WO2013175746A1 - Organic electroluminescent element - Google Patents
Organic electroluminescent element Download PDFInfo
- Publication number
- WO2013175746A1 WO2013175746A1 PCT/JP2013/003147 JP2013003147W WO2013175746A1 WO 2013175746 A1 WO2013175746 A1 WO 2013175746A1 JP 2013003147 W JP2013003147 W JP 2013003147W WO 2013175746 A1 WO2013175746 A1 WO 2013175746A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- unsubstituted
- carbon atoms
- formula
- Prior art date
Links
- 0 CC(C)(c(c1c(*)c(C)c(*)c(*)c11)c(c(*)c(*)c(*)c2*)c2c1[Al]*)IC(C)(C)I[Al] Chemical compound CC(C)(c(c1c(*)c(C)c(*)c(*)c11)c(c(*)c(*)c(*)c2*)c2c1[Al]*)IC(C)(C)I[Al] 0.000 description 5
- CYXHYVGKGWJOCL-UHFFFAOYSA-N [AlH2][n](c1ccccc1c1ccc2c3c4cccc3)c1c2[n]4I Chemical compound [AlH2][n](c1ccccc1c1ccc2c3c4cccc3)c1c2[n]4I CYXHYVGKGWJOCL-UHFFFAOYSA-N 0.000 description 1
- WEUNGDUDRNEBTF-UHFFFAOYSA-N [AlH2][n]1c(cc(c2ccccc2[n]2I)c2c2)c2c2c1cccc2 Chemical compound [AlH2][n]1c(cc(c2ccccc2[n]2I)c2c2)c2c2c1cccc2 WEUNGDUDRNEBTF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D235/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
- C07D235/02—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
- C07D235/04—Benzimidazoles; Hydrogenated benzimidazoles
- C07D235/06—Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
- C07D235/08—Radicals containing only hydrogen and carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/91—Dibenzofurans; Hydrogenated dibenzofurans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
- C07D487/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
Definitions
- the present invention relates to an organic electroluminescence element.
- An organic electroluminescence (EL) element is a self-luminous element utilizing the principle that a light-emitting material emits light by recombination energy of holes injected from an anode and electrons injected from a cathode when an electric field is applied.
- Organic EL elements have features such as low voltage drive, high brightness, diversity of emission wavelengths, high-speed response, and the ability to produce thin and light-emitting devices, and are therefore applied to a wide range of applications.
- Organic compound materials used in organic EL elements have been actively studied since they have a great influence on the color of light emitted from the elements and the light emission lifetime.
- Patent Document 1 discloses an anthracene compound with a four-ring condensed ring.
- An object of the present invention is to provide an organic EL element with improved lifetime and luminous efficiency.
- the present inventors When the organic light emitting layer containing a specific anthracene compound and the electron transport layer containing a specific azine compound are formed adjacent to each other, the present inventors have a long lifetime and high light emission efficiency. The inventors found that an element can be obtained and completed the present invention.
- the following organic EL elements and the like are provided. 1. Between the anode and cathode facing each other, from the anode side, at least an organic light emitting layer and an electron transport layer are adjacent to each other in this order, The organic light emitting layer contains an anthracene compound represented by the following formula (1-1): The electron transport layer contains an azine compound represented by the following formula (2-1): Organic electroluminescence device.
- Ar 1 is a substituted or unsubstituted aromatic hydrocarbon group having 15 to 60 ring carbon atoms.
- Ar 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
- L is a single bond or a substituted or unsubstituted arylene group having 6 to 10 ring carbon atoms.
- R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted An unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, a substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or a substituted or unsubstituted ring An arylsilyl group having 8 to 50 carbon atoms formed.
- n is an integer of 1 to 4, and when n is 2 or more, the plurality of L may be the same or different.
- Ar 11 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms having at least one substituted or unsubstituted carbazole skeleton-containing group as a substituent.
- Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group.
- 2. The organic electroluminescence device according to 1, wherein the azine compound represented by the formula (2-1) has a substituted or unsubstituted carbazole skeleton-containing group which is a substituted or unsubstituted 9-carbazolyl group. 3. 2.
- k is an integer of 1 to 3
- n is an integer of 0 to 3
- R 11 to R 18 are each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms.
- Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group.
- the organic electroluminescence device according to 4 wherein Az in the formula (2-2) is a group represented by the following formula (2a).
- X 1 to X 3 are each independently a nitrogen atom or CH, and at least two of X 1 to X 3 are nitrogen atoms.
- Ar 12 and Ar 13 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 ring carbon atoms. ) 6).
- Formula number of carbon atoms of Ar 12 in (2a) is equal to or less than the number of carbon atoms of Ar 13, the organic electroluminescence device according to 5 or 6. 8).
- Ar 12 in the formula (2a) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted biphenyl group. .
- 9. The organic electroluminescence device according to any one of 4 to 8, wherein k in the formula (2-2) is 2. 10. 10.
- the organic electroluminescence device according to any one of 4 to 9, wherein R 11 to R 18 in the formula (2-2) are hydrogen atoms. 11.
- Ar 1 in the formula (1-1) is a substituent represented by the following formula (1a), (1b), (1c), (1d), (1e), (1f), (1g) or (1h)
- one of R is a single bond bonded to L, and each R other than a single bond is independently a hydrogen atom, a fluorine atom, a cyano group, Substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted ring formation A C6-C30 aryloxy group, a substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or a substituted or unsubstituted arylsilyl group having 8 to 50 carbon atoms.) 13.
- the organic EL device of the present invention has an organic light emitting layer and an electron transport layer adjacent to each other in this order between at least the anode side and the anode, and the organic light emitting layer has the following formula (1-1): And the electron transport layer contains an azine compound represented by the following formula (2-1).
- azine is a 6-membered ring compound containing one or more nitrogen atoms in the ring.
- Ar 1 is a substituted or unsubstituted aromatic hydrocarbon group having 15 to 60 ring carbon atoms.
- Ar 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
- L is a single bond or a substituted or unsubstituted arylene group having 6 to 10 ring carbon atoms.
- R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted Unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or substituted or unsubstituted And an arylsilyl group having 8 to 50 carbon atoms.
- n is an integer of 1 to 4, and when n is 2 or more, the plurality of L may be the same or different.
- Ar 11 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms having at least one substituted or unsubstituted carbazole skeleton-containing group as a substituent.
- Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group.
- a laminate comprising an organic light emitting layer containing an anthracene compound represented by formula (1-1) and an electron transport layer containing an azine compound represented by formula (2-1) is adjacent to each other.
- the azine compound represented by the formula (2-1) is estimated to be able to smoothly inject electrons into the organic light emitting layer, and enables the device to be driven at a low voltage.
- the charge balance can be optimized by including the anthracene compound represented by the formula (1-1) in the organic light emitting layer for smooth electron injection by the azine compound of the electron transport layer.
- the organic EL element of this invention can show high efficiency and long lifetime.
- the anthracene compound contained in the organic light-emitting layer is preferably such that Ar 1 in the formula (1-1) has the following formulas (1a), (1b), (1c), (1d), (1e), (1f), (1g ) Or (1h), and more preferably any of the substituents represented by formula (1a), (1b), or (1h).
- Ar 1 is any one of the groups represented by the following formulas (1a), (1b), (1c), (1d), (1e), (1f), (1g) or (1h). And more preferably a substituent containing any of the groups represented by the formula (1a), (1b), or (1h).
- the substituent containing a group represented by the formula (1a) or the like is preferably a group in which a group represented by the formula (1a) or the like is bonded to phenylene, naphthalenylene, biphenylene or the like.
- a group represented by the formula (1a) or the like is bonded to phenylene, naphthalenylene, biphenylene or the like.
- increasing the size of the condensed ring in the molecule increases the overlap between molecules and improves transportability.
- the condensed ring is too large, the carrier balance may be lost and efficiency may not be obtained.
- one of R is a single bond bonded to L, and each R other than a single bond is independently a hydrogen atom, a fluorine atom, a cyano group, substituted or unsubstituted.
- a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, a substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or a substituted or unsubstituted arylsilyl group having 8 to 50 carbon atoms is there.
- Ar 2 in Formula (1-1) is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted phenanthryl group.
- Ar 2 is one of these substituents, and it is considered that the carrier balance is more suitable when the device is manufactured and driven.
- the biphenyl group in this application refers to any of 2-biphenyl group, 3-biphenyl group and 4-biphenyl group.
- L in Formula (1-1) is preferably a single bond or a substituted or unsubstituted phenylenyl group, and more preferably a single bond.
- N is preferably 1.
- L is a single bond, it is considered that a more suitable carrier balance is obtained when an element is formed and driven.
- R 1 to R 8 in the formula (1-1) are preferably all hydrogen atoms. Since all of R 1 to R 8 of the anthracene ring are hydrogen atoms, the compound is considered to be stable, and is considered to have a long life when driven as an element.
- Ar 11 of the azine compound represented by the formula (2-1) is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms and having one or more substituted or unsubstituted carbazole skeleton-containing groups as substituents.
- the carbazole skeleton-containing group is preferably a carbazolyl group. Preferably it has 1 or 2 carbazolyl groups.
- the substituted or unsubstituted carbazole skeleton-containing group for Ar 11 is preferably a substituted or unsubstituted 9-carbazolyl group.
- the carbazole skeleton-containing group is preferably selected from any of the following. (Wherein L 100 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms, Ar 100 is a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms. )
- Az in the formula (2-1) is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group, preferably a substituted or unsubstituted pyrimidinyl group, a substituted or unsubstituted pyrazinyl group, or a substituted or unsubstituted Triazinyl group.
- Az in the formula (2-1) is preferably a group represented by the following formula (2a).
- X 1 to X 3 are each independently a nitrogen atom or CH, and at least two of X 1 to X 3 are nitrogen atoms.
- Ar 12 and Ar 13 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 (preferably 6 to 12) ring-forming carbon atoms. )
- X 1 and X 2 are preferably nitrogen atoms, and X 3 is preferably CH.
- the number of carbon atoms of Ar 12 in the formula (2a) is preferably less than or equal to the number of carbon atoms of Ar 13.
- Ar 12 in formula (2a) is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted biphenyl group.
- the azine compound represented by the formula (2-1) is preferably an azine compound represented by the following formula (2-2).
- k is an integer of 1 to 3
- n is an integer of 0 to 3
- R 11 to R 18 are each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms.
- K in the formula (2-2) is preferably 2.
- R 11 to R 18 in the formula (2-2) are preferably hydrogen atoms.
- the “ring-forming carbon” means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring
- the “ring-forming atom” includes a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring). ) Is a carbon atom and a hetero atom.
- the hydrogen atom includes light hydrogen, deuterium, and tritium.
- the aromatic hydrocarbon group preferably has 6 to 20 ring carbon atoms, and more preferably 6 to 12 ring carbon atoms.
- Specific examples of the aromatic hydrocarbon group include phenyl, tolyl, xylyl, naphthyl, phenanthryl, pyrenyl, chrysenyl, benzo [c] phenanthryl, benzo [g] chrysenyl, benzoanthryl.
- aromatic hydrocarbon group having a substituent include a tolyl group, a xylyl group, and a 9,9-dimethylfluorenyl group.
- the aromatic heterocyclic group preferably has 5 to 20 ring atoms, and more preferably 5 to 14 ring atoms.
- Specific examples of the aromatic heterocyclic group include pyrrolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyridyl, triazinyl, indolyl, isoindolyl, imidazolyl, benzimidazolyl, indazolyl, imidazol [ 1,2-a] pyridinyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, azadibenzofuranyl group, thiophenyl group, benzothiophenyl group, dibenzothiophenyl group, azadibenzothiophenyl group Quinolyl group, isoquinolyl group, quinoxalinyl group, quinazolinyl group
- alkyl group examples include linear, branched and cyclic alkyl groups.
- the number of carbon atoms is preferably 1-20, and more preferably 1-10.
- linear and branched alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, and n-hexyl.
- n-heptyl group, n-octyl group and the like preferably methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl group. More preferred are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, and t-butyl group.
- cyclic alkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group.
- the alkoxy group is represented as —OY, and examples of Y include the above alkyl examples. Specific examples of the alkoxy group include a methoxy group and an ethoxy group.
- the aryloxy group is represented by —OZ, and examples of Z include the above aryl groups. Specific examples of the aryloxy group include a phenoxy group and a naphthyloxy group.
- the aralkyl group is represented by —Y—Z.
- Y include alkylene examples corresponding to the above alkyl examples, and examples of Z include the above aryl examples.
- the aryl part of the aralkyl group preferably has 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms.
- the alkyl moiety preferably has 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms.
- benzyl group, phenylethyl group, 2-phenylpropan-2-yl group and the like can be mentioned.
- haloalkyl group examples include groups in which one or more halogen atoms (a fluorine atom, a chlorine atom, and a bromine atom are preferable, and a fluorine atom is preferably substituted) on the alkyl group having 1 to 30 carbon atoms described above.
- halogen atoms a fluorine atom, a chlorine atom, and a bromine atom are preferable, and a fluorine atom is preferably substituted
- Specific examples include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a trifluoromethylmethyl group, and a pentafluoroethyl group.
- they are a trifluoromethyl group and a pentafluoroethyl group.
- haloalkoxy group examples include groups in which one or more halogens (including a fluorine atom, a chlorine atom and a bromine atom are preferable, and a fluorine atom is preferably substituted) on the above alkoxy group.
- halogens including a fluorine atom, a chlorine atom and a bromine atom are preferable, and a fluorine atom is preferably substituted
- it is a trifluoromethoxy group.
- the alkylsilyl group is a silyl group substituted with 1 to 3 alkyl groups
- the arylsilyl group is a silyl group substituted with 1 to 3 aryl groups.
- the alkyl group and aryl group are the same as those described above.
- the trialkylsilyl group is represented as —Si (R a ) (R b ) (R c ), and examples of (R a ), (R b ) and (R c ) include the alkyl groups described above. Specific examples include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, propyldimethylsilyl group and the like.
- the dialkylarylsilyl group is represented as —Si (R a ) (R b ) (Ar c ), and examples of (R a ) and (R b ) include the alkyl groups described above, and examples of (Ar c ) Examples of the aryl group include the aryl groups described above. Specific examples include a phenyldimethylsilyl group.
- the alkyldiarylsilyl group is represented as —Si (R a ) (Ar b ) (Ar c ), and examples of (R a ) include the alkyl groups described above.
- Examples of the aryl group include the aryl groups described above. Specific examples include a methyldiphenylsilyl group.
- the triarylsilyl group is represented as —Si (Ar a ) (Ar b ) (Ar c ), and examples of (Ar a ), (Ar b ) and (Ar c ) include the aryl groups described above. .
- Specific examples include a triphenylsilyl group.
- alkenyl group examples include vinyl, propenyl, butenyl, pentenyl, pentadienyl, hexenyl, hexadienyl, heptenyl, octenyl, octadienyl, 2-ethylhexenyl, decenyl and the like.
- alkynyl group examples include ethynyl group and methylethynyl group.
- the anthracene compound represented by the formula (1-1) can be synthesized by referring to, for example, WO2009 / 069566 and WO2011 / 054442.
- the azine compound represented by the formula (2-1) can be synthesized by referring to, for example, WO2003 / 080760.
- the content of the anthracene compound represented by the formula (1-1) in the organic light emitting layer adjacent to the electron transport layer is not particularly limited, but is, for example, 1 to 100% by weight, preferably 80 to 100% by weight, More preferably, it is 90 to 100% by weight.
- the content of the azine compound represented by the formula (2-1) in the electron transport layer adjacent to the organic light emitting layer is not particularly limited, but is, for example, 1 to 100% by weight, preferably 50 to 100% by weight.
- FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
- the organic EL element 1 the anode 20, the hole injection layer 30, the hole transport layer 40, the organic light emitting layer 50, the electron transport layer 60, the electron injection layer 70, and the cathode 80 are laminated on the substrate 10 in this order. It has a configuration.
- the hole transport zone is a hole transport layer and a hole injection layer.
- the electron transport zone is the electron transport layer 60 and the electron injection layer 70.
- the hole injection layer 30 and the electron injection layer 70 do not have to be formed, but preferably one or more layers are formed respectively.
- the organic light emitting layer 50 and the electron transport layer 60 are formed adjacent to each other.
- the organic light emitting layer 50 is a layer containing the anthracene compound represented by the above formula (1-1), and the electron transport layer 60 contains the azine compound represented by the above formula (2-1). Is a layer.
- FIG. 1 schematically shows the organic EL element 1 as one light emitting unit, but two or more organic EL elements 1 are combined, or the organic EL element 1 is combined with another organic EL element.
- an organic EL multicolor light emitting device can be formed.
- FIG. 2 is a schematic cross-sectional view showing an example of an organic EL light emitting device using the organic EL element of the present invention.
- the organic EL light emitting device is a device having a blue EL element 1B (first element), a green EL element 1G (second element), and a red EL element 1R (third element) in parallel on a substrate 10.
- the configuration of each color organic EL element uses patterned anodes 20B, 20G, and 20R, and the organic light emitting layer corresponds to each color, and the blue light emitting layer 50B, the green light emitting layer 50G, and the red light emitting layer 50R, respectively.
- the organic EL element 1 is the same as that described above except that the hole injection layer 30 and the electron injection layer 70 are not formed.
- the insulating layer 54 which isolate
- the blue EL element 1B, the green EL element 1G, and the red EL element 1R share each organic layer (the hole transport layer 40 and the electron transport layer 60) except for the organic light emitting layer.
- three colors of organic EL elements are used.
- the present invention is not limited to this, and two (two colors) or four or more colors of organic EL elements may be used.
- multicolor light emission is possible by setting the emission color of one organic EL element to blue to green and the emission color of the other organic EL elements to yellow to red. It becomes.
- both the hole transport layer 40 and the electron transport layer 60 are formed as a common layer, either one may be used.
- the organic EL element of this invention should just be used for one of the used organic EL elements.
- Each EL element may be a fluorescent light emitting element or a phosphorescent light emitting element.
- the organic EL element of the present invention is preferably used as the fluorescent blue EL element.
- FIG. 3 is a schematic view showing the layer structure of another embodiment of the organic EL device of the present invention.
- the organic EL element 2 is an example of a tandem organic EL element in which two light emitting units are stacked via a charge generation layer.
- the organic EL element 2 includes an anode 20, a first hole transport layer 41, a first organic light emitting layer 51, a first electron transport layer 61, a charge generation layer 90, a second hole transport layer 42, a first hole on the substrate 10.
- the second organic light-emitting layer 52, the third organic light-emitting layer 53, the second electron transport layer 62, and the cathode 80 are stacked in this order.
- a region sandwiched between the anode 20 and the charge generation layer 90 is the first light emitting unit 3A
- a region sandwiched between the charge generation layer 90 and the cathode 80 is the second light emitting unit 3B.
- the charge generation layer 90 is a layer that generates charge when a voltage is applied to the organic EL element 2, and injects electrons into the first electron transport layer 61 and injects holes into the second hole transport layer 42.
- a material of the charge generation layer 90 a known material, for example, a material described in US 7,358,661 can be used. Specifically, oxides, nitrides, iodides, borides containing one or more metal elements such as In, Sn, Zn, Ti, Zr, Hf, V, Mo, Cu, Ga, Sr, La, and Ru. Etc.
- the first organic light emitting layer 51 of the first light emitting unit 3A is a layer containing the anthracene compound represented by the above formula (1-1), and the first electron transport layer 61 is the above-described layer. This is a layer containing an azine compound represented by the formula (2-1).
- the first organic light emitting layer 51 is a fluorescent light emitting layer that emits blue light (for example, a peak wavelength is 430 to 500 nm), and the second organic light emitting layer 52 is green light (for example, a peak wavelength is 500 to 500 nm).
- the third organic light-emitting layer 53 is a phosphorescent light-emitting layer that emits red light (for example, a peak wavelength of 570 nm or more), thereby obtaining an organic EL element that emits white light.
- the present invention is not limited to this, and three or more light emitting units may be formed. Further, the second organic light emitting layer 52 and the third organic light emitting layer 53 may be combined to form a single layer.
- the laminated structure peculiar to the present application is used for the first light emitting unit 3A. However, the present invention is not limited thereto, and for example, the laminated structure peculiar to the present application may be used for the second light emitting unit 3B. You may use for both unit 3A and the 2nd light emission unit 3B.
- Each organic light emitting layer may be a fluorescent light emitting layer or a phosphorescent light emitting layer, and the emission color is not limited. What is necessary is just to set suitably according to a use from a well-known structure.
- the organic EL element of the present invention can employ various known configurations.
- light emission of the light emitting layer can be extracted from the anode side, the cathode side, or both sides.
- organic EL element of the present invention other configurations of the organic light-emitting layer and the electron transport layer adjacent to the organic light-emitting layer are not particularly limited, and known materials and the like can be used.
- the layer of the element of Embodiment 1 is demonstrated easily, the material applied to the organic EL element of this invention is not limited to the following.
- a glass plate, a polymer plate or the like can be used as the substrate.
- the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
- the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfone, and polysulfone.
- the anode is made of, for example, a conductive material, and a conductive material having a work function larger than 4 eV is suitable.
- the conductive material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, and their alloys, ITO substrate, tin oxide used for NESA substrate, indium oxide, and the like.
- examples thereof include metal oxides and organic conductive resins such as polythiophene and polypyrrole.
- the anode may be formed with a layer structure of two or more layers if necessary.
- the cathode is made of, for example, a conductive material, and a conductive material having a work function smaller than 4 eV is suitable.
- the conductive material include, but are not limited to, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and alloys thereof.
- the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto.
- the ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio.
- the cathode may be formed with a layer structure of two or more layers, and the cathode can be produced by forming a thin film from the conductive material by a method such as vapor deposition or sputtering.
- the transmittance of the cathode for light emission is preferably greater than 10%.
- the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
- Organic light emitting layer is not particularly limited as long as the organic light emitting layer adjacent to the electron transport layer contains an anthracene compound represented by the formula (1-1), and may be any of a known fluorescent light emitting layer and phosphorescent light emitting layer.
- a fluorescent light-emitting layer is preferable, and an anthracene derivative is particularly preferable as a host material of the light-emitting layer.
- the light emitting layer may be a double host (also referred to as host / cohost). Specifically, the carrier balance in the light emitting layer may be adjusted by combining an electron transporting host and a hole transporting host in the light emitting layer. Moreover, it is good also as a double dopant.
- each dopant emits light by adding two or more dopant materials having a high quantum yield. For example, a yellow light emitting layer may be realized by co-evaporating a host, a red dopant, and a green dopant.
- the light emitting layer may be a single layer or a laminated structure.
- the recombination region can be concentrated on the light emitting layer interface by accumulating electrons and holes at the light emitting layer interface. This improves the quantum efficiency.
- the hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.6 eV or less.
- Examples of materials that can be used for the hole injection / transport layer include triazole derivatives (see US Pat. No. 3,112,197), oxadiazole derivatives (see US Pat. No. 3,189,447), imidazole, and the like. Derivatives (see Japanese Patent Publication No. 37-16096), polyarylalkane derivatives (US Pat. No. 3,615,402, US Pat. No. 3,820,989, US Pat. No.
- a cross-linkable material can be used as the material of the hole injection / transport layer.
- a cross-linkable hole injection / transport layer for example, Chem. Mater. 2008, 20, 413-422, Chem. Mater. Examples include a layer obtained by insolubilizing a cross-linking material such as 2011, 23 (3), 658-681, WO2008108430, WO2009102027, WO2009123269, WO2010016555, WO2010018813 by heat, light or the like.
- the electron injection / transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
- an electrode for example, a cathode
- the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several ⁇ m.
- the electron mobility is preferably at least 10 ⁇ 5 cm 2 / Vs or more when an electric field of V / cm is applied.
- the electron transport layer adjacent to the organic light emitting layer contains an azine compound represented by the formula (2-1).
- an aromatic heterocyclic compound containing at least one hetero atom in the molecule is preferable, and a nitrogen-containing ring derivative is particularly preferable.
- the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
- an organic layer having semiconductivity may be formed by doping (n) with a donor material and doping (p) with an acceptor material.
- n doping
- p doping
- a typical example of N doping is to dope a metal such as Li or Cs to the material of the electron transport layer
- P doping is to dope an acceptor material such as F4TCNQ to the material of the hole transport layer.
- each layer of the organic EL device of the present invention a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
- the thickness of each layer is not particularly limited, but must be set to an appropriate thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
- the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
- the organic EL device of the present invention can be used in a panel module used for various displays as a light emitting device. Further, the panel module of the present invention can be used for a display device such as a television, a portable terminal, and a personal computer, lighting, and the like.
- Example 1 A glass substrate with an ITO transparent electrode line of 25 mm ⁇ 75 mm ⁇ 1.1 mm (manufactured by Geomatic: ITO film thickness 130 nm) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and further UV (ultraviolet) ozone cleaning for 30 minutes.
- the glass substrate with the transparent electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the compound HA is first deposited on the surface on which the transparent electrode line is formed so as to cover the transparent electrode.
- a film was formed.
- a compound HT1 was vapor-deposited on the HA film to form a 95 nm-thick hole transport layer.
- the compound H100 which is a fluorescent host
- the compound BD which is a fluorescent dopant
- the compound ET100 was vapor-deposited on this fluorescent light emitting layer, and an electron transport layer having a thickness of 20 nm was formed.
- the compound ET1 was vapor-deposited to form an electron injection layer having a thickness of 5 nm.
- LiF with a thickness of 1 nm and metal Al with a thickness of 80 nm were sequentially laminated to form a cathode to manufacture an organic EL device. Note that LiF, which is an electron injecting electrode, was formed at a deposition rate of 1 ⁇ / min.
- Example 2 An organic EL device is formed in the same manner as in Example 1 except that the hole transport layer is formed using the following compound HT2 instead of the compound HT1, and the electron transport layer is formed using the following compound ET200 instead of the compound ET100. did.
- Example 3 An organic EL device was formed in the same manner as in Example 1 except that the compound ET200 was used instead of the compound ET100 to form the electron transport layer.
- Example 4 A hole transport layer is formed using compound HT2 instead of compound HT1, a fluorescent light emitting layer is formed using compound H200 below instead of compound H100, and an electron transport layer is formed using compound ET200 instead of compound ET100.
- An organic EL element was formed in the same manner as in Example 1 except that it was formed.
- Example 5 An organic EL device was formed in the same manner as in Example 1 except that the fluorescent light emitting layer was formed using Compound H200 instead of Compound H100 and the electron transport layer was formed using Compound ET200 instead of Compound ET100.
- Comparative Example 1 A hole transport layer is formed using compound HT2 instead of compound HT1, a fluorescent light emitting layer is formed using compound H300 below instead of compound H100, and an electron transport layer is formed using compound ET200 instead of compound ET100.
- An organic EL element was formed in the same manner as in Example 1 except that it was formed.
- the organic EL devices produced in the examples and comparative examples are made to emit light by direct current drive, and the luminance (L), chromaticity (x, y), luminous efficiency ⁇ (lm / W) at the current density of 10 mA / cm 2 , external Quantum efficiency (EQE:%) was measured. Further, the element lifetime (LT80) was measured. The results are shown in Table 1. The values of luminance, light emission efficiency ⁇ , external quantum efficiency (EQE), and element lifetime (LT80) in the table are relative values with the value of Comparative Example 1 being 100.
- the organic EL element of the present invention has a long life and can be driven with high efficiency. Accordingly, it can be suitably used as a display device such as a television, a portable terminal, a personal computer, or a light emitting element such as an illumination.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
An organic electroluminescent element wherein between an opposing anode and cathode there is at least an organic light emission layer and an electron transport layer that are adjacent in this order from the anode side, the organic light emission layer includes an anthracene compound represented by formula (1-1), and the electron transport layer includes an azine compound represented by formula (2-1). Ar11-Az (2-1)
Description
本発明は、有機エレクトロルミネッセンス素子に関する。
The present invention relates to an organic electroluminescence element.
有機エレクトロルミネッセンス(EL)素子は、電界を印加することにより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより発光材料が発光する原理を利用した自発光素子である。
有機EL素子は、低電圧駆動、高輝度、発光波長の多様性、高速応答性、薄型で軽量な発光デバイスが作製可能等の特徴を有するため、広汎な用途に応用されている。
有機EL素子で使用される有機化合物材料は、素子の発する光の色や発光寿命に大きな影響を与えるため、従来から積極的に研究されている。例えば特許文献1は、4環縮合環付きアントラセン化合物を開示する。 An organic electroluminescence (EL) element is a self-luminous element utilizing the principle that a light-emitting material emits light by recombination energy of holes injected from an anode and electrons injected from a cathode when an electric field is applied.
Organic EL elements have features such as low voltage drive, high brightness, diversity of emission wavelengths, high-speed response, and the ability to produce thin and light-emitting devices, and are therefore applied to a wide range of applications.
Organic compound materials used in organic EL elements have been actively studied since they have a great influence on the color of light emitted from the elements and the light emission lifetime. For example,Patent Document 1 discloses an anthracene compound with a four-ring condensed ring.
有機EL素子は、低電圧駆動、高輝度、発光波長の多様性、高速応答性、薄型で軽量な発光デバイスが作製可能等の特徴を有するため、広汎な用途に応用されている。
有機EL素子で使用される有機化合物材料は、素子の発する光の色や発光寿命に大きな影響を与えるため、従来から積極的に研究されている。例えば特許文献1は、4環縮合環付きアントラセン化合物を開示する。 An organic electroluminescence (EL) element is a self-luminous element utilizing the principle that a light-emitting material emits light by recombination energy of holes injected from an anode and electrons injected from a cathode when an electric field is applied.
Organic EL elements have features such as low voltage drive, high brightness, diversity of emission wavelengths, high-speed response, and the ability to produce thin and light-emitting devices, and are therefore applied to a wide range of applications.
Organic compound materials used in organic EL elements have been actively studied since they have a great influence on the color of light emitted from the elements and the light emission lifetime. For example,
有機EL素子用材料の開発は研究されているものの、有機EL素子のさらなる寿命向上、及びさらなる発光効率向上が求められている。
Although development of materials for organic EL elements has been studied, further improvement in the lifetime of organic EL elements and further improvement in luminous efficiency are required.
本発明の目的は、寿命及び発光効率を改善した有機EL素子を提供することである。
An object of the present invention is to provide an organic EL element with improved lifetime and luminous efficiency.
本発明者らは、特定のアントラセン化合物を含有する有機発光層及び特定のアジン化合物を含有する電子輸送層を、互いに隣接して形成した場合に、寿命が長く、かつ、発光効率の高い有機EL素子が得られることを見出し、本発明を完成させた。
When the organic light emitting layer containing a specific anthracene compound and the electron transport layer containing a specific azine compound are formed adjacent to each other, the present inventors have a long lifetime and high light emission efficiency. The inventors found that an element can be obtained and completed the present invention.
本発明によれば、以下の有機EL素子等が提供される。
1.対向する陽極と陰極との間に、前記陽極側から、少なくとも有機発光層及び電子輸送層をこの順に隣接して有し、
前記有機発光層が、下記式(1-1)で表わされるアントラセン化合物を含み、
前記電子輸送層が、下記式(2-1)で表わされるアジン化合物を含む、
有機エレクトロルミネッセンス素子。
(式(1-1)において、Ar1は、置換若しくは無置換の環形成炭素数15~60の芳香族炭化水素基である。
Ar2は、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基である。
Lは、単結合、又は置換若しくは無置換の環形成炭素数6~10のアリーレン基である。
R1~R8は、それぞれ独立に水素原子、フッ素原子、シアノ基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数3~40のトリアルキルシリル基、又は置換若しくは無置換の環形成炭素数8~50のアリールシリル基である。
nは、1~4の整数であり、nが2以上の場合、複数のLは、それぞれ同じでも異なってもよい。)
(式(2-1)において、
Ar11は、置換若しくは無置換のカルバゾール骨格含有基を置換基として1以上有する環形成炭素数6~30の芳香族炭化水素基である。
Azは、置換若しくは無置換の芳香族含窒素6員環基である。)
2.前記式(2-1)で表されるアジン化合物が有する、置換若しくは無置換のカルバゾール骨格含有基が、置換若しくは無置換の9-カルバゾリル基である、1に記載の有機エレクトロルミネッセンス素子。
3.前記式(2-1)のAr11は以下のいずれかから選択される1記載の有機エレクトロルミネッセンス素子。
(式中、L100は、環形成炭素数6~30の芳香族炭化水素基であり、
Ar100は、水素原子又は置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基である。)
4.前記アジン化合物が、下記式(2-1)で表される化合物である、1又は2に記載の有機エレクトロルミネッセンス素子。
(式(2-2)において、kは1~3の整数であり、nは0~3の整数であり、
R11~R18は、それぞれ独立に水素原子、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換若しくは無置換の環形成原子数5~30の芳香族複素環基、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の炭素数1~30のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数7~30のアラルキル基、置換若しくは無置換の炭素数1~30のハロアルキル基、置換若しくは無置換の炭素数1~30のハロアルコキシ基、置換若しくは無置換の炭素数3~30のアルキルシリル基、置換若しくは無置換の炭素数8~40のジアルキルアリールシリル基、置換若しくは無置換の炭素数13~50のアルキルジアリールシリル基、置換若しくは無置換の炭素数18~60のトリアリールシリル基、置換若しくは無置換の炭素数2~30のアルケニル基、置換若しくは無置換の炭素数2~30のアルキニル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、又はカルボキシ基である。
Azは、置換若しくは無置換の芳香族含窒素6員環基である。)
5.前記式(2-2)のAzが、下記式(2a)で表される基である、4に記載の有機エレクトロルミネッセンス素子。
(式(2a)において、X1~X3はそれぞれ独立に、窒素原子又はCHであり、X1~X3のうち少なくとも2つは窒素原子である。
Ar12及びAr13は、それぞれ独立に置換若しくは無置換の環形成炭素数6~18の芳香族炭化水素基である。)
6.前記式(2a)のX1及びX2が窒素原子であり、X3がCHである、5に記載の有機エレクトロルミネッセンス素子。
7.前記式(2a)のAr12の炭素数が、Ar13の炭素数以下である、5又は6に記載の有機エレクトロルミネッセンス素子。
8.前記式(2a)のAr12が、置換若しくは無置換のフェニル基、置換若しくは無置換のナフチル基、又は置換若しくは無置換のビフェニル基である、5~7のいずれかに記載の有機エレクトロルミネッセンス素子。
9.前記式(2-2)のkが2である、4~8のいずれかに記載の有機エレクトロルミネッセンス素子。
10.前記式(2-2)のR11~R18が水素原子である、4~9のいずれかに記載の有機エレクトロルミネッセンス素子。
11.前記式(1-1)のAr1が、下記式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、(1g)又は(1h)で表わされる置換基のいずれかである1~10のいずれかに記載の有機エレクトロルミネッセンス素子。
(式(1a)~(1h)において、それぞれ、Rのうち1つがLと結合する単結合であり、単結合以外のRは、それぞれ独立に水素原子、フッ素原子、シアノ基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数3~40のトリアルキルシリル基、又は置換若しくは無置換の炭素数8~50のアリールシリル基である。)
12.前記式(1-1)のAr1が、下記式(1a)、(1b)、(1c)又は(1h)で表わされる置換基のいずれかである1~11のいずれかに記載の有機エレクトロルミネッセンス素子。
(式(1a)~(1c)及び(1h)において、それぞれ、Rのうち1つがLと結合する単結合であり、単結合以外のRは、それぞれ独立に水素原子、フッ素原子、シアノ基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数3~40のトリアルキルシリル基、又は置換若しくは無置換の炭素数8~50のアリールシリル基である。)
13.前記式(1-1)のAr1が、下記式(1a’)、(1b’)又は(1h’)で表わされる置換基のいずれかである1~12のいずれかに記W載の有機エレクトロルミネッセンス素子。
(式(1a’)、(1b’)及び(1h’)において、それぞれ、R’のいずれか1つがLと結合する単結合であり、単結合以外のR’及びRは、それぞれ独立に水素原子、フッ素原子、シアノ基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数3~40のトリアルキルシリル基、又は置換若しくは無置換の炭素数8~50のアリールシリル基である。)
14.前記式(1-1)のLが単結合である1~13のいずれかに記載の有機エレクトロルミネッセンス素子。
15.1~14のいずれかに記載の有機エレクトロルミネッセンス素子を使用したパネルモジュール。
16.15に記載のパネルモジュールを用いた電子機器。 According to the present invention, the following organic EL elements and the like are provided.
1. Between the anode and cathode facing each other, from the anode side, at least an organic light emitting layer and an electron transport layer are adjacent to each other in this order,
The organic light emitting layer contains an anthracene compound represented by the following formula (1-1):
The electron transport layer contains an azine compound represented by the following formula (2-1):
Organic electroluminescence device.
(In the formula (1-1), Ar 1 is a substituted or unsubstituted aromatic hydrocarbon group having 15 to 60 ring carbon atoms.
Ar 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
L is a single bond or a substituted or unsubstituted arylene group having 6 to 10 ring carbon atoms.
R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted An unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, a substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or a substituted or unsubstituted ring An arylsilyl group having 8 to 50 carbon atoms formed.
n is an integer of 1 to 4, and when n is 2 or more, the plurality of L may be the same or different. )
(In Formula (2-1),
Ar 11 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms having at least one substituted or unsubstituted carbazole skeleton-containing group as a substituent.
Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group. )
2. 2. The organic electroluminescence device according to 1, wherein the azine compound represented by the formula (2-1) has a substituted or unsubstituted carbazole skeleton-containing group which is a substituted or unsubstituted 9-carbazolyl group.
3. 2. The organic electroluminescence device according to 1, wherein Ar 11 in the formula (2-1) is selected from any of the following.
(Wherein L 100 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms,
Ar 100 is a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms. )
4). 3. The organic electroluminescence device according to 1 or 2, wherein the azine compound is a compound represented by the following formula (2-1).
(In the formula (2-2), k is an integer of 1 to 3, n is an integer of 0 to 3,
R 11 to R 18 are each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms. Substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 30 ring carbon atoms, substituted or unsubstituted An aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted 3 to 30 carbon atoms An alkylsilyl group, a substituted or unsubstituted dialkylarylsilyl group having 8 to 40 carbon atoms, a substituted or unsubstituted alkyldiarylsilyl group having 13 to 50 carbon atoms, a substituted Or an unsubstituted triarylsilyl group having 18 to 60 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a halogen atom, a cyano group, A hydroxyl group, a nitro group, or a carboxy group.
Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group. )
5. 5. The organic electroluminescence device according to 4, wherein Az in the formula (2-2) is a group represented by the following formula (2a).
(In Formula (2a), X 1 to X 3 are each independently a nitrogen atom or CH, and at least two of X 1 to X 3 are nitrogen atoms.
Ar 12 and Ar 13 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 ring carbon atoms. )
6). 6. The organic electroluminescence device according to 5, wherein X 1 and X 2 in the formula (2a) are nitrogen atoms and X 3 is CH.
7). Formula number of carbon atoms of Ar 12 in (2a) is equal to or less than the number of carbon atoms of Ar 13, the organic electroluminescence device according to 5 or 6.
8). 8. The organic electroluminescence device according to any one of 5 to 7, wherein Ar 12 in the formula (2a) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted biphenyl group. .
9. 9. The organic electroluminescence device according to any one of 4 to 8, wherein k in the formula (2-2) is 2.
10. 10. The organic electroluminescence device according to any one of 4 to 9, wherein R 11 to R 18 in the formula (2-2) are hydrogen atoms.
11. Ar 1 in the formula (1-1) is a substituent represented by the following formula (1a), (1b), (1c), (1d), (1e), (1f), (1g) or (1h) The organic electroluminescence device according to any one of 1 to 10, which is any one of
(In formulas (1a) to (1h), one of R is a single bond bonded to L, and each R other than a single bond is independently a hydrogen atom, a fluorine atom, a cyano group, substituted or unsubstituted. An alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted ring forming carbon atom having 6 to 6 carbon atoms. 30 aryloxy groups, substituted or unsubstituted trialkylsilyl groups having 3 to 40 carbon atoms, or substituted or unsubstituted arylsilyl groups having 8 to 50 carbon atoms.)
12 The organic electro according to any one of 1 to 11, wherein Ar 1 in the formula (1-1) is any one of substituents represented by the following formulas (1a), (1b), (1c) or (1h): Luminescence element.
(In the formulas (1a) to (1c) and (1h), one of R is a single bond bonded to L, and each R other than a single bond is independently a hydrogen atom, a fluorine atom, a cyano group, Substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted ring formation A C6-C30 aryloxy group, a substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or a substituted or unsubstituted arylsilyl group having 8 to 50 carbon atoms.)
13. The organic compound according to W described in any one of 1 to 12, wherein Ar 1 in the formula (1-1) is any one of substituents represented by the following formula (1a ′), (1b ′), or (1h ′) Electroluminescence element.
(In the formulas (1a ′), (1b ′) and (1h ′), any one of R ′ is a single bond bonded to L, and R ′ and R other than a single bond are each independently hydrogen. Atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, a substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or a substituted or unsubstituted arylsilyl group having 8 to 50 carbon atoms is there.)
14 14. The organic electroluminescence device according to any one of 1 to 13, wherein L in the formula (1-1) is a single bond.
15. A panel module using the organic electroluminescence device according to any one of 1 to 14.
Electronic equipment using the panel module according to 16.15.
1.対向する陽極と陰極との間に、前記陽極側から、少なくとも有機発光層及び電子輸送層をこの順に隣接して有し、
前記有機発光層が、下記式(1-1)で表わされるアントラセン化合物を含み、
前記電子輸送層が、下記式(2-1)で表わされるアジン化合物を含む、
有機エレクトロルミネッセンス素子。
Ar2は、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基である。
Lは、単結合、又は置換若しくは無置換の環形成炭素数6~10のアリーレン基である。
R1~R8は、それぞれ独立に水素原子、フッ素原子、シアノ基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数3~40のトリアルキルシリル基、又は置換若しくは無置換の環形成炭素数8~50のアリールシリル基である。
nは、1~4の整数であり、nが2以上の場合、複数のLは、それぞれ同じでも異なってもよい。)
Ar11は、置換若しくは無置換のカルバゾール骨格含有基を置換基として1以上有する環形成炭素数6~30の芳香族炭化水素基である。
Azは、置換若しくは無置換の芳香族含窒素6員環基である。)
2.前記式(2-1)で表されるアジン化合物が有する、置換若しくは無置換のカルバゾール骨格含有基が、置換若しくは無置換の9-カルバゾリル基である、1に記載の有機エレクトロルミネッセンス素子。
3.前記式(2-1)のAr11は以下のいずれかから選択される1記載の有機エレクトロルミネッセンス素子。
Ar100は、水素原子又は置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基である。)
4.前記アジン化合物が、下記式(2-1)で表される化合物である、1又は2に記載の有機エレクトロルミネッセンス素子。
R11~R18は、それぞれ独立に水素原子、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換若しくは無置換の環形成原子数5~30の芳香族複素環基、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の炭素数1~30のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数7~30のアラルキル基、置換若しくは無置換の炭素数1~30のハロアルキル基、置換若しくは無置換の炭素数1~30のハロアルコキシ基、置換若しくは無置換の炭素数3~30のアルキルシリル基、置換若しくは無置換の炭素数8~40のジアルキルアリールシリル基、置換若しくは無置換の炭素数13~50のアルキルジアリールシリル基、置換若しくは無置換の炭素数18~60のトリアリールシリル基、置換若しくは無置換の炭素数2~30のアルケニル基、置換若しくは無置換の炭素数2~30のアルキニル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、又はカルボキシ基である。
Azは、置換若しくは無置換の芳香族含窒素6員環基である。)
5.前記式(2-2)のAzが、下記式(2a)で表される基である、4に記載の有機エレクトロルミネッセンス素子。
Ar12及びAr13は、それぞれ独立に置換若しくは無置換の環形成炭素数6~18の芳香族炭化水素基である。)
6.前記式(2a)のX1及びX2が窒素原子であり、X3がCHである、5に記載の有機エレクトロルミネッセンス素子。
7.前記式(2a)のAr12の炭素数が、Ar13の炭素数以下である、5又は6に記載の有機エレクトロルミネッセンス素子。
8.前記式(2a)のAr12が、置換若しくは無置換のフェニル基、置換若しくは無置換のナフチル基、又は置換若しくは無置換のビフェニル基である、5~7のいずれかに記載の有機エレクトロルミネッセンス素子。
9.前記式(2-2)のkが2である、4~8のいずれかに記載の有機エレクトロルミネッセンス素子。
10.前記式(2-2)のR11~R18が水素原子である、4~9のいずれかに記載の有機エレクトロルミネッセンス素子。
11.前記式(1-1)のAr1が、下記式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、(1g)又は(1h)で表わされる置換基のいずれかである1~10のいずれかに記載の有機エレクトロルミネッセンス素子。
12.前記式(1-1)のAr1が、下記式(1a)、(1b)、(1c)又は(1h)で表わされる置換基のいずれかである1~11のいずれかに記載の有機エレクトロルミネッセンス素子。
13.前記式(1-1)のAr1が、下記式(1a’)、(1b’)又は(1h’)で表わされる置換基のいずれかである1~12のいずれかに記W載の有機エレクトロルミネッセンス素子。
14.前記式(1-1)のLが単結合である1~13のいずれかに記載の有機エレクトロルミネッセンス素子。
15.1~14のいずれかに記載の有機エレクトロルミネッセンス素子を使用したパネルモジュール。
16.15に記載のパネルモジュールを用いた電子機器。 According to the present invention, the following organic EL elements and the like are provided.
1. Between the anode and cathode facing each other, from the anode side, at least an organic light emitting layer and an electron transport layer are adjacent to each other in this order,
The organic light emitting layer contains an anthracene compound represented by the following formula (1-1):
The electron transport layer contains an azine compound represented by the following formula (2-1):
Organic electroluminescence device.
Ar 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
L is a single bond or a substituted or unsubstituted arylene group having 6 to 10 ring carbon atoms.
R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted An unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, a substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or a substituted or unsubstituted ring An arylsilyl group having 8 to 50 carbon atoms formed.
n is an integer of 1 to 4, and when n is 2 or more, the plurality of L may be the same or different. )
Ar 11 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms having at least one substituted or unsubstituted carbazole skeleton-containing group as a substituent.
Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group. )
2. 2. The organic electroluminescence device according to 1, wherein the azine compound represented by the formula (2-1) has a substituted or unsubstituted carbazole skeleton-containing group which is a substituted or unsubstituted 9-carbazolyl group.
3. 2. The organic electroluminescence device according to 1, wherein Ar 11 in the formula (2-1) is selected from any of the following.
Ar 100 is a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms. )
4). 3. The organic electroluminescence device according to 1 or 2, wherein the azine compound is a compound represented by the following formula (2-1).
R 11 to R 18 are each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms. Substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 30 ring carbon atoms, substituted or unsubstituted An aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted 3 to 30 carbon atoms An alkylsilyl group, a substituted or unsubstituted dialkylarylsilyl group having 8 to 40 carbon atoms, a substituted or unsubstituted alkyldiarylsilyl group having 13 to 50 carbon atoms, a substituted Or an unsubstituted triarylsilyl group having 18 to 60 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a halogen atom, a cyano group, A hydroxyl group, a nitro group, or a carboxy group.
Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group. )
5. 5. The organic electroluminescence device according to 4, wherein Az in the formula (2-2) is a group represented by the following formula (2a).
Ar 12 and Ar 13 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 ring carbon atoms. )
6). 6. The organic electroluminescence device according to 5, wherein X 1 and X 2 in the formula (2a) are nitrogen atoms and X 3 is CH.
7). Formula number of carbon atoms of Ar 12 in (2a) is equal to or less than the number of carbon atoms of Ar 13, the organic electroluminescence device according to 5 or 6.
8). 8. The organic electroluminescence device according to any one of 5 to 7, wherein Ar 12 in the formula (2a) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted biphenyl group. .
9. 9. The organic electroluminescence device according to any one of 4 to 8, wherein k in the formula (2-2) is 2.
10. 10. The organic electroluminescence device according to any one of 4 to 9, wherein R 11 to R 18 in the formula (2-2) are hydrogen atoms.
11. Ar 1 in the formula (1-1) is a substituent represented by the following formula (1a), (1b), (1c), (1d), (1e), (1f), (1g) or (1h) The organic electroluminescence device according to any one of 1 to 10, which is any one of
12 The organic electro according to any one of 1 to 11, wherein Ar 1 in the formula (1-1) is any one of substituents represented by the following formulas (1a), (1b), (1c) or (1h): Luminescence element.
13. The organic compound according to W described in any one of 1 to 12, wherein Ar 1 in the formula (1-1) is any one of substituents represented by the following formula (1a ′), (1b ′), or (1h ′) Electroluminescence element.
14 14. The organic electroluminescence device according to any one of 1 to 13, wherein L in the formula (1-1) is a single bond.
15. A panel module using the organic electroluminescence device according to any one of 1 to 14.
Electronic equipment using the panel module according to 16.15.
本発明によれば、寿命及び発光効率が改善した有機EL素子が提供できる。
According to the present invention, it is possible to provide an organic EL element with improved lifetime and luminous efficiency.
本発明の有機EL素子は、対向する陽極と陰極との間に、少なくとも陽極側から、有機発光層及び電子輸送層をこの順に隣接して有し、有機発光層が、下記式(1-1)で表わされるアントラセン化合物を含み、電子輸送層が、下記式(2-1)で表わされるアジン化合物を含む。尚、本発明において、アジンとは、環内に窒素原子を1以上含む6員環化合物である。
(式(1-1)において、Ar1は、置換若しくは無置換の環形成炭素数15~60の芳香族炭化水素基である。
Ar2は、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基である。
Lは、単結合、又は置換若しくは無置換の環形成炭素数6~10のアリーレン基である。
R1~R8は、それぞれ独立に水素原子、フッ素原子、シアノ基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数3~40のトリアルキルシリル基、又は置換若しくは無置換の炭素数8~50のアリールシリル基である。
nは、1~4の整数であり、nが2以上の場合、複数のLは、それぞれ同じでも異なってもよい。)
(式(2-1)において、
Ar11は、置換若しくは無置換のカルバゾール骨格含有基を置換基として1以上有する環形成炭素数6~30の芳香族炭化水素基である。
Azは、置換若しくは無置換の芳香族含窒素6員環基である。) The organic EL device of the present invention has an organic light emitting layer and an electron transport layer adjacent to each other in this order between at least the anode side and the anode, and the organic light emitting layer has the following formula (1-1): And the electron transport layer contains an azine compound represented by the following formula (2-1). In the present invention, azine is a 6-membered ring compound containing one or more nitrogen atoms in the ring.
(In the formula (1-1), Ar 1 is a substituted or unsubstituted aromatic hydrocarbon group having 15 to 60 ring carbon atoms.
Ar 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
L is a single bond or a substituted or unsubstituted arylene group having 6 to 10 ring carbon atoms.
R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted Unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or substituted or unsubstituted And an arylsilyl group having 8 to 50 carbon atoms.
n is an integer of 1 to 4, and when n is 2 or more, the plurality of L may be the same or different. )
(In Formula (2-1),
Ar 11 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms having at least one substituted or unsubstituted carbazole skeleton-containing group as a substituent.
Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group. )
Ar2は、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基である。
Lは、単結合、又は置換若しくは無置換の環形成炭素数6~10のアリーレン基である。
R1~R8は、それぞれ独立に水素原子、フッ素原子、シアノ基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数3~40のトリアルキルシリル基、又は置換若しくは無置換の炭素数8~50のアリールシリル基である。
nは、1~4の整数であり、nが2以上の場合、複数のLは、それぞれ同じでも異なってもよい。)
Ar11は、置換若しくは無置換のカルバゾール骨格含有基を置換基として1以上有する環形成炭素数6~30の芳香族炭化水素基である。
Azは、置換若しくは無置換の芳香族含窒素6員環基である。) The organic EL device of the present invention has an organic light emitting layer and an electron transport layer adjacent to each other in this order between at least the anode side and the anode, and the organic light emitting layer has the following formula (1-1): And the electron transport layer contains an azine compound represented by the following formula (2-1). In the present invention, azine is a 6-membered ring compound containing one or more nitrogen atoms in the ring.
Ar 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
L is a single bond or a substituted or unsubstituted arylene group having 6 to 10 ring carbon atoms.
R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted Unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or substituted or unsubstituted And an arylsilyl group having 8 to 50 carbon atoms.
n is an integer of 1 to 4, and when n is 2 or more, the plurality of L may be the same or different. )
Ar 11 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms having at least one substituted or unsubstituted carbazole skeleton-containing group as a substituent.
Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group. )
本発明の有機EL素子では、式(1-1)で表わされるアントラセン化合物を含む有機発光層と式(2-1)で表わされるアジン化合物を含む電子輸送層が互いに隣接してなる積層体を含む。式(2-1)で表わされるアジン化合物は、有機発光層への電子注入を円滑にすることができると推測される他、素子の低電圧駆動を可能とする。また、電子輸送層のアジン化合物による円滑な電子注入に対して、有機発光層が式(1-1)で表わされるアントラセン化合物を含むことによって、チャージバランスを最適にすることができる。これにより、本発明の有機EL素子は、高効率及び長寿命を示すことができる。
In the organic EL device of the present invention, a laminate comprising an organic light emitting layer containing an anthracene compound represented by formula (1-1) and an electron transport layer containing an azine compound represented by formula (2-1) is adjacent to each other. Including. The azine compound represented by the formula (2-1) is estimated to be able to smoothly inject electrons into the organic light emitting layer, and enables the device to be driven at a low voltage. Further, the charge balance can be optimized by including the anthracene compound represented by the formula (1-1) in the organic light emitting layer for smooth electron injection by the azine compound of the electron transport layer. Thereby, the organic EL element of this invention can show high efficiency and long lifetime.
[アントラセン化合物]
有機発光層が含むアントラセン化合物は、好ましくは式(1-1)のAr1が、下記式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、(1g)又は(1h)で表わされる置換基のいずれかであり、より好ましくは式(1a)、(1b)、又は(1h)で表わされる置換基のいずれかである。
また、好ましくは、Ar1が、下記式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、(1g)又は(1h)で表わされる基のいずれかを含む置換基であり、より好ましくは式(1a)、(1b)、又は(1h)で表わされる基のいずれかを含む置換基である。式(1a)等で表わされる基を含む置換基は、式(1a)等で表わされる基と、フェニレン、ナフタレニレン、又はビフェニレン等とが結合した基が好ましい。
一般に分子内の縮合環を大きくすることで、分子間の重なりが多くなり、輸送性が向上するとされるが、縮合環が大きすぎてもキャリアバランスが崩れ、効率が得られないおそれがある。
(式(1a)~(1h)において、それぞれ、Rのうち1つがLと結合する単結合であり、単結合以外のRは、それぞれ独立に水素原子、フッ素原子、シアノ基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数3~40のトリアルキルシリル基、又は置換若しくは無置換の炭素数8~50のアリールシリル基である。)
[Anthracene compounds]
The anthracene compound contained in the organic light-emitting layer is preferably such that Ar 1 in the formula (1-1) has the following formulas (1a), (1b), (1c), (1d), (1e), (1f), (1g ) Or (1h), and more preferably any of the substituents represented by formula (1a), (1b), or (1h).
Preferably, Ar 1 is any one of the groups represented by the following formulas (1a), (1b), (1c), (1d), (1e), (1f), (1g) or (1h). And more preferably a substituent containing any of the groups represented by the formula (1a), (1b), or (1h). The substituent containing a group represented by the formula (1a) or the like is preferably a group in which a group represented by the formula (1a) or the like is bonded to phenylene, naphthalenylene, biphenylene or the like.
Generally, increasing the size of the condensed ring in the molecule increases the overlap between molecules and improves transportability. However, if the condensed ring is too large, the carrier balance may be lost and efficiency may not be obtained.
(In formulas (1a) to (1h), one of R is a single bond bonded to L, and each R other than a single bond is independently a hydrogen atom, a fluorine atom, a cyano group, substituted or unsubstituted. An alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted 6 to 30 carbon atoms. An aryloxy group, a substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or a substituted or unsubstituted arylsilyl group having 8 to 50 carbon atoms.)
有機発光層が含むアントラセン化合物は、好ましくは式(1-1)のAr1が、下記式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、(1g)又は(1h)で表わされる置換基のいずれかであり、より好ましくは式(1a)、(1b)、又は(1h)で表わされる置換基のいずれかである。
また、好ましくは、Ar1が、下記式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、(1g)又は(1h)で表わされる基のいずれかを含む置換基であり、より好ましくは式(1a)、(1b)、又は(1h)で表わされる基のいずれかを含む置換基である。式(1a)等で表わされる基を含む置換基は、式(1a)等で表わされる基と、フェニレン、ナフタレニレン、又はビフェニレン等とが結合した基が好ましい。
一般に分子内の縮合環を大きくすることで、分子間の重なりが多くなり、輸送性が向上するとされるが、縮合環が大きすぎてもキャリアバランスが崩れ、効率が得られないおそれがある。
The anthracene compound contained in the organic light-emitting layer is preferably such that Ar 1 in the formula (1-1) has the following formulas (1a), (1b), (1c), (1d), (1e), (1f), (1g ) Or (1h), and more preferably any of the substituents represented by formula (1a), (1b), or (1h).
Preferably, Ar 1 is any one of the groups represented by the following formulas (1a), (1b), (1c), (1d), (1e), (1f), (1g) or (1h). And more preferably a substituent containing any of the groups represented by the formula (1a), (1b), or (1h). The substituent containing a group represented by the formula (1a) or the like is preferably a group in which a group represented by the formula (1a) or the like is bonded to phenylene, naphthalenylene, biphenylene or the like.
Generally, increasing the size of the condensed ring in the molecule increases the overlap between molecules and improves transportability. However, if the condensed ring is too large, the carrier balance may be lost and efficiency may not be obtained.
式(1-1)のAr1が、式(1a)、(1b)又は(1h)で表わされる置換基である場合、これら置換基のLとの置換位置は、下記式(1a’)、(1b’)又は(1h’)の関係にあると好ましい。これら置換位置にあたる部分が環構造における活性部位と考えられるため、当該位置に置換基を配することで分子の安定性が高まり、素子を駆動させた際に長寿命となると考えられる。
(式(1a’)、(1b’)及び(1h’)において、それぞれ、R’のいずれか1つがLと結合する単結合であり、単結合以外のR’及びRは、それぞれ独立に水素原子、フッ素原子、シアノ基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数3~40のトリアルキルシリル基、又は置換若しくは無置換の炭素数8~50のアリールシリル基である。)
When Ar 1 in formula (1-1) is a substituent represented by formula (1a), (1b) or (1h), the position of substitution of these substituents with L is represented by the following formula (1a ′), A relationship of (1b ′) or (1h ′) is preferable. Since the portion corresponding to the substitution position is considered to be an active site in the ring structure, it is considered that the substitution of a substituent at the position increases the stability of the molecule and extends the lifetime when the device is driven.
(In the formulas (1a ′), (1b ′) and (1h ′), any one of R ′ is a single bond bonded to L, and R ′ and R other than a single bond are each independently hydrogen. Atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, a substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or a substituted or unsubstituted arylsilyl group having 8 to 50 carbon atoms is there.)
式(1-1)のAr2は、好ましくは置換若しくは無置換のフェニル基、置換若しくは無置換のビフェニル基、置換若しくは無置換のナフチル基、又は置換若しくは無置換のフェナントリル基である。Ar2がこれら置換基のいずれかであることで、素子を作製し、駆動した際により適したキャリアバランスとなると考えられる。
尚、本願におけるビフェニル基とは、2-ビフェニル基、3-ビフェニル基及び4-ビフェニル基のいずれかを指すものである。 Ar 2 in Formula (1-1) is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted phenanthryl group. Ar 2 is one of these substituents, and it is considered that the carrier balance is more suitable when the device is manufactured and driven.
The biphenyl group in this application refers to any of 2-biphenyl group, 3-biphenyl group and 4-biphenyl group.
尚、本願におけるビフェニル基とは、2-ビフェニル基、3-ビフェニル基及び4-ビフェニル基のいずれかを指すものである。 Ar 2 in Formula (1-1) is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted phenanthryl group. Ar 2 is one of these substituents, and it is considered that the carrier balance is more suitable when the device is manufactured and driven.
The biphenyl group in this application refers to any of 2-biphenyl group, 3-biphenyl group and 4-biphenyl group.
式(1-1)のLは、好ましくは単結合、又は置換若しくは無置換のフェニレニル基であり、より好ましくは単結合である。また、nは、好ましくは1である。
Lが単結合であることによって、素子を作成し駆動した際に、より適したキャリアバランスとなると考えられる。 L in Formula (1-1) is preferably a single bond or a substituted or unsubstituted phenylenyl group, and more preferably a single bond. N is preferably 1.
When L is a single bond, it is considered that a more suitable carrier balance is obtained when an element is formed and driven.
Lが単結合であることによって、素子を作成し駆動した際に、より適したキャリアバランスとなると考えられる。 L in Formula (1-1) is preferably a single bond or a substituted or unsubstituted phenylenyl group, and more preferably a single bond. N is preferably 1.
When L is a single bond, it is considered that a more suitable carrier balance is obtained when an element is formed and driven.
式(1-1)のR1~R8は、好ましくは全て水素原子である。アントラセン環のR1~R8の全てが水素原子であることにより、化合物が安定なものとなると考えられ、素子として駆動させた際に長寿命となると考えられる。
R 1 to R 8 in the formula (1-1) are preferably all hydrogen atoms. Since all of R 1 to R 8 of the anthracene ring are hydrogen atoms, the compound is considered to be stable, and is considered to have a long life when driven as an element.
式(1-1)で表わされるアントラセン化合物の具体例を以下に示す。
Specific examples of the anthracene compound represented by the formula (1-1) are shown below.
[アジン化合物]
式(2-1)で表わされるアジン化合物のAr11は、置換若しくは無置換のカルバゾール骨格含有基を置換基として1つ以上有する、環形成炭素数6~30の芳香族炭化水素基である。カルバゾール骨格含有基は好ましくはカルバゾリル基である。好ましくはカルバゾリル基を1又は2有する。
Ar11の置換若しくは無置換のカルバゾール骨格含有基は、好ましくは置換若しくは無置換の9-カルバゾリル基である。 [Azine compounds]
Ar 11 of the azine compound represented by the formula (2-1) is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms and having one or more substituted or unsubstituted carbazole skeleton-containing groups as substituents. The carbazole skeleton-containing group is preferably a carbazolyl group. Preferably it has 1 or 2 carbazolyl groups.
The substituted or unsubstituted carbazole skeleton-containing group for Ar 11 is preferably a substituted or unsubstituted 9-carbazolyl group.
式(2-1)で表わされるアジン化合物のAr11は、置換若しくは無置換のカルバゾール骨格含有基を置換基として1つ以上有する、環形成炭素数6~30の芳香族炭化水素基である。カルバゾール骨格含有基は好ましくはカルバゾリル基である。好ましくはカルバゾリル基を1又は2有する。
Ar11の置換若しくは無置換のカルバゾール骨格含有基は、好ましくは置換若しくは無置換の9-カルバゾリル基である。 [Azine compounds]
Ar 11 of the azine compound represented by the formula (2-1) is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms and having one or more substituted or unsubstituted carbazole skeleton-containing groups as substituents. The carbazole skeleton-containing group is preferably a carbazolyl group. Preferably it has 1 or 2 carbazolyl groups.
The substituted or unsubstituted carbazole skeleton-containing group for Ar 11 is preferably a substituted or unsubstituted 9-carbazolyl group.
また、カルバゾール骨格含有基は、好ましくは以下のいずれかから選択される。
(式中、L100は、環形成炭素数6~30の芳香族炭化水素基であり、
Ar100は、水素原子又は置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基である。) The carbazole skeleton-containing group is preferably selected from any of the following.
(Wherein L 100 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms,
Ar 100 is a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms. )
Ar100は、水素原子又は置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基である。) The carbazole skeleton-containing group is preferably selected from any of the following.
Ar 100 is a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms. )
具体的には、以下の式で表わされる化合物を例示できる。
Specifically, compounds represented by the following formulas can be exemplified.
式(2-1)のAzは、置換若しくは無置換の芳香族含窒素6員環基であり、好ましくは置換若しくは無置換のピリミジニル基、置換若しくは無置換のピラジニル基、又は置換若しくは無置換のトリアジニル基である。
Az in the formula (2-1) is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group, preferably a substituted or unsubstituted pyrimidinyl group, a substituted or unsubstituted pyrazinyl group, or a substituted or unsubstituted Triazinyl group.
式(2-1)のAzは、好ましくは下記式(2a)で表わされる基である。
(式(2a)において、X1~X3はそれぞれ独立に、窒素原子又はCHであり、X1~X3のうち少なくとも2つは窒素原子である。
Ar12及びAr13は、それぞれ独立に置換若しくは無置換の環形成炭素数6~18(好ましくは6~12)の芳香族炭化水素基である。) Az in the formula (2-1) is preferably a group represented by the following formula (2a).
(In Formula (2a), X 1 to X 3 are each independently a nitrogen atom or CH, and at least two of X 1 to X 3 are nitrogen atoms.
Ar 12 and Ar 13 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 (preferably 6 to 12) ring-forming carbon atoms. )
Ar12及びAr13は、それぞれ独立に置換若しくは無置換の環形成炭素数6~18(好ましくは6~12)の芳香族炭化水素基である。) Az in the formula (2-1) is preferably a group represented by the following formula (2a).
Ar 12 and Ar 13 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 (preferably 6 to 12) ring-forming carbon atoms. )
式(2a)で表わされる基について、好ましくはX1及びX2が窒素原子であり、X3がCHであることが好ましい。
また、上記式(2a)のAr12の炭素数が、Ar13の炭素数以下であることが好ましい。
特に、式(2a)のAr12が、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のビフェニル基であることが好ましい。 Regarding the group represented by the formula (2a), X 1 and X 2 are preferably nitrogen atoms, and X 3 is preferably CH.
The number of carbon atoms of Ar 12 in the formula (2a) is preferably less than or equal to the number of carbon atoms of Ar 13.
In particular, Ar 12 in formula (2a) is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted biphenyl group.
また、上記式(2a)のAr12の炭素数が、Ar13の炭素数以下であることが好ましい。
特に、式(2a)のAr12が、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のビフェニル基であることが好ましい。 Regarding the group represented by the formula (2a), X 1 and X 2 are preferably nitrogen atoms, and X 3 is preferably CH.
The number of carbon atoms of Ar 12 in the formula (2a) is preferably less than or equal to the number of carbon atoms of Ar 13.
In particular, Ar 12 in formula (2a) is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted biphenyl group.
式(2-1)で表わされるアジン化合物は、好ましくは下記式(2-2)で表わされるアジン化合物である。
(式(2-2)において、kは1~3の整数であり、nは0~3の整数であり、
R11~R18は、それぞれ独立に水素原子、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換若しくは無置換の環形成原子数5~30の芳香族複素環基、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の炭素数1~30のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数7~30のアラルキル基、置換若しくは無置換の炭素数1~30のハロアルキル基、置換若しくは無置換の炭素数1~30のハロアルコキシ基、置換若しくは無置換の炭素数3~30のアルキルシリル基、置換若しくは無置換の炭素数8~40のジアルキルアリールシリル基、置換若しくは無置換の炭素数13~50のアルキルジアリールシリル基、置換若しくは無置換の炭素数18~60のトリアリールシリル基、置換若しくは無置換の炭素数2~30のアルケニル基、置換若しくは無置換の炭素数2~30のアルキニル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、又はカルボキシ基である。
Azは、置換若しくは無置換の芳香族含窒素6員環基である。) The azine compound represented by the formula (2-1) is preferably an azine compound represented by the following formula (2-2).
(In the formula (2-2), k is an integer of 1 to 3, n is an integer of 0 to 3,
R 11 to R 18 are each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms. Substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 30 ring carbon atoms, substituted or unsubstituted An aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted 3 to 30 carbon atoms An alkylsilyl group, a substituted or unsubstituted dialkylarylsilyl group having 8 to 40 carbon atoms, a substituted or unsubstituted alkyldiarylsilyl group having 13 to 50 carbon atoms, a substituted Or an unsubstituted triarylsilyl group having 18 to 60 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a halogen atom, a cyano group, A hydroxyl group, a nitro group, or a carboxy group.
Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group. )
R11~R18は、それぞれ独立に水素原子、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換若しくは無置換の環形成原子数5~30の芳香族複素環基、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の炭素数1~30のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数7~30のアラルキル基、置換若しくは無置換の炭素数1~30のハロアルキル基、置換若しくは無置換の炭素数1~30のハロアルコキシ基、置換若しくは無置換の炭素数3~30のアルキルシリル基、置換若しくは無置換の炭素数8~40のジアルキルアリールシリル基、置換若しくは無置換の炭素数13~50のアルキルジアリールシリル基、置換若しくは無置換の炭素数18~60のトリアリールシリル基、置換若しくは無置換の炭素数2~30のアルケニル基、置換若しくは無置換の炭素数2~30のアルキニル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、又はカルボキシ基である。
Azは、置換若しくは無置換の芳香族含窒素6員環基である。) The azine compound represented by the formula (2-1) is preferably an azine compound represented by the following formula (2-2).
R 11 to R 18 are each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms. Substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 30 ring carbon atoms, substituted or unsubstituted An aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted 3 to 30 carbon atoms An alkylsilyl group, a substituted or unsubstituted dialkylarylsilyl group having 8 to 40 carbon atoms, a substituted or unsubstituted alkyldiarylsilyl group having 13 to 50 carbon atoms, a substituted Or an unsubstituted triarylsilyl group having 18 to 60 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a halogen atom, a cyano group, A hydroxyl group, a nitro group, or a carboxy group.
Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group. )
式(2-2)のkは、好ましくは2である。
K in the formula (2-2) is preferably 2.
式(2-2)のR11~R18は水素原子であることが好ましい。
R 11 to R 18 in the formula (2-2) are preferably hydrogen atoms.
式(2-2)のAzは、上記式(2-1)と同様である。
Az in the formula (2-2) is the same as that in the formula (2-1).
式(2-1)で表わされるアジン化合物の具体例を以下に示す。
Specific examples of the azine compound represented by the formula (2-1) are shown below.
以下、上述の本発明のアントラセン化合物及びアジン化合物の各基の例について説明する。
尚、「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味し、「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
また、本願において水素原子には、軽水素、重水素、三重水素が含まれる。 Hereinafter, examples of each group of the above-described anthracene compound and azine compound of the present invention will be described.
The “ring-forming carbon” means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring, and the “ring-forming atom” includes a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring). ) Is a carbon atom and a hetero atom.
In the present application, the hydrogen atom includes light hydrogen, deuterium, and tritium.
尚、「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味し、「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
また、本願において水素原子には、軽水素、重水素、三重水素が含まれる。 Hereinafter, examples of each group of the above-described anthracene compound and azine compound of the present invention will be described.
The “ring-forming carbon” means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring, and the “ring-forming atom” includes a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring). ) Is a carbon atom and a hetero atom.
In the present application, the hydrogen atom includes light hydrogen, deuterium, and tritium.
芳香族炭化水素基(アリール基)は、好ましくは環形成炭素数6~20であり、より好ましくは環形成炭素数6~12である。
芳香族炭化水素基の具体例としては、フェニル基、トリル基、キシリル基、ナフチル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、ベンゾアントリル基、トリフェニレニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニル基、ターフェニル基、フルオランテニル基等が挙げられ、好ましくはフェニル基、ビフェニル基、ナフチル基である。
置換基を有する芳香族炭化水素基としては、トリル基、キシリル基、9,9-ジメチルフルオレニル基等が挙げられる。 The aromatic hydrocarbon group (aryl group) preferably has 6 to 20 ring carbon atoms, and more preferably 6 to 12 ring carbon atoms.
Specific examples of the aromatic hydrocarbon group include phenyl, tolyl, xylyl, naphthyl, phenanthryl, pyrenyl, chrysenyl, benzo [c] phenanthryl, benzo [g] chrysenyl, benzoanthryl. , Triphenylenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, biphenyl group, terphenyl group, fluoranthenyl group, etc., preferably phenyl group, Biphenyl group and naphthyl group.
Examples of the aromatic hydrocarbon group having a substituent include a tolyl group, a xylyl group, and a 9,9-dimethylfluorenyl group.
芳香族炭化水素基の具体例としては、フェニル基、トリル基、キシリル基、ナフチル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、ベンゾアントリル基、トリフェニレニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニル基、ターフェニル基、フルオランテニル基等が挙げられ、好ましくはフェニル基、ビフェニル基、ナフチル基である。
置換基を有する芳香族炭化水素基としては、トリル基、キシリル基、9,9-ジメチルフルオレニル基等が挙げられる。 The aromatic hydrocarbon group (aryl group) preferably has 6 to 20 ring carbon atoms, and more preferably 6 to 12 ring carbon atoms.
Specific examples of the aromatic hydrocarbon group include phenyl, tolyl, xylyl, naphthyl, phenanthryl, pyrenyl, chrysenyl, benzo [c] phenanthryl, benzo [g] chrysenyl, benzoanthryl. , Triphenylenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, biphenyl group, terphenyl group, fluoranthenyl group, etc., preferably phenyl group, Biphenyl group and naphthyl group.
Examples of the aromatic hydrocarbon group having a substituent include a tolyl group, a xylyl group, and a 9,9-dimethylfluorenyl group.
芳香族複素環基(ヘテロアリール基)は、好ましくは環形成原子数5~20であり、より好ましくは環形成原子数5~14である。
芳香族複素環基の具体例としては、ピロリル基、ピラゾリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピリジル基、トリアジニル基、インドリル基、イソインドリル基、イミダゾリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾ[1,2―a]ピリジニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、アザジベンゾフラニル基、チオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、アザジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、キナゾリニル基、ナフチリジニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、ベンズオキサゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、ベンズチアゾリル基、トリアゾリル基、テトラゾリル基等が挙げられ、好ましくは、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基である。 The aromatic heterocyclic group (heteroaryl group) preferably has 5 to 20 ring atoms, and more preferably 5 to 14 ring atoms.
Specific examples of the aromatic heterocyclic group include pyrrolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyridyl, triazinyl, indolyl, isoindolyl, imidazolyl, benzimidazolyl, indazolyl, imidazol [ 1,2-a] pyridinyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, azadibenzofuranyl group, thiophenyl group, benzothiophenyl group, dibenzothiophenyl group, azadibenzothiophenyl group Quinolyl group, isoquinolyl group, quinoxalinyl group, quinazolinyl group, naphthyridinyl group, carbazolyl group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, phenazinyl group, phenothiazinyl group, phenoxazinyl group, Xazozolyl group, oxadiazolyl group, furazanyl group, benzoxazolyl group, thienyl group, thiazolyl group, thiadiazolyl group, benzthiazolyl group, triazolyl group, tetrazolyl group, etc., preferably dibenzofuranyl group, dibenzothiophenyl group, It is a carbazolyl group.
芳香族複素環基の具体例としては、ピロリル基、ピラゾリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピリジル基、トリアジニル基、インドリル基、イソインドリル基、イミダゾリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾ[1,2―a]ピリジニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、アザジベンゾフラニル基、チオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、アザジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、キナゾリニル基、ナフチリジニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、ベンズオキサゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、ベンズチアゾリル基、トリアゾリル基、テトラゾリル基等が挙げられ、好ましくは、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基である。 The aromatic heterocyclic group (heteroaryl group) preferably has 5 to 20 ring atoms, and more preferably 5 to 14 ring atoms.
Specific examples of the aromatic heterocyclic group include pyrrolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyridyl, triazinyl, indolyl, isoindolyl, imidazolyl, benzimidazolyl, indazolyl, imidazol [ 1,2-a] pyridinyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, azadibenzofuranyl group, thiophenyl group, benzothiophenyl group, dibenzothiophenyl group, azadibenzothiophenyl group Quinolyl group, isoquinolyl group, quinoxalinyl group, quinazolinyl group, naphthyridinyl group, carbazolyl group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, phenazinyl group, phenothiazinyl group, phenoxazinyl group, Xazozolyl group, oxadiazolyl group, furazanyl group, benzoxazolyl group, thienyl group, thiazolyl group, thiadiazolyl group, benzthiazolyl group, triazolyl group, tetrazolyl group, etc., preferably dibenzofuranyl group, dibenzothiophenyl group, It is a carbazolyl group.
アルキル基としては、直鎖状、分岐状及び環状のアルキル基がある。好ましくは炭素数1~20であり、より好ましくは炭素数1~10である。直鎖状及び分岐状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられ、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基が挙げられ、さらに好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基である。
環状アルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。好ましくはシクロペンチル基、シクロヘキシル基である。 Examples of the alkyl group include linear, branched and cyclic alkyl groups. The number of carbon atoms is preferably 1-20, and more preferably 1-10. Examples of linear and branched alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, and n-hexyl. Group, n-heptyl group, n-octyl group and the like, preferably methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl group. More preferred are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, and t-butyl group.
Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group. Preferred are a cyclopentyl group and a cyclohexyl group.
環状アルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。好ましくはシクロペンチル基、シクロヘキシル基である。 Examples of the alkyl group include linear, branched and cyclic alkyl groups. The number of carbon atoms is preferably 1-20, and more preferably 1-10. Examples of linear and branched alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, and n-hexyl. Group, n-heptyl group, n-octyl group and the like, preferably methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl group. More preferred are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, and t-butyl group.
Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group. Preferred are a cyclopentyl group and a cyclohexyl group.
アルコキシ基は、-OYと表され、Yの例として上記のアルキルの例が挙げられる。具体的なアルコキシ基の例としては、メトキシ基、エトキシ基等が挙げられる。
アリールオキシ基は、-OZで表わされ、Zの例としては上記アリール基が挙げられる。具体的なアリールオキシ基の例としては、例えばフェノキシ基、ナフチルオキシ基等が挙げられる。 The alkoxy group is represented as —OY, and examples of Y include the above alkyl examples. Specific examples of the alkoxy group include a methoxy group and an ethoxy group.
The aryloxy group is represented by —OZ, and examples of Z include the above aryl groups. Specific examples of the aryloxy group include a phenoxy group and a naphthyloxy group.
アリールオキシ基は、-OZで表わされ、Zの例としては上記アリール基が挙げられる。具体的なアリールオキシ基の例としては、例えばフェノキシ基、ナフチルオキシ基等が挙げられる。 The alkoxy group is represented as —OY, and examples of Y include the above alkyl examples. Specific examples of the alkoxy group include a methoxy group and an ethoxy group.
The aryloxy group is represented by —OZ, and examples of Z include the above aryl groups. Specific examples of the aryloxy group include a phenoxy group and a naphthyloxy group.
アラルキル基は、-Y-Zと表され、Yの例として上記のアルキルの例に対応するアルキレンの例が挙げられ、Zの例として上記のアリールの例が挙げられる。アラルキル基のアリール部分は、炭素数が6~20が好ましく、特に好ましくは6~12である。アルキル部分は炭素数1~10が好ましく、特に好ましくは1~6である。例えば、ベンジル基、フェニルエチル基、2-フェニルプロパン-2-イル基等が挙げられる。
The aralkyl group is represented by —Y—Z. Examples of Y include alkylene examples corresponding to the above alkyl examples, and examples of Z include the above aryl examples. The aryl part of the aralkyl group preferably has 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms. The alkyl moiety preferably has 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms. For example, benzyl group, phenylethyl group, 2-phenylpropan-2-yl group and the like can be mentioned.
ハロアルキル基としては、上述した炭素数1~30のアルキル基に1つ以上のハロゲン原子(フッ素原子、塩素原子及び臭素原子が挙げられ、好ましくはフッ素原子である。)が置換した基が挙げられる。具体的には、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、ペンタフルオロエチル基等が挙げられる。好ましくは、トリフルオロメチル基、ペンタフルオロエチル基である。
Examples of the haloalkyl group include groups in which one or more halogen atoms (a fluorine atom, a chlorine atom, and a bromine atom are preferable, and a fluorine atom is preferably substituted) on the alkyl group having 1 to 30 carbon atoms described above. . Specific examples include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a trifluoromethylmethyl group, and a pentafluoroethyl group. Preferably, they are a trifluoromethyl group and a pentafluoroethyl group.
ハロアルコキシ基としては、上記アルコキシ基に1つ以上のハロゲン(フッ素原子、塩素原子及び臭素原子が挙げられ、好ましくはフッ素原子である。)が置換した基が挙げられる。好ましくは、トリフルオロメトキシ基である。
Examples of the haloalkoxy group include groups in which one or more halogens (including a fluorine atom, a chlorine atom and a bromine atom are preferable, and a fluorine atom is preferably substituted) on the above alkoxy group. Preferably, it is a trifluoromethoxy group.
アルキルシリル基とは、1~3のアルキル基で置換されたシリル基であり、アリールシリル基とは、1~3のアリール基で置換されたシリル基である。アルキル基とアリール基は上述した基と同じである。
トリアルキルシリル基は、-Si(Ra)(Rb)(Rc)と表され、(Ra)、(Rb)及び(Rc)の例としては上述したアルキル基が挙げられる。具体的には、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、プロピルジメチルシリル基等が挙げられる。 The alkylsilyl group is a silyl group substituted with 1 to 3 alkyl groups, and the arylsilyl group is a silyl group substituted with 1 to 3 aryl groups. The alkyl group and aryl group are the same as those described above.
The trialkylsilyl group is represented as —Si (R a ) (R b ) (R c ), and examples of (R a ), (R b ) and (R c ) include the alkyl groups described above. Specific examples include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, propyldimethylsilyl group and the like.
トリアルキルシリル基は、-Si(Ra)(Rb)(Rc)と表され、(Ra)、(Rb)及び(Rc)の例としては上述したアルキル基が挙げられる。具体的には、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、プロピルジメチルシリル基等が挙げられる。 The alkylsilyl group is a silyl group substituted with 1 to 3 alkyl groups, and the arylsilyl group is a silyl group substituted with 1 to 3 aryl groups. The alkyl group and aryl group are the same as those described above.
The trialkylsilyl group is represented as —Si (R a ) (R b ) (R c ), and examples of (R a ), (R b ) and (R c ) include the alkyl groups described above. Specific examples include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, propyldimethylsilyl group and the like.
ジアルキルアリールシリル基は、-Si(Ra)(Rb)(Arc)と表され、(Ra)及び(Rb)の例として上述したアルキル基が挙げられ、(Arc)の例としては、上述したアリール基が挙げられる。具体的には、フェニルジメチルシリル基等が挙げられる。
The dialkylarylsilyl group is represented as —Si (R a ) (R b ) (Ar c ), and examples of (R a ) and (R b ) include the alkyl groups described above, and examples of (Ar c ) Examples of the aryl group include the aryl groups described above. Specific examples include a phenyldimethylsilyl group.
アルキルジアリールシリル基は、-Si(Ra)(Arb)(Arc)と表され、(Ra)の例として上述したアルキル基が挙げられ、(Arb)及び(Arc)の例としては、上述したアリール基が挙げられる。具体的には、メチルジフェニルシリル基等が挙げられる。
トリアリールシリル基は、-Si(Ara)(Arb)(Arc)と表され、(Ara)、(Arb)及び(Arc)の例としては、上述したアリール基が挙げられる。具体的には、トリフェニルシリル基等が挙げられる。 The alkyldiarylsilyl group is represented as —Si (R a ) (Ar b ) (Ar c ), and examples of (R a ) include the alkyl groups described above. Examples of (Ar b ) and (Ar c ) Examples of the aryl group include the aryl groups described above. Specific examples include a methyldiphenylsilyl group.
The triarylsilyl group is represented as —Si (Ar a ) (Ar b ) (Ar c ), and examples of (Ar a ), (Ar b ) and (Ar c ) include the aryl groups described above. . Specific examples include a triphenylsilyl group.
トリアリールシリル基は、-Si(Ara)(Arb)(Arc)と表され、(Ara)、(Arb)及び(Arc)の例としては、上述したアリール基が挙げられる。具体的には、トリフェニルシリル基等が挙げられる。 The alkyldiarylsilyl group is represented as —Si (R a ) (Ar b ) (Ar c ), and examples of (R a ) include the alkyl groups described above. Examples of (Ar b ) and (Ar c ) Examples of the aryl group include the aryl groups described above. Specific examples include a methyldiphenylsilyl group.
The triarylsilyl group is represented as —Si (Ar a ) (Ar b ) (Ar c ), and examples of (Ar a ), (Ar b ) and (Ar c ) include the aryl groups described above. . Specific examples include a triphenylsilyl group.
アルケニル基としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ペンタジエニル基、ヘキセニル基、ヘキサジエニル基、ヘプテニル基、オクテニル基、オクタジエニル基、2-エチルヘキセニル基、デセニル基等が挙げられる。
アルキニル基としては、エチニル基、メチルエチニル基等が挙げられる。 Examples of the alkenyl group include vinyl, propenyl, butenyl, pentenyl, pentadienyl, hexenyl, hexadienyl, heptenyl, octenyl, octadienyl, 2-ethylhexenyl, decenyl and the like.
Examples of the alkynyl group include ethynyl group and methylethynyl group.
アルキニル基としては、エチニル基、メチルエチニル基等が挙げられる。 Examples of the alkenyl group include vinyl, propenyl, butenyl, pentenyl, pentadienyl, hexenyl, hexadienyl, heptenyl, octenyl, octadienyl, 2-ethylhexenyl, decenyl and the like.
Examples of the alkynyl group include ethynyl group and methylethynyl group.
式(1-1)で表されるアントラセン化合物及び式(2-1)で表されるアジン化合物の、各基の「置換もしくは無置換の・・・」の置換基としては、上記のアルキル基、置換シリル基、アリール基、ヘテロアリール基、アルコキシ基、アラルキル基、ハロアルキル基や、その他にハロゲン原子(フッ素、塩素、臭素、ヨウ素等が挙げられ、好ましくはフッ素原子である。)、シリル基、ヒドロキシル基、ニトロ基、シアノ基、カルボキシ基、アリールオキシ基等が挙げられる。
In the anthracene compound represented by the formula (1-1) and the azine compound represented by the formula (2-1), the substituents of “substituted or unsubstituted... , Substituted silyl groups, aryl groups, heteroaryl groups, alkoxy groups, aralkyl groups, haloalkyl groups, and other halogen atoms (including fluorine, chlorine, bromine, iodine, etc., preferably fluorine atoms), silyl groups , Hydroxyl group, nitro group, cyano group, carboxy group, aryloxy group and the like.
式(1-1)で表わされるアントラセン化合物は、例えばWO2009/069566やWO2011/054442等を参照することにより合成できる。
式(2-1)で表わされるアジン化合物は、例えばWO2003/080760等を参照することにより合成できる。 The anthracene compound represented by the formula (1-1) can be synthesized by referring to, for example, WO2009 / 069566 and WO2011 / 054442.
The azine compound represented by the formula (2-1) can be synthesized by referring to, for example, WO2003 / 080760.
式(2-1)で表わされるアジン化合物は、例えばWO2003/080760等を参照することにより合成できる。 The anthracene compound represented by the formula (1-1) can be synthesized by referring to, for example, WO2009 / 069566 and WO2011 / 054442.
The azine compound represented by the formula (2-1) can be synthesized by referring to, for example, WO2003 / 080760.
電子輸送層に隣接する有機発光層中の式(1-1)で表わされるアントラセン化合物の含有量は特に限定されないが、例えば1~100重量%であり、好ましくは80~100重量%であり、さらに好ましくは、90~100重量%である。
有機発光層に隣接する電子輸送層中の式(2-1)で表わされるアジン化合物の含有量は特に限定されないが、例えば1~100重量%であり、好ましくは50~100重量%である。 The content of the anthracene compound represented by the formula (1-1) in the organic light emitting layer adjacent to the electron transport layer is not particularly limited, but is, for example, 1 to 100% by weight, preferably 80 to 100% by weight, More preferably, it is 90 to 100% by weight.
The content of the azine compound represented by the formula (2-1) in the electron transport layer adjacent to the organic light emitting layer is not particularly limited, but is, for example, 1 to 100% by weight, preferably 50 to 100% by weight.
有機発光層に隣接する電子輸送層中の式(2-1)で表わされるアジン化合物の含有量は特に限定されないが、例えば1~100重量%であり、好ましくは50~100重量%である。 The content of the anthracene compound represented by the formula (1-1) in the organic light emitting layer adjacent to the electron transport layer is not particularly limited, but is, for example, 1 to 100% by weight, preferably 80 to 100% by weight, More preferably, it is 90 to 100% by weight.
The content of the azine compound represented by the formula (2-1) in the electron transport layer adjacent to the organic light emitting layer is not particularly limited, but is, for example, 1 to 100% by weight, preferably 50 to 100% by weight.
[素子構成]
本発明の有機EL素子では、上述した電子輸送層及び有機発光層の積層構造を有していれば、他の構成は特に限定されず、公知の素子構成を採用できる。以下、有機EL素子の形態例を、図面を用いて説明する。 [Element structure]
In the organic EL device of the present invention, other configurations are not particularly limited as long as the above-described stacked structure of the electron transport layer and the organic light emitting layer is included, and a known device configuration can be adopted. Hereinafter, the example of an organic EL element is demonstrated using drawing.
本発明の有機EL素子では、上述した電子輸送層及び有機発光層の積層構造を有していれば、他の構成は特に限定されず、公知の素子構成を採用できる。以下、有機EL素子の形態例を、図面を用いて説明する。 [Element structure]
In the organic EL device of the present invention, other configurations are not particularly limited as long as the above-described stacked structure of the electron transport layer and the organic light emitting layer is included, and a known device configuration can be adopted. Hereinafter, the example of an organic EL element is demonstrated using drawing.
実施形態1
図1は、本発明の有機EL素子の一実施形態の層構成を示す概略図である。
有機EL素子1は、基板10上に、陽極20、正孔注入層30、正孔輸送層40、有機発光層50、電子輸送層60、電子注入層70及び陰極80を、この順で積層した構成を有する。正孔輸送帯域は、正孔輸送層及び正孔注入層である。同様に、電子輸送帯域は、電子輸送層60及び電子注入層70である。尚、正孔注入層30及び電子注入層70は形成しなくともよいが、好ましくはそれぞれ1層以上形成する。Embodiment 1
FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
In theorganic EL element 1, the anode 20, the hole injection layer 30, the hole transport layer 40, the organic light emitting layer 50, the electron transport layer 60, the electron injection layer 70, and the cathode 80 are laminated on the substrate 10 in this order. It has a configuration. The hole transport zone is a hole transport layer and a hole injection layer. Similarly, the electron transport zone is the electron transport layer 60 and the electron injection layer 70. The hole injection layer 30 and the electron injection layer 70 do not have to be formed, but preferably one or more layers are formed respectively.
図1は、本発明の有機EL素子の一実施形態の層構成を示す概略図である。
有機EL素子1は、基板10上に、陽極20、正孔注入層30、正孔輸送層40、有機発光層50、電子輸送層60、電子注入層70及び陰極80を、この順で積層した構成を有する。正孔輸送帯域は、正孔輸送層及び正孔注入層である。同様に、電子輸送帯域は、電子輸送層60及び電子注入層70である。尚、正孔注入層30及び電子注入層70は形成しなくともよいが、好ましくはそれぞれ1層以上形成する。
FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
In the
本実施形態の有機EL素子では、有機発光層50及び電子輸送層60が隣接して形成されている。有機発光層50は、上述した式(1-1)で表されるアントラセン化合物を含有する層であり、電子輸送層60は、上述した式(2-1)で表されるアジン化合物を含有する層である。
In the organic EL device of this embodiment, the organic light emitting layer 50 and the electron transport layer 60 are formed adjacent to each other. The organic light emitting layer 50 is a layer containing the anthracene compound represented by the above formula (1-1), and the electron transport layer 60 contains the azine compound represented by the above formula (2-1). Is a layer.
図1は、有機EL素子1を1つの発光単位として模式的に示したものであるが、2つ以上の有機EL素子1を組み合わせたり、有機EL素子1と他の有機EL素子を組み合わせたりすることにより、有機EL多色発光装置を形成することができる。
FIG. 1 schematically shows the organic EL element 1 as one light emitting unit, but two or more organic EL elements 1 are combined, or the organic EL element 1 is combined with another organic EL element. Thus, an organic EL multicolor light emitting device can be formed.
図2は、本発明の有機EL素子を使用した有機EL発光装置の例を示す概略断面図である。
有機EL発光装置は、基板10上に青色EL素子1B(第1の素子)、緑色EL素子1G(第2の素子)及び赤色EL素子1R(第3の素子)を並列に有する装置である。
各色の有機EL素子の構成は、パターン化された陽極20B、20G及び20Rを使用し、有機発光層を各色に対応させて、それぞれ、青色発光層50B、緑色発光層50G及び赤色発光層50Rを形成し、正孔注入層30及び電子注入層70を有しない他は、上述した有機EL素子1と同様である。各発光層の間には2つの発光層を分離する絶縁層54を設けてある。
青色EL素子1B、緑色EL素子1G及び赤色EL素子1Rは、有機発光層を除き、各有機層(正孔輸送層40及び電子輸送層60)を共通としている。 FIG. 2 is a schematic cross-sectional view showing an example of an organic EL light emitting device using the organic EL element of the present invention.
The organic EL light emitting device is a device having ablue EL element 1B (first element), a green EL element 1G (second element), and a red EL element 1R (third element) in parallel on a substrate 10.
The configuration of each color organic EL element uses patterned anodes 20B, 20G, and 20R, and the organic light emitting layer corresponds to each color, and the blue light emitting layer 50B, the green light emitting layer 50G, and the red light emitting layer 50R, respectively. The organic EL element 1 is the same as that described above except that the hole injection layer 30 and the electron injection layer 70 are not formed. Between each light emitting layer, the insulating layer 54 which isolate | separates two light emitting layers is provided.
Theblue EL element 1B, the green EL element 1G, and the red EL element 1R share each organic layer (the hole transport layer 40 and the electron transport layer 60) except for the organic light emitting layer.
有機EL発光装置は、基板10上に青色EL素子1B(第1の素子)、緑色EL素子1G(第2の素子)及び赤色EL素子1R(第3の素子)を並列に有する装置である。
各色の有機EL素子の構成は、パターン化された陽極20B、20G及び20Rを使用し、有機発光層を各色に対応させて、それぞれ、青色発光層50B、緑色発光層50G及び赤色発光層50Rを形成し、正孔注入層30及び電子注入層70を有しない他は、上述した有機EL素子1と同様である。各発光層の間には2つの発光層を分離する絶縁層54を設けてある。
青色EL素子1B、緑色EL素子1G及び赤色EL素子1Rは、有機発光層を除き、各有機層(正孔輸送層40及び電子輸送層60)を共通としている。 FIG. 2 is a schematic cross-sectional view showing an example of an organic EL light emitting device using the organic EL element of the present invention.
The organic EL light emitting device is a device having a
The configuration of each color organic EL element uses
The
尚、本例では、3色の有機EL素子を使用したが、これに限らず、2種(2色)や4色以上の有機EL素子を用いてもよい。例えば、2色有機EL素子を並列した装置の場合、1つの有機EL素子の発光色を青~緑色とし、他の有機EL素子の発光色を黄~赤色とすることにより、多色発光が可能となる。
また、正孔輸送層40及び電子輸送層60のいずれも共通層として形成したが、いずれか一方でもよい。この場合、使用した有機EL素子の1つに本発明の有機EL素子が使用されていればよい。また、各EL素子は、蛍光発光素子であっても、燐光発光素子であってもよい。
本発明では、蛍光青色EL素子として本発明の有機EL素子が使用されていることが好ましい。 In this example, three colors of organic EL elements are used. However, the present invention is not limited to this, and two (two colors) or four or more colors of organic EL elements may be used. For example, in the case of a device in which two-color organic EL elements are arranged in parallel, multicolor light emission is possible by setting the emission color of one organic EL element to blue to green and the emission color of the other organic EL elements to yellow to red. It becomes.
In addition, although both thehole transport layer 40 and the electron transport layer 60 are formed as a common layer, either one may be used. In this case, the organic EL element of this invention should just be used for one of the used organic EL elements. Each EL element may be a fluorescent light emitting element or a phosphorescent light emitting element.
In the present invention, the organic EL element of the present invention is preferably used as the fluorescent blue EL element.
また、正孔輸送層40及び電子輸送層60のいずれも共通層として形成したが、いずれか一方でもよい。この場合、使用した有機EL素子の1つに本発明の有機EL素子が使用されていればよい。また、各EL素子は、蛍光発光素子であっても、燐光発光素子であってもよい。
本発明では、蛍光青色EL素子として本発明の有機EL素子が使用されていることが好ましい。 In this example, three colors of organic EL elements are used. However, the present invention is not limited to this, and two (two colors) or four or more colors of organic EL elements may be used. For example, in the case of a device in which two-color organic EL elements are arranged in parallel, multicolor light emission is possible by setting the emission color of one organic EL element to blue to green and the emission color of the other organic EL elements to yellow to red. It becomes.
In addition, although both the
In the present invention, the organic EL element of the present invention is preferably used as the fluorescent blue EL element.
実施形態2
図3は、本発明の有機EL素子の他の実施形態の層構成を示す概略図である。
有機EL素子2は、2つの発光ユニットを、電荷発生層を介して積層したタンデム型の有機EL素子の例である。
有機EL素子2は、基板10上に、陽極20、第一正孔輸送層41、第一有機発光層51、第一電子輸送層61、電荷発生層90、第二正孔輸送層42、第二有機発光層52、第三有機発光層53、第二電子輸送層62及び陰極80を、この順で積層した構成を有する。陽極20と電荷発生層90に挟まれた領域が第一発光ユニット3Aであり、電荷発生層90と陰極80に挟まれた領域が第二発光ユニット3Bである。Embodiment 2
FIG. 3 is a schematic view showing the layer structure of another embodiment of the organic EL device of the present invention.
Theorganic EL element 2 is an example of a tandem organic EL element in which two light emitting units are stacked via a charge generation layer.
Theorganic EL element 2 includes an anode 20, a first hole transport layer 41, a first organic light emitting layer 51, a first electron transport layer 61, a charge generation layer 90, a second hole transport layer 42, a first hole on the substrate 10. The second organic light-emitting layer 52, the third organic light-emitting layer 53, the second electron transport layer 62, and the cathode 80 are stacked in this order. A region sandwiched between the anode 20 and the charge generation layer 90 is the first light emitting unit 3A, and a region sandwiched between the charge generation layer 90 and the cathode 80 is the second light emitting unit 3B.
図3は、本発明の有機EL素子の他の実施形態の層構成を示す概略図である。
有機EL素子2は、2つの発光ユニットを、電荷発生層を介して積層したタンデム型の有機EL素子の例である。
有機EL素子2は、基板10上に、陽極20、第一正孔輸送層41、第一有機発光層51、第一電子輸送層61、電荷発生層90、第二正孔輸送層42、第二有機発光層52、第三有機発光層53、第二電子輸送層62及び陰極80を、この順で積層した構成を有する。陽極20と電荷発生層90に挟まれた領域が第一発光ユニット3Aであり、電荷発生層90と陰極80に挟まれた領域が第二発光ユニット3Bである。
FIG. 3 is a schematic view showing the layer structure of another embodiment of the organic EL device of the present invention.
The
The
電荷発生層90は、有機EL素子2に電圧を印加した際に電荷が発生する層であり、第一電子輸送層61に電子を注入し、第二正孔輸送層42に正孔を注入する。
電荷発生層90の材料としては、公知の材料、例えばUS7,358,661に記載の材料が使用できる。具体的には、In,Sn,Zn,Ti,Zr,Hf,V,Mo,Cu,Ga,Sr,La,Ru等の金属元素を1以上含む、酸化物、窒化物、ヨウ化物、ホウ化物等が挙げられる。 The charge generation layer 90 is a layer that generates charge when a voltage is applied to theorganic EL element 2, and injects electrons into the first electron transport layer 61 and injects holes into the second hole transport layer 42. .
As a material of the charge generation layer 90, a known material, for example, a material described in US 7,358,661 can be used. Specifically, oxides, nitrides, iodides, borides containing one or more metal elements such as In, Sn, Zn, Ti, Zr, Hf, V, Mo, Cu, Ga, Sr, La, and Ru. Etc.
電荷発生層90の材料としては、公知の材料、例えばUS7,358,661に記載の材料が使用できる。具体的には、In,Sn,Zn,Ti,Zr,Hf,V,Mo,Cu,Ga,Sr,La,Ru等の金属元素を1以上含む、酸化物、窒化物、ヨウ化物、ホウ化物等が挙げられる。 The charge generation layer 90 is a layer that generates charge when a voltage is applied to the
As a material of the charge generation layer 90, a known material, for example, a material described in US 7,358,661 can be used. Specifically, oxides, nitrides, iodides, borides containing one or more metal elements such as In, Sn, Zn, Ti, Zr, Hf, V, Mo, Cu, Ga, Sr, La, and Ru. Etc.
本実施形態では、第一発光ユニット3Aの第一有機発光層51が、上述した式(1-1)で表されるアントラセン化合物を含有する層であり、第一電子輸送層61が、上述した式(2-1)で表されるアジン化合物を含有する層である。
有機EL素子2において、例えば、第一有機発光層51を青色発光(例えば、ピーク波長が430~500nm)する蛍光発光層とし、第二有機発光層52を緑色発光(例えば、ピーク波長が500~570nm)する燐光発光層とし、第三有機発光層53を赤色発光(例えば、ピーク波長が570nm以上)する燐光発光層とすることにより、白色発光の有機EL素子が得られる。 In the present embodiment, the first organic light emitting layer 51 of the firstlight emitting unit 3A is a layer containing the anthracene compound represented by the above formula (1-1), and the first electron transport layer 61 is the above-described layer. This is a layer containing an azine compound represented by the formula (2-1).
In theorganic EL element 2, for example, the first organic light emitting layer 51 is a fluorescent light emitting layer that emits blue light (for example, a peak wavelength is 430 to 500 nm), and the second organic light emitting layer 52 is green light (for example, a peak wavelength is 500 to 500 nm). 570 nm) and the third organic light-emitting layer 53 is a phosphorescent light-emitting layer that emits red light (for example, a peak wavelength of 570 nm or more), thereby obtaining an organic EL element that emits white light.
有機EL素子2において、例えば、第一有機発光層51を青色発光(例えば、ピーク波長が430~500nm)する蛍光発光層とし、第二有機発光層52を緑色発光(例えば、ピーク波長が500~570nm)する燐光発光層とし、第三有機発光層53を赤色発光(例えば、ピーク波長が570nm以上)する燐光発光層とすることにより、白色発光の有機EL素子が得られる。 In the present embodiment, the first organic light emitting layer 51 of the first
In the
尚、本実施形態では発光ユニットを2つとしているが、これに限られず、発光ユニットを3つ以上形成してもよい。また、第二有機発光層52及び第三有機発光層53を合わせて単層として形成してもよい。
また、本実施形態では第一発光ユニット3Aに本願特有の積層構造を使用したが、これに限らず、例えば、第二発光ユニット3Bに本願特有の積層構造を使用してもよく、第一発光ユニット3A及び第二発光ユニット3Bのいずれにも使用してもよい。
各有機発光層は蛍光発光層であっても、燐光発光層でもよく、また、発光色も限定されない。公知の構成から、用途に合わせて適宜設定すればよい。 In the present embodiment, two light emitting units are used. However, the present invention is not limited to this, and three or more light emitting units may be formed. Further, the second organic light emitting layer 52 and the third organic light emitting layer 53 may be combined to form a single layer.
In the present embodiment, the laminated structure peculiar to the present application is used for the firstlight emitting unit 3A. However, the present invention is not limited thereto, and for example, the laminated structure peculiar to the present application may be used for the second light emitting unit 3B. You may use for both unit 3A and the 2nd light emission unit 3B.
Each organic light emitting layer may be a fluorescent light emitting layer or a phosphorescent light emitting layer, and the emission color is not limited. What is necessary is just to set suitably according to a use from a well-known structure.
また、本実施形態では第一発光ユニット3Aに本願特有の積層構造を使用したが、これに限らず、例えば、第二発光ユニット3Bに本願特有の積層構造を使用してもよく、第一発光ユニット3A及び第二発光ユニット3Bのいずれにも使用してもよい。
各有機発光層は蛍光発光層であっても、燐光発光層でもよく、また、発光色も限定されない。公知の構成から、用途に合わせて適宜設定すればよい。 In the present embodiment, two light emitting units are used. However, the present invention is not limited to this, and three or more light emitting units may be formed. Further, the second organic light emitting layer 52 and the third organic light emitting layer 53 may be combined to form a single layer.
In the present embodiment, the laminated structure peculiar to the present application is used for the first
Each organic light emitting layer may be a fluorescent light emitting layer or a phosphorescent light emitting layer, and the emission color is not limited. What is necessary is just to set suitably according to a use from a well-known structure.
上述した実施形態1、2のように、本発明の有機EL素子は、公知の様々な構成を採用できる。また、発光層の発光は、陽極側、陰極側、又は両側から取り出すことができる。
As in Embodiments 1 and 2 described above, the organic EL element of the present invention can employ various known configurations. In addition, light emission of the light emitting layer can be extracted from the anode side, the cathode side, or both sides.
本発明の有機EL素子において、上述した有機発光層、及び有機発光層に隣接する電子輸送層の他の構成については、特に限定されず、公知の材料等を使用できる。
以下、実施形態1の素子の層について簡単に説明するが、本発明の有機EL素子に適用される材料は以下に限定されない。 In the organic EL element of the present invention, other configurations of the organic light-emitting layer and the electron transport layer adjacent to the organic light-emitting layer are not particularly limited, and known materials and the like can be used.
Hereinafter, although the layer of the element ofEmbodiment 1 is demonstrated easily, the material applied to the organic EL element of this invention is not limited to the following.
以下、実施形態1の素子の層について簡単に説明するが、本発明の有機EL素子に適用される材料は以下に限定されない。 In the organic EL element of the present invention, other configurations of the organic light-emitting layer and the electron transport layer adjacent to the organic light-emitting layer are not particularly limited, and known materials and the like can be used.
Hereinafter, although the layer of the element of
[基板]
基板としてはガラス板、ポリマー板等を用いることができる。
ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリサルフォン等を挙げることができる。 [substrate]
As the substrate, a glass plate, a polymer plate or the like can be used.
Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfone, and polysulfone.
基板としてはガラス板、ポリマー板等を用いることができる。
ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリサルフォン等を挙げることができる。 [substrate]
As the substrate, a glass plate, a polymer plate or the like can be used.
Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfone, and polysulfone.
[陽極]
陽極は例えば導電性材料からなり、4eVより大きな仕事関数を有する導電性材料が適している。
上記導電性材料としては、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が挙げられる。
陽極は、必要があれば2層以上の層構成により形成されていてもよい。 [anode]
The anode is made of, for example, a conductive material, and a conductive material having a work function larger than 4 eV is suitable.
Examples of the conductive material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, and their alloys, ITO substrate, tin oxide used for NESA substrate, indium oxide, and the like. Examples thereof include metal oxides and organic conductive resins such as polythiophene and polypyrrole.
The anode may be formed with a layer structure of two or more layers if necessary.
陽極は例えば導電性材料からなり、4eVより大きな仕事関数を有する導電性材料が適している。
上記導電性材料としては、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が挙げられる。
陽極は、必要があれば2層以上の層構成により形成されていてもよい。 [anode]
The anode is made of, for example, a conductive material, and a conductive material having a work function larger than 4 eV is suitable.
Examples of the conductive material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, and their alloys, ITO substrate, tin oxide used for NESA substrate, indium oxide, and the like. Examples thereof include metal oxides and organic conductive resins such as polythiophene and polypyrrole.
The anode may be formed with a layer structure of two or more layers if necessary.
[陰極]
陰極は例えば導電性材料からなり、4eVより小さな仕事関数を有する導電性材料が適している。
上記導電性材料としては、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びこれらの合金が挙げられるが、これらに限定されるものではない。
また、上記合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。
陰極は、必要があれば2層以上の層構成により形成されていてもよく、陰極は上記導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。 [cathode]
The cathode is made of, for example, a conductive material, and a conductive material having a work function smaller than 4 eV is suitable.
Examples of the conductive material include, but are not limited to, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and alloys thereof.
Examples of the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio.
If necessary, the cathode may be formed with a layer structure of two or more layers, and the cathode can be produced by forming a thin film from the conductive material by a method such as vapor deposition or sputtering.
陰極は例えば導電性材料からなり、4eVより小さな仕事関数を有する導電性材料が適している。
上記導電性材料としては、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びこれらの合金が挙げられるが、これらに限定されるものではない。
また、上記合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。
陰極は、必要があれば2層以上の層構成により形成されていてもよく、陰極は上記導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。 [cathode]
The cathode is made of, for example, a conductive material, and a conductive material having a work function smaller than 4 eV is suitable.
Examples of the conductive material include, but are not limited to, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and alloys thereof.
Examples of the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio.
If necessary, the cathode may be formed with a layer structure of two or more layers, and the cathode can be produced by forming a thin film from the conductive material by a method such as vapor deposition or sputtering.
発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μmであり、好ましくは50~200nmである。 When light emitted from the light emitting layer is taken out from the cathode, the transmittance of the cathode for light emission is preferably greater than 10%.
The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.
また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μmであり、好ましくは50~200nmである。 When light emitted from the light emitting layer is taken out from the cathode, the transmittance of the cathode for light emission is preferably greater than 10%.
The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.
[有機発光層]
有機発光層は、電子輸送層に隣接する有機発光層が式(1-1)で表わされるアントラセン化合物を含むのであれば特に限定されず、公知の蛍光発光層及び燐光発光層のいずれでもよい。本発明では、蛍光発光層であることが好ましく、特に、発光層のホスト材料としては、アントラセン誘導体であることが好ましい。 [Organic light emitting layer]
The organic light emitting layer is not particularly limited as long as the organic light emitting layer adjacent to the electron transport layer contains an anthracene compound represented by the formula (1-1), and may be any of a known fluorescent light emitting layer and phosphorescent light emitting layer. In the present invention, a fluorescent light-emitting layer is preferable, and an anthracene derivative is particularly preferable as a host material of the light-emitting layer.
有機発光層は、電子輸送層に隣接する有機発光層が式(1-1)で表わされるアントラセン化合物を含むのであれば特に限定されず、公知の蛍光発光層及び燐光発光層のいずれでもよい。本発明では、蛍光発光層であることが好ましく、特に、発光層のホスト材料としては、アントラセン誘導体であることが好ましい。 [Organic light emitting layer]
The organic light emitting layer is not particularly limited as long as the organic light emitting layer adjacent to the electron transport layer contains an anthracene compound represented by the formula (1-1), and may be any of a known fluorescent light emitting layer and phosphorescent light emitting layer. In the present invention, a fluorescent light-emitting layer is preferable, and an anthracene derivative is particularly preferable as a host material of the light-emitting layer.
発光層では、ダブルホスト(ホスト・コホストともいう)としてもよい。具体的に、発光層において電子輸送性のホストと正孔輸送性のホストを組み合わせることで、発光層内のキャリアバランスを調整してもよい。
また、ダブルドーパントとしてもよい。発光層において、量子収率の高いドーパント材料を2種類以上入れることによって、それぞれのドーパントが発光する。例えば、ホストと赤色ドーパント、緑色のドーパントを共蒸着することによって、黄色の発光層を実現することがある。 The light emitting layer may be a double host (also referred to as host / cohost). Specifically, the carrier balance in the light emitting layer may be adjusted by combining an electron transporting host and a hole transporting host in the light emitting layer.
Moreover, it is good also as a double dopant. In the light emitting layer, each dopant emits light by adding two or more dopant materials having a high quantum yield. For example, a yellow light emitting layer may be realized by co-evaporating a host, a red dopant, and a green dopant.
また、ダブルドーパントとしてもよい。発光層において、量子収率の高いドーパント材料を2種類以上入れることによって、それぞれのドーパントが発光する。例えば、ホストと赤色ドーパント、緑色のドーパントを共蒸着することによって、黄色の発光層を実現することがある。 The light emitting layer may be a double host (also referred to as host / cohost). Specifically, the carrier balance in the light emitting layer may be adjusted by combining an electron transporting host and a hole transporting host in the light emitting layer.
Moreover, it is good also as a double dopant. In the light emitting layer, each dopant emits light by adding two or more dopant materials having a high quantum yield. For example, a yellow light emitting layer may be realized by co-evaporating a host, a red dopant, and a green dopant.
発光層は単層でもよく、また、積層構造でもよい。発光層を積層させると、発光層界面に電子と正孔を蓄積させることによって再結合領域を発光層界面に集中させることができる。これによって、量子効率を向上させる。
The light emitting layer may be a single layer or a laminated structure. When the light emitting layer is stacked, the recombination region can be concentrated on the light emitting layer interface by accumulating electrons and holes at the light emitting layer interface. This improves the quantum efficiency.
[正孔注入層及び正孔輸送層(正孔注入・輸送層)]
正孔注入・輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.6eV以下と小さい層である。
正孔注入・輸送層として使用できる材料としては、トリアゾール誘導体(米国特許3,112,197号明細書等参照)、オキサジアゾール誘導体(米国特許3,189,447号明細書等参照)、イミダゾール誘導体(特公昭37-16096号公報等参照)、ポリアリールアルカン誘導体(米国特許3,615,402号明細書、同第3,820,989号明細書、同第3,542,544号明細書、特公昭45-555号公報、同51-10983号公報、特開昭51-93224号公報、同55-17105号公報、同56-4148号公報、同55-108667号公報、同55-156953号公報、同56-36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体(米国特許第3,180,729号明細書、同第4,278,746号明細書、特開昭55-88064号公報、同55-88065号公報、同49-105537号公報、同55-51086号公報、同56-80051号公報、同56-88141号公報、同57-45545号公報、同54-112637号公報、同55-74546号公報等参照)、フェニレンジアミン誘導体(米国特許第3,615,404号明細書、特公昭51-10105号公報、同46-3712号公報、同47-25336号公報、同54-119925号公報等参照)、アリールアミン誘導体(米国特許第3,567,450号明細書、同第3,240,597号明細書、同第3,658,520号明細書、同第4,232,103号明細書、同第4,175,961号明細書、同第4,012,376号明細書、特公昭49-35702号公報、同39-27577号公報、特開昭55-144250号公報、同56-119132号公報、同56-22437号公報、西独特許第1,110,518号明細書等参照)、アミノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照)、オキサゾール誘導体(米国特許第3,257,203号明細書等に開示のもの)、スチリルアントラセン誘導体(特開昭56-46234号公報等参照)、フルオレノン誘導体(特開昭54-110837号公報等参照)、ヒドラゾン誘導体(米国特許第3,717,462号明細書、特開昭54-59143号公報、同55-52063号公報、同55-52064号公報、同55-46760号公報、同57-11350号公報、同57-148749号公報、特開平2-311591号公報等参照)、スチルベン誘導体(特開昭61-210363号公報、同第61-228451号公報、同61-14642号公報、同61-72255号公報、同62-47646号公報、同62-36674号公報、同62-10652号公報、同62-30255号公報、同60-93455号公報、同60-94462号公報、同60-174749号公報、同60-175052号公報等参照)、シラザン誘導体(米国特許第4,950,950号明細書)、ポリシラン系(特開平2-204996号公報)、アニリン系共重合体(特開平2-282263号公報)等を挙げることができる。
また、p型Si、p型SiC等の無機化合物も正孔注入材料として使用することができる。 [Hole injection layer and hole transport layer (hole injection / transport layer)]
The hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.6 eV or less.
Examples of materials that can be used for the hole injection / transport layer include triazole derivatives (see US Pat. No. 3,112,197), oxadiazole derivatives (see US Pat. No. 3,189,447), imidazole, and the like. Derivatives (see Japanese Patent Publication No. 37-16096), polyarylalkane derivatives (US Pat. No. 3,615,402, US Pat. No. 3,820,989, US Pat. No. 3,542,544) JP-B-45-555, JP-A-51-10983, JP-A-51-93224, JP-A-55-17105, JP-A-56-4148, JP-A-55-108667, JP-A-55-156953. No. 56-36656), pyrazoline derivatives and pyrazolone derivatives (US Pat. No. 3,180,729, No. 1) 278,746, JP 55-88064, 55-88065, 49-105537, 55-51086, 56-80051, 56-88141. No. 57-45545, No. 54-112537, No. 55-74546, etc.), phenylenediamine derivatives (US Pat. No. 3,615,404, JP-B 51-10105, 46-3712, 47-25336, 54-1119925, etc.), arylamine derivatives (US Pat. Nos. 3,567,450, 3,240,597) No. 3,658,520, No. 4,232,103, No. 4,175,961, No. 4,012,37. Specification, JP-B-49-35702, JP-A-39-27577, JP-A-55-144250, JP-A-56-119132, JP-A-56-22437, West German patent No. 1,110,518 Etc.), amino-substituted chalcone derivatives (see US Pat. No. 3,526,501 etc.), oxazole derivatives (disclosed in US Pat. No. 3,257,203 etc.), styrylanthracene, etc. Derivatives (see JP 56-46234 A), fluorenone derivatives (see JP 54-110837 A, etc.), hydrazone derivatives (US Pat. No. 3,717,462, JP 54-59143 A) No. 55-52063, No. 55-52064, No. 55-46760, No. 57-11350, No. 57 -148749, JP-A-2-311591, etc.), stilbene derivatives (JP-A 61-210363, 61-228451, 61-14642, 61-72255, 62-47646, 62-36674, 62-10652, 62-30255, 60-93455, 60-94462, 60-174749, 60-175052, etc.), silazane derivatives (US Pat. No. 4,950,950), polysilanes (JP-A-2-204996), aniline copolymers (JP-A-2-282263) And the like.
In addition, inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material.
正孔注入・輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.6eV以下と小さい層である。
正孔注入・輸送層として使用できる材料としては、トリアゾール誘導体(米国特許3,112,197号明細書等参照)、オキサジアゾール誘導体(米国特許3,189,447号明細書等参照)、イミダゾール誘導体(特公昭37-16096号公報等参照)、ポリアリールアルカン誘導体(米国特許3,615,402号明細書、同第3,820,989号明細書、同第3,542,544号明細書、特公昭45-555号公報、同51-10983号公報、特開昭51-93224号公報、同55-17105号公報、同56-4148号公報、同55-108667号公報、同55-156953号公報、同56-36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体(米国特許第3,180,729号明細書、同第4,278,746号明細書、特開昭55-88064号公報、同55-88065号公報、同49-105537号公報、同55-51086号公報、同56-80051号公報、同56-88141号公報、同57-45545号公報、同54-112637号公報、同55-74546号公報等参照)、フェニレンジアミン誘導体(米国特許第3,615,404号明細書、特公昭51-10105号公報、同46-3712号公報、同47-25336号公報、同54-119925号公報等参照)、アリールアミン誘導体(米国特許第3,567,450号明細書、同第3,240,597号明細書、同第3,658,520号明細書、同第4,232,103号明細書、同第4,175,961号明細書、同第4,012,376号明細書、特公昭49-35702号公報、同39-27577号公報、特開昭55-144250号公報、同56-119132号公報、同56-22437号公報、西独特許第1,110,518号明細書等参照)、アミノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照)、オキサゾール誘導体(米国特許第3,257,203号明細書等に開示のもの)、スチリルアントラセン誘導体(特開昭56-46234号公報等参照)、フルオレノン誘導体(特開昭54-110837号公報等参照)、ヒドラゾン誘導体(米国特許第3,717,462号明細書、特開昭54-59143号公報、同55-52063号公報、同55-52064号公報、同55-46760号公報、同57-11350号公報、同57-148749号公報、特開平2-311591号公報等参照)、スチルベン誘導体(特開昭61-210363号公報、同第61-228451号公報、同61-14642号公報、同61-72255号公報、同62-47646号公報、同62-36674号公報、同62-10652号公報、同62-30255号公報、同60-93455号公報、同60-94462号公報、同60-174749号公報、同60-175052号公報等参照)、シラザン誘導体(米国特許第4,950,950号明細書)、ポリシラン系(特開平2-204996号公報)、アニリン系共重合体(特開平2-282263号公報)等を挙げることができる。
また、p型Si、p型SiC等の無機化合物も正孔注入材料として使用することができる。 [Hole injection layer and hole transport layer (hole injection / transport layer)]
The hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.6 eV or less.
Examples of materials that can be used for the hole injection / transport layer include triazole derivatives (see US Pat. No. 3,112,197), oxadiazole derivatives (see US Pat. No. 3,189,447), imidazole, and the like. Derivatives (see Japanese Patent Publication No. 37-16096), polyarylalkane derivatives (US Pat. No. 3,615,402, US Pat. No. 3,820,989, US Pat. No. 3,542,544) JP-B-45-555, JP-A-51-10983, JP-A-51-93224, JP-A-55-17105, JP-A-56-4148, JP-A-55-108667, JP-A-55-156953. No. 56-36656), pyrazoline derivatives and pyrazolone derivatives (US Pat. No. 3,180,729, No. 1) 278,746, JP 55-88064, 55-88065, 49-105537, 55-51086, 56-80051, 56-88141. No. 57-45545, No. 54-112537, No. 55-74546, etc.), phenylenediamine derivatives (US Pat. No. 3,615,404, JP-B 51-10105, 46-3712, 47-25336, 54-1119925, etc.), arylamine derivatives (US Pat. Nos. 3,567,450, 3,240,597) No. 3,658,520, No. 4,232,103, No. 4,175,961, No. 4,012,37. Specification, JP-B-49-35702, JP-A-39-27577, JP-A-55-144250, JP-A-56-119132, JP-A-56-22437, West German patent No. 1,110,518 Etc.), amino-substituted chalcone derivatives (see US Pat. No. 3,526,501 etc.), oxazole derivatives (disclosed in US Pat. No. 3,257,203 etc.), styrylanthracene, etc. Derivatives (see JP 56-46234 A), fluorenone derivatives (see JP 54-110837 A, etc.), hydrazone derivatives (US Pat. No. 3,717,462, JP 54-59143 A) No. 55-52063, No. 55-52064, No. 55-46760, No. 57-11350, No. 57 -148749, JP-A-2-311591, etc.), stilbene derivatives (JP-A 61-210363, 61-228451, 61-14642, 61-72255, 62-47646, 62-36674, 62-10652, 62-30255, 60-93455, 60-94462, 60-174749, 60-175052, etc.), silazane derivatives (US Pat. No. 4,950,950), polysilanes (JP-A-2-204996), aniline copolymers (JP-A-2-282263) And the like.
In addition, inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material.
正孔注入・輸送層の材料には架橋型材料を用いることができ、架橋型の正孔注入輸送層としては、例えば、Chem.Mater.2008,20,413-422、Chem.Mater.2011,23(3),658-681、WO2008108430、WO2009102027、WO2009123269、WO2010016555、WO2010018813等の架橋材を、熱、光等により不溶化した層が挙げられる。
As the material of the hole injection / transport layer, a cross-linkable material can be used. As the cross-linkable hole injection / transport layer, for example, Chem. Mater. 2008, 20, 413-422, Chem. Mater. Examples include a layer obtained by insolubilizing a cross-linking material such as 2011, 23 (3), 658-681, WO2008108430, WO2009102027, WO2009123269, WO2010016555, WO2010018813 by heat, light or the like.
[電子注入層及び電子輸送層(電子注入・輸送層)]
電子注入・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい層である。
有機EL素子は発光した光が電極(例えば陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子注入・輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、104~106V/cmの電界印加時に電子移動度が少なくとも10-5cm2/Vs以上であることが好ましい。 [Electron injection layer and electron transport layer (electron injection / transport layer)]
The electron injection / transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
In the organic EL element, since emitted light is reflected by an electrode (for example, a cathode), it is known that light emitted directly from the anode interferes with light emitted via reflection by the electrode. In order to efficiently use this interference effect, the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several μm. However, particularly when the film thickness is large, in order to avoid a voltage increase, 10 4 to 10 6. The electron mobility is preferably at least 10 −5 cm 2 / Vs or more when an electric field of V / cm is applied.
電子注入・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい層である。
有機EL素子は発光した光が電極(例えば陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子注入・輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、104~106V/cmの電界印加時に電子移動度が少なくとも10-5cm2/Vs以上であることが好ましい。 [Electron injection layer and electron transport layer (electron injection / transport layer)]
The electron injection / transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
In the organic EL element, since emitted light is reflected by an electrode (for example, a cathode), it is known that light emitted directly from the anode interferes with light emitted via reflection by the electrode. In order to efficiently use this interference effect, the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several μm. However, particularly when the film thickness is large, in order to avoid a voltage increase, 10 4 to 10 6. The electron mobility is preferably at least 10 −5 cm 2 / Vs or more when an electric field of V / cm is applied.
上述したとおり、本発明では有機発光層に隣接する電子輸送層は式(2-1)で表されるアジン化合物を含有する。他の電子注入・輸送層や、アジン化合物と混合して使用できる材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。
As described above, in the present invention, the electron transport layer adjacent to the organic light emitting layer contains an azine compound represented by the formula (2-1). As a material that can be used by mixing with another electron injection / transport layer or an azine compound, an aromatic heterocyclic compound containing at least one hetero atom in the molecule is preferable, and a nitrogen-containing ring derivative is particularly preferable. The nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
その他、ドナー性材料のドーピング(n)、アクセプター材料のドーピング(p)により、半導体性を備えた有機層を形成してもよい。Nドーピングの代表例は、電子輸送層の材料にLiやCs等の金属をドーピングさせるものであり、Pドーピングの代表例は、正孔輸送層の材料にF4TCNQ等のアクセプター材をドープするものである(例えば、特許3695714参照)。
In addition, an organic layer having semiconductivity may be formed by doping (n) with a donor material and doping (p) with an acceptor material. A typical example of N doping is to dope a metal such as Li or Cs to the material of the electron transport layer, and a typical example of P doping is to dope an acceptor material such as F4TCNQ to the material of the hole transport layer. (See, for example, Japanese Patent No. 3695714).
本発明の有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法等の公知の方法を適用することができる。
各層の膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。 For the formation of each layer of the organic EL device of the present invention, a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
The thickness of each layer is not particularly limited, but must be set to an appropriate thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.
各層の膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。 For the formation of each layer of the organic EL device of the present invention, a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
The thickness of each layer is not particularly limited, but must be set to an appropriate thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.
本発明の有機EL素子は、発光素子として各種ディスプレイ等に使用されるパネルモジュールに使用できる。
また、本発明のパネルモジュールは、テレビ、携帯端末、パーソナルコンピュータ等の表示装置や、照明等に使用できる。 The organic EL device of the present invention can be used in a panel module used for various displays as a light emitting device.
Further, the panel module of the present invention can be used for a display device such as a television, a portable terminal, and a personal computer, lighting, and the like.
また、本発明のパネルモジュールは、テレビ、携帯端末、パーソナルコンピュータ等の表示装置や、照明等に使用できる。 The organic EL device of the present invention can be used in a panel module used for various displays as a light emitting device.
Further, the panel module of the present invention can be used for a display device such as a television, a portable terminal, and a personal computer, lighting, and the like.
実施例1
25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製:ITO膜厚130nm)をイソプロピルアルコール中で5分間超音波洗浄し、さらに、30分間UV(Ultraviolet)オゾン洗浄した。
洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして化合物HAを蒸着し、膜厚5nmの膜を成膜した。HA膜上に、化合物HT1を蒸着し、膜厚95nmの正孔輸送層を成膜した。この正孔輸送層上に、蛍光用ホストである化合物H100と蛍光用ドーパントである化合物BDとを厚さ25nmで共蒸着し、蛍光発光層を得た。ド―パントの濃度は5質量%であった。
続いて、この蛍光発光層上に、化合物ET100を蒸着し、膜厚20nmの電子輸送層を成膜した。電子輸送層の成膜に続けて、化合物ET1を蒸着し、膜厚5nmの電子注入層を成膜した。さらに、厚さ1nmのLiF、厚さ80nmの金属Alを順次積層し、陰極を形成して有機EL素子を製造した。尚、電子注入性電極であるLiFは、1Å/minの成膜速度で形成した。 Example 1
A glass substrate with an ITO transparent electrode line of 25 mm × 75 mm × 1.1 mm (manufactured by Geomatic: ITO film thickness 130 nm) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and further UV (ultraviolet) ozone cleaning for 30 minutes.
The glass substrate with the transparent electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the compound HA is first deposited on the surface on which the transparent electrode line is formed so as to cover the transparent electrode. A film was formed. A compound HT1 was vapor-deposited on the HA film to form a 95 nm-thick hole transport layer. On this hole transport layer, the compound H100, which is a fluorescent host, and the compound BD, which is a fluorescent dopant, were co-evaporated with a thickness of 25 nm to obtain a fluorescent light emitting layer. The dopant concentration was 5% by weight.
Subsequently, the compound ET100 was vapor-deposited on this fluorescent light emitting layer, and an electron transport layer having a thickness of 20 nm was formed. Following the formation of the electron transport layer, the compound ET1 was vapor-deposited to form an electron injection layer having a thickness of 5 nm. Furthermore, LiF with a thickness of 1 nm and metal Al with a thickness of 80 nm were sequentially laminated to form a cathode to manufacture an organic EL device. Note that LiF, which is an electron injecting electrode, was formed at a deposition rate of 1 Å / min.
25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製:ITO膜厚130nm)をイソプロピルアルコール中で5分間超音波洗浄し、さらに、30分間UV(Ultraviolet)オゾン洗浄した。
洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして化合物HAを蒸着し、膜厚5nmの膜を成膜した。HA膜上に、化合物HT1を蒸着し、膜厚95nmの正孔輸送層を成膜した。この正孔輸送層上に、蛍光用ホストである化合物H100と蛍光用ドーパントである化合物BDとを厚さ25nmで共蒸着し、蛍光発光層を得た。ド―パントの濃度は5質量%であった。
続いて、この蛍光発光層上に、化合物ET100を蒸着し、膜厚20nmの電子輸送層を成膜した。電子輸送層の成膜に続けて、化合物ET1を蒸着し、膜厚5nmの電子注入層を成膜した。さらに、厚さ1nmのLiF、厚さ80nmの金属Alを順次積層し、陰極を形成して有機EL素子を製造した。尚、電子注入性電極であるLiFは、1Å/minの成膜速度で形成した。 Example 1
A glass substrate with an ITO transparent electrode line of 25 mm × 75 mm × 1.1 mm (manufactured by Geomatic: ITO film thickness 130 nm) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and further UV (ultraviolet) ozone cleaning for 30 minutes.
The glass substrate with the transparent electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the compound HA is first deposited on the surface on which the transparent electrode line is formed so as to cover the transparent electrode. A film was formed. A compound HT1 was vapor-deposited on the HA film to form a 95 nm-thick hole transport layer. On this hole transport layer, the compound H100, which is a fluorescent host, and the compound BD, which is a fluorescent dopant, were co-evaporated with a thickness of 25 nm to obtain a fluorescent light emitting layer. The dopant concentration was 5% by weight.
Subsequently, the compound ET100 was vapor-deposited on this fluorescent light emitting layer, and an electron transport layer having a thickness of 20 nm was formed. Following the formation of the electron transport layer, the compound ET1 was vapor-deposited to form an electron injection layer having a thickness of 5 nm. Furthermore, LiF with a thickness of 1 nm and metal Al with a thickness of 80 nm were sequentially laminated to form a cathode to manufacture an organic EL device. Note that LiF, which is an electron injecting electrode, was formed at a deposition rate of 1 Å / min.
実施例2
化合物HT1の代わりに下記化合物HT2を用いて正孔輸送層を形成し、化合物ET100の代わりに下記化合物ET200を用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を形成した。
Example 2
An organic EL device is formed in the same manner as in Example 1 except that the hole transport layer is formed using the following compound HT2 instead of the compound HT1, and the electron transport layer is formed using the following compound ET200 instead of the compound ET100. did.
化合物HT1の代わりに下記化合物HT2を用いて正孔輸送層を形成し、化合物ET100の代わりに下記化合物ET200を用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を形成した。
An organic EL device is formed in the same manner as in Example 1 except that the hole transport layer is formed using the following compound HT2 instead of the compound HT1, and the electron transport layer is formed using the following compound ET200 instead of the compound ET100. did.
実施例3
化合物ET100の代わりに化合物ET200を用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を形成した。 Example 3
An organic EL device was formed in the same manner as in Example 1 except that the compound ET200 was used instead of the compound ET100 to form the electron transport layer.
化合物ET100の代わりに化合物ET200を用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を形成した。 Example 3
An organic EL device was formed in the same manner as in Example 1 except that the compound ET200 was used instead of the compound ET100 to form the electron transport layer.
実施例4
化合物HT1の代わりに化合物HT2を用いて正孔輸送層を形成し、化合物H100の代わりに下記化合物H200を用いて蛍光発光層を形成し、化合物ET100の代わりに化合物ET200を用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を形成した。
Example 4
A hole transport layer is formed using compound HT2 instead of compound HT1, a fluorescent light emitting layer is formed using compound H200 below instead of compound H100, and an electron transport layer is formed using compound ET200 instead of compound ET100. An organic EL element was formed in the same manner as in Example 1 except that it was formed.
化合物HT1の代わりに化合物HT2を用いて正孔輸送層を形成し、化合物H100の代わりに下記化合物H200を用いて蛍光発光層を形成し、化合物ET100の代わりに化合物ET200を用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を形成した。
A hole transport layer is formed using compound HT2 instead of compound HT1, a fluorescent light emitting layer is formed using compound H200 below instead of compound H100, and an electron transport layer is formed using compound ET200 instead of compound ET100. An organic EL element was formed in the same manner as in Example 1 except that it was formed.
実施例5
化合物H100の代わりに化合物H200を用いて蛍光発光層を形成し、化合物ET100の代わりに化合物ET200を用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を形成した。 Example 5
An organic EL device was formed in the same manner as in Example 1 except that the fluorescent light emitting layer was formed using Compound H200 instead of Compound H100 and the electron transport layer was formed using Compound ET200 instead of Compound ET100.
化合物H100の代わりに化合物H200を用いて蛍光発光層を形成し、化合物ET100の代わりに化合物ET200を用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を形成した。 Example 5
An organic EL device was formed in the same manner as in Example 1 except that the fluorescent light emitting layer was formed using Compound H200 instead of Compound H100 and the electron transport layer was formed using Compound ET200 instead of Compound ET100.
比較例1
化合物HT1の代わりに化合物HT2を用いて正孔輸送層を形成し、化合物H100の代わりに下記化合物H300を用いて蛍光発光層を形成し、化合物ET100の代わりに化合物ET200を用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を形成した。
Comparative Example 1
A hole transport layer is formed using compound HT2 instead of compound HT1, a fluorescent light emitting layer is formed using compound H300 below instead of compound H100, and an electron transport layer is formed using compound ET200 instead of compound ET100. An organic EL element was formed in the same manner as in Example 1 except that it was formed.
化合物HT1の代わりに化合物HT2を用いて正孔輸送層を形成し、化合物H100の代わりに下記化合物H300を用いて蛍光発光層を形成し、化合物ET100の代わりに化合物ET200を用いて電子輸送層を形成した他は実施例1と同様にして有機EL素子を形成した。
A hole transport layer is formed using compound HT2 instead of compound HT1, a fluorescent light emitting layer is formed using compound H300 below instead of compound H100, and an electron transport layer is formed using compound ET200 instead of compound ET100. An organic EL element was formed in the same manner as in Example 1 except that it was formed.
実施例及び比較例で作製した有機EL素子を、直流電流駆動により発光させ、電流密度10mA/cm2における輝度(L)、色度(x、y)、発光効率η(lm/W)、外部量子効率(EQE:%)を測定した。また、素子寿命(LT80)を測定した。結果を表1に示す。
尚、表中の輝度、発光効率η、外部量子効率(EQE)及び素子寿命(LT80)の値は、比較例1の値を100とした相対値である。 The organic EL devices produced in the examples and comparative examples are made to emit light by direct current drive, and the luminance (L), chromaticity (x, y), luminous efficiency η (lm / W) at the current density of 10 mA / cm 2 , external Quantum efficiency (EQE:%) was measured. Further, the element lifetime (LT80) was measured. The results are shown in Table 1.
The values of luminance, light emission efficiency η, external quantum efficiency (EQE), and element lifetime (LT80) in the table are relative values with the value of Comparative Example 1 being 100.
尚、表中の輝度、発光効率η、外部量子効率(EQE)及び素子寿命(LT80)の値は、比較例1の値を100とした相対値である。 The organic EL devices produced in the examples and comparative examples are made to emit light by direct current drive, and the luminance (L), chromaticity (x, y), luminous efficiency η (lm / W) at the current density of 10 mA / cm 2 , external Quantum efficiency (EQE:%) was measured. Further, the element lifetime (LT80) was measured. The results are shown in Table 1.
The values of luminance, light emission efficiency η, external quantum efficiency (EQE), and element lifetime (LT80) in the table are relative values with the value of Comparative Example 1 being 100.
本発明の有機EL素子は、長寿命であり、高効率での駆動が可能である。従って、テレビ、携帯端末、パーソナルコンピュータ等の表示装置や、照明等の発光素子として好適に使用できる。
The organic EL element of the present invention has a long life and can be driven with high efficiency. Accordingly, it can be suitably used as a display device such as a television, a portable terminal, a personal computer, or a light emitting element such as an illumination.
上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。 Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
All the contents of the Japanese application specification that is the basis of the priority of Paris in this application are incorporated herein.
本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。 Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
All the contents of the Japanese application specification that is the basis of the priority of Paris in this application are incorporated herein.
Claims (16)
- 対向する陽極と陰極との間に、前記陽極側から、少なくとも有機発光層及び電子輸送層をこの順に隣接して有し、
前記有機発光層が、下記式(1-1)で表わされるアントラセン化合物を含み、
前記電子輸送層が、下記式(2-1)で表わされるアジン化合物を含む、
有機エレクトロルミネッセンス素子。
Ar2は、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基である。
Lは、単結合、又は置換若しくは無置換の環形成炭素数6~10のアリーレン基である。
R1~R8は、それぞれ独立に水素原子、フッ素原子、シアノ基、置換若しくは無置換の炭素数1~20のアルキル基、置換若しくは無置換の炭素数3~20のシクロアルキル基、置換若しくは無置換の炭素数1~20のアルコキシ基、置換若しくは無置換の炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数3~40のトリアルキルシリル基、又は置換若しくは無置換の環形成炭素数8~50のアリールシリル基である。
nは、1~4の整数であり、nが2以上の場合、複数のLは、それぞれ同じでも異なってもよい。)
Ar11は、置換若しくは無置換のカルバゾール骨格含有基を置換基として1以上有する環形成炭素数6~30の芳香族炭化水素基である。
Azは、置換若しくは無置換の芳香族含窒素6員環基である。) Between the anode and cathode facing each other, from the anode side, at least an organic light emitting layer and an electron transport layer are adjacent to each other in this order,
The organic light emitting layer contains an anthracene compound represented by the following formula (1-1):
The electron transport layer contains an azine compound represented by the following formula (2-1):
Organic electroluminescence device.
Ar 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
L is a single bond or a substituted or unsubstituted arylene group having 6 to 10 ring carbon atoms.
R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted An unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, a substituted or unsubstituted trialkylsilyl group having 3 to 40 carbon atoms, or a substituted or unsubstituted ring An arylsilyl group having 8 to 50 carbon atoms formed.
n is an integer of 1 to 4, and when n is 2 or more, the plurality of L may be the same or different. )
Ar 11 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms having at least one substituted or unsubstituted carbazole skeleton-containing group as a substituent.
Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group. ) - 前記式(2-1)で表されるアジン化合物が有する、置換若しくは無置換のカルバゾール骨格含有基が、置換若しくは無置換の9-カルバゾリル基である、請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein the substituted or unsubstituted carbazole skeleton-containing group of the azine compound represented by the formula (2-1) is a substituted or unsubstituted 9-carbazolyl group.
- 前記式(2-1)のAr11は以下のいずれかから選択される請求項1記載の有機エレクトロルミネッセンス素子。
Ar100は、水素原子又は置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基である。) 2. The organic electroluminescence device according to claim 1, wherein Ar 11 in the formula (2-1) is selected from any of the following.
Ar 100 is a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms. ) - 前記アジン化合物が、下記式(2-1)で表される化合物である、請求項1又は2に記載の有機エレクトロルミネッセンス素子。
R11~R18は、それぞれ独立に水素原子、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換若しくは無置換の環形成原子数5~30の芳香族複素環基、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の炭素数1~30のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の炭素数7~30のアラルキル基、置換若しくは無置換の炭素数1~30のハロアルキル基、置換若しくは無置換の炭素数1~30のハロアルコキシ基、置換若しくは無置換の炭素数3~30のアルキルシリル基、置換若しくは無置換の炭素数8~40のジアルキルアリールシリル基、置換若しくは無置換の炭素数13~50のアルキルジアリールシリル基、置換若しくは無置換の炭素数18~60のトリアリールシリル基、置換若しくは無置換の炭素数2~30のアルケニル基、置換若しくは無置換の炭素数2~30のアルキニル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、又はカルボキシ基である。
Azは、置換若しくは無置換の芳香族含窒素6員環基である。) The organic electroluminescence device according to claim 1 or 2, wherein the azine compound is a compound represented by the following formula (2-1).
R 11 to R 18 are each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms. Substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted aryloxy groups having 6 to 30 ring carbon atoms, substituted or unsubstituted An aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted haloalkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted 3 to 30 carbon atoms An alkylsilyl group, a substituted or unsubstituted dialkylarylsilyl group having 8 to 40 carbon atoms, a substituted or unsubstituted alkyldiarylsilyl group having 13 to 50 carbon atoms, a substituted Or an unsubstituted triarylsilyl group having 18 to 60 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a halogen atom, a cyano group, A hydroxyl group, a nitro group, or a carboxy group.
Az is a substituted or unsubstituted aromatic nitrogen-containing 6-membered cyclic group. ) - 前記式(2-2)のAzが、下記式(2a)で表される基である、請求項4に記載の有機エレクトロルミネッセンス素子。
Ar12及びAr13は、それぞれ独立に置換若しくは無置換の環形成炭素数6~18の芳香族炭化水素基である。) The organic electroluminescence device according to claim 4, wherein Az in the formula (2-2) is a group represented by the following formula (2a).
Ar 12 and Ar 13 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 ring carbon atoms. ) - 前記式(2a)のX1及びX2が窒素原子であり、X3がCHである、請求項5に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 5, wherein X 1 and X 2 in the formula (2a) are nitrogen atoms, and X 3 is CH.
- 前記式(2a)のAr12の炭素数が、Ar13の炭素数以下である、請求項5又は6に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent element according to claim 5 or 6, wherein the carbon number of Ar 12 in the formula (2a) is equal to or less than the carbon number of Ar 13 .
- 前記式(2a)のAr12が、置換若しくは無置換のフェニル基、置換若しくは無置換のナフチル基、又は置換若しくは無置換のビフェニル基である、請求項5~7のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electro of any one of claims 5 to 7, wherein Ar 12 in the formula (2a) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted biphenyl group. Luminescence element.
- 前記式(2-2)のkが2である、請求項4~8のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 4 to 8, wherein k in the formula (2-2) is 2.
- 前記式(2-2)のR11~R18が水素原子である、請求項4~9のいずれかに記載の有機エレクトロルミネッセンス素子。 10. The organic electroluminescence device according to claim 4, wherein R 11 to R 18 in the formula (2-2) are hydrogen atoms.
- 前記式(1-1)のAr1が、下記式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、(1g)又は(1h)で表わされる置換基のいずれかである請求項1~10のいずれかに記載の有機エレクトロルミネッセンス素子。
- 前記式(1-1)のAr1が、下記式(1a)、(1b)、(1c)又は(1h)で表わされる置換基のいずれかである請求項1~11のいずれかに記載の有機エレクトロルミネッセンス素子。
- 前記式(1-1)のAr1が、下記式(1a’)、(1b’)又は(1h’)で表わされる置換基のいずれかである請求項1~12のいずれかに記載の有機エレクトロルミネッセンス素子。
- 前記式(1-1)のLが単結合である請求項1~13のいずれかに記載の有機エレクトロルミネッセンス素子。 14. The organic electroluminescence device according to claim 1, wherein L in the formula (1-1) is a single bond.
- 請求項1~14のいずれかに記載の有機エレクトロルミネッセンス素子を使用したパネルモジュール。 A panel module using the organic electroluminescence element according to any one of claims 1 to 14.
- 請求項15に記載のパネルモジュールを用いた電子機器。 Electronic equipment using the panel module according to claim 15.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012116718 | 2012-05-22 | ||
JP2012-116718 | 2012-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013175746A1 true WO2013175746A1 (en) | 2013-11-28 |
Family
ID=49623457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/003147 WO2013175746A1 (en) | 2012-05-22 | 2013-05-17 | Organic electroluminescent element |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201410840A (en) |
WO (1) | WO2013175746A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160072077A1 (en) * | 2014-09-04 | 2016-03-10 | Samsung Display Co., Ltd. | Organic light emitting diode and organic light emitting display device including the same |
KR20160034804A (en) * | 2014-09-22 | 2016-03-30 | 주식회사 엘지화학 | Hetero-cyclic compound and organic light emitting device comprising the same |
WO2016117429A1 (en) * | 2015-01-20 | 2016-07-28 | 保土谷化学工業株式会社 | Pyrimidine derivative and organic electroluminescence element |
JP2016540731A (en) * | 2014-06-27 | 2016-12-28 | ヒソン・マテリアル・リミテッドHeesung Material Ltd. | Polycyclic compound and organic light emitting device using the same |
WO2017159152A1 (en) | 2016-03-15 | 2017-09-21 | 新日鉄住金化学株式会社 | Organic electroluminescent element |
WO2017179809A1 (en) * | 2016-04-11 | 2017-10-19 | 주식회사 두산 | Organic light-emitting compound and organic electroluminescent element using same |
US9847501B2 (en) | 2011-11-22 | 2017-12-19 | Idemitsu Kosan Co., Ltd. | Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element |
KR101832557B1 (en) * | 2015-04-09 | 2018-02-28 | 단국대학교 산학협력단 | Organic material and oled having the same |
US10056558B2 (en) | 2011-11-25 | 2018-08-21 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative, material for organic electroluminescent element, and organic electroluminescent element |
US10217954B2 (en) | 2013-11-13 | 2019-02-26 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device |
CN111171010A (en) * | 2020-01-13 | 2020-05-19 | 北京大学深圳研究生院 | Cathode electro-stimulation response material and preparation method thereof |
US10784446B2 (en) | 2014-11-28 | 2020-09-22 | Idemitsu Kosan Co., Ltd. | Compound, organic electroluminescence element material, organic electroluminescence element and electronic device |
CN112912359A (en) * | 2018-11-08 | 2021-06-04 | 出光兴产株式会社 | Novel compound, organic electroluminescent element using same, and electronic device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI691581B (en) * | 2019-01-11 | 2020-04-21 | 元智大學 | Anthracene materials, organic light emitting diodes, and manufacturing method of anthracene materials |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010104184A1 (en) * | 2009-03-13 | 2010-09-16 | 三菱化学株式会社 | Process for manufacturing organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting |
WO2010114243A2 (en) * | 2009-03-31 | 2010-10-07 | Dow Advanced Display Materials,Ltd. | Novel compounds for organic electronic material and organic electronic device using the same |
WO2010136109A1 (en) * | 2009-05-29 | 2010-12-02 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2011083588A1 (en) * | 2010-01-08 | 2011-07-14 | 三菱化学株式会社 | Organic el element and organic light-emitting device |
WO2011099374A1 (en) * | 2010-02-12 | 2011-08-18 | 新日鐵化学株式会社 | Organic electroluminescent element |
JP2012056880A (en) * | 2010-09-08 | 2012-03-22 | Idemitsu Kosan Co Ltd | Indolocarbazole compound, material for organic electroluminescence element, and organic electroluminescence element using the same |
-
2013
- 2013-05-17 WO PCT/JP2013/003147 patent/WO2013175746A1/en active Application Filing
- 2013-05-21 TW TW102117861A patent/TW201410840A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010104184A1 (en) * | 2009-03-13 | 2010-09-16 | 三菱化学株式会社 | Process for manufacturing organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting |
WO2010114243A2 (en) * | 2009-03-31 | 2010-10-07 | Dow Advanced Display Materials,Ltd. | Novel compounds for organic electronic material and organic electronic device using the same |
WO2010136109A1 (en) * | 2009-05-29 | 2010-12-02 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2011083588A1 (en) * | 2010-01-08 | 2011-07-14 | 三菱化学株式会社 | Organic el element and organic light-emitting device |
WO2011099374A1 (en) * | 2010-02-12 | 2011-08-18 | 新日鐵化学株式会社 | Organic electroluminescent element |
JP2012056880A (en) * | 2010-09-08 | 2012-03-22 | Idemitsu Kosan Co Ltd | Indolocarbazole compound, material for organic electroluminescence element, and organic electroluminescence element using the same |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9847501B2 (en) | 2011-11-22 | 2017-12-19 | Idemitsu Kosan Co., Ltd. | Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element |
US10056558B2 (en) | 2011-11-25 | 2018-08-21 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative, material for organic electroluminescent element, and organic electroluminescent element |
US10217954B2 (en) | 2013-11-13 | 2019-02-26 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device |
JP2016540731A (en) * | 2014-06-27 | 2016-12-28 | ヒソン・マテリアル・リミテッドHeesung Material Ltd. | Polycyclic compound and organic light emitting device using the same |
US20160072077A1 (en) * | 2014-09-04 | 2016-03-10 | Samsung Display Co., Ltd. | Organic light emitting diode and organic light emitting display device including the same |
KR20160034804A (en) * | 2014-09-22 | 2016-03-30 | 주식회사 엘지화학 | Hetero-cyclic compound and organic light emitting device comprising the same |
KR101864473B1 (en) * | 2014-09-22 | 2018-06-04 | 주식회사 엘지화학 | Hetero-cyclic compound and organic light emitting device comprising the same |
US10784446B2 (en) | 2014-11-28 | 2020-09-22 | Idemitsu Kosan Co., Ltd. | Compound, organic electroluminescence element material, organic electroluminescence element and electronic device |
CN107406415A (en) * | 2015-01-20 | 2017-11-28 | 保土谷化学工业株式会社 | Pyrimidine derivatives and organic electroluminescence device |
JPWO2016117429A1 (en) * | 2015-01-20 | 2017-11-09 | 保土谷化学工業株式会社 | Pyrimidine derivatives and organic electroluminescence devices |
US10566543B2 (en) | 2015-01-20 | 2020-02-18 | Hodogaya Chemical Co., Ltd. | Pyrimidine derivative and organic electroluminescent devices |
WO2016117429A1 (en) * | 2015-01-20 | 2016-07-28 | 保土谷化学工業株式会社 | Pyrimidine derivative and organic electroluminescence element |
CN107406415B (en) * | 2015-01-20 | 2021-02-19 | 保土谷化学工业株式会社 | Pyrimidine derivative and organic electroluminescent device |
KR101832557B1 (en) * | 2015-04-09 | 2018-02-28 | 단국대학교 산학협력단 | Organic material and oled having the same |
WO2017159152A1 (en) | 2016-03-15 | 2017-09-21 | 新日鉄住金化学株式会社 | Organic electroluminescent element |
US11088334B2 (en) | 2016-03-15 | 2021-08-10 | Nippon Steel Chemical & Material Co., Ltd. | Organic electroluminescent element |
WO2017179809A1 (en) * | 2016-04-11 | 2017-10-19 | 주식회사 두산 | Organic light-emitting compound and organic electroluminescent element using same |
KR102721427B1 (en) * | 2016-04-11 | 2024-10-25 | 솔루스첨단소재 주식회사 | Organic light-emitting compound and organic electroluminescent device using the same |
CN112912359A (en) * | 2018-11-08 | 2021-06-04 | 出光兴产株式会社 | Novel compound, organic electroluminescent element using same, and electronic device |
CN111171010A (en) * | 2020-01-13 | 2020-05-19 | 北京大学深圳研究生院 | Cathode electro-stimulation response material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201410840A (en) | 2014-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013175747A1 (en) | Organic electroluminescent element | |
JP6148982B2 (en) | Nitrogen-containing heteroaromatic ring compounds | |
WO2013175746A1 (en) | Organic electroluminescent element | |
JP6047761B2 (en) | Organic EL multicolor light emitting device | |
JP6310856B2 (en) | Organic EL multicolor light emitting device | |
JP6012611B2 (en) | Material for organic electroluminescence device and organic electroluminescence device using the same | |
WO2013035329A1 (en) | Organic electroluminescence element | |
WO2012018120A1 (en) | Monoamine derivative and organic electroluminescent element using same | |
WO2013105206A1 (en) | Material for organic electroluminescent element, and element using same | |
JP6220341B2 (en) | Ladder compound and organic electroluminescence device using the same | |
WO2013102992A1 (en) | Material for organic electroluminescence element and element using same | |
KR20120052231A (en) | Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same | |
US20150034927A1 (en) | Material for organic electroluminescent element, and organic electroluminescent element using same | |
WO2007029806A1 (en) | Azaaromatic compounds having azafluoranthene skeletons and organic electroluminescent devices made by using the same | |
CN101321728A (en) | Diaminoarylene compound having carbazolyl group and use thereof | |
WO2013073169A1 (en) | White organic electroluminescent element | |
JP2013108015A (en) | Material for organic electroluminescent element | |
WO2013108589A1 (en) | Novel compound, material for organic electroluminescent element and organic electroluminescent element | |
JP6031302B2 (en) | Heteroaromatic compound and organic electroluminescence device using the same | |
US9496508B2 (en) | Material for organic electroluminescent element and organic electroluminescent element using same | |
WO2014112359A1 (en) | Organic electroluminescent element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13794546 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13794546 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |