produced using trivalent chromium as a chromium source and has improved wear resistance. A chromium plated article of the present invention is obtained by forming a chromium plating film on the surface of a base. Particles formed of a nitride, carbide or oxide are uniformly dispersed in the chromium plating film. The particles are contained in the chromium plating film in an amount of 10-30% by mass, and are present in the chromium plating film in a monodisperse state.

Description

クロムめっき物及びクロムめっき皮膜Chrome plating and chrome plating film
 本発明は、クロムめっき浴を用いて製造されたクロムめっき物及びクロムめっき皮膜に関する。 The present invention relates to a chromium plating product and a chromium plating film manufactured using a chromium plating bath.
 クロムめっきは、大気中で腐食せず光沢を失わないので、装飾めっきとして広く用いられている。また高い硬度と低い摩擦係数を有するので、耐摩耗性を要する機械部品等に広く用いられている。しかしこのめっきに用いられるめっき液には多量の六価クロムが用いられている。六価クロムは環境負荷が高いことが懸念されるので、その懸念の少ない三価クロムのめっき液を用いたクロムめっきの開発が種々検討されている。 Chrome plating is widely used as decorative plating because it does not corrode in the atmosphere and does not lose its luster. In addition, since it has a high hardness and a low coefficient of friction, it is widely used for machine parts that require wear resistance. However, a large amount of hexavalent chromium is used in the plating solution used for this plating. Hexavalent chromium is feared to have a high environmental load, and various developments of chromium plating using a trivalent chromium plating solution with little concern are being studied.
 例えば特許文献1においては、三価クロムめっき皮膜中に、耐摩耗性の硬質粒子や自己潤滑粒子を含有させることが記載されている。同文献に記載の技術によれば、クロム源として三価のクロムを用いているので六価のクロムを用いた場合に比べて環境負荷は小さくなる。また、めっき皮膜中に硬質粒子等を含有しているので、めっき皮膜の耐摩耗性が向上する。 For example, Patent Document 1 describes that trivalent chromium plating film contains hard wear-resistant particles and self-lubricating particles. According to the technique described in this document, since trivalent chromium is used as the chromium source, the environmental load is smaller than when hexavalent chromium is used. In addition, since the plating film contains hard particles and the like, the wear resistance of the plating film is improved.
特開平6-316789号公報JP-A-6-316789
 しかし、めっき皮膜中に硬質粒子等を分散含有させる技術は、六価クロムのめっき液を用いた場合でも従来から行われており、単に硬質粒子等をめっき皮膜中に含有させるだけでは、該皮膜の耐摩耗性を高めることに限界があった。 However, the technique of dispersing hard particles and the like in the plating film has been conventionally performed even when a hexavalent chromium plating solution is used. There was a limit to improving the wear resistance of the steel.
 本発明の課題は、前述した従来技術が有する種々の欠点を解消し得るクロムめっき物及びクロムめっき皮膜を提供することにある。 An object of the present invention is to provide a chromium plating product and a chromium plating film capable of solving various disadvantages of the above-described conventional technology.
 本発明は、母材の表面にクロムめっき皮膜が設けられてなるクロムめっき物において、
 前記クロムめっき皮膜中に、窒化物、炭化物又は酸化物からなる複数の粒子が均一に分散されており、
 前記粒子は、前記クロムめっき皮膜中に10~30容量%含有されており、かつ単分散状態で前記クロムめっき皮膜中に存在している、ことを特徴とするクロムめっき物を提供することにより、前記課題を解決したものである。
The present invention is a chromium plating product in which a chromium plating film is provided on the surface of a base material,
In the chromium plating film, a plurality of particles made of nitride, carbide or oxide are uniformly dispersed,
By providing the chromium plating product, wherein the particles are contained in the chromium plating film in an amount of 10 to 30% by volume, and are present in the chromium plating film in a monodispersed state, The problem is solved.
 更に本発明は、複数のセラミックス粒子が均一に分散されてなるクロムめっき皮膜であって、
 前記セラミックス粒子は、前記クロムめっき皮膜中に10~30容量%含有されており、かつ単分散状態で前記クロムめっき皮膜中に存在している、ことを特徴とするクロムめっき皮膜を提供することにより、前記課題を解決したものである。
Furthermore, the present invention is a chromium plating film in which a plurality of ceramic particles are uniformly dispersed,
By providing the chromium plating film, wherein the ceramic particles are contained in the chromium plating film in an amount of 10 to 30% by volume and are present in the chromium plating film in a monodispersed state. The above-mentioned problem is solved.
 本発明によれば、三価のクロムをクロム源として用いて製造された、耐摩耗性の向上したクロムめっき物及びクロムめっき皮膜が提供される。 According to the present invention, there are provided a chromium plating product and a chromium plating film, which are manufactured using trivalent chromium as a chromium source and have improved wear resistance.
図1(a)及び(b)は、実施例1で得られたクロムめっき物におけるめっき皮膜の縦断面及び表面の走査型電子顕微鏡像である。FIGS. 1A and 1B are a scanning electron microscope image of a longitudinal section and a surface of a plating film in the chromium plating product obtained in Example 1. FIG. 図2(a)及び(b)は、実施例1で得られたクロムめっき物におけるめっき皮膜の縦断面及び表面の走査型電子顕微鏡像である。2A and 2B are a scanning electron microscopic image of the longitudinal section and surface of the plating film in the chromium plating product obtained in Example 1. FIG. 図3は、実施例4で得られたクロムめっき物におけるめっき皮膜の表面の走査型電子顕微鏡像である。FIG. 3 is a scanning electron microscope image of the surface of the plating film in the chromium plating product obtained in Example 4. 図4は、実施例5で得られたクロムめっき物におけるめっき皮膜の表面の走査型電子顕微鏡像である。FIG. 4 is a scanning electron microscope image of the surface of the plating film in the chromium plating product obtained in Example 5.
 本発明のクロムめっき物は、母材の表面にクロムめっき皮膜が設けられてなるものである。このクロムめっき皮膜は、三価のクロムを含有し、かつ六価のクロムを実質的に含有しないめっき液を用いて製造されたものである。クロム源として三価のクロムを用いることで、緻密なめっき皮膜を製造することができる。これに対して六価のクロムを用いると、皮膜は緻密とはならず、表面に多数のクラックが生じためっき皮膜が形成されてしまう。 The chrome plated product of the present invention has a chrome plating film provided on the surface of a base material. This chromium plating film is manufactured using a plating solution containing trivalent chromium and substantially free of hexavalent chromium. By using trivalent chromium as the chromium source, a dense plating film can be produced. On the other hand, when hexavalent chromium is used, the film does not become dense, and a plating film having a large number of cracks on the surface is formed.
 クロムめっき物の母材を構成する材料としては、前記めっき液を用いたクロムめっきが可能な材料を用いることができる。そのような材料としては、一般に金属材料が挙げられるが、非金属材料であってもよい。金属材料としては、例えば鉄若しくはアルミニウム又はそれらを含む合金の鋳造品や鍛造品が挙げられる。また、クロムめっき物におけるクロムめっき皮膜は、クロムめっき物の具体的な用途に応じ、母材の表面全域に形成されていてもよく、あるいは母材の表面の一部にのみ形成されていてもよい。 As a material constituting the base material of the chrome plating product, a material capable of chrome plating using the plating solution can be used. Such a material generally includes a metal material, but may be a non-metal material. Examples of the metal material include cast products and forged products of iron, aluminum, or alloys containing them. Further, the chromium plating film in the chromium plating product may be formed on the entire surface of the base material, or may be formed only on a part of the surface of the base material, depending on the specific use of the chromium plating product. Good.
 クロムめっき皮膜は、粒子を除く部位は実質的にクロム(金属クロム)から構成されているが、クロム以外の元素を更に含んでいてもよい。例えばクロムの炭化物を含んでいてもよい。クロムめっき皮膜が、金属クロムに加えて、クロムの炭化物を含んでいると、該めっき皮膜の耐摩耗性を向上させることができる。この観点から、クロムめっき皮膜は、前記粒子を除き、クロムを93~99.5質量%含み、更に炭素を0.5~7質量%含んでいることが好ましく、クロムを99.3~99.5質量%含み、更に炭素を0.5~0.7質量%含んでいることが好ましい。クロムめっき皮膜中に含まれるクロム及び炭素の量は、クロムめっき皮膜をEPMAで元素分析することで測定される。 In the chromium plating film, the portion excluding the particles is substantially composed of chromium (metallic chromium), but may further contain an element other than chromium. For example, chromium carbide may be included. When the chromium plating film contains chromium carbide in addition to metallic chromium, the wear resistance of the plating film can be improved. From this viewpoint, the chromium plating film preferably contains 93 to 99.5% by mass of chromium, and further contains 0.5 to 7% by mass of carbon, excluding the particles, and 99.3 to 99.99% of chromium. It is preferable that 5% by mass is contained, and further 0.5 to 0.7% by mass of carbon is contained. The amount of chromium and carbon contained in the chromium plating film is measured by elemental analysis of the chromium plating film with EPMA.
 クロムめっき皮膜中には粒子が含有されている。この粒子は、クロムめっき皮膜の耐摩耗性を高める目的で含有されている(この意味で、以下、この粒子のことを「硬質粒子」とも言う。)。硬質粒子は、めっきによって析出したクロムをマトリックスにして、該マトリックス中に分散している。硬質粒子は、主として粒界や欠陥に存在し、それによってクラックの伝播が抑えられ、疲労や破壊、剥離が効果的に緩和される。また、表面に露出した硬質粒子は相手摺動面との摩擦や摩耗作用において硬質粒子自身が摺動面として相手摺動面と接触作用し、耐摩耗及び耐焼付けの向上や油膜形成の助けとなる。 粒子 Particles are contained in the chrome plating film. These particles are contained for the purpose of increasing the wear resistance of the chromium plating film (in this sense, these particles are hereinafter also referred to as “hard particles”). The hard particles are dispersed in the matrix using chromium deposited by plating as a matrix. Hard particles are mainly present at grain boundaries and defects, thereby suppressing the propagation of cracks and effectively mitigating fatigue, destruction, and peeling. In addition, the hard particles exposed on the surface act as a sliding surface in contact with the mating sliding surface in the friction and wear action with the mating sliding surface, thereby improving wear resistance and seizure resistance and helping to form an oil film. Become.
 本発明は、クロムめっき皮膜における硬質粒子の分散状態に特徴の一つを有している。詳細には、硬質粒子は、めっき皮膜中に均一に分散されている。均一に分散とは、めっき皮膜の任意の断面を観察したときに、そこに存在する硬質粒子の数が略一定になっていることを言う。例えば、めっき皮膜の任意の断面を1000倍の倍率で、100μm×100μmの視野5箇所を電子顕微鏡観察したときに、そこに存在する硬質粒子の分布状態が不均一であったり、偏在していることが観察されない場合、硬質粒子は均一に分散されていると言える。めっき皮膜中に硬質粒子が均一に分散していることによって、めっき皮膜の耐摩耗性が向上する。これに対して、例えば六価のクロムのめっき液を用いてめっき皮膜を形成すると、該めっき皮膜の厚み方向に延びるクラック(亀裂)が形成され、該クラック中に硬質粒子が偏在することが知られている。その結果、六価のクロムのめっき液を用いて形成されためっき皮膜は、硬質粒子を含んでいたとしても、耐摩耗性の向上に限界がある。 The present invention has one of the characteristics in the dispersion state of the hard particles in the chromium plating film. Specifically, the hard particles are uniformly dispersed in the plating film. Uniformly dispersed means that the number of hard particles present in the plating film is substantially constant when an arbitrary cross section of the plating film is observed. For example, when an arbitrary cross section of the plating film is observed with an electron microscope at five magnifications of 100 μm × 100 μm at a magnification of 1000 times, the distribution state of the hard particles present therein is uneven or unevenly distributed. If this is not observed, it can be said that the hard particles are uniformly dispersed. The hard particles are uniformly dispersed in the plating film, whereby the wear resistance of the plating film is improved. On the other hand, for example, when a plating film is formed using a hexavalent chromium plating solution, a crack extending in the thickness direction of the plating film is formed, and hard particles are unevenly distributed in the crack. It has been. As a result, the plating film formed using the hexavalent chromium plating solution has a limit in improving the wear resistance even if it contains hard particles.
 めっき皮膜中に含有される硬質粒子は、該皮膜中に均一に分散していることに加えて、単分散状態で存在している。単分散状態とは、一次硬質粒子が実質的に凝集せずに存在している状態のことである。例えばめっき皮膜の任意の断面をレーザー顕微鏡で観察し、1000倍の倍率で100μm×100μmの視野5箇所を電子顕微鏡観察したときに、そこに存在する硬質粒子の総数(一次粒子の総数と二次粒子の総数との総和)に対する、二次粒子の総数の割合が5%以下である場合には、硬質粒子は単分散状態で存在していると言える。 The hard particles contained in the plating film are present in a monodispersed state in addition to being uniformly dispersed in the film. The monodispersed state is a state in which primary hard particles are present without substantially agglomerating. For example, when an arbitrary cross section of the plating film is observed with a laser microscope and when five fields of view of 100 μm × 100 μm are observed with an electron microscope at a magnification of 1000 times, the total number of hard particles (the total number of primary particles and secondary particles) When the ratio of the total number of secondary particles to the total number of particles) is 5% or less, it can be said that the hard particles exist in a monodispersed state.
 更に、めっき皮膜中に含有される硬質粒子は、該めっき皮膜中における含有量が10~30容量%と高い割合になっている。このような高割合で硬質粒子を含有させることで、該硬質粒子を均一にかつ単分散状態で分散させることとの相乗効果で、めっき皮膜の耐摩耗性を向上させることができる。硬質粒子の含有量が10容量%未満である場合には、硬質粒子を含有させたことの効果が不十分であり、めっき皮膜の耐摩耗性を十分に高めることができない。逆に、硬質粒子の含有量が30容量%超である場合には、クロムと硬質粒子との割合のバランスが崩れてしまい、結果的に耐摩耗性の向上を望めない。めっき皮膜の耐摩耗性の一層の向上の観点からは、めっき皮膜中の硬質粒子の含有量を15~30容量%とすることが好ましい。めっき皮膜中に含有される硬質粒子の割合は、レーザー顕微鏡を用いて、1000倍の倍率で観察する。そして30μm四方の枠内に存在するセラミックス粒子が占有する面積の比率を算出する。なお、この方法で測定された値は厳密にはセラミックス粒子が占有する面積%であるが、本発明ではこれを便宜上「容積%」と呼んでいる(以下同じ。)。 Furthermore, the hard particles contained in the plating film have a high content of 10 to 30% by volume in the plating film. By containing hard particles at such a high ratio, the wear resistance of the plating film can be improved by a synergistic effect with the dispersion of the hard particles uniformly and in a monodispersed state. When the content of the hard particles is less than 10% by volume, the effect of containing the hard particles is insufficient, and the wear resistance of the plating film cannot be sufficiently increased. On the other hand, when the content of hard particles is more than 30% by volume, the balance of the ratio between chromium and hard particles is lost, and as a result, improvement in wear resistance cannot be expected. From the viewpoint of further improving the wear resistance of the plating film, the content of hard particles in the plating film is preferably 15 to 30% by volume. The ratio of the hard particles contained in the plating film is observed at a magnification of 1000 times using a laser microscope. And the ratio of the area which the ceramic particle which exists in a 30 micrometers square frame occupies is calculated. Strictly speaking, the value measured by this method is the area% occupied by the ceramic particles, but in the present invention, this is called “volume%” for convenience (the same applies hereinafter).
 めっき皮膜中に含有される硬質粒子の割合やその分散状態を、上述したとおりとするためには、例えば後述するめっき液を用いてクロムめっきを行えばよい。 In order to make the ratio of hard particles contained in the plating film and the dispersion state thereof as described above, for example, chromium plating may be performed using a plating solution described later.
 めっき皮膜の厚みは、クロムめっき物の具体的な用途に応じて適切に設定すればよい。本発明のクロムめっき物は、硬質めっき及び装飾めっきのいずれにも適用されるものであるところ、硬質めっき及び装飾めっきの双方を含めためっき皮膜の厚みは1~500μm、特に3~300μmとすることが好ましい。特に硬質めっきの場合、厚みは10~500μm、特に5~300μmとすることが好ましく、装飾めっきの場合、厚みは1~5μm、特に2~4μmとすることが好ましい。めっき皮膜の厚みは、その縦断面を、レーザー顕微鏡(OLYMPUS社製 LEXTO OLS1100)を用いて400倍の倍率に拡大して測定することができる。 The thickness of the plating film may be appropriately set according to the specific use of the chrome plating. The chromium plated product of the present invention is applicable to both hard plating and decorative plating, and the thickness of the plating film including both hard plating and decorative plating is 1 to 500 μm, particularly 3 to 300 μm. It is preferable. Particularly in the case of hard plating, the thickness is preferably 10 to 500 μm, particularly preferably 5 to 300 μm, and in the case of decorative plating, the thickness is preferably 1 to 5 μm, particularly 2 to 4 μm. The thickness of the plating film can be measured by enlarging the longitudinal section thereof at a magnification of 400 times using a laser microscope (LEXTO OLS1100 manufactured by OLYMPUS).
 めっき皮膜中に含有される硬質粒子としては、該皮膜の耐摩耗性を向上させ得るものを用いることができる。そのような硬質粒子としては、例えば窒化物、炭化物又は酸化物からなるものを用いることができる。これらの硬質粒子は一種単独で、又は二種以上を組み合わせて用いることができる。特に、硬質粒子はセラミックス粒子であることが、めっき皮膜の耐摩耗性の向上の点から好ましい。そのようなセラミックス粒子としては、例えばAlN、Si34やBNなどの金属又は半金属の窒化物、TiC、SiC、Cr32、B4C、WCなどの金属又は半金属の炭化物、Al23、Fe34及びTiO2などの金属酸化物が挙げられる。 As the hard particles contained in the plating film, those capable of improving the wear resistance of the film can be used. As such hard particles, for example, those made of nitride, carbide or oxide can be used. These hard particles can be used alone or in combination of two or more. In particular, the hard particles are preferably ceramic particles from the viewpoint of improving the wear resistance of the plating film. Examples of such ceramic particles include metal or semimetal nitrides such as AlN, Si 3 N 4 and BN, metal or semimetal carbides such as TiC, SiC, Cr 3 C 2 , B 4 C and WC, Examples thereof include metal oxides such as Al 2 O 3 , Fe 3 O 4 and TiO 2 .
 硬質粒子の大きさは、クロムめっき物の具体的な用途や、めっき皮膜の厚み等に応じて適切に選択できる。特に粒径を、好ましくは0.1~10μm、更に好ましくは0.3~5μmとすることで、先に述べた疲労や破壊、剥離が効果的に緩和される等の効果が一層顕著となる。めっき皮膜中の硬質粒子の平均粒径は、レーザー顕微鏡(OLYMPUS社製 OLS1100)によって測定される。 The size of the hard particles can be appropriately selected according to the specific use of the chromium plating product, the thickness of the plating film, and the like. In particular, when the particle size is preferably 0.1 to 10 μm, more preferably 0.3 to 5 μm, the effects such as fatigue, breakage, and separation described above are effectively relieved. . The average particle diameter of the hard particles in the plating film is measured by a laser microscope (OLS1100 manufactured by OLYMPUS).
 硬質粒子の形状も、クロムめっき物の具体的な用途や、めっき皮膜の厚み等に応じて適切に選択できる。例えば球状、多面体状、紡錘状、針状又はそれらの組み合わせなどを用いることができる。相手摺動面との摩擦の低減や摩耗作用の向上の点からは、球状粒子を用いることが好ましい。 The shape of the hard particles can also be appropriately selected according to the specific use of the chrome plating product, the thickness of the plating film, and the like. For example, a spherical shape, a polyhedral shape, a spindle shape, a needle shape, or a combination thereof can be used. Spherical particles are preferably used from the viewpoint of reducing friction with the mating sliding surface and improving the wear action.
 めっき皮膜には、上述した耐摩耗性の向上に寄与する硬質粒子に加え、必要に応じ自己潤滑性を有する粒子を併用して含有させてもよい。これによって、めっき皮膜の耐摩耗性を一層向上させることができる。自己潤滑性を有する粒子としては、例えばグラファイト、二硫化モリブデン、二硫化タングステン、フッ素樹脂、窒化ボロンなどが挙げられる。これらの粒子は、めっき皮膜中に好ましくは10~30容量%、更に好ましくは15~30容量%含有される。これらの粒子は、先に述べた硬質粒子と同様に、めっき皮膜中に均一に分散されていてもよく、また、後述する微小亀裂内(A1)に含有されていてもよい。めっき皮膜中に均一に分散させる場合は単分散状態で分散していることが好ましい。更に、これらの粒子の形状は、例えば球状、多面体状、紡錘状、針状又はそれらの組み合わせなどとすることができる。特に球状であることが好ましい。 In the plating film, in addition to the hard particles contributing to the above-described improvement in wear resistance, particles having self-lubricating properties may be used in combination as necessary. Thereby, the wear resistance of the plating film can be further improved. Examples of the self-lubricating particles include graphite, molybdenum disulfide, tungsten disulfide, fluororesin, and boron nitride. These particles are preferably contained in the plating film in an amount of 10 to 30% by volume, more preferably 15 to 30% by volume. Similar to the hard particles described above, these particles may be uniformly dispersed in the plating film, or may be contained in the microcracks (A1) described later. When uniformly dispersing in the plating film, it is preferably dispersed in a monodispersed state. Furthermore, the shape of these particles can be, for example, spherical, polyhedral, spindle-shaped, needle-shaped, or a combination thereof. A spherical shape is particularly preferable.
 めっき皮膜中に自己潤滑性を有する粒子を含有させる方法としては、前記以外に、本めっき皮膜の表面に溝幅が好ましくは0.1~6.0μm、更に好ましくは0.2~6.0μm、一層好ましくは0.2~2.0μmの複数の微小亀裂(A1)を積極的に生成させ、この微少亀裂(A1)中に自己潤滑性を有する粒子を含有させる方法がある。複数の前記微少亀裂(A1)は、クロムめっき物表面における表面占有率が好ましくは2~12面積%であり、更に好ましくは4~10面積%である。分布密度は好ましくは200~2000本/cm、更に好ましくは250~1500本/cmである。表面占有率や分布密度がこの範囲内であると、クロムめっき皮膜の強度等の諸物性を低下させることなくクロムめっき物の耐摩耗性を一層向上させることができるので好ましい。 In addition to the above method, the plating film has a groove width of preferably 0.1 to 6.0 μm, more preferably 0.2 to 6.0 μm, in addition to the above method. More preferably, there is a method in which a plurality of microcracks (A1) of 0.2 to 2.0 μm are actively generated and particles having self-lubricating properties are contained in the microcracks (A1). The plurality of microcracks (A1) preferably have a surface occupancy ratio of 2 to 12 area%, more preferably 4 to 10 area%, on the surface of the chromium plating product. The distribution density is preferably 200 to 2000 lines / cm, more preferably 250 to 1500 lines / cm. It is preferable that the surface occupancy rate and the distribution density are within this range because the wear resistance of the chromium plated product can be further improved without deteriorating various physical properties such as the strength of the chromium plated film.
 前記微小亀裂(A1)の溝幅は、めっき皮膜の表面を1000の倍率で顕微鏡観察し、100μm×100μmの視野で任意に5個の亀裂を抽出して、それらの溝幅を測定し、それらの平均値とする。 The groove widths of the microcracks (A1) were obtained by observing the surface of the plating film with a microscope at a magnification of 1000, extracting arbitrarily five cracks in a field of 100 μm × 100 μm, measuring the groove widths, The average value of
 前記微少亀裂(A1)の表面占有率は、めっき皮膜表面の走査型電子顕微鏡写真から画像解析によって求める。具体的には、露出した面の走査型電子顕微鏡写真を撮影し、得られた写真を画像処理解析装置に取り込み、画像ソフトウェアを用いて画像処理する。写真中のめっき皮膜表面の面積(128μm×16μm)から微小亀裂の無い部分の合計面積を差し引いたものを微小亀裂の面積とする。そしてめっき皮膜表面の面積(128μm×16μm)を100面積%として、微小亀裂の面積の割合を求める。めっき皮膜に形成された前記微小亀裂(A1)の分布密度(本/cm)は、露出した面を10×10倍の面積倍率で写真撮影し、得られた写真の皮膜表面に長さ10cmの直線を任意に5~10本引き、直線と微小亀裂の交点を数え、平均することにより求める。 The surface occupancy of the microcrack (A1) is determined by image analysis from a scanning electron micrograph of the plating film surface. Specifically, a scanning electron micrograph of the exposed surface is taken, the obtained photograph is taken into an image processing analysis apparatus, and image processing is performed using image software. The area of the surface of the plating film in the photograph (128 μm × 16 μm) minus the total area of the portions without microcracks is defined as the area of microcracks. Then, the ratio of the area of the microcracks is obtained by setting the area (128 μm × 16 μm) of the plating film surface to 100 area%. The distribution density (lines / cm) of the microcracks (A1) formed in the plating film was obtained by taking a photograph of the exposed surface at an area magnification of 10 × 10 times, and having a length of 10 cm on the film surface of the obtained photograph. It is obtained by arbitrarily drawing 5 to 10 straight lines, counting the intersections of the straight lines and microcracks, and averaging them.
 微小亀裂(A1)内に含まれる自己潤滑性を有する粒子は、(i)該微小亀裂(A1)内に完全に位置していて、めっき皮膜の表面よりも外方に露出していなくてもよい。あるいはこの逆に、(ii)自己潤滑性を有する粒子は、めっき皮膜の表面よりも外方に露出していてもよい。(i)の場合、本発明のクロムめっき物の使用によってめっき皮膜が減耗してくることによって、微小亀裂(A1)内に存在している自己潤滑性を有する粒子が、めっき皮膜の表面よりも外方に露出し始め、潤滑効果が発揮される。 The self-lubricating particles contained in the microcracks (A1) may be (i) completely located in the microcracks (A1) and not exposed outward from the surface of the plating film. Good. Or conversely, (ii) the particles having self-lubricating properties may be exposed outward from the surface of the plating film. In the case of (i), the use of the chromium plating product of the present invention causes the plating film to be depleted, so that the self-lubricating particles present in the microcracks (A1) are more than the surface of the plating film. It begins to be exposed to the outside and exerts a lubricating effect.
 クロムめっき皮膜中に自己潤滑性を有する粒子を含有させる具体的な方法は、以下の(イ)及び(ロ)の工程を有する。
(イ)微少亀裂(A1)生成工程。
(ロ)自己潤滑性を有する粒子を含有させる工程。
A specific method for incorporating self-lubricating particles in the chromium plating film includes the following steps (A) and (B).
(A) Micro crack (A1) generation process.
(B) A step of incorporating particles having self-lubricating properties.
 (イ)工程は、クロムめっき皮膜を熱処理(P1)して、溝幅が好ましくは0.1~6.0μm、更に好ましくは0.2~6.0μm、一層好ましくは0.2~4.0μmの微少亀裂を生成させる工程である。
クロムめっき皮膜を熱処理(P1)する条件としては、大気下に200℃以上、特に200~400℃とすることが好ましい。加熱時間は、温度がこの範囲であることを条件として、30~120分することが好ましい。
In the step (a), the chromium plating film is heat-treated (P1), and the groove width is preferably 0.1 to 6.0 μm, more preferably 0.2 to 6.0 μm, and still more preferably 0.2 to 4. This is a step of generating a micro crack of 0 μm.
The conditions for heat-treating (P1) the chromium plating film are preferably 200 ° C. or higher, particularly 200 to 400 ° C. in the atmosphere. The heating time is preferably 30 to 120 minutes, provided that the temperature is within this range.
 次いで(ロ)工程で、微少亀裂(A1)内に、自己潤滑性を有する粒子を含有させる。(ロ)工程では、自己潤滑性を有する粒子を溶解させた溶液に、該微少亀裂(A1)を有するクロムめっき物を減圧下又は真空雰囲気下に浸漬させる。これにより、微少亀裂(A1)内へ自己潤滑性を有する粒子を溶解させた溶解を浸透させることができる。浸漬後、乾燥を行い溶媒を除去することにより、微少亀裂(A1)内に自己潤滑性を有する粒子を析出・含有させることができる。なお、自己潤滑性を有する粒子を溶解させた溶液の濃度は、特に制限なく、自己潤滑性を有する粒子の飽和溶解度以下であればよい。 Next, in step (b), particles having self-lubricating properties are contained in the microcracks (A1). In the step (b), the chromium plating product having the microcracks (A1) is immersed in a solution in which particles having self-lubricating properties are dissolved under reduced pressure or in a vacuum atmosphere. Thereby, the melt | dissolution which melt | dissolved the particle | grains which have self-lubricating property in a micro crack (A1) can be penetrate | infiltrated. After immersion, drying and removing the solvent can precipitate and contain particles having self-lubricating properties in the microcracks (A1). Note that the concentration of the solution in which the self-lubricating particles are dissolved is not particularly limited, and may be not more than the saturation solubility of the self-lubricating particles.
 また、本発明のクロムめっき皮膜は、前記(イ)微少亀裂(A1)生成工程で得られるものの中、溝幅が好ましくは0.2~2.0μm、更に好ましくは0.2~0.5μmの微少亀裂(A1)を有するクロムめっき皮膜を有するものは、クロムめっき物としてそのまま用いことができる。このような微少亀裂(A1)を有するものは油膜が微少亀裂(A1)内に浸透し安定した油膜が維持される。複数の前記微少亀裂(A1)は、クロムめっき物表面において、その表面占有率が好ましくは2~15面積%、更に好ましくは4~12面積%であり、その分布密度が好ましくは150~2000本/cm、更に好ましくは200~1500本/cmであると、安定した油膜形成が可能になる。 In addition, the chromium plating film of the present invention has a groove width of preferably 0.2 to 2.0 μm, more preferably 0.2 to 0.5 μm among those obtained in the step (a) microcrack (A1) generation step. Those having a chromium plating film having a micro crack (A1) can be used as they are as a chromium plating product. In the case of having such a microcrack (A1), the oil film penetrates into the microcrack (A1) and a stable oil film is maintained. The plurality of micro cracks (A1) has a surface occupancy of preferably 2 to 15 area%, more preferably 4 to 12 area%, and a distribution density of 150 to 2000 on the surface of the chromium plating. / Cm, more preferably 200 to 1500 / cm, a stable oil film can be formed.
 また本発明のクロムめっき皮膜は、溝幅が好ましくは0.1~2.0μm、更に好ましくは0.2~2.0μm、一層好ましくは0.2~0.5μmの複数の網目状の微小亀裂(A2)を有し、またその微小亀裂(A2)の表面占有率が好ましくは2~12面積%、更に好ましくは5~10面積%であるクロムめっき皮膜であってもよい。網目状の微少亀裂(A2)を有するめっき皮膜は、該めっき皮膜の厚み方向に亀裂が延びて亀裂が母材に到達することや、微小亀裂(A2)の溝幅が広がることによるめっき皮膜の物性の劣化現象を抑制することができるので優れた耐食性を有したものになる。 Further, the chromium plating film of the present invention preferably has a plurality of network-like fine particles having a groove width of preferably 0.1 to 2.0 μm, more preferably 0.2 to 2.0 μm, and still more preferably 0.2 to 0.5 μm. It may be a chromium plating film having a crack (A2) and having a surface occupation ratio of the microcrack (A2) of preferably 2 to 12 area%, more preferably 5 to 10 area%. The plating film having a mesh-like microcrack (A2) is formed by a crack that extends in the thickness direction of the plating film so that the crack reaches the base material, or the groove width of the microcrack (A2) is widened. Since the deterioration of physical properties can be suppressed, it has excellent corrosion resistance.
 網目状の微少亀裂(A2)は、その分布密度が好ましくは150~1500本/cm、更に好ましくは200~1500本/cmであると、クロムめっき物の耐食性を一層向上させることができる。網目状の微少亀裂(A2)における溝幅、表面占有率及び分布密度の測定は、前述した微少亀裂(A1)についての測定に準じて行うことができる。 When the distribution density of the mesh-like microcracks (A2) is preferably 150 to 1500 / cm, and more preferably 200 to 1500 / cm, the corrosion resistance of the chromium plated product can be further improved. The measurement of the groove width, the surface occupancy, and the distribution density in the fine mesh crack (A2) can be performed according to the measurement for the fine crack (A1) described above.
 クロムめっき物の具体的な用途によっては、母材の表面とめっき皮膜との間に1層又は2層以上の下地膜を設けてもよい。これに加えて、又はこれに代えて、めっき皮膜の上に1層又は2層以上の上層膜を設けてもよい。下地膜としては、例えばアルミナ粒子による硬質粒子複合分散めっき皮膜や、窒化物層から構成されるものを用いることができる。一方、上層膜としては、例えば二硫化モリブデン粒子による固体潤滑粒子複合分散めっき皮膜や、窒化珪素粒子を含有するニッケル-コバルト-リン合金複合めっき皮膜から構成されるものを用いることができる。 Depending on the specific application of the chrome plating product, one or more base films may be provided between the surface of the base material and the plating film. In addition to this, or instead of this, one layer or two or more upper layers may be provided on the plating film. As the undercoat film, for example, a hard particle composite dispersed plating film made of alumina particles or a nitride layer can be used. On the other hand, as the upper layer film, for example, a film composed of a solid lubricating particle composite dispersion plating film made of molybdenum disulfide particles or a nickel-cobalt-phosphorus alloy composite plating film containing silicon nitride particles can be used.
 めっき皮膜は、先に述べたとおり、三価のクロムを含有し、かつ六価のクロムを実質的に含有しないめっき液を用いて製造される。六価のクロムを実質的に含有しないとは、めっき液の製造過程において不可避的に混入及び/又は残留する微量の六価のクロム、例えば2ppm以下で存在する六価クロムは許容するが、意図的に添加及び/又は残留させた六価のクロムを排除する趣旨である。このめっき液は、三価クロム化合物、pH緩衝剤、アミノカルボン酸化合物、スルファミン酸塩化合物、アミノカルボニル化合物及び硬質粒子を含有するものであることが好ましい。 As described above, the plating film is produced using a plating solution containing trivalent chromium and substantially free of hexavalent chromium. The phrase “substantially free of hexavalent chromium” means that trace amounts of hexavalent chromium inevitably mixed in and / or remaining in the plating solution manufacturing process, for example, hexavalent chromium present at 2 ppm or less are allowed. In other words, the hexavalent chromium added and / or left behind is excluded. This plating solution preferably contains a trivalent chromium compound, a pH buffer, an aminocarboxylic acid compound, a sulfamate compound, an aminocarbonyl compound, and hard particles.
 めっき液に含まれる三価クロム化合物としては、クロムの価数が三価である水溶性化合物を特に制限なく用いることができる。そのような化合物としては、例えば塩化クロム、硝酸クロム、硫酸クロム及びリン酸クロムなどの無機酸クロム、乳酸クロム、グルコン酸クロム、グリコール酸クロム、シュウ酸クロム、リンゴ酸クロム、マレイン酸クロム、マロン酸クロム、クエン酸クロム、酢酸クロム及び酒石酸クロムなどの有機酸クロムが挙げられる。これらの三価クロム化合物は、一種又は二種以上を組み合わせて用いることができる。めっき液中における三価のクロムの濃度は、目的とする構造のクロムめっき皮膜を首尾よく形成し得る点から、好ましくは0.2~1.4mol/リットル、更に好ましくは0.4~1.2mol/リットルとする。 As the trivalent chromium compound contained in the plating solution, a water-soluble compound having a trivalent chromium valence can be used without particular limitation. Examples of such compounds include inorganic acid chromium such as chromium chloride, chromium nitrate, chromium sulfate and chromium phosphate, chromium lactate, chromium gluconate, chromium glycolate, chromium oxalate, chromium malate, chromium maleate, and malon. Organic acid chromium such as chromium acid chromium, chromium citrate, chromium acetate and chromium tartrate can be mentioned. These trivalent chromium compounds can be used singly or in combination of two or more. The concentration of trivalent chromium in the plating solution is preferably from 0.2 to 1.4 mol / liter, more preferably from 0.4 to 1.1, from the viewpoint that a chromium plating film having a target structure can be successfully formed. 2 mol / liter.
 めっき液に含まれるpH緩衝剤は、クロムめっきを行うときのpHを適切なものにして、目的とする構造のクロムめっき皮膜を首尾よく形成する目的で配合される。この目的に適したpH緩衝剤としては例えばホウ酸、ホウ酸ナトリウム、ホウ酸カリウム、硫酸アンモニウム、リン酸、リン酸水素二ナトリウム、リン酸水素二カリウム、炭酸ナトリウム、及び炭酸水素ナトリウムなどが挙げられる。特にホウ酸、ホウ酸ナトリウム又はホウ酸カリウムを用いることが好ましい。これらの化合物は単独で用いることもでき、あるいは二種以上を組み合わせた緩衝系として用いることもできる。pH緩衝剤の配合量は、めっき液のpHを好ましくは0.5~2.0、更に好ましくは0.8~1.5に維持し得る量とすることができる。特にpH緩衝剤としてホウ酸を用いると、pH緩衝作用のほかに、還元によって生成する金属クロムの結晶が微細化するという利点がある。 The pH buffer contained in the plating solution is blended for the purpose of successfully forming a chromium plating film having a desired structure by adjusting the pH at the time of chromium plating. Suitable pH buffering agents for this purpose include, for example, boric acid, sodium borate, potassium borate, ammonium sulfate, phosphoric acid, disodium hydrogen phosphate, dipotassium hydrogen phosphate, sodium carbonate, and sodium bicarbonate. . It is particularly preferable to use boric acid, sodium borate or potassium borate. These compounds can be used alone or as a buffer system combining two or more. The blending amount of the pH buffering agent may be an amount that can maintain the pH of the plating solution preferably at 0.5 to 2.0, more preferably at 0.8 to 1.5. In particular, when boric acid is used as a pH buffering agent, there is an advantage that, in addition to the pH buffering action, the metal chromium crystals produced by the reduction become finer.
 めっき液に含まれるアミノカルボン酸化合物は、めっき液中において三価のクロムと錯体を形成し、めっき液の安定化を図る目的や、目的とする構造のクロムめっき皮膜を首尾よく形成する目的で配合される。アミノカルボン酸化合物は、分子中に少なくとも1個のアミノ基と、少なくとも1個のカルボキシル基とを有する化合物である。アミノカルボン酸化合物の例としては、グリシン、アラニン、アスパラギン酸、グルタミン酸、及びアルギニンなどが挙げられる。特にグリシン又はアラニンを用いることが好ましい。これらの化合物は一種又は二種以上を組み合わせて用いることができる。アミノカルボン酸化合物は、めっき液中の三価のクロム1molに対して、0.3~2mol、特に0.5~1.7mol配合されることが、安定したクロム錯体のめっき液が得られ、適正な電解めっきを行うことができる点から好ましい。同様の理由により、めっき液中のアミノカルボン酸化合物の濃度は、0.4~1.7mol/リットル、特に0.5~0.9mol/リットルとすることが好ましい。 The aminocarboxylic acid compound contained in the plating solution forms a complex with trivalent chromium in the plating solution to stabilize the plating solution and to successfully form a chromium plating film with the desired structure. Blended. An aminocarboxylic acid compound is a compound having at least one amino group and at least one carboxyl group in the molecule. Examples of the aminocarboxylic acid compound include glycine, alanine, aspartic acid, glutamic acid, and arginine. In particular, glycine or alanine is preferably used. These compounds can be used alone or in combination of two or more. When the aminocarboxylic acid compound is blended in an amount of 0.3 to 2 mol, particularly 0.5 to 1.7 mol, with respect to 1 mol of trivalent chromium in the plating solution, a stable plating solution of a chromium complex is obtained. This is preferable because proper electrolytic plating can be performed. For the same reason, the concentration of the aminocarboxylic acid compound in the plating solution is preferably 0.4 to 1.7 mol / liter, particularly 0.5 to 0.9 mol / liter.
 めっき液に含まれるスルファミン酸塩化合物は、めっき液において主として支持電解質としての役割を有し、めっき液の電気伝導度を所定のレベルに高める目的で配合される。またスルファミン酸塩化合物は、めっき液のpH緩衝作用も有しているので、先に述べたpH緩衝剤との併用でめっき液のpHが一層安定化する。更にスルファミン酸塩化合物は、三価のクロムが還元するときの触媒作用も有し、それによって金属クロムの結晶の微細化作用や、クロム皮膜の光沢作用が発現する。スルファミン酸塩としては、例えばスルファミン酸アンモニウム、スルファミン酸ナトリウム又はスルファミン酸カリウムを用いることができる。これらの化合物は一種又は二種以上を組み合わせて用いることができる。スルファミン酸塩は、めっき液中の三価のクロム1molに対して、0.3~2.5mol、特に0.5~2mol配合されることが好ましい。このような配合量にすることで、電解めっき時の電圧が下がり、めっき液の液温の上昇が抑制されて、めっき皮膜の特性に影響を及ぼす水酸化クロムの生成が抑制されるからである。またクロムめっきの表面調整作用の安定化及びめっき皮膜の析出の安定化を図ることができるからである。同様の理由により、めっき液中のスルファミン酸塩の濃度は、0.4~2.1mol/リットル、特に0.8~1.9mol/リットルとすることが好ましい。 The sulfamate compound contained in the plating solution mainly has a role as a supporting electrolyte in the plating solution, and is blended for the purpose of increasing the electrical conductivity of the plating solution to a predetermined level. Further, since the sulfamate compound also has a pH buffering action of the plating solution, the pH of the plating solution is further stabilized by the combined use with the pH buffer described above. Further, the sulfamate compound also has a catalytic action when trivalent chromium is reduced, thereby exhibiting the effect of refining metal chromium crystals and the effect of glossing the chromium film. As the sulfamate, for example, ammonium sulfamate, sodium sulfamate, or potassium sulfamate can be used. These compounds can be used alone or in combination of two or more. The sulfamate is preferably added in an amount of 0.3 to 2.5 mol, particularly 0.5 to 2 mol, with respect to 1 mol of trivalent chromium in the plating solution. By using such a blending amount, the voltage at the time of electrolytic plating decreases, the rise in the temperature of the plating solution is suppressed, and the production of chromium hydroxide that affects the properties of the plating film is suppressed. . Moreover, it is because the surface adjustment effect | action of chromium plating can be stabilized and the precipitation of a plating film can be stabilized. For the same reason, the concentration of the sulfamate in the plating solution is preferably 0.4 to 2.1 mol / liter, particularly 0.8 to 1.9 mol / liter.
 めっき液に含まれるアミノカルボニル化合物は、分子中に少なくとも1個のカルボニル基と、少なくとも1個のアミノ基とを有する化合物である。アミノカルボニル化合物は、三価のクロムの還元速度を高める作用を有する。この理由は次のとおりであると考えられる。すなわち、三価のクロムが金属クロムに還元される過程では二価のクロムが生成する。二価のクロムは陰極上や電気二重層の中に吸着された状態で存在していると考えられる。三価のクロムから金属クロムへの還元は、二価のクロムの還元が律速段階になっている。本発明者の検討の結果、アミノカルボニル化合物は、二価のクロムが金属クロムに還元する速度を高める働きを有することが判明した。その結果、三価のクロムが金属クロムに還元する速度が高まったものと本発明者は考えている。 The aminocarbonyl compound contained in the plating solution is a compound having at least one carbonyl group and at least one amino group in the molecule. The aminocarbonyl compound has the effect of increasing the reduction rate of trivalent chromium. The reason is considered as follows. That is, in the process where trivalent chromium is reduced to metallic chromium, divalent chromium is generated. It is considered that divalent chromium is present adsorbed on the cathode or in the electric double layer. The reduction of trivalent chromium to metallic chromium is the rate-limiting step. As a result of the study by the present inventor, it was found that the aminocarbonyl compound has a function of increasing the rate at which divalent chromium is reduced to metallic chromium. As a result, the present inventor believes that the rate at which trivalent chromium is reduced to metallic chromium is increased.
 また、アミノカルボニル化合物は、三価のクロムのオール化を抑制する作用も有する。三価のクロムが金属クロムに還元される過程では、加水分解とオール化の反応が陰極付近で生じ、金属クロムの電析が阻害されることがある。めっき液中にアミノカルボニル化合物が存在すると、該化合物が三価のクロムと錯体を形成する。この錯形成反応は、三価のクロムのオール化との競争反応になるので、三価のクロムのオール化を最小限に抑えることができる。このことによっても三価のクロムの還元速度が高まる。 In addition, the aminocarbonyl compound has an action of suppressing the triation of trivalent chromium. In the process in which trivalent chromium is reduced to metallic chromium, hydrolysis and olation reactions occur near the cathode, which may inhibit metal chromium electrodeposition. When an aminocarbonyl compound is present in the plating solution, the compound forms a complex with trivalent chromium. Since this complex formation reaction is a competitive reaction with the trivalent chromium olation, the trivalent chromium olation can be minimized. This also increases the reduction rate of trivalent chromium.
 これらの有利な作用に加えて、アミノカルボニル化合物は、該化合物に含まれる窒素原子をめっき皮膜に供給して該めっき皮膜を硬質化したり、めっき液のpHを維持したりするpH緩衝剤としての作用も有する。 In addition to these advantageous actions, the aminocarbonyl compound serves as a pH buffer that hardens the plating film by supplying nitrogen atoms contained in the compound to the plating film and maintains the pH of the plating solution. It also has an effect.
 特にアミノカルボニル化合物は、先に説明したスルファミン酸塩化合物と組み合わせて使用することによって顕著な効果を奏する。詳細には次のとおりである。めっき液においてスルファミン酸塩化合物を配合することの利点は上述したとおりであるところ、スルファミン酸塩化合物を用いることに起因してめっき皮膜の電着応力が増大する傾向にある。電着応力の増大はめっき皮膜にクラックを生じさせる原因となる。これに対して、スルファミン酸塩化合物とアミノカルボニル化合物とを共存させると、アミノカルボニル化合物によってクロムの結晶成長速度が速まるので、磁場の発達が阻害され、その結果、電着応力が低下する。これによってめっき皮膜にクラックが発生することが効果的に抑制され、緻密なめっき皮膜を得ることができる。かかる観点から、アミノカルボニル化合物に対するスルファミン酸塩の配合量はモル比で0.4~1.5の範囲であることが好ましい。 In particular, aminocarbonyl compounds have a remarkable effect when used in combination with the sulfamate compounds described above. Details are as follows. The advantages of blending the sulfamate compound in the plating solution are as described above, and the electrodeposition stress of the plating film tends to increase due to the use of the sulfamate compound. An increase in electrodeposition stress causes cracks in the plating film. On the other hand, when the sulfamate compound and the aminocarbonyl compound coexist, the growth rate of the chromium crystal is increased by the aminocarbonyl compound, so that the development of the magnetic field is inhibited, and as a result, the electrodeposition stress is lowered. This effectively suppresses the occurrence of cracks in the plating film, and a dense plating film can be obtained. From this viewpoint, the amount of sulfamate added to the aminocarbonyl compound is preferably in the range of 0.4 to 1.5 in terms of molar ratio.
 硬質粒子は、めっき液中に、10~100g/リットル、特に20~60g/リットルとなるように配合されることが、めっき液の流動性が好適になるので、めっき皮膜への硬質粒子の取り込み量が適正量となる観点から好ましい。 The hard particles are mixed in the plating solution so as to be 10 to 100 g / liter, particularly 20 to 60 g / liter, because the fluidity of the plating solution is suitable, so that the hard particles are taken into the plating film. It is preferable from the viewpoint that the amount becomes an appropriate amount.
 硬質粒子は一般に比重が大きいことから、めっき液中において沈降しやすいことがある。また、粒径によっては硬質粒子どうしがめっき液中において凝集することもある。これらのことを防止する観点から、めっき液中に硬質粒子とともに、凝集防止剤として塩化アルミニウムを配合することが好ましい。また、各種の界面活性剤を配合することも好ましい。界面活性剤としては、モノアルキル硫酸塩及びアルキルポリオキシエチレン硫酸塩等のアニオン性界面活性剤、アルキルトリメチルアンモニウム塩及びジアルキルジメチルアンモニウム塩等のカチオン性界面活性剤、ポリオキシエチレンアルキルエーテル及び脂肪酸ソルビタンエステル等のノニオン性界面活性剤等が挙げられる。 Since hard particles generally have a high specific gravity, they may easily settle in the plating solution. Depending on the particle size, hard particles may aggregate in the plating solution. From the viewpoint of preventing these problems, it is preferable to mix aluminum chloride as a coagulation inhibitor together with hard particles in the plating solution. Moreover, it is also preferable to mix | blend various surfactant. Surfactants include anionic surfactants such as monoalkyl sulfates and alkylpolyoxyethylene sulfates, cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts, polyoxyethylene alkyl ethers and fatty acid sorbitans Nonionic surfactants such as esters are exemplified.
 これらの凝集防止剤のうち塩化アルミニウムは、硬質粒子のゼータ電位をコントロールして粒子の分散性を向上させたり、硬質粒子どうしの凝集を防止したりする有利な効果を発現する。また、硬質粒子がめっき皮膜中へ均一に取り込まれやすくもなる。これらの効果を一層顕著なものとする観点から、塩化アルミニウムは、めっき液中の三価のクロム1molに対して、0.005~0.5mol、特に0.01~0.3mol配合されることが好ましい。同様の理由により、めっき液中の塩化アルミニウムの濃度は、0.02~0.5mol/リットル、特に0.05~0.3mol/リットルとすることが好ましい。なお、硬質粒子として、そのゼータ電位が20~100mV、特に40~70mVであるものを用いることが、該粒子の均一かつ単分散状態での分散の点から好ましい。硬質粒子のゼータ電位は例えば、Zetasizer Nano Series(Malvern Instruments Ltd.社製)によって測定される。 Among these anti-agglomerating agents, aluminum chloride exhibits an advantageous effect of controlling the zeta potential of hard particles to improve the dispersibility of the particles and preventing aggregation of the hard particles. Moreover, it becomes easy to take in hard particles uniformly in a plating film. From the viewpoint of making these effects even more prominent, 0.005 to 0.5 mol, particularly 0.01 to 0.3 mol, of aluminum chloride is added to 1 mol of trivalent chromium in the plating solution. Is preferred. For the same reason, the concentration of aluminum chloride in the plating solution is preferably 0.02 to 0.5 mol / liter, particularly 0.05 to 0.3 mol / liter. Note that it is preferable to use hard particles having a zeta potential of 20 to 100 mV, particularly 40 to 70 mV, from the viewpoint of dispersion of the particles in a uniform and monodispersed state. The zeta potential of the hard particles is measured by, for example, Zetasizer Nano Series (manufactured by Malvern Instruments Ltd.).
 めっき液には水溶性有機溶剤を配合することもできる。水溶性有機溶剤の配合によって、めっきわたりを効果的に防止できる。また、硬質粒子の分散性が向上する。これらの観点から、水溶性有機溶剤は、めっき液中の三価のクロム1molに対して、0.4~2.1mol、特に0.6~1.3mol配合されることが好ましい。水溶性有機溶剤としては、例えばグリセリン、ポリエチレングリコール、エタノール、メタノール、及びn-プロパノールなどが挙げられる。 A water-soluble organic solvent can be added to the plating solution. By blending the water-soluble organic solvent, it is possible to effectively prevent plating plating. Further, the dispersibility of the hard particles is improved. From these viewpoints, the water-soluble organic solvent is preferably blended in an amount of 0.4 to 2.1 mol, particularly 0.6 to 1.3 mol, with respect to 1 mol of trivalent chromium in the plating solution. Examples of the water-soluble organic solvent include glycerin, polyethylene glycol, ethanol, methanol, and n-propanol.
 上述のとおり、めっき液にはpH緩衝剤が含まれており、液のpHが好ましくは0.5~2.0、更に好ましくは0.8~1.5の範囲に保たれている。 As described above, the plating solution contains a pH buffer, and the pH of the solution is preferably kept in the range of 0.5 to 2.0, more preferably 0.8 to 1.5.
 めっき液の媒体となる水としては、純水、イオン交換水、工業用水、水道水、蒸留水等が挙げられる。これらのうち、めっき液の保存安定性、皮膜特性に影響を及ぼさないことを前提として、経済性の面から、工業用水、水道水を使用することが好ましい。 Examples of water used as a plating solution medium include pure water, ion exchange water, industrial water, tap water, and distilled water. Among these, it is preferable to use industrial water and tap water from the economical aspect on the premise that the storage stability of the plating solution and the film properties are not affected.
 めっき液に、更にスルホン酸基含有化合物又はその塩を含有させることにより前述した複数の網目状の微小亀裂(A2)を有したクロムめっき皮膜を形成させることができる。スルホン酸基含有化合物又はその塩は、皮膜の微小亀裂(A2)の密度を増大させる作用を有し、クロムめっき皮膜に優れた耐食性を付与する。 By adding a sulfonic acid group-containing compound or a salt thereof to the plating solution, it is possible to form the chromium plating film having the plurality of network-like microcracks (A2) described above. The sulfonic acid group-containing compound or a salt thereof has an action of increasing the density of microcracks (A2) of the film, and imparts excellent corrosion resistance to the chromium plating film.
 使用できるスルホン酸基含有化合物又はその塩としては、スルホン酸及びジスルホン酸並びにこれらの塩が好ましい。スルホン酸及びジスルホン酸の具体例としては、脂肪族スルホン酸(例えばメタンスルホン酸、エタンスルホン酸等)、脂肪族ジスルホン酸(例えばメタンジスルホン酸、エタンジスルホン酸等)、芳香族スルホン酸(例えばベンゼンスルホン酸、p-トルエンスルホン酸等)、芳香族ジスルホン酸(例えばベンゼンジスルホン酸等)等が挙げられる。これらの化合物は一種単独で又は二種以上を組み合わせて用いることができる。めっき液中におけるスルホン酸基含有化合物又はその塩の濃度は、スルホン酸基基準で0.02~0.1mol/Lが好ましく、0.04~0.07mol/Lがより好ましい。 As the sulfonic acid group-containing compound or salt thereof that can be used, sulfonic acid, disulfonic acid, and salts thereof are preferable. Specific examples of the sulfonic acid and disulfonic acid include aliphatic sulfonic acid (eg, methanesulfonic acid, ethanesulfonic acid, etc.), aliphatic disulfonic acid (eg, methanedisulfonic acid, ethanedisulfonic acid, etc.), and aromatic sulfonic acid (eg, benzene). Sulfonic acid, p-toluenesulfonic acid, etc.), aromatic disulfonic acid (for example, benzene disulfonic acid, etc.) and the like. These compounds can be used individually by 1 type or in combination of 2 or more types. The concentration of the sulfonic acid group-containing compound or salt thereof in the plating solution is preferably 0.02 to 0.1 mol / L, more preferably 0.04 to 0.07 mol / L, based on the sulfonic acid group.
 以上の各成分を含むめっき液を用いて、母材の表面にクロムめっきを行う条件としては、めっき浴の温度を好ましくは30~60℃、更に好ましくは40~60℃に設定する。電流密度は好ましくは15~60A/dm2、更に好ましくは20~40A/dm2に設定する。陽極としては、黒鉛や各種の寸法安定化陽極(DSA)、例えばTi-Pt電極などを用い、陰極としては、めっきの対象物を用いることができる。めっき皮膜の厚みは、めっき時間によって制御することができる。硬質粒子は、金属クロムの電析過程においてめっき皮膜中に取り込まれる。 As a condition for performing chromium plating on the surface of the base material using the plating solution containing the above components, the temperature of the plating bath is preferably set to 30 to 60 ° C., more preferably 40 to 60 ° C. The current density is preferably set to 15 to 60 A / dm 2 , more preferably 20 to 40 A / dm 2 . As the anode, graphite or various dimensionally stabilized anodes (DSA) such as a Ti—Pt electrode can be used, and as the cathode, an object to be plated can be used. The thickness of the plating film can be controlled by the plating time. Hard particles are taken into the plating film in the process of electrodeposition of chromium metal.
 上述の条件下に電解めっきによって形成されためっき皮膜においては、クロムは一般に非晶質となっている。非晶質のクロムのめっき皮膜はその硬度が結晶質のものに比較して低い傾向にある。そこで、電解めっきによって形成されためっき皮膜を熱処理(P2)することによって結晶化して、結晶質のクロムの皮膜とすることもできる。熱処理の条件としては、大気下に150~300℃とすることが好ましい。加熱時間は、温度がこの範囲であることを条件として、30~60分とすることが好ましい。 In the plating film formed by electrolytic plating under the above conditions, chromium is generally amorphous. Amorphous chromium plating films tend to have lower hardness than crystalline ones. Therefore, the plating film formed by electrolytic plating can be crystallized by heat treatment (P2) to form a crystalline chromium film. The conditions for the heat treatment are preferably 150 to 300 ° C. in the atmosphere. The heating time is preferably 30 to 60 minutes, provided that the temperature is within this range.
 なお、クロムめっき皮膜は、加熱処理温度が200℃以上になると微少亀裂(A1)が生成されることから、前記熱処理(P2)は、前述した熱処理(P1)を兼ねてもよい。 In addition, since a micro crack (A1) will be produced | generated when heat processing temperature becomes 200 degreeC or more, the said heat processing (P2) may serve as the heat processing (P1) mentioned above in the chromium plating film.
 電解めっきによって形成されためっき皮膜中には、一般に、めっき液中に含まれる含炭素化合物に由来する炭素成分が含まれている。めっき皮膜中に炭素成分が含まれている状態下に前記の熱処理を行うと、炭素成分とクロムとが反応して、めっき皮膜中にクロムの炭化物が生成する。この炭化物は、めっき皮膜の硬度を高めることに寄与するので好ましい。この炭化物の生成の程度は、電解めっきによって形成されためっき皮膜の有機錯体の形成の程度によって、該めっき皮膜中に残留する含炭素化合物の量をコントロールすることで制御できる。 The plating film formed by electrolytic plating generally contains a carbon component derived from a carbon-containing compound contained in the plating solution. When the heat treatment is performed in a state in which a carbon component is contained in the plating film, the carbon component and chromium react to generate chromium carbide in the plating film. This carbide is preferable because it contributes to increasing the hardness of the plating film. The degree of formation of this carbide can be controlled by controlling the amount of the carbon-containing compound remaining in the plating film depending on the degree of formation of the organic complex of the plating film formed by electrolytic plating.
 母材の表面に電解めっきを行うのに先立ち、及び/又は電解めっき後に、付加的な工程を行うこともできる。例えば、母材の表面に電解めっきを行うのに先立ち、母材の表面とめっき皮膜との間に1層又は2層以上の追加の下地膜を形成する工程を行うことができる。あるいは、電解めっきを行い、めっき皮膜を形成した後に、該めっき皮膜の上に、1層又は2層以上の追加の上層膜を形成する工程を行うことができる。これら追加の膜の形成工程としては、当該技術分野において公知の方法を適宜採用することができる。また、付加工程として、前述した微少亀裂内(A1)を形成さるため(イ)工程を行ってもよいし、更に微少亀裂内(A1)内に自己潤滑性を有する粒子を含有させるため、(イ)工程に引き続き(ロ)工程を行ってもよい。 An additional step can be performed prior to and / or after the electrolytic plating on the surface of the base material. For example, prior to performing electrolytic plating on the surface of the base material, a step of forming one or more additional base films between the surface of the base material and the plating film can be performed. Alternatively, after performing electrolytic plating and forming a plating film, a step of forming one or more additional upper layer films on the plating film can be performed. As a process for forming these additional films, a method known in the technical field can be appropriately employed. In addition, as an additional step, the step (a) may be performed in order to form the above-described minute crack (A1), and further, particles having self-lubricating properties are contained in the minute crack (A1). (B) The step (b) may be performed following the step.
 このようにして製造されたクロムめっき物は、例えばレシプロ方式の内燃機関のピストンリング、各種のロール、ショックアブソーバ等の摺動部材として特に好適なものとなる。 The chrome plated product thus manufactured is particularly suitable as a sliding member for, for example, a piston ring, various rolls, and a shock absorber of a reciprocating internal combustion engine.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”.
  〔実施例1及び2並びに比較例1〕
 以下の表1に示す成分を水に添加して、同表に示す組成を有する三価のクロムのめっき液を調製した。得られためっき液を用い、同表に示す条件で電解めっきを行った。陽極としては高密度黒鉛板を用いた。陰極としてはS45Cみがき鋼板を用いた。実施例1及び2で得られたクロムめっき物におけるめっき皮膜の縦断面及び表面の走査型電子顕微鏡像を図1及び2に示す。
[Examples 1 and 2 and Comparative Example 1]
The components shown in Table 1 below were added to water to prepare a trivalent chromium plating solution having the composition shown in the same table. Using the obtained plating solution, electrolytic plating was performed under the conditions shown in the same table. A high density graphite plate was used as the anode. An S45C polished steel plate was used as the cathode. The longitudinal section of the plating film and the scanning electron microscope image of the surface of the chromium plating product obtained in Examples 1 and 2 are shown in FIGS.
  〔比較例2〕
 特許文献1(特開平6-316789号公報)の実施例1の追試験を行った。すなわち、三価クロムめっき浴組成として、100g/lのCrCl36H2O、80g/lのHCOOK、10g/lのNH3Br、50g/lのNH4Clを含み、pH3.0に調節した浴を用い、陽極フェライト電極、陰極を黄銅板とし、硬質粒子としてα-SiC(平均粒径0.5μm)を5g/l添加し、8A/dm2で120分間電着した。
[Comparative Example 2]
The follow-up test of Example 1 of Patent Document 1 (Japanese Patent Laid-Open No. 6-316789) was conducted. That is, the trivalent chromium plating bath composition contained 100 g / l CrCl 3 6H 2 O, 80 g / l HCOOK, 10 g / l NH 3 Br, 50 g / l NH 4 Cl, and was adjusted to pH 3.0. Using a bath, an anodic ferrite electrode, a brass plate as the cathode, 5 g / l of α-SiC (average particle size 0.5 μm) as hard particles were added, and electrodeposition was performed at 8 A / dm 2 for 120 minutes.
  〔評価〕
 得られためっき物におけるクロムめっき皮膜中に含まれるクロム及び炭素の量を以下の方法で測定した。また、めっき皮膜の厚みを、先に述べた方法で測定した。更に、めっき皮膜の表面の外観を目視観察して光沢の程度及びクラックの発生の有無を評価した。更にめっき皮膜中の硬質粒子の含有量を以下の方法で測定し、また硬質粒子の分散性を以下の方法で評価した。更に以下の方法で、めっき皮膜のビッカース硬度を測定し、耐摩耗性を以下の方法で評価した。それらの結果を以下の表2に示す。
[Evaluation]
The amount of chromium and carbon contained in the chromium plating film in the obtained plated product was measured by the following method. Moreover, the thickness of the plating film was measured by the method described above. Furthermore, the appearance of the surface of the plating film was visually observed to evaluate the degree of gloss and the presence or absence of cracks. Further, the content of hard particles in the plating film was measured by the following method, and the dispersibility of the hard particles was evaluated by the following method. Further, the Vickers hardness of the plating film was measured by the following method, and the wear resistance was evaluated by the following method. The results are shown in Table 2 below.
  〔めっき皮膜中に含まれるクロム及び炭素の量〕
 EPMAにより元素分析を行って測定した。なお、表中の数値は硬質粒子を除いて算出した値である。
[Amount of chromium and carbon contained in plating film]
The elemental analysis was performed by EPMA. In addition, the numerical value in a table | surface is a value calculated excluding the hard particle.
  〔硬質粒子の含有量、二次粒子の含有量及び分散性の評価〕
 めっき皮膜の断面を観察したときに、単位面積あたりの観察視野に占めるセラミックス粒子の面積率(容量%)を求めた。この面積率は次の方法で測定される。すなわち、めっき皮膜の縦断面を、レーザー顕微鏡(OLYMPUS社製 LEXTO OLS1100)を用いて、1000倍の倍率で観察する。そして、30μm四方の枠内に存在するセラミックス粒子が占有する面積の比率及び硬質粒子の総数に対する、二次粒子の総数の割合を、同レーザー顕微鏡を用いて処理計測する。
 また、硬質粒子の分散性の評価は、前記30μm四方の枠内に硬質粒子が均一に存在するかどうかをレーザー顕微鏡(OLYMPUS社製 LEXTO OLS1100)を用いて観察して評価した。均一の場合は「○」と評価し、不均一の場合は「×」と評価した。
[Evaluation of hard particle content, secondary particle content and dispersibility]
When the cross section of the plating film was observed, the area ratio (volume%) of the ceramic particles in the observation field per unit area was determined. This area ratio is measured by the following method. That is, the longitudinal section of the plating film is observed at a magnification of 1000 times using a laser microscope (LEXTO OLS1100 manufactured by OLYMPUS). Then, the ratio of the total number of secondary particles to the ratio of the area occupied by the ceramic particles present in the 30 μm square frame and the total number of hard particles is measured and measured using the laser microscope.
Further, the evaluation of the dispersibility of the hard particles was evaluated by observing whether or not the hard particles were uniformly present in the 30 μm square using a laser microscope (LEXTO OLS1100 manufactured by OLYMPUS). When it was uniform, it was evaluated as “◯”, and when it was not uniform, it was evaluated as “x”.
  〔めっき皮膜のビッカース硬度〕
 めっき皮膜の皮膜断面を、微小硬さ試験機(ミツトヨ製 HM-103)を用いて、荷重200gf×15secで測定した。
[Vickers hardness of plating film]
The cross section of the plating film was measured with a load of 200 gf × 15 sec using a micro hardness tester (HM-103 manufactured by Mitutoyo Corporation).
  〔めっき皮膜の耐摩耗性〕
 科研式腐食摩耗試験機を用いてめっき皮膜の耐摩耗性を評価した。摩擦の相手となるライナー材として鋳鉄(JIS G 5501-1995に準拠したFC250)を用いた。摩擦試験機における接触荷重は39Nとした。摩擦速度は0.25m/sec、摩擦距離は5400m(=6時間)とした。腐食液として硫酸水溶液(pH=2.0)を用い、1.5ml/minで滴下した。腐食液温度は常温とした。めっき皮膜の摩耗量を測定し、その値を耐摩耗性の指標とした。
[Abrasion resistance of plating film]
The wear resistance of the plating film was evaluated using a Kaken type corrosion wear tester. Cast iron (FC250 conforming to JIS G 5501-1995) was used as a liner material to be a friction partner. The contact load in the friction tester was 39N. The friction speed was 0.25 m / sec, and the friction distance was 5400 m (= 6 hours). A sulfuric acid aqueous solution (pH = 2.0) was used as a corrosive solution and dropped at 1.5 ml / min. The temperature of the corrosive liquid was normal temperature. The amount of wear of the plating film was measured, and the value was used as an index of wear resistance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなように、各実施例のめっき物は、各比較例のめっき物に比べて硬度や耐摩耗性が高いものであることが判る。また、各実施例のめっき物では、硬質粒子がめっき被膜中に、均一かつ単分散状態で分散している。これに対して比較例2のめっき物では、クラックが発生し、硬質粒子の分散は不均一であり、しかも粒子の凝集が観察される。 As is clear from the results shown in Table 2, it can be seen that the plated product of each example has higher hardness and wear resistance than the plated product of each comparative example. Moreover, in the plated product of each Example, the hard particles are uniformly and monodispersed in the plating film. On the other hand, in the plated product of Comparative Example 2, cracks are generated, the dispersion of hard particles is non-uniform, and particle aggregation is observed.
  〔実施例3〕
 実施例2で得られたクロムめっき物を大気下に400℃で1時間加熱処理を行った。熱処理後のクロムめっき物について、実施例1と同様にしてビッカース硬度を測定したところ1550であり、加熱処理前に比べて高い硬度のめっき皮膜が形成されていることが分かった。
Example 3
The chromium plated product obtained in Example 2 was heat-treated at 400 ° C. for 1 hour in the atmosphere. The chromium plated product after the heat treatment was measured for Vickers hardness in the same manner as in Example 1. The result was 1550. It was found that a plating film having a higher hardness than that before the heat treatment was formed.
  〔実施例4〕
(イ)工程;
 実施例2で得られたクロムめっき物(T1)を200℃で1時間加熱処理を行って微少亀裂(A1)を有するクロムめっき物(T2)を得た。
先に述べた方法により、クロムめっき物(T2)の物性評価を行い、このクロムめっき物(T2)におけるめっき被膜は、溝幅が0.2μmで、表面占有率が5面積%、分布密度が400本/cmである微少亀裂(A1)を有することを確認した。クロムめっき物(T2)におけるめっき皮膜の表面の走査型電子顕微鏡像を図3に示す。
Example 4
(A) process;
The chromium plating product (T1) obtained in Example 2 was heat-treated at 200 ° C. for 1 hour to obtain a chromium plating product (T2) having a minute crack (A1).
The physical properties of the chromium plating product (T2) were evaluated by the method described above. The plating film on the chromium plating product (T2) had a groove width of 0.2 μm, a surface occupation ratio of 5 area%, and a distribution density of It was confirmed that the micro cracks (A1) were 400 / cm. A scanning electron microscope image of the surface of the plating film in the chromium plating product (T2) is shown in FIG.
(ロ)工程;
 自己潤滑性を有する粒子として(二硫化モリブデン)を用い、これをエタノールに溶解して10%溶液を調製した。
 次いでフラスコに、(イ)工程で得られた微少亀裂(A1)を有するクロムめっき物50gと、前記で調製した10%溶液を仕込んだ。次に徐々にフラスコ内を真空にし、攪拌下に20℃で1時間そのまま放置した。
 次いで、微少亀裂(A1)を有するクロムめっき物をろ過により回収し、200℃で乾燥を行って自己潤滑性を有する粒子を微少亀裂(A1)内に含有したクロムめっき物(T3)を得た。
クロムめっき物(T3)を螢光X線分析して、微小亀裂(A1)内に含有された自己潤滑性を有する粒子の量を測定したところ3%であった。
(B) step;
(Molybdenum disulfide) was used as self-lubricating particles, which were dissolved in ethanol to prepare a 10% solution.
Next, 50 g of a chromium plating product having a microcrack (A1) obtained in the step (ii) and the 10% solution prepared above were charged into the flask. Next, the inside of the flask was gradually evacuated and allowed to stand for 1 hour at 20 ° C. with stirring.
Next, the chromium plating product having a microcrack (A1) was collected by filtration, and dried at 200 ° C. to obtain a chromium plating product (T3) containing particles having self-lubricating properties in the microcrack (A1). .
The chromium plating product (T3) was subjected to fluorescent X-ray analysis, and the amount of self-lubricating particles contained in the microcracks (A1) was measured and found to be 3%.
  〔実施例5〕
 実施例1で得られたクロムめっき物を200℃で1時間加熱処理を行って微少亀裂(A1)を有するクロムめっき物(T4)を得た。クロムめっき物(T4)におけるめっき皮膜の表面の走査型電子顕微鏡像を図4に示す。
先に述べた方法により、クロムめっき物(T4)の物性評価を行い、このクロムめっき物(T4)におけるめっき被膜は、溝幅が3.5μmで、表面占有率が12面積%、分布密度が350本/cmである微少亀裂(A1)を有することを確認した。その後は実施例4と同様にして、自己潤滑性を有する粒子(二硫化モリブデン)を微少亀裂(A1)内に含有したクロムめっき物を得た。このクロムめっき物を螢光X線分析して、微小亀裂(A1)内に含有された自己潤滑性を有する粒子の量を測定したところ11.5面積%であった。
Example 5
The chromium plated product obtained in Example 1 was heat-treated at 200 ° C. for 1 hour to obtain a chromium plated product (T4) having a minute crack (A1). A scanning electron microscope image of the surface of the plating film in the chromium plating product (T4) is shown in FIG.
The physical properties of the chromium plating product (T4) were evaluated by the method described above. The plating film on the chromium plating product (T4) had a groove width of 3.5 μm, a surface occupation ratio of 12 area%, and a distribution density of It was confirmed that the micro cracks (A1) were 350 / cm. Thereafter, in the same manner as in Example 4, a chromium plated product containing self-lubricating particles (molybdenum disulfide) in microcracks (A1) was obtained. The chromium plating product was subjected to fluorescent X-ray analysis, and the amount of self-lubricating particles contained in the microcracks (A1) was measured and found to be 11.5 area%.
  〔実施例6〕
 以下に示す成分を水に添加して、以下の表3に示す組成を有する三価のクロムのめっき液を調製した。得られためっき液を用い、同表に示す条件で電解めっきを行いクロムめっき物(T5)を得た。陽極としては高密度黒鉛板を用い、陰極としてはS45Cみがき鋼板を用いた。
Example 6
The following components were added to water to prepare a trivalent chromium plating solution having the composition shown in Table 3 below. Using the obtained plating solution, electrolytic plating was performed under the conditions shown in the same table to obtain a chromium plating product (T5). A high density graphite plate was used as the anode, and an S45C polished steel plate was used as the cathode.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<めっき物の評価>
 得られたクロムめっき物(T5)について、先に述べた方法で物性評価を行ったところ、めっき被膜の表面に、溝幅が0.3μmで、表面占有率が5面積%、分布密度が500本/cmである微少亀裂(A2)が形成されていることが確認された。次いで、このクロムめっき物(T4)を300℃で1時間加熱処理し、クロムめっき物(T6)を得た。得られたクロムめっき物(T6)の微少亀裂の状態を確認した結果、溝幅が0.5μmで、表面占有率が6.0面積%、分布密度が650本/cmであり、加熱処理前のクロムめっき物(T5)とほとんど変化がないことが確認された。
<Evaluation of plating>
When the physical properties of the obtained chromium plating product (T5) were evaluated by the method described above, the groove width was 0.3 μm, the surface occupation ratio was 5 area%, and the distribution density was 500 on the surface of the plating film. It was confirmed that a microcrack (A2) having a number of lines / cm was formed. Next, this chromium plated product (T4) was heat-treated at 300 ° C. for 1 hour to obtain a chromium plated product (T6). As a result of confirming the state of minute cracks in the obtained chromium plating product (T6), the groove width was 0.5 μm, the surface occupation ratio was 6.0 area%, the distribution density was 650 lines / cm, and before the heat treatment It was confirmed that there was almost no change from the chromium plating product (T5).

Claims (13)

  1.  母材の表面にクロムめっき皮膜が設けられてなるクロムめっき物において、
     前記クロムめっき皮膜中に、窒化物、炭化物又は酸化物からなる複数の粒子が均一に分散されており、
     前記粒子は、前記クロムめっき皮膜中に10~30容量%含有されており、かつ単分散状態で前記クロムめっき皮膜中に存在している、ことを特徴とするクロムめっき物。
    In the chromium plating product in which the surface of the base material is provided with a chromium plating film,
    In the chromium plating film, a plurality of particles made of nitride, carbide or oxide are uniformly dispersed,
    The chromium plating product, wherein the particles are contained in the chromium plating film in an amount of 10 to 30% by volume and are present in the chromium plating film in a monodispersed state.
  2.  前記クロムめっき皮膜が、前記粒子を除き、クロムを93~99.5質量%含み、更に炭素を0.5~7質量%含んでいる請求項1に記載のクロムめっき物。 The chromium plated article according to claim 1, wherein the chromium plating film contains 93 to 99.5% by mass of chromium, and further contains 0.5 to 7% by mass of carbon, excluding the particles.
  3.  前記粒子が、セラミックス粒子からなる請求項1又は2に記載のクロムめっき物。 The chrome plated article according to claim 1 or 2, wherein the particles are made of ceramic particles.
  4.  前記セラミックス粒子が、Si34、BN、TiC、SiC、Cr32、Al23、TiO2又はCr23からなる請求項3に記載のクロムめっき物。 The ceramic particles, Si 3 N 4, BN, TiC, SiC, Cr 3 C 2, Al 2 O 3, chromium plated article according to claim 3 consisting of TiO 2 or Cr 2 O 3.
  5.  前記母材の表面と前記クロムめっき皮膜との間に下地膜を有するか、又は前記クロムめっき皮膜の上に上層膜を有する請求項1ないし4のいずれか一項に記載のクロムめっき物。 The chrome plated article according to any one of claims 1 to 4, wherein the chrome plated article has a base film between the surface of the base material and the chrome plated film, or has an upper layer film on the chrome plated film.
  6.  前記クロムめっき皮膜が、その表面に溝幅が0.1~6.0μmの複数の微小亀裂を有する請求項1ないし4のいずれか一項に記載のクロムめっき物。 The chromium plated article according to any one of claims 1 to 4, wherein the chromium plating film has a plurality of microcracks having a groove width of 0.1 to 6.0 µm on a surface thereof.
  7.  複数の前記微少亀裂内に自己潤滑性のある粒子を含有する請求項6に記載のクロムめっき物。 The chrome plated article according to claim 6, wherein self-lubricating particles are contained in the plurality of microcracks.
  8.  前記クロムめっき皮膜が、その表面に溝幅が0.1~2.0μmの複数の網目状の微小亀裂を有し、その微小亀裂の表面占有率が0.2~12.0面積%である請求項1ないし4のいずれか一項に記載のクロムめっき物。 The chromium plating film has a plurality of mesh-shaped microcracks having a groove width of 0.1 to 2.0 μm on the surface, and the surface occupation ratio of the microcracks is 0.2 to 12.0 area%. The chromium plated article as described in any one of Claims 1 thru | or 4.
  9.  前記めっき物が摺動部材である請求項1ないし8のいずれか一項に記載のクロムめっき物。 The chrome plated product according to any one of claims 1 to 8, wherein the plated product is a sliding member.
  10.  複数のセラミックス粒子が均一に分散されてなるクロムめっき皮膜であって、
     前記セラミックス粒子は、前記クロムめっき皮膜中に10~30容量%含有されており、かつ単分散状態で前記クロムめっき皮膜中に存在している、ことを特徴とするクロムめっき皮膜。
    A chromium plating film in which a plurality of ceramic particles are uniformly dispersed,
    The chrome plating film, wherein the ceramic particles are contained in the chromium plating film in an amount of 10 to 30% by volume, and are present in the chrome plating film in a monodispersed state.
  11.  前記クロムめっき皮膜が、その表面に溝幅が0.1~6.0μmの複数の微小亀裂を有する請求項10に記載のクロムめっき皮膜。 The chrome plating film according to claim 10, wherein the chrome plating film has a plurality of microcracks having a groove width of 0.1 to 6.0 μm on the surface thereof.
  12.  微小亀裂内に自己潤滑性を有する粒子を含有する請求項11に記載のクロムめっき皮膜。 The chromium plating film according to claim 11, wherein the microcrack contains particles having self-lubricating properties.
  13.  前記クロムめっき皮膜が、その表面に溝幅が0.1~2.0μmの複数の網目状の微小亀裂を有し、その微小亀裂の表面占有率が2.0~12.0面積%である請求項10に記載のクロムめっき皮膜。 The chromium plating film has a plurality of mesh-like microcracks having a groove width of 0.1 to 2.0 μm on the surface, and the surface occupation ratio of the microcracks is 2.0 to 12.0 area%. The chromium plating film according to claim 10.
PCT/JP2013/064126 2012-05-22 2013-05-21 Chromium plated article and chromium plating film WO2013176149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012116499A JP6055611B2 (en) 2012-05-22 2012-05-22 Chrome plating and chrome plating film
JP2012-116499 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013176149A1 true WO2013176149A1 (en) 2013-11-28

Family

ID=49623837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064126 WO2013176149A1 (en) 2012-05-22 2013-05-21 Chromium plated article and chromium plating film

Country Status (2)

Country Link
JP (1) JP6055611B2 (en)
WO (1) WO2013176149A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109154092A (en) * 2016-04-21 2019-01-04 麦克德米德尖端有限公司 Electrodeposit based on dark chromium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542621B1 (en) * 2016-09-02 2023-01-03 Maxterial, Inc. Coatings and coated surfaces including low-surface energy inorganic particles
JP6417438B2 (en) * 2017-03-22 2018-11-07 株式会社リケン Composite chrome plating film and piston ring having the film
MX2024005432A (en) 2021-11-18 2024-07-22 Dic Corp Star Composite hard chromium plating.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431996A (en) * 1987-07-28 1989-02-02 Nippon Steel Corp Method for preventing coagulation of fine grain in electroplating bath
JPH0633300A (en) * 1992-07-14 1994-02-08 Seiko Epson Corp Eutectoid plating method
JPH06316789A (en) * 1993-08-27 1994-11-15 Matsufumi Takatani Composite chromium plating and plating method
JPH10130891A (en) * 1996-09-05 1998-05-19 Teikoku Piston Ring Co Ltd Composite cr plating film, and sliding member having the same
JP2003277978A (en) * 2002-03-25 2003-10-02 Mitsubishi Heavy Ind Ltd Sliding member, and piston ring
JP2012077356A (en) * 2010-10-01 2012-04-19 Yamagata Prefecture Method and device for processing composite plating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240180A (en) * 2004-01-30 2005-09-08 Riken Corp Sliding member having composite chrome plating film and method for manufacturing the same
JP4650157B2 (en) * 2005-01-12 2011-03-16 マツダ株式会社 Plating film for sliding part and method for forming the same
JP2007009294A (en) * 2005-07-01 2007-01-18 Mazda Motor Corp Sliding member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431996A (en) * 1987-07-28 1989-02-02 Nippon Steel Corp Method for preventing coagulation of fine grain in electroplating bath
JPH0633300A (en) * 1992-07-14 1994-02-08 Seiko Epson Corp Eutectoid plating method
JPH06316789A (en) * 1993-08-27 1994-11-15 Matsufumi Takatani Composite chromium plating and plating method
JPH10130891A (en) * 1996-09-05 1998-05-19 Teikoku Piston Ring Co Ltd Composite cr plating film, and sliding member having the same
JP2003277978A (en) * 2002-03-25 2003-10-02 Mitsubishi Heavy Ind Ltd Sliding member, and piston ring
JP2012077356A (en) * 2010-10-01 2012-04-19 Yamagata Prefecture Method and device for processing composite plating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109154092A (en) * 2016-04-21 2019-01-04 麦克德米德尖端有限公司 Electrodeposit based on dark chromium
EP3443145A4 (en) * 2016-04-21 2020-01-08 MacDermid Acumen, Inc. Dark colored chromium based electrodeposits

Also Published As

Publication number Publication date
JP2013241656A (en) 2013-12-05
JP6055611B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
Beltowska-Lehman et al. Optimisation of the electrodeposition process of Ni-W/ZrO2 nanocomposites
Ünal et al. Production and characterization of electrodeposited Ni-B/hBN composite coatings
Sangeetha et al. Tribological and electrochemical corrosion behavior of Ni–W/BN (hexagonal) nano-composite coatings
Qu et al. Fabrication of Ni–CeO2 nanocomposite by electrodeposition
Kılıç et al. Effect of CTAB concentration in the electrolyte on the tribological properties of nanoparticle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition
JP6240274B2 (en) Chrome plating and chrome plating film
Luo et al. Synthesis of a duplex Ni-P-YSZ/Ni-P nanocomposite coating and investigation of its performance
Sajjadnejad et al. Wear and tribological characterization of nickel matrix electrodeposited composites: A review
JP5890394B2 (en) Trivalent chromium plating solution
Fazel et al. Effect of solid lubricant particles on room and elevated temperature tribological properties of Ni–SiC composite coating
Hashemi et al. Effect of SiC nanoparticles on microstructure and wear behavior of Cu-Ni-W nanocrystalline coating
Shahri et al. Electrodeposition and characterization of Co–BN (h) nanocomposite coatings
JP6055611B2 (en) Chrome plating and chrome plating film
Hyie et al. Effect of deposition time on wear and corrosion performance of Co–Ni–Fe alloy coated mild steel
JP6262710B2 (en) Trivalent chromium plating solution
Aruna et al. Effect of probe sonication and sodium hexametaphosphate on the microhardness and wear behavior of electrodeposited Ni–SiC composite coating
Li et al. Pulse electrodepsoited Ni-Cu/TiN-ZrO2 nanocomposite coating: microstructural and electrochemical properties
Malatji et al. Tribological and corrosion performance of electrodeposited nickel composite coatings
Zhang et al. Electrodeposition and wear behavior of NiCoW ternary alloy coatings reinforced by Al2O3 nanoparticles: Influence of current density and electrolyte composition
Bacal et al. Electrodeposition of high-tungsten W-Ni-Cu alloys. Impact of copper on deposition process and coating structure
Fahami et al. Influence of surfactants on the characteristics of nickel matrix nanocomposite coatings
Li et al. Preparation of Sol‐Enhanced Ni–P–Al2O3 Nanocomposite Coating by Electrodeposition
Yapontseva et al. Electrdeposition of CoWRe alloys from polyligand citrate-pyrophosphate electrolyte
RU2449063C1 (en) Nickel-plating electrolyte
Nagayama et al. Electrodeposition of invar Fe-Ni alloy/SiC particle composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794562

Country of ref document: EP

Kind code of ref document: A1